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1. Introduction.

The g8aes that we are talking about are two person, zero-ams

*gisms that result in an Evader being either killed or not killed by

an Attacker,, Since the Attacker employs a weapon that requires a

certain amount of time T for delivery, a major part of his task

Is the prediction of what the Evader will do during the next T,

so that an equally good name for him would be "Predictor."

The classic example of such a a-se is "bomber vs. battleship."

The bomber is assumed to have one bomb, infinite endurance, and per-

fect alm, so that the battleship's only chance of survival lies in

the bomber's inability to predict the notion of the battleship

during the next T. The Same is trivial if the battleship known

the time at which the bomb is dropped; both the bomb and toe battle-

ship should be placed randomly within whatever area A the battleship

can reach in T, and the payoff is the ratio of the lethal area to

A. If the battleship does not know when the bomb is dropped, then

the problem is not trivial. We shall discuss this problem further

in the sequel.

A more modern counterpart of the above game is the ICBM vs.

trailed ship game, where perhaps several nuclear weapons are launched

in a surprise attack against some sort of naval target. Nuclear

weapons are very powerful, but a modern ship can also travel some

distance in half an hour, so that the outcome is not obvious. The

mathematical assumptions that have to be made in this game are

L



2

probably closer to the real world than they were in the days of

bombers and battleships, uo that the game is of more than academic
C

interest. It is, strictly speaking, unsolved, as is the ICN( vs.

railroad train Same, which is the one dinensional equivalent.

Another example of a Tine Tagged Evasion Game is the anti-

aircraft gun vs. airplane Same, where the lethal radius and time

lag are both scaled down considerably from the bomber vs. battle-

ship. This game differs fundamentally from the latter in that the

AU gun fires at many distinct points of time, with the times of

firing bearing little relationship to the maneuvers of the target.

This distinction results in the RNS error being the appropriate

payoff and leads to the introduction of filtering techniques.

The examples above should make it clear that the time lag is

what makes these games unique and interesting. It also makes thea

non-intuitive, at least in the sense that nature provides very

little instruction in how to play them. One can presumably learn

something about pursuit by watching natural predators and their

prey, and there are many other combat situations where nature pro-

vides guidelines. But the ability to kill at long range is unique

to modern man, and we must therefore expect intuition to be a fallible

guide in what follows.
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2. Models Derived from the Bomber vs. Battleship Game.

We will refer to the Bomber as A and the Battleship as E,

and we make the following assumptions:

1) Both sides have infinite endurance.

2) E's motion is unrestrained except that his speed must
never exceed V. In particular, E can make sharp
turns if he likes.

3) A can warp the shape of the lethal region in any way
he likes, so long as the area of the region is S.

It is not intuitively obvious that the above game is difficult.

In fact, it is clear that A will always have E located to

within a circle of radius VT, so that he can achieve a kill prob-

ability of S/w(VT)2 by simply choosing the lethal region randomly

within the circle (a wedge of random orientation will do). On the other

hand, if E maneuvers in such a way that the probability density

of his position is uniform within the circle of uncertainty at the

moment of impact, then the kill probability will be S/w(VT)2 no

matter what lethal region A chooses. Therefore, S/W(VT)2 is

the value of the game, as long as E can behave as described. The

trouble with this analysis is that E cannot make the probability

density of his position increment uniform at the moment of impact.

It would be easy if E knew when the bomb was dropped because his

assumed ability to make sharp turns would permit his to simply pick

a point at random within the circle of uncertainty and go there.

But E doesn't have that critical piece of information, and there-

fore doesn't know when to start the maneuver. Still, intuition may
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argue that E can achieve the same effect by "moving around con-

pletely at random all the time." Unfortunately, this instruction is

not specific, and attempts to make it specific lead to non-uniform

distributions at certain times.

To illustrate how this happens, we consider the following

strategy for E in the one dimensional analog (Bomber vs. Railroad

Train), where S is now a length, rather than an area: At time

k O(t-O) pick a velocity uniformly from [-V,V], and stick to it for

T. This will certainly make the position at T uniform throughout

the interval of uncertainty. At T, repeat the procedure with an

"independent choice of velocity, and continue ad infinitum. Let us

explore the consequences of this policy. At time T/2, the incre-
"T T

ment to EVs position over the next T is 1 V1 + V2  where

V1  and V2 are the first two random velocities. Since the veloci-

ties are independent, the probability density of the sun can be

found by convolving the uniform density with itself. The result

is triangular, and is shown as one of the densities in Figure 1A.

