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eh of the Meerature on optimal technical change ox optimal in-
venidve wntlivity In cconomics has dealt with optimel accumulation paths
o vprlnnl coascepitlon pethe end with long-run ateaéy—state gtawth.l

T the vomarenont llterature, emphasis fo given toboptimal control of
L exesndituras du order to bring to fruition a complex sequence of

“¥
- b
speclfle avcats.

The problem we will be dealing with in this section has elemenis
of both spproaches. The decision is not how much to allocate to such
L . , : y A -
grandlogs aggregetes s consumption or investment, but simply how wmuch

tu put inte n particelar R%D pregram at any time .(a genuine management

vroblem). Yet>the problem is formulaeted in the following way: given

# production function for technical change.§£"aeek:a path which maxi-

vizes the present disc?unted value of the diffecence between its ,
ﬂ&ny views expressed in this paper are those of the suthor. They
uhouvld not be Interpreted as reflecting the views of The Rand Corpora-
rion or the official opinien or policy of any of its governmental or
private research sponsors. Papers are reproduced by The Rand Corpora-
tion as a courtesy to melbers of its staff. )

The author wishes to thank Rand colleagues Kent Anderson and
Frmett Kesler, who provided useful comments on an earlier draft.

1Sce for exaemple the article by Karl Shell, "Optimal Programs of
Capttal Accumulation for an Economy in which there is Exogenous Tech-~
nical Change," or the article by William Nordhaus, "The Optimal Rate
snd Directicn of Technical Change," both in K. Shell, ed., Essays on
the Theory of Optimal Economic Growth, M.I.T. Press, Cambridge Massa-
chunctta . 1967, )
Rﬁme, for example, C. W. Hamilton, "Optimal Control of Reassarch

snd Development Expenditures," Technical Report No. 48, M.I.T. Opera-

i tions Resgearch Center, 1969.
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A
‘>benefits and coon.)(dcﬁnitoly a notion from purs economic thsory).
> 'rhc model is developed within the context of a program in which an

organization attempts to improve the parformance of one of its systems :
subject to an arbitrary fiscal constraint which limits the rate of 821; b
spending on that oy-tn.(_ )32‘: constraint is wmeaningful in a world

in vhich limits of this type are set by a political body, or by a
higher authority who perhaps has performed a higher level of optimiza-
tion over several projects. How this higher level of optimization

ought to be performed is itself an important and interesting question.
Presumably it involvc.. a subjective assessment of the relative plausi-
bility of many possible future states of the world. As such, that ques-
tion goes far bayond the intention of this paper.

For those who wish to think in more concrete terms, the organiza-
tion can be thought of as the Air Force engaged in a product-improve-
ment program for one of its jet engines. A fiscal constraint may then
have been imposed by the Air Force's chief R&D officer, or by Congress
itself. Ve will use this parable vhenever it appears to aid in the

presentation of the mudel.

Formulation of the Problem

Let P(t) be an index of pcrfot‘nco of an Air Force system at
time t, and let U(P(t)) be the utilicy flow at time t from having per-
formance P(t) available for immediate incorporation into a piece of

hardvare. P(t) must satisfy the following condition:

(1) P(t) < p(X(t), t)
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AN OPTIMAL CONTROL MODEL OF PRODUCT IMPROVEMENT R&D

Robert Shuhko*
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Much of the literature on optimal technical change or optimal in-

ventive activity in economics has dealt with optimal accumulation paths

or optimal consumption paths and wi.n long-run steady-stats grwth.l

In the management literature, emphasis is given to optimal contto; of
R&D expenditures in order to bring to fruition a complex sequence of
specific cvtl.z

The problem we will be dealing with in this section has elements

of both approaches. 'rhc decision 1- not how much te allocate to such
N SN * PN SIS <Y i S SR b,
grandiose aggregates as cmulption or investment, but simply’how much

to put into a particular ltn progrn at my tim .(a genuine management
problem). Ycl;}thc problem is formulated :I.n thc follov:lng vay: given
a production function for technical change ‘v uoba path which maxi-

mizes the present discounted value of the difference between its

~Stoo

*Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of The Rand Corpora-
tion or the official opinion or policy of any of its govarnmental or
private research sponsors. Papers are reproduced by The Rand Corpon-
tion as a courtesy to members of its staff.

