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ABSTRACT

In my work, "The Special Functions and Their Approximations," a

class of rational approximations for the generalized hypergeometric functions
was developed. Now I,(z) can be expressed in terms of a OF1  or a 1F1
Thus, corresponding to each form and a choice of certain free parameters
there is a rational approximation for I,(z) . J. C. P. Miller has shown
that Im+.(z), m a positive integer or zero, can be approximated by use
of the recursion formula for Im+V(z) applied in the backward direction.
If this scheme ": used together with each of two certain normalization
relations, then rational approximations for I,(z) emerge and these rational
approximations are identical with those noted above. The analysis leads to
a new interpretation of the backward recursion scheme. We also study a
third case for the evaluation of Im+v(z) , m a positive integer, by the
backward recursion process which presumes that I,(z) is known. In each

instance a closed form expression for the truncation error is developed
which leads to a very effective a priori estimate of the error. For each

case it is shown that the round-off error is insignificant.
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INTRODUCTION

In my treatise on the special functions [WJ, a class of rational
approximations for the generalized hypergeometric function pFq was
developed. These approximations depend on a number of free parameters.

Since I,(z) can be expressed in terms of a OF1  or a 1F1 , there is a
particular rational approximation corresponding to each of these hyper-

geometric forms and a choice of the aforementioned free parameters.

The idea of using the recursion formula for I)(z) in the back-
ward direction to generate values of Iv(z) is due to J. C. P. Miller [2].
It is a very powerful tool and the notion has created considerable interest;
see [1, Vol. 2, pp. 159-166], [3,4] and the references quoted in these

sources. The Miller scheme together with two certain normalization relations
also gives rise to rational approximations.

In a conversation Jerry L. Fields conjectured that the specific
rational approximations noted in the first paragraph are identical to the
certain rational approximations which emerge by use of the backward recur-
rence scheme noted in the second paragraph. In the present paper, we verify
this conjecture. In addition, we develop a new interpretation of the Miller
method. We also study a third normalization technique which is sometimes
used with the backward recursion scheme. A closed form analytical expression
of the error for each case is derived. These equations are valuable as they
lead to simple asymptotic estimates of the error which are very realistic
and easy to apply in practice. It is demonstrated that the round-off error
is insignificant. The paper closes with some numerical examples.

In the main body of the paper, we find it convenient to deal with
the modified Bessel function I,(z) . The results are valid for all z in
the cut complex z-plane - N < arg z t5 ' and in the cut complex v-plane,
larg v• < T . In this connection, we should note that IV(z) = IV(z) if
v is an integer or zero. Thus we suppose throughout that v is not a
negative integer. Actually, it is sufficient to have 0 ! arg z 6 Ir/2 in
view of the definition of I,(z) . Also it is sufficient to have R(v) > -1
for if Il.,(z) and I v(z) are known, computations of I_m.v(z) ,
m = a positive integer, can be done by use of the recursion formula for

I.m_V(z) . All of this not withstanding, it is convenient to restate some
of the key equations to facilitate application of our results to the Bessel
function J,(z) . This is done near the end of the paper.
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RATIONAL APPROKIMATIONS FOR Ij(z)

Case I. We begin with the representation

( (z )  F (V'(l1z2/4) (1)
r'( l)O

Theorem 1.

,• (z) ) Cn(z) S (z)
I =M(z 2(+)hlz)h + Rn(z), Rn(z) = hn(z) (2)

n(z) .n k(n+)k F(n+kn++kl;x) , (3)

Ic- (v+l)~k

X 4/z 2 ,X v+2-6 , 6 = 0 or = , (4)

hn(z) = 3 Fo(-n,n+X,l;X) , (5)

or

hn(z) = nl(n+v 2-6)nxn 0 l(-2n-I+8-v;X-l) (6)

Here for convenience we introduce the notation

=n (•p)kzkFn(0plz) = n- (Pq)kzk: (7)
p( qqY- :

plq\PqI k-O Pk!

and our usual shorthand notation for generalized hypergeometric series

applies, see [1, Vol. 1, pp. 41, 42]. Further,

S"z -(z/ 2)VO(n11)Sn(z) = r(v+l)

= 1-6-R(v) if -1 < R(v) r 1-6 , + = 0 if R(v) 2 1-6 , (8)

3- • + •I



hn(z) = (-)nn (n+v+2-6)nCn[l+O(n-l)] , (9)

whence

S(_)n(zl 2 ) f2nr(n+%?) n [l+(n-')] , R(v) > -1 , (10)Rn~r (vi 1(+)n!,. (2n+), )

and so, for z and 9 fixed, R(v) > -1, the approximation process is
convergent.

Proof: Equations (2)-(S) follow from [1, Vol. 2, p. 96] with

a 0 , f = g 0 , p = 0 , q = 1 , p1 = v+l ,

S= 1 - 6 , 8 = v , X = v+2-6 , 6 = 0 or 6 = 1 , y = z

and z replaced by z2 /4 . Notice that the 3 Fo series for hn(z) in
(5) turned around is the alternative form for hn(z) in (6).

Equation (8) follows from [1, Vol. 2, p. 103] while (9) follows
from (6), see also [1, Vol. 1, pp. 259-2611, and (10) is now obvious.

Remark: In the proof developed in the cited source, it was necessary to
suppose that R(v) > -1 . Later, we present a new formulation of the error
which shows that v is unrestricted save that v is not a negative integer.
So throughout this work v is arbitrary except as just indicated. Compu-
tation wise, the exception is no burden since I.n(z) = In(z) .

Theorem 2. Both *n(Z) and bn(z) satisfy the same recurrence formula

hn(z) + (Cl+XDl)hnl(Z) + (C2+XD2)hn_2 (z) + C3 hn_3 (z) = 0

Cl = (2n+X-2)(n-X+l) n(2n+%-2)(2n+X-l)
(2n+X-4)(n+X-l) Dn+%•-

-(n-l)(n+2X-4)(2n+,-l) -(n-l)(2n+X-2)(2n+X-1)(n+X-3)
C2  (n+X-l)(n+X-2)(2n+X-5) D2 (n+X-l)(n+X-2)

4



where n k 3

Proof~: See [1, Vol. 2, Ch. 12].I

Case II. Next we consider

Theorem 3.

I( = (z/2)Vez '-r(z) + Vn(z) I Vn(z) -nz)(3r'(v+l) gn(z) gn(z) '(3

n(n)k~.n+2v)k(WJ+)k 3 (-n+k,n+2v+2+k,l 114
n z) L (2v+l)k(vI-3/2)kk 3'l ý+3/2+k 2zI' 14

IT-- 0

gn(z) = 3F1Qy+,3 /2  2Z)'(5

or

Further,

Wn(z) -(z/2) e 0(nw

~1-2R(v) if -1 <R(v)• w= 0 if R(v)~ -a (17

Also,

n!(fl+2vf$2)nez (24) + (z2/32)(z2-8) + (n31
gn1z +n (8

(2z) (v+3/2)n n+v+l (n+v+1)2  O j (8

5
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whence

Vn(Z) = (z/ 2 )9( 2 z)n(v+3/ 2 )O(nw) R()) > -1 (19)
FV(v1I)(n+2v+2)an: n

and for z and v fixed, R(\)) > -1 , the approximation process is con-
vergent.

