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THE USE OF SDIKIARnTY CRTR=IA IN TESTING MATERIALS

MashROMLE4EV. N, ChurakorTSoclenee of Machines),

No. 5, 1969, pp 61-70

The equations of the deformation theory of plasticity for the case
of a nonuniform field of temperature T and pressure action P are as fol-
lows C5, 15, 2f7:

1) equilibrium equations (in Euler"an variables),

2) equations onnecting stresses and deformations,

8j= --L1-•-aj--•6SjS+6,,aT (i,j -=x,,,z). (2)

Here e t represents the components of the defoemation tensor, aij
the camponents of the stress tensor, S the first Invariant of the stress
tensor, 6ij the Krmneccer delta (equal to umity when i - J, and equal to
zero when I # J), and 0 the expansion coefficient. The dimensionless quan-
tity VP and the quantity Ep with the diomisionality of stress are defined
by Poisson's ratio V and the module of elasticity E, according to the for-
mulas given In C5J74



Vp ((+ v)- (-2v) 3EV + ýV, Ep--- ,-)
2 (1 - v) (1-(i- 2v) ((3 + )v)--(I 2v)

The paramter i sa defined (Figure 1) by the diaru di - i *( di)
in the form 4P - /6Oip, where qr and ti are the intensities of stress

and deformation:

-- = (01 - a2)2 + (Ut - o0)2 + (ra - U3)2,

e = -3 (ei - e62)2 + (81 - e,)2 + (82- 3) 2;

3) equations connecting deformation ij and displaement Uij. In

the case of terminal deformation,

S±U~- [ + LL 2 (z 2 4)

and so forth.

4) compatibility equations. These equations In the case of terminal
deformation are very complex and cumbersaoe L6, 37. In analysis of these
equations by the methods of similarity theory, it is sufficient to note that
they contain terms of the type

-e 8 (AL (Lji= z~ov•e

,_ 337. The coefficients gii are dimensionless; they depend upon the di-

mensionleus quantities -i- (0, j = z, Y, z) . Since the detormations i

are dimensionless, while the dimensionality of the denominators of the in-
dicated terms is equal to L2 (L is the length), it follows that (accordlag
to i11, 18, 21, 3a7) the compatibility equations do not yield any similarity
criteria, and only connect the scales of deformation and the lengthe, while
both the indicated terms, for any given number of Uharacteristic ncncha-
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racteristic criteria are equivalent.

5) boundaa7 conditions:

0•iifPi (i, =, y, z). (5)

Here ni are the director cones of the external normal to the surface
of the body.

ta --

Figure 1. Toward a determination
of the parameter v'.

The number of chay-cteristic and noncharacteristic criteria of simi-
larity according to the 17 -theorem f1, 3I7 is equal to the difference be-
tween the number of dimensional parsieters of Equations (1)-(5) and tho
number of primary measures of which hey are constituted. Equations (4)-(5)
yield eight parameters: 0oaj / a2, 1 / Ep, ij, S, u, T, O2 j2 / 1O.,. . To these it is
necessar7 to add the characteristic dimension of the body L, which defines
its geaomtr7 r21J. These nine parameters are composed of three measures:
fares, length and temperature. Consequently, the number of criteria is 6.
The number of characteristic criteria (on the basin of the 1l-theorem) is
equal to the difference between the number of variables essential to a
given process (variables characterizing the conditions of single-valuedness)
and the number of primary measures of which they consist ffi, 18, 21, 337.
Equations (1)-(5) yield four essential variables, Ep, Vp, P, aT. The
quantities vp and aT are dimensionless. The "geometry" of the body under

study adds to this the characteristic dimension C"212. These five quanti-

ties are comprised of two measures - force and length. Cansequently, the
number of characteristic criteria is 3. We now introduce scale separation
factors for body No. 1 (nature) and body No. 2 (model):

-3 -



k-* -o-jt kp p

k, o,• , =7E etc. (i, j - , y, 7 ) (6)

