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ABSTRACT

In my work, "The Special Functions and Their Approximations," a
class of rational approximations for the generalized hypergeometric functions
was developed, Now Iv(z) can be expressed in terms of a oFp ora lF .
Thus, corresponding to each form and a choice of certain free parameters
there is a rational approximation for Iv(z) « Jd. C. P. Miller has shown
that Igry(z), m a positive integer or zero, can be approximated by use
of the recursion formula for Im+v(z) applied in the backward direction.

If this scheme i: used together with each of two certain normalization
relations, then rational approximations for Iv(z) emerge and these rational
approximations are identical with those noted above. The analysis leads to
& new interpretation of the backward recursion scheme. We also study a
third case for the evaluation of Ipyy(z) , m a positive integer, by the
backward recursion process which presumes that Iv(z) is known. In each
instance & closed form expression for the truncation error is developed
which leads to a very effective & priori estimate of the error. For each
case it is shown that the round-off error is insignificant.




.....

INTRODUCTION

In my treatise on the special functions [l], & class of rational
approximations for the generalized hypergeometric function qu was
developed. These approximations depend on a number of free parameters.
Since Iv(z) can be expressed in terms of a 4Fy or a 1Fl , there is a
particular rational epproximation corresponding to each of these hyper-
geometric forms and & choice of the aforementioned free parameters.

The idea of using the recursion formula for Iv(z) in the back-
ward direction to generate values of Iv(z) is dve to J. C. P, Miller [2].
It is a very powerful tool and the notion has created considersble interest;
see [1, Vol. 2, pp. 159-166], [3,4] and the references quoted in these
sources. The Miller scheme together with two certain normalization relations
also gives rise to rational approximations.

In a conversation Jerry L. Fields conjectured that the specific
rational approximetions noted in the first paragraph are identical to the
certain rational approximations which emerge by use of the backward recur-
rence scheme noted in the second paragraph. In the present paper, we verify
this conjecture. In addition, we develop a new interpretation of the Miller
method. We also study a third normalization technique which is sometimes
used with the backward recursion scheme. A closed form analytical expression
of the error for each case is derived. These equations are valuable as they
lead to simple asymptotic estimates of the error which are very realistic
and easy to apply in practice. It is demonstrated that the round-off error
is insignificant. The paper closes with some numerical examples.

In the main body of the paper, we find it convenient to deal with
the modified Bessel function I,(z) . The results are valid for all =z in
the cut complex z-plane - p < arg z < and in the cut complex v-plane,
larg v|{<m . 1In this connection, we should note that I_,(z) = I, (z) if
v is an integer or zero. Thus we suppose throughout that v 1is not a
negative integer. Actually, it is sufficient to have 0 < arg z < /2 in
view of the definition of I, (z) . Also it is sufficient to have R(v)> -1,
for if Ij _,(z) and I_,(2) areknown,computations of I_p .(z) ,

m = a positive integer, can be done by use of the recursion formula for
I-m_v(z) . All of this not withstanding, it is convenient to restate some
of the key equations to facilitate application of our results to the Bessel
function J,{z) . This is done near the end of the paper.
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RATIONAL APPROXIMATIONS FOR I,(z)

Case I. We begin with the representation

- (zgag”

Iy(z) TlorD) 0Fl(\:+l;z2/4) .
Theorem 1,
(2/2)" %a(2) 5,(2)

I,(2) =t 1) i(2) * Ru(2)s Ba(2) = gy

i (‘n)k(n+7\ )k

¥n(z) = —————— zFg(-n*k,nA+k,15X) ,
=5 (vrl)pk!
X=4/22 ;% =25 ,6 =0orb =1,
h (z) = zFg(-n,nt,1X)
or
hn(z) = (<)"n!(m+v+2-6) X" (F(-2n-1#6-vsx~1)

Here for convenience we introduce the notation

k
o n Qyp)kz
ng(pf;'z) ) k_ZO (pq)k :

and our usual shorthand notation for generalized hypergeometric series
applies, see [1, Vol. 1, pp. 41, 42). Further,

p = 1-§-R(v) 1f -1 < R(v) s 18 , p = 0 if R(v) =2 1-6 ,

o]

(1)

(2)

(3)

(4)

(5)

(8)

(7)

(8)
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hp(z) = (=)Pn!(ntvi2-5) X" iro(n-l)] , (9)

whence

_ ((e/2) " ()
B(2) = ST Dnir (2o

o) [ro( )] , R(vV) > -1,  (10)

and so, for z and v fixed, R(v) > -1, the approximation process is
convergent.

Proof: Equations (2)-(5) follow from [1, Vol, 2, p. 96] with

8=0,f=g=0,p=0,q=1,p;=wl,
a=1l-8,B=v,A=v2H ,86=00rb=1,vy=z

and z replaced by 22/4 . Notice that the zFy series for hp(z) in
(5) turned around is the alternative form for h,(z) in (6).

Equation (8) follows from [1, Vol. 2, p. 103] while (9) follows
from (6), see also [1, Vol. 1, pp. 259-261), and (10) is now obvious,

Remark: In the proof developed in the cited source, it was necessary to
suppose that R(v) > -1 . Later, we present a new formulation of the error
vwhich shows that v is unrestricted save that v is not a negative integer.
So throughout this work v is arbitrary except as just indicated. Compu-
tation wise, the exception is no burden since I_p(z) = In(z) .

Theorem 2. Both y,(z) and h,(z) satisfy the same recurrence formula

hp(z) + (C1#XDy)hp_3(2) + (Co+XDp)hy, o(z) + Czhy_=z(z) = 0,

_ (et -2)(n-p+1) D = n(2n+) -2)(2n+ -1)
17 (2n+y-4)(ntr-1) * "1~ n+} -1 ’

c

_ =(n-1)(nt+2)-4)(2n+) -1) _ =(n-1)(2n+)-2)(2n+r-1)(n+r-3)
€2 = Toa-1)(m-2)(enr5) * D2 = (ot -1) (n*th-2)

>




-(n-1)(n-2)(2n+) -2)(2n+) ~1)

C3 =(2n+r-5)(2ntA-4) (nth-1) (1A -2) ° (11)

where n2 3 . é

Proof: See [1, Vol, 2, Ch, 12]. v%

Case II. Next we consider

v, 2Z
I,(z) = %%3—5— 1Fy (vH332v+l;-22) . (12) ,

Theorem 3,

_ (z/2)Ve? 5n(z) _ Wy(z)
IV(Z) - F(V+l) gn(z) + Vn(Z) ’ Vn(Z) - 'é;(_z_)- ’ (15)
D (-n)y(n+evi) (v -n+k,ntevrerk,1| 1
*u(z) = k}:—o (2w L) (w5/2 )kt 31 <v+3/2+k "2z )’ (14)
-n,nt2vt2,1
gn(z) = SFl(stx/le 'é) > (15) ‘
1
or
n! (n+2vi2) neyol
Eal=) = TZya(ers g)n 11 (-gn\-)es-l 22) . (16)
Further, .J
2/2) %0 n’ i
wn(z) = F(\)*l) s i
w=1-2R(v) if -1 <R(V) =3 ,w=04if R(v) 2 % . (17)
1
Also, 1

n!(m+2vt2)e” [ (z2/4) . (z2/32)(z2-8)

= -3
T ey, w0 )] , (19)

8n(2)
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whence
(z/2)(22)" (v+3/2),0(")
r(vt1) (n+2v+2)nn!

