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PREFACE

The work reported in this paper is part of Rand's broad studies

of radar signal-processing methods. Models of radar clutter inter-

ference are developed which are both physically reasonable and more

general than the usual Gaussian model or linear-process model. These

are called conditionally linear processes. The major contribution of

this paper is the devei-opment of simple conditions under which linear

functionals of data generated by the model will have a Gaussian distri-

bution. The result enables the computation of detection probabilities

and false alarms for linear signal detectors.

The proof of the main result described herein makes use of some

advanced probabilistic concepts; however, understanding of the other

results and the applications described requires only limited knowledge

of probability theory.

In an earlier form this report appeared as Central Limit Theorems

for Conditionally Linear Random Processes with Applications to Models

of Radar Clutter, by Percy A.,Pierre, April 1969. The mcre mathematical

portions have beet. revised, and some of the proofs have been strength-

ened and simplified. Also, the discussion of applications and some of

Any views expressed in this paper are those of the author. This
should not be interpreted as reflecting the views of The RAND Corporation
or the official opinion or policy of any of its governmental or private
research sponsors. Papers are reproduced by The RAND Corporation as a
courtesy to members of its staff.



the straightforward calculations appearing in the earlier versions have

been omitted in this revision.
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SI.h*(ARY

A random process is called a linear process if it is an infinite

sum of statistically independent component random processes. A par-

ticular example of a linear process is the output of a filter driven

by a sequence of impulses whose times of occurrence are the times of

a Poisson process. If the filter responses are also random and the

responses to impulses applied at different times are statistically

independent, the filter output is still a linear process. If, however,

either the impulses do not occur according to a Poisson process or the

filter responses are not independent, the process is called condition-

ally linear. The latter situation can be used to describe the radar

echoes from randomly dispersed scatterers which, however, exhibit some

phase coupling.

It has been shown in many special cases that when a linear process

is passed through a low-pass filter, the output is approximately Gaus-

sian. These are the well-known central limit theorems for linear pro-

cesses. This paper presents a very general and widely applicable

technique for proving such theorems. More importantly, however, central

limit theorems are obtained for the conditionally linear processes de-

scribed above.
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I. INTRODUCTION

Increasingly, clutter and other reverberation noises are being

modeled by a class of random processes derived from a Poisson process,

e.g., Middleton.(1) Typically,

x (t) 0- •(t - t I), t E (--®,(1)

where f t} are the times of a Poisson process and {0i(t)} are indepen-

dent, identically distributed random functions. We call such processes

linear processes. Different versions of this process have been exten-

sively studied. (2, 1 1 ) Unfortunately, this process sometimes proves

physically unreasonable. For example, the times {t1) may not be Poisson.

On the other hand, if the average time interval ti - ti_ 1 is small, the

assumption that *i(t) and *j(t) are independent whenever i i J may not

hold.

In this paper we shall obtain central limit theorems for se-

quences of linear functionals of x(t),

I k -]. x(t)dLk(t), k - 0, 1, ... , (2)

where either one of the to "independence" assumptions in Eq. (1) is

dropped. In this case, x(t) is called conditionally linear. Not sur-

prisingly, we will find that the asymptotic distribution of Z k is not

always normal.

To this end, we shall prove two central limit theorems for condi-

tionally linear random processes--one involving continuous-parameter



random processes and the other involving discrete-parameter random

processes.

A simplified version of a discrete-parameter conditionally linear

process is

zi M xiyl, i -O, ± 1, ± 2, ... ,

where {yi) are independent random variables, while the processes {xI)

and {y1) are independent of each other. We show that if Eyi - 0,

Ey2 - 1, Ey 4 <HM, and

ln k-E1 x -M (w.p.1),* (3)
k-e i-1

then

tk - k-/2 1 (4)

i-1

2
is asymptotically normal with variance a

Two things are worth noting. First, the sequence {Zi} need not

obey any of the more common criteria for central limit theorems, such

as independence, H-dependence, or strong mixing. Second, the indepen-

dent structure of the y,'s seems to be more important in determining

the shape of the asymptotic distribution of Ik than the dependent

structure of the x 1's. It is sufficient that the sequence {xi) obey

Eq. (3). Translated to Eq. (1), this hints at the conclusion that

when {t I are Poisson, the ýs need not be independent. If the 's

With probability one.
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are independent, then the ti'a need not be Poisson. Examples illus-

trating each of these situations are presented in Section IV.