According to the third theorem of similarity i18_, the fields of
stress and defornration in bodies No. 1 and No. 2 will be simila, provided
the scales (6) are so chosen th'ft the combinations of scale coefficients
preceding the terms of Equations (0)-(5) are equal in pairs for each equa-
tion of the (0)-(5) system taken individuall.y It is easy to see that
the equations of (2) are invariant with respect to the transformations of
sim"arIty on]y if k - 1. It folows from this that the characteristic
criterion of the plaic problem is the quantity V . The equations (I)-of
the criteria of similarity are not thus obtained, but from ko,0 / Wkj we can
learn the relationship between the scales of the various components of
stress. Equations (2) yield the following criteria of similarity:
a / uT, ai / EpaT, S / EpaT, aj / S, aj / Epe. Two of these five criteria - for
example, the last two - are corollaries of the others. Thus (in this ex-
ample), the first three are noncharacteristic criteria, since they contain
the sought-for quantities of stress and deformation. Making use of Hooke's
law of similarity f34J, which requires that kf = 1, and also the rule of
the combination of criteria f21., we finally obtain the characteristic
criterion aT, since it is comprised of essential variables. The criterion
aT, just like vp, is a point. Equation (5) yields the characteristic cri-

terion P/LD. UGnsequently, the full system of characteristic and noncharac-
teristic similarity criteria assumes the following form:

"Ep' aT' EpaT' EpaT )(7)

This system contains three characteristic criteria, just as called
for by the I7 -theorem under the given conditions of the problem. The cha-
racteristic criteria Vp, a T and P/ in the simplest possible nanner
are c•mprised of the essential variables of the process Et. Y these cri-
teria, with the help of the ruzoof combining criteria r2 j, may be ob-
tained the other criteria. In this sense, the system of criteria just
cited may be referred to as -fmndamental-. If # is on the order of several
percents or more, then, with V = 0.5, it follows fram Equations (3) that

Vp = 0.5 and EP = E/g/ = E,, where E' is the intersecting module of the

diagram = ai(i) C5_-L or, with single-axis deformation of the diagram,
a = ar(e (Figure 1) Zi5-7. The total number of criteria, with V - 0.5,
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is not reduced, since instead of the criterion V we now have the criter-
ion *, which characterizes the similarity of dialreai =a a, (- ).. Actuall7,
the equality Vp.mod = Vp.nat, when V -od V-nat, is possible only on

the condition that *mod - *nat.

With V - 0.5 ( Vp = 0.5), the f.i.U system of similarity assumes
this form:

P e• o'•j S
,aT, ' 'i a ilT 0' ET Ea ( X, - Y, ~Z).()

The criteria of systems (7) and (8) enable us to generai.ize the
results of experiments, and arrive at this general relationship:

,aT, TP1 P etc* (it, ,I =X2 y, Z). (9)

The criteria thus far considered concern only the problem in which
the sole deformations (functions) are temperature and pressure. If, now,
e iJ should reflect still other parameters -- say volumetric or concentrated

forces which cannot be modeled by the triteria of (7) and (8), then it
would be impossible to arrive at (9), except, possibly, in cases where
these additional factors remain invariable during the process of plastic
deformation.

Let us consider the possibie application of the criterion P/E' in
an attempt to generalize isothermal tests of materials for stretching
(or compression) with simultaneous action of hydrostatic pressure. Ex-
periments show that for many materials, for example plastics 4r, _7,
bedrock Jf6, 24, 36-40, 42, J and certain nonferrous metals /8-30,
37, 4• the diagrai a =a (e) depends on the spherical tensor (Figure 2-a,
for Ca •one f17; Figure w- , for marble J16, 247; Figzre 2-c, for dolo-
mite 740!7, and Figure 2-, for the alloy M&-- S-3 i7)n-- other words,
Gmh brittle materials in the case of monoaxial s retching (or compression)
become plastic and enter a complex stressed condition. Analogous respose
is sh~vn by a number of brittle tempered steels FiO7, plastics -3] 7and
rocks Z43_, which were tested by being placed In r s lade frcf fTatic
metals subjected to uneven lateral compression. We shall not consider
tests made in rings in the present article, since the stressed state real-
ised in such tests is not uniform. The experiments of Bridgeman Z-67 and
other writers Z-4 show that for ferrous metals and also certain nonfer-
rous metals, the diagrem o = a (E) is independent of hydrostatic pressure.
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Figure 2. The effect of hydrostatic pressure on the can-
pressicxi stress-strain diagram of Caprone (a) [-17, marble
(b) [167, dolomite (c) [40], and an the tensile stress-
strain diagram of the MA-3 magnesium alloy (d) f8-30/.