The autbor wishes to thank Rand colleaguss Kent Andersom and
Esmett Keealer, vho provided useful comments on an earlier draft.

lgee for example the article by Karl Shell, "Optimal Programs of
Capital Accumulation for an Economy in which thers is Exogenous Tech-
nical Change,” or the article by Willism Nordhaus, "The Optimal Rate
and Direction of Technical Change," both in K. Shell, ed., Ess on
the Theory of Optimal Economic Growth, M.1.T. Press, Cambridge Massa-

chusetts, 1967,

28«. for example, C. W. Hamilton, "Optimal Control of Research
and Development Expenditures," Technical Report No. 48, M.I.T. Opera-
tions Research Center, 1969.
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Table 1

DEFINITIONS OF VARIABLES USED

P(t) = index of performance at time t.

X(t) = cumulative R&D expenditures for performance improvement up to
time t.

E(t) = R&D expenditures for performance improvement at time t.
t = time.

U(*) = utility flow at time t.

p(*) = maximum feasible performance at time t.

E = maxinum permissible rate of R&D expenditures for performance
improvement at time t.

rate of time discount on expenditures.

©
»
|

rate of time discount on utility.

p = p*-8.

v rate of factor augmenting tecimnical change.

pp(t) = Pontryagin price attached to cumulative R&D expenditures for
performance improvement at time t.

€(X) = elasticity of marginal utility with respect to cumulative R&D
expenditures for performance improvement.
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9(*) is the production function for performance improvement, and

its principal argument is X(t) the cumulative R&D money spent on per-
formance improvement up to time t; t itself may be an argument of the
function if for example there is factor augmenting technical change.
Lst us assume for now that this production function satisfies modified
Inada conditionc:3
(2a) o(0) = Py
(2b) (=) = =
(2c) 9'(0) = =
(2d) o9'(=) =0

(2)

Po is the performance level at the beginning of the product-improvement
program, In the case of jet engines, we can take this to be the per-
formance at the time of the MQT (Model Qualification Test).

E(t) is the rate of R&D expenditures at time t, and by definition
then, is the rate of change of X(t). E(t) is constrained to be less
than E.‘x at any time t.

The problem then is to find a path for 0 < E(t) £ Emax and

P(t) < @(t) such that the following integral is maximized:
@ 7 e P - aEw) e

vhere p* and § are the discount rates for utility and expenditures
respectively.

The rate of exchange between utility and expenditures, A, can be
assumed to be unity with complete generality by the appropriate choice

of units. The optimal control problem can now be written as:

3rh1- production function for product-improvement in jet engines has
been statistically estimated at Rand and the estimated form does indeed
satisfy these modified Inada conditions.




(4 maxinize [° (U(P()) e "t - E(t) e 5%)ae
{E(t), P(£)} °

subject to X(t) = E(t)
p(X(t)) - P(t) >0
B - E(®) 20
X(0) = b 0

@(0) = Py

E(t), P(¢t) 20

Darivation and Analysis of Necessary Conditions
It is clear from the above formulation that it would be inefficient

to choose a performance level less than the maximum feasible as given
in equation (1). Hence we can replace P(t) in %he integral by o{X), and

procesd using the Maximum Principle of Pontryagin, et al.

(5) waxinise [T wipm) ™ - Be) e ac
subject to (a) X(t) = E(t)
(b) E - E(t) 20
(c) X(0) = 0
() P(0) = By = (0)

(e) E(t) 2 0

Lat u(t)e-“ be the Pontryagin price or Hamiltonian multiplier,
analogous to the Lagrangian multiplier in static problems. The neces-
saxy conditions for a maximum are derived by forming the Hamiltonian,
H,

(6) H = Up) ™ - E(t) e ~8F + uE(r) 78

T T T
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and maximizing H at each point in time with respect to the control
vuhbh,‘ E(t). This implies the following rules:

If u(t) > 1, set E(t) = Boax

If pu(t) = 1, set E(t) ¢ [0, Bm]

1f u(t) > 1, set E(t) = O,

It is also necessary that p(t) satisfy the following differential

equations:
14
- _ SHke
4 b= -

vhere H* is the maximized Hamiltonian.

(8) H*(t) = max H(t)
B(t)

Equation (7) can be reduced to a more tractable form:

(" oo -U (x) e(Pt-B)E

6Aumiag the maximization of H offers no obstacle to sufficiency,
all we need is the concavity of H in the state variable X to guarantee
sufficient conditions for a maximum, We have the following:

R = U'g'>01£U' >0 and ' >0
gig--u'qp"-o- (q,')z U" <0 if ¢" <0 and U" < 0,
ax

So concavity of ¢(~) and U(+) is more thamn enough to guarantee suf-
ficiency.