Vp(z) = > R(v) > -1, (19)

and for z and v fixed, R(\:) > -1 , the approximation process is con-
vergent.

Proof: Equations (13)-(15) follow from [1, Vol. 2, p. 98] with

3=0sf=g=o,P=q=l3al=v+']§’Pl=2V+l’
@a=1,8=2v,xr=2uv2 ,y=2

and z replaced by -2z . Equation (16) is equation (15) turned around,
Equation (17) comes from [1, Vol. 2, p. 103] while (18) comes from (16),
see also [l, Vol. 1, pp. 133, 259-261}. Thus (19) is at hand.

Remark: See the remark after Theorem 1.

Theorem 4. Both §,(z) and g,(z) satisfy the same recurrence formula

gy (z) + (El+2Fl z)gn_l(z) + (E2+2F2/z)gn_2(z) + Esgn_s(z) =0,

_ -(n+\))(n+2\)-l) 411! n+v2

17 Torv-1)(mtawrl) * T1 = mrogrl °

E

_ -n(n-1) _ =4(n-1)(n+v)(n+2v-1)
2 7 (mrav)(nrevil) * 72 = 7 (mvov) (ntavil) )

E

_ (n-1)(n=2)(mtv)
Bs = aroe) (aror) (oe ) (20)

where nz2 3 .

Proof: See [1, Vol. 2, Ch. 12].

e




BACKWARD RECURRENCE SCHEMATA FOR GENERATING I,,(z)

The technique for generating 1I,(z) by use of the recurrence
formula for 1I,(z) employed in the backward direction is as follows., The
recurrence formuls

2(m+v+12

Om,v(2) = T 0w 1,4(2) * omo,u(z) (21)
is satisfied by
i(mtv)y
Im+\)(z) and e Km+\)(z) ’ (22)
!nZQ
Kntu(2) = sin(nri-\)))n [I-m-\a(z) - Inr*-v(z)J . (23)

In this work, we always take m a positive integer or zero. For later con-
venience, we also record the formula

réLm-val)LmhﬁE) L2(mtvr2 (mtvtrl)
LNCD =‘L 2 PN }"m+2,v(z)'(m+v+3) g, y(2) - (24)

Iet N be a positive integer and consider that solution of (21),
call it ;plg“\))(z) with m < N2 such that
b

)

N2,y (n) =1 . (25)

> P+l

Clearly tp,gl:l\,(z) is & linear combination of the solutions (22) subject to

the conditions (25) and we readily find that

(pffllf\)’(Z) ) Z[ImV(Z)KN+2+V(z) * e—iﬂ(N‘hl-m)Km'Fv(z)IN*Q-i-v(Z)] (26)

in view of the Wronskian relation

Iv(z)KV+1(z) + IV_,,l(z)Kv(z) =1/z . (27)

NN g T A e L)




Suppose that we are given the normalization relation

6(z) = 2wl () - (28)
k=0
Put
Nl
(N}, y = (N)
8" (z) = (2) (29)
and consider
(N)
i(N)(z) = w ms< N1 ., (30)
mEy e(N)(Z) ’
We can now prove
Theorem 5. lim i(N\))(z) = Im+v(z) , 0sm< L . (31)

N>

Proof: Using (26) and (29), we can write

N+m IN+\)+2(Z)Km+V(Z) ‘I

8(z) [xm(z)-(-)

K (z)
iif\)a(z) TSy I (z)N;XQ J ’ (s2)
kZ:o wklbv(z)-(-)N —% :%—(-) (")kkakw(z)

end the result follows from the known behavior of the Bessel functions
for large order. That is,

mtv

z/e
Taro(®) = S o) | (33)
1 ~m= -1
Kuso(2) = 3(2/2)" T(mrv) [1ro(m™)] . (34)




We next show that ¢(N)(z) , m= Nt1,N,N-1,. . . can be repre~
sented in terms of a generallycd hypergeometric polynomial. We then prove

that for two specific choices of 6(z) , the series (29) can also be expressed

in terms of a generalized hypergeometr%c polynomial; and further, for the
two choices of 6(z), respectively, (z) and the rational approxima-
tions ¢n(z)/hn(z) and 0,(z)/g,(2) » respectively, are equal. Actusally,
we first state and prove theorems for the Case I situation in some detail.
The corresponding theorems for Case II are stated and proofs are omitted
as the details are much akin to their Case I analogs.

Another choice for 0(z) previously discussed in the literature
is I (z) . We call this Case III even though the corresponding i&ﬁ%(z) =

(N)(z)Iv(z)Apo z(z) is not a member of the family of approximations from

which Cases I and II were derived. We defer further analysis of Case III
to a later discussion when we determine closed form error expressions for
all the cases.

HYPERGEOMETRIC REPRESENTATION FOR oiN)(z)

Theorem 6.
N N Nrvtl
Ifﬁi,()—l q,()() (___l,
) 8(¥v-1)
4 4( N+ 3
¢§£{ v(z) =LY NZV)Q ’ wéNg v(z) - (g ) * 3 ’
5 7 -2, .
12(N+v-1),  16(Nv-2)
¢(N) (z) =1+ 2 4 4 ,
N-3,v 2 1
(1) 6(N+\:J 32(N+V'2)3 32(1‘3‘\)-3)5
<9N_4,\,(Z) = 3 + s ,
zZ
(N) 24(Wv-2), 80(Nrv-3),  64(Nrv-4),
wN-S,V(Z) =1+ 2 M 4 + 6 ’
zZ 2 7
(N) (z) = 8(1rv-2) 80(N+v-3)z . 152(N+v-4)g , 128(N+v-5),
(pN-G,\) ) z 23 25 27 s
ete. (35)

SO

.
e o,



k-gb (2n-k-m+l+vr(1-6)e), _ (k+1-m-~ed Domi (ot 1)

‘Pgeek-fe,v(z) = (¢/2)

(2m+en )

m=0

=[2(r16) (en-kt1+v)]0 €6 -k, kt 141 ~eb ,k~2n-v-(1-8 )e ,2n-k+2+y+ef -6
L z 4 2\ 3 X/4

X=4/2° ,N=2n6 ,6=0o0r6=1,¢=0o0r¢=1,

M= e+ (1-e)(16) , (36)

vwhere & = O or 1 according as N is even or odd, respectively. Also

2n-m+1-5
M),y = 2/2) I (ent2-5+v)
Cpm,\) [(m+vtl)
X n_lL'_l"_5] melts  mts
2 -ntm e
2F R £ ), (37)
-2n-1+§ ~y,mtv+l, -2n-1+5+m

vhere [p] is the largest integer < p .

Proof: By induction: The Table (35) is readily developed by use of (21)
and the starting conditions (25) and it is easily verified that (36) gives
the polynomials listed in (35). Put (36) with 6§ =1 and ¢ = 0 in (24)
(in (24) replace m by 2n-2k ) . Then after some algebra, it is seen
that the coefficients of like powers of 2z vanish, which proves (36) for
5§ =1 and ¢ =0 . To get (36) whend = ¢ = 1 , use (21). The case 6 = 0O
is similar and we omit the details. Finally, (37) is just a special case
of (36). To connect these two equations, we set 2n-2kt¢ = m and choose

€ = 0 or 1 according as m 1is even or odd, respectively.

Remark 1: We have given more polynomisls in (35) than are necessary for
the proof. The additional entries are given for convenience.