Proof: Equations (13)-(15) follow from [1, Vol. 2, p. 96] with

a = 0, f = g 0 ,p q I o pV+ 1

et , 1 2v , X 2v'-2 , y = z

and z replaced by -2z . Equation (16) is equation (15) turned around.
Equation (17) comes from [1, Vol. 2, p. 103] while (18) comes from (16),
see also [i, Vol. 1, pp. 133, 259-261]. Thus (19) is at hand.

Remark: See the remark after Theorem 1.

Theorem 4. Both gn(z) and gn(z) satisfy the same recurrence formula

gn (z) + (El+2Fl/z)gn l(z) + (E2 +2F 2 /z)gn_ 2 (z) + E3 gn_3 (z) = 0,

-(n+%) (n+2v.-l) 4n(n+v)
E (n+\..l)(n+29+-l) , F1 = n+2y+l

E -n(n-l) -4(n-l) (n+v)(n+2v-l)
2 (n+2v)(n+27il) , F2  (n+2v)(n+29+l)

E3 (n-l)(n-2)(n-iv)(n+2\))(n+2v+l))(n+v-1) (20)

where n a 3

Proof: See [i, Vol. 2, Ch. 121.
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BACWIARD RECURRENCE SCHEMATA FOR GENERATING IV(z)

The technique for generating Il(z) by use of the recurrence
formula for I,(z) employed in the backward direction is as follows. The
recurrence formula

, 2(z) = (mV+l) • ,(z) + CP2,v(z) (21)

is satisfied by

i(m+V)T
Im+,,(z) and e Km+,(z) , (22)

(7/2) (3
Km+v(z) = si'n(M+V) [I-m-v(z) Im+V(z)J (2)

In this work, we always take m a positive integer or zero. For later con-
venience, we also record the formula

_) .(m•,•l)_(m ,,,+2) +2_m+,,-+2)q, .( ,,+l.)
Pm'v(z) ( z2 + 3 + P+m+2,v(z)- (-V+3S) Pm+ 4 ,v(z) . (24)

Let N be a positive integer and consider that solution of (21),
call it ((N)(z) with m <5 N+2 such that

(N) (N)'PN+ 2, V 0 , tPN+I,,• 1 .(25)

Clearly cp1,m,)(z) is a linear combination of the solutions (22) subject to
the conditions (25) and we readily find that

CP (z) = z +,(zK,+2+,,(z) + +Kv(z)IN+2+v(z)+ (26)

in view of the Wronskian relation

IV (z)K,+I(z) + I\,+,(z)K(z) = 1/z . (27)

7
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Suppose that we are given the normalization relation

G(z) = ZI WkIk+v(z) (28)
k=-0

Put

-(N)N)) I (z) (29)

k=0

and consider

i = 8 CP (N)

i+ij e(N)(z) , m N+l (30)

We can now prove

Theorem 5. lim i-(N)(•, ) I (z) , 0 m < N+l (31)

Proof: Using (26) and (29), we can write

e(z) IN+m IN+v+2 (z)Km+j(z)

(N) ([ z) KN+• 2 (z) j
im+(z) = N+IN+)m- ykI•( N+,2(z Z _kk

k=O KN+v2(z) k=0

and the result follows from the known behavior of the Bessel functions
for large order. That is,

Im+v(z) = rnm+m)+-s0v(m-l)], (33)

K+,.(z) = ½(z/2) -r(m+v)[l+0(m-r)] (34)

8



We next show that •(N)(z) , m N+I,N,N-l,... can be repre-

sented in terms of a generalizc4 hypergeometric polynomial. We then prove

that for two specific choices of B(z) , the series (29) can also be expressed
in terms of a generalized hypergeometrc'polynomial; and further, for the

two choices of 9(z), respectively, i(Nj(z) and the rational approxima-

tions tn(z)/hn(z) and en(z)/gn(z) , respectively, are equal. Actually,
we first state aLd prove theorems for the Case I situation in some detail.

The corresponding theorems for Case II are stated and proofs are omitted
as the details are much akin to their Case I analogs.

Another choice for 9(z) previously discussed in the literature
is I (z) . We call this Case III even though the corresponding iP)(z) =

cpmN)v (z)/CN)(z) is not a member of the family of approximations from

which Cases I and II were derived. We defer further analysis of Case III
to a later discussion when we determine closed form error expressions for
all the cases.

HYPERGEOMETKLC REPRESEN~TATI ON FOR 4(z

Theorem 6.

9 (N) (z) = (1 (N) (z) = 2(N +v i)
•N+l , V •N,v z

(N) (z) = 1 + 4(N'v)2 , (N) (z) = 4(N+: ) + 8(N+v-l) 3
N=I, z 2 ' N-, z z 3

(N) 12(N+v-1) 2  16(N+v-2 )4N)(z)= + - +I+•N-3,\ ,•z2 z4

(1) (z) 6(N+v-l) 32(N"v-2) 3  32(N+V-3) 5

N-4,,z) z z3 + 5

(N) 24(N+v-2) 2  80(N+\)3)4 64(N+v+4)6
4N-5,v(z) = 1 + 2 z4  + 6

z z

(N) 8(4'+v-2) 80(N+v-3) 3  192(N+v-4) 5  128(N+v-5) 7++ +
9 3N-6,\(z) - z3 z5  z7

etc. (35)

9



* **

(N) ( k-e8 (2n-k-m+l+%+(1l-8)e) 2  (k4--m-e-68)2  (m+l)Th)P

CP2n-2v-c,,v(z) = (4/z) Z (2m+)-- W-z 0
- [2(kvi-6) (2n-l1+)] -kF1 (i41'-,k-2n-v-(1-8 )e,2n-k+2+v+e6 -6 I

L z X/4)

X = 4/z 2 
, N = 2n-6 ,8 = 0 or 8 = 1 , e 0 or e I,

= + (l-e)(1-8) , (36)

where 8 = 0 or 1 according as N is even or odd, respectively. Also

(N)(z)= (2/z) 2n-m+1'6 F(2n+2-8+v)
9m, v F(m+v+l)

X [�n-16] M-1+6 m+6
SF 2 J 2 1 -11 2z 2) ,(37)( -2n-i+6 -v,m+v~l, -2n-l+8+m'

where [p] is the largest integer ! p

Proof: By induction: The Table (35) is readily developed by use of (21)
and the starting conditions (25) and it is easily verified that (36) gives
the polynomials listed in (35). Put (36) with 8 = 1 and e 0 in (24)
(in (24) replace m by 2n-2k ) Then after some algebra, it is seen
that the coefficients of like powers of z vanish, which proves (36) for

6 = 1 and e = 0 . To get (36) when 8 = e = 1 , use (21). The case 6 = 0
is similar and we omit the details. Finally, (37) is just a special case
of (36). To connect these two equations, we set 2n-2k+e = m and choose
c = 0 or 1 according as m is even or odd, respectively.

Remark 1: We have given more polynomials in (35) than are necessary for
the proof. The additional entries are given for convenience.

