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1 :!Lr.ture on ooptimal technical change or optimal in-

.. v. n !,c Tnomleu has dealt vith optimai accumulation pathp

.,o'cgi pathe and with long-run steady-state growth.

' '•' ,r literature, cmphsais ia given to optimal control. of

,- .• n order to bring to fruition a complex sequence of

Thc problen wt will be dealing with in this section has elements

oi:' both appraches. The decision is not how much to allocate to such

,"ý:adlo.•, C regatea es conziumption or investment, but simply how much

v, 'ut into n particu'lar IUD program at any time j(a genuine management

Vroble:'). Yrot~be problem is formulated in the following way: given

a :roduction function for technical change we seek a path which maxi-

__ zen the present discounted value of the difference between its
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4benefits and coots. (definitely a notion from pure economic theory).

SThe model is developed within the cOntest of a progrm in which an

organization attempts to improve the performance of one of its systems

subject to an arbitrary fiscal constraint which limits the rate of RD

spnigon that systes.( )Such a constraint Is meaningful in a world

In which limits of this type are set by a political body, or by a

higher authority who perhaps has performed a higher level of optimisa-

tion over several projects. How this higher level of optimization

ought to be performed Is itself an Important and interesting question.

Presumably It Involves a subjective assessment of the relative plausi-

bility of many possible future states of the world. As such, that ques-

tion goes far beyond the Intention of this paper.

For those who wish to think in more concrete terms, the organiza-

tion can be thought of as the Air Force engaged in a product-Improve-

ment program for one of its jet engines. A fiscal .constraint may then

have been Imposed by the Air Force's chief RD officer, or by Congress

Itself. We will use this parable whenever It appears to aid in the

presentation of the audel.

Formulation of the Problem

Let P(t) be an index of performance of an Air Force system at

time t, and let U(P(t)) be the utility flow at time t from having per-

formance P(t) available for imediate incorporation into a piece of

hardware. P(t) nuat satisfy the following condition:

(1) P~t M ý (X t),1t)
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Much of the literature on optimal technical change or optimal In-

ventive activity In economics has dealt with optimal accumulation paths

or optimal consumption paths and va..n long-run steady-state growth, 1

[ In the management literature, emphasis is given to optimal control of

R&D expenditures In order to bring to fruition a complex sequence of

specific events.
2

The problem we will be dealing with in this section has elements

of both approaches. The decision is not how such to allocate to such

grandiose aggregates as cons uption or investment, but simply'how such

to put into a particular 4•D program at any time (a genuine management

problem). Yeo)the problem is formulated in the following way: given

a production function for technical change we seekl a path which maxi-

mizes the present discounted value of the difference between its
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Table 1

DEFINITIONS OF VARIABLES USED

P(t) - index of performance at time t.

X(t) - cumulative R&D expenditures for performance improvement up to
time t.

E(t) - R&D expenditures for performance Improvement at time t.

t -time.

U(.) - utility flow at time t.

i(.) - maximum feasible performance at time t.

Amex - maximau permissible rate of R&D expenditures for performance
Improvement at time t.

8 - rate of time discount on expenditures.

p* - rate of time discount on utility.

p p*-6.

v - rate of factor augmenting technical change.

p (t) - Pontryagin price attached to cumulative R&D expenditures for
performance improvement at time t.

c(X) - elasticity of marginal utility with respect to cumaulative R&D
expenditures for performance improvement.
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qp(') is the production function for performance improvement, and

its principal argument is X(t) the cumulative RAD money spent on par-

formance improvement up to time t; t itself may be an argument of the

function if for example there is factor augmenting technical change.

Let us assume for now that this production function satisfies modifiedInads conditions: 3

(2a) y(O) - Po

(2b) y(-) -
(2)

(2c) 9'(0) -

(2d) p'(..) - 0

i is the performance level at the beginning of the product-improvement

program. In the case of jet engines, we can take this to be the per-

formance at the time of the MQT (Model Qualification Test).

E(t) is the rate of R&D expenditures at time t, and by definition

then, .is the rate of change of X(t). E(t) is constrained to be less

than E at any time t.

The problem thean is to find a path for 0 < E(t) a and

P(t) • •(t) such that the following integral is maximized:

(3) fo {U(P(t)) l - ),E(t)

where p* and 6 are the discount rates for utility and expenditures

respectively.