Remark 2: If in (36), € =6 =1, and if k and v are replaced by ktl

and v+l , respectively, then we get (36) with ¢ =6 = 0 . Again, if in (36),

€e=0 and 6§ =1, and if v is replaced by vt1 , then we get (36) with
€ = § = 1.
10
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HYPERGEQMETRIC REPRESENTATTONS FoR 6(¥)(z)

AND THE FORMS FOR ig‘\),(z)

Case I. Consider the normalization relation

2)° & (- )K(ekrv)r(icty)
o(e) - P2 ST LB | ), vd0,

-]
=

1=1Io(z) ¥ 22 (4)Iy(2) , v=0 , (38)
k=1

which is given in [1, Vol. 2, p. 45, Eq. (2)] .

Theorenm 7.

ft

0(M(z) P T(v1)k! Do,y 2)

& ()¥(ertv)r(ctv)
k=0

- (2/2)1-6 (')n(V’:l)n+1..5 SFo( Bt , 15X)
n!

n
(2/z)l-6 (-) (:‘:l)n+l-6 h(z) 5

X=4/2° , N=2nb , ) =25 , 6 =0ors =1. (39)

Proof: We consider the case & = 1 only as the details for & = 0 are
similar. We dem-nstrate that like powers of X in the sums on the first
two lines of (39) are equal. Thus we must show that

he(v) = Be(v) , (40)
k (=)7 (2r+o)D(r+v) (k) (s+1+v) .
Byc(v) = 1;) Pr o P T TR (e ) (<8 ’

11
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(-)(e-k) 1 (vr1),

Bk(\’) = s? s

n-m=k, nm=s . (41)

The case k = 0 is trivial. Assume k> O . Clearly By(v) is a poly-
nomial in v of degree k which venishes if v = -u , u= 1,2,...,k . A
straightforward calculation shows that b +b, .. = O whence hy(v) also
vanishes if u = 1,2,...,k . Next multiply both sides of (40) by
(ktvtl)_ 1 . Then (40) and (41) take the form

(V) = BR(v) » (42)
. ks (D)T(erta)n(rtv) (k) (s+1+v), T (2k+y)
B(v) = ; Pp o> Pp = r!T(v1) (=8 ) I (kL vir)
X(s-x):
s(v) = L) ()

Now each side of (42) is a polynomial in v of degree ©2k-1 and Bk*(v)
vanishes for u = 1,2,...,2k-1 . Also hj(v) vanishes for u = 1,2,...,k .
If v= <k-v , v=1,2,...,k-1 , thenb% =0 for r = 0,1,...,v-1 and
b, 5 +b;_j =0 for J = 0,1,...,(k-v)/2 . So hff(v) and By(v) have
the same zeros. Further, it is easy to see that the coefficients of

on both sides of (42) are equal. Hence hi(v) = Bg(v) and so also

hy(v) = B(v) for all values of v which proves the theorem.

Theorem 8.

n
oM(2) = (2/e) LMy oy

N=2n-§ ,6=0o0réb=1 . (44)

Proof: By induction: Using (4) and (37), we can readily verify the state-
ment for n = 0, 1 and 2 . A straightforward analysis shows that both
sides of (44) satisty the same recurrence formula which is easily deduced
from (11).

12




From Theorems 7 and 8, and (32) and (37), we have

Theorem 9.
1) = e(zxél’vlm o
8 (z) n
F[nﬂ%i] <'"}m-':aL+6 > -nt nr;& 22
iéfg(z) ) e(z?§§?3(z) ) (z/g)m*v 23 -2n-1+6 -v,mtvt 1, -2n-1+6+m
8 "’ (2) r{m+v+l) OFE(-En-l+6-v;ze/4)
(45)

Thus the result produced by use of the recurrence formula for Iv(z)
employed in the backward direction together with the normalization relation
(38) and the rational approximation given in (2)-(5) are identical

case ITI. From [1, Vol. 2, p. 45, Eq. (5)], we have the normalization
relation

vz ©
z/2 2ktoy )T (ke+2
a(z) '1(“(Jv+2)t)e ) kgo ( 1"(;\))+§)k.’\Q Tiey(2)s v 7 0,

= e? = Io(z) + 2 E;; Ix(z) ,v=0. (46)

Here to avoid confusion, we replace 8 by (0 in the notation of equations
(28) and (29).

Proofs for Theorems 10, 11 and 12 given below are akin to those
for Theorems 7, 8, and 9, respectively, and we skip the details.

Theorem 10.

M1 (okrov)r(krav)
alM(z) = > 1"(2:+l)k! > tp}({lf\),(z)

13




(2v+2)
N+1 -N-1,N+2v+3,1
e 5L . ’ l-l/ez

= (W1)! ?’*3/2
(2vt+2)
= o e() - (47)
Theorem 11,
(2vt2)
(=) = DT Oy (2) %18)

and as & consequence of (44) and (48), we have

(2\#2)2n+l-662n+1-6 (Z) - (2/2')1-6 (")n(wl)rﬁ]_..&

¢n(z) s, 8§ =0o0rs=1.

(ent1-5)! n!
(49)
Theorem 12.
i(N)(z) _ ¢8§3(Z) ) Oy+1(2)
v a™(z) & (2)
-1+5 =1+5 +§
[n - 2 ] -ne™ A ”“+m2 >

N + z
(N)( wé,g(z) (zlg)m Ve 23 -2n-1+8 +m,m+v+1, -2n~1+5 -m
i -

my z) = Q(N)(z) = r(mtvtl) )
2z

p 2016 ~2n-3/2-vtb
11 -4n-3-2v+25

(50)

A FURTHER INTERPRETATION OF THE
BACKWARD RECURRENCE PROCESS

From Watson's treatise on Bessel functions [5, p. 295], we can
write

Ionto-g+u(2) = Tong,w2(2)Iy(2) = Toney s, \+1(2)T41(2) (51)
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(2) = op
Tont1-g ,v+1 ®0,v

(z) , N=2n6, § =0oré =1, (52)

where (N)(z) is defined by (37). Consider the case 6 = 0 oniy. We
put (51) 17 the form

(z)
Iy(z) _ _Tenrwre(®) _ T, v®
Ix:l(z) " nf2) = I+1(2)Ton y+o(2) > n2) Ton,y+2(2) (52)
Further, we can put
E (2)
Qn(z) = az_) ’
2ntvtl 2ntvtl
(2/2)" Tonr1,v+1 (2/2)"" Ton,yr2
Eq(z) = T(2ntvr2) > Fn(z) = T(2mvi2) +(54)
Now it is known [5, p. 302] that for z and v fixed, z # 0,
lim Ep(z) = I,(z) , lm Fy(2) = I,4(z) . (55)
n— o n—>w
From (44) and (52), we have
n 2
Yoen(z) (-)™(z/2) hp(2)
Ba(2) = In(2) (w—l—)%é—) () ey » (59)
where y,(z) and hy(z) are given by (3) and (5), respectively, with
6§ =0 . But for z and v fixed, z # 0,
lim Lp(z) =1, (s7)
n—>wo
see (9). That is,
N o X I L ogn(®) o 58)
im E(z) = lim —————— = —_ Y z) .
N—>wo n n—»w F(WI)hl’\(z) n—ow I‘(v*'l)G(N)(Z) Y




A similar analysis can be mede for Fp(z) . Also, a like study can be done
for the Case II scheme. We omit the details.

Further, the above shows that the backward recurrence scheme for
the computation of zI,(z)/Iy+1(z) is the same as the well-known truncated
continued fraction representation which in turn is the same as the main
diagonal Padé approximetion for this function.