That the government should use the same rate of discount on ex-
penditures (costs) and utility (benefits) in a defense type project is
questionable. The reasons can be summarized as follows:

(a) the lack of markets in which the demand for public projects
like defense can be evaluated,

(b) the oligopolistic nature of the supply side of defense
projects, and

(c) the dubious assumpcion that capital markets for private
projects of various risk classes are themselves in equi-
1ibrium.

What rate of discount should the government use on expenditures? The
government can induce individuals to lend funds voluntarily at the
relatively low interest rate on government bonds. To induce individuais
i to lend more the government may have to raise that rate, but the cost

j of capital to the government is usually less than the prevailing rate.s
! The discount rate on utility the government ought to use is the
social rate of time preference for that good. The problem is com-
piicated further by the fact that there may be a divergence between

private and social rates of time preference, the former being the omne

sThi. is usually attributed to the need on the part of private
investors for a risk premium. Should the government also include such
a risk premium in its evaluation of benefits? The risk to the govern-
ment in the type of projects we are dealing with in this chapter (re-
call our parable of the Air Force investing in a product-improvement
program for one of its jet engines) is not that the production function
is uncertain (we have assumed it is completely certain) but that the
utility function will change, in other words, that states of the worlds
will prevail in the future, in which various threats materialize or
dematerialize that make defense projects more valuable or less valu-
able. Indeed in the case of defense the utility of a project depends
heavily on the actions of other decisionmakers within the context of
a non-zero sum game,

Is it not better then to use an "optimistic-pessimistic-best guess'
procedure and to weight the utility outcomes by the subjective proba-
bilities one attaches to these different states than to add on an
arbitrary few percent to the minimum social risk discount rate to
account for the real uncertainty about the future?
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that operates in securitiss markets for private projects. One may
argue that with defense the benefits of fresdom and independence that
fall upon future generations should be valued nesrly as highly as we
do.

In addition, theare may be "time~time preference,” meaning that
benefits to be received in the distant future are not "discounted" at
the same rate as benefits to be received in the near future. When
individuals lend funds to the government, they are usually foregoing
consumption in the near future. Defense, on the other hand, seems to
be the type of good which has ‘ large component of long-term benefits.

The argument that the market rate of interest is the one the
government ought to use to discount costs and benefits is based on the
assumption that markets are in equilibrium, in particular that markets
for risk exist and that they function ir . sessonably competitive manner.
Clearly such an assumption {s unwarranted. Perhaps we can say that if
markets are in equilibrium and a governmeat project is a perfect sub-
stitute for a private project then the rate of discount that ought to
be used is market's rate of intarest for that project. But if a public
project is not a perfect substitute for soms private project then there
is no necessary relationship between the observed market rate (if indead
one such rate can be chosen from the many rates obssrved) and the dis-
count rate the government cught to use in evaluating that project.

Indeed markets for public goods of the defense type generally do
not exist, and even if they did there is good reason to belisve that
the supply side of such markets would be oligopolistically structured,
Purthermore, because of the fundamental problem of public goods one

would rarely expect these markets to be in equilibrium.

i R e e

S
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All this leads to the conclusion that it may be socially optimal

to use different discount rates on utility and expenditures for projects

of this type. Let p = p* -~ § then we can rewrite equation (7') as
") b - Ule'(x) eP*

where p can be positive (implying a greater discount rate being applied
to utility than to expenditures), zero (implying a coumon discount rate
on both), or negative (implying a greater discount rate being applied to
expenditures than to utility). We will handle each of these cases
separately beginning with the easiest and becoming progressively more
difficulty.

Case 1: p=20

The optimal behavior for X(t) and p(t) can be represented in a
phase diagram in (X, u) spece. Such a diagrsm is shown in Figure 1.
The X = 0 stationary is actually the region {(X, W)|X <0, u <1},
All other points strictly above the line u = 1 have XeE nax > 0, vhile
all points on p = 1, have X 2 0. The i = 0 stationary can be found by

solving the equation

@ eele@

Using the concavity of U(:) and ¢(*) we have been implicitly

assuming, U'¢'(X) /8 is a positive and decreasing function of x.°

The
value of X which equates the discount rate § to the marginal utility

of another dollar of cumulative RS&D is denoted X*. Above the i = 0

Y

U"'(+) and ¢"'(*) > 0 are sufficient to guarantee that the rate
of decline is indeed slowing as X gets larger.

T T I
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stationary Su~ U'e'(X) > 0 and hence 1 must be increasing over time;
similarly below the u= O stationary, 4 must be decreasing over time.
The question is then: 1Is there a trajectory beginning at (0, 1(0))
which can satisfy the equations of motion and the transversality con-

dition given as equation (10)?