a 1 - P =80.98"10 5 N/m2; 2 - P = 0.29•.108 N/mr2; 3 -
P = O.49.10 N/m2; 4 - P = O.98-108 N/mz; 5 - P -1 47.-108
N/m2 ; 6 - P = 1.96.109 N/mr2 ;
b: 1 - P= 0.38.15 N/m 2,; 2 - P = 0.23.108 N/m2 ; 3 - P=
=0 49"108 N/m; - P = 0.672.108 N/mr; 5 - P = 0 827.108
N/P; 6 - P = 1.6150108 N/M2 ; 7 - P = 2.44•108 N/IP:; 8 -
P = 3.19.108 N/rm2 ;

c: 1 - P = 1.96.10 8 N/rM2 ; 2 -P = 0.98.108 N/M2 ; 3 - P -
= 0.98.105 N/ia;

d: 1 - P = 0.98.105 N/rn2 ; 2 - P = 1. 175. 108 N/62; 3 -
P = 2.16.108 N/rn.2 .
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The elastic modulus is a structurally insensitive characteristic of mater-
ial proportional to the binding forces C9J. In ZT, 37, in order to esti-
mate the pressure used, pressure is first reduced to the initial elastic
modulus. According to the data of I _, ?7, the ratio PIEI in the case of
polymers reaches the value of 0.05-0.50; in the case of rock, according to
data of 1l6, 24, 36-40. J/, it reaches the value of 0.03-0.15. With most
metals : , g P/E = 0.001 - 0.015. In tests with plastics and rocks, then,

0the ratio of maximum pressure to initial elastic modulus is considerably
higher than for the majority of tests conducted with metals. We should na-
tura]l.l expect that the effect of pressure in the case of plastics and rocks
would be greater than indicated in /J, g7, In the majority of those cases
in which the ratio P'EP for metals is comparable to that for plastics and
rocks, the a - a(E) diOgrams show a perceptible influence of P - for ex-
ample, in the case of niobium. C67, forwbich P/E0 = 0.025. In the case of
the alloy MA-3 (Fig-are 2-d), the value of P/ is 0.05 L8, 2 . The figures
are analogous for a number of other metals L78-30, 37, 4_7. Thus, the ef-
fect of pressure sets in when the value of P is commensurable with the elas-
tic modulus - that is, when the external forces are commensurable with the
bonding forces within the substance if, g7. In addition to PAEO, the effect
of hydrostatic pressure is also conditioned by the physical milieu, the
structure of the tested materials, and same other factors. But a discus-
sion of such factors transcends the possibilivies of the present paper.

It should be noted that, whereas many plastics and metals are plastic
as regards mcnoaxial stretching (or comupression), plastic deformations in
rocks scarcely exist. As pointed out in E-36_7, "although plastic defor-
mations are indeed possible in rock, they are of an artificial or forced
character - pseudo-plastic, one might say, being obtainable only under
specially created conditions, mostly conditions of high multi-lateral com-
pression" f-36_7. It is of interest that the effect of temperature in the
presence of hydrostatic pressurt - for emample, in the case of marble
(Figure 3-a) , (42]- is Just the same Fin rock97 as in metals and plast-
ics, while the effect of the deformation rate at high temperature and in
the presence of hydrostatic pressure is the same as with metals at very
high temperature (Figure 3, b) Z23, 427. When marble is stretched under
hira hydrostatic pressure, there is n' Ticeable "neck-formation", just as
in metals; while deformation increases up to several tens of percents with-
out breakdown L7, 38, 4f7. The procedures for testing under hydrostatic
pressure, the necessary apparatus, and the samples, have all been described
in detail in if, 4, 6, 16, 24, 28, 29, 36-"7. In the case of plastics and
metals, there is direct contact between the working medium (oil, kerosene)
and the sample; in the case of rock, however, the sample is usually protected
from the working medium (kerosene, glycerine, oil, and - at high tempera-
tures - carbon dioxide) by a thin casing of soft plastic metal (copper,
bronze) or plastic, in order to exclude secondary phenomena.
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- Figure 3. Stretching curves for marble
(yule marble with variable temuaperature
and deformation rate and constwan lateral
hydrostatic pressure of 4.9 • 10 N/M2 (witt
the exceptip C Curve 4, where the preses=e
is 2.94.*I / fo / C-2-7- a - constant de-
formation rate (90% per hr.) and variable temp-
erature, 00: 1 - 25; 2 - 150; 3 - 300, 4 -
400; 5 -500; b - constint to=ea~e 500
and lateral pressure (4.910'I') but var-
iable deformation rate: 6 - IO0MW ; 7 - 10%/hr.