ERROR ANALYSES

In the first part of his section we develop closed form repre-
sentations of the error in imEQ(z) for cases I-III under the assumption

of exact arithmetic. This type of error arises because N is finite and

is called the truncation error. From each analytical representation of

the error, we deduce an asymptotic estimate of the error which is very
realistic and easy to apply in practice. The results for Cases I and II

when m = O are much better than those given by (10) and (19), respectively.
Further, for Cases I and II, if z ana vy are fixed and n is sufficiently
large with respect to m , the relative error in the approximation for
Imy(z) 1is essentially independent of m .

An analytical formulation of the round-off error is developed in
the latter part of this section where it is shown that this source of error
is insignificant.

We now turn to a study of the truncation errors.
Case I. Let

B(2) = 1, (2) - 1$12) (s2)

()
where i, .(z) 1is given in (45).
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Theorem 13, If v 1is not a positive integer or zero,

n 2n+2
-) I(n+15+ 1
oFh(2n-1+5 -v;2 /B (2) - L (ii£§%f(2n+éf5+;§ \aImﬁv(z)lFé(n+2,-n+6-v |22/4) .

_ (_)5“’(2/2)2!1"'2-6"'\)

T

r(ent25+v) sin vm l-m-\)(z)IE’n‘fQ--éﬂ)(z)

2( _)m+6 (5/2)2n+2_5+\,
= T r(ont2-5+v) Toptog+y(2) Ky (2)
(=) m(zfe) 2
* T(ent2-5+v) sin v logtoog+y(Z)Ine () - (60)

Equation (60) can be rearranged so that with the aid of L'Hospital's theorem,
we can get a representation of the error when v becomes a positive integer
or zero. We do not give this result, However, for arbitrary v , we always

have
)P 2)21’1*21- +1-§+ 1
FR(-an-16v;2%/)E{N)(2) = ( (S{)!I‘(en'ré?aw) = Imv(z)ﬂg(me,-m-v =/ 4)
+5 2n+2-5+v 2n
2(<)" o o\(z/2
- Lo s (M (2) + r(emz-s(fzgrzem&éw)’ (61)

where s = nd+v(s=») if v is (is not) a positive integer or zero. Clearly
the backward recurrence scheme is convergent. Further, for n sufficiently
large, n >>m , the relative error is essentially independent of m . For
convenience in the applications we record the formula |

(=)(2/2)°™ Pr(n+15+v) .
Exglf\);(z) = (nt1)'T(2n+25+v) - 1m+\,(2)[l+0(n l)]

gi_)m+6 (z/@2m2-6+v
+ r{ent2-5+v) 12n+2-6+v(z)Kanv(z) *

(62)

17




Proof: We have need for the formula [l, Vol. 1, p. 216]

a+b
Ta(2)Ip(2) = F(aflif(b+l) oFy (a+1325/4) gF, (b+1522/4)

z/2 &b F ((a+b+l)/2,(a.+b+2)/2, 22)’

= T(atL)r(br1) 2 3\ at1,b+l,a+tb+l (63)

where it must be understood that none of the numbers atl , b+l , atbtl
is a negative integer or zero. Now let

Ay(2) oFl(m+v+l;z2/4)OFl(-Qn-l+6-v;22/4)

_ T(mrv+1)r(-2n-1+5-v)
B -2n-2+5+m Im+v(z )I-2n-l+6 -v(z )
(z/2)

6 2nt2-§ -m
_ (=) vty (2/2) 7 L () )
T r(e2nt2-5+v) sin vn mty -2n-1+§ -y\ %

il

-]

2k
D ez (64)
k=0

Then

w

2 -1 -k,2nt2-§+v-k
= [ kk!(-?n-1+a-v)k] 2Fi(m+;+1 1

cmde) +m>
-n 2 )\ 2 /x

= (-2n-1#6 -v), (m+v+1), (-2n-1+8+m)y ’ (65)

whence

m-1+§
2

a.k=o,k=l+[n- ],...,2n+l-6-m,

18




(=)™ () (kv 1)

+2-§-m +4.-28 -
S +on+2-5 -m p4n+4-26 a“r(en+2-5+v)r(2n+5-6+v)
( m, 26_) - ﬂ)
T2 2 T2 2
X k\ k ,x20. (66)
(2n+3-6+v)k(l-m-v)k(2n+3-6-m)kk!
Thus
[qm-1ts] / _pymelt8 o omts
R 2’ 2 2
Am(z) = 2F3 ’ z
=2n=1+§ -v,mryt 1, -2n-1+§+m
+ (')6"1"(111*\”"1) £212)2n+2-6 o I (z)1 (2) (67)
r(2n+2-5+v) sin v -m-Vi®/72n+2-5+y ?
and in view of (23), we have the alternate representations
2nt2-5 -m
_ (Prr(mtori)(z/2) a2 e .
An(z) = T Gomosty) sin o dmv(2) [ = 2 () Koy gay(2) * Tonryg+u(2)

2 2
-2n-1+§ ~y,mtvt+1l,-2n-1+5+m

oF

[n_E:%ié] -n+E:lﬂi,_n#Eﬂl
3

‘)

12n+2.5+v(2)[§ (=) Ky (2) + Im+\,(z)] .

(68)

2nt+2-§ -m

, (nr(mevt1)(z/2)

r(ant2-5+v) sin vt

As a remark aside, the combination (26) and (68) ylelds (37) and so we have
an alternative proof of (37). Using (45), (59) and (67), we can write
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PR (-2ne1+6 -v522/a)z(1)

(z) = Imv(z)Oan)(-En-l% -v;z°/4)

(z :2 )m+\)

.2 T4 oy
- r(m+v+1)[oF1(m+“+1’z /4)OF1( 2n-1+5 -v;2°/4)

2nt2-§ -m

_ (Pnr (1) (/o)

T(ent2-5+v) sin vy I-m-v(z)12n+2-6+v(z)] ?

and since

n
.2 sy - =) T(ntl-s+v) 1
oFF(-2n-1+5 -v32°/4) - oFy(-2n-1+5-v;22/4) = (0t 1) (T (20025 9] 172\ n+2, -nrt6 -y

22/4>,
(69)

we readily find the first part of (60). The second part of (60) follows
from (23) or it could have been found by repeating the sbove analysis with
the second equation of (68) in place of (67).

Next we briefly examine the situation when v 1is a positive
integer or zero, With v = r+te¢ , the ;F, on the right-hand side of (60)
can be expressed as

1 S+rf1 = (z/2)2k
¥ ( |22/4)= e r< |22/4)+
1 2\mt2, -n+5 =v 12 n+2, ~nt -y }Fn-zégrfl (n+2)k(-n+6 -\))k

_ F“”(l [2#/4)+ ()™ () 1 (afp) 2R

12 N2, s -y sin nul(ent3-5+r )P (nt1-6+v ) (1-¢)

’

>< 1F2(;n+3_6+r’1_€ | 22/4> . (70)
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The first term on the right-hand side of (70) is defined when ¢ = O .

When the second term on the right-hand side of (70) is multiplied by the
coefficient of the 1F, in (60) and the result is combined with the term
involving Ip+,(2)Ioptoog+y(2) in (60), it will be seen that one can pass

to the limit as e¢—0 . The final expression is not of great interest

and we omit further details. Equation (61), which is important for practical
considerations (see later numerical example) readily follows from (60) and
the above remarks, and (62) is but a simplified version of (61).