(10) a u(t) et wp
e

There is one and only one such tujcct:ory.7 and it is the one
beginning at (0, u*(0)) and ending at (X*, 1). This trajectory is shown
in Figure 1. All trajectories beginning above or below p*(0) cannot
satisfy the transversality condition (l.t)).8

"This follows trivially from the Lipschitzian character of the dif-
ferential equations (5a) and (7") describing the behavior of X and p
respactively. To check that these equations are indeed Lipschitzian,
note that the right-hand sides of both equations are twice continuously
dutcmtiabh with respect to X, u, t for all E(t) such that O < E(t)

<E

srroof :

(a) Suppose a trajectory begins below p*(0), say at 3(0), then this
trajectory meets the p=l line at a value i and at a time 'ii-i/l! aax vhere-
upon X ceases to increase and the value of p declines according to

(1) -8 = -U' '(i) = a constant

BED) | ygr iy /s,

Hence u(t) = pje
We can solve for Ko using the condition
(11) (D) = 1= g + U9 (R)/8

8o,

(111) W) = -0y )/8)eb D 4 urgr (0 /8
But now since 1 must be dcclining over time in this region, 1 - U'ep' (x) /8

t-T)

must be negative. It thor.forc cmot satisfy the transversality condi-

tion. Alternatively, since X < X# (see fn. 7),
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Fig.1=—Optimal trajectory for p=0
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On the optimal trajectory the transversality condition becomes

(10") e p(t) e alim1.eao
Lo o

This is consistent with one's intuition: given the concavity of
the utilicy function in x,9 one might guess that R&D funds should be

spent at the maximum allowed rate until some time T* after which fund-

(1v) 1-U'9p'(X)/8<1-U'gp'(X*)/8=0
(b) Consider the trajectory (X(t), ui(t)) which begins at pu*(0) but

which crosses the i = 0 curve with maximum control applied, i.e.,

B(t) = Bm. Then

) 1m ' (8) e 20
toe

since both terms are non-negative. On this modified “optimal" trajec-
tory, at any time t, X = Bmt.

Suppose a trajectory begins above p*(0), say at $(0), then this
trajectory crosses the |i=0 curve; both p and X incresse, ths latter
also according to X(t) = E nax®* At any time t, the corresponding X
values are the ssme along the two trajectories. Hence
(vi) B(t) - 1) = 8(u(e) - ug(e))

Solving the above differential equation, we cbtain
(Vi) B(e) - pg(e) = £get
vhere f, is positive since it is equal to $(0) - u*(0). Then

(vid1)  lm p(e) ¢ 5t - £, + 1im pg(t) ot
tre e

>0

which does not satisfy the transversality conditiom.

9Notc this is weaker than the combination of the concavity of
U(+) in its argument and the concavity of ¢(:) in X, but is the same
as the concavity of H in the state variable X (ses fn. 4).



ing stops altogether. Finding an optimal solution to this dynamic

i:roblon is equivalent to solving the simple static problem of maximiz~
ing the difference between benefits and costs. The optimsl total
expenditure is just the one that equates the marginal benefits to
marginal costs with the marginal cost schedule cutting the marginal bene-
benefit schedule from below. This point is precisely X*; the solution
to the dynamic problem tells us however that we should endeavor to get

to X* as fast as possible.

Summary of Case 1
Given the maximum problem (5) with p* = §, optimality implies spend-

ing at the maximum allowable rate to time T® given by X*/E nax VheTE
U'ep'(X*) = §. After T* spending should be tsrminated completely. The

final level of performance is given by @(X*).

Case 2: p >0

In general, stationary solutions to equation (7') lie in a mani-
fold embeddec (X, », t) space. The manifold of solutions to |i=0
is shown in Figure 2. The optimal trajectory in this case is char-
acterized by a finite period of maximum RED expenditures followed by
an infinite period of zero expenditures with a declining but positive
. Figure 2 also shows such a trajectory. The value of X at which
R&D expenditures terminate is denoted X#*,

It remains to show that the proposed trajectory can comply with
the transversality condition of equation (10). Suppose along the pro-
posed optimal trajectory it could be demonstrated that the point (X##,
u(t)) wvas always below the 1(t) = O stationary for all t > 0, and



Fig.2=—Optimal trajectory for p>0



B(t) was able to approach zero just slowly enough so as to remain posi-
tive except in the limit as t + =, then the equations of motion and
transversality condition could both be satisfied. Now when p falls to

unity, R&D expenditures terminate, and equation (7') becomes

(11) BCE) = Bu(t) - U'g’ (xww) o PE-T*)

where T#% = X#&/E nax® Since U'ep'(X*%) is just a constant, the solution
to (11) is just