If this policy for E were optimal, he could announce it to

A without hurting his chances (A can figure it out for himself

anyway, since he has lots of time available). In response, A

might use the firing policy "straddle the present position." If

S - VT, it can be seen that this policy would cut out 3/4 of the

probability density function at t - T/2, so the highest kill

probability is at least 3/4. Figure IB is a plot of kill proba-

bility QPK) vs. time. It shows that
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1) The highest PK available is 3/4.

2) PK - 1/2(-S/2VT) is available only at multiples of T.

3) The average kill probability is closer to 3/4 than to
1/2, since the scallops are concave.

In other words, the stated strategy for E does not make

the T-increment of his position "uniform all the time."

A has a better strategy than straddling that involves extrap-

olation. Specifically, at time t - 6, will have observed the first

velocity V1, and can cpnsequently predict exactly where E will

be at T. By killing an interval of length 2V6 around that point,

he can guarantee a kill, and since 6 is arbitrary, A can guar-

antee a kill as long as S > 0 (assuming a noiseless tracking system

that is able to measure a velocity in an arbitrarily small amount

of time). Thus, by paying careful attention to E's track, A can

actually guarantee to kill E if E uses the stated policy.

Obviously, the trouble with E's strategy is that his motion

is predictable over long periods of time; once he picks a velocity,

he sticks to it for T. A natural way to improve E's strategy is

to make many independent velocity decisions within each T, rather

than just one. Intuition may lead to the conclusion that, if E

makes enough of these incremental decisions within each interval,

then the T-increment of his position (IT) will be uniform for

all t. This is false; what actually happens is that E can reli-

ably be expected to not go anywhere. If there are N independent,

identically distributed velocity choices Vi in T, then
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T T T2

Var(YT) -LVarqj V,) -N Varq~ V,) ajVar(Y.)

so that i1. Var(IT) - 0. Consequently, this sort of strategy will

also lead to Z's being killed with probability 1 even when S

is very maIll.

Not only have we failed to discover a strategy for E that

will guarantee pK. S/ (2VT), but we have failed to produce a

strategy for E that will permit him to survive with any positive

probability, even against a weak opponent. E seems to be caught

in a dilmuma between turning infrequently, in which case he is vul-

nerable to simple extrapolation, and turning frequently, in which

case he has to fight the Law of Large Numbers. In addition, he is

handicapped by the fact that A can wait for a mimumm of PX

before he fires, since A has Infinite endurance and can drop the

bomb whenever he likes.

The previous paragraphs will have served their purpose if the

reader is now convinced that the Same is not simple, and that

"moving around at random" will not guarantee that p, s S/(2VT)

(or P[. S/w(VT)2 in two dimensions).

2.1 A Reasonable Evader Strategy.

Since A can be expected to pick the uaxIm of the pK

vs. t curve, a reasonable strategy for E is to behave in such

a maner that p1  does not depend on t; i.e., the curve is flat.

3 can accomplish this by making independent direction change

I
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choices at times corresponding to the jumps in a Poisson Process.

This follows from the fact that in a Poisson Process the time until

the next jump is always an exponential random variable with mean

1/1, regardless of when jumps have occurred in the past. The

T-increment of E's position follows a probability law that does

not depend on t, and the constant kill probability can be found

by maximizing the amount of probability that A can "cut out" with

S. In one dimension, E is left with the single parameter X with

which to minimize that maxim=m (the "turn probability" at each

decision point can be taken to be 1.0, since a smaller number is

equivalent to changing X). In two dimensions, E controls both

A and the common D.F. F(O) of the successive direction changes.

In one dimension, the probability density of random variable

X - IT/(VT) is [1]

fx(x) - e-(x-l) + 0 -- ( ao(c4aixr) + Il(czvixZ)), (1)

where a - AT, IK is the modified Bessel function of order K,

and the positive direction for x is the last direction of travel

(-1 : x K 1). The 6-function term corresponds to the probability

-0 that E will not turn at all in T. Figure 2 shows plots of

the continuous part of fx (x) for 3 values of a, the optimal

area for A to cut out in each case when S - VT, and the

associated P. (A also covers the single point x - 1, getting
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at no cost). Figure 3 shows PK vs. a when S VT; the

best a is 2.3, and the minimum pK is about 2/3. Note that

a is the expected number of turns within any period of length T;

too few turns leads to vulnerability to extrapolation (e - is

large), and too many turns leads to trouble with the Law of Large

Numbers (fx(x) becomes concentrated around x - 0). The optimum

a decreases with S; it is a curious fact that E exhibits the

most frantic behavior against the weakest opponent.