Remark: Iet v , n and z be fixed so that E&N)(z) is a function of
m only. Then E( )(z) satisfies the recurrence formula for Pm, o(2), see
(21). This is ev1dent from (30) and confirmed by (60).

Case II. Let
FV) =1, () - 1) (72)
where 1&53(2) is given in (50).

Theorem 14, If neither v nor wts 1is a positive integer or zero, then

-z 2n+l—6(-2n-3/2+6—v| > (N )( )

e F 4n-3+25 -2y

(22)2n+2-6(

1 -z
. V2)onros® Imro(2) g (251
(2n+2-5)!(2n+2-6+2v), .~ ¢ 2\2n+3-5 ,~2n-1+6 -2v

2z)

(-r(2/2)°P B0 | (2)Typ g4y (2)

T{2nt2-§+v) sin vn

(72)

which is the same as the right-hand side of (60).

If v+% is a positive integer or zero, call it r , we have

2l




e F

-z 2n+1-<5(-21r1-2“5-r ‘22>F(N) 1(2)

-4n-4+25 -2r whr+s

2nt2<5
(22) (r+1l)ontos

z -r,1
- e I 1(z) FE( T |2z)
(2n+2-6)!(2n+3-5+2r)2n+2_6 m+r+§( )2 2(2n+3-6,-2n-2+5-2r

§+r+l ants5/2-§+r
(-) m(z/2) / I {z)
mrsfed | () - Tnpoy(2)]
* T(2n+5/2-6+T) Wrlptr+d(2) = I p4(2
r=0,1,2,.00 5 p,=1lifr==-1,p =2ifr20. (73)

In particular,

(=) (1/22)% Ty 155 2)

(W) -
FO,-%(Z) Kone3/2-5 (2)
- (=) (2nz)%e P (a/2) T [1ro(xh)] . (74)
[(2n+1-5):]2

As in Theorem 13, (72) cen be rearranged to get a representation for the
error wvhen v is & positive integer or zero. This result is omitted.
However, for arbitrary v , v # -3 , we always have

-z _on+lss -2n-3/2+6-v| ) (V)
(-4n-3+26-2v 2z F o(2)

11
2nt2-6 1
2 o+l
= . (2z) ( 2)2n+2-6 e %1 (2) Ft(%—v,l l2z)
(2n+2-5) ! (202-6+2V) 5 1o ¢ mro(Z)oFo \ont 35 , -2na1+5 -2
mt§ ont2.H+v
2(-) " (z/2)
+ I . .
r(ent2-6+v) 2n+2-6+v( )Kﬁ+v( )
2n
+ of(z/2) ) ’ -
T(2n+2-6+v)[(2n+7-5+v)

22

2
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where t = v-3(t=2n+1-§+2y) if v is half & positive integer (is a posi-
tive integer or zerc) and where t = » for all other v . C(learly, the
backward recurrence scheme is convergent.

Further, for n sufficiently large, n >> m , the relative error is
independent of m . For convenience in the applications, we record the
formula

- (22 )2n+2-6 (v+%)2n+2’6e-z .
Fa,o®) = T(emracs) 1 (Bnre5vav),p, o o Im+v(z)[l + o(n~))
m+d 2nt2-8+v
2( )r(gr(jﬁgw) Tpmeos+o(2)Knro(2) 5 v # -3 .(76)
Proof: ILet
i - -2n-3/2+§ - &-
Bp(z) = {elel(gmr;zﬁll‘Qz)} {e lel(-sz-S{ea -2:!22>} = ;) bkzk - (17)

In view of (1) and (12), B (z) = Ay(z) where An(z) is given by (64).
Hence by = O for k odd and bpy = 8 vwhere a, is given by (65)-(66).
The analysis proceeds as for Case I and we find (72). Notice that the
right-hand sides of (72) and (60) are identical.

For the proof of (73), let Vm,\,(z) be the entire first term on
the right-hand side of (72), that is, the term involving the oF> . Let
v = r*%*e s r=0,1,2,... . Then we can write

w2021 |2
Vi, v(2) =€, (2) (1% e)opro_ 1oFS! onr3s , -2n-1+6 -2v] <2

emtpsster ™ 1
+ 2_ Ck2 + Z_ ckz2k | ’
k=r+l K=2n+3-6+27 4

2nt2-§ -z 1_
(22)"" " Te L, (2) ()

C (z) = T » Cp T ~
v (2n+2-5).(2n+2-6+2v)2n+2 % (2nt3-8 )k(-2n-1+5 -2\;)k

It is easy to pass tc the limit when ¢-—>0 and (73) readily follows.
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Now for arbitrary a and b,
1
aI_%(z) + bIi(z) = (2/nz)3(a cosh z + b sinh z) ,
2

Further, from (16), with n replaced by 2n+1-§, see also (17), and
v=-%, gn(z) reduces to

1
. __l = “2.2
zFo('en'l+5 Bre-3- 2z) (n/22) " K onr5 /05 (2) -

Use these data with r= -1 and m= 0 in (73) to get the first line of
(74). Derivation of the second line of (74) is trivial and details are
omitted. Since

-2z)

b

I_%(z) = (Enz)-%éz(l+e

i .z (N .
it is easy to show that (2nz)% i(l)(z) is the main diagonal Padé approxima-
-2

tion to 1+ e™2% . Vhen allowance is made for a change of notation,(74)
is a previously obtained result [1, vol. 2, p. 74, Egs. (34), (35)].

When v =rte , r a positive integer or zero, we can rearrange
(72) after the manmer of the discussion surrounding (70) and use L'Hospital's
theorem to get the limit as € -—0 . The result is not of immediste interest
and we omit details. The statements (75) and (76) are readily derived and
here too we skip details.

N

Remark: Fﬁ )(z) with n, v and z fixed and m varisble satisfies the

sV
recurrence formula for P v(z) » see (21). This feature is clearly depicted
b

by (72). In both (62) and (76), the term involving Knty(2) is of lower
order than the term involving Im#v(z) . Neglecting the former term in each
equation, we have i
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Theorem 15.

Eg\))( z2)  (=)" r(n1s+v)(2nr25) !22\)-1(%)“(2/2 Y e® p+o(n~1)]
i (n+1)!r(2n+2-5+2v)

B

- n+l o § 2
OO RO -

Vo

This shows that there is little difference in the accuracy of the
two schemes for the evaluation of Im*v(z) . Computation-wise, if the

backward recursion scheme is used, Case I requires less operations since
the associated normalization relation, see (38) and (39), uses the sequence

N
{¢£ 3(2)} s k= 0,2,4,... wh%le the Case II normalization relation, see
3
N
(46) and (47), employs Oy v(z)-r , = 0,1,2,... . Also to get Iv(z)
b}

by the Case II scheme, e? must be evaluated. On the other hand, if |z|

is large, R(z) > O , one often wants not I,(z) , but e™®I (z) . The
latter is automatically furnished by the Case II technique. It appears that
for the same n , the Case II procedure might be more accurate than the

case I scheme even for moderate values of |z| , R(z) > 0 , in view of

the presence of e? in the numerator of (78). Also, Case II is favored
when R(v+6) < 0 . Improved information cannot be derived from (78) as

the estimate is for fixed m , v and z . For error analyses it is sug-
gested that one use (62) or (76) as appropriate. Further discussion is
deferred to a later part of the paper where numerical examples are presented.