As is well known deformation theories caanot be a,•lied to all types
of loading; in particular, they are justified only for proportianal load-
ing, where they yield results which coincide with those of flow theory, but
they are not justified for complex loading. For all materials, however,
we must accept the hypothesis of the unique curve ai = ,(ei) -that is, that
the simplest I2-theory* is not always applicable. For example, it is shown
in L311 that for the ulane stressed state in the case of hardened U7 steel
the defcrmation curves 0i = a,(e,), depend upon the type of stressed state.
Neither does appeal to the third variant of the deviator of stresses I
Prager's theory Z7J, and the like, have the desired effect. We are ?hus
reduced to considering the possibility of using reliability criteria as ob-
tained on the basis of reliability theory as reflected in these tests, since

*The second variant of the deviator of stresses.



the stress in these cases was complex (not proportional). WTe should note that
the Lode-Nadai parameter pa (202- a - 03) / (CI - 03),. which characterizes the
form of the stress deviator, equals +1 for compression and -1I for stretching
in the given case. It is demcnstrated in 8_/ that in the case of forms of
stress deviator characterized by values of 10 equal to +1 and zero, the de-
viation between the curves 0 = O(e) is conditioned only7by the mean normal
stress. This effect, evidently, appears only thanks to the presence of hydro-
static pressure, which is present in the amount of P / E'= Pei, / i ,that is to
say as a product of P by the conjoint invariant E, / a. But quite recently it
has been shown f, 14, 19, 20, 25, 277 that deformation theories are indeed
applicable to a certain class of routes of complex loading which are fairly
distinct from the proportional in the instance of the presence of angular sur-
face flow*- that is to say, singular surface flows coinciding with the Genka-
Nadai theory for a certain class of complex loading: and yet here there is no
particular reouirement as regards incompressibility of the material as regards
wall flow ci = Aeil and proportionality of load, as is the case in smooth
loading f141. It is shown in ?7] that iL the case of singular surface
flAw, the Genka-Nadai theory satisfies the fundamental quasi-thermodonamic
postulate of Drucker' s flow theory CI 2]. However, it happens that the defor-
mation theory is not applicable entirely to arbitrary means of loading. In
f•13. it has been shown that deformation theory is applicable to the case of

in complex loading, which represents an instance notably distinguished
froa the simple case in which there is a notably small value of variation in
the tensor stress axis O, growth during the process of loading. The present
authors have added additional remarks in a subsequent work L-22-7.

6t

Figure 4. Region N of definite functions a x(e, p)

The surface within the decimetric space of stresses which distinguishes
the elastic frAn the plastic regions.

-9-



What we have already construed in the present article may be regarded
as a sumnary on the subject of stretching (or compression) in the science
of hydrostatics. Within the process of deformation theory, however, we may
distinguish certain "side formations". However, as indicated by calculations
up to the value of P ; 30 - 35% variation in the value of undirected
cosines of the surface is not large, but geometrical similitude is preserved.
The criterian P/E is point-wise; howbver, in the case of the samples tested
deformations and stresses were averaged for any given point. Consequently,
the number P / E' = PP8/ a at every point of the sample can be cemputed with
approximate accuracy with respect to the number P/E' of the sample as a whole.