(12) “(t) - “o.6t + IL'%.:L .-p(t-l‘**)

Pick 1(0) such that

13wy = (10" )/ (pr8) 1™ = 0

that is, the point X** is just the one which satisfies uolop:. traj. = 0,

so
=) Sy
(24) plt) = !.%1.‘:‘.*). o ~PLE=TH*)
Further,
- | A ) (1) - - -
(15) lin u(t) €70 = 140 LR op(e-THE)=0¢
- 14m LRTXED) -ptrepThe
toe P
=0
Define u#*(t) to be the value of p which makes i(t) = 0 for
X = X#%,

Thus
(16) pte () = U_z_g.m). o P(E=T*%)

Now since p has been assumed to be positive, we have

(17) 0 < u(t) < prw(e)



This 1is precisely what was needed to show the optimality of the pro~

posed trajectory of Figure 2.

Summary of Case 2

Given maximum problem (5) with p* > § optimality implies spending
at the maximum allowsble rate to time T4#* given by T = Xe&/E _ .

After T** gpending should be terminated completely. The final level
of performance is given by @(X#*). A fortiori, I#* < T* and Xt# < X*
for maximum problems having the sase utility and production functioms.

Case 3: p <0 .

This is the most complex and interesting of the three cases. In
certain situations there will be a "turnpike" solution in which the rate
of R&D expenditures is positive but less than or equal to the maximum
allowable rate; cumulative RiD expenditures may or may not be finite.

In other situstions the optimal solution is to spend at the maximum allow-
sble rate for all time.

To start with, recall equation (7").
7" Bt -Ue(x) o Pt

Now however -p > 0 and i = 0 stationary is constantly shifting
upward. Suppose for now the slope of the utility function becowmes zaro
at some finite point ¢(X). Then Figure 3a below depicts the behavior of
the |} = 0 stationary over time.

The optimal trajectory begins somewhat above the 4 = 1 line and

moves in accordance to equation (7") and X = E max until it just "catches

up” to the } = O stationary. In Figure 3a this time is shown as t = t,.




/ x-o /

/////
VAR

Fig.3a==Optimal trojectory for p<0 with U’ = 0 for X=X
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The optimal trajectory then moves along the 1 = 1 line at s rate
of R&D expenditures so as to remain on the p = 1 line with |i = 0 as
cumulative expenditures increase. In other words, optimal expenditures
are just enough to keep pace with the apparent rightward movement of
the i = O stationary at 4 = 1. This is the so-called "turnpike" path.
Eventually as t + = the i = 0 stationary becomes a vertical line anchored,
as are all the ii(t) = 0 stationaries, at X = ;. It is spparent that R&D
expenditures should not go beyond ; since marginal utility is zero and
the integral in equation (5) can only decrease. Yet R&D expenditures
do not abruptly terminate as they do in the other cases; here they
eventually taper off to zero as the i = 0 stationary reaches the vertical
position only in infinite time. The transversality condition is easily
satisfied.

18) lmp(e) e %% @ 1im 1 - 75

| S o]
-0
We can compute the optimal value of E(t) = X (t) during the “turnpike”

phase. At any time t > t,, R(t) = 0 and p(t) = 1, and equation (7") becomes

19) 0=28-U'9g'(X) e Pt
This is an implicit function of X and t, and application of the Im-

plicit Function Theorem yields

(20) 0 = pU'ep'(X) ¢ Pt
+ (U (' (X))? + U'p' (X)) Xe Pt

or

' (21) X=

e o' 0 + S
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Define the elasticity of marginal utility with respect to cumuls-

tive R&D expenditures as

L4
u" " x
- - fr o0 + & x

So aquation (23) becomes

@) X, 2
X e(X
Thus if the "turnpike” trajectory is to be feasible, we require

that
(24) lim X(t) = 0
w

In order for equation (24) to hold it is necessary that

(25) lim ¢(X) = =
XX
Suppose now we relax the earlier assumption on the utility function.

The } = 0 stationary does not reach a limiting position as t + =, so
along the optimal trajectory cumulative expenditures do not stop at some
finite amount. The rate of RiD expenditures on the optimal trajectory
may or may not taper off to zero, and there may or may not be a "turnpike"
phase in the solution.

Which of these situations holds depends basically on the feasi-
bility condition given in equation (23). Figure 3b shows thrse possible
optimal trajectories. The absolute value of p, the size of E max snd the
elasticity function determined which of the three optimal paths shown
is the solution for a particular problem.