If z is pure imaginary and v 1is real, then z—vIv(z) is real
and definitely the Case I procedure is better than the Case 11 scheme since
the former requires real arithmetic while the latter demands complex arith-
metic,

If only I,(z) or only e'ZIv(z) is required, use of the
rational approximation scheme or the equivalent backward recursion scheme
demands about the same number of operations. In the absence of a priori
estimates of the error, the rational approximation scheme azmployed in the
following fashion is preferred. It is sufficient to consider the Case I
situation. Compute ¢,(z) from either (3) or the combination (37), (44),
and hjy(z) from (5), for n= 0,1 and 2 . Compute subsequent values
of yn(z) and hp(z) by use of the recursion formula (12). Comparison of
¥,(@)/hy(z) with ¢n+l(z)/hn+&(z) affords an estimate of the error. If

one requires I,, (z) or e Iy.,(z) for k= 0,1,2,...,r , then obviously
the bacxward recursion sci.2me is highly advantageous.
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Case III. Consider

ir’l\),( = Ipey(2) - (N)(z) ’ (79)
m L)
In+y(z) = wc()lf\),(z) , (80)
where (plgN\Z(z) is given vy (37).
Theorem 16.
6 -2
(N), \ _ (-) +mI2n+2.5+\,( )w(m )(Z)
“ao) " QP
¢’O,v(z)
§+m 2nt2-m-5
- & ;g:r\:g-(-ézﬁg Tontog+v(2) iy n(2)

m~-1 m-2
[‘4 2’ 2

l-v-m,v+l,1l-m

, 0<ms 2n+tl§ , (81)

22>
2
273

2n-1+5 -y, v+l,-2n-1+§

3
In,n(2) = J‘ 1) (-n+__ -t

)

and it is c(‘l?a.r that the computational scheme is convergent. Further, if
ve treat G (z) with n, v and 2z fixed and only m as a variable,

then (-) GISIN\),(Z) satisfies the recurrence formula for ¢ v(z) , see (21).
2 3

Thus
(N) (N) 2 (m+vt+l) (N)
nr+2,v(z) = m \)( ) - Z m+l \)( ) >
5+1
(<) 1 (z)
(N)( y=o0, G(N)( ) = (%we-sw . (&)
®o,v(2)
26
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Finally, for convenience in the applications, we record the formulas

-l m-l m-2
2n+4—26+2v-m -y-m, v+l l-m 2

2

m+5
(™) (=) (z/2) -1
O, o(2) = l"(2n+2-6+v)r‘(2n+3-6+v)r‘(v+l) [1+o(a-1)]
1,(2)
(83)
ms o+ 4-25+v-
;Nz() (-)r(Er(jéi)+v)I‘(2n+3.5rﬂ;\(§+V) [1rom-1)] [1ro(a™)] . (84)

Proof: Using (37), (67) and (69), we find

‘N)<z)c‘N)<z) _ () (nzfe) Tppio5+o(2) [To(2) Ty (2)-Ty(2)Inen(2)]

sin v

and in view of (23)
(N)(Z)G( () = (-1, aM,(z){ ()1 (2)K , (2) - Im,,\,(z)x\,(z)]} :

From (26), the portion in curly brackets in the latter equation is

(-)%pém;e)(z) . Hence the first line of (8l) is at hand. The remainder
3

of (81) follows from (37). The first line of (81) coupled with the dis-

cussion surrounding equations (21)-(25) produces (82). By the confluence
principle, see [l, vol. 1, p. 50}

(N), \ _ (EAZ 111\&&\;1 [—-](Nll__
cDO,V(Z) -

+
riv+i) N-l-v,vtl,-N-1

(2/2)" r(newr2)

r{vtl) 0 l(

w+1322/4) [1ro(w1)]

2/2)" o)1, () [ro(t) (85)
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whence (83) and (84) readily follow with the aid of (33).

Error-wise, it is difficult to compare Cases I or II with Case III
without some simplifying assumptions. If n >> m , using (33), (62) and

(83), we get
{m-l-l m-1 m-2
2 J< 2’72 Zz)

oF3 l-v-m,v+l,1-m

2m+2-26 +2v-m

(N) mHm+S
Gm,o(2) ()" (a/2) (t1) L () [1+ro(m1)]
E(N) ) I'(2nt3-5+v)T(n+1-6+v)r(v+l) I,(2)Ipey(2)
m,v(z
(2/2)°" §+1
z -V
= Tlenssry) 000 ) o (86)
and so Case III is superior to Case I. Now suppose m is sufficiently
large so that in (62), the second term dominates the first term. This is
certainly the case if m = 2n+l-6-d , d << n , in view of (33) and (34).
Then
(N)
Gp.u(2) -6-m-v .
m,v' %) (z/2) T (m+y) [1+o(n-1)] [1+0(m1)]
—.(N) 2Km+v(z) -
E .(z)
m,v
= (2/2)f [ro(a™h)] irom)] (87)

and under these conditions there is little to choose between the two cases.
Overall, it appears that Case III gives better accuracy than Case I. How-
ever, for Case III, one must know Iv(z) while for Case I no such knowledge
is required. For all z> 0 and all v , O < v < 1, coefficients are
available to facilitate the rapid evaluation of J,(z) and I (z) , see

[1, Vol. 2; 6,7,8]. (Actually, much more information is given in these
sources.) All of this can often make the Case III approach rather attrac-
tive. See the numerical examples.

Next we consider the round-off error.

Cases I,II. It is sufficient to trace the effect of a given round-off error
in a single entry of the table generated by the backward recursion process.,
Thus let Ap be the symbol for the round-off error in ¢ . Suppose that
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A¢(N3(z) = 0 for m = N+2,N+1,..., S+2 ,
m

>

A:pm,\),(z) =y form= SO+l , (88)

where S = 2s-y and ¥ is 0 (is 1) if S 1is even (is odd). Hence

Bof(2) = apl 5 m < 2svly (89)
M2y = B2y . (50)

For the Case I procedure, we have

@ 0@ ¢iM@) - wE)a)

m+v( z) = (N)( ) 9( )(z) _ we(S)(Z)

oo™l )(Z) AOR (”)m}

Lo, ) (S’(z }

(V)
wora) o - Em,v(z)]
(s)
m,v(z)J e(s)gzg
i e * 77 oMy )

and these equations also hold for Case I1I provided E 1is replaced by F .
If S=N, that is, s=n , t e round-off error is nil. Indeed, this must
be since the starting value Oyt N) is immaterial. It is clear that if

all parameters and z are fixed, then the round-off error decays to zero
as n-»o , For n sufflclently large with respect to z , |a|< 1l and
we can take ‘l E(N)(z /E(s (z)‘< 2 . Also it appears heuristically that

e

lEé?z(z)

< Fv(z) - (z/2)°/r(v1)| . (92)
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Thus on this basis,

IAig\)’(z)ls 2u|1,(2) - (2/2)" /r(v1)| (93)

is an approximate bound for the round-off in a single entry of the set of
numbers generated by the backward recursion process. If w is the maximum
round-off error in each entry, then the total round-off error in imlfv(z) is

approximately bounded by N times the right-hand side of (93). Thus the
round-off error is insignificent, and it is easy to estimate the number of
extra decimals which must be carried so that the total round-off error in
the process lies within the error when the arithmetic is exact. Equations
analogous to (92) and (93) for Case II are easily derived and we omit details.

Case IIT. We have

w o, (2)a ()
ALV (z) = X, (W),
e ‘PO,v(z)[‘pO,v(z)w((),s\{(z)]
0 R oD .