Let us suppose that we have given the region N (4) which is defined to be
continuous, differientiable and monotonously increasing with respect to each
of its arguments a = x(E, P) individually. We shall consider that the
partial derivatives Xphnd V within N nowhere refer to zero. Further, we
shall exclude from N the curve a - x(a, Po), corresponding to P0 - 0

(the so-called zero curve), as well as the small region 'o* adjacent to that
curve where the criterion P / E' = Pe/ a degenerates - that is, ceases to
have any influence, on accountof the smallness of P with respect to 0.
In addition, we shall consider the image of region N within a certain
region of the plane (a, P / E). If this Image is degenerate - that is
it transforms N into the line L, the equation of which is a = (D (P / E'), -

then we obtain as a result the sought-for generalized curve of tests. In
N on L the variable 0 does not change, and produces compression along the
segments In which correspond to the derivative a, = X(e, P) = const .

Consequently, it is possible to write @(D() =_--X(e, P), where J7 is the

criterion P/'. Differentiating, we obtain v'e' =_ x,,-, vn'lpl' xp= .
Eliminating the arbitrary constant # , we find the necessary condition
for the existence of the curve L which is expressed in a Jacobian equal to
zero:

D : (or, II) mO

D(e, P)

The implicit function F(e, P) =_ x(e, P) - const = 0, corresponding to

the derivative h, under the conditions laid upon it by the theorem re-

garding the existence of an implicit function Z-37 defines the single-
valued and continuous functions e (P) and P e) ,which are the
inverse of the first. Consequently, since e and P on 1 are single-n
valuedly mutually interchangeable, then, actually on 1 the Jaccbian I

n
reverts identically to 0 1 at all points of the set E.

- 10-



where e n C1onsequent]y', the image is degenerate and therefor*
has a point plane (a, P/E), As a consequence of the arbitrariness
of In, the region N has in this manner the line L of the plane (o, H).
EXperIaents conducted for caprone (See Table) confirm this result and
shew that the scatter All is equal to 1.0 - 16%, which is on the order
of the inherent error of the elqmrIamnt, namely 4.5 - 10% CIj. The
maxinn relative error All = d'(Pa /a), according to the theory of error.
is eqal to the sut of the errors of deformation As, the stresesig and the
pressue Ap. According to [•/-•= 1 ,5-5% and Aa= 3-5%.

Figure 5. Curve -O=0(n) for marble subjected to stretching.

-H

II

Figure 6. The curve M R ,(n) for caprone under compress.

The error Af17 is not quoted In 4i]. Every cum~ given f or plast-
lsa In fil (See Figure 2 a) represents an average 3 - 5 experlments withmaizim devation of 5 - 7 peroent froa the mean. For mable Z4.•2 (See
Figure 3) Av- 3-9 percent, Ad - 0.1 percent, and A1P - 0.5 percent (man-
ganin manometer. The curve for 500 ['.2] (See Figure 3) represents the

-• 11



mean of three tests with maximu deviation of experimental points from the
mean value of 1 .5 percent. The generalized curve for Paprone is shown in
Figure 6. The curve o1 - 02 = (D)(171)in Figure 5 was constructed from the re-
sults of three deform¶tion curves correspliding to the follown oressUres:_
4.41 109, 5.88 - 100, and 9.8 * 108 M/2 The curve for P-7.84010' N/lm
was not considered, since it is of anomalous character (two extremmu, with
increase of stress following the minimum), wUch is not typical of the
stretching curves for marble as shown in Figure 3 (See also LT7, 39, 4-07).

If

4

33

0.0 4U4

P
-7

Figure 7. The curve a= D(n) ; Figure 8. The curve a,-D2 = _(11)
1 - polnethy~lmetacrlate for compression of rock U 2 -
under compression iJ; 2 - = P: I - marblei 16J;

the plastic K-17-2 under can- 2 - sandstcner T6;
pressin Lrz1j; 3 - the plastic 3 - dolomite (Glorieta
MA-3; 4 - beryllium bronze under dolomite) f-40].
stretching LC28-307.