Remark 2: If in (36), e = 6 = 1 , and if k and v are replaced by k+l1
and v+l , respectively, then we get (36) with c = 6 = 0 . Again, if in (36),
e= 0 and 6 = 1 , and if v is replaced by v+l , then we get (36) with

10
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HYPERGEOMETRIC REPRESENITATIONS FOR e(N)(z)

AND THE FORKS FOR 4)(z)

Case I. Consider the normalization relation

a~) (z/2) V ()(kvrkv
(z) =r(vl) = r(v+l)k: I2k+v(z) v 71 0

S1 = IO(z) + 2 1- (_)k,2k(z) , v= 0 , (38)
k=l

which is given in [1, Vol. 2, p. 45, Eq. (2)]

Theorem 7.

(N) n (..)k(2k+v)rO)(k.FV)

n!

= (2/z)I6 ()n(vl)

X =4/z2 , N = 2n-6 , =+2-6 ,6 =0 or 6 = . (39)

Proof: We consider the case 6 = I only as the details for 6 = 0 are
similar. We dem-nstrate that like powers of X in the sums on the first
two lines of (39) are equal. Thus we must show that

hk(v) = Bk(',) (40)

k (.r (2r+-,)r (r+,) (-k)r (s+l+v) r
hk(v) LII br ,br =____________________

r=O

1i



,* t

-k (s-k)! (V-l)k
Bk N) =t

n-m k , n+m= s (41)

The case k 0 is trivial. Assume k > 0 . Clearly Bk(v) is a poly-
nomial in v of degree k which vanishes if v = -u , u = 1,2,...,k . A
straightforward calculation shows that br+bu-r = 0 whence hk(V) also
vanishes if u = 1,2,...,k . Next multiply both sides of (40) by
(k+\1+l)k-l . Then (40) and (41) take the form

hj(v) = B(V) , (42)

k (_)r (2r+v)r (r+v) (_k) r(s+l+v)rr (2k+v)

h(v) b= r , br = rF(_+l)(s_)rr(k+l+v+r)

(_)k(sk):r(2x+v)

Bk(v) = k~r(vf-l) ()

Now each side of (42) is a polynomial in v of degree 2k-1 and Bf(v)
vanishes for u = 1,2,...,2k-l . Also hA(v) vanishes for u = 1,2,...,k
If v = -k-v , v = 1,2,...,k-1 , then b* = 0 for r = 0,1,...,v-1 and
bj + bE._ 0 for J 0,1,...,(k-v)/2 . So hk(v) and B~k.(v) have

the same zeros. Further, it is easy to see that the coefficients of 2k-1
on both sides of (42) are equal. Hence h*(v) = Bk(v) and so also
hk(v) = Bk(V) for all values of v which proves the theorem.

Theorem 8.

(N),z) = (2/z)1- (-)"(v+l)n+lPo, :2 n! *n(z) ,

N = 2n-6 , 6 = 0 or 6 = 1 (44)

Proof: By induction: Using (4) and (37), we can readily verify the state-
ment for n = 0, 1 and 2 . A straightforward analysis shows that both
sides of (44) satisity the same recurrence formula which is easily deduced
from (ll).

12



From Theorems 7 and 8, and (32) and (37), we have

Theorem 9.

8(z)C~~~m,,• )z (z/2 2 N(z 3 .2nl6-(zvl-2-+6m•+•)(z)(Z = ()(. ( ,+ ) 0hn(_z_+_,;)4
(N)

Thus the result produced by use of the recurrence formula for I'(z)
employed in the backward direction together with the normalization relation(38) and the rational approximation given in (2)-(5) are identical

Case II. From E1, Vol. 2,s p. 45, Eq. (5)], we have the normialization

relation

_(z/2) •eZ= - (2k+2,•)r"(k!'-2O(z) -r(,+l) z r(2N+l)k! Ih (z), v o

Io(Z) + 2 Ik(z) I , = 0 (46)

Here to avoid confusion, we replace 8 by 0 in the notation of equations
(28) and (29).

Proofs for Theorems p0, 1c and 12 given below are akin to those
for Theorems 7, 8, and 9, respectively, and we skip the details.

Theorem lO.

fl ( (z/ ) =N+l (2+2vr(k (22,I (N)(z)
Y()( r(2+l)k,

k=O

13



(2v+2)N+l 3 F( (N-1,N+2+3,1 -1/2z)

= (2v+2)N+ (47z)
-(N1)! gMN1(z) (47

Theorem i1.

(N) (2v+2)N~l
(e)(z) = (N+1): v eN+ ) 1(48)

and as a consequence of (44) and (48), we have

(2v+2) 2 n+ 1- 8 62n+ 1- (z) (2/z)1-6 (-)n(+l)n+ or 8 1

(2n+1-6)= n: !(Z) , 8

(49)

Theorem 12.

(N) p•N)(z) e9+1(z)
• • - s(•(z) +lz '

cmN)Z) (z/2) e7)
(N (N) z 2 3 ,z

=(N c~(N) (z/2 e 2 3 -2n-1+6 +m,m+v4-1, -2n-1+6~
m+v( N) =(m+V+) 2n+1-8 -2n-3,=2-v+6 2z

1 1 \-4n-3-2v+26 2z

(50)

A FURTHER INTERPRETATION OF THE
BACKWARD RECURRENCE PROCESS

From Watson's treatise on Bessel functions [5, p. 295], we can
write

12n+2_6+v(z) = T2n.6,v+2 (z)Iv(z) - T2n+1_6,v+l(z)v+l(z), (51)

14



S,,

T2n+l_6.8 ), = ,O()z(N) , N = 2n-8, 8 = 0 or 6 = 1 (52)

where )(N)(z) is defined by (37). Consider the case 8 = 0 only. We
put (51)0 Inv the form

Iv(z) Qn(z) I 2n+v2 T+l,•+l(z) (53)

Iv+l(z) I=+l(z)T2n,•+2(z) T 'n(z) : T2 n,•+ 2 (z)

Further, we can put

E n(Z)

Qn(Z) = Fn(Z)

•, 2n+'j+l 2n+v4+l
E (z/2) nvr1 T2n+l,v+l nz)=(z/2) 2nvlT2n,V+2 (4En(Z) r (2n+v+2) I nZ r (2n+9+2).()

Now it is known [5, p. 302] that for z and v fixed, z 0

lim En(z) I , ) lim Fn(Z) = Il(Z) . (55)

n-->= n-->w

From (44) and (52), we have

n 2nh

En(z) = Ln(z) *n(z) (-)n(z/2) (56)
F(v+l)hn(z) , Ln(z) n!(n+v+2)n

where *n(z) and hn(z) are given by (3) and (5), respectively, with
6 = 0 . But for z and v fixed, z/ 0,

lim Ln(z) 1 (57)
n co

see (9). That is,

(z/e)"On(Z) (z/2)1 (N) (z)
lum En(z) = lrn ( rnl (' . = (z) . (58)

n-- n cc n--o r(v+I)e(N) (Z)
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A similar analysis can be made for Fn(z) . Also, a like study can be done
for the Case II scheme. We omit the details.

Further, the above shows that the backward recurrence scheme for
the computation of zIj(z)/Iv+l(z) is the same as the well-known truncated
continued fraction representation which in turn is the same as the main
diagonal Pad6 approximation for this function.

ERROR ANALYSES

In the first part o• fhis section we develop closed form repre-
sentations of the error in iV(z) for Cases I-III under the assumption
of exact arithmetic. This type of error arises because N is finite and
is called the truncation error. From each analytical representation of

the error, we deduce an asymptotic estimate of the error which is very
realistic and easy to apply in practice. The results for Cases I and II
when m = 0 are much better than those given by (10) and (19), respectively.
Further, for Cases I and II, if z ana v are fixed and n is sufficiently
large with respect to m , the relative error in the approximation for
Im+v(z) is essentially independent of m .