Using (26), a straightforward computation shows that

1l

Aue(2) = ()% [Tagraoyra(2)omse s ma (21 ooy ro(2)Kastpayr(2)]

X B (25,020 + (I (20K (2)]

my+l (N) (m-2)
= () $psioy,Po,y (2) >0,
=0,m=0 . (95)
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yEYrL (N)( )¢(N) @ )‘P(m-2)

w(- -
Rl
Vv ‘Po,v(z)

Obviously, this is nil is S=N or if m= 0, Now using (37), we find

{N)
Postoy, o) _ (z/2)
(N)( )p(N)(z)

on+2s+3-§ Y-m
Y T (v+1)r (m+v+1)

r(2nt2-5+v)I(2s+3-5+v)

O,v
[n-s-l+5 'V] nts+iosY 5 =Y 148y o
F 2 2 4
2'3 -2n-1+5 -v,2$+3-y+\:,-21rf-2s+l+5 -y

[ T N R K T
22> an_ 2 J(nf 2 T3

=2n=1+§ =v,v+1l, ~2n=-1+§ 2n-1+§ -v,mtyutl,-2n-1+5+m

(97)
and it is clear that rounding errors are insignificant. Indeed, if all

parameters and 2z are fixed, then the round-off error tends to zero as
n—o .,
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FORMULAS FOR J,(z)

As previously remarked, the analyses for I\,(z) hold throughout
the cut complex z-plane, -n < arg z < 7 , and throughout the cut complex
v-plane |arg v|< n , although it is sufficient to have 0 < arg z < /2 and
R(v) > <1 . Nonetheless, we indicate how to get results for J,(z) directly
and to facilitate use of our findings, it is convenient to restate some of the
key equations. We omit discussion of Case II since it requires complex arith-
metic to generate J,(z) which is real when z and v are real. In any
event, the reader should have no difficulty in establishing the Case II equa-
tions for Jv(z) once it is observed how this is done for Case I.

All developments for J,(z) ere readily gotten by use of the
equations

-in/e) _ e.i(nrw)n/aJ

Im+v(ze mw(z) s (98)
me(ze-in/e) _ %Tie-i(m\)n/eﬂii\))(z) ’ (99)
P0Gy = 5 (2) + iy, (2) (100)
v m+y mtv ’
m m
Ypey(2) = (=) csc wr[(=) cos v Jpy(2)-3_p_o(2)] (101)

where now in the J,(z) analyses, -m/2 < arg z < 3m/2 .

It is convenient to introduce the following notation. Unless
indicated otherwise, if A is used to signify some function or equation
in the developments for 1I,(z) , then A* is used to signify the correspond-
ing function or equation in the developments for J,(z) . In illustration

Ty(z) = (2/2) oFy(v+15-22/4) (1)

and both Jp,,(z) and Yp,,(z) are solutions of the difference equation

* 2(mtv+1l * %*
o o(2) = LB N (2) gy of2) - (21)x
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Alsvo

mty

Taro(2) = $ELTy wo(l) (33)%
=M=V
Vo) = = EE— i) 1ol (3a)%

We now present the key results pertinent to Jy(z) .

Theorem 1,

(z/2)" ¥,(2) . s, (2)
Iy(2) = F(v1) h:(z)+ Ry(z) , Ry(z) = h: ) (2)*

where *;(z) and hp(z) are given by ¢ (z) and h,(z) , see (3)-(5),
provided there we replace 22 by -2z2 s that is, replace X by -X.

* . &3 -
Further, Sh(z) and Sp(z) are both given by (8) and Ri(z) = (-)"Rn(z)
see (10).

Theorem 2.* Both ¢:(z) end hj(z) satisfy the same recurrence formula
(11) if there we replace X by -X .
We state without proof the following equations.

2n-m+1-6

(N)*( _(z/2) r'(2nt+2-5+v)
P,y z) = T{mtvtl)
[n_m-l+6] =1t mts
1 - f -
X oFs 2 2 -2 ). (37)*
=2n-1-y+5 ,mrtvt ], ~2n-1+6+m

v ©
e*(z) _Lz.'@_)_ = Z M J2k+\)(z) . (38)*

T(v+l) — r{v+t1)k!
G(N)*(Z) = (2/2)1-6 (ij;_?m_l-sl h;(z) . (39)*
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Theorem 9.%*

(N) ”o,v n
3o 7 2
N h(2)
(y* o2 <—n+“"§*5 i 2>
(z) F -2z
30y = B (o 2 v e L (s
® oFin)(-2n-l+6-v;-z2/4)
Let
(W)= (V)
Ep,o(2) = Imy(2) = dpey(2) (59)*

(V)
where Jp.,(2) 1is given in (45)*.

Theorem 13.% If v 1is not a positive integer or zero,

(ye)emzr(nﬂ-&w)
(n+1)'r(2n+2-5+v)

op'l‘ (-2n-1+8 -v; -z2/4)Eg3*( z) +

(_)?ﬁ(z/2)2n+2-6+v

= sin vnr(2nt2-§+v)

I _m-v(2)Iopro g+ (2)

Ant2.§+
- (z/elEn §5+v
I'(2nt2-s+v)

J

pntog+v (2 ey (2)

2nt2-5+v
(n/2)(2z/2)
tan vr F(2nre5+v) Jmrv(Z)ona s+u(2) -

Equation (60)* can be rearranged so that with the aid of L'Hospital's

1
2
Jm+v(z)1F2(n+2,-n+6 -v |'z /4>

(60)*

theorem, we can get a representation of the error when v becomes a posi-

tive integer or zero. This result is omitted.

we always have
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n
oF1(-2n-1+8 -v3-22/4)E

where s = n=b6+v

(2/2)°™ Pr(nr15+v)

N)* 1
(@) = - eyt Jm‘”ﬂ%(mz,-m-\, |—22/4)

a2nt2-6+y
_n(z/2)

Temas i) “ente-b+y(2)mry(2)

ol (z/2)>)

r(2nt2+v)r(2nt3-6+y) ’

(e1)*

(s =®) if v 1is (is not) a positive integer or zero,

Clearly the backward recurrence scheme is convergent. Further, for n

sufficiently lar

ge, n >> m , the relative error is essentially independent

of m . For convenience in the applications we record the formula
2nt2
(M), . (2/2)77 T(n+1-s+y) -1
Em,v (z) = - (n+1)'T(en+2-5+v) Jm\,(z)[ho(n )]

Remark: let v , n and 2z be fixed so that Elg

n(z/2)E
F(2n+2'5+\") J2n+2-5+v(z)Ym+v(z) . (62)*

N)* .
,v (z) is a function of
(N)*

m only. Then Em’\), (z) satisfies the recurrence formula for cp;,\,(z) R

see (21)*.

Let

*
where Wzslr,‘\z (z)

A% (2) = gmeo(2) - 3N) (79)*
J (z);p(N)*(Z)
iN@) = e (80)*
9. (2)

is given by (37)*.
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Theorem 16.*
-2
(W) JE’n+2-6+\)(z)“’(m " (2)
Gy (2) = (N)
(z)
on+2-m-§
. - F(m“';zérzlgza_,_v) Jomr2-s+v(2) L n(2) »
. lﬂ_l-_ﬂ Lol m-2 2
2 J< 2 2 A
of3 levem,vtl,1l-m

», 0<mg< 2ntl-§ . (BLl)*

3

*
(z) =
th Py < [n_s__ij <_n+6—;¥ R -n+6-§

P 2
273

-ze>

*
Further, (N) (z) satisfies the recurrence formule for eg4,(2) , see (21)*.