The second major result concerns the conditionally linear pro-

cess

x(t) - J h(t,X)dZ(X) (5)

and the linear functionals

-k L Ok(X)dZ(A), (6)

where

k(X) - f h(t,')dLk(t).

Z(X) is a process with stationary independent increments, and 0k(M)is

a random process independent of Z(X). Here dZ(X) plays the role of

the independent random variables fyi). We show that if EZ(X) - 0; if

converges w.p.1 as k - to a random variable with distribution func-

tion S(x); and if

lim J (A) - 0 (w.p.1), (8)

In Pierre( 1 1 ) this process is called linear.



then the asymptotic characteristic function of Lk is a weighted normal-

in fact, weighted by the distribution function S(x) (Theorem 3.1,.

The integrals in Eqs. (7) and (8) are assumed to exist by at least

one of the conventional modes of convergence. We also prove a central

limit theorem for a discrete-parameter version of Eq. (5).

It will almost always be assumed that the "white-noise" process

(the one having the independent structure) has zero mean. This is a

nontrivial assumption, since without it the nature of the possible

conclusions changes.

The mathematical problem we consider was perhaps most recently

investigated by Lugannani and Thomas (12) and Mallows,( 1 3 ) who considered

continuous and discrete-parameter linear processes, respectively. Our

results for the special case of linear processes are somewhat weaker

than theirs (e.g., we require finite fourth moments). However, in those

cases where fourth moments do exist, our condition for the central limit

theorem is much simpler and, in fact, is of such a form that it can be

meaningfully applied to conditionally linear processes.
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II. THE CONDITIONING TECHNIQUE FOR DEPENDENT SEQUENCES

Before considering general conditionally linear processes, we

consider a special case involving finite sums, which illustrates the

basic idea but avoids many of the technical points to be raised later.

We consider the discrete-parameter random process Zi defined on

the probability space (Q.3,P), w E O, such that

Z i - 9, xNOY,), i - 0, ± 1, ± 2, ..

where {yi} are independent random variables, the sets {y i and {xi}

are independent of each other, and {gi} are known functions. Ordinar-

ily we will suppress the variable w. Occasionally, we will exhibit

the u-dependence to emphasize that a quantity is a random variable.

Let

kn M n-/2 Z
i-l

We will show the following.

Theorem 2.1. If

lim n-1 2 E{Zilxi} -* 1i() (w.p.1),

lim n-1 L var {Zixi} -+ a 2u() (w.p.1),
&* inl

where aC2u) and p(u) are random variables with joint distribution

function F(u,a 2 ); and if
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-2 n 4x ij ]).41)

2 E{(z - E[ZIx) 4 xi} 4 0 (v.p.l),

then the asymptotic characteristic function of In is

C(u) Lj exp [iIu - 2u 2]dF(p,a ).2

Proof. Let Cn(u) - E{exp [iRun] - E{E[exp iutn'Xl, -q Xn -

* *()schrceiico
E{C (u)}, where CnCu) is the conditional characteristic function of

9rn" Since IC*(u)l 9 1, the dominated convergence theorem implies that

lrn C (u) - E lim C*(u). We shall show that for almost all w, lim C (u)

is the characteristic functicn of a normally distributed random variable

2
with mean PM() and variance a (w).

For almost all realizations of {xl), the following application of

Lyapunov's condition for normal convergence holds. First, I is then

sum of a finite number of conditionally independent random variables

whose conditional moments are easy to calculate. Let x = (x,, ... , Xn).

Then var [InlX] + a 2w). The fourth-moment condition of the theorem

is just a Lyapunov condition for the conditionally centered variates

Zi - E[Zilxi]. Thus the conditional distributions of the centered

variates converge, and since the conditional means converge, the con-

ditional distribution functions of the uncentered variates converge

for almost all w.

An important and simple special case is the following.

Corollary 2.1. Let gi(xiYi) xiYi, Eyi - 0, var yi -I, and

4 2
Ey 1 < M. If for some constant a
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-ln
lim n-1 -

2  (M.p.1),

then Yn is asymptoticaZZy normaZ, N(0,c 2).