2.1.1 Approximation for Weak Attacker.

The mimax PK is a function of the ratio S/(2VT) = s.

There is no analytic representation In general, but it is possible

to obtain a limiting form for small a. To do so, we first obtain

the symmetrical form of (1) that results from randomizing E's

first move; the resulting advantage for E will be negligible when

a is large. The resulting density function is 1/2(fx(X) + fx(-X)),

the continuous part of which is

f(x) - a * (I (aUr'-x) + 1 1 (a rlq )) (2)

Since the power series for I has no constant tern, f(x) is

decreasing for x k 0, and the best strategy for A is therefore

to straddle the origin in addition to hitting the points -1 and

+1. An asymptotic expansion for I(z) is
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eze(1 + .a,/z + ... ),

* so that f(O) • for large a. For the moment, we assume

* that f(x) is well approximated by f(O) within the straddle, so

that the kill probability for given a, s is approximately

• - + 2a Iw (3)

where e is the probability that no turn will be made.

For convenience, let x - a and v 2 - a. Then the minimm

kill probability is PK - min (e W+ 2xra) - min (e-v + 2vx).
02e0 van ,V2

Equating the v-derivative to 0, we find that x - ve and

P[ - • (l + 2v 2 ). There will be two solutions to x = ve

if x s- e-/2 , and none otherwise. Only the larger of the two

solutions can be a minimum, since the initial slope is positive.

In other words, p(x) could be generated parametrically for small

x by using large values for v. But it is possible to obtain an

explicit solution. Let y - x. Then y 1 + , which numberP/v 9 hc nme

is never less than )F. Solving for v, we find that v +
4

taking the larger of the two roots. Since x - ve , we therefore

have

Y+47 -8 log (L±-+M - log x. (4)
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hMen a - .5, we earlier found that the correct kill proba-

bility Is .665 at a -2.3. For a - .5, (4) gives x = .2,

v2 - 1.8, y - 3.42, and pK - .685, thus advising E to turn

sewt less frequently than he ought to, and slightly exaggerat-

ins the mlnim- kill probability.

hen x is very small, y is very large. If we approximate

v with y/2 and ignore the log v term in (4), the result is

y • 2/-lo•-x. Recalling that y - pK/x and x - s//2vw, this is

p 2(K-- 2 /logv2- - log s

- .796 8/.92 - log • (5)

9 might have hoped for better, since the kill probability would be

only a if he could achieve the ideal of making his position

increment a uniform random variable.

When E uses the specified a, f(O) is a good approximation

to f(x) within the straddle. To prove this, note that

f"(O)/f'(O) - ca, so that lim s2f"(O)/f'(O) - lia c'a(Ve-a eG)2 - 0.

2.2 The Problem in Two Dimensions.

In two dimensions, E controls a directional D.F. F(O), as

well as the rate oi turning A. The problem of finding the proba-

bility law for the T-increment of the Evader's position is unsolved,

except for the case F(O) - 0/2w for 0 c 0 • 2w (the uniform D.F.).
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In this case, the joint density function of (WY) ( (41)/VT,1Y)/VT)

is [2]

f,(x-y) - e 6(Y)6(x-1) + 1y

for x 2 + y 2 g 1, where the positive x direction is the last

direction of travel, and a - XT as before. By numerically inte-

grating this function, and minimizing the integral with respect to

a, Figure 4 can be computed. That figure represents the current

"state of the art" as far as the Bomber vs. Battleship game is

concerned; value of the game (assuming one exists) is a survival

probability (1-pK) somewhere between the upper and lower bounds

that are shown. It is not known whether or not the optimal strategy

for E is a Poisson Strategy of the type Just considered, or even

whether the uniform distribution on angles is optimal within the

class.

2.3 The Discrete Evasion Game.

The Bomber vs. Battleship game discussted above was the subject

of some effort at the RAND Corporation in the 1950's. Finding the

game to be too difficult for exact solution, Isaacs and others

decided to formulate approximate games that could be solved exactly,

rather than to try to approximate the value of the exact game. In

Isaac'swords [31,
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"To gain a foothold, we simplified it further. We made
the ocean one-dimensional and discrete. That is, we
supposed the battleship to be located on one of a long
row of points and at each unit of time he hops to one
adjoining one, enjoying the sole choice of a right or
left jump. The time lag was to be an integral number n
of time units, or-the same thing-of jumps. This is
tantamount to saying that the bomber knows all positions
of the battleship which precede his present one by n
jumps or more. If a - 1, the bomber knows all but the
most recent of the ship's positions and there are but two
possibilities for that: one space to right or left of the
last observed one.