The rate of exchange between utility and expenditures, X, can be

assumed to be unity with complete generality by the appropriate choice

of units. The optimal control problem can now be written as:

3 This production function for product-improvement in jet engines has
been statistically estimated at Rand and the estimated form does indeed
satisfy these modified Inada conditions.
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(4) maximize {{U(EP(t)) r"p*t - E(t) e- 6 t)dt
(E(t), P(t)}

subject to i(t) - E(t)

y(x(t)) - P(t) > 0

- E(t) , 0

X(O) - X0 - 0

i(o) - P0

E(t), P(t) .> o

Derivation and Analysis of Necegsary Conditions

It Is clear from the above formulation that it would be inefficient

to choose a performance level less than the maximum feasible as given

In equation (1). Hence we can replace P(t) in• he integral by q)(X), and

proceed using the Maxim=u Principle of Pontryagin, et al.

(5) maximize f (u(,(X)) 'P*t - E(t) e-6t)dt

{E(t) }

subject to (a) i(t) - E(t)

(b) Emax - E(t) > 0

(c) X(O) - 0

(d) P (0)inOiny(0)

(a) E(t) > 0

Let I&(t)e- be the Pontryagin price or Hamiltonian multiplier,

analogous to the Lagrangian multiplier in static problems. The neces-

sary conditions for a maximum are derived by forming the Hamiltonian,

(,

(6) Hn. U(ip(X))-P t - E(t) • -6t + iiE(t) *-at



and maximizing H at each point In time with respect to the control

variable,4 2(t). This implies the following rules:
i ~If P(t) > 1, not E(.t) a uEm"

If P(t) - 1, set E(t) C [0, R J

If Pi(t) > 1, eat E(t) M 0.

It is also necessary that p(t) satisfy the following differential

t. equations:

(7) a- ax

where H* is -the maximized Hamiltonian.

(8) H*(t) - max H(t)
E(t)

Equation (7) can be reduced to a more tractable form:

(7') 6 " L - U' ip'(X) M (p*-6)t

4Assuinug the maximization of H offers no obstacle to sufficiency,
all we need is the concavity of H in the state variable X :o guarantee
sufficient conditions for a maxium. We have the following:

r- U'ff'> 0 if U' > 0 and tp' > 0

a2 H.u11 + ((,)2 U" <0 if VP < 0 and U" < 0.
ax2

So concavity of qy(-) and U(.) is more than enough to guarantee suf-
ficiency.
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That the government should use the same rate of discount on ex-

penditures (costs) and utility (benefits) in a defense type project is

questionable. The reasons can be summarized as follows:

(a) the lack of markets in which the demand for public projects
like defense can be evaluated,

(b) the oligopolistic nature of the supply side of defense
projects, and

(c) the dubious assumpcion that capital markets for private
projects of various risk classes are themselves in equi-
librium.

What rate of discount should the government use on expenditures? The

government can induce individuals to lend funds voluntarily at the

relatively low interest rate on government bonds. To induce individuais

to lend more the government may have to raise that rate, but the cost

of capital to the government is usually less than the prevailing rate. 5

The discount rate on utility the government ought to use is the

social rate of time preference for that good. The problem is com-

plAcated further by the fact that there may be a divergence between

private and social rates of time preference, the former being the one

5 This is usually attributed to the need on the part of private
investors for a risk premitm. Should the government also include such
a risk premium in its evaluation of benefits? The risk to the govern-
ment in the type of projects we are dealing with in this chapter (re-
call our parable of the Air Force investing in a product-improvement
program for one of its jet engines) is not that the production function
is uncertain (we have assumed it is completely certain) but that the
utility function will change, in other words, that states of the worlds
will prevail in the future, in which various threats materialize or
dematerialise that make defense projects more valuable or less valu-
able. Indeed in the case of defense the utility of a project depends
heavily on the actions of other decisionmakers within the context of
a non-zero sum game.

Is it not better then to use an "optimistic-pessimistic-best guess"
procedure and to weight the utility outcomes by the subjective proba-
bilities one attaches to these different states than to add on an
arbitrary few percent to the minimum social risk discount rate to
account for the real uncertainty about the future?
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that operates in securities markets for private projects. One may

argue that with defense the benefits of freedom and Independence that

fall upon future generations should be valued nearly as highly as we

do.