The process Zi - x yi can be thought of as resulting from passing

white noise, {yi), through a particularly simple random filter. An

interesting application is the case where yi is multiplicative noise

on a random signal x .

Proof. One can show (Pierre( 1 4 )) that if

-1 n 2 2n -1 xi÷ (w.p.l),

then

-1

max n xi ÷0 (w.p.l).

The fourth-moment condition of Theorem 2.1 takes the form

-2 n 4 4 / 2)12 -12n XiEyi -1M m:an xn j. n x.V

We see that the right-hand side converges to zero. We apply Theorem

2.1 to complete the proof.

The extension of these results to situations involving infinite

sums runs into two problems: The first is whether or not conditional

expectations exist when the number of conditioning random variables is

infinite. The second problem is more difficult. We were able to com-

pute conditional moments by taking conditional expectations under sum-

mation signs, because the sums were always finite. Justifying this



for infinite sums is considerably more difficult. This problem is

considered in Section III.

Note that in Theorem 2.1 neither of the processes (x i or fyi)

was required to have a zero mean.
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III. CENTRAL LIMIT THEOREMS FOR STOCHASTIC SUMS AND INTEGRALS

First we consider sequences

Ak L_ J k(X)dz(A), k - 0, 1, 2, ... ,

where Z() is a process with stationary independent incremente with

EZ(X) - 0, EZ 4 (X) < -. Here, {0k(W)} are random processes independent

of Z(A), and the integral is defined as the limit in the fourth mean

of the Riemann-Stieltjes partial sums. (See Pierre (11) for a discus-

sion of this integral and a computation of its moments; see also

Pierre(14 ).) We recall from Ref. 11 that Ejk - 0,

var L (X)dX

and

Et 4- 3{E12)2 CfrE (X)dX
Ek k{EOk

for some constant C. If Z(x) is a Poisson process, CX is its variance;

if Z(A) is Brownian motion, C - 0; in general, E dZ(X)14 = Cdx.

We will also need the following known results.

Definition. A distribution function F(x) with characteristic

function C(u) is infinitely divisible (I.D.) if for every positive in-

teger n, there exists a characteristic function Cn (u) such that C(u) -

[C(u)Jn.

Lemma 3.1 (Doob( 15)). A distribution fkunction ofa random vari-

able X is infinitely divisible if and only if for every c > 0 there

exist independent random variables YI, ...' Yn such that
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P{yl> C) III E, 1 1n

and Y1 + ¥2 + """ + Yn has the same distribution function as X.

Lemma 3.2 (Pierre(16 )). If {S is a sequence of I.D. random

2
variables such that ES - 0, var S n a , andn n

4 2 2
(Sn) ES n 3{ES n

*0 as n÷,

then Sn is asymptotically normal.1

For the case in which Ok(X) is nonrandom, it is clear that Zk is

infinitely divisible. Thus the condition that k4 (1k) - 0 provides an

easily checked sufficient condition for asymptotic normality.

Lemma 3.3. If Pn + P in the y-th mean (i.e., EIPn - ply 0 as

n + a), then there is a subsequence Pn such that P n -' P' w.p.l, and

P and P- differ only on a set of measure 0. Also, E.IPl - uir E.IPnis

for 0 < y.

Lemna 3.3 is known and can be proved using the Borel-Cantelli

lemma and the Markov inequality.

Theorem 3.1. If for k - 1, 2, ... ,

W f *2(X)dX

converges as k + - w.p.1 to a random variable 02(w) with distribution

function S(x) and

k d ( 0 (v.p.l).



then the asymptotic characteristic function of t k is

C (u) L exp, [-Jxu 2]dS (x).

The integrals of t2 (X n D4()are assumed to excist as limits of the

Riemann partial sums in mean square, in probability, or w.p.l.

Proof. First we note that Ik can be defined using only a denum-

arable set of the random variables {tk(M and {Z(X)} corresponding to

a denumerable parameter set D, and D is independent of k. Our basic

probability space will be the one generated by these random variables.

More explicitly, the space is (Q 1 X129 1 29 P1 2 P 2 ), where fl1

and 92 are the spaces on which the independent random processes

4 k(X):X E D, k - 1, 2, ... } and Z(X), A E D, respectively, are de-

fined. The elements of 9 1 and 0 2 are wI and w2 9 respectively.