An analytical formulation of the round-off error is developed in
the latter part of this section where it is shown that this source of error
is insignificant.

We now turn to a study of the truncation errors.

Case I. Let

E(N)(z (N)
%r,( ) = Im+V(Z) im+V(z) (59)

(N)
where i+.,(z) is given in (45).

16



TWO, - . . __.....__-_________________-_______....__-__,.______-_, ,____-_________<

Theorem 13. If v is not a positive integer or zero,

O0l(.2n-l+6_.z214:Em(N)tz). (_)(z/ 2 )2 n+2 r(n+l-6+v) im+,(Z)F 1z2/4
"0 1- z )m,v, (n+l):r(2n+2_8+9) z n2,z-n+8-V

S( TT (z/2) 2 n+2 +vI
F(2n+2-.5+v) sin vw imzi2n+2(6+vz

2(-)'5 (z/2) 2n+2-8+v

F(2n+24+v) 12n+2-+,(zZ)Kfm+v(z)

+ (_) .(z/2) 2n+2-6+v

+ r(2n+2-8+v) sin v W2 n+ 2. 5 +(Z)Im+(z) • (60)

Equation (60) can be rearranged so that with the aid of L'Hospital's theorem,
we can get a representation of the error when 9 becomes a positive integer
or zero. We do not give this result. However, for arbitrary v , we always
have

0 a(-2n-1+6 "v;zz2 /4)EN)(z)= (-)n(z/2)2n+ 2r(n+l 4+v) zm"\(z 1 z2/4

+ 2)m+6 (z/ 2 ) 2 n+2-68 \ 0 (4,/212n)

+ r(2n+2-6+v) I2n+2-6+v(z)Km+v(z) + r(2n+2-8+v)r(2n+34+V)' (61)

where s = n-8+v(s=m) if v is (is not) a positive integer or zero. Clearly
the backward recurrence scheme is convergent. Further, for n sufficiently
large, n >>m , the relative error is essentially independent of m . For
convenience in the applications we record the formula

E(N ) ()n(z/2)2n+2 r(n+1-6+,')

2(-)+'n (z/ 2 )2n$ 2-+

F(2n4-2-6+v) I 2 n+2 -8 +6jz)S (z) . (62)

17



Proof: We have need for the formula [1, Vol. 1, p. 216]

Ia(z)Ib(z) (z2= ~ F(~~z/)F(~~24

p(a-I-)r(b+1) 0 1 al;
2 4 0 1(+;24

(Z/2) a+b - (F(a+b+l)/2,(a+b+2)/2 I2), (63)
r(a+l)r(b+l) 3 a+l,b+1,a+b+l

where it must be understood that none of the numbers a+l , b-Fl , a+b+l
is a negative integer or zero. Now let

=mz 0F,(m+v+l;z
2/4)0F1 (-2n-1+6 -v;z 

2/4)

r M,+)(2n-2+8+ -%)i (z)I- Z
(z/2) m+2+8M -2n-1+6-v

- - rrr~n+v+l) (z/2) n26 ()
r(2n+2-.6+v) sin .,,T Im+v(Z)I2n-1+8 --j(z)

7-Zakz 2 k (64)

Then

=k [22kk.(-2n-l+8 -V)kT1 2 Flý~i-m~+l

(-2n-l+6 -v)k(m+\rFl)k( -2n-1+6+m)k ,(5

whence

ak = 0, k = 1 + n m-.1+6 1 , 2n+1-8-m

18



M+6

ak+2n+2-8-m 24n+4-26 -2 'r(2n+26+9)r(2n+3.8+-)

) ( k ',k> (66)

Thus

LA~z 2 2 2 ~ 27
Amz F -2n-l+8 -, ,nrl-v+ 1, _2n-l+8 +m /

+ (-) 6 TW(m-v+l) (z/2) 2l+2-6-m
+ '(2rrI2-8+v) sin vr I-m-V(z)2n+2-6+v(z) (67)

and in view of (23), we have the alternate representations

( )6,T1' (na+v+1) (z/2 )2. 8
Am(z) r(2n-'2-8+v) sin \T InrF\( z)[ (-)8K l+8+v(z) +1218vz

[m-l+81 -8 m+

1. 2F2 2j z 2
2Fj (-2n-l+8 -\,mI-v+l,-2n-l+8+ml

8 T~~+1(/)2n+2-6 -m
+ (-) +2-6+m).sin \PT _ I2n+2-.+,(z)[T (-)mKm+,,(z) + Im,+v(zl

(68)

As a remark aside, the combination (26) and (68) yields (37) and so we have
an alternative proof of (37). Using (45), (59) and (67), we can write
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F~n(-2n_1+6-V;z2/4)(N)(Z Im (z (n) 240 1 V4E Vz () 0F 1 (-2n-l+6-v;z/4

r(Mz2) r0 F (m+9+1J;z 2/4)0F 1(-2n-l+6-v;z
2/4)

- rm+v'-l) 01 01U

8 2n+2-.6-m
( n) Tr(m+ _l)(z/2) I z)

r(2n+2-6+v) sin \ -m-Vz2n+2-6+\)

and since

0 ''l(-2n-l+6-v;z2 /4) - oF1(-2n-l+8-v;z 2 /4) (n+)'F(n+-v) 1 (1

(n+l)!r(2n+2-6+v) F2kn+2,-.n+t6-z/,j

(69)

we readily find the first part of (60). The second paxt of (60) follows
from (23) or it could have been found by repeating the above analysis with
the second equation of (68) in place of (67).

Next we briefly examine the situation when v is a positive
integer or zero. With v = r+e , the 1 F2  on the right-hand side of (60)
can be expressed as

Z2/4)= 8 1 24 + "0 (z/2)2k

12\n+2, -n+6 -1' 2 n+2, -n+8 -I Y (n+2)v)kk=--n_8+r+l (n6Vk

Jp, r1z2/4) + (") n+1+6• T(n+l) "(z/2) 2n+2-26 +2r

1r2  (n+,2 ,I-n+6-I sin wr(2n+3-8+r)r(n+l-8+•)F(I-e)

i 1F2  n +r, (1 z2/4) (70)
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I 1

The first term on the right-hand side of (70) is defined when = 0

When the second term on the right-hand side of (70) is multiplied by the
coefficient of the 1F2 in (60) and the result is combined with the term

involving Im+v(z)I2n+2.6+v(z) in (60), it will be seen that one can pass
to the limit as e--•0 . The final expression is not of great interest
and we omit further details. Equation (61), which is important for practical
considerations (see later numerical example) readily follows from (60) and

the above remarks, and (62) is but a simplified version of (61).

Remark: Let v n and z be fixed so that F4(o,(z) is a function of

m only. Then EmN)(z) satisfies the recurrence formula for cpm,v(z), see

(21). This is evident from (30) and confirmed by (60).

Case II. Let

F(N)(z) = I (z) - i(N)(z) (71)
mV m+V m+%m

where i••)(z) is given in (50).