Consider path I. The optimal trajectory "catches up" to the i = 0

stationary at time t = £y and then moves along the p = 1 line at a rate

ez AP

wagema [ TRATR T
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Fig.3b—Optimal trajectories for p<0 with U'>0 everywhere



o

80 as to remain always on the |i = 0 stationary. To do this, X must be

increasing at the rate given by equation (23) which holds for t > ¢t
That is,

(23") i-?&yxsxm

In particular, if (23') is satisfied initially and ¢(X) is strictly

1.

convex, then
(26) lin X(t) = Lin B 0
o tow © X

If €(X) 1s a linear homogeneous function, that is, 1f e(X) = bx.1°
then equation (23') becomes

(23') X= =§ = a constant

1f -p/b < E o then a “turnpike" solution is feasible for t > £,
and X(t) = E___ t, + (-p/b) (t-t;). In this case the rate of R&D
expenditures do not taper off to zeroc as t + =,

It may be possible for equation (23') to be satisfied only for a
finite period of time after which X must grow at a rate greater than Eux
in order to stay on the turnpike. The optimal trajectory must leave the
turnpike at this time with 4 greater than one and increasing according
to equation (7") and X increasing at the rate E .x* In Figure 3b this
is shown as optimal path II; the "turnpike' phase begins at t = t, and
ends at t = ts. Optimal path III occurs wvhen equation (23') can not be
satigfied for any time interval. 1 remains to show that these paths
can satisfy the transversality condition, and this we do below. The
srgumant 1is similer to Case 1 in which p > 0; B, however is increasing
ingtead of decresasing.

10,, example of this condition is U'g'(X) = & or x> X and

a>1, Then ¢(X) = X ln a = bx.

e, -«dﬁtmﬂW

5o
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Lat the time when | starts rising be T*, then equation (7") becomes:

(27) o= o - U'e'(X(t)) o PLt-TY
where X(t) = X(T*) + Bw(t-'r*).

Lat p*(t, X(t)) be the valus of i which makes i(t) = 0 at X(t), then

(28) BA(E,X(0)) < u#(e,X(1%) = LOLEAN) p(e-T™)

since p(T*,X(T*)) = pu#(T*,X(T*)) and g(t,X(t)) > J*(t,X(T*)) for t > T*
we must have

(29) B(E,X(t)) > u*(t,X(T*)) > pr(e,X(t)).

What this shows 1s that u(t) can increase fast enough to remain always

above the |} stationary as both p and X increase. Furthermore, let f(t)
be the solution to the related differential equation

(30) = & - Ut (x(TW)). P (T

8t |, U'e' (X(T* ~p{t-T*)
+ ”6 e .

sity must be greater than u(0) such that p, = [H(T*) - U'e" (X(TV))/ (ﬁ&)]e-ar

Hence fi(t) = Bge Pick 5(0) (which by neces-

= 0, Using equations (27) and (30):

(1) BCE,X(E)) - B(E) = 8B(E,X()) - {(E)] + (U9 (X(T®)) - U'g' (X(t))]e P(E"TY)
and by taking limits as t + =, we obtain |
(32) 0= 8 PAlR(EX(D) - FO] + Ha [U'e! X(T))-U'e' (X(£)) P+

or
(33) Lim u(t,%())e "% = 11m T(e)e " - 3 Lin[u'e! (X(TM)) - U'e' (X(T#)
tre toe Lo A
-p(t-T*) -5t

+ En‘x(t-T*))] e
-0

Thus the transversality condition can also be satisfied.
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Susmary of Case 3

Given maximum problem (5) with p* < §, optimality is achieved by
one of the following programs: (a) spending at the maximum allowable
rate for all time t > 0; (b) spending at the maximum allowable rate for
all but a finite period of time; or (c) spending at the maximum allowable
rate for a finite period of time followed by an infinite period with a
positive and possibly declining rate of expenditure.

The likelihood of program (a) increases (at the expense of programs
(b) and (c)) as (1) the divergence between p* and § increases; or (2)
as B-a: becomes smaller; or (3) as marginal utility becomss less responsible
to increases in X.