This case--n - 1--is trivial. The ship makes each decision-
left or right-by the toss of a coin. The bomber can bomb
at any time and when he does he also decides between the
two possibilities with a coin.* Then the value of the game
(hit probability) is 1/2.

Our intention was now to take up n - 2,3,4,... and, from
the knowledge gained, proceed to the continuous case.
Thence we hoped to restore planarity to the ocean and
approach practicality by more realistic assumptions about
the ship's kinematics, accuracy of the bomber, number of
bombs, etc.

But the case of n - 2 proved to be an incubus. A consid-
erable amount of effort by several people was expended before
its shell began to crack. This paper will be the third one
devoted to it; see [1,2]. We can expect the general class
of aiming-and--evasion problems to be more difficult than
anticipated, but by no means hopeless."

*(For the game theory tyro only.) If at some time, the ship
elected, say, the probabilities: Left: .6; Right: .4,
the bomber need only wait for this time and bomb on the
left; then hit probability - .6. Similar considerations
hold vice versa. Thus the unique optimal strategies
require 50-50 decisions on the parts of both players.
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The reader is referred to (3] for a complete discussion of

the case n = 2. Briefly, the solution was found by beginning with

the intuitively plausible Markov Hypothesis: In the n step game,

the probability that E will go right or left on any given move

may depend on the previous n - 1 steps, but will not depend on

steps further in the past than the n - l1 . The assumption is

plausible because, "Why should E let his behavior depend on infor-

mation that A already knows?" Note that the assumption holds

when n - 1, since E flips a coin each time regardless of what

he did the previous time. When n - 2, E will presumably maintain

a constant probability of turning (x), since one can "turn" know-

ing only what was done on the previous step. E's direction of

travel can then be extrapolated for 2 steps with probability

(l-x) 2 . With probability x(l-x), E will be at the opposite

extreme in 2 steps. This leaves a probability of 1 - (l-x)2 -

x(l-x) - x for the center point (no net movement). Thus, E can

guarantee a kill probability no larger than

V - min max {(l-x) 2 , x, x(l-x)).

The minimum occurs when x - (l-x) 2 , in which case x - 3 2

.382 - V. This nurber turns out to be the value of the Same, but

the proof of the fact is not easy. Three different proofs can be

found in (3], [41, and (5]. The proofs are made somewhat difficult
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because the maximizing player has no optimal stragegy; he can

guarantee a pK arbitrarily close to V, but he can't guarantee

V. Intuitively, A has no optimal strategy because it always pays

to wait a little longer before firing, but it doesn't pay to wait

"forever" before firing-the two rules are in conflict.

The results for the 2-step game have been extended somewhat.

In [5], Ferguson showed that V - is a special case of
2

vn - (n 2 +2-n/WXi)/2, where n + 1 is the number of edges connected

to each vertex in certain special graphs that he calls restricted

n-graphs. For example, a lattice of hexagons is a restricted 2-

graph, and the integers are a restricted 1-graph. Since a restricted

n-graph may have no four-sided figures, the square lattice is not

a restricted 3-graph, however.

In [5], Ferguson also mentions that the outstanding unsolved

problem is the 3-step evasion game. He claims that the best E

can do using the Markov Hypothesis is (9r3-15)/2 - .294..., but

(in his words), "It is unknown whether or not this ... is optimal.

In fact, it has been conjectured that no strategy with finite

memory (that is, a strategy that depends only on the last m moves

for some finite integer m) is optimal for the three-move lag

problem." Thus, the Markov Hypothesis has not only not been proved

(except for n - 1,2), but its truth is actually in doubt. Before

exploring the reason for this doubt, however, we will first inves-

tigate the numbers Vn that are obtained as "game values" when the

Markov Hypothesis is employed in the n-step evasion game.
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According to the Xarkov Hypothesis E controls 2n-1

variables, each being the piobahility of going (say) to the right,

given that the previous n - 1 steps have been in a certain

sequence. We can exploit the obvious right/left symmetry by con-

sidering only paths where the last step is to the (say) left, in

which case there are only 2n-2 variables at E's disposal. Equi-

valently, the variables can be regarded as probabilities of turning

given one of the 2n-2 possible previous sequences of turns. For

each of these sequences, E must assure that the probability of

being at any of the n + 1 points reachable in n steps is j Vn,

so that

2(n -) 2 functions
V , :n-si~n a" ° in..2 variables)

n 2 n-2 variables of 2

In general, we can expect that about 2n-2 + 1 of the

functions will be equal when the variables are optimum, since this

establishes as many equations as unknowns, with the rest of the

functions taking on smaller values. Evidently, the "controlling

functions" (the ones that are equal) will become a smaller propor-

tion of all functions as n grows large. Some idea of which

functions will be controlling can be obtained by exmining in

detail the results for the 2, 3, and 4 step games, which

are shown in FIgures 5 and 6. The results for n - 2 are Isaacs'.