Let 2 be the a-field generated by the set {0k(X):k - 1, 2, ... ,

X E DV; i.e., 15 - 3 i Then the characteristic function of Xk is given

by

Ck(u) - E exp [iutk]

- E•e( exp [iulk]I,

where E stands for conditional expectation. Let Ck(u;w) - E exp [hu0k],

where the w-dependence of the conditional characteristic function is

made explicit. Actually, C1 is measureable on CIO and is thus a function

of W1 only. Thus we will often write Ck(u;,,).

Since ICkI ;5 1, by the dominated convergence theorem, 1itk Ck(u) -

E liuk Cl(u). It will be sufficient to show that for almost all w',

CA•u) is asymptotically normal with variance a2(W
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A regular conditional distribution, %k(y;w), of lk' given S,

exists for all k as a consequence of the probability space we have

chosen (see Lorve( 1 7 )); i.e., for all w, PO(y;W) - Pk(y;w ) is a dis-

tribution function.

In order to apply Lemma 3.2, we need to show that under I, ik in

I.D., that var 1k # a (W ), and that

0~(1k E& 4 _ VOEL 2) -f *(X)d%

except on a null set Nk-

Consider the points {X in c D A [a,b] such that

I k = 1A.M.m~ 1A.M.mrm 0 k(Xi)(Z(Xi) Z(X i-1)),b-in-

where 1.i.m. stands for limit in the fourth mean (see Lemma 3.3), and

{Xi) n increases monotonically to D n (a,b]. Since Xk is a limit in

the fourth mean, it represents a class of random variables, any two

members of which differ on at most a null set. We will show that for

each k, at least one member of the class satisfies the conditions of

the previous paragraph. Consider the inner limit for a given (a,b]

and call the partial sums Pn . By assumption, Ik is convergent in the

fourth mean: i.e.,

El k ()dZ(A) - Pn14 0

as n - . Then, clearly,
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l4n* Ok(X')dZ(X) - Pn . 0

in the first absolute mean. Using the results of Le-mna 3.3, a subse-

quence P can be chosen so that M, -÷ 0 except on a null set Nk(a,b):

i.e., we get conditional convergence of P in the fourth mean for al-

most all w. Let

• 'k (X)dZ (X)

be the version of the truncated integral obtained from the subsequence

P n.. For this version, the conditional moments for w • Nk(a,b) are

obtained as the limit of the conditional moments of P -. In a similarn

way, we can let b + • and a + -• through a denumerable set of values

so that the union of the null sets Nk(a,b) is still null and fast

enough so that the limit exists except on the null set N'.

For che version of Ik obtained as described above,

var zk k ([)d and 4(tk) M [fik (X)d .

By assumption, the integrals without asterisks exist in at least one

of the conventional senses. They can differ from the integrals above

on at most a null set; thus

vazr I fs2(A)dX and 0(t) ft4(X)dX

except on the null set N'

k'i
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The random variables Lk are conditionally I.D., since under the

conditioning 1, they are fourth-mean limits of I.D. partial sums.

If N is the union of the null sets N', it is also a null set.

Fix w f N; then the sequence of distribution functions 0.(y;w) is

asymptotically normal, and the proof is complete.

It should be pointed out here that the main difficulty in the

proof of the theorem is obtaining an expression for the condition-l

fourth moments. We showed that these conditional moments can always

be expressed in terms of a special integral--an integral whose Riemann

partial sums converge w.p.1 when the sequence of partitions is espe-

cially chosen. The theorem could have been stated in terms of this

special integral. However, we decided to assume the existence of the

relevant integrals in some conventional sense: i.e., for arbitrary

sequences of partitions becoming dense in the interval concerned, the

Riemann partial sums converge in some conventional sense. Under this

latter assumption, it is clear that our special integral and the con-

ventional integral are equal w.p.l.

STOCHASTIC SUMS

Next we consider sequences of sums

Lk " , k - 0, ± 1, ± 2,...,

where {c:Ji - 0, ± 1, ± 2, ... } is a sequence of independent random

variables. Let the random matrix {tj) be independent of {cj} and let
jk i j

the sums exist as limits in the fourth mean. Thus Ik for random sums

is a natural generalization of tk for random integrals.
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Finally, we will need a modification of a result from Pierre

Lemma 3.4. Let

:1k

Sk = X Xkj'
j -0

where k - 0, 1, ... , and for each k, Xkj} are independent random vari-

ablee. IfEx. 0, EjvarXkj+a 2 < max vat ÷ 0, and•Zs fZkj -
I,]jvt• , k

ES ~3[ESj {E - 3[Er2

then S k is asymptotically normal.

Proof. Since

EEX: ] '9max EX-j E~[j jj

as k - T, the Lyapunov condition for 6 - 2 is satisfied (see Lobve (17),

and S k is asymptotically normal.

Theorem 3.2. if E -. 0, E -l and

k(w) jk

converges as k - - w.p.1 to a random variable a 2(w) with distribution

function S(x); and if either

(a) lim..,, 10j.j 14Ej.lj 1.l 0 (w.p.1) or

(b) {e I are infinitely divisible and 1iit• j 4k(Ecj 3[Ee 2J2)

0 (w.p.1), then the asymptotic characteristic function of L k is

This modification was brought to the author's attention by
C. N. Morris of The Rand Corporation.
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C(y) - exp (-jxy2 ]dS(x).

The sums above are assumed to exist as Zimits either in mean-square

in probability, or w.p.l.

Proof. The proof of (b) follows from the fact that the sum of

independent I.D. random variables is I.D. and that if 18 is the o-field

generated by {tjk 1 , the same arguments as used in Theorem 3.1 indicate

that, v.p.1,

?4- 3 [OX2 ] 2  t4 (E 4 - 3Ek k jk(E j

The rest follows just as in Theorem 3.1.

Lemma 3.4 together with condition (a) and the conditioning argu-

ment is used to prove the other result. Condition (a) implies that

for almost all w,

max Ijki4ElJ14 . 0

as k - -. Since EE 4 Ek M 2 ) 12

max Itjk1 2 =max vare(0jkcj) e 0
J J

as k - - w.p.l. Computing conditional moments as we did in Theorem 3.1,

we see that

- k - jk(Ej -

Each of the two sums on the right-hand side converges to zero--the

first by condition (a) and the second because it is less than three
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times the first. All that remains is to express Ik conditioned by 1

as finite sums satisfying the conditions of Lemma 3.4. Let

XkO - kOCO,

Xkj = "kjcj +k,-J €j

for 1 - J g Jk - 1 (Jk is defined below), and

XkJk - ' jk'

where Jk - Jk(w) is a random positive integer chosen large enough so

that for almost all w,

var• Xkj max jk12.

This can be done, since Xkjk is the tail sum of Zk and

var'k 1 2Jk < C (w.p.l).

Then

L E Xkjk-O

and all the conditions of Lemma 3.4 are conditionally satisfied. This

completes the proof.

If Z(.) has nonstationary, infinitely divisible, independent in-

crements, it is handled in the same way as in Theorem 3.1 except that

now
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var Z E-2(X)dV2M

and

EL 4  3I2 2 .CrE.P4 (Xdf~k -{Ek) J k V4(X)

for some monotone increasing functions V2 (X) and V4 ( ). (This situa-

tion was considered in Appendix B of Ref. 11. Then (b) of Theorem 3.2

would be a special case of this more general theorem.

We note that {c I being infinitely divisible in Theorem 3.2 (b)

is a special case of Theorem 3.2 (a). However, the condition (b) is

wsaker than condition (a).

Even in the case in which 4jk is nonrandom, the results of Theorem

3.2 are useful. For example, most central limit theorems for discrete-

parameter linear processes require that the E be identically distrib-

uted. This is not required in Theorem 3.2.
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IV. APPLICATIONS

Perhaps the most important special cases of the theorems of Sec-

tion III occur when a 2(w) is a constant w.p.l. A closer look at o2(W)

will show that this occurs surprisingly often.

NORMAL AND WEIGHTED NORMAL CONVERGENCE FOR RANDOM INTEGRALS

Consider the random process

x(t) - f(t,X)dZ(X)

and the linear functionals

kk /fx(t)dLk(t).

where

dLk(t) - k-1/2 cog 2Tfot dt

or

dLk(t) = k-1/2 sin 2yrf 0 t dt

for 0 - t - k, and 0 elsewhere. If f(tX) is mean-square continuous

and

I -fEf(t,X) f(sX)d[Lk(t)Lk(s)XJ (9)

exists, then the integrals may be interchanged (Pierre(14 )) to obtain

Ik= k -L k(X)dZ(X),

A
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where

k(X) - f(tX)dLk(t)"

Finally, we require that

2 \D2
ak (W) -f(t,X))dLkJt d)

" " inf (tW)f (9s,)d)dLk(t)dLk(s) (w.p.1).