In addition, there may be "time-time preference," meaning that

benefits to be received in the distant future are not "discounted" at

the sam rate as benefits to be received In the near future. When

Individuals lend funds to the governamnt, they are usually foregoing

consumption in the near future. Defense, on the other hand, seem to

be the type of good which has a large component of lang-term benefits.

The argument that the market rate of Interest is the one the

govarnment ought to use to discount costs and benefits Is based on the

assumption that markets are &n equilibrium, in particular that markets

for risk exist and that they function ir. & easonably competitive manner.

Clearly such an assumption is unvarranted. Perhaps we can say that if

markets are in equilibrium and a government project is a perfect sub-

stitute for a private project then the rate of discount that ought to

be used is market's rate of interest for that project. But if a public

project is not a perfect substitute for mo private project then there

is no necessary relationship between the observed market rate (if indeed

one such rate can be chosen from the many rates observed) and the dis-

count rate the government ought to use in evaluating that project.

Indeed markets for public goods of the defense type generally do

not exist, and even if they did there is good reason to believe that

the supply side of such markets would be oligopolistically structured.

Furthermore, because of the fundamental problem of public goods one

would rarely expect these markets to be in equilibrium.
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All this leads to the conclusion that it may be socially optimal

to use different discount rates on utility and expenditures for projects

of this type. Let p - p* - 6 then we can rewrite equation (7') as

(7") I a" - U'y'(X) e-pt

where p can be positive (implying a greater discount rate being applied

to utility than to expenditures), zero (implying a common discount rate

on both), or negative (Implying a greater discount rate being applied to

expenditures than to utility). We will handle each of these cases

separately beginning with the easiest and becoming progressively more

difficulty.

Case 1: sinO

The optimal behavior for X(t) and Ip(t) can be represented in a

phase diagram In (X, p&) space. Such a diagram is shown In Figure 1.

The -0 stationary Is actually the region ((X, I)IX < 0, I < 1).

All other points strictly above the line p - I have X - Ex > 0, while

all points on p - 1. have i a O. Thel 0 stationary can bef ound by

solving the equation

(9) PaU11

Using the concavity of U(.) and op() we have been Implicitly

assuming, U'W'(X)/6 is a positive and decreasing function of X. 6  The

value of X which equates the discount rate 6 to the marginal utility

of another dollar of cumulative R&D is denoted X*. Above the ,1 - 0

(U"() and 0"(') > 0 are sufficient to guarantee that the rate
of decline is Indeed slowing as X gets larger.
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stationary Ii- Uq' (X) > 0 and hence p mast be increasing over time;

similarly below the p- 0 stationary, maust be decreasing over time.

The question is then: Is there a trajectory beginning at (0, JL(0))

which can satisfy the equations of motion and the transversality con-

dition given as equation (10)?

(10) UiS i(t) W "6t - 0

t*e

There Is one and only one such trajectory,7 and It is the one

beginning at (0, p*(0)) and ending at (X*, 1). This trajectory Is shown

in Figure 1. All trajectories beginning above or below 0*(0) cannot

satisfy the traneversality condition (10).8

7 This follows trivially from the Lipschitzian character of the dif-
ferential equations (5a) and (7") describing the behavior of X and p
respectively. To check that these equations are indeed Lipechitzian,
note that the right-hand sides of both equations are twice continuously
differentiable with respect to X, p, t for all 1(t) such that 0 g E(t)

8 ?roof:
(a) Suppose a trajectory begins below p*(O), say at A(0), then this

trajectory moets the p-1 line at a value X and at a time T-X/%= where-

upon X ceases to increase and the value of p declines according to

(i) g,-8• - -U'yq'(X) - a constant

Hence P(t) - P0e6(t-T) + u14P(1)16.

We can solve for po using the condition

(ii) P (6) - P- + U' (p )/6

So,

(ii) lik) - (l-U'(I)/ 8 )e6(t-•) + U'1 'P(6)/8

But now since p must be declining over time in this region, 1 - U'y'(X)/8

must be negative. It therefore cannot satisfy the transversality condi-

tion. Alternatively, since X < X* (see fn. 7),
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On the optimal trajectory the transversality condition becomes

(10') lin P(t) 0-6t- la 1 • *-Ot - 0

This is consistent with one's intuition: given the concavity of

the utility function in X, one might guss that R&D funds should be

spent at the maximum allowed rate until sowm time T* after which fund-

(iv) 1 - U'I' (M)/6 < 1 - U'N' (X*)I6 - 0

(b) Consider the trajectory (X(t), I11(t)) which begins at ,&*(0) but

which crosses the I. " 0 curve with maximum control applied, i.e.,

9(t)- . Then

(v) Ila P, (t) a-6 0

since both terms are non-negative. On this modified "optimal" trajec-

tory, at any time t, X - %mt.

Suppose a trajectory begins above 10*(0), say at i'(0). then this

trajectory crosses the A-0 curve; both p and I increase, the latter

also according to X(t) - Emaxt. At any time t, the corresponding X

values are the same along the two trajectories. Hence

(vi) A(t) - 11(t) - 6a((t) - P1(t))

Solving the above differential equation, we obtain

(vii) IL(t) - P1t(t) - foe6t

where f 0 is positive since it is equal to ir(O) - P*(O). Then
(viii) d il P(t) 0"6t , f0 + > I IAI(t) o-6t

> 0

which does not satisfy the tranever+ality condition.

9 Note this is weaker than the combination of the concavity of
U(.) in its argument and the concavity of p(-) in 1, but is the sm
as the concavity of U in the state variable X (see fn. 4).
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ing stops altogether. Finding an optimal solution to this dynamic

problem is equivalent to solving the simple static problem of maximiz-

ing the difference between benefits and costs. The optimal total

expenditure is just the one that equates the marginal benefits to

marginal costs with the marginal cost schedule cutting the marginal bene-

benefit schedule from below. This point is precisely X*; the solution

to the dynamic problem tells us however that we should endeavor to get

to X* as fast as possible.

Summry of Case 1

Given the maximum problem (5) with p* 6, optimality implies spend-

ing at the maximt allowable rate to time T* given by Xe/Im where

U'1' (x*) - 6. After T* spending should be terminated completely. The

final level of performance is given by (](X*).

Caee2: p>O

In general, stationary solutions to equation (7') lie in a mani-

fold embedded (X, pI, t) space. The manifold of solutions to A1-O

is shown in Figure 2. The optimal trajectory in this case is char-

acterized by a finite period of maxmum R&D expenditures followed by

an infinite period of zero expenditures with a declining but positive

Ip. Figure 2 also shows such a trajectory. The value of X at which

R&D expenditures terminate is denoted XIC.

It remains to show that the proposed trajectory can comply with

the transversality condition of equation (10). Suppose along the pro-

posed optimal trajectory it could be demonstrated that the point (X*e,

p.(t)) was always below the AM(t) - 0 stationary for all t > 0, and



1 -14-

-co

Fig.2--Opttmnal trajoetwry for pl'O



(t) wvas able to approach zero just slowly enough so as to reaain posi-

tive except in the limit as t - -, then the equations of motion and

transversality condition could both be satisfied. Now when iP falls to

unity, R&D expenditures terminate, and equation (7") becomes

(11) A.(t) - au&(t) - U''(Z**) a-

where T** - X**/Zuax. Since U'y'(XIC) is Just a constant, the solution

to (11) is just

(12) P&(t) - P&oe6t + ( (t-a *)
P+6

Pick ;L(O) such that

(13) PO- [t-U'P'(x**)/(p+6))e-6T** - 0,

that is, the point X** Is just the one which satisfies po[lopt. traj. - 0,

so

(4) - U'' (X**) e-(t-*)
p+6

Further,
(15) lin Ps(t) •-61 t = US us (R*M ) e-P(t-T**)-6t

Sp,
118s U o (XC*) *PtP*

-0

Define I&**(t) to be the value of P which makes I(t) - 0 for

X - X**.

Thus

(16) s**(t) - Ul',(XC) -p(t-T**)

Now since p has been assumed to be positive, we have

(17) 0 < P(t) < i**(t)



This is precisely what was needed to show the optlmality of the pro-

posed trajectory of Figure 2.

Sgute of Case 2

Given maxmm problem (5) with p* > 6 optlimlity Implies spending

at the maxim allowable rate to time T** given by T** - lee/%=.