Theorem 14. If neither v nor v+½ is a positive integer or zero, then

-z F2n-1-1-6 -2n-3/2-4-8 -' 2z F(N) W
e F1 k_-4n-3+28-2v•1Iz m,,(z)

(2z)2n+2-6 -z(• )2+2-e v+(z) -i _½-V, 127,(2n+2-6)2n+2n-6 +2v )2n+F6 2F2 2n+3-6,-2n-1+6-2v

(-)8,r (z/2) 2n+2-6+ Imv (Z)I2n+2 +v(z)=mV 2+-+ (72)
r(2n+2-6+v)sin vrT

which is the same as the right-hand side of (60).

If v+2 is a positive integer or zero, call it r , we have
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-z 2n+1-6(-2n-2+8-r I2z, (F)e Fl k-4n-4+28-2r, )M+ 2Z

(2z) 2n+2-6 (r+1)2n+2_6 ezIm+ ,½(z-)2  r•n,

(2n+2-6) (2n+3.8+2r) 2 n+2 82 2n+3-6,-2n-2+6-2rl

8+r+l T+(z/2)2n+5/2-8+r 2n+r+/ (z)

+r(2n+5/2-8+r) Pmr22

r= 0,1,2.... I Pr = 1 if r = i r = 2 if r z 0. (73)

In particular,

(N) ()6 (T/2z)2e zI2r 312-8 (z)

2_ )n+[3/2_- (Z)

6(. r6 . Z - 4n.. + ,3 -28
-l•rr)e- (,z/2), [l+O(n-l) (74)

As in Theorem 13, (72) can be rearranged to get a representation for the

error when v is a positive integer or zero. This result is omitted.

However, for arbitrary v , -.½ , we always have

-z F2n+1-6 ( -2n-3/2+8 -v 2z F(N)()
e I-4n-3+26-2vi m')

(2z) 2n+2-6 v+ 9 )2Itl_ 12z)

(2n+2-6) ! (2n+2-6+2v) 2 n+2 -8

+ 2 4(-)m8 (z/2)2n+2-8+v 2-6+,(z)K,+,(z)

r(2n+2-6+v)

+ ((Z/2)2n) (75)
r(2n+2-8+v)r(2n+2-5+v)
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where t = j-½(t=2n+l-6+2v) if v is half a positive integer (is a posi-

tive integer or zero) and where t co for all other v . Clearly, the

backward recurrence scheme is convergent.

Further, for n sufficiently large, n >> m , the relative error is

independent of m . For convenience in the applications, we record the
formula

2n+2-6 -
(N _(2z) (~ 2 )2  _,erFz(N)- (I(+½)9n+2(z)[1 0(n1)]

F,)(z) ( 2 n+2 -6). !(2n+2-8+2v )2n+2-6 Im+

2(-)'6 (z/2)2n+2-6+v

+ F(2n+2-S+v) I2n+2.6+v(Z)Km+,(z) , v (76)

Proof: Let

j z 2m~v+~ iz z (-2n-3/2+6-v k
Bm(z) -Le F "! 1 elln 2z2 i (77)

In view of (1) and (12), Bm(Z) = Am(z) where Am(z) is given by (64).
Hence bk = 0 for k odd and b2k = ak where ak is given by (65)-(66).

The analysis proceeds as for Case I and we find (72). Notice that the

right-hand sides of (72) and (60) are identical.

For the proof of (73), let Vm,v(z) be the entire first term on

the right-hand side of (72), that is, the term involving the 2 F2 . Let

v r+2f+ , r = 0,1,2,..... Then we can write

Vm,v(z) =--v(z)(r+l+e)2n+2.e [2 F2,.2n+3-6 ,-2n-l+6-2v 2z)

2n+2-5 +2r --
+ > ckz + 2 kz

k=r+l k=-2n+3-6-+2r

(2z) 2n+2- e-i (z) (I-v)k

(2n+2-S)!(2n+2-6+2v) 2 n+2 -6 ' Ck= (2n+3-6)k(-2n-l+6-2v)k

It is easy to pass tc the limit when g-->0 and (73) readily follows.
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Now for arbitrary a and b ,

1

aI.(z) + bIj(z) = (2/Trz) 2 (a cosh z + b sinh z)

Further, from (16), with n replaced by 2n+l-8, see also (17), and
S= -½, gn(z) reduces to

2 F0 (-2n-l+8,2n+2-6 ;- )= (,/2z)2eZK2 +/ 2 _ (z).

Use these data with r -i and m = 0 in (73) to get the first line of
(74). Derivation of the second line of (74) is trivial and details are
omitted. Since

i

I½(z) (2Tnz)l'eZ(l+e- 2 z)

-Z -(N)
it is easy to show that (2rz) 2½e i 1 (z) is the main diagonal Pade approxima-
tion to I + e"2,z When allo _c-f

Sawance is made for a change of notation, (74)
is a previously obtained result [i, Vol. 2, p. 74, Eqs. (34), (35)].

When v = r+e , r a positive integer or zero, we can rearrange
(72) after the manner of the discussion surrounding (70) and use L'Hospital's
theorem to get the limit as e-->0 . The result is not of immediate interest
and we omit details. The statements (75) and (76) are readily derived and
here too we skip details.

Remark: F(N)(z) with n , v and z fixed and m variable satisfies the
m,v

recurrence formula for tpmo (z) , see (21). This feature is clearly depicted
by (72). In both (62) and (76), the term involving Km+V(z) is of lower
order than the term involving Im+ (z) Neglecting the former term in each
equation, we have
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Theorem 15.

E(N)() (n+1 )'22v-l)(z/2)Sez +Onl)l

(N) =(n+1):r(2ri+2-.8+2v)

,,(z)

n+l ]l 6 z(-) (z/2) e
(i [1+O(n-l)] v 'I -• (78)

nv+

This shows that there is little difference in the accuracy of the
two schemes for the evaluation of Im+.(z) . Computation-wise, if the

backward recursion scheme is used, Case I requires less operations since
the associated normalization relation, see (38) and (39), uses the sequence
"{cN,(z)l I k = 0,2,4,... , while the Case II normalization relation, see

. (N) I
(46) and (47), employs > "pk"v (z)f P k = 0,1,2,..... Also to get IV(z)

by the Case II scheme, ez must be evaluated. On the other hand, if IzI
is large, R(z) > 0 , one often wants not I,(z) , but e'zIl(z) . The
latter is automatically furnished by the Case II technique. It appears that
for the same n , the Case II procedure might be more accurate than the
Case I scheme even for moderate values of Izi , R(z) > 0 , in view of
the presence of ez in the numerator of (78). Also, Case II is favored
when R(v+6) < 0 . Improved information cannot be derived from (78) as
the estimate is for fixed m , v and z . For error analyses it is sug-
gested that one use (62) or (76) as appropriate. Further discussion is
deferred to a later part of the paper where numerical examples are presented.

If z is pure imaginary and v is real, then zJVIv(z) is real
and definitely the Case I procedure is better than the Case II scheme since
the former requires real arithmetic while the latter demands complex arith-
metic.