(10)

This will be the case under conditions analogous to Eq. (9). As be-

fore, we assume EZ(X) - 0.

Example. Let f(t,X) - h(t - X); let

Jih(t)Idt < (w.p.l);

let

H(f) L f h(t)e-j2wft dt;

and let JIH(f 0 )1 2 have distribution function S(x). Then if f 0 I 0,

Ik has the asymptotic characteristic function

C(y) L J exp [-Jxy2 ])dS(x).

if f0 - 0, S(x) is the distribution function of IH(O)1 2 .
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Proof. The function

r(t - a) - f_. h(t - X)h(s - X)dX

is a stationary covariance function w.p.l. From Davenport and Root,(18)

we have for f 0 0,

Ok(a2,) - r(t - s) coo (2wfoS) cos (2wf 0t)ds dt

- jJH(f 0 ) 2  (11)

and this holds for almost all h(t). In Sq. (11) the integral is inter-

preted as an integral along the sample paths of r(t - s), while in Eq.

(10) the integral is a mean-square integral. However, since they both

exist, they are equal. Equation (11) is also true when cosine is re-

placed by sine. If f 0 = 0, we get IH(0)12.

Finally, using the sample path interpretation of the following

integral we have

-h(t X) cos (21ifot)dt) dA 9 jh(t - X)Idt) dX

LI U t)2

;5 maxjf Ih(t- W)Itd ak(W)

k 0 (w.p.t).

a 2.. .. .2
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Thus the conditions of Theorem 3.1 are satisfied and the proof is

complete.

Two things worth noting are: First, the asymptotic distribution

of Ik does not depend on the phase of h(t). Thus if h(t) is random,

but JH(f)I 2 is nonrandom, Ik is asymptotically normal. Second, if

h(t) is a Gaussian random process, the weight function S(x) is a non-

central chi-square distribution with one degree of freedom.

CONDITIONALLY LINEAR PROCESSES DERIVED FROM STATIONARY POINT PROCESSES

Let

x(t) - A A e i)u(t - t i),
i

where {Ai:i - 0, ± 1, ± 2, ... } are independent random variables with

EA 0, 2 _ 1, and EA4 uniformly bounded; u(t) - 1 for t > 0 andE~ =OEi =Ei

zero otherwise; and {ti} form a point process with the following prop-

erties:

(i) If Nk is the number of points ti occurring in the interval

[0,k], then lim kNk - N (w.p.l) for some number N < .

(ii) For any number a < k, Nk . Na + Nk,a, where Nk,a is the num-

ber of points ti occurring in the interval [a,k].

We consider the linear functionals

Lk = k -/21 x(t)dt.

Assume that x(t) may be integrated termwise, and further assume that

the resulting sum converges in the fourth mean. Then
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itk k 0 a u(t - t i)dt

S• Aik-1/
2 ei (e-k-)

t i<0

+ A i k 1/2 e ti (.-kc - -ti).Ofti-k

The conditional variance of Zk given {tY} is

vars Xk " k-1(e-k _ 1) 2 E e2tt

+ m k-l(1 - 2 -(k-ti) +-2(k-ti

The first summation converges to zero as k ÷ w.p.l. The first term

of the second summation contributes k-lNk - N. Consider

Pk m k-le-k 
_; eti

k- le-k( E t + e ti)

06t -9(1-e)k (l-c)kgti:-gk

for some c > 0. If in each of the sums above we substitute the largest

value of ti, then

Pk L k-'N(l_-)ke-ek + k-'Nk,(l-)k

0 + cN.



-24-

Since e is arbitrary, Pk * 0 w.p.l. Thus vaz3 tk 4 N. A similar

analysis will show that

Ek-2( (ti)U(t - t±)dt) 0 (W.p.l).

Thus the conditions of Theorem 3.2 (a) are satisfied and {ft is

asymptotically normal.

Results completely analogous to those above can be stated for

discrete-parameter processes.
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