After T** spending should be terminated completely. The final lee

of performance Is given by qp(X**). A fortiori, T*, < T* and X** < X*

for maxir m problems having the sm utility and production functions.

Case 3: o<0

This Is the most complex and Interesting of the three cases. In

certain situations there will be a "turnpike" solution In which the rate

of t&D expenditures is positive but less than or equal to the maximum

allowable rate; cumulative R&D expenditures may or may not be finite.

In other situations the optimal solution Is to spend at the maximum allow-

able rate for all time.

To start with, recall equation (7").

(7") a1 - U'y'(X) e"Pt

Now however -p > 0 and a1 - 0 stationary io constantly shifting

upward. Suppose for now the slope of the utility function becomes zero

at same finite point 4P(X). Then Figure 3a below depicts the behavior of

the I- " 0 stationary over time.

The optimal trajectory begins somewhat above the is - I line and

moves In accordance to equation (7") and i - Amax until it just "catches

up" to the i - 0 stationary. In Figure 3a this time Is shown as t a t



ja0*(0) A0)

0~

ti <ct 2 <ct3
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The optimal trajectory then moves along the ip - 1 line at a rate

of R&D expenditures so as to remain on the ip - 1 line with i " 0 as

cumulative expenditures increase. In other words, optimal expenditures

are just enough to keep pace with the apparent rightward movement of

the i - 0 stationary at P - 1. This is the so-called "turnpike" path.

Eventually as t . - the 4 - 0 stationary becomes a vertical line anchored,

as are all the 4(t) - 0 stationaries, at X - X. It is apparent that R&D

expenditures should not go beyond X since marginal utility is zero and

the Integral in equation (5) can only decrease. Yet R&D expenditures

do not abruptly terminate as they do In the other cases; here they

eventually taper off to zero as the j - 0 stationary reaches the vertical

position only in Infinite time. The traneversality condition is easily

satisfied.

(18) USx iP(t) e- - 11A I • e-6t

-0

We can compute the optimal value of E(t) - X (t) during the "turnpike"

phase. At any time t > ti, 4L(t) - 0 and p(t) - 1, and equation (7") becomes

(19) 0 - 6 - U'qP'(X) a-Pt

This is an Implicit function of X and t, and application of the Im-

plicit Function Theorem yields

(20) 0 - pU'p' (X) 0-pt

+ (u"(4'p(x)) 2 + U'4'(x)) X-Pt

or

'(21) X-
U"T[U-T Wp x + AMXI'-



Define the elasticity of marginal utility vith respect to cu=la-

tive R&D expenditures as

L~uVm) 7(22) dX U,,I

= - [•'r (X) + X

So equation (23) becoms

(23) .

Thus if the "turnpike" trajectory is to be feasible, we require

that

(24) lim i(t) - 0
t4-

In order for equation (24) to hold It is necessary that

(25) lit C(X)=
X-01

Suppose now we relax the earlier assumption on the utility function.

The it - 0 stationary does not reach a limiting position as t - -, so

along the optimal trajectory cumulative expenditures do not stop at m

finite amount. The rate of RhD expenditures on the optimal trajectory

may or may not taper off to zero, and there may or may not be a "turnpike"

phase in the solution.

Which of these situations holds depends basically on the feasi-

bility condition given in equation (23). Figure 3b shove three possible

optimal trajectories. The absolute value of p, the size of ýma. and the

elasticity function determined which of the three optimal paths shown

is the solution for a particular problem.

Consider path 1. The optimal trajectory "catches up" to the g * 0

stationery at time t - tl, and then moves along the p - 1 line at a rate
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ANt) =0
4Nt)O0

04

'N%0 4 %4

4/ x A11

\\ <\ t2 <t

Fig.b--ptial rajctoiesforp<Owit U'O eeryher
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so as to remain alays oan the 1 - 0 stationary. To do this, X must be

Increasing at the rate given by equation (23) which holds for t > t 1 .

That is,

(23') x

In particular, if (23') to satisfied Initially and t(X) is strictly

convex, then

(26) _.1(t) - l1a - 0

If e(X) Is a linear homogeneous function, that is, if e(X) U bX, 1 0

then equation (23') becomes

(23'1 ) - a constant
b

If -p/b < Kmx then a "turnpike" solution is feasible for t > t 1 ,

and 1(t) -ErIox t 1 + (-p/b) (t-t 1 ). In this case the rate of R&D

expenditures do not taper of f to zero as t -*.

