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This investigation encompasses research to evaluate the possible effect of the
stochastic and non-uniform nature of the transport processes on nonisothermal
nonlinear reactions. It is especially in fast exothermic reactions that the
magnitude of these effectE could be considerable, as the concentration and
temnperature gradients are often steep as compared to the scale of the stochastic
processes. New approaches to the evaluation of the magnitude of these interactions
are made, and phenomenological models for turbulent flows are proposed, and related
to real flows by tracer experiments. The use of tracer experiments in the design
and study by turbutlent combustion reactors is discussed and a theoretical framework
for the evaluation of tracer experiments in fluctuating quasi-steady flow systems
is presented. The advantages of using reacting tracers in reactor modeling is
discussed. This results in the Laplac, Lr--nsform of the sojourn time distributions
and provides sensitive criteria for reactor design for complex reactions. Design
criteria for stirred combustors are given and the effects of imperfect mixing and
fluctuating inputs on such reactors is described. Design and modeling of fluidized
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.1 ABSTRACT

In the study of chemical reactions in turbulent flows
and packed and fluidized beds, the Uiow itself is Loo ... cpm
cated to allow an accurate analytical description. In the
analytical study of these reactions, some strongly simplified
idealized flow models are commonly used to allow an analytical
treatment. In these idealizations the stochastic nature of
the transport processes as well as their spatial inhomogeneity
are usually neglected. This investigation encompasses research
to evaluate the possible effect of the stochastic and non-
uniform nature of the transport processes on nonisotherlul
nonlinear reactions. It is especially in fast exothermic
reactions that the magnitude of these effects could be con-
siderable, as the concentration and temperature gradients are
often steep as compared to the scale of the stochastic pro-
cesses. New approaches to the evaluation of the magnitude
of these interactions are made, and phenomenological models
for turbulent flows are proposed, and related tc real flows
by tracer experiments. The use of tracer experiments in the
design and study of turbulent combustion reactors is discussed.

The results of this study of the effect of the random
and non-uniform nature of transport processes on nonisothermal
nonlinear chemical reactions in turbulent flows and the be-
havior of energetic chemical reactions under transient and
oscillating conditions should aid in understanding the start-up
and control of chemical reaction and propulsion systems,
unstable burning in rocket motors, and design of supersonic
combustors.
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FINAL REPORT

A difficult problem that faces the design of any com-
e---• -•--I-ant Ic +-hi f;%-+ i-h;t the flows are turbulent

and often complex and defy a complete analytical description.

Mixing processes are very important in any fast reaction and

often they are the dominant factor.

There have been historically several approaches to

1the problem. t

1) Modeling of- the tlow system "uy Louwe simplified •onltion

of the Navier Stokes equations, making some strong assumption

about the average properties of the turbulent fluctuations.

An example of this approach is the work of Corsin (1, 2), and

Spelding's recent work on modeling of combustors.

2) Modeling of the flow system by some simple phenomenological

models such as stirred tank or a network of stirred tanks, and

plug flow reactors (3, 4), or simple diffusional models such

as eddy diffusivity (5).

3) Modeling techniques based on tracer experiments (21). In

some sense this leads to a better formulation of the simple

models mentioned, but it also allows some direct conclusions

as to effect of mixing processes on chemical reactions.

This final report summarizes a six: year effort in this

area. Our approach centered mainly on the third approach on

phenomenological models, based on tracer experiments. As we
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had no experimental program our main goal was to provide better

tools for the experimentalist and the designer, and to provide

a theoretical base for an understanding of the effects that

turbulent mixing processes have on combustion reactions and

the way this effects proper design procedures. The special

and central features of our work in contrast to others. waA

that we made an attempt to include the stochastic and fluctu-

ating nature of turbulent flows. Mcst simple phenomenological

mo'els simply neglect this feature and replace the non-steady

mixing processes with steady state models, which describe the

average nehavior of the system.

It might be useful to divide the description of our

results into two main areas.

1) Use of tracer experiments in the study of reactors and flow

system.

The first publication (ref. 6) still dealt with tracer

experiments in steady flow systems and tried to show the re-

lation and similarity between eddy diffusion and models built

on networks of stirred tanks. it showed that networks of

stirred tanks can describe diffusional process to a very good

approximation. Such models are mathematically far simpler to

treat than models based on eddy diffusion. In complex turbu-

lent flows eddy diffusion itself is only a very approximate

description, and the added complexity introduced by the use

of diffusion models as compared to networks of stirred tanks

is v-• seldom justified. Ref. 6 also introduces methods to

inci ; e local age and antiage distributions, and discusses

their application to reactor modeling.
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In ref. 7 an attempt was made to include the stochastic

nature of the mixing processes in such stirred tank models by

allowing the flows between the stages of the network to vary

with time in a random fashion. The main flow in and out of

the system was still Kept steady. In rcf. 8 the main floww,

also allowed to vary. In these two papers we tried to eluci-

date two things. One is the effect of the quasi steady fluc-

tuating behavior of the mixing process on the overall behav-

ior of the system, and second, how to evaluate and perform

tracer experiments in a fluctuating flow. An understanding

of the lattt•r is !.,iw-rtant if we want to use tracer experi-

ments to model a turbulent flow. The problem is not only iin-

portant in reactor design but also in physiology, ref. 9. A
reactors

useful concept in Modeling / on the basis of tracer ex-

periments is the residence time distribution, arid age distri-

bution as well as local age and antiage distributions. These

concepts derived for steady flow is generalized in these two

publications for randomly varying quasi steady flows, and can

be very helpful in studying such reactors.

A theoretical framework is presented for the interpre-

tation of tracer experiments in quasi steady-flow systems,

where the inflow and outflow, as well as the internal flows,

exhibit stationary fluctuations about fixed central values.

The fluctuating throughrut leads to the consideration of dif-

ferent types of sojourn time distr.'bution of material in the

system. These are discussed in detail, and related to dif-

ferent ways of carrying out tracer experiments on the system.

The standard experiment, in which a known amount of tracer is

injected quickly into the inlet and its concentration measured

I
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in the outlet, leads to none of these distributions. Ref. 7

* and 8 also discuss methcos that enable one to compute the

*' probability distribution of the outlet concentration for such

F networks with random intftL=Latja ý-Cll.... For- f4,a~ ' ..... r reac-

tions the results are analytical and can also be directly com-

puted from tracer experiments. For second order and adiabatic

systems, numerical solutions are required, but this is still

simpler than siniu!.tion .. t.hods. For a single stirred tank

with fluctuating fhrough)put or fluctuating outlet concentra-

tion, analytical solutions are possible for any system in

which the reaction rate is expressible as a function of a

Lingle statp variable. This therefore allows analytical

treatment of adiabatic irreversible n-th order reactions.

This result is used in ref. 16 which will be discussed later.

Understanding of random mixing processes is also important in

quality control in the preparation of propellants. Applica-

tion of our methods to such problems is dicussed in ref. 10.

A diiterent approach to tracer experiments in modeling

flow reactors is the use of a reactive tracer. Two experi-

mental methods have been proposed. The first was by Orcutt

(11) who used a simple first order reaction (decomposition

of ozone on a catalyst) and varied the reaction rate by vary-

ing the temperature. Another more promising approach was

formulated by Zahtier (12) who used a complex consecutive reac-

tion (exchange of neopentan with deuterium). in both cases

one obtains a Laplace transform of the residence time distri-

bution. This is of special advantage if one deals with

multiphase system where the reaction occurs only in one phase

as one obtains directly sojourn time distribution only in the
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active phase. The difficulty is that one obtains a Laplace

transform instead of the more commonly used residence time

distribution. Inversion of experimentally determined Laplace

transforms is difficult. In ref. 13 which is available in

preprint form, a method was developed which circumvents this

r•i ut ffe11 It is _hown tht the infr-mation necdcd for

purposes of reactor modeling and design can be directly ob-

tained from the experimentally measured Laplace transform,

without any inversion. In fact, in many cases this informa-

tion might be more useful than a regular trarer experiment

with a non-reactive tracer. Till now, the method has only

teen applied to iluldized beds, but it could be a powerful

tool in the study of complex flows occurring in combustion

reactors.

The methods dcscribed in (7) and (8) can also be ap-

plied to the description of particulate systems. Particu--

late systems, involving distribution of particle sizes, and

simultaneous nucleation and growth are quite important in

combustion. (Metal oxides in solid propellants, soct forma-

tion in jet engines, combustion of droplets in rocket motors,

etc.). There is an advantage in using probability theory in

describing such processes as it often leads to simpler forrmu-

lation of the equations. This is discussed in more detail

in rei. 14.

The basic methods described previously, especially in

ref. 7 and 8 were applied to practical problems in reactor

design and modeling of combustion reactors.

2) Design and Modelinq of Combustion Reactors.

Ref. 15 deals with fluidized beds which recently are
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Solid particles can be burned in fluidized beds, but there

is also an alvantage of combusting gaseous and liquid fluids

in fluidized 1'eds of inert particles, or solid part i-!-:. con-

taining a catalyst. The bed keeps the temperature uniform

and provides a large constant temperature sinK, allowing

sta•ble cor.b-ustfor to be carried out at lower temperatures,

which reduces nitrogen oxide emission. One of the disadvan-

tages of fluidizud beds that the gas solid contact is quite

non-uniform, as the gas forms large bubbles. The local

transport processes are therefore highly fluctuating in

time as the time scale of the fluctuations is of the same

order as the residence time. Using the modeling methods

discussed in (7) and (8) it could be shown that the net re-

sult of this fluctuation is to reduce the effective volume

of the reactor. Only part of the particles are reacting itl LT dt

any time. This helps to understand and rexplain some of the

know-n behavior of fluidized beds.

Ref. 16 deals with a completely different problem.

In some combustors the feed rate is varied, and fluctuates

for different reasons either due to control or disturbances.

If one looks at a small region on d turbulent combbustor one

can also look at it as a mixed region in which the inflow

and outflow rate, as well as inflow and outflow composition

changes. Uow if we consider a single stirred tank with

fluctuating throughput (or fluctuating inlet concentration

or temperature) the method described in 7 and 8, allows one

to obtain analytical solutions, even for exothermic reac-

tions. What one obtains is not just the average outlet con-

centration and temperature but the whole probability distri-



CI

bution. This gives one an understanding of the effect of

random fluctuations on a combustor, especially with respect

to atability, apparent activation energy and average conver-

feed rate, this is a quite realistic modeling of the process.

For real turbulent mixing, "this is a strong over-simpli fica-

tion, but st.Ull it has the advantage of giving an analytical

solution for complex reaction systems. The methodc derived

could also be useful to study the effect of unstable burning.

A completely different approach was taken in ref. 17

and 18, in dealing with stirred combustors. Intensely stirred

combustors have played an important role in the study of com-

bustion kinetics (3, 4). They are also used as highly compact

efficient combusti.on devices. Mostly such ideally stirred

combustors are treated as if they were ideally stirred tanks

of completely uniform concentration. In reality, this is

seldom trup as the residence time in combustion is very short.

In (17) and (18) the following method is uscd to estimate the

effect of imperfect mixing on combustion. The feed is assumed

to consist of small droplets or pockets, which maintain their

identity. If two such pockets or droplets collide they mix

completely and separate immediately into two droplets of the

same average concentration and temperature. A mathematical

machinery is set up which allows one to follow the distribu-

tion of concentration and temperature in time. rhe mixing

rate of droplets can be measured from a tracer experiment and

can also be approximately estimated from theoretical consider-

ations. We can now estimate the minimum mixing rate necessary

for thu results to be well approximated by an ideally mixed



reactor. We can also see in what direction incomplete mixing

effects the results. In ref. 18 some guidance is also given

as how to design and scale up an efficiently mixed stirred com-

bustor for gaseous reactants. It is also shown that many of

the kinetic data reported in the literature were taken under

condit!ons where t*he • se--,ption of an ideally 'stirr-. reartor

is not justified, and mixing effects cannot be neglected.

In ref. 19 the effect of transport processes on the

heterogeneous combustion of solid ammonium perchlorate is dis-

cussed. It 'is shown that some commonly used theoretical models

for the combustion process of AP lead to totally unrealistic

reaction rates and diffusion rates.

Ref. 20 (available in preprint) deals with the design

of nonisothermal reactors. It shows that for any first order

reaction a plug flow reactor with a prescribed temperature

profile is as good or better than any other reactor configura-

tion. This is not true for adiabatic reactors but only for a

reactor in which the temperature can be imposed from the out-

side. While this is in itself an important result in chemi-

cal reactor design the method by which this is proven may be

of more general interest for the combustion researcher.

Complex first order reactions can be looked at as Markov pro-

cesses, in which the concentration of a species is interpreted 4S

the probability of a molecule to be in state i. Reaction rates

are then equivalent to the transition probability of a molecule

to go from state i to y. This gives one some powerful tool for

studying nonisothermal reactions, as the mixing history (where

history means the distribution of successive sojourn times in
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each temperature region) completely describes the composition

at the outlet.

.4I
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Akzstrect-A gene7al mietho~d for calculatlne residence timte distributions for systems with internal

posed of mixed vessels with both forward and backward Gtow between them. In particular, the
properties of a linear cascade of mixed vessels with forward 2nd backward flow between the vessels
is discussed.

INTRtoDuc-rtN timne distributions kcr networks of mixed vessels are

R~ow systems with internal back-flow or reflux are gi ,ven and the general properties of such systems are
frequently encrntntcred by the chemical engineer. in discutssed.

many cases this rcflux is induced intentionally, GENERAL METHOD
whereas in others it is inherent in the properties of Consider a system composed of f? stagcs in series
the flow system used. (see Fig. 1). It is not necessary to assume that

In many complicated flow processes the engineer various stages and/or flows arc equal but all stages
uses some simplified flow models to describe the are assumed to be ideally mixed vessels. For a
fluid-dynamic behavior of the system. Such an complete definition of each stage it is necessary to
approach has been especially fruitful in reactor know:
design, where it allows an approximate analytical ()tevlm ftesaeV
treatment of the kinetic processes in the reactcr ()tevlm ftesaeV
One such flow model, which is of very general in- ()tefu tem ivu. sadijj

terest, is a network of mixed vessels with both for- u, u, U, U U,,.--

ward and backward flow between them [1-3]. The wV 7 . w ~~ +II ~ ~advantage of this model is that with a large number L ~ 2
of vessels it approximates molecular or eddy Fin. 1. Schematic diagram of system.
diffusion.

As there is soine similarity in their residence time, While the link velocities tv, are not necessarily equal,
such networks with a forward flow only have also the law of conservation of mass renders
been proposed as a model for packed beds (3, 41. Uj-I+w4 1 11+ W1  (I a)

As mentioned in a previous publication (5],an
measurement of residence time distribution.4 oftenad
allows a good evaluation of the suitability of a Ui..I - Wim N1 - WI+M 1 . (11b)
specific model to a specific process equipment. where v' is the forward drift velocity of the fluid, a
However, only few residence time distributions for constant characteristic of the whole system, and
systems with internal refiux have been published pertaining to each stagec. The average residence
[6-81. time in the total ,;ystem is given by

In the following, a method suitable for the cal-
VIculation of the residence time distribution of any E(t)~ (0c)

system with internal backflow is described, residence

On leave of absence from Technion, Israel institute of rechnology. Hlaifa, Israel.
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MEUM SIuNNAR aild PiNI4As NAOR'

f All problems dealing with residence time'distribu.- Ift We sume'the vessel under consideration to be'-
lion calf.eithetrbc formulated by'difi n-ng the di-f- ideally mixed the sojourn time is an exponentially

afrent -fl wk and transpdrt procetses of- the systin¶, -distributed ra'ndom-variable
or, alternatively, may be approached (and defined)

;by vliewing' a single6 particle and'describineits p'ats- eQ-~e' 3
jage through the systenv in terms of probabilities' hr , stercpoclaeaesjuntm

For. the systemi described. in .Fig. 1 the latter .-

--approach cah.-be exhibited in the following. fashion. *-*- ()
A particle starts its residence time in the.'system by
-entering thefirst-ývessel-.It staysthere for-a o' (b) -The-:proba~bilities of a particle associated- with -----

tun ad mvc fr,_vwad into- fh s"oi n ~r~~rd'sand bikc1ward movementi ito a neig9hbor-ý
Afei in '.ing state.s Clealy in * u'. c*so idea mihi- uc

*stays. in the second'Visstl, it c11 either move for- proba ility is -ind ependtofheraiesjun
WAr~d into .the third 'vessel, or'6ackward into ;tlie time -and can. be.; derived- from the-flow- -velocities.
first. wihpeeibed- prob'bilitieifor each-of these. -Th~e probability of. moving4backward- equals <-

alternatives. However, it eaniiiove to a neighboring . .. ..

vessell o'nly or, in the-nomenclature -of.the -theory of.......~~. - (5)
stochastic -processes, to a neighboring -state. This U+W

t ype ofpoesi.uulyrfre oa brhad -and- thc 'complemcntary probability of -moving for-
death process". '. We. note that the first vessel is ward is obliously given by I -pl.
diffre ,nt from the others as'a particle in it can move Ltu i teto napril nteit tt
forward o nly; the last vessel is also unique, as Let annusr fixtention on carpactriticle in the i-th stat
particle leaving it in the forward direction,.cannot vrande "nfuiure intodethe acteisticas ofastred franom

return to the systcm~~~~~~~~~-This is the termination -of tbe vral ftr eiec ie a esrdfo
pricrssin~nhion ~i&.f itladdl.t then rntinstallt)'of thcw:'tpl& ~th siystirfi"C

Ja elas. diffusion). processej t-ic. time elapsing. It is convenient to refer to this randoii variable as'
(as well &~~~~~"ahti-ng6" siiic it is &ml~yao~.so~e

between entry into some sta-te (in our case: the first, of the particle in.the system". M-
vessel) and absorption on entering: a nother state.(in On con-siderIing .the physical significance of-the
our case: a fictitious (n+,l)th vessel from which twcoctsan-gofipadeesiniih

no etun t th n-b vssl i posibe) s trme a first state" and "total residence time" one draws
first-passagc-tiine. Thus, for'instance, in other areas

of irt-an-deth rocss pplcatons th b~sy the conclusion that one density functionJ.f(t) say, is
peidof brhan-t pevro(insqaeulicatheory), the &ue,sy representative of both. It is connected with the
first emptiness (in dam theory), etc., are first- destyrug afun lctonvoflati-nag e ain h eonds tate
passage times. The residence time of a particle in a truhasmpccnouinlrltosi
system of connected agitated vessels is a first passage fAW et(I - x)f ,(x)dx = e1Qf)*f 2(t) (6a)
time and it is worthwhile to analyze it as such so as0
to make use of well-established theory and lines of
research. To define the system on these terms one The density function of anti-age in anl intermediate
nowv has to speciry: state (i.e., other than the first and the last) is related

(a) The probability distributions for the sojourn to those of both its neighbors
tnimes e1(:) in each stage (the sojourn time being the A(t)= piei1Q)*fi_1 (.1()+(l -p1)ei(lO*f1+ (I) (6b)
uninterrupted time a particle remains in each state).
The average sojourn time in any state is obviclisly (i=2, 3, . . . , n- 1)
equal to

t In some studics (e.g. [19]) this is referred io as "lire
V, . 2 expccation". IHowetcr, in-the statistical lUtcraturc the term
Eiji) (2) "expectation" is used to dcnote an average; hcncc wc prefer

ilj + Wj hc notion of "anti-age".
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The interpretation of the right-hand side or Eq. (6b) points into the system and measuring the concen-

is the following: Thc duration of sojourn in the tration of interest, in the outflow, one can obtain a
f-hstate is associated with the density el regardless set.of experimental anti-age densities and thereby

- of the particle's future course; a transition to the get a more accurate check on the applicability of
(i- l)th state will take place with probability pi; the model. Similarly, the age density in the i-th
and -the .,additional future' residence time (as stage can be obtained by measuring the time of
measured- from ti~rn. of entry into that state) is equivalent concentration response in the i-th stage
governed. by the density f - ,(t); the alternative resulting from a tracer pulse added to the first stage.

*transition to the (i+ l)th state posesses pr~obab~ility It.may suitably.be-calied a local age density. -Ther.* .(1.-*wpl)and in thzatcas it isf, + I(t) whiQr represents Laplace-trans formfl1 Q) can now be expressed in-an
the density of 'the future residence time.-' explicit form'. Since sojourn time is exponentially ~
* Analogously the anti-age density function of the distributed with parameter ?I we have*

*last stafteis gtiven. by., .~~ **~

We . Now let quantities ot and cc* be defined as
Wehive thien a set of it equations in nunknown

functions. Let us now apply the Lap~lace trans- crt (1 PI) 0~..(0).
formation on the set (6); we define M 7+S

L1s) eff.O*(7) (11)

On designating the Laplace'tt ansformc1e(t) byei1(s) We -note that1 for the first'. vessel p 1 is- zero and
and main use of-the fact 'that.-th6 Laplrce trans. .*o.,- is then t,:d,. 1+.s and a,*=0. -The Laplace
form of thc convolution, of twvo functions is 'the -transform, L,(s), ofi the first passage time density
product of the Laplace transforms of the contributv. . hl function of -main- interest-canb vlatd
intg functions the -set (6) can -be -tfansformednf-- ý y- introducing..the. ib-ove. quantilties .intoý'e:(8s
set of ni lincar eq uations with n un knowns Li. weoti

(8a) L1.(s)(12)
(8a) A

* L1=p~ii(s)L1 _..+(l -p1 )P(s)L 1+, (1 <i<n) (8b) .-+ ~ Where A is the 'determinant
L.ZPa.,s)LM. .+(I - ).%(s) .(8c) '1~

In principle this can be solved in an elementary .r2 I C
fashion. The residence time distribu'tion is obtaineda3 o 3
by inverting Li. In many cases it wvill he impossible I
to invert L., into a (relatively) simple functional 14~
form but for practical purposes the residence time
distribution can still be computed by standard
numerical procedures. Moments of any order can
be dirct1ly derived from the Laplace transform, ~U
which serves as a moment generating function. 1

The anti-age density f1(t) for any stage can also be (all other entries being 7cro). This can also be written
obtained from the above equations: the physical -
meaning or this is best presented as the residence I, Ji>' I+ +
time den.;i!% or a particle injected at the i-th stage. oci * ±.jl4 I .k (121)
This mri h! be of ipccial interest in the experimental k>j+J 1 i+2

evaluation -,f complicated flow mtodels. where the first sumn contains (~~)tcrms the
By injecting a tracer pulse or step input at different sccond'stm (1-2) ternis, and so on.
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Ig0. unknowns L4s) (i-2 , ... n),too can equipment technical considerations, such as design
n " i'tiemsf or the above quantities .. ,and 'sirpIc1ty, usually prescribe identical vessels and.

flow links>.- In cases where the cascade is just an
The above Laplace transform can be inverted in idealized flow model, as in packed beds, these

the foll6wing way: For any finite n the above, simplying assumptiors are also often justified by the
expressions can be written in terms of polynoms of s nature of the system. It is therefore of interest to

study in some more detail the properties of such a
.(.q(s) cascade.

p(s) (13) At first sight it appears that there are still four
which has a. standard inversion in terms of the parameters describing the specialized model:

characteristic roots ak of the polynom p(s) (1) the number of states, n, in the system;
... a . . (2) the total volume of the system; V;

f • e" (14) (3). the average drift velocity, Y;
I.. p'(ak) (4) the average forward flow velocity, u, between

the.adjacent states.
We note, in passing; that the choice of the pro-

spective random variable "anti-age of a particle" is Two only of these four parameters are non-trival.
arbitrary, to some extent,' forthe purpose of our No loss of generality is incurred if we set both Vandaritarv to equal extnt Howve some phurpose insgh oir
investigation. An alternative course would be to v to equal 1. However some physical insight is
-subject the retrospective random, ariable "age of a gained if explicit use is made in our developments of
particle" to the type of argument used in "this all four paiameters (and of other quantities depen-

Ssection. A set' of relations analogous to (5) would dent on them).
be generated and .the desired result--the-residence We drop the general- subscripts from the letters
time density (or rather its Laplace. transform)- denoting various quantities in the lastsecticn. Thc
would be obtained in the "guise" of the age density forwardand backward flow velocitiesin any double
in the last state. Equation -(1-2) pertains to the link are denoted by t and w, respectively, The re-
Laplace transform of three conceptually different ciprocal sojourn times--the parameters of the per-
densities: residence time (or first-passage time), taming exponential distributions-Iin all inter-
anti-age in the first state, and age in the last state. A. mediate (i.e: other than first and last) vessels are.identibal and the use of the letter il will be retained
little reflection confirms the logical identity of the idrtheir desepof
three concepts. for their description

The mathematical techniques used in our analysis n(u + w)
are a modification of Bachelier's methods-ex- 1= (15)
pounded, for instance, in BACHELIER [9]--combincd V
with the application of the Laplace transformation. For terminal vessels (both the first and the last) we
Alternative techniques for the (elementary) evalua- introduce e as the reciprocal average sojourn time
tion of first-passage time distributions are described
by BHARUCHA-R]-ID [10] and SAATY [11]. =nn(v+w)n. u (16)

V V u+w

A CASCADE OF EQUAL, MIXED VESSELS WITH The probability, p, of a particle leaving an inter-
FORWARD AND BACKWARD FLOW mediate vessel in the backward directiont is given

Equation (12) gives the Laplace transform of a by
residence time distribution for any cascade of mixed
vessels without restrictions as to their relative sizes I In [6] a backmixing ratio a is defined as
or their connecting links. In the majority of cases ,
the chemical engineer is dealing with simpler cas- .- wlV= •
cades in which both the stages and the flow links can I

be assumed to be equal. In compartmentalized ThusT+-
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The analogous quantity in th,! first vessel equals
zero. In the ia!'t vc~scl this probability will be Next we shall derive the residence time density
denowd by fr; it i!. given by fuiietion-by inversion of the Laphv,: transform--

in the simplest cases: n =2 and n -3.
PL2 =11.. '-(1) fIn the first of these cases-ti-2-Eq. (12) is

V+,)' it I -p reduced to

Thi's can be re w.rittn i4% 21 s m ~ e ~
I- -- IC19 I 1 0(2  G S

Of Ot __;)2n

which isconvenient for some pu:rposes. It is evident 42(l .n)

tha nij tid toso oihevdc f are rather (-i)2s 2

0ý-, r < 1 (20) Ql (23)

whereas p is rattler cLonstrained
The inverse, fQt), of this expression can be obtained

0:!,P< (21) by standard procedures

Phyj~ially (20) and (21) may be interpreted as 1,17H) 'ft~ 4 (
follows; At thc end of th-. system we can "reflux"2
any dcsirccl fr.c.tioii of the mnateriAl; however, thc -
bulk of the niastcr:i±i-locatcd in the first and the V-e"ih~~)(4
intcrmr-.diite vesscls-lias to possess a forward drift

moveneit ( -p>j.If we increase the number of states to the caseI.The cxpecctcd residence time in the system (first- n - 3 complexity is greatly increascd but a closed
passage time) can be expressed in terms of the above expression for the density is still obtainable.
quantities Equatio-i (12) bccomes

______~~~ -~ :)~)lP)n

43(l-in)____
-~~ 2 - +:v(Br7 2  (25)

22 )
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The inverse transform of (25) is Siiven by The expected anti-age • " T,, in the system (or, wht
is the same, the expected alle in the system) is then

)•."•' fn sih v'equal to

r; I -VI I - 2

... . ............ ".-' • •{ } - ,( , ,I -it" -r"

+' I rJ_

For large valucs of n the roots of p(s) have to be 0 L

round by numerical methods.
Of course, as was stated before, approximations + it0,-I)nn - JJ (9)

to the density functions can be obtained and prccise
values of momrner. cumulants, etc. cim be made Now it is known from SMOLUCIIOM\SK's %orkl,
availablc by slamdard imiethods. Without factorizing (18) that the expected value of the life cxpcetdtion (or

p(s) we shall derive ,he variance (and other age) and the moments of residence time are related
quantities of interest) of the residence time fur a as fOllOws
general i by u.sing a vitri;at of Blachelier's procedurC: Ef 12 EM

let the e'xpr.tcd a,,ti-age of a particle int thi i-th ET) +2 1-30)
vecsel be denoted. ny E[,. By coniderations veŽry
similar to thoscmade for deriving set (8) we obtain where -, is the coefficient of \ariation'. of the re-

sidence time distribution, (Ihat is the ratio of the
SEi} 1# standard deviation and the averagc of the residence

time distribution). Combination of (29) and (30)
yields

I 2,r
Ef Tj pE[ j- I + (I paE([T,.I - L t tin)]2 "

(I#.I, n) (27) . 2:- + [n(j,-I ) + '2(,,- 2) . +nn" (i3 1)

E £{}.+ nE{T,_ tSince in many (but by no means all) engineering
situations the performance of mixing equiipntcnt is

, , The solution of (27) is given by judged by the variancc:• of the residence time distri-
bution, relation (31) is of some importance. A use-

E(T,}- (n-i+l)+(n-i+2)n+.. ful rcpresentation of (31) is obtained by drawing

contours--that is, lines of equal -i--on 1 graph
whose abscissa§ and ordinate denote n and nr, re-

* -fflc'-l-t+ ,,. (1=1, 2, . ... , (28) spectively (see Fig. 2).

I The present notion of anti-age is identical with
S•$mohlchowski's concept of "ErwartLIggscit".

t Digressing we note that in a systcm composed o0 + The reciprocal of the squnred coeflfient of variation is
identical vessels and of identical doubIc links symmetry somctinmes described as the 'ecquivalent" numnbhr (,f vessels.
considerations generate the following relation: Expected
anti-aige in the i-tit vessek- Expccted age in (n-i+l)th *Thequanitityni, originally eonccivedar a naturalnumber
vessel. Actualiy the symmetry reachc farther--even the can easily be thought of Ls (i.e. gencralicd to) a positive,
distributions are identical, not necessarily integral, number.
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LResidence time distributions iswstms with internal rvitiux
10 (b) Let it equidi a fixed positive inteprr (other than

1) and assume tt=O: this corresponds to a pure
T Wani paucceN arid indeed the correct value-
'Y v'= I/n-oif the dimensionless variance (i.e., the

squasred coeflicient of variation) is obtained.
(c) Let again nt equul a fixed positive integer

(othcr than 1) and let n approach 1. Physically, it is
mieuninglcss to let r be equal to I (and it finite at the
samie time) since in that case material could not flow
at all through the system. If, hoeer Iomly ~i
inade cqval to 1, wvc obtain

at j 2
4-

i.e. that valuc of y2 Mlhich is associated with1 a single
3- v.1expoaciitial vessel. The physical ititcrrretatioli to

be attached to a itua~itionl Mhcren approachecs I
2- 0I1& 1 -2 - i arbirarily closely is 11hC followking: dic bia'th-and.

t/c Mt death model of at particle flow through it vessels cant
Via. 2(a). CumIUlative residence tini distribution bc inade to approatch the single exponcntial vessel
for ar cascadc of t%ýo idcitti,:ai mixed vessels model a., (arbitrarily) close as dcsired by making it

%kith internal reflux. juJicious cl oice of the reflux parameter ;z.
(d) Lc! 1; tend to infinity and simtiltancott~ly both

~~lV. E0(1)~~i

* and n(*# F- i.r held constant, clearly y'2 -.Oand the
case under consideration involves plug-flow.

ir-0-9(e) As a finsal example considcr the case where it
0. ~tends to oo and simlultaneously n approaches I such
04 that

n(I -T)=p(32)

where p is positive and firite, qi, i-the case of
Fjo. 2(b). Intensity function for a cascade or two di2so n a ce;' O itKtOlo
identical mixecd vessels with internal reflux, dfuinadycnb x kýcino

21 2 f 1 :

The flexibility of the rresent mnodel )an ben)]
*diemonstrated by examining sliceial and cxtrcile _

* case(a) Let it equal I ; in this case thecre is no physical[ -

meaning to the notfion orf. but even formial use of itoo P~ -n( ).p
(31) with an arbitrary ~r renders the correct result:

Y'I. The Present case siniply represents the single 2 1ec P) (33)
exponentiail vessel, Pa
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Diffusion will be discussed in the next section in We take note tha--on going to the limit (n-mc;

e mntr diptuil. It it well knnwn that he a cloit. r.-ol, Ml ewf--.&-....thp ehme 1h9 nm/a nne

able limiting process the different equations, des. (I -2p)t/n tend to the following simple expres.
cribing the behavior of a cascade of mixed vessels dions

with forward and backward flow, transform into the
diffusion equation. In order to iltustratc both the _ - - - I (40)
similarity and the difference between the two cases '

it might be illuminating to perform this limiting (process in terms or the residence time distribution (12)_l2 •(-')_1 (41)

for a particle, n l-p n n Eatl
Equations (8)-associated with the birth-and- A

death process-may be regarded as a set of second. euatii ling as
order difference equations. If proper assumptions
are made a second-order differential equation in the d2L dL (
desired Laplace transform (as a function of the j7 p+P"•-pdt .IL=0 (42)
location of the particle under observation) can be
derived. First wc make the homogeneity assump- and boundary conditions arc set up as counterparts
tion, i.e. all vessel volumes arc equal and all double to the equations for L1 and L. in the set (8)
links connecting adjacent vcsscls are identical. Next
we define a variable Z depending on i (and n) by 0(43)

Z (i-.-=I Z<) (34)

n (dLL
-I -+pL' z.1)-p=O (44)

The required second-order differential equation \dZ)(z, -
will next be set up. Under the simplifying homo- It can be seen immediately that the quantity
geneity assumption Eq. (8b) reads (for 101, n)

which n(l -7r)LIM' 11 sL.-. +(I -p)I L,, . (35) P• 4c

If we introduce (i obvious notation)hich appears in the diffusion case is equivalent to
the Peclet number LSLiD. It is therefore only

1 (36) natural to suggest that n(I -r) should be identifiedAz n with the Peclet number also for the case of a cascade

made tip of a finite number of nixed vessels.
ALr LI, I -. LI (37) The proper boundary conditions for the flow

and reactor, the correct choice of which has caused somen
discussion in the literature (7, 12, 13], are lhre

A(AL)=L1 , I-2LL+Ld-1  (38) obtained directly. It should be rcniembcred that L

we can-on multiplying by (q+s) and rearranging refers to the anti-age. As the anti-age in stage I is

terms-cast (35) into the analogue of age at stage n, the normally used
boundary conditions are here incrsed with respect

(I - p)qL,+ I - (I + s)it + ptLI+ I to the length coordinate Z. Equation (42) together
- [ pqL•4 +t- 2ptqL1 +- p1L1 - I] with boundary conditions (43) and (44) can he solved

by standard methods, details of which will not be
+[(I -2p)i1L,+ 1 -(I - 2pn)L, -sLI presented here [4, 7, 14]. Let a quantity u be defined
pnA(AL)(l2 AL asP•AAL-Islt0 (39)

) I AZ a =/t(p' +4pE•{ts) (45)
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We have then the folloNing expression as the tolu- are given. It was shown in a previous paper [5]
don of Eq. (42) that the intensity tiun skna ;; u",

ting such distributions as it allows a bettr physical
"C40"- z• sinh-- -. 1 intstht into thc nature ofthe mixing processes in the

2., (46) system.

2 2

This is the Laplace transform of the anti-age density
given that the particle under consideration is located

aon site Z within the interval (0, 1). By virtue of
ikrgumcnts analogous to those used before, expres-

sion (46) is also the transform of the age density
function of a particle located on site (I -Z); finally,
it is the Laplace transform of the first-passage time
density of a particle injected into the interval (0, 1)
at location Z. The residence lime density is =
associated with the particular choice of the para- '
meter Z=O. The inversion of the transform into a
density function of closed simple form seems to he
impossible, but again precise \alucs of-all moments, I
cuniulants, etc., can be derived by st:mdard (though C.

.cumbersome) procedures and approximations to the -
density funicson are readily established. 4-

We note here that the formulation of first-passage I=o5
time problems in terms of second order differential r,< -.01

equations in the laplace transform goes back to the
work o0'DARLI.NG and StGEiiiT [15]. 0*3 2

I/E (t)

PROPERTIES OF CASCADIES OF M IXED VESSLLS Fio. 3(a). Cumulative residcnce time distribution
WITH FORWARD AND BACKWARD Fi.ow for a cascade of three identical mixed vcsscls with

In principle the methods discussed in the previous intcrnal reflux.
chapter allow the derivation of the Laplace trans-
form for any system with internal reflux, provided
the system is made up of elements with known re- 2.8 .

sidence time distribution. Specific solutions were 24-
obtained for cascades of equal mixed vessels and 22. 2"

some typical results are -iven in Figs. 2-5. 2.0- -0.1

In plotting the various residence time distribu- .-.z ,.'6

tions, both the cumulative distribution 1 4
W -21 r-0.9

F*(t) dt 046

04

and the intensity function ;.(r) .

A(I)= - dnF*(t Fio. 3(b). Intensity function for a cascade or three
F*(t) dit identical vessels with intcrnal reflnx.
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t4
t.2

sit

S"Il

FtO. 5. Intensity function fcr cascades haviig the

0. same cocllicicnt of variation (0-33) hut different
9 ' numibers of scsseh.

- different Nalues of PY are compared to each other.

SVT-or higher values of t the solution converges very

4 W.0 W-0.3 W-- rapidly to the solution for axial diffusion.

3 "For equal coefficients of variation it can be seen

that increasing the value of' : reduce, both ., and

the value;. for very low times. The asymptotic value

S..2 COo . .i--S E- of ;. is, hoeve\cr, approached at lo\\cr vahles of i

tir H than in the model with forward flow only, and the
Fio. 4(a), Cumulati,ýc residence Gitno distribution ;. function, or in. other w ordk, thecocape pr-obability

F*(t) for a cascade of five identical mixed veos.-Is resembles at step rundon.e'

A.r .can be found directly from the Laplace trans-

a 
form. It is equal to the root olp(s) in Eq. (1 3) which
has the lowest absolute value. in the case of a flow 

:.

4 reactor Mith axial diffusion [Eq. (46)), )., is &ihen

W by ,. 4a • +2 + 1 .

" In our previous paper [5) it was stated erroneously that

i - '-V the intensity function for axial dilftusion increases to infitnit>'

f) with r. This \%as duc to a mistake sshicli is corrected here.

------------ The caw discussed in the previous paper (Fig. 2 of [5)1

referring to (16, E'q. (19)]

VIE tM I I-at I

Fro. 4(b). Intensity function for a cascade of five F*O)-jerJ "+-

Identical nmixcd vessels with inteinall reflux, 
b, 2

irdeals with a scmi.opcfl system. There is nu clearly de6ined

Figure 2 gives the cumulative residence tin exit aftcr which a particle can not diffuse back into the

• distribution aod the intensity functions for two systcm. The rcsults of tracCr experiments will therefore lead

b tto a local age diktribution rahimer titan a residcnce time

* equal mixed vessels in series and different values of distribution. In thc case where there is an cndwail tIrough

n. Figure 3 gives the same functiotis for three equal which particles can pass forý%;d but not backward. Ba. (46)

in this paper or the sotutions given iii (411 and (14] apply.

vessels in series. The difference bctwccn the two cases has been discussed in

In Fig, 5 the itntensity function (see [5]) of 7•l and (3]. 1The correct saluo for , in this case is

cascades with equal cocflVfients of variation but a2/h which is equal to p.'4,
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where a is the lowest root of the equation and 7, y3 is given as a function of a and n(l - n) for
various values or n aa tor axial adifusion (n-oo).

a tana p In some physical cases there is a considerable
2 2 4 dvwntpag. in using as a theoretical flow model a

finite cascade (if mixed vessels with forward and
F hihvlresidence tirncs , thc ect or4. dibackward flow between the vessels. As an example,

For huge residence times the effect of diffusion is consider a packed bed or a turbulent flow reactor.
thus somewhat similar to that of a plug-flow reactor
with a mixed vessel in series. !,n thc asymptotic Describing the transport processes in such a system

k" •- M,'-:ill cý!y diffusivily introduces consider.
region both reaciors behave as singic ideally mixed .... " " .. nsvessels. This means that the. particle has a high able difficulties when dealing with the transient
probability of being in the lust vessel, behavior of highly non-linear reactions. These

In recent chemical engineering literature (for _._

exemple [14]) the similarity between a cascade
of stirred tanks and molecular or eddy diffusion has
often been stressed, In most cases the comparison
is based on equal variance of residence time. This, a..
for example, leads to equal dampcning of low fre-
quency concentration fluctuations in the input of 07.'
the two systems.

However, even for high Peclet number (or low ./
values of y) the two systems are still basically /
different. A discussion of the influence of the de- g~0s
tailed structure of the mixing processes on cheriical
reactions will be given in a separate paper. 0.4"

The model for the cascades under consid,,ration
in this study possesses two independent, non- - '-
dimensional parameters and we may choose several 0.:
modes of representation, Thus, in one set of
circumstances, we may consider n and a to be the 0.1

* underlying basic paramcters; in other analyses we
may wish to start out with ./z and n(1 - n). If a--+O 0

(forward flow only) .y2 becomes I/n and if n-+oo, 1 X

- , -. l such that n(I -n) remains finite, n(I -n) Fio. 6. y2 as a function of it foi a series of
* becomes the equivalent Peclet number. In Fig. 6 equal vessels with backtlow.

04
0-8

0. n70
0.- -0.4

~.02 -

Fio. 7. y2 ai a function of Pcclct number for a cascade of equal mixed vessel, with backflow.
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di~ultes an e cnsiera~yreduced by sub- time for a single particle also allows one to corn-
stituting the above describcd m(Aci ol' a i'jjj ý;i jx.:c :hcn;:i...is distribution in

L cade. Ii one now realizes that thc physical system any of the stirred tanks, comprising the network.
Cl~ entiains mixina zones of fini'c extension. then These can be considered as local age and anti-age

this model might e,ý;n be it better approximation of distributions and may be measured cxpeaitim~Lally.
the actual flow than the miodel of axial eddy The method gives the Laplace transform of the
diffusion, distributions and also allowss ove to obtain directly

A model with fonward flow only, as propused in the moments of the distributions.
17isee moesimple totreat. Hoee, Temethod is demions;trated for a cascade of

such a one-parameter model is less flexible and stirred tanks with rellusx between them. If Lill the
harder to fit to an experimental residece~ time dis- tanks ar.- equal and the rfilux is constant a special
tribution. The two-parameter model described simple two paramcter modvl is obtained, these
above should in many cases lead to a more realistic parameters being the \ariancc -,, and a dimension-
description of the transport processes, less group n(l -- r). Ifn is 7iero the model reduces to

In conclusion we would like to point out one the wcll-known case of a cascadc of stirred tanks

ve'ssels with internal reflux whiich) is useful it-, reactor the number of tanks ais wecll as the backflow is in-

pr hlpoprty er~d ý ni distribution. mixed wicth fecorward ~ n~ly.) bfctconns tan resident th

that lihe intensity fumztica ;.(t) of these models Peclet number.
reachecs an asymptotic valuc very fwst simplifies the SuCh a modc(!Ll With 0 filitC 11 MOObc Of tianks Ilight
computational procedures considerhy. From be a good approximation of one dimensional eddy
Figs. 2-4 It ca ute eseen that the intensity diffusivity. 1-urtherwore, if n is large as compared
function can often be ripproximately rcpresemited to 11(l - ,- theQ injtens.ity funedton is quite well
by a step function. Many practical residence time approximated by a step function. ~

Fdistributions of packed beds (for example, Fig. 6B
of 15)) exhibit the samne property. In such cases

apprximtingthe).-fncton b a tep uncion Ackamo~ldsgmemmt-The %ýork of Prorossor R. Shinnar wNa%
apprximtin th ;.funtionby btp fncton uipp'ortcd kiy tir City Uttivk~rsity of Now Yo'rk 31nL partly

tends to a further simplification. A step function in by the Air Vorcc ()tttc of Sc:~imfic Rmcarch under Grant
A is nothing else but a plur-flow reactor in scrieswith No, A-l.F.rOSR !Q 1-0. Prof%.sur 1%, Nimr %ýas suppot icl

dtrngtis wowk b) the Oitfice of Na%%J Rcs~arch undera single stirred tank. 'rhe residence time of the Cotrc No. Nnnm. 85510))"
equivalent stirred tank can be found fioni A., the The authors want to cxprcs theii grafiiude for this
asymptotic value of A2, as supp~ort.

The authiors niso %%ant to thank Di. Clark licrinarec frc
E{:} I /)helping with the cowputations.

and the residence time of the plug reactor is the
value oft fat which thQ step oc~urs. From this simplahI;CL~lt
flow model one can compute i first-order approx- a,, chtiractcristic root
imation of the effect of tr.ý,~nspt processes on con- c,(1 ) density function ol' sojourn tille inl i-tb
version with considerable aceuiotv. miixed vecssel

e,(s) Laplace I rttnsfo~rn ef e('r()
SUMMARY AND CONCLUSIONS f1Qt) density function of iesidcnce time

Amethod was derivdwihalwsoet on f(s) Laplace transform of a function

putt the residence time d ist rillution, for any net. , ubr fsaeso e
work of stirred tanks wvith arbitrary flows bev.ectnPirh iiyo aril nsaeimvninto staite (1-I1)
the tanks. The method which is based on comput- P(.s) polynoil it) s
ing the probability density function of the rcsidencc m(3) polynloml in S



Y+ 1)
Y fowr rf eoiyo lidtruh UI eltnme

sysxtein V volume or /*th vessel
w1 backward velocity bctwcen .csscls if and quntt !!zrb n; caticn

yI- 1) oc, functions associated w~ith Laplace trans-
E~t } average resiecnce time form

El' second moment of residence timec y coefficicnt or variation)'() intensity functionEJ{t } average sojourn time in if-th stato or vessel n probabili-y of a particle in state a moving
E{ TI average ag or anti-age in system backwa-rd

E{T 1} average anti-apa in 1-th vcsicl p constant equivalent to ' let, number
F*(t) distribution f~inction (cumulative to the a ...(p + 4pE~t~s)

right) q~ reciprocal average syjourn tinmes
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Rks=n6-Unc mtntliodc gin6rale du calcutl des r6parttions du temps de r~sidence-pour des systemca
ayant tin rcfluIX interne, cit d,.crite, La mi~thodc pcinict la ddrivation dc In transfornuiaion dc L~aplace
de tout sysmtivie co~nipust de r*.~ipicnts mixtes.ayant entre tux sin couratit Jiins !C deux scns. En
paricuiher, Ics pr ,ri6Wis d'unc cuscade Iiiniaire de recipients niixtezi ayec cow-ant dammfs les dcux asmr
entre eux, est discutW.

Zusainmemmfassung -T! ic allgcamlcinc Nfethodc vtir Brerchinung der Vcrwvei;. etvcrtcilunprn Mrl
Systc-ric mit innereil Rlkfiluiss wird beýýchri..bcn. Die Nlethode gestsatte dit AblIchung dii-
Laplacc.Tianiformierten rtir jdiks Systom, diii tich atis Geijissen wit Vomrusjra und Rtick-Airtsfluss
ahschcrn ilinvi zusnnmmenscm~. lin bcsondrern mwerijun dic Iigimeschaften und dlas VerhaltmOc e il'
Lincarkask-adc gcmischtcr Gefisse mit \'orwdnrts- und 111kw~1rtsInuis zwiscleae den GOsfiscrn
bcspiroclicn.
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STOCHASTIC MIXING MODELS FOR CHEMICAL

REACTORS
F. J . KRAMBECK, R..SHINNAR, AND S. KATZ
D)epartment of Chemical Engineeri,,g, The City College of the City University of Nex: York, New York, N. Y. 10031

"Urbulent chemical'reactors are modeled by networks of stirred tanks, with the stochastic nature of the
mix*,ng introduced by taking the interstage flows to be stationary Markov processes. Some general fea-.
tures of tracer experimentsln these quasi.steady flows are discussed, together wlthrtheir relation to residence
time distributions. The statistics of tracerrexperiments are analyzed, and related on-the one hand to the esti-
motion of mixingparameters, and. ýrnthe: other. hand .to the forecast of average yield from the reactor

"-system under fir-st-order kirnefic. IThe variability df the, reactor, perfcrmance and the general story of
more complicated kinetic mecf4nlsmns are deferred fore later.report.

i, first feature of a tuibulent -mixing system that -calls for in the study of industrial fluidized beds the unstcady nature of
nmathematical modeling 'is' ii' avei'ag&'bl76hviort both as ' the flow'leads to considerable difficulties in determining resi-

mixer and as chemical reactor. And- thcrdf-is of 'oursc an.' , dr-ice tirnc distributi6ns, as repeated .tracer experiments will
extensive literature of such models--for example (J, 6, 9, 10)-- give varying results. -
from arrangements of stirred tanks to eddy diffusion systems, The study of these unsteady only statistically determined
all capturing the salient features of this average behavior.' properties ef the' flow is 'of twofold interest to the reactor de0

Turbulent mixing systems, however, exhibit pronounced - siginer. First 6f all, even in systems in which the fluctuatifjs
statistical fluctuations about their average' behavior, and' averag-c0out sufficienrtly to give a unique rcsponse to a tracer
these fluctuations are in fact often the dominant feature of the input, one would expect theunsteady nature of the flow pehc-
actual performance of the system. Now-the full' statistical ess "to'have strong effects'on highly nonlinear reaction .ys-
behavior of such a system is in principle opened to mathe- tems which are not described by steady-state flow models such- 1
matical analysis by entering the differential equations for con- 'as eddy diffusivity or a cascade of stir'red tanks with forward
centration change with suitable forms of random turbulent and backward flow between them.
velocity. But the studies of Corrsin and others have shown Secondly~one is interested in applying the-methods of tracer
(1,5, t5) how hard it is to follow this line of analysis to the point experiments and residence *'me distributions to systems in
where one can see working engineering results. which the fluctuations are strong' enough to become apparent

Another approach for dealing with turbulent flow systems in tracer experiments, and to obtain the maximum informa-.
as reactors is the use of residence time distributions, obtained tion from such experiments about the nature of the flow.
from tracer experiments ('1, 7, 10). Such residence time dis- The approach that we have chosen in this research, of which
tributions are not only helpful in deriving a reasonable model this is the first publication, is to study the properties of some
for the average flow behavior, bitt they also allow the direct ideal flow systems which on the one side show all the essential
computation of conversion in first-order reactions, as well as properties of a flow with strongly timc-variant behavior and on
the derivation of upper and lower bounds for the conversion the other allow one to perform exact calculations. It is hoped
for second-order reactions. that this will not only allow quantitative checks on some

Obtaining a residence time distribution from a single tracer common assumptions but also allow one to get some insight
experiment implies that either the flow is completely steady or into the general properties of such sy-temns.
at least the resi(ence titne distribution of any small volume of What we present here is a kind of ad hoc engineering model
fluid ent'rinit the sNtenm is constant and independent of the for turbulent mixing systems, that permits one to make working
time the material entered the syitemn (S). This is approxi- calculations of both the average behavior of such-systems and
macely trtc for the turbl~ulcnt fln'..' in a very long pipe, bhlt does their statistical fluctuations. The model does not go back to
not apply to m:mv ,thler common flow systcms. For example, the fundamental diffcrctial equations for a t,mrbulent flow, but
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i n,,'ild Nt 'J ario s il i t .t pragtn atic way Inl ot-Clt ur mixing efrects of sotne sam nple ctalculations of the statisties of tracer experi-

front Itrge scale t tunbul n t en fcct,;, allocating the form er to a ntents. Finally, we fornmulate the equations d escribi g the

Ilu tm bn e o f stirre d ta n ks a n d th e hitt te r to su ita b le i t ,tt f nect- b e hlla v io r o f o utn mn ix ing sy stem s ;Is c h e m ic a l re a c to rs, ,at d , fo r

in tflows. iO ,ur pictu 'e of the ntixing syste n thus appears as a first-order reactions, discuss the relatiou betwet .n COtiVt'riionl

network of stirred tanks, with intcrconnonting flows that are and residence time.
random functions of time. And in application, we would
hope to be able to select suitable networks, and the correspond- The Model
ing random Hlows, to model chemical proces~sing systems '' i h ecito formxn ill etk tSi'e
ranging from fluid bed reactors to turbulentla es. To fix the description of our mixing l, oel, we tae t a stl rred

WAe n tote that in the steady-state case any) residence time tanks, connected, quite arbitrarily, by inters'age flows (see
distribution can be arbitrarily closely represented by a network Figure 1). We index the tanks by i (running frost I to n),

of sturied tanks. Thus a cascade of stirred tanks with forward denote the volume of the ith tank by v, and the volumetric flow

aand backward flow between them approaches the one-dimen- rate from the ith tank to the jitt by tj. ,Since each tank m ay

si gnal diffusion equation in the limit, if the number of tanks receive part of the fend, it is convenient to assign the index

approaches infinity while their total volunme remains constant. value i = 0 to a f eed station, and denote the feed rate to the

The modeI presented here allows one, with a very large jth tank by ir'j. Since each tlnk itay contribute to the outlet

num ber of tanks and in terconnections, to describe both the st rea r , it is conve tient to assin n the ind ex value i = n + I

ste a d y ' a n d tim e-d e p e n de nt b e h a v io r o f a n y tu rb u le n t flo w¢ to a n o u tle t sta tio n , a n d d e n o te th e o u tle t ra te fro m th e j th

phenomenon to any desired degree of approximation. flow- tank by The quantit y .nay be taken to be the

ever, as such very complicated models are not easily amenable flow rate of material that bypasses the mixing system al-

to analytical treatment, one shotuld hopefully be able to eluci- together.
date the basic features of the behavior of such systems with a The flow rates wt',, will be permitted to vary with time, but

relatively simple network. the volumes v1 arc to be held constant. Accordingly, we require

A word may be in order on the mat .:.matical form in which the equality of inlet and outlet flows, tank by tank:

we describe the random flows. We v 'ish to consider flow =2(

systemns with a quasi-steady characte.r, and to this end, we take I, J I'k - 1,2
our flows to be, technically speaking, stationary random i Ai
ptocesses-that is, random functions of :.nte whose statistical This entails, of co,!rse, the equality of the total inlet and outlet
properties are unchanged by any shift of the time axis. Specif- flow rates, so that, denoting this over-all flow rate by w, we
ically, we take the flow pattern for a given system in the form may write
of a stationary Markov process, so as to be able to take advan-
tage of the very considerable body of knowledge about such .I" neVi= w+u = IV (2)
processes- for example, (5). Since, for technical reasons, we , i-

need to control the flows to have rpositive values, we cannot We have so far not attached any mcarning to the "diagonal"
conveniently ise the familiar ( " Aussian processes such as arise expressions wne but if we denote the common value of the two
in the description of Brownian motion, and we confine our- sides of Equation I by -wu, we -sill have filled out a square
selves instead to the mathematically much s .nipler situation of matrix (n + 1 by n + I) of flow rates wi,, i = 0, 1, 2, . I. n,
flows that iake only a finite number of pre,,clected values. j = 1, 2,..., n + 1 (see Table I), for which
Indeed,' the numerical calculations we present below are all X+l
for two-valued flows. IV = = 0; ... 1, 2, (3)

T hi e s t a t i s t i c a l h i s t o r y o f a M a r k o v p r o c e s s i s g o v e r n e d " = k

entirely by the probabilities of transition from one state to We have so far not said anything about the random variation
another. Its present alone is accordingly all that is needed to of the flows, and we now explicitly retdgnize the flows as
forecast its future. The concentrations that develop in ,,r arising from a Markov process. We consider for this purpose
mixing-reactor systems tinder the influence of the Markov only Markov processes with a finite number of states, and if we
flows cannot by themselves form a Markov process, since the
concentr,,ion patterns might change in this way or that, de-
pending on the state of flow. The concentrations, when taken IN VZ
together Nvith the state of flow, do, however, form a Markov
process, and the equations describing how the joint probability
distribution of concentration and flow evolves in time serve as w W

the working equation fo. our mixing and reactor studies.
Restricting the flows to a finite humber of preselected values

does not correspondingly restrict the concentrations. They go W V3 W34
frtely over the whole range of physically possible values. n

In it, s paper, we aim to set down a fairly complete mathe- Figure 1. Typical flow network
matical description of our system, and carry out a preliminary
analysis of its behavior as mixer, and as reactor. The plan
is accordingly as foilows. After setting down the description Table I. Typical Flow Matrix for Figure 1
of our mixing model, we construct a random walk for the Columrn Iadex
passage of a particle of fluid through the system. We then i 2 3 4
develop the eqtuations describing tracer experiments on the 0
model, and discuss their relation with the random walk prob- Row Index 1 1-31 2 1 0
abilities, in par ticu:ar with the residence time distribution 3 0 1 1-21 1
(of fluid ill the system. Next, we present arid discuss the results
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intlir tilt, latc, by a, s' e have iiitht Lb ,si~tvt at antf jtouttirlt a IKýIakr our N .ukuv flu%% procete3 toa~ 1 be (if Me -eii-

l~ur lltthtit behaved kind lhut hase a unique stationary distribittiu~t,

V.5Ijos 10,1, definted by Equation 9. ta~g-.thr witl' the normalization

rtpresentinit tile flo%%4 ;it %t;str a. Conditioni 2 and 3 hold for
every stat u, a.. w~e may write thensi a This amounts al. 4ebtjiially to requiring that rero, which is

u-,,.-0; - I.(4) I"''always an eigenvalue uf the matrix X..g. be only a single, not a

Fililly the crqiniibrimtnt correspoonding to otir stationary
flows is a statistical eclttilibriurn only- that is, tile flows cotn-

a c:all ir (5) ntine to exchibit randotit fieo swogs iOw~i catit! chirti'-
ter of the!se flurtuations does not change with time. And tike

In Equation 5.a, srt-pre-eitt the total 'red &take-ofl) rote fotr system tnav of course exhibit other tandoin fevature'l that do not

[he systrin wher. tile Ilinw are in stale a. We note explicitly share the stationary character of the flows. Tlhis kvlll ccrtakin1>'

that the Lank, voil it Isw not tI it ect to. variatil 5%vih the be dite case when we conic to discuss tracer cxlprrinrtsl~t.

flows, attd kccj, their cuwtt'tst valuers v'j
Tlhe prtobabilit% %trucktic~t of the flows tir.- resideb in how %%c A Random Walk

from" ono slate ei to aittitlier 0. Dcn.'tittng the probability of described can br stud ied onl two levels: in termsv of the, randotin
Ituch a ttittisi60ttt ill a 611111 r by r(a - d, t), wei tnav dleict ibs pauagc throutgh the systeni of a particle of tracer put initially
the behavior of r for sitali 7 by scinttt in the feed line; or in terms of the rantdom concetntratiotn

- ~;~) + or); - ~pattern developed in sthe syssten %%hen thle tracer is fcd accord-

ing to anl ts,;gncd scicitedle. Tite second wve analyze. later

It.'e A, is slOc assi~tted rsssttrix of swvitch~ing rate., and 0(r) unde~r thr heading "slixdtsg FEqttasiont" ; whata we do here is

is a funk ction of r w~hichi LOtse to ztcm fitstcr thint r. Since, ini a se up the rantdomt walk for at ringle particle.

tint" I, state a catn tit I er lw-ti out sonie other ;tat te or rernt n The ivs Ltcirk, for this It-osetc conssists of tile n tanks ph ts tilej

untc!,mat 'd , we etit ti Ii te i a' ci aracte tizatiiot of ir for- sit all r ou'let stttt inn. atid t lie state of a pa. ticle is aece. di ogly describcd
bvsck)'' te plb~blit tht ti rulitni ilicariedby its locitioti iiodex i (r tsittig from I to n + 1). We revsssd

F li sctisss the 1 snb,,liv tat sal" resisiiss iuluzs~td, ach istitk in thelt tital %,av is a l'ohesui i (v\ 1suttentisl ) hold ott

(a cf; 7) G - lil (~,i'r + O(r) for the particle, so that site probability that the particle; gttcs
\D~ /in a short litile Y frotm tank i to tank j is just (it-1/v.)r. The

Ifinow %%c deiibte the diagonual qitantiti"-. X,,to nalie probability that it stays in tank I is

~ k,, 0;isla(6) \,dt V1, Vi

ful maiN Atcitg X i f the equlit odigb Jv~irtue of EqutationA And, onhe '

which We MtAY coLin par dv describe Iltr trattuitiun probabilities, particle is in ster otidet state, i -n + 1, it stays there.
Thefloý t,, muthsowever, be regarded its random 1 ttatt

tities iten,. 'Ihw. thelcation of the, stracer particle catnot
T(a 8.0 .s ~ )() aon ea'akvpucý since the. transition probabili ties

WilV6,jis thc hrncc dia owever, if we, lumpl togOi~ecr a atsd i. thle state otr the low and
We aynowflesribtII, pi oii" iv iio of flow .states.if. the. loca.tiont of tile pill tit e, \%e find a complosite Nlarkoy 1t)lmct'ss

Iedettat by pth le psoi,tbilisv that this tItows ate in ,late whose structure catl be described in terms of tile probability
a ttm ,we have, fioto the characturistic proper-ty. of Nat-kov w (it I - i, j; 7) of mnaking a transition froti' state a, i to qtateý

that Pj in tithe ir. I-ollo\%itii Lquiation 7, and thll 1'oissovi holdtiptI character oif slo: individual tatiks, we ma>y describe the behavior
PO(0 + in) P. Wt ~(a - ;i)of this it for smnall -r by setting 1

.Aplih~ing Equa~tiittm g- tile set of diflirietiial ctjsiitionit ;i~ j; 7) +i,. - I-X, + .ft1 (?

whose' whow ratnoC tries d i it the r'osit plew cvjti' ts i t io :f tile' lr(is Hl + T .d ,i) [d .Av+ 0(7) J6, ks.
thistriblttio't uf flow stalt-~ \s-it ti'.tt. Nt\\ s\c shall hei rý11

cenrtid iii \shiait Foiltswv- lml.. sýit h Ito%\.tesd flnuv ll _- We tniy now desicribe the iroluabits' hbtory of the sorm-

tsls it iw ,lv i jilt flos-. ;11 ;l stat.imiji.v %%htow w lts' cbabilsitiv positc flos. -pa rticle locastiotn it~t ts in tertos of the dist sib.. imii

ecsju~ill loins tlissi-f,il.:w1 ii~ O~ictt fmisii liuitis'n K ai thins. liartitvin iiiItcatimo . as ijitte I. ttigdstttela.iceiii
S'mii-- fill Xolt liropniy (if t(Ikte MIarko n rorvsý, that
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and I ~,lpig :i.ntI,, ~ iit eo i rrt iie ti Mixing Equations

df -~'tt I ~rP,(,.j 1 , ~ 1 tracer experittettus itt Our flow sysitimts The tnt'att rcs5potl('.

.as welli as nt Iitalbe ict-tilesiIt' of liclttett~io 1ul5aioott the ritean,
(2) will %atisfy ceral io rd intary difflerenti al I c1.i ptaiot ra ther like

1 h prtii~ br rg i i I! l i tie ritit lte . describ~e by E ita tion 1 2, and t heir 'ol~ intil ill iII~t trat ive cases is dIscussr(it

(isatri tinga hint initi ual location probability over tiv. )I tanks later itnrder thi(ltheadinig "Tra~cer Caic tila lions.''

(and tile outlet) it) p~roportion to tht: f'ecd rates--that is, we If we' arrange to lotadinatto u,' inputt line, of our. miixing

take systemts v(1) moleis per unit time of tracer mnaterial, then tlic

concentration xi, (in mnoles per unit vitunte) of tracer in thejilt

poi~O) - I), . ,; j - 1, 2, . . *, Al + (13) tank develops uinder the influence of' tlie randuonm flow states C1
it$ according to the difierenit al equnations

viherr fit1 is the stationary distribution of flow states defined by dvj tv..dj )
Equitations 9 atud 10. t'j PW U'ojX1 it', tbvj

Yhediferetia _4 it-,
Ile lfrretaEFquationts 12. togethter with the inttiai i rq

Cotnditions 13, determinte the whtole developmtent in lttle of Intrtoduin~tg tite psendo-Illow5 iti,,. atnd callinig ott Eqitatioti *1.

the joitnt probability history of flow state arid particle location.
If We SumTIPo over j, wc recoiver simp)ly the probability dis. this material balatnce unay be written compactly as

tribittion of the flow states: dry it..a~1 ,..a (7

POW~Q 
-O) 

W i P

pp~t) -p~,(i)If fuirthter. we arrange that the systemi bc initially ntupty of

If we sum Equa~tions 12 and 13 over j, applyittg 4 wid Sw tracer material, we may acid to Equtatiott 17 the initial condi-

find tionl

JS (- rj 1,Dt Now fo the r1,on 2oe al, th(eto1on 8trto

dtNw o h.ran oe aletesto ocnrto
PP(0) -valuecs

that is. the differcntial equations (8) for the flow state prohabili- tX , XIX2,...X11

ties, with the stationary distribution as initial conditionts. It does not alone form a NMarkov process, but she composite
then'follows fromn our earlier disitission that the flows state j ) I;x
probability p.' '(I) rcmnains at the stationary initial value jIP, so ait-1a tX2..IX)

that, for all time, R of flow state and concetttration pattern does.' lThe sitructure of

+1 ~this comiposite Markov process is govecrned by the transition
Po p -1(:) (14) probability density, ir(t, x -~ 0,y; 1, r), where

Fqstiations 12 and 13, or rather, their soluttiont, contain all f' r(- r - 0, y;1, r)dyi ... dy,,
the basic infornmation about distribution of age and residence .a ,

timle in the mixing system. Thus , p',jQ) is the probability is the probability of makttng a transition fromt flow state a witht

that a pa;rticle, initially itt the inlet, is in location j at time t. concentration pattern x = xl. x2,.x. at dime 1, to flow state

Si tably oornsal ized # wi-h concentration in the jth tank between aj and bj a time r

E P, Wlatet. Tfhe tinte I appears here explicitly in 7 because of the

0 ~ie time dependence of thle racer feed rate, p.

.(i) = -(15) Following Equation 7, and the Fact that tile vj are bo~tutd by

t , pa,(1Od1 the differential Equations 17, we may express this irfor small
J0" 0 r in dte form

it is sitrIPly thle age dliStf ibUtiJIt of material iii location j, itt tile r x jy;,r)'[A,+Xr±0()

sense that q j(I)dt is the probability that a particle in location P W.. -+ 1Wi, \, T ?1

j has been in the system a time betweets 1. and it. On.cn / -d i) III &) (9

accordingly,. for speýcified flow m~odels, compute such over-all .. y", - X, - .--- .- E -- I.,) +(9
mieasutres of the performance of the flew system r-s the local it' Wa

1
n i - 1',z1.

age distributions and local life expectancy distributions which where tile 6's in the concentration variables ate Dirac deltas.

Again catb:saurdb rcreprtet.We may now dlescribe the statistical history of the composite

Also, llow-cottccntration states in terms of thc probability density,

=W Ps. P~+1W (16) P.(.V), whiere h

is the probability that a particle, initially in the inlet, has found ., J p.(x,1Odxu. d.r. d

its way to the outtlet by timte r--that is, F' is the cumulativeEI

residenre time distribution of maieri;id in the system, a.-d will be is tlk probability th~at at time t the flow is in stlate zs, and the

related. in what follows, to tile average response of the system concentration in the jth tank i,; between aj and bj. We set

to suuit,'bl t-acer experitncnits. down the chiarcteristic prop)erty of the( \Markuv pv'jcess, that
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K4
P,(V.t + 0 ' 1; fatJs~ .s.r)(As Il. It* atpoear.4 front Fngaflotis 24 and 2S that the rignclionm

P"a'(), y(i) are iIa tid linearly altd hutnosgentietsly to If1w
%%here thle intlegra, ;l, ne s r-all %.ll ti-, or lie is il it, dic ,tregol tracer ferd sthcied It- O *-I) hey are accord ingly convol a lions
iti over all floiw statr a. t.-I lien, alipin Fli utiir 1un g iv-es ofnsiitable ke rrtels %% i th v. In particular, we may set

the partiail dift-tr-ziuial eqiioitiait I

'~.rl~ + PW~1siS f 1(I - r)oi(v)di, (26)
- 01 ~ iOJL~ti~ir, ~ ~where /(f) is the mean response in oitkle tracer flow to a uinitOy X*gp,,~yl) (20l) piilse in inlet tracer:

F tirthei we miay int (riptct the hiiittdl Cotiditiotis 18l a% itnliliIng htiafrus)-f)frcs)-()1 1
an in~l conitionfor tlt- ditribttion g(),I, ia te (ori 1'hmeisavalarat; man vaues ominit)mme ots tho. he sppontc

an lltta Ct) ttot it te dstrlittioi (). tt he rntto an arbitrary tracer feed schedule V- is simply the convoluition

Pf'(1,0) fi 6(t VO.. A. 6() (21) ofip wiuth the impulse response /, juit as it Is for a determinis-

wher A~is he iatotiry robbilty istibuionof low ticallv modeled mixing system. InI particular, the mean stepwhr il i hesaioaypobbltydsriuinsffo retpoinsc Is the integral or the mean ltnlpokq rvsponse.
deftted y Ecutaioti 9 ad 'f Further, the mean re.4ponse described by Equations 24 and

With Lquataion 20~ ,od 21 in hand, we nttoe first that, if NNI 25 call be re-lated directly to the random walk probability dis-
itiLgi.L~ ~ i, Ijou ilitgi ii~ t~tiiit~ isi~idil tributions (12, 13, anld 16).IfecterEuio 24 ih

PO*3.iblc values), tlse find simply the probability -distributtiottn ) -Bsadiseje he6fnto em utbya
of the flow states O () n nepe h -ucintrssiallya

x initial conditions, wev we tisat tile average mular amounts of
Pow . fto(s',i)dYi d. traCeLr a'jpgjo(i) are exactly the probabilities p1,,(t) for j ~- 1, 2,

I . Also, tinder these circumstances, we have front E~qoa--
If, similarly, we integrate Equtiauotw 20 altr 21 over the .t . we tion 25 that
find

lfi()fl ,[poT.- --! *- -, a(,) + itOJ+l p,

k__p-(')E pA(f) = PLJa~ f- tt Ili
dt anti i cntparisoni with the randomn wall, equatiotns showvq ilaL

that is, the dirifentei~i thu i qttuiotis 8 for the flow state proba- diFW t
bilitiri, with tire stadtontirs' disttillittion ai initial conidit~ion. Ats)
It follows\, its ill iiittc. dsi'atiý, for tite rualdoin wailk, that theidi
flow staste pr-obabilities pj(l) retmain at their stationary intitial so that the mnean imputlse resptonse isl just the probability detnsity
valuel fun. so tltat fot- all tillie funtctiont of residence times !in the systemn. TFhis isl sAmply an.

f ~ T ~~ ... -p~), l (22) other indication that, all far as firqt niutnentil go, our stochastic
J. 4 mixing mtodels behave itt very inuch the saisse way as deter-

Now *tle partial d ifferenstial Equtationi 20, although linear, mtitchymdldsses
liresent. in general formtidable cotoplicationi, atsd We PrrPose WeC taIIn now to a cotnsideration of the second momentq of'
accordingly to confime ourselves to a study oif the leading the concentration variablesi. Defining tilt, partial mean valuesq
mona-ents of ithe ccucentriation variaibles. We begin by defliittg of thet products (squares incloded) by
tite parttial t nvani t(inctit trat icis 4~1 i js~y~v ... d, (27)

J.f - f.. *F ,I) ... dy.;j 1, 2, .. n (23) jA- -1, 2, n..,

urn gin t his defini tion to Equl ation 20 anid 21 atid appilytling 122 n1iig gted iiin oE alos2 n 1 efn h

see fin!the isysua friayuihutaqttin ihitt syte oifordiiiatry dillVren tial eqctatiotl weithi initiatl ec(ilditionts

4.S0a(1) /' w.j~ 16(5 Wii',,kW
VWjf i~t ~i + jull +15 ~ ~ ~ ( (24) di ____J VP V

dt VJ 14"1 ,~ V

Pa .O 0 sL S u(1) + - oll + A. S.1((i

*Ihlee. are thi~ eqitalilini isthat wril bo stilved belows for illoist ra- SO~ (0) =0 j, A -' 1, 2, .pt(2 8)
tise Flowse v~tettts to I Irtit cjto tilet- tIn all reisponse to traer ~
ittpttts. Hlit- ll t rte (it llouis p(1 tili Lillie) at sslih iths tlte su(defitted by Eqttaiion 24. Hiase are the ecqoa.

tracr gi~ieriil lave th sstttt ttiji lt ealilaid t-u the lions' that will he solvedc bselows fot. illlt~ttatis'r nlows Ssvtns ito
sltttitt of lnterial evilloti iiyb aluac o 2he psroduced the variance, ints espotise to tracer iltltut. 1 lie meats

sq oat- tate at wshicht tracer leavecs the ssystttts eatl be ealtle tIated

* . . [~t..~. ~ ±~ f*,.,~ ~front t11' -.0i1.16n1t of FEtiattiots 28 as
P W - - f rr

j*Il W., +
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ri aatiaiiaa, bl tlie aaaoalaIml.aa~e Illaj

IF V

F iialhe #ailing i w qa tio 2eS, %%cuae myclluat ie variance o h oa /I.,a ~ '

Cooccli ration rrejpnnI1e in tanaak j to tin' tracer ired schcd tile ita -

s: (1). Tihese incastitrei of t hc stati a ictal flutat ar ion inl the 1 I,.. '.l$a(),(t + T)
.stcoicf icsaoiase havc aif course ito coatoticralirtri lor dtcitriijal. ,.. -
ticaltly inodeled t nixi lg, systems~.wheaila lwtalaa ilae ta'I ith o it t

Anaatlacr stastistical iaverage that call bae ealaralata'd from thc wt-re it th flo sti cal~l-l atai tlimeIawl 1 i% the fslow4 %late at.,

resultsI of tracer a' xpernticii a is tile 0 Littioncwrl atan faana Ition +) fai Ill (awiiL its el L , Fl C C itc La bya k. ilerwia th1 y ca
p,(r), defjined as follows: be calc aiated hr ate tlaa ds sirili ar 1ia that sliumn at bluow for the

(~P'+ 1.)) - As(01,0~ +I 1) la-it teiin. We, now celarels tile exjpailatioai ill termis of tile
uQut+ T) probability diktrihtatiuaa.

where :(I) is the rate ait which tracer leaves thc systirna at time, 1. j 4 ,ia, llv(YA(+ -

figure 2. Parallel tank model ik;t.p~;' y

w'I'lac prodet P.(f,1)m(o,* iaY

distribtition of (uax) anad (,I.)) at I Lauid I +~ r, seipectively.
1,he transition I-robibility T(ti, xr-~y r) satisfies the same

Fiue3 eistank model difilbretatial ectriation a Lit,l(I + ,Y)---narniey,

a It -

0 -- _ C __ __1__

TIME ,t

t Figure A. Typical step response for parallel case
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Figure 5. Effect of fluctuation magnitude on mean response to step Input for
parallel case

-~al I . -

I' w ".0
0 2 3 41

0 i I L .

or I. .-34

xI E y; 
TI)E t~r. -Y T .

Figure 7.Efe of frlai aluctuatolve magCnjnitudeon escapte
wigur 6.pfctorevtainmantd o enintesit. hct for paraled c

BYpos toeto~ stepfla tnpo for. paralle casee Coreplottod)Il

Fron 3hi eqam [\\k : fin tha \Oihctl eNrcl o pac iivlv. eeml

+ -'l S)soile fi ll \\tisit Ii~ sii ure 1w v i sv In ic,, r jl t-sponrisi oft Iiiv mo delý

, L. Ov)lissse p-.),mi /) bot ( pi ('). Ire i IO[,l t helo ,oc m l elsirl. pat , o tif
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.1 I ,

-4.- < !,

a z o i z 4 $

TIME t TIME, t

Figure 8. Effect of switching rate on mean re- Figure 10, Effect of flucluation magnitude on
sponse to step input for parallel case d')/W(t) ,;f step response for parallel case

0. -------

1.0 ,,

0 0~

02 3 4 0.I 0 4""IME' t TIME,

Figure 9. Effect of switching rate on escape Figure 11. Efft~ct of switching rate on a(t)/mCI)
intensity, h(t), for parallel case of step reipo~ne for parallel case

Y- - 024 .......- I " i iX A .

the wsysem. In this c'ase one could lflea~iire statistics of tile NT-X. - Ar Fsipuro e at various points with in the s ovin and i elitparC I1111 - X22 o ( 1)

with !li,! cnrresponciv: d aiidrsd 4variiIis t an ks in the model. 'I'hr nmaning of dwse qu:,nities i given by Equation 7:
Once a model ha, IIen lorlmilatcd and the ilaraimet irs

have been fixed by conmparioiii \%itl tracer 'xperimenLs, one (I (- 2; r) k l' + 0(r)
can procred to study how the uiast.adhijs of the s, tem af- r(I - I; r) I: 1 - o r + o(r)ficc ti v a ui o u s tv 'l c i o f ihte , nj 'i l r c a c tia |i s . ( 2 . 1 ; r , " - ( •)3 )i

ft TO -. 1; T) XI? + 0o(T) (

2- ; r) 1 - X,.r +- 0(r)* Tratev Calculations -ihe cq-iationw for lilt" i" bability distribution of the flow st"tC4
We now apply the foregoing analysis to two simple mixing (Equation S) then take tile form

'ysteills. II tlhcec examples the variable Jlows are assumed to dp1
tike on only two salues. Th' matrix of switching rates be. -d -- xlpl -f- XP
comes two-by-two, axid aFplFcliuin of Eqtiation 6 al!uows iu to (3

express the four cleniens of the matrix in terins of two quanti- iPs (33)

L tics X and X7, as follows: -(it F XIp - XI

VOL 6 NO 2 MAY 1967 28,3



38

0.4

aa

0.2N
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Figure 12. Typical autocorrelatlon of step response for parallel case

The s~ationary distribution is then given by r, Wilt - U? W-1. , (39)

(34)u' 
ZV

X, + (A, In this case the material balance becomes

We may dlefine a jihean switching rate, X, by eb ) r r)s +urv

dik AS-X A 3)A (40)
dx, t(I + rO)x, - wv(1 + r.)xi

In the first of the two caves, the system consists ni two tanks dt
in parallel (F~igure 2), where the total flow, iv, is constant. In both cases equations corresponding to Equations 24, 25,
Tihc split of nlow between the two tanks will vary, however. 27, 28, and 29 may be written describing the first and second
The flow staites will be described by the fraction of the total moments of thc tracer output, resulting in a sysitem of 10 lineal-
flow enteringt' tank 1, r.: differential equations in each case (although the equations are

If',.nbt all cou nled). The solutions to these were round for soniC
- 1, 2 (36) typical set.., of parameters. The differential equations for th~e
II autocorrelation function were also assembled and solved for

We thn lettypical values.
We dic) letFigure 4 is a realization of the step response of the parallel

= P= + P't 37 system calculated by a Monte Carlo method. The time has
(37)Pi been scaled so that the average residence time is unity. Al-

t, - F- Piethough the expected step) resp)onse is identicail to thle cumula-
wvhc-e P i% the avet age iplit of flow and cis equal to rl - r-, tive distribution of residence times, individual realizations
the size of tile variation. U'sing tile analysiis of the prev'ious cannot be interpreted as distributions. This particuilar
liection we may write diffierential equations. for the tracer example is not even monotone. The nican step response for
response of the systini. The material balance (Elquation 17) various fluctuation mnagnitudes;, t, is shown in Figure S.
hecomes%, for this case, E'ven though the mean flow distribution is the samne in eachi

case., the residence timec listrilbttions arc in faict dilrerent,
i'~ ~, =rr(e - because the flow distribution does not affect theilit-utut of thet

(3i) systemi in a hinvar way. To show inore clearly the niatuire of
Alf the d illi'rence between the various enti ves, the IC l a iit i t I

(1 -'.,'(')- u(l - Ta).v2 FQt) haia loen plotted on .wiilogaritlimuic. coordiniates in 'Figtoure
6. T[he neg.ltive of the slope of this curve. which,. a~s a function

In thle scuoncd of tIe( two ca ws (FIigu re 3), the( systemn conl- of tl iei, has, been referred to a% the imn I si ty function (Fqa

sist. of two Itlnk% in w ivs. :At!,tinl thle tntal flow. if', is constant. tionl 7), has titi phyvsical intfitipretation of tin c'cafie. rate.

Tlvatibl 1,1,1%i in, tik (;I,(* are thtow between thle two Thuts lcro~tingtit( te enape intensity fuinction by li(t). if a piar.

tak.In 11i,. cam. tli'- lows ane (onvetlienithy CI'se(i-ibd byv the( ticde has bepn-: in thlt systelm a tulle 1. its probbtility of eclil

(Iilfian r_ i, in the. next di scentkl ids This(I/ (Iti f0a''ti y is p)Intlted in,
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Figure 113. Typical step response for series ccsG

1, N1. >1 - }-1, e -2

0__ 
__

3I- 
_ _

-a---- -. _0_

-to 0

T IMt h FIE

Figure 14. Effect of fluctuation magnitude. on mean Fiue1.Efc fNtainmgiueo
response to step input for series v~s escape intensity, hit), for series case

F-iguire 7. We see that as the flow disturbance is increased in the cur-ve of a (t)/ju (1), but cauising the peak to nccur carlier
the magnitude of hQt) decreases for large :. Generally speak- and the curve to go to zero miore qitiickly. For ve ry high
irig, a curve of h(t) that decreases over somne interval is charac. switchinlZ rnte5r the vtsrinrev of outitet cone rý'trmton -Or'* to
teristic at system, exhibiting stagnancy or bypassing. so the 7-ro almost immediately. Theli autocorrclation function,
effect (if the flow fluctuations on the residence time distribution p'(r)' is hosso in F'igure 12. Tedpuee nr~ ifrn

- of the parallel moudel is similar to these effects. far different values art . although for a stationaiNy process the
In Figures 8 and 9 wve see the effect at switching rate an the function would be independrent of t. 1*he auitocrrelation at

mean step) response of the samec systemt. As the s-witching the flucittating flow rate (ssluiel is stationary) is shown for
rate increases with fixed disturbance size, the response is seen comparison. '[hei autocorrelation of the step rt'sponse ap-
to approach thatt for the samne meian flow with no flaw fluctu'a- proaches zero rather slowly at larze r, indicating a long

* won 100) ý-' 1 . As tie switchirig rate decreases, the decrease "~memory titne" of the pro~cess comnpared to that of the flow.L in hdi) %% ith'Increasing t becomecs inore pronounced, suggesting a TIhis is especially pronounced at vahucq rift necar unity. inealling
* greater arnount of stagnancy or bypassing. that ir the ;)art of the step response in the vicinity of i I

I'he quantity fo),Q)tr the step input has been plotted is on one side of the mean, there is a good chance it will be on
in Fi1gure 10 fb- variousq Ilur'tuation nmagnitudes and in Figuire 11 the other side fromn about f 2 onward.g for various switching rates. As could be expected, au'f)/miQ) A realization of the step rcsponse of the series system is shown

* increases with increas~ing fluctuation magnitude, but the shape in Figure 13. It appears that the flow fluctuations have much
of the cuirve is relatively unaffected. In Figure 11 we set that less effect on tshe outiut than in the par--!!-- cn-. T[his is
increasing switching rate haq the effect of increasing the peak borne ouit in F~igures 14 aod 15, whe-e we see that even in the

VOL. 6 NO. 2 MAY 1967 285



40 1 0 ~-

b

-3 -0- 0.4
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Figure 16. Effect of switching rate on mean re- Figure 1 8. Effect of fluctuation magnitude on
tponse tsopinput for 3eries case a(t)/MWi of step response for series case

* ~1.0-
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I I ~0.8 -7-- -
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V1 L3O~ ~ ~ 1 A IN 04-_
0.

U'. 0.2 1- .1/3 - __

L --
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TIME ,t TIME. (t)

Figure 17. Effect of switching rate on escape Figure 19. Effect of switching rate on oP/A)of
intensity, Wt), for series case step response for series case

v1 , .-vt, X - Xt,# 2 vi = yi, 1, Xi-X,

case i -_ 2, which is the Ilaxiliiium fluctuiation Ilaglnitud~e first-order reactions. ']Jhc methods follow closcly ltie earlier
obtaiilal)te With the gien P aind 1\1/4 the CileCt on' the mecan deve~lomient. tnder the heading ''Mfixing Equations.''
rcsl)onsec and the escape iliteiisity is slight. Piquiics 16 and There is no particular difliculty in forT n1Li6l sal',- the pilob-

- 17 show tha~t the effect of switchulig rate on these curves is also ability equations for compleox react~ion systems, but we confine
slight. Theii effects on the cocielicient of variation, aQ)/MA(t, ourselves here for concreteness to single reaction.,

* arc shown in, Figures 18 and 19. While the fluictu~ation11magni- A-
tilde afli-cus the cuirve- practically linearly, the switching rate
just increvases sliightlv lthe rate at which thet curve dtropls to zcro. which we follow in termis of the concentration of A. Denoting
I 'he atl locorrela .t ion fiunction ltbr thet seriers case- ( Figure 20) this concen trat ion (in mioles per unit volvioe) byx, we describe
shows a ve ry 1(0q ntis ilnors time. lor smnall val us oif 1, as I the rate at whliche reagent A is consu med (in mnoles pecr unit
zInlecases ca( It si ccsiee veci e11ve is I wi'r than the otte before., voluioe 1per uinit timec) b~y the rate fuinction fl(sv). Jr we load

1)0 fo vil i ofI rieiter thai Il 1h tliSIrend is re(,ersed. A nimole of eaqe n t i~crtil uit tdine in to tile feed Iinc5 of our reac tor
Similar th1ii I iwc~irlreil ill Owii lmrliAfll cast., .ilthiiiigli less; pro- 5\5ten, teiit(ii t a cli5(elt cocnration xs, inl the jth tank- satinfies,
losirirefd . following Equiations 17, lthe difft-Tential e-qtatioil

Reactor Equations dxjr1  + ~ztjj, -r,()(1

dt r
Wlr rtt ill1 Iiie Ilie miitiad itiaiical tietiliorl.I for sllid\i''
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1. 0

rFLOW CORRELATION~

0

2

TIEITEVL
Figue2.Tpclatcorlo-fse esos o eiscs

V1- V, 1 I X, 1

No~us sinte rameto temiigeqaios t ste fweitgrt ),() vrth', teincýrain-unngoe
copst all posil vaus,_ idsml h rbblt itiito

le £I- (1 I ? 1 ftefo tts

0*Pox- "Y P(5
or fl w ta e n c nc nt at o p tt rn th t e m a f ll w a ry ng oit h i nt g r ti n n E c u a io ý 3 n 4 g ve j s

Frgurei20.oTrselalsaitocoirelation of steptresponse for seriesrcase

givngwjsai th c rbblt trhatmetftemxncuto ti the flow inesat inv stvte tha (tnd inehat connftinsowir

cenof flow stathand connknbeateen patternbthattiefmay followinrgn ltti ntgaini qains4 n 4gvsjs
Equatio a 0 tahe partials rhfecorespndin pratobailt denity riedfnn qains9ad1 b h tainlfo tt

p~(.rO, With robabilitiesso that th i Equation 45 abeeustmhes

1_1 stati0naryi.robabilities

centrato ino ther co tnkcetwedn to andlo t, saisfiosy ofolin t inswt

priobability distribution in time. but rather to go directly to a Taor these first-order reaction systems, we can readily develop
study of the stationary distribtution, which represents the quasi. working equations for the leading momients of thie concentra-
steadyv behavior of the reactor systemn. Denoting this stationary tion variables.
distribuition by fi#y), we find from Equation 42 the dlefiniing We define the p~artial mean concentrations as

equation Mai rjav~v y0  1, 2, n,' (47)
a IVj w, Bringing this definition to Equttaion 46 gives

[ ~ ~ K -~+ , = 'i5 )od V + ý (100"Ifl + ~)afI
R~yv) I T~)J = X.Of) (v) (43) 1,o l2,.., (48)

Z: which appears as a set of linear algebraic equations which one
* to which we must add the normalization condition azltslefrtem. Tema ae(nmlsprui

fy (44 tie atvd~ which tinconsirmed reagent leaves the systcrm may be
*1 calculated trami these solutions as

the integration being carried out over all the values of the j. n.. ~ 1
WXe note that in Equation 43, the reagent feed rate, ý, is a con. 0 ts J7 "in+,y
slant. Alv)v . dy.
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which we may write as calu readily bt! developed from Equation 43, in the sazte

r n manner as f-ir the mixing er.i".tions, but we defer these studies

m , " I r/aw3-+' 0 + te..+t,, (49) of the variability and the A.,3ociated correlkion structure of our
aL j-1t reactor systems.
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SYSTEMS WITH FLUCTUATING THROUGHPUT

FREDERICK J. KRAMBECK, STANLEY KATZ, AND REUEL SHINNAR

Deportmem of Chmwol Engineering, TAs City Coalep, The City University of New York, New York, N. Y. 10051

A theoretical framework is presented for the interpretation of tracer experiments In quasisteody-flow sys-
teMM, w .ere tho ifow MWd "00cui W *I welt. the Inqq yI Row,, elthIft ,tOo ry AkffIthO "hne"t iled
central values. The fluctuating throughourt leads to the consideratiou of different types of sojourn time dis-
tribution of material in the system. These are discussed In detail, and related to different ways of ca'i y;.iV
out tracer experiments an the system. The standard experiment, In which a known amount of tracer Is In-
jected quickly Into the Inlet and Its concentration measured in the outlet, leads to ,ne of these distributions.

IN FLUID systems serving as chemical reactors, mixing denote probability averages, or, as may be sometimes con-
processes have pronounced effect. on reactor performance. ceptually more convenient, long-term time averages.

Often, these processes involve turbulent motion of the fluid, For such a mixing system, we may define two conditional
introducing randomly fluctuating behavior into the system. probability densities, each with a direct interpretation in
In many biological flow networks, large flow fluctuations terms of idealized tracer experiments. Consider first that
occur ill a roughly periodic way. In both cases transient we inject a quantity of tracer into the inlet at time 8, and
tracer experiments are often used to charmeterize the system, measure that fraction of this inlet quantity which has emerged
but the analysis of these experiments is generally based on by time t. This fraction we may interpret as the probability
the behavior of steady-flow systems (American Heart Associ- that a particle of material entering the system at time a
ution, 1902; D1nckwert-s, 1958; Kramers and Westerterp, leaves it before t, and denoting it by
1063; Naor and Shinnar, 1963; Zweitcring, 1959). Whenr
the flow distribution of the system fluctuates, the tracer (8, r) dr
response of the system is a random proeme, and only the
statistics of this proces are experimentally accessible. Even we may accordingly interpret the differential g (, t)dL as the
if the flows are strictly periodic, the starting time of the probability that a particle entering the system at time s
tracer experiment is usually random, so the same situation leaves it during t, ( + di. Consider next that, starting at
exists. One would like to know the relationship among the time a, we label all the material entering the system, and at
statistics of tracer response experiments, the probability time t measure that fraction of the material in the outlet
distribution of particle residence time, and the statistics of stream which is labeled. This fraction we may interpret
the system's performance in the presence of a firbt-order as the probability that a particle of material leaving the
reaction. In discussing the properties of a proposed sto- system at time i has entered after 8, and denoting it by
chastic mixing model, Krambeck el aL. (1967) showed how
the above data are related when the inlet and outlet flow h(a, i) do
rates ol the system are constant but the internal flow distri-
bution fluctuates. The same method is used in this paper we may interpret h,(s, t)de as the probability that a particle
to study the problem with fluctuating inlet and outlet flows, leaving the system at time t has entered it during a, a + da.
Some beginnings were made in this direction in earlier work, The conditional probability density, g, may be used to
and are here developed further. define the density, fo, of sojourn times t for a particle entering

For a flow system with an unambiguous inlet and outlet, the system at a random time. We set
three different distributions of sojourn time can be defined:
for a random particle, for a particle chosen at a random time f(V) 0 0(. + 0)
from the outlet stream, and for a particle chosen at a random where, because of the stationarity, the mean value depends
time from the inlet stream. Those distributions differ only only on the difference of the time arguments in g. This
in respect to fluctuations in the inlet and outlet flow rates, distribution is thus essentially the mean response in tracer
and merge into a common residence time distribution when outlet flow arising from the feed of a certain quantity of
these flow rates become steady. In the general situation, tracer. Similarly, h may be used to define the density, f.,
the distribution for a random particle is to be identified of sojourn times t for a particle leaving the system at a random
with the over-all residence time distribution, time. We set

The differences among these three distributions can be f(t) = (h (r- , r))
shown intuitively for a situation somewhat more general
than the particular mixing model which underlies the detailed and this distribution is thus e-5centially tile nivan rv-polnse in
calculationa in this paper. Consider accordingly a mixing tracer outlet concentration arising fromi a certain level of
system of volume V, with volumetric inlet and outlet flow tracer concentration in the feed. The distributions f, and
rates, u and w, respectively. The volume and flow rates f. are just those developed for our concrete mixing nmdel in
vary with ti,tie, in a jointly stationary way, with (u) and the body of this paper; in particular, fI is the distribution
(w) having the same constant values. The pointed brackets given in Equation 37.
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Th -Ii I einiifii,1:I JirinI: in il ity 1 -11i' it iV g ILI k(l h, WCe Of eCi~rse reactions. The mixing modelI chosen is that developed by
relatedl throuigh th hinlet ~iId outlet flow rates, it and w. Kratnbeck e( at. (1967), which has a very considerable degree

Tis. ri tat io iiiriws thrin iigli Iit ora id probabilist ic inter ire- of flexibility, although for reasons of technical simipl icity its
taioni id lies flow i'atc,, wlterelie %%v take (up to it coinnnton properties have been dieveloped for fixed mnixing volumes.

ron~l'tn (iiof nrpri i nai nl iv),Innil th pobbil ityv that an i ncomiing Speccifically, the model consists of a network of well-mixed
paricle fnitvri (hiring ihe timei 0, A + dit to he given by tanks, where the connecting flows fluctuate randomly in

I a)ds. antI the iirohaubiliLtv that it leaves during t, I+ dt to time. The number and arrangement of tanks arm left arbi-

I 1 4- il ivp thill t elie4*4 111 A.WP e tittthe orbabiitv flon cn b use tonimmixinn stedvrocessuocesby
that:I prtile etur durng 8 8 dA nd eave duing akin al appoprate rragemet oft alloan wingwitheh

1, f+ (t i prporiona toit a)(s-Us, ~dt.Furher tv nuberto icrese. Axal effampleo exm may mybe

thatit prtice hu entreddurig aa + s, gven hatit o tans inc~cae, wthhorwkdwandba flowsflowbe-
leuvs att, te se tht te pinboblit tha it artcle nter twen ech tnk.The dderandomlyf radomy ucto-u
during s, x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~iult + aadlae uigt ii wt ae iigfossol aei osbet iuaestochastic

constant ofpootinlt)alopootional toi Of Odur miing prottesflwes ifcomurficilen. n umersohanksoael wthksteady
w(I)R s tha cor~c suc a arg numer f tnks igh berequired that

itt~ e t a )u'(1) