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UDC 620,171,32

THE USE OF SIMILARITY CRITERIA IN TESTING MATERIALS

Mashinoved V. N, Churakov
(Sclence Efq Machines),

No. 5, 1969, pp 61=70

The equations of the deformation theory of plasticity for the case
of a nonmiform field of tempsrature T and pressure action P are as fol-
lows /5, 15, 27

1) equilibrium equations (in Pulerian variables),

961“"-_—0 (i,i:e:z,y,z), (‘)
i

2) equations connecting stresses and deformatioms,

Itve _¥»
Ep

8ij = ——-— [+ £7]

8 + 00T (1, = z,1,32). (2)
E,

Here €33 represents the camponents of the deformation tenser, 013
the campanents of the stress tensor, S the first invariant of the atress
tensor, 61‘, the Kronecker delta (equal to wnity when i = j, and equal to
zero when 1 ¥ j), and € the expansion coefficient. The dimensionless quan-
tity Vp and the quantity Ep with the dimensionality of stress are defined
by Poisson's ratio v and the module of elasticity E, according to the for-
mulss given in /75 7;




_ v+ v)—(1~2v) _ 3
Pt viv—(1—2v) ' E"'2(1+v>~p—(1 29y )

The paramster ) is defined (Figure 1) by the disgram 0, = 0:( ¢,)
in the form ¢ = O4p/0jy, where g, and €, are the intensities of stress
and deformation:

oi = "}}?—Y(O: ~02)2+ (o1 — da;z + (02— 03)?,

&y = '};_27'(81 ~ &2)2 + (&g — e,)é-]-(e;— &)

3) equations connecting deformation €13 and displacement U4 In
the case of terminal deformatiam,

R CORCORTC I

and so farth,

4) compatibility equations. These equations in the case of terminal
defarmation are very camplex and cumbersame /26, 33/. In analysis of these
equations by the methods of similarity theory, it sufficient to note that
they contain terms of the type

i aeq aeu

a9 hj=2y71)

0%e;; (7] (6e.~,->
= n g

0i9]  ai \ g

‘_'46, 3_3_7 . The coefficients gij are dimensioless; they depend upon the di-

a .
mensionless quantities —::.—’— (i,i==24.2) . Since the deformations ‘ij

are dimensionless, while the dimensionality of the denominators of the in-
dicated terms is equal to L (L is the length), it follows that (according

to [1' 1, 18, 21, 337) the campatibility equations do not yield any similarity
criteria, and only connect the scales of deformation and the lengths, whils
both the indicated terms, for any given number of vharacteristic noncha-
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racteristic criteria are equivalent,
5) boundary conditions:

ouyn; =Py (i,j =z,y,z). (5)

Here ns are the director cones of the external normal to the surface
of the body.

Figure 1., Toward a determination
of the parameter .

The number of charrcteristic and noncharacteristic eriteria of simi-
larity according to the [T -thecrem /21, 327 is equal to the difference be-
tween the number of dimensional parameters of Equations (1)-(5) and the¥
mumber of primary measures of which .hey are constituted. Equations (1)-(5)
yield eight parameters: doi;/9;, 1/Ep 0ij S, ¢, 7,0%:;/6i0), , To these it is
necessary to add the characteristic dimension of the body L, which defines
its geametry /21_/. These nine parameters are camposed of three measures:
force, length and temperature, Consequently, the number of criteria is 6.
The number of characteristic criteria (an the basin of the IT-theorem) is
equal to the difference between the number ¢of variables essential to a
given process (variables characterizing the conditions of single-valuedness)
and the number of primary measures of which they cansist /T1, 18, 21, 327,
Equations (1)=(5) yield four essential variables, Ep Vps P, aT. The

quantities Vp and aT are dimensionless, The "geometry" of the body under
study adds to this the charecteristic dimension /21 7, These five quanti-

ties are camprised of two measures — force and length. Consequently, the
number of characteristic criteria is 3. We now introduce scale separation
factors for body No, 1 (nature) and body No. 2 (model):



Y E
k L, = ot =_li_ { ==
% o k’, Ep ete, (1, j=x, 3, 2) (6)

According to the third thearem of similarity /18 7, the fields of
stress and deformation in bodies No, 1 and No, 2 will be similar, provided
the scales (6) are ao choeen thrt the cambinations of scale coefficients
preceding the terms of Equations (1)-(5) are equal in pairs for each equa-
tion of the (1)-(5) system taken individually, It is easy to see that
the equations of (2) are invariant with respect to the transformations of
similarity only if k _ =1, It follows fram this that the characteristic

14 .
criterion of the pla.agic problem is the quantity Vpe The equations (1) of
the eriteria of similarity are not thus obtained, but fram *. i, /k; we can

learn the relationship between the scales of the various components of
stress. Equations (2) yield the following criteria of similarity:

e/al, ¢ij/ EpaT, S;EpaT, 6ijlS, 0ij/ Epe. Two of these five criteria —- for
example, the last two — are corollaries of the others, Thus (in this ex-
ample), the first three are noncharacteristic criteria, since they contain
the sought-for quantities of stress and deformation, Making use of Hooke's
law of similarity /34 /, which requires that k¢ =1, and also the rule of
the cambination of criteria /21 7/, we finally obtain the characteristic
criterion aT, since it is camprised of essentiai variabies, The criterim
aT, just like vy, is & point, Equation (5) ylelds the characteristic cri-
terion P/‘Ei. Ccnsequently, the full system of characteristic and noncharac-
teriatic s ty criteria assumes the following fomm:

P ey oy S

V2o E, " ol EpaT” Eyal

(i,i ==,y,3). ( 7)

This system contains three characteristic criteria, just as called
for by the /I-theorem under the given conditions of the problem., The cha-
racteristic criteria Vps aT and P in the simplest possible manner
are comprised of the essential variables of the process om these cri-
teria, with the help of the ruleof cambining criteria [" 21 /, may be ob-
tained the other criteria, In this sense, the system of criteria just
cited may be referred to as "fundamental", If ¢ is on the order of several
percents or more, them, with y = 0,5, it follows fram Equations (3) that
Vp = 0,5 and E = E/,p' E', where E' is the intersecting module of the
diagrem o: = oi(e)) /[ 5_/, or, with single-axis deformation of the diagram,

s =oc(e) (Figure 1)/ 5_/. The total number of criteria, with V = 0,5,
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is not reduced, since instead of the criterion y, we now have the criter-
i ¢, which characterizes the similarity of diakrem o = oi(e).. Actually,

the equality Vp.mod = Vp,nat’ when Vp.4 = Vpat» i8 possible anly on
the condition that wmod = wmo

With V = 0,5 ( ¥p = 0,5), the full system of similarity assumes
this form:

) P ey oy $ C e 8
l’, aT’ E, ' FT—! E'QT, E,aT (l,]-—z,y,z)- ( )

The criteria of systems (7) and (8) enable us to gemeraiize the
results of experiments, and arrive at this general relatiommship:

e Y p
T‘;'-=fﬁ<¢’ aZ, F) , ete, (i, J=x,7, 2). (9)

The criteria thus far considered concern only the problem in which
the sole deformations (functions) are temperature and pressure. If, now,
€14 should reflect still other parameters — say volumetric or concentrated
forces which cannot be modeled by the criteria of (7) and (8), then it
would be impossible to arrive at 79), except, possibly, in cases where
these additional factors remain invariable during the process of plastic
deformation,

Let us consider the possibie application of the criterion P/E' in
an attempt to generalize isothermal tests of materials ror stretching
{or campression) with simultaneous action of hydrostatic pressure. FRx-
periments show that for many materials, for example plastics /T, 2/,
bedrock /16, 2i, 36-40, 42, and certain nonferrous metals /38-30,
37, 417 the diagrer 0 =o(c) depends on the spherical tensor (Figure 2-a,
for Caprone /[ 1_/; Figure 2~ , for marble /16, 2,7; F 2-¢, for dolo-
mite /40 _/, and Figure 2-d, for the alloy MA-3"/28-30/) — in other words,
axh brittle materials in the case of monoaxial stretching (or compression)
became plastic and enter a complex stressed condition, Analocous response
is shown by_a number of brittle tempered steels / 10 /, plastics A‘a and
rocks /43_/, which were tested by being placed In tIngs made fr ic_
metals subjected to uneven lateral campression. We shall not consider
tests made in rings in the present articls, since the stressed state real-
ized in such tests_is not uniform, The experiments of Bridgeman /6 7 and
other writers //,_/ show that for ferrous metals and also certain nanfer-
rous metals, the diagram o — o(z) is independent of hydrostatic pressure.



{66 AT
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Figure 2, The effect of hydrostatic pressure on the cam-
pression stress-strain diagram of Caprone (a) /71_7, marble
(v) [16_], dolamite (c) /40_/, and on the tensile stress-
strain diagram of the MA-3 magnesium alloy (d) /Z8-307.

a: 1 -P=0,9810° N/m%; 2 - P = o.293-108 N/m2; 3 -

P =0,49+108 N/m?; 4 = P = 0,98:108 N/m<; 5 - P = 1,47-108
N/m?; 6 - P = 1,96+108 N/m?;

b: 1 - P=0,9810% N/m?; 2 = P = 0,23°108 Nfw2; 3 - P =
= 021,9-108 N/m?; 4 - P= 0,672+108 N/m2; 5 - P = 05827-103
N/m?; 6 - P =1,6i5°10° N/m%; 7 = P = 2,44°108 N/n”: 8 -
P = 3.19:108 N/m?;

1 = P=1,960108 N/m%; 2 - P = 0,98:108 N/w2; 3 = P =
0.98:10° N/m?;

1 - P=0,9810° N/m?; 2 = P = 1,175¢10% N/m2; 3 -
= 2,16+108 N/m2,
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The elastic modulus is a structurally insensitive characteristic of mater-
ial proporticnal to the binding forces /9 /. In /T, 2/, in order to esti-
mate the pressure used, pressure is first reduced to the initial elastic
modulus. According to the data of /1, 2/, the ratio P/Ey in the case of

polymers reaches the value of 0,05-0,50; in the case of rock, according to
data of /16, 24, 36-40, , it reaches the value of 0,03-0.15., With most
metals , §7 P/Eo = Q, - 0,015, In tests with plastics and rocks, then,

the ratio of maximum pressure to initial elastic modulus is considerably
higher than for the majority of tests conducted with metals, We should na-
turally expect that the effect of pressure in the case of plastics and rocks
would be greater than indicated in {1- s 2/, In the majority of those cases
in which the ratio P/E. for metals Is camparable to that for plastics and
rocks, the o = o(e). d:lggrams show & perceptible influence of P — for ex-
ample, in the case of niobium /6_7, forwhich P/E. = 0,025, In the case of

the alloy MA-3 (Figure 2-d), the value of P/E, is 0,05 /28, 29/, The figures
are analogous for a number of other metals 30, 37, 41/. Thus, the ef-

fect of pressure sets in when the value of P is commensurable with the elas-
tic modulus — that is, when the external forces are commensurable with the
banding forces within the substance /T, 2/, In addition to P/E,, the effect

of hydrostatic pressure is also conditioned by the physical milieu, the
structure of the tested materials, and some other factors, But a discus-
sion of such factors transcends the possibiliiies of the present paper,

It should be noted that, whereas many plastics and metals are plastic
&s regards monoaxial stretching (or compression), plastic deformations in
rocks scarcely exist, As pointed out in [ 36_7, "although plastic defor-
mations are indeed possible in rock, they are of an artificial or forced
character — pseudo-plastic, one might say, being obtainable anly under
specially created conditions, mostly conditions of high multi-lateral com-
pression" /367, It is of interest that the effect of temperature in the
presence of hydrostatic pressure — for example, in the case of marble
(Figure 3-a) [ h2_7— is just the same [i'.n roc&s] as in metals and plast-
ics, while the effect of the deformation rate at high temperature and in
the presence of hydrostatic pressure is the same as with metals at very
high temperature (Figure 3, b) /23, 427, When marble is stretched under
hira hydrostatic pressure, there is noticeable "neck~formation" s Just as
in metals; while deformation increases up to several tens of percents with-
out breakdown [57, 38, h§7 . The procedures for testing under hydrostatic
pressure, the necessary apparatus, and the samples, have all been described
in detail in /1, 4, 6, 16, 24, 28, 29, 36-44/. In the case of plastics and
metals, there is direct contact between the working medium (o1l, kerosene)
and the sample; in the case of rock, however, the sample is usually protected
fram the working medium (kerosene, glycerine, oil, and — at high tempera-
tures — carbon dioxide) by a thin casing of soft plastic metal (copper,
bronze) or plastic, in order to exclude secondary phencmensa,