It may be possible for equation (23') to be satisfied only for a

finite period of time after which X must grow at a rate greater than E

In order to stay on the turnpike. The optimal trajectory must leave the

turnpike at this tme with p greater than one and increasing according

to equation (7") and X increasing at the rate *Smx. In Figure 3b this

is shown as optimal path 1I; the "turnpike" phase begins at t - t2 and

ends at t - t 3 . Optimal path III occurs when equation (23') can not be

satisfied for any time Interval. It remains to show that these paths

can satisfy the transversality condition, and this we do below. The

argument is similar to Case I in which p > 0; p, howevr is Increasing

Instead of decreasing.

' 10 exAaple of this condition is U'W'(l) - a"(X) for I >a and
a> 1. Then e(X) a X In a bx.
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Let the time when p starts rising be Te, then equation (7") becomes:

(27) Ai p - Ul Op(IWO))Opt-

where X(t) - X(T*) + %(t-T*).

Let I&*(t, 1(t)) be the value of p& which mkaes A(t) - 0 at 1(t), then

(28) P.*(tX(t)) < P*(t.X(T*)) - U'.'(X(T*)) O-P(t-T*)
6

since p.(T*,2C(T*)) - Ji*(T*,X(T*)) and A1(t,X(t)) > I1*(t,X(T*)) for t > T*

we must have

*(29) j&(ttX(t)) > P*(tgx(T*)) !- *(t.Z(t)).

What this shows is that pI(t) can increase fast enough to remain always

above the A stationary as both pi and X increase. Furthermore, let i¶(t)

* be the solution to the related differential equation

*(30) p' a~UI,fp(x(T*)I.. *P(t-T)

Hence "p(t) - p a 6t + UNS'(1T"D a-P(t-T*). Pick jr(O) (which by neces-0 P+6
sity must be greater than j&(O) such that IL0I [ir(T) - U!'p' (I(T*))/(p+6))e 8 6T

- 0. Using equations (27) and (30):

(31) A1(tx1t)) - p(t) - 8[I(toX(t)) - tir(t)1 + [U'y'l(X(T*)) - Ulp Xt)]-~-*

and by taking limits as t -, we obtain

(32) 0 - 6 ARIj&(tX(t)) - ir(t)] + u [uIc,~(X(T*))-U,4yI(x(t))]e-P(t-T)

or

-at(33) 11* j&(t.X(t)e - lim $iL(Oe-6t - limtU'y',(X(T*)) (p Uy(X(T*)

+ E .(t-T*))] ePtT)6

a-0

Thus the transversality condition can also be satisfied.
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Suntary of Case 3

Given maxiimm problem (5) with p* a , optimality Is achieved by

one of the following programs: (a) spending at the maximum allowable

rate for all time t > 0; (b) spending at the maximum allowable rate for

all but a finite period of time; or (c) spending at the maximum allowable

rate for a finite period of time followed by an Infinite period with a

positive and possibly declining rate of expenditure.

The likelihood of program (a) Increases (at the expense of programs

(b) end Wc) as (1) the divergence between p* and 8 Increases; or (2)

ans a becomes smeller; or (3) as marginal utility becomes lees responsible

to Increases in X.

Factor Ausmenting Technical Choose

Let us Introduce. factor augmenting technical change In the production

function for performance Improvement by masking Its argument X(t) e Vt

where v can be either positive or negative. If we assume 6 is thecoo

discount rate on utility and expenditures, then maximum problem (5) can

be written

(34) maximize r' {U(,,(Xevt)) - E(t)) a-atdt

subject to (5a) - (5o).

For practical applications, we may be more concerned with the case

v < 0. This has the interesting Interpretation as an exogenous decay

in the fruits of R&D expenditures such as an Inability to preserve R&D

results. This could be due, for exemple, to rapid turnovers In R&D

personnel.
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Alternatively the case v > 0 could correspond to advarces In basic

research with direct application to the project at hand.

The rules for choosing E(t) remain unchanged but the differential

equation describing the behavior of p becomes:

(35) a - 6P - U ,9,(Ze t) e Vt

Define Y to be cumulative augmented R&D expenditures, that is, Y - Xaet

then equation (35) has precisely the sawe form as equation (7") with v

taking the place of -p. We can take advantage of this similarity by

analyzing this problem in (Y,p) phase space instead of (X,p) phase space.