If only I,(z) or only e-zIl(z) is required, use of the
rational approximation scheme or the equivalent backward recursion scheme
demands about the same number of operations. In the absence of a priori
estimates of the error, the rational approximation scheme employed in the
following fashion is preferred. It is sufficient to consider the Case I
situation. Compute *n(z) from either (3) or the combination (37), (44),
and hn(z) from (5), for n = 0,1 and 2 . Compute subsequent values
of *n(Z) and hn(z) by use of the recursion formula (12). Comparison of

*n(Z)/hn(z) with tn+l(Z)/hn+j (z) affords an estimate of the error. If

one requires Ikv(z) or e Ik+v(z) for k = 0,1,2,...,r , then obviously

the backward recursion 2c&2me is highly advantageous.
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Case III. Consider

(N)z)i)
G ( Z) I (z) - (N) , (79)

(N) ( m0)(z )
im+•-z) = (N)(z (80)

where c(N)(z) is given by (37).

Theorem 16.

6+m I(m-2)(Z(N)) 12+26 •(

G(N) (Z) 
N

mv (N)(POVtz)
64-m 2n+2-m-6

- C-) r(m+v) (z/2)0'- .
F(2n+246+v) 2n+2-+,+v(z) n(z)

25 \l_2_m,v+il._m z2

..,.(z) .1 t-1 • 0<m 2n+1-8, (81)•m'(Z = _ n+ -,-n+ý

2 .\-2n-i+6-v, v+l,-2n-I+8 z2)

and it is clear that the computational scheme is convergent. Further, if
we treat G N)(z) with n , v and z fixed and only m as a variable,

m(N)

then (-)mGm,)(z) satisfies the recurrence formula for cpm,v(z) see (21).

Thus

(N) (N) 2(m+'+l) (N)
Gm+2,v(z) = Gm,V(z) " z Gm+l,v(z)

6+i

(N)( 0 (N) (-) I 2 n+2 -+(z) (82)
Go, (z) = 0 G ,l(z) (N),z)
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Finally, for convenience in the applications, we record the formulas

mFt 2 ' 2 iZ2)
m+8 2n+4-28+2' t2-m 32  l--m,v+l1-ml

G, = r(2n+2-8+9)r(2n*3-8+v)r(v+l) [i+0(n-1)]

i• (z)

(83)

G () +8 (z/2) 2n+4-26+v'n'(m2V) [l+O(m-l)] [l+0(n')] (84)
M)V r(2nF2-5+v)r(2n+3-8+v)

Proof: Using (37), (67) and (69), we find

CP()()G(N)(Z( (.) 8 (.,Tz/2) 12[-+vzlv(z)I-m-V(z)-I-V(Z)Im+,(z)I1z)N)(z) = ir I~n25+~
qO'u- M,• sin vr --

and in view of (23)

(Ni) (Nq) 81r
COv (Z)GM (Z) = (-) 12 n+2 _8+v(z) jz [(-)mI\(Z)Km+(z) - Im+,(z)Kv(z)]j

From (26), the portion in curly brackets in the latter equation is

(-)MC(m-2)(z) . Hence the first line of (81) is at hand. The remainder
0,V

of (81) follows from (37). The first line of (81) coupled with the dis-
cussion surrounding equations (21)-(25) produces (82). By the confluence
principle, see [1, Vol. 1, p. 501

(N) (2/z) N+lr( + )+ N-+ 1 N
(N))(Z) Z2~)•5 --- ~vI--

N~l=-2/y r(N+v+) OFl(v+l;z2/4)[+0) -)

= (2/z) r(N4v+2)I,(z) I+O(N-1 , (85)
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whence (83) and (84) readily follow with the aid of (33).

Error-wise, it is difficult to compare Cases I or II with Case III
without some simplifying assumptions. If n >> m , using (33), (62) and
(83), we get

(N)• m-2 1 m-~l2 Z2k

Gm()(z) ()+m+6 (z/2) 2m+2"26+2v-m(n+l)!r(m+v) 2 J( 2l-'-m2,+l, 1-m ) -1)]

E((N) r (2n+3-6 +v)r (n+l-6 +v)r (v+l) Iv(Z)Im+v(z) [l+0(nl

+(z/2) 21-v
= r(2n+3-.8+v)

and so Case III is superior to Case I. Now suppose m is sufficiently
large so that in (62), the second term dominates the first term. This is
certainly the case if m = 2n+l-8-d , d << n , in view of (33) and (34).
Then

(N) -V
G(m)(z)_ (z/2)-8-m"(M+") [l+0(n-1)] 0l+(m-l•l

E(N) W 2Km+v(z)
m,v

- (2/z)' [l+o(nl')] [l+o(m-)l , (87)

and under these conditions there is little to choose between the two cases.
Overall, it appears that Case III gives better accuracy than Case I. How-
ever, for Case III, one must know I,(z) while for Case I no such knowledge
is required. For all z > 0 and all v , 0 ! v r 1 , coefficients are
available to facilitate the rapid evaluation of J,(z) and I,(z) , see
[1, Vol. 2; 6,7,8]. (Actually, much more information is given in these
sources.) All of this can often make the Case III approach rather attrac-
tive. See the numerical examples.

Next we consider the round-off error.

Cases ,II. It is sufficient to trace the effect of a given round-off error
in a single entry of the table generated by the backward recursion process.
Thus let 4 be the symbol for the round-off error in cp . Suppose that
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A (N)(z) 0 for m N+2,N+I,..., S+2

N )(z) = w for m =S+ (88)

where S 2s-y and y is 0 (is 1) if S is even (is odd). Hence

(N) (s)
Pm,'V() Um, m < 2s+l-y , (89)

As (N)(z) = WOS(z) . (90)

For the Case I procedure, we have

C) (N)•(z) (N) - _ u,(S)(z)

•(Nm) -z VM'V
m+.(z) (N)(z) (N) )(,) _ we (S)(z)

6 (z) (s) (S)( (N)

lu Wcqm" W 6 (z,)l

{- e (N)(z)

V(S) (s) (S)M v 9 W • (91)
9G- (N) (91l-w6 e (z)

and these equations also hold for Case II provided E is replaced by F
If S = N , that is, s = n , the round-off error is nil. Indeed, this must
be since the starting value CPN) is immaterial. It is clear that if•N+I,v

all parameters and z are fixed, then the round-off error decays to zero
as n-*> . For n sufficiently large with respect to z , la<k 1 and
we can take "l-E(N)(z)/E(s)(z)l< 2 . Also it appears heuristically that

V m,• -- I 29
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Thus on this basis,

is an approximate bound for the round-off in a single entry of the set of
numbers generated by the backward recursion process. If w is the maximum
round-off error in each entry, then the total round-off error in itmN(z) is

approximately bounded by N times the right-hand side of (93). Thus the
round-off error is insignificant, and it is easy to estimate the number of
extra decimals which must be carried so that the total round-off error in
the process lies within the error when the arithmetic is exact. Equations
analogous to (92) and (93) for Case II are easily derived and we omit details.