~-2n-1+§ -v,vtl, ~2n-1+§

Thus
M 2(mvtl)  (n)x
xgx-\}-‘%,v( = ( zv Glgrz.,v(z - G(N) (z)
(z)
e"¥*(z) = o, afM*(2) = '—2'1(%*—61— (82)*

(z)

Finally, for convenience in the applications, we record the formulas

[m-ll, m-1 m-2
2i 2 2
An+4-26+2v-m

(N) (z/2) T(mtv) 2°3 loy-m,vtl,l-m
(2) = Flen+t2-6+9 )T (2n*t3-5+v ) (VF1) 79(2)

22
Bro(a ],

(83)*

4nt4-25+v-m

Gﬂ (z) = é?éize-aw)r(ems(;n::; [ron™)] biroa™)] (Be)x
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NUMERICAL EXAMPLES

let
N=5,n=3,8=1,2=2/3,v=1/3,
Values of ¢é§3(z) s O(N)(z) and Q(N)(z) are given in the table below,

cpg\),(Z)

]

1
19
305 6™ (2) = 880 75120/61

5984

40145 a™(z) = 1 38952 97360/6561
2 84999
11 80141

OHMNWAEUNO®

Since

v
2, -2/3
%%Z§%7-= 0.77645 82114, e / = 0.51341 71190 ,
v

the Case I and Case II approximations are

0.84272 08930 and 0.84272 10326 ,

respectively. To 10 decimals

11/3(2/3) = 0.842772 08819 ,
Thus the errors in the Case I and Case II approximations are

-7 -
-0.111°10 and -0,151°10 6 s

respectively. Using (62) and (76) each with O(n'l) and the term involving
Kh+v(z) neglected, the spproximate Case I and Case II errors are
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-0.110-10"7 and -0,149°107% |

respectively.

Again we 11lustrate the Case I and Case II schemes.,
data.

8 DU WD O B

DN > NN O

For a second example, let

l,z2=2,v=0

We have the followling

38

N
. oM (2)
6 1
5 6 e(M(z) = s12
4 31
3 130 a™(z) = a515
2 421
1 972 e = 7.38905 6099
0 1393
m
case I Case IT Tp(2)
2.27986 9067 2.27972 4265 2.27958 5302
1.59083 4697 1.59073 3672 1.59063 6855
0.68903 4370 0.68899 0613 0.68894 8448
0.21276 5957 0.21275 2446 0.21273 9959
0.50736  4975.10"C  0.50733  2755-10~1  0.50728  5700-10-1
0.98199 67271072  0.98193  4365-10-2  0.98256  7932-10-2
0.16366  6121-10"2  0.16365  5728-10-2  0.16001  7336-10-2
Error Relative Error
Case I Case 11 Case 1 Case II
-0.284-10°3 -0.139-.10"3 -0.124.10-3 -0.610.10-3
-0.198.103 -0.968.10"% -0.124.10-3 -0.609.10-4
-0.859.10-% -0.422.10"% «0.125.1073 -0.812.107%
-0.260-10"% -0.125.10~% -0.122.10"3 -0.587.10-4
-0.793.10"° -0.471.10~° -0.156-10"3 -0.929.10-4
0.571.107° 0.634.10"° 0.581.10°3 0.645.10-%
-0.365-10"% -0.364.10~% -0.228.10-1 -0.228.10-1




Here the entries in the Ip(z) column are correct for the number of
decimals given.

Using the first lines of (62) and (76), each with O(n'l) and
the term involving Km+y(z) neglected, the approximate relative error

for Cases I and II, respectively, are -0.116-10"3 and, -0.537-10“4, respec-
tively.

In the table below, we record the approximate errors obtained by
use of (62) with O(n~l) omitted for m = 6 and 5 and by use of (21), see
the remark following Thecorem 13, for tY=2 lower values of m . This is
called Case I, (62)-(21) in the table. We also present the analogous Case II,
(76)-(21) data. In each instance known tebular values of Kn(2) and 1I,(2)
were used. In practice, we suggest using (34) or the lead term of the
uniform asymptotic expansion of Ky, (z) developed by Olver [9). For

Iomo _6+\,(z) , use (33) or the lead term in the uniform asymptotic expansion

for this function which is also given in the source just cited. We also
suggest that computation of the gamma functions be simplified as follows.
With |R(e)l< 1 and r a positive integer, we have

[(ratl

T(r+1) = r!ra[l+0(r"l)]

T(r+x+l) = r!}

and for r sufficiently large, we neglect O(r~l) . The approximation is

of course superfluous if o = 0. If o =% %— , the approximetion may still
be used though known tables of the gamma function for half an odd integer
may be preferred [lO]. If more precise values of the gamma functions are
required, see [ll}.

Approximate Error

n Case I, (62)-(21) case II, (76)-(21)
0 -0.264-10-5 -0.114.10-3
1 -0.184.10-3 -0.765-10-%
2 -0.797.10~% -0.373.10~%
3 -0.242.10-% -0.110.10~%
4 -0.723.10°5 -0.410.10°
5 0.475.1075 0.536.10-°
6 -0.310.10"4 -0.309.10-%

For & final example, we illustrate Case III using the data of our
second example. We get the following numbers.
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i(N)(z) G(N)(z) Approximate Error

n m mHy {82)-(83) ~(84)
0 2.27958 5302 0 0 0

1 1.59063 6693 0.162-1076 0.121.10-6 0.276.10-8
2 0.68894 8609 -0.162-10°6 -0.121.10-6 -0.276.10-6
3 0.21273 9475 0.484.10"6 0.363.10-6 0.551.10-6
4 0.50730 1806-10~1 -0.161.10"° -0.121.10"° -0.165.10"5
5 0.98187 45021072 0.693.107 0.520.10° 0.661.107
6 0.16364 5750102 -0.363-10"% -0.272.10"4 -0.331.10~%

In the above, the approximate error (82)-(83) means that GSﬁl(z) is

approximated by (83) with m = 1 and O(n~l) neglected, and subsequent
approximate values of the error are found by use of the recursion formula
in (82). Use of the recurrence formula in this fashion is stable as the
magnitude of the error in an increasing function in m . Also Eq. (84)
means this equation with O(m~l) and 0(n~l) neglected.

A measure of the accuracy of the three schemes treated can be had
by use of normalization relations, Thus if the Case IIT procedure is employed,

N
then (38) and (46) with Iyx+,(z) replaced by i£+3(z) are available as
checks, Similarly, equations (46) and (38) are available as checks for the

Case I and Case II techniques, respectively. For some other useful normali-
zation relations, see El, Vol., 2, pp. 45, 463.

Analyses of the error in the backward recursion process for the
solution of a general second and higher order linear difference equation
have been given by & number of authors. Some authors have studied the
case of Bessel functions directly. We make no attempt to survey the various
contributions here. DPertinent references are given by Wimp [4]. Suffice it
to say, none of the analyses have the precision and simplicity of those
developed in the present paper. We deliberately chose N and as a conse-
quence n small (¥=5,n=3) in our numerical examples to put our asymptotic
estimates under a severe test. The efficiency and realism of our error
formulas is manifest.

)

CONCLUDING REMARKS

It appears that the techniques developed here for the Bessel func-
tion Iv(z) can be extended to analyze more general second and higher order
difference equations. 1In particular, it would be useful to have analogous
results for QFl(a,b;c;z) and its confluent forms. This we intend to do
in future papers.
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