The transformation from X to Y gives rise to a I - 0 stationary obtained

by solving

(36) i - XeVt + VY

- E(t)eVt + VY
E e

If P(t) > 1, Y - imax

If P(t) - 1, Y -e 0, o< E(t) <-V S

if 4) < y - 0

Again we must distinguish two cases corresponding to v 0. Only

if v < 0 will part of the I - 0 stationary be in the positive quadrant of

the phase diagram in (Y,p) space. We will handle each of these cases

separately.

Case 1: v < 0

The optimal program in this case is qualitatively similar to Case 2

(p > 0) of the previous section. Optimality is achieved by spending at

the maximum allowable rate till some time T* after which expenditures

stop altogether. Cumulative R&D expenditures remain fixed but cumulative
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R&D expenditures augmented by the factor *vt decline to sero as t .

Figure 4 shows the ý - 0 and y - 0 stationaries In (Y, p&, t) ph"e space.

Along the optimal trajectory p also approaches zero at t * , thus

satisfying the tranaversality condition. 1 '

Case 2: .v>0

In this case the entire positive quadrant of the phase diagram in

(T,gS) space is a region of Y > 0. The set of optimal programs is qual-

itatively similar to the set of optimal programs In Case 3 (p < 0) of

the previous section. But because 7 has an exogenously exponentially

growing term it is more likely that a "turnpike" solution can be found

In which the control is gradually curtailed. In combination factor

augmenting technical change and different discount rates oay work in the

sm direction or they may oppose each other. The final solution will,

11

The brief sketch of the proof would be as follows:

Let g(Yt) - U'q''(Y)ev(t-T*), then for t > T*

(1) dt - (1-c 1 ) vg where

(ii) YI '-

Is the elasticity of marginal utility with respect to cumula-

tive augmented R&D expenditures. Note that by assumptions already made

Uim tL(Y) - 0.
Y40+

Now by equation (1). is• I bounded by vg enddt
(ill) 4 0 - U'gp'(Y)ev(t-T*) C - g5 a v(t-T*)

0
where .&(T*) - &8/6 - 1 and A(T*) - 0. Thus for t >T*, A1(t) < 0 and

PM(t) > PO + (l8/(-V*6))eV(tT) We jan set 11 0 without violat-

ing any previous condition, then lil p&(t) - 0.
t-
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of course, depend on the relative strengths of these two effects.

Som Comeonts on the Cases so Far:

1. One question we are tempted to ask is how is this material

useful. First, it can suggest within the very modest level of detail

of the model how RAD programs ought to be run. As such the model is

a normative one.

Second, we may wish to compare the predictions of the model with

some observed behavior. For exple, it is Instructive to ask: given

the types of solutions of the model, what asasmptions about parmeters

and behavioral rules give the solution that best reflects the actual

behavior in Air Force product-inprovement programs? The case that seems

most applicable is Case 3a in which the marginal utility after ses

level of performance is precisely sero and utility is discounted over time

at a rate le than expenditures.

The result is that the rate of expenditures, while beginoing at the

maximum allowable level, gradually tapers off to zero. Although this

tapering off takes infinite time, something we presumably do not observe

in the real world, it is possible to explain the apparent truncation of

expenditures by taking into account the fact that after a certain amount

of time, the optimal level of expenditures is small in comparison to the

real world cost of arranging for funding with the fiscal authorities.

That is to say, the effect of bargaining costs associated with procuring

funds is to cause an abrupt termination of expenditures even though the

optimal program in the absence of such bargaining costs calls for continu-

ing the program, albeit at a low level.
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The assumption of Case 3a that U' 0 0 after seo level of perform-

ance P can logically arise from a belief that either the enemy's tech-

nology can be completely dealt with using only P; or that should a capa-

bility greater than P be needed an entirely different way of countering

the threat would become cheaper.

The other assumption of Case 3a that p* < 6 seem- reasonable in light

of the observed behavior of the military organizations. (We have to rely

on these observations since there are few, if any, statements on this

subject.) Typically they exhibit a high discount rate in their desire

for resources, and at the sa time they seem to encourage the use of a

low discount rate in the evaluation of their output, i.e.. defense or

more specifically, deterrence.