The first proof that V2 = .382... is actually due to Dubins [4].
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The results for n - 3 are Ferguson's. The results for n - 4

are new. The probabilities shown in Figures 5 and 6 are the prob-

abilities that E will be at the various points when using the

associated optimal turn probabilities; P(TITN) is "the probability

of turning if the previous move was a turn and the move before that

was not." The controlling functions are the ones that are equal to

the bound on the game value (underlined) in the optimal solution.

The four step game shows that the following two propositions

are false:

1) When E uses his optimal (Markov) strategy, A's choice
of when te fire is immaterial (A must not fire after
NN),

2) In Z's optimal strategy, the probability of turning
depends only on the time since the last turn
(P(TITT) , P(TITN)).

On the other hand, one striking characteristic of the 4-step

game is that the optimal turn probabilities are all very nearly

equal, so that the approximation resulting from the assumption that

they are equal might not be a bad one. At n - 4, the best single

turn probability is .3015..., with the resulting bound being

.2380... . For large n, assuming that there is a constant turn prob-

ability at each step, the time between turns would be approximately

exponentially distributed, so that formula (1) should apply. How-

ever, formula (5) gives too large a kill probability (.32 at n - 4)

because the a"- term is free to A in the continuous game, whereas
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2- STEP

.302 .302 .236

I~T) .382... V2  .362...
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3 - STEP

.265 .261 .294 .110 .294 .294 .267 .126

P(TIT) u.267...

P(TIN) u.366... .25SV 3 S294

FIGURE 5.

THE TWO AND THREE STEP GAMES.
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.2356 .2366 .2373 .18668 .1033 .2374 :2374 .2374 .1862 .1016

.2374 .2371 .2371 .1644 .1033 .9374 .2371 .2371 .1851 .1033

P(TITT) a .30318
P(TINT) w .30318

P (T INN) a. 30318 .2 SV S .23740
P(T(TN)x .298334

FIGURE 6.

THE FOUR STEP GAME.
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it is not In the discrete game. In the discrete 4ame, (3) should

be replaced by

p(G) = max (Oe.a 2 ( 6)

which is minimized when the two quantities are equal. A formula

for .the m ý (p,)-.as a function of n can be found by an

a.slysis similar to that leading to (5). First, let x / 277-.
n+1

Then Pi •"O, z M e InC/ , y KP/x - .. and consequently

y2 +log y -log x (7)

For n - 4, (7) gives pK - .202, which is too low. When

n is very large, the log y term in (7) can be neglected, giving

PK S x1-og x, or

. ~ A L-/og 1 + log (n+l)

-K (.96 / 2

n (.796) (. 22 + log (n+l) (8)

Compare (8) and (5) for a - ./(n+l).

Discrete Rvasion Games with the number of simultaneous

attacker shot. being larger than 1 have not been investigated.

R's strategy is sensitive to this number; in the 2-step gram, for

L



Instance, the game value when A has 2 shot* (using the Marka,

Hypothesis) Is

1 MM Uinamn(l-x)2 , x, x(l--X)).
x

The optimal x ie .5, which is larger than the .382... that

I uses when A only has 1 shot. Note that 3 turns more often

against the stronger opponent; this is in contrast to his behaviour

in the continuous veruion of the S asf he is restricted to expo-

nentially distributed times between turns.

It was mentioned earlier that there is some doubt that the

Markov Hypothesis is true for n a 3. The next section should

provide some insight into the reasons for this doubt.
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3. * hself Prediction Ciaese.

One of the things that complicates Evasion Games is the

fact that there are many distinct sequences of moves that lead to

each of the n + 1 points reachable in n steps, except for the

2 extreme points. This complication is missing in Emission Predic-

tion Games; the Attacker (we will now call him the Predictor) wins

Ul•... the hNittor (Evader) emits a specif:ic sequence of characters

imediately after the Predictor -fires." Note that such games are

ttivial if the specific sequence is all the same character, since

E will emit the character continually and win. E - P games were

introduced by Blackwell [6], who observed that theorems of Weld

and Karlin imply that slightly sore general ga•es have a value, and

that 3 has a good strategy that is stationary in the following

sense: Let A be the finite alphabet of characters, and let en

be my sequence of n characters. Then E has an optimal strategy

P(-) such that P(en) is the probability that the first n

characters will be *n, and also P(en) .2 (xea).* The last

equation says that e is just as likely to be emitted at step 2n
as it Is at step 1, and the statement easily generalizes to step K.