&%

-Figure 3., Stretching curves for marble

(yule marble with variable temmperature

and deformation rate and cmsugs lateral
hydrostatic pressure of 4.9 ¢ 10° N/m2 (witk
the excepti cErva h, where the pressure
is 2,9 ° 13336- [ 42 ]: & - constant de-
formation rate (90% per hr) and varisble temp-
erature, %: 1 - 25; 2 - 150; 3 - 300, & -

4L00; 5 =500; b - constant (500°C)
and lateral pwessure (4.9 ° 1 J?)" but var-
iable deformation rate: 6 - 100%/hwr; 7 - 108/hr.

As 1is well inown deformation theories cannot be agplied to all types

of loading; in particular, they are justified only for propoitional load-
ing, where they yield results which coincide with those of flow theory, but
they are not justified for camplex loading. For all materials, however,
we must accept the hypothesis of the unique curve o, = oi(e;) =that is, that
the simplest Io-theory® is not always applicable, For exampls, it is shom

in [31 ]

that for the plane stressed state in the case of hardened U7 steel

the defarmation curves o¢: = 0:(e;), depend upon the type of stressed state,
Neither does appeal to the third variant of the deviator of stresses I,,
Prager's theory /7_/, and the like, have the desired effect. We are fhus
reduced to considering the possibility of using relisbility criteria as ob-
tained on the basis of reliability theory as reflected in these tests, since

*The secand variant of the deviator of streases,




‘the stress in these cases was complex (not proportional), '/e should note that
the Lode-Nadai parameter #o= (202— 01— 03) /(01 — 03). which characterizes the
form of the stress deviator, equals +1 for compression and -1 for stretching
in the given case, It is demonstrated in /8 / that in the case of forms of
stress deviator characterized by values of O equal to +1 and zero, the de-
viation between the curves ¢ =o0(e) is conditioned only by the mean normal
stress, This effect, evidently, appears only thanks to the presence of hydro-
static pressure, which is present in the amount of P/E’ = Pe:/0i ,that is to
say as a product of P by the conjoint invariant &:/c:. But quite recently it
has been shown /7, 14, 19, 20, 25, 27/ that deformation theories are indeed
applicable to a certain class of routes of complex loading which are fairly
distinct from the proportional in the instance of the presence of angular sur-
face flow*- that is to say, singular surface flows coinciding with the Genka-
Nadai theory for a certain class of camplex loading: and yet here there is no
particular recuirement as regards incampressibility of the material as regards
wall flow O: = Ae™ and proportionality of load, as is the case in smooth
loading /14 7. Tt is shown in /7 7 that in the case of singular surface
flow, the Genka-Nadai theory satisfies the fundamental quasi-thermodynamic
postulate of Drucker's flow theory / 12 /. However, it happens that the defor-
mation theory is not applicable entirely to arbitrary means of loading, In
[ 13_/ it has been shown that deformation theory is applicsble to the case of
met in complex loading, which represents an instance notably distinguished
from the simple case in which there is a notably small value of variation in
the tensor stress axis 0; growth during the process of 1 +« The present
authors have added additional remarks in a subsequent work /22 7.

Figure L, Region N of definite functions o= y(s p)

»
The surface within the decimetric space of stresses which distinguishes
the elastic from the plastic regions,



What we have already construed in the present article may be regarded
as a sumary oan the subject of stretching (or compression) in the science
of hydrostatics, Within the process of deformation theory, however, we maAy
distinguish certain "side formations", However, as indicated by calculations
up to the value of ¢~ 30~ 35% variation in the value of undirected

cosines of the surface is not large, but geametrical similitude is preserved.
The criterian P/E 1is point-wise; howaver, in the case of the samples tested
deformations and stresses were averaged for any given point, Consequently,
the number P /E = P:z/c at every point of the sample can be computed with

approximate accuracy with respect to the number P/‘E' of the sample as a whole,

Let us suppose that we have given the region N (4) which is defined to be
continuous, differientiable and monotonously increasing with respect to each

of its arguments o= x(¢, P) individually, We shall consider that the
partial derivatives Xrénd % within N nowhere refer to zero, Further, we
shall exclude fran N the curve o = y(e, #), corresponding to Po =0