We can carry this line of reasoning further. Because our policital

process determines the size of our defense budgets rather than a market

mechanism, within the DoD as a whole and within each military service,

there is a shadow price associated with discretionary capital expendi-

tures which acts as an opportunity cost of capital. This shadow price

on capital expenditures in the military may bear no relation to the oppor-

tunity cost of capital in the "outside world." It could be that this

opportunity cost, 6*, is used by the military services to discount expendi-

tures in maximum problem (5) instead of the socially optimal discount

rate 6.

Furthermore what 6* is would presumably depend on the overall size

of the defense budget (or each Service's budget): the more austere that

budget, the higher 6P. In a world of austere budgets most likely fewer

projects would be funded, but for those that were funded (keeping in mind
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that we are talking about projects which can be correctly described by

the model, e.g., product-improvement projects), following the optimal

program would mean carrying the project for a longer period than one would

optimally under a less austere budget.

Indeed If the military's 'bhadow" opportunity cost on capital expendi-

tures Is greater than the socially optimal discount rate on expenditures,

6, then projects in the military will either be carried too long, or too

such money will be spent on then, or both.

2. One of the Implicit assumptions made in the model is that the

rate of expenditure is free to vary over the range zero to E without

altering the production function for product improvement. In fact the

rate of expenditures can make discontinuous jumps in that range effort-

lessly. This assumption is acceptable only if it is believed that the

costs-of-adjustment associated with charges in E(t) are negligible in

the range zero to Emax. Put another way, our assumption is reasonable

if we believe that once a managerial base has been established it is

relatively easy to make adjustments within the capacity of that base but

that adjustments beyond the capacity of the managerial base can only be

made at a cost.

Suppose at various times known in advance, Emax can be changed but

with a cost-of-adjustment dependent on the size of the change being in-

curred. It is clear that E am would never be lowered voluntarily since

that would not add options and would involve a positive cost. Hence,

Emex vould only be increased, a larger Ene making a larger program with

more personnel and more specialization possible. The cost-of-adjustment

to a higher E am arises from the necessity to expand the managerial base

and to improve intra-project communication and coordination stemming
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from the greater number of personnel and increased dedree of special-

isation.

The question Is then how should Ima be controlled to yield a

higher value of the objective function in maxzim problem (5). The

answer can be found by solving a combination continuous-discreet dynamic

programming problem.

For simplicity let p* - 6 and define

(37) V(Tr, 'Emrx) - max J' (U((X)) - R(t))e-'tdt

subject to

(a) i(t) E(t)

(b) E I= (t)>o

(C) x (y) -XT

(d) E(t) • 0

Let C(E*max - 3 .,)e-6T be the present discounted value of the

costs-of-adjustment from EKa to E* MM If there is just one time T at

which a decision to change E= can be made, then we need only compare

V(O, %.) with sup IV(I, 1*m) - C(B*us - Amm)e ]. The optimal

policy is to stick with E if the former expression is greater or the

@am and to switch to some Ee Im if the latter is greater.

If there are several such decision points -,n' T-n+lb""" *i-' T 0 ,

let

(38) f(r 1 ) - am [f('ti-1), sup IV(ri. .*) - C(,*.ax-- I )66]],
(1* am

0
0- -n. -n+l....p -1, 0, where f(y n_) V(O, Emax) is given since

4;= is given. Using this formulation the optimal program can be found

by the traditional techniques of dynamic programing.
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If V(,r I ) n. ioncav with respect to In,12 ani C is strictly

convex with respect to its argumnt * then chamss in the optimal valu of

Ba if ay, will be finite.

Uiacall w(t) - -1 + g(t) is the lose at time t due to constraint

(Sb). The total. Uos associated with a finite l a"is Sivevn by:

(1) 16 ,,(t)dt where T* - X*/Bm .

Differentiating with respect to Ewe

Im 2a

since n(r*) - 0 and 131- -c 0 for te [0M•].

Renee the value of V sust Increase am s increases.

Slmilarly the second derivative

(1ii) d2 T~td f" 9j' d will be positive If can7 be
J2 0w(tidt. -o Lj• d ,rc

max max ONx

shown to be positive for tc[O.T*I. This would complete the proof of

the concavity of V.
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