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It is proven in this note, that if weighted measures approximating the
first boundary value problem for the heat conduction and wave equations are
stable with respect to the initial conditions, the dispersion method which is
used to find the solution on the upper layer is stable,

1. We will consider a weighted method, which approximates the first boun-
dary value problem for a one dimensional heat conduction equation:

ntAfoptH+l—oy) =9 ze(0,1), t=0,
YO D =@, ¥ ) =l ¥ 0) = na), (1

and a symmetric method for the wave equation:
it Aet (I =20 +opt-) =9, 2=(01), t=7%,

(@)

p(0.8) = wi(t), y(1t) =v:(t), u(z,0)=uo(z), y(z1)=u(z).

Here
Vi — 20+ v, . yvi—y P 2 it
==y =S Y="Tp 0 Ypm T g

h and t are steps in space and time, The stability conditions for methods (1),
(2) have, because of the initial conditions, the form (see, for example, [1],

pp. 567, 582-583)
1 h?

TS (3)
Here k=12 for methods (1), (2) respectively. The problem of finding

solutions to (1), (2) on the upper layer reduces to solving the first boundary
value problem for an ordinary three point difference equation

1
_y;‘+?y=’, zE(O. 1)' (4)
!I(0)==Vlv y(1)=V’.
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Efficient methods for multi-dimensjonal nonstationary equations and iterative
methods used to solve stationary equations also lead to a problem of type (4).

An efficient method for solving problem (4) is the dispersion method (see
[2], pp. 281-293), whose formulas, in the given case, have the form

Do Qupsyiss + Boss, Ynmmvy, Im=01,... . N—1;
'
1
- ——e - 0, -i2....N—1;
Y wmewoe =t (5)
Brog == (B4 Ae)iys, Promwv, Imf$2... Nt

The dispersion method is stable if the condition ﬁgL< 1. is satisfied.
However, a well-known sufficient condition for the stability of the dispersion
(see [3], pp. 386-394) a0

(6)

narrows down the initial class of methods for which only condition (3) holds.
Thus an important class of methods with a higher order of precision with
¢ 0 =05 —ht/ 12 for method (1), and @ = 0o —hk?/12v* (00 = 0.25 —'5’/'61{)

for method (2), which are absolutely stable with respect to the initial condi-
tions, may not satisfy condition (6). More general than (6), the stability
condition of the dispersion method is given by

Theorem 1. If methods (1), (2) are stable with respect to the initial
conditions, then the dispersion method for finding the solution on the upper
layer is stable.

Before we prove Theorem 1., we will consider some lemmas. We will say
that the dispersion method can be applied to solve the three point difference
equation if for the dispersion coefficients the conditions |a:| < M. |Bil < M, hold
where M, M. are some constants,

We will consider the problem

Ay = —(ayp) =+ d(2)y = f(2), ze(0, 1), (7

yi0) =w, y(})=mv a(z)2ct>0

On the set S of the zrid functions v, which vanish at the end points of the
interval [0,1], the tri-diagonal Jacobi matrix

C, —4 o... O 0 0
— A2 Cy —43. -+ O 0 0
RN a= 0 —4 Cs. . . ] 0 0
...................... . ’
{0 0 o ~dys  Cyy —Ay,
“ 0 0 Y 0 — AN,y Cy

corresponds to the opeiator A where A =a,/h%, Ci=A(+Awi+di. It is easily seen

that the corner minors [Rk] are related by the recurrente relation
|Brgo| = Cnulﬂhl—d:ulﬁn-d. (8)

which holds for all k = 0, 1, 2, ...,,if we set [Ro]' =1, [R ] =0.
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Lemma 1. The solution to problem

Av=0, ze&(0 1),

»
v(0)=0, ()= hH ARy y) (9)

is positive if A is a positive definite operator on S, and has alternating
- signs if A is negative definite,

Since A has fixed sign, the solution to problem (9) exists and is unique.
Using (8), we find it can be written in the form

.
py - hII A=Y Rios].

ami

By the well-known Sylvester criterion (see [4], pp. 276-279), the positive
definiteness of A implies, that all |Rs| >0, and negative definiteness
implies that the sequence {JR.)} has alternating signs. Since all A, are
strictly positive the lemma is proved.

Theorem 2. The dispersion method is applicable to problem (7), if the
operator A has fixed sign on the set S. Proof: The dispersion formulas for
problem (7) have the form

Ys=ss¥isrtPres, Yumvy, tem0,4,... N~y

a Atsy 0
1= . =V - .e -y
i « — Aag @ f=42.. . N—y
APy + 1 (10)
Bray == R4ty Premwvy, Tw=f,2... N1

Therefore, the dispersion method is applicable if C.—A;q,,so for 1<4.<~_',
We introduce the grid-function v, as follows.

Vo™ Qigglisy, im0, 4,...,N=2,

Uy == hHA."an_cl-

Swl

Using formulas (10), we see that v. satisfies problem (9). Assume that
the conditions of the theorem are satisfied; then by Lemma 1 the solution of
problem (9) is bounded and does not vanish at any point of the grid. Therefore
the dispersion coefficient a, together with the B. are bounded. It is
easily seen that the sign o ay is determined by the Fixed sign property of A.
This proves the theorem,

We shall now find sufficient conditions for the fixed sign property of the
operator A on S.

-3-



Lemma 2. If the condition d(z) > —8cs + &, (11)
is satisfied for problem (7) then Az 8E. and if condition 12 is satisfied
2
a(z)< “F“(’)"‘ a(z+h))— 8, (12)
then A< —8E  where E is the identity operator and & & are positive

castants.

In fact, let y(z)eS. Using the simple inequality
N oy vy,
(1_/‘;'{]:2}1("—‘—,1—"1' >8 (Y
fonl

and the partial summation formula, we obtain, when (11) is satisfied

N~

Av.m= Sy Avn= a2 1]+ (4 9 > @+ D v) >4 0,9,
$=1

i.e. A == 8,E.
Further using the Cauchy-Bunyakovski inequality and the arithmetic-geo-
metric mean inequality, we obtain

Nt

ZINZ-: amv«_nl sz (81 + ai41)pi® (13)

(=i (e

Suppose now that (1?) is satisfied. Taking into consideration (13), we obtain

N N-1
Ay =3 agk h+yn = 3 [-,;‘r‘a.+¢m)+d.] yoh—
(—12 Net )g: ) ] Y
— Yy < (o, 4 ay)+d, [y <~
'F‘_E‘ Wi g [');T 17 e
i.e. Avv) K =84y}, This proves the lemma.

Note. 1f we denote by ., and Ay, the minimum and maximum eigenvalues

of the operator Aoy v- —(ay3)+.  then it is clear that in lemma 2 we can require

inctcad of (11} and (12) that the inequalities 4(2) 2 —M+6y, d(z) < < —Arx_1—3d

be satis*icd. Proceeding analogously as in (5), we can prove in chis case that
y= Oteh=200""), where y and y# are the exact and approxi..ate solutions

to prohlem (7) respectivelysgis the relative rounding error resulting from arith-

metic operations,

We will now determine the conditions for which the dispersion method will
be stable for problem (7).
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Lemma 3. If the condition
d(z) =0, (14)
is satisfied for problem (7) then O0<aoi<y;. ; if condition 15 is
satisfied . : .
2
d(t)?—-;;(ﬂ(z)+¢(=+h))- (15)
then —1<a<0, and the dispersion method is stable.
In fact, condition (14) implies that Ci=Ai+A4un and condition
(15) Implies that Ci<—(di+Ain). From here, using a;=0 and the
estimates
oy e 1 when (14) is satisfied and
C,-Aiai A+ (A/Ac) (1 — @)
Ay 1

Uyey 22 =

-_;(l—i— ag)+ At _1+(/1\'/A(+t) U +al) when (15) is satisfied,

we establish the validity of the lemma by induction.

3. We will now prove Theorem 3. For problem (4) the conditicns of lemma
3 relating to the stability of the dispersion method take on the form

;?0. (14*)
1 4 )
t_;..g——h—z-. (15°)

Assume that conditions (3) are satisfied, i.e. the initial methods are stable
with respect to the initial conditions. If, in addition, >0, then (147)
is satisfied and the dispersion method is stable. If it turns out that o<,
then from (3) we have

40 1 1 4 1 4
—_—<lE——— -,
242 ott TR (1/2% — h2/4h) h? { — 4ok /20)2 h?

In this case (15°) is satisfied and the dispersion method is stable. This
proves the theorem.

It is the author's pleasure to express his gratitude to A.A. Samarskom,
who drew his attention to the problem studied above.
Submitted for publication 1/27/69
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