Blackwell goes on to solve the 3110 am (the sequence

is (1,0)), finding that the value of the game is -1 and that an

optimal strateay for 3 is therefore to choose each character by

tossing a coin. Note that this strategy for I is Warkov (no

5 Ilackwell's proof is for A - (0,1), but the generalization Is

straightforward.
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memory requited) as vell as stationary. P 1as only 6-optimal

strategies.

In (7), *atula carried on the study of HP ames. He

found that the size of the alphabet is unimportant as long as the

list of characters that P must predict will not occur is "self-

disjoint" in the sense that no terminal segment is Identical to

any Initial segment. Yor example, 1100 is self disjoint, but 101

is not. If there are A a 2 characters in the self disjoint list,

then the value of the game is V - (- , 1 whch is asymp-

totic to 1/(Xe). It is Interesting to note that the value of the

game would be 1/A if P were denied all Information about R's

emissions, so that the value of information can be exactly assessed

in this case.

The strategies used by P and E in guaranteeing V are

of considerable interest. The Predictor Ignores E's emissions

except that he takes note of those instants of time tj when E has

just completed a transmission of the list, with t - 0 being such

a time. At each such moment, if he has not yet made his predic-

tion, P picks a random ntber I with P(X-i) - pig

I w 0,1,.... If the next complete transmission of the list has

not occurred by time tj + X, then 9 predicts that the next X

characters after t + X will not be the list; otherwise, P

repeats the procedure. Let K - tj+1  - tj. Than K a X, since

the list is self disjoint. The probability that P will make a
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prediction is P0 + + pK-1' and the probability thac P will

lose, given that he predicts, is pKI/(P0+...+pK-l). Therefore,

if the. probabilities pi are chosen in such a manner that

Pi-X •(po+.."+P,-) for all K k X, then B is a bound on

the gave value enforceable by P. Matula shows that such "distzi-

bution bounded densities" exist if B > VV, but not if B - V .

In other words, these densities are E-optimal strategies for P.

The Same BY1100 wili serve to Illustrate an optimal

Emitter strategy. There are four characters in the list, which

we re-.able -a,. b, c, and d. E first emits the character

"a," and then generates a MXrkov chain with transition probabili-

teas• (bj4).m P(alb) - P(djc) - 3/4, P(sax) - P(xjd) - 1/4 for

x - a, b, c,, d. Note that no matter what I has Just emitted, he

will next emit the list abcd with probability •-3
4 V - V4 . so8

that the given strategy for E (call it S) in optimal. Moreover,

S is obviously Markov if E's emission iL regarded as a sequence

of letters, and has an ultimate stationary distribution. But consider

what happens when the letters are translated into O's and l's.

The generated sequence will still be ultimately stationary, but it

will no longer be Markovi To show that this is the case, let Pn

be the probability that the first n symbols will be "l." Then

P1 a 1, since the first letter is a, and P2 - 1, since the

second letter is either a or b. Moreover, pn must satisfy

1 1 3
Pu+ '(Z)4Pn+ 1)(Vpn' and the only solution of this equation for

which p 1 =P 2 l is



22

~ t i+~3*n--
1 /2 1 /3 1 + 1 (lýi3* (

Since pn+l/Pn is not a constant for n a nO for some no, S

is not Markov of any order. In other words, no finite mmory will

do for 9 if he attempts to reme ber only O's and l's. Further-

more, Matula proves that all of I's optimal strategies are non-

Markov in the same sense. This is in contrast to the games EP1O

and BP100, where R does have an optimal Markov strategy. Ferguson

had these facts in mind when he made the quote on page 14, to the

effect that the Markov Hypothesis may not hold for the .3--step

evasion game.

Matula also solves certain classes of FP games where the

list Is not self-disjoint, but some EP games have not been solved.
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4. The Filtering. Approach.

"Optlmal Filtering" is concerned with the prediction of a

signal when it is accompanied by noise. The source of the noise is

normally thought of as impartial,.but there is no reason in the

theory why the noise could not be deliberately created by E in an

attempt to make A's job difficult. It seeme atural, then, to

attempt to apply the theory, which is substantial, to Evasion Games.