Case III. We have

~ (N) () = (N ( z)[ (N) (Z).upS(]

ANS (N) =(s (N)z . (9 )

AN'S(Z) =m,() (Z) mS (Z)-(0,v (Zm, )

Using (26), a straightforward computation shows that

N,S [i s2 _+ 1 ~+. 9( +~
A m ,~ z z 1 2 + 2 -~ v z) K n + -6 +j~ ) + ( - ) 6~ I 2 n + 2 _ 4 + 9 ( z ) K 2 s + 2 _ y+ v ( z )

X(-) ,(()]ý+((z +

Sm+y+l (N) (m-2)
= (-) P2s+2-y,vCO,v (z) m> 0 ,

0, m 0 (95)
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Thus

, +ym+1 (N) (N) (m-2)
A (N) (z ) +z)cp z (96)
M+)= (S)

(N)(z•(N)(z) 1 o,
90, v jN)(z)

Obviously, this is nil is S = N or if m 0 . Now using (37), we find

,N) 2nI2s134 -Y-mT2,+2-y,\,(z) _ (z/!2)+s4"-r(v+ilr(m+,u+l)

C (N)(z)C(N(,) z r(2n+24 +v)r(2s+,3-8+\)
O,v m'v

n 2 2 ] + 1
23• k,,-2n-1+6 -v,2s+3-y+v, -2rr+2s+l+8 2 /

n --I_11/ 6-1 6 m- m-+1+8 m+8
n+ In -"---n+ n --- -2--, -n+-" 2 )

2F[ 2 2 J2An 2 z2
(-2n-1+8- -, +:i, -2n-i+8 ,)2 fn i+ . + n

(97)

and it is clear that rounding errors are insignificant. Indeed, if all
parameters and z are fixed, then the round-off error tends to zero as
n--->3



FORMUIAS FOR J)(z)

As previously remarked, the analyses for I,(z) hold throughout
the cut complex z-plane, -r < arg z < TT , and throughout the cut complex
v-plane Iarg vj< T , although it is sufficient to have 0 < arg z ! T/2 and
R(v) > -1 . Nonetheless, we indicate how to get results for J,(z) directly
and to facilitate use of our findings, it is convenient to restate some of the
key equations. We omit discussion of Case II since it requires complex arith-
metic to generate J,(z) which is real when z and v are real. In any
event, the reader should have no difficulty in establishing the Case II equa-
tions for J,(z) once it is observed how this is done for Case I.

All developments for J,(z) are readily gotten by use of the
equations

Im+v (ze'iT/2) = e -i(m+v)'rr/2 (z) , (98)

-in -i (m+4TT-/2H (1) (99)
S/2) = Hi(z)

Hý+V(z) = Jm+v(z) + iYm+\(z) ,(100)

Ym+V(z) = CSC JmC+(z)-J.m\v(z)l , (101)

where now in the Jv(z) analyses, -r/2 < arg z ! 3r/2

It is convenient to introduce the following notation. Unless
indicated otherwise, if A is used to signify some function or equation
in the developments for I,(z) , then A* is used to signify the correspond-
ing function or equation in the developments for J,(z) . In illustration

J,(z) = (z/2) oFl(v l;-z 214) , M*

and both Jm+v(z) and Ym+v(z) are solutions of the difference equation

* 2(m+v+l) * (2)*
gm,v(z) = z 1m+l v(z) - (m+2,,(z)
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Also

(z /2) 1

Jm+'9v(z) = Fm+ l+0(m'l) (33)*

Ym+%(z) = -(m+v)[l+0(ml)] (34)*

We now present the key results pertinent to Jr(z)

Theorem 1*.

(z) = 2 *n(z) Sn(z)
J(z r(+) * + Rý(z) , Rn(z) = . (2)*hnCZ) hn(Z)

n n

where *n(z) and hn(z) are given by in(z) and hn(z) , see ,
provided there we replace z 2 by -z 2 , that is, replace X by -X .
Further, Sn(z) and Sn(z) are both given by (8) and Rn*(z) = (-)nRn(z)
see (10).

Theorem 2.* Both $*(z) and h*(z) satisfy the same recurrence formula
(11) if there we replace X by -X

We state without proof the following equations.

(N)* ( (z/2) 2n-m+l"8 F(2n+2-6+v)
m, z) = (m++l)

X F-- [2 -n -+m - -z2 ()7)*\-2n-l-v+ ,re+v+i, -2n-i+6 +m

e (z) (/2) V (2k+vj)r(k+v)e*(z) -r(v+l) = r(v+l)k! J2k+v(z) (38)*k--0

e(N)*(z) = (2/z) 1 - 6 (v+l)n+1-6 h*(z) (39)*
n33
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Theorem 9.*

(N) (z) *(z)

GB ) (z) h*(z)
n

(N) 22 2 2
(N) ( z) -m V ( )m V- ( 2n -1 -v+8 ,m+ v+ l, -2n -1+6+m l 4 )

Let

(N)* (N)
E m'V(z) =JM+v(z) -Jy+.,(Z) (59)*

(N)
where jmvz is given in (45)*.

Theorem 13.* If v is not a positive integer or zero,

1P-n*8-;z/) (N z + (Z/2) 2n+2 (n+1-8+v) Jmvz 1 2 n2, -n+6.-v z2/
0 1 M'V (n+l)!W(2n+2-6+v) kz2,4'l2(n

m 2n+2-6+v

si) vu(z2n)_6v Jm-v(z)J2n+2-8+v(z)

TT (z/2) 2n+2 -6+v
-r(2n+2-8+v,) n2-vzytZ

+tan vn r(2n+27-sv) Jm+v(Z)J2n±2-6+v(z) (6)

Equation (60)* can be rearranged so that with the aid of L'Hospital's
theorem, we can get a representation of' the error when v becomes a posi-
tive integer or zero. This result is omitted. However, for arbitrary v
we always have
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n 2 ., /4E,-W(Z2 n2r:+-+)2/4
o~l(-2nmv (z) - (r'l)!r(2n*2-8+vj) Jnr+.\(z)lF sn+2, -n+6 -v -

2n+2-6+V
"I (Z2 -) - J2n+2"6+v(z)Ym+v(z)

r(2n-'2-6 +%)

+ 0((z/2)2n) (61)*r (2n+2-8 +v)r(2n+3-6+v )

where s = n-6+v (s = =) if v is (is not) a positive integer or zero.

Clearly the backward recurrence scheme is convergent. Further, for n
sufficiently large, n >> m , the relative error is essentially independent

of m . For convenience in the applications we record the formula

E(N)*(z) (z/2) 2 n+2p (n+l-8+v) 1A) [l+O(nl)I
m,v (z) (n+l)!r(2n+2-6+v) Om+vIz'

"or( z/2) 2n+2+"
- p(2n+2-68+v) J2n+2_8+v(Z)Ymr+v(z) (62)*

(N)*
Remark: Let v , n and z be fixed so that Em,v (z) is a function of(N)*z*
m only. Then Eý,. (z) satisfies the recurrence formula for im,\(z)

see (21)*.

Let

m(N)*z .(N•)C
,N* W = im+v(z) - (m+VN ) (79)*

Gm~~v (z) jm;( z)

.(N) V mV(Z)
Jm+v(z) (N)* ( (eo)*

~O'V

where Tm,v .(z) is given by (37)*.
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Thieorem 16. *

Gmi(Z) (N)*
IP' (Z)

- f(m+V)(z/2) 2+--

r(2n+2-o+v) n+6,()Anz

ri/m-l m-2 I
221 2 2 I-Z

I6 v I - 6F 0ivmvllm < O m i2n+1-6 (81)*

(N)*
Further, Gm,v (z) satisfies the recur'rence formula for CpM+v(z) ,see (21)*.