For curves which art close to the diagrams for the ideal plastic
body, the law of similarity is breached (See curves 3, 4 and 5 in Figure 2),
this being associated with the fact that sane or all of the diagram in a
given case coincides with the segment In, compressed to a point. The func-
tion X is not monotonic for P - const. Consequently, violation of the con-
dition of sinrle-valuedness of the implicit function t(P) is present, and the
curvea = ()(I)cannot be constructed. Thus, it is shon that in plastic
tests with materials it is possible to construct the dimensionless quantity
a in the function of the dimensionless similarity criteria in a manner

analogous to that used for electromagnetic phenomena by the author of mono-
graph [172, who demonstrates that this is expedient in the study of non-
linear proces, "when the nonlinearity is the result of independence of the
parameters of the material (in our case v , E and EI) from other variables"
(that is, temperaturp, pressure, and the le)' In principle, at least, it
is possible to transform the graphics considered here into dimensionless

- 12 -



*.. -TABIR

i9.6 16.7 9.8 4,9 2.9 jl an %

13,5 0,467 0 - - -0 0,459 1,96
13,0 0,415 O,11O 0,413 0,73
12,5 0, Gn 0 ,2"I,,.r, 0, Ml 0,,w3
12,0 0,316 '. 0,:, 7 :1,66
11,5 0,27S '.2 7 - i '•6 2,SO
11,I) 0,2io "' 0,25S 10.90
10,5 0,210 .2' .- 0,214 3,74

(0,1 0,1 u . I ý t '' , I I -- 0,106 12,20
9,5 0t.1 t ,5 , JO S t I - 0.170 11,90
9,0 0,145 0. 137 " 21; " (.,140 3,57
M,5 0,111 A,.12. 2 I'ý 0,115 0,12 2  8,20
8,0 0,t05 '1, 1 I (; l15 (1,10 ii 4),123 0,108 13,00
7,5 0,097, 0.092 0,097 0,08 I1,0'1 (0 000 13,30
7,0 0,0"6 0,079 (,) 9;q olG ",(174 0,079 16,50
6.5 0.001 0,069 0,Aj77 4',05i !I65 (1,-0067 9,00
6,0 0,060 0,063 (1,067 0 05,1 0 0,5 (4 tr. 15,30
5.5 - - Oj,5i 0, I I (I.I;• 0,050 t6,00
5,0 - - 0. 05• 0,1:' •o '1 A t ,0.1 13.70
4,5 - - i)-i6 -'' ,,7 2,70
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form, provided we remove stress and the elastic modulus, taken, for example,
with certain constant values of temperature and pressure. Let us consider,
now, the image of region on a certain region of the plane ( ejf 11). In
an image of this sort the variable i remains constant, but there is acm-
pression (or stretching) along segments 31m, parallel to the axis O. Along
the arbitrary LM, where e,. geconct, to one value of f there corresponde a
set of pressure values P = (P).. Thus, on l., both P and 6 are mutual3.'
independent. it is therefore impossible to construct the curve e -F(nl)

Since the function X is monotonic with respect to P, then to the arbitrary
quantity Em - conat there corresponds a set of vaues of the number H7,

itself corresponding to the set of pressures on 1., and, consequently seg-
ment lm on plane ( 0, e ) has, in its own way, a segment on the plane 617.

The image is non degenerate and region N is reflected in a region which is
not a line. This fact can f verified from the graphics of Figure 2. The
results obtained are Justified for various mechanisms of plastic deforma-
tion - such as duplicate in the case of marble /T6, 24, 4- and also for
slipping, as in the case of metals f-28, 22_,; tWey are also justified for
change in the conformation of molecular chains, as in the case of caprone
f1j. The theory described here is adaptable to phase transformations
arising during deformation of samples under the effect of lateral pressure
E28, 29]. Thus, excluding the resilient region, which was not considered
in the present examination, we can conclude that a = 0(1() can be constructed
on3y for regions where the function c = u(s) is monotonous - in other words,
where the material is reinforced. In situations where the material exhibits
ideal plasticity, the criterion 17 is not adaptable, as it is not in the
case of weakened material, since the function in question ceases to be mono-
tonic, and the conditions of single-va1uednems of the implicit function,
mentioned earlier, are violated.

Submitted 9 May 1967
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