-Consider the Evasion Game in one dimensIon, and let X be
t

a stochastic process representing E's position at time t. The

probability law governing the stochastic process is determined by

K, subject to some constraints. At-time t, A will have observed

E's motion up to t, and must construct a set S(Xut) with

Lebesgue measure a, lanthe continuous problem or with n points

in the discrete problem, where S does not depend on X for
U

u > t. If A chooses to fire at time t and if XI E S(xu,t),

then A wins, so that the Interpretation of S, is 'the set of

po/nts at which A would fire if he bhd to fLre at tim t." The

payoff would then be sup P(Xt E S(x0,t)).
t

Let us explore sab, of the difficulties In applying filter-

ing theory to the above problem. The most obvious is that A Is

chooelng a set, rather tham the single number X (t+r) that is

the "optimal 'estimete"• n filtering theory. However, we can get

4rouad this problem by restricting A to f IrIng at an "laterval"

with Xe(t+T) being (say) the midpoint. This will be no real
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restriction if E nonetheless behaves in such a manner that the

probability law for X t4 given Xu, u x t is unimodal.

There are other difficulties. If A fires at time t, the

payoff is supposed to be P(x s2), with an analo-

gous formula in the discrete case. However, the payoff at t in

most of filtering theory is taken to be the variance o0 2
t

Var(X*(t+T)-X(t+T)). Yurthermore, the usual object to be minimized

in filtering theory is E(u 2 ), whereas we have in mind a maximizing

operation, corresponding to the idea that A picks the time of

firing. The expected value criterion would seem to apply better if

an impartial referee were to randomly pick the time of firing, rather

than A.

All of the above difficulties disappear if E is restricted

to using a stationary Gaussian process. Since the distribution of

Xt+r, given Xu for u z t, is normal, A's best strategy is

always to straddle the mean. Furthermore, since the variance of

that normal distribution is independent of X for u : t, o2 is
U t

actually a constant, so that the average and supremum operations

give the same result. Since the kill probability at any time is a

given, decreasing function of a2, the variance itself can serve

as a payoff function, with E maximizing and A minimizing. In

other words, if E is constrained to using stationary, Gaussian

processes, then filtering theory is applicable to the Evasion Game.
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166fortunately, the rules of the Evasion Game make it impossible

for I to move according to a stationary, Gaussian process. E's

velocity is supposed to be bounded. We have two choices:

1) Ignore the problem, and replace the bound on the
velocity with a bound on the variance of the velocity.
In other words, change the game.

2) Look for E strategies for which the velocity is
bounded.

We shall explore both possibilities.

4.1 Constrained Variance.

References [8] and (9] are both applicable. We will follow

[8], wherein the discrete and continuous problems are both solved

completely. In the discrete case, the velocity Y is assumed ton

hold from time n - 1 to time n, so that, if X is the position
K

at time K, I - X0 + I Y n" The stationary, normal process Ynasi , n
is assdmed to be filtered noise: Yn a i Un-j, where the U

j-0
are Independent, normal random variables with 0 mean and unit
variance. The variance of Y must never be larger than (say) 1,

Mn
so Var(Y ) - 1 2 1. Thus, a strategy for E is a potentiallyi-a
infinite dimensional vector a with a constrained norm.

We can assume that A fires at time 0, since the firing

time is Imaterial. If the delay is K steps, corresponding to

the X step Evasion Game, then the payoff is Vsr(X-O(YOYl...)

where 0 is A's prediction of X based on what he knew at

time 0. It is known that the optimal predictor 0 is just the
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conditional expected value [103. This fact does not depend on the

U being normal. However, the fact that the U are normal

implies that the conditional expected value is a •einar function. of

so that it is no restriction to assum that

9(Y Y Thus, a strategy for A is a vector

y. Bram goes on to express the payoff as a function J(a.y),

subject to a mild restriction on y, and to show that

sin max = max min J(a,y) = 1 (10)
y a a y 2(1-co1es ))

i*

Furthermore, ai = 0 for i 2 K in E's optimal strategy. At

first glance, this seems to confirm the Markov Hypothesis for these

games, since 9 needs to know only Un_ 1 1 q ... ,U in order to

determine Y . However, a finite memory will suffice only if En

remmbers U's; no finite memory will suffice if E remembers

Y's, contrary to the Narkov Hypothesis. This situation is very like

the one encountered in Rmission-Prediction games; lVs finite

memory is for something that isn't observable by A. This consti-

tutes additional evidence that the Markov Hypothesis does not hold

in general for the n-step Evasion Game.

Even though A has an optimal strategy y , the results

for Bram's game are similar to the results for other evasion-type

games in the sense that y had infinitely many non-zero components.

If A's strategies had been restricted to vectors with only finitely
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many coMponents, corresponding to the Idea that A can wait a long

time but not forever before firing, then A would have only E-

optimal strategies.