(the so-called zero curve), as well as thé small region«)» adjacent to that
curve where the criterion P/£ =Pe/c degenerates -~ that is, ceases to
have any influence, on accountof the smallness of P with respect to O,

In addition, we shall consider the image of region N within a certain
region of the plane (¢, P/E’). If this image is degenerate - that is
it transforms N into the line L, the equation of which is ¢ = ®(P/E’), -
then we obtain as a result the sought-for generalized curve of tests, In
N on L the variable O does not change, and produces compression along the
segments 1n which correspond to the derivative o. = x(e, P) = const. .,
Consequently, it is possible to write () = y(e, P), where JI is the
criterion P/E', Differentiating, we obtain @I = x./, ®'I = x»'".

Eliminating the arbitrary constant @ , we find the necessary condition
for the existence of the curve L which is expressed in a Jacoblian equal to
zZero:

;=01 _
" D(e, P)

The implicit function 7 (e, P) = x(e, P) — const = 0, corresponding to
the derivative ]'n’ wnder the conditions laid upon it by the theorem re-

garding the existence of an implicit function / 35 / defines the single-
valued and continuous functions e =14(P) and P = {'(e) ,which are the
inverse of the first. Consequently, since ¢ and P on 1n are single-
valuedly mutually interchangeable, then, actuslly on ln the Jacobian I
reverts identically to 0=7 at all points of the set Em = {em},

- 10 -



where tm&Eln, Consequently, the image is degenerate and thereforg
has a point plane (o, P/E’. As a consequence of the arbitrariness
of l,, the region N has in this manner the line L of the plane (o, II),

Experiments canducted for caprane (See Table) confirmm this result and

show that the scatter AT is equal to 1,0 - 16%, which is on the order
of the inherent errar of the exe riment, namely 4.5 - 108 /1 7. The
maxizmm relative error All=A(Pe/s), according to the theory of errcrs
is equal to the sum of the errars of deformation A¢, the strese Ag ang ithe
pressure Ap. According to /17  Ae==15-5% and Ao= 3—5%.

6; 0 ;"-';

4 p—

3
402 ok 005 008 0P
[’

Pigure 5., Curve o= for marble subjected to stretching.

et 4
16
. (D
/
7 f
/
/
, ,
0
. Z o7 7
4 T

Figure 6. The curve o= @) for caprone under compress.

The error Al 1s not quoted in /71_7. Every curve given for plast-

1cs in [1_/ (See Pigure 2 a) repre s an average 3 -~ 5 experiments with
maximm devation of 5 - 7 peroent from the mean, Por marble /42 7 (See

Pigure 3) A0= 3.9 percent, d¢ = 0.] percent, and AP = 0,5 percent (man-~
genin manometer. The curve for 500°C /| 1.2_7’ (See Figure 3) represents the

- 11 -



mean of three tests with maximum deviation of experimental points from the
mean value of 1.5 percent. The generalized curve for caprone is shown in
Figure 6. The curve o) — o= @([l)in Figure 5 was constructed from the re-
sults of oghree def tion curves corresponding to the following msngros: 2
L.41 108, 5,88 - 10°, and 9.8 *+ 108 N/m2. The curve for P = 7.84°107 N/m
was not considered, since it is of anomalous character (two extremums, with
increase of stress following the minimum), which is not typical of the
stretching curves for marble as shown in Figure 3 (Sece also /37, 39, Lo/).

H
S ya'f.., i o
P— [ 1861107 31
J

L

3 g
i !
‘/’M' / g a02 q“%
i
! !
0 404 208 P
I
Pigure 7. The curve o= o) ; Figure 8. The curve oi—o:=0(I)
1 = polymethylmetacrylate for compression of rock o0, =

under compression 137; 2 - = P; 1 = marble [ 16 7; 2
the plastic K-17-2 under com- 2 - sandstane /16 /;
pression /1_/; 3 - the plastic 3 - dolamite (Glorieta

MA-3; & - bzyllium bronze under dolamite) /40 _7.

stretching / 28-30_7.