Factor Technical

Let us introduce factor augmenting technical change in the production
function for performance improvemsnt by making its argument X(t) eVt
where v can be either positive or negative. If we assums § is the common
discount rate on utility and expenditures, then maximum problem (5) can

be written
(34) maxinize j: {U(p(xet)) - E(t)} e %tac

subject to (5a) - (Se).
For practical applications, we may be more concerned with the case
v < 0. This has the interesting interpretation as an exogenous decay
in the fruits of R&D expendituraes such as an inability to preserve R&D
results. This could be due, for example, to rapid turnovers in R&D

personnal.
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Alternatively the case v > 0 could correspond to advances in basic
research with direct application to the project at hand.
The rules for choosing E(t) remain unchanged but the differential

equation describing the behavior of p becomes:
(35) b=t - U'p'(xe"t) oF

Define Y to be cumulative augmented R&D expenditures, that is, Y = h“
then equation (35) has precisely the same form as equation (7") with v
taking the place of -p. We can take advantage of this similarity by
analyzing this problem in (Y,u) phase space instead of (X,s) phase space.
The transformation from X to Y gives rise to s ‘; = O stationary obtained
by solving
(36) Y = Xe¥t + vy

- E(t)e" + w

E
max
-V

e\’t

If u(e) > 1, ¢ =

t
E(t)e”
fue =1, v=28e 5cpe) g

If o) <Y =0

Again we must distinguish two cases corresponding to v % 0. Only
if v < 0 will part of the Y = 0 stationary be in the positive quadrant of
the phase diagram in (Y,u) space. We will handle each of these cases

separately.

Case 1: v <0

The optimal program in this case is qualitatively similar to Case 2
(p > 0) of the previous section. Optimality is achieved by spending at
the maximum allowable rate till some time T* after which expenditures

stop altogether. Cumulative R&D expenditures remain fixed but cumuylative
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RAD expenditures augmented by the factor c"t decline to zex0o as t + =,
Figure 4 shows the i = 0 and Y = 0 stationaries in (Y, i, t) phase space.
Along the optimal trajectory u also approsches zero at t + =, thus

satisfying the transversality conditicn.u

Case 2: v>0
In this case the entire positive quadrant of the phase diagram in
(Y,s) space is a vegion of Y > 0. The set of optimal programs is qual-
itatively similar to the set of optimal programs in Case 3 (p < 0) of
the previous section. But because Y has an sxogenously exponentially
growing term it is more likely that a "turmmpike" solution can be found
in which the control is gradually curtailed. In combination factor
sugmenting technical change and different discount rstes may work in the
same direction or they may oppose each other. The final solutiom will,

11
The brief sketch of the proof would be as follows:
Let g(Y,t) = U'y’ (!)c"(t"”) » then for t > T*

1) %{- (1-:1) vg vhere

dU'e’ (Y Y
v o --Eg® oL

€ is the elasticity of marginal utility with respect to cumula-
tive augmented R&D expenditures. Note that by assumptions already made
ln cl(!) - 0.
Y-+0+

Now by equation (1), %{ is boundad by vg and

v(E-T4) o V(E-T)

(141) = & - U'9p'(Y)e <& - gt
o

where p(T*) = 38/6 = 1 and (T*) = 0. Thus for t > T*, i1(t) < O and

v(t=-T#) .

Kr(t) > “o‘“ + (q/(-wo))c We can set Bo £ 0 without violat-

ing any previous condition, then lim u(t) = 0,

Lt e

o = et
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Fig.4—Optimal trajectory for ¥<0
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of course, depend on the relative strengths of these two effects.

Some Comments on the Cases so Far:

1. One quastion we are tempted to ask is how is this material
useful. First, it can suggest within the very modest level of detail
of the model how R&D programs ought to be run. As such the model is
& normative one.

Second, we may wish to compare the predictions of the model with
some observed behavior. PFor example, it is instructive to ask: given
the types of solutions of the model, what sssumptions about parameters
snd behavioral rules give the solution that bast reflects the actual
behavior in Air Force product-improvemsnt programs? The case that seems
most applicable is Case 3a in which the marginal utility after some
level of performance is precisely sero and utility is discounted over time
at s rate less than expenditures.

The result is that the rate of expenditures, while beginning at the
maximum allowable level, gradually tapers off to zsero. Although this
tapering off takes infinite tino..uo-nthin; we presumably do not observe
in the real world, it is possible tc explain the apparent truncation of
expenditures by taking into account the fact that after a certain amount
of time, the optimal level of expenditures is small in comparison to the
real world cost of arranging for funding with the fiscal authorities.
That 1is to say, the effect of bargaining costs associated with procuring
funds is to cause an abrupt termination of expenditures even though the
optimal program in the absence of such bargaining costs calls for continu-

ing the program, albeit at a low level.
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The assumption of Case 3s that U' = 0 after some level of pctto;l-
ance ;’CID logically arise from a belief that either the enemy's tech-
nology can be completaly dealt with using only ;, or that should a cspa-
bility greater than ;'bc needed an entirely different way of countering
the threat would become cheaper.

The other assumption of Case 3a that p* < § seems reasonable in light
of the observed behavior of the military organizations. (We have to rely
on these observations since there are few, if any, statements on this
subject.) Typically they exhibit a high discount rate in their desire
for resources, and at the same time they seem to encourage the use of a
low discount rate in the evaluation of their output, i.e., defense or
more specifically, deterrence.

We can carry this line of reasoning further. Because our policital
process determines the size of our defense budgets rather than a market
mechanism, within the DoD as a whole and within each military service,
there is a shadow price associated with discretionary capital expendi-
tures which acts as an opportunity cost of capital. This shadow price
on capital expenditures in the military may bear no relation to the oppor-
tunity cost of capital in the "outside world.” It could be that this
opportunity cost, &%, is used by the military services to discount expendi-
tures in maximum problem (5) instead of the socially optimal discount
rate §.

Furthermore what §* is would presumably depend on the overall size
of the defense budget (or each Service's budget): the more austere that
budget, the higher $*. 1In a world of austere budgets most likely fewer

projects would be funded, but for those that were funded (keeping in wind




that we are talking about projects which can be correctly described by

the model, e.g., product-improvement projects), following the optimal
program would mesn carrying the project for a longer period than one would
optimally under a less austere budget.

Indeed if the military's 'bhadow” opportunity cost on capital expendi-
tures is greater than the socially optimal discount rate on expenditures,
8, then projects in the military will either be carried too long, or too
wuch money will be spent on them, or both.

2. One of the implicit assumptions made in the model is that the
rate of expenditure is free to vary over the range zero to Enx without
altering the production function for product improvement. In fact the
rate of expenditures can make discontinuous jumps in that range effort-
lessly. This assumption is acceptable only if it is believed that the
costs-of-adjustment associated with charges in E(t) are negligible in
the range zero to Ew. Put another way, our assumption is reasonable
if we believe that once a managerial base has been established it is
relatively easy to make adjustments within the capacity of that base but
that adjustments beyond the capacity of the managerial base can only be
made at a cost.

Suppose at various times known in advance, Ew can be changed but
with a cost-of-adjustment dependent on the size of the change being in-
curred. It is clear that Ew would never be lowered voluntarily since
that would not add options and would involve a positive cost. Hence,
me would only be increased, a larger E:ux making a larger program with
more personnel and more specialization possible. The cost-of-adjustmsnt
to a higher E max arises from the necesaity to expand the managerial base

and to improve intra-project communication and coordination stemming




from the greater number of personnel and increased degree of special-
ization.

The question is then how should E nax be controlled to yield a
higher value of the objective function in maximum problem (5). The
angwer can ba found by solving a combination continuous-discreet dynamic
programming problem.

For simplicity let p* = § and define

G V(r, By = max [7 (U(p(0) - E(e)le Cat
subject to

(a) i(t) = E(t)

(M) E . -E(® 20

(c) X(v) = X_

(d) E(t) 20

Let C(E* __ - Bm)e-“ be the present discounted value of the

costs-of -adjustment from Bw to E* nax’ If there is just one time T at
which a decision to change E nax 80 be made, then we naed only compare

Vo, E_ ) with S }[v(-r, Bh ) - C(BA - 471, The optimal

ux) ¢

policy 18 to stick with Em if the former expression is greater or the
same and to switch to some E* max if the latter is greater.

If there are several such decision points T_., T_ 140027 35 Tps
let

T
1, &

1= -n, -n+l, ..., -1, 0, where £(r_ _,) = V(O, E:.x) is given since

32“ is given. Using this formulation the optimal program can be found

by the traditional techniques of dynamic programming.
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12
1f V-, Em) is concave vith respect to E__ " 4 o 4 strictly

convex with respect to its argument, then changes in the optimal value of

Eux‘ 4f any, vill be finite.

uhun n(t) » =1 + p(t) is the loss at time t dus to comstraint
(Sb). The total loss associated with a finite L. is given by:

T®
(1) IO w(t)dt vhere T* = X*IE-“.

Differentiating with respact to Bm,

i

(11) %l—-u; f:* n(t)dt = -(—l-x-'-—)-{ n(T*) + fg* g%—-; dt <0
nax

since w(T*) = 0 and %——< 0 for te [0,T*].
BAX

Hence the value of V must increase as 'ux increases.
Similarly the second derivative

2 2 2
(111) 4 T*w(t)dt - [Th A1 dt will be positive if ‘a'Lcan be
a0 0 g a2
nax nax max

shown to be positive for te[0,T*]. This would complete the proof of
the concavity of V.
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