It w•s mentioned earlier that the chief reason for restrict-

Ing E to normal processes Is the fact that the time of firing is

chosen by A, rather than at random. In some applications, the

time may actually be chosen at random; for instance, In the conven-

tional anti-aircraft problem. It is reasonable In that case to

take Z(Var(X 1-0(Y))) as a payoff, even though it may differ from

inf Var ((1K" (V)) If Since Bram' s arguments do not rely on

the normality or comnonness of the distribution of the U's, it

follows that

1) The Independent U's can have arbitrary distributions
with unit mean and variance.

2) A can remain restricted to linear functions of the
Y's.

3) The value of the game will be (10).

Bran also solves the continuous version of the above game.

If T is the time delay, then the value of the Same turns out to

4T2

be W-. It is interesting to compare this result with a similar

result of Grenander [9], who solves a similar game with T - 1

where A is restricted to using an "extrapolation" prediction rule:

X (t+l) - X(t) + k(X(t)-X(t-1)). (U)
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Grenander finds that the value of the Same is 2.1 if k- 1, or
.02 if A sets k at .12, which is the optimizing value of k

for A. Evidently, the game value is sensitive to changes in A's

set of prediction strategies; Grenander finds an improvement by a

factor of 2.5 if A is allowed to use values of k other than

1, and Bram has proved that another factor of 2 is possible

(4/w2 m .4) if A's -prediction strategies are unrestricted.

As mentioned earlier, the chief objection to the constrained

variance approach is that E's velocity is not necessarily bounded.

Bounded velocity results are scarcer and less satisfying than con-

strained variance results, but still deserve mention.

4.2 Bounded Velocity.

In one dimension, the natural assumption to make is that E

travels back and forth at top speed, with the times between direc-

tion changes being independent random variables with common D.F.

F(x). The assumption is "natural" more out of force of habit than

through any inherent logic, since there is no good reason to suppose

that E's current decision should be independent of past decisions,

but it nonetheless offers some hope of analysis. We earlier inves-

tigated the consequences of making F(x) exponential when the

payoff was a kill probability (p. 6 ). In [9] Grenander finds the

optimal D.F. under the assumptions that A is restricted to the

extrapolation rule X (t+l) - 2X(t) - X(t-1), and that the value

of the game is to be the (average) variance of X(t+l) - X (t+l).
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He finds that the times between direction changes should be geometric:

P(T - n) M 1 n - 1,2,..., which is the same as saying that E

flips a coin every time unit to decide which way to go next. If

the top speed is 1, the value of the game is 1. It should be

emphasized that this game value is an average variance:

V - E(02) E(Var(X(t+L)-X *(t+l))).
t

For the proposed strategy for E, a2 turns out to be 2 12
t to e' +6 (t-2)

for 0 s t x 1, with period 1. It is true that Jo dt -h,
0

but min ct2 - 1/2, with the latter quantity being the sore appro-
t

printe payoff if A picks the time of firing. In other words,

Grmander impiicitly assumes that a neutral agent picks the time

of firing when he adopts E(a 2 ) for a payoff.
t

Grenander also formulates several games where A is not

restricted to simple extrapolation. In one of them, A is free to

use the conditional expected value as a predictor, and 9 moves In

2 dimensions at unit speed in a direction Ot that Is filtered,

Gaussian noise. He solves the problem in case V - Vsr( t) is

small, finding that the game value (variance of prediction error)

is (4T2 /w 2 )V. Note the similarity of thij result to Brha's in

one dimension; the optimal filter for 9 is also similar.
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. Smary.

The mathematical attack on the Bomber vs. Battleship gm has been

proceeded by the two time honored taotics of approximataly solving

the actual problem and actually.solving the approxiLate problem.

Unfortunately, neither approach has worked very well; the upper

and lower bounds on the actual problem are not very close to each

other, and the approximate games that have been solved do not re-

semble the Bomber vs. Battleship game very closely. A great deal

has been learned, but the really practical problems have yet to be

solved.

One of the most intriguing questions that remains unanswered

concerns the Markov Hypothesis for the n-step Evasion Game. Results

for similar games indicate that the hypothesis as stated earlier

probably does not hold, but that 9 nonetheless has an optimal

strategy wherein he needs to remember only n - 1 quantities. The

question is, Nhat quantities?, and what is the mapping from these

quantities to the actions that E must take?"

There are other questions that need to be answered. What

happens, for instance, if the kttacker's endurance is not large

compared to the time lag, or if his observations are in some way

noisy? The potential for useful research in the field is far from

exhausted.
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