Thus

,(N)* 2(m+v+l) (N)* -(N)*

M+,~)= G m+I'V(z) -Gm,V (Z)

(N)* (N)* Jn26vz
GO,v (z) = 0 , G1, (z) (= *(8

CP (Z)

Finally, for convenience in the applications, we record the formulas

,(N)* ~~~(Z/2)II4I+4-26+2\o-mrm\ 2; On1
(~ z) r(2n+2-6+v)r(2n+3-6+v)r(v+l) JV(z)

(83) *

4n4.2 1-m[+0( [1+0(n')]:)

Grm,. Mz r (2fl+2-6+%J)r(2n+3-6+v)
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NUMERICAL EXAMPLES

Let

N 5 , n 3 , 8 1 , z = 2/3 , = 1/3
(N) (N) (N)

Values(z) and z are given in the table below.

(N) (z)

6 1
5 19 (N)
4 305 e (z) = 880 75120/81
3 3984 (N)
2 40145 ( (z) = 1 38952 97360/6561
1 2 84999
0 11 80141

Since

(--/2)v 0.77645 82114, e-2/3= 0.51341 71190
r(v+l)

the Case I and Case II approximations are

0.84272 08930 and 0.84272 10326

respectively. To 10 decimals

1I/3(2/3) = 0.842772 08819

Thus the errors in the Case I and Case II approximations are

-7

-0.111"10 and -0.15110 ,

respectively. Using (62) and (76) each with O(n-) and the term involving
Km+v(z) neglected, the rpproximate Case I and Case II errors are
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-0.ii0-10-7 and -0.149-10-6

respectively.

For a second example, let

N= 5 , n= 3 , 6 = 1, z2 , 2 0

Again we illustrate the Case I and Case II schemes. We have the following
data.

m m

6 1 (N)
5 6 e (z) = 61
4 31 (N)
3 130 (z) =4515
2 421
1 972 e2 = 7.38905 6099
0 1393

i(N)(Z)

Case I m Case II Im(z)

0 2.27986 9067 2.27972 4285 2.27958 5302
1 1.59083 4697 1.59073 3672 1.59063 6855
2 0.68903 4370 0.68899 0613 0.68894 8448
3 0.21276 5957 0.21275 2446 0.21273 9959
4 0.50736 4975. 0" 0.50733 2755"10" 1  0.50728 5700"10-1

5 0.98199 6727.10-2 0.98193 4365"10-2 0.98256 7932-10-2

6 0.16366 612110"2 0.16365 5728"10-2 0.16001 7336.10-2

Error Relative Error
m Case I Case II Case I Case II

0 -0.284"10-3 -0.139.10-3 -0.124.10-3 -0.610.10-3

1 -0.198.10-3 -0.968.10-4 -0.124.10-3 -0.609-10-4

2 -0.859.10-4 -0.422.10-4 -0.125.10-3 -0.612.10-4
3 -0.260-10-4 -0.125-10-4 -0.122.10-3 -0.587.10-4

4 -O0.793•10-5 -0.471.10-5 -0.156.10i0 -0.929.10-4

5 0.571.l0-5 0.634-10-5 0.581.10-3 0.645.10-4

6 -0.365.10-4 -0.364.10-4 -0.228.10-1 -0.228-10-1

38



Here the entries in the Im(Z) column are correct for the number of
decimals given.

Using the first lines of (62) and (76), each with O(nU1 ) and
the term involving Km+v(z) neglected, the approximate relative error

for Cases I and II, respectively, are -0.116.10-3 and -0.537.10-4, respec-
tively.

In the table below, we record the approximate errors obtained by
use of (62) with 0(n-1) omitted for m, = 6 and 5 and by use of (21), see
the remark following Theorem 13, for t.a lower values of m . This is
called Case I, (62)-(21) in the table. We also present the analogous Case II,
(76)-(21) data. In each instance known tabular values of Km(2) and 17(2)
were used. In practice, we suggest using (34) or the lead term of the
uniform asymptotic expansion of Km+1 j(z) develop•d by Olver [9]. For

I2n+2-8+v(z) , use (33) or the lead term in the uniform asymptotic expansion

for this function which is also given in the source just cited. We also
suggest that computation of the gamma functions be simplified as follows.
With LR(•<)< 1 and r a positive integer, we have

IT~-$~'l)= !rr [l+0(r-)
r(r+-+l) = r: r(r+l) = r r -)]

and for r sufficiently large, we neglect 0(r- 1 ) . The approximation is
of course superfluous if o = 0 . If c = 2 ½ , the approximation may still
be used though known tables of the gamma function for half an odd integer
may be preferred 1101. If more precise values of the gamma functions are
required, see [111.

Approximate Error
m Case I, (62)-(21) Case II, (76)-(21)

0 -0.264.10- 3  -0.ll4.10-3
1 -0.184.10-3 -0.765.10-4
2 -0.797.10-4 -0.373.10-4
3 -0.242.10-4 -0.110.10"4

4 -0.723.10- 5  -0.410.l0-5
5 0.475.10-5 0.536.10-5

6 -0.310.10-4 -0.309•10-4

For a final example, we illustrate Case III using the data of our
second example. We get tha following numbers.
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G( Approximate Error

_(N__z) GN__z_ (82)-(83) (84)

0 2.27958 5302 0 0 0

1 1.59063 6693 0.162"10-6 O.121.i0- 6  0.276.10-6

2 0.68894 8609 -0.162.10-6 -0.121.10-6 -0.276.10-6

3 0.21273 9475 0.484.10"6 0.363.10-6 0.551.10-6

4 0.50730 1826"10'1 -0.161"10-5 -0.121"10-5 -0.165-10-5

5 0.98187 4502"10-2 0.693"10-5 0.520.10-5 0.661l10-5

6 0.16364 5750,10-2 -0.363.10-4 -0.272.10-4 -0.331.10-4

In the above, the approximate error (82)-(83) means that G.,NJ(z) is

approximated by (83) with m = I and 0(n- 1 ) neglected, and subsequent
approximate values of the error are found by use of the recursion formula

in (82). Use of the recurrence formula in this fashion is stable as the
magnitude of the error in an increasing function in m . Also Eq. (84)
means this equation with 0(m- 1 ) and 0(n- 1 ) neglected.

A measure of the accuracy of the three schemes treated can be had
by use of normalization relations. Thus if the Case III procedure is employed,

*(N)
then (38) and (46) with Ik+v(z) replaced by ik+v(z) are available as

checks. Similarly, equations (46) and (38) are available as checks for the
Case I and Case II techniques, respectively. For some other useful normali-
zation relations, see D, Vol. 2, pp. 45, 46].

Analyses of the error in the backward recursion process for the
solution of a general second and higher order linear difference equation
have been given by a number of authors. Some authors have studied the
case of Bessel functions directly. We make no attempt to survey the various

contributions here. Pertinent references are given by Wimp [41. Suffice it
to say, none of the analyses have the precision and simplicity of those
developed in the present paper. We deliberately chose N and as a conse-
quence n small (N5,n=3) in our numerical examples to put our asymptotic
estimates under a severe test. The efficiency and realism of our error
formulas is manifest.

CONCLUDING REMARKS

It appears that the techniques developed here for the Bessel func-

tion I V (z) can be extended to analyze more general second and higher order
difference equations. in particular, it would be useful to have analogous
results for 2 F1 (a,b;c;z) and its confluent forms. This we intend to do
in future papers.
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