For curves which are close to the diagrams for the ideal plastie

body, the law of similarity is breached (See curves 3, 4 and 5 in Figure 2),
this being associated with the fact that some or all of the diagram in a
given case coincides with the segment l,, campressed to a point. The func~
tion X 1s not monotonic for P = const, Consequently, violation of the con=
dition of single-valuedness of the implicit function {(P) is present, and the
curve o = U (Il)cannot be constructed, Thus, it is shown that in plastic
tests with materials it is possible to construct the dimensionless quantity

0 in the function of the dimensionless similarity criteria in a manner
analogous to that used for electromagnetic plienamena by the author of mono-
graph / 17_/, who demonstrates that this is expedient in the study of non-
linear proces, "when the nonlinearity is the result of independence of the
parameters of the moterial (in our case y_, E_ and E') from other variables"

(that is, temperatur=, pressure, and the ). In principle, at least, it
is possible to transform the graphics considered here into dimensionless

- 12 =



T e  TABLE
f P'to-'nlt" Mem w
0-10¢, N./»* - . Error

19,6 16,7 | 9.8 I 49 I 2.9 o l aney
13,5 0,467 —_ — —_ 0,459 1,96
13,0 0,415 —_ - — 0,413 0,73
12,5 0,560 0,263 0,83
12,0 0,316 L0050 3,06
11,5 0,278 . - 01,246 2,50
11,0 0,250 TR i — 0,258 10,90
10,5 0,210 TRT . = 0,214 3.74
10,0 0,13 WL 0 2200 oy — 0,196 12,20
9.5 0,161 0108 N TTC R ST (U S — 0,170 11,80
9,0 0,145 | 0137 I TR BT TN LI R— 0,140 3,57
8,5 0,118 0,123 0,132 [ 0115 — 0,122 8,20
8.0 0,105 | 0405 | wliin 4o woloes | 0,23 0,108 13.00
7,5 0,093 0.092 0,097 0,078 (0<% 0,090 13,30
7.0 0,036 0,079 0,059 0,006 0,074 0,079 16,50
6,5 0,064 0,069 0,077 0,053 0,065 0,067 9,00
6,0 0,080 0,063 0,667 0,0 4,055 0,050 15,30
5.5 — — 0,053 0,044 ’ 0005 1,050 16,00
5,0 —_ — 0,050 0,040 0,09 1,044 13,70
55 — - — ! oae ooy 1oelng 2,70
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form, provided we remove stress and the elastic modulus, taken, for exsmple,
with certain constant values of temperature and pressure, Let us consider,
now, the image of region N on a certain regim of the plane (¢, /7). In
an image of this sort the variable € remains constant, but there is com-
pression (or stretching) along segments 1, parallel to the axis 0. Alang
the arbitrary 1,, where e, seconst, to ane value of ¢ there corresponds a
set of pressure values P — {P;}., Thus, on 1 , both P and € are mutually
independent. -t is therefore impoésible to construct the curve &= F(Il} ,
Since the function X 1is monotonic with respect to P, then to the arbitrary
quantity e, = const there corresponds a set of vaues of the number m,

itself corresponding to the set of pressures on 1, and, consequently seg-
ment 1, on plane ( 0, ¢ ) has, in its o way, a segment an the plane € ]I,

The mﬁ; is non degenerate, and region N is reflected in a region which is
not a e, This fact can t- verified from the graphics of Figure 2, The
results obtained are justified for various mechanisms of plastic deforma-
tion — such as duplicate in the cass of marble /16, 24, 4O/— and also for
slioping, as in the case of metals /28, 29123 they are also justified for
change in the conformation of molecular chains, as in the case of caprone

[ 1_/. The theory described here is adaptable to phase transfarmations
arising during deformation of samples under the effect of lateral pressure
/28, 29_7. Thus, excluding the resilient region, which was not consideread
in the present examination, we can conclude that o — ®(II) can be canstructed
only for regions where the function 0 = d(e) is monotonous — in other words,
where the material is reinforced. In situations where the material exhibits
ideal plasticity, the criterion /7 is not adaptable, as it is not in the
case of weakened material, since the function in question ceases to be mono~
tonic, and the conditions of single-valuedness of the implicit functiom,
mentioned earlier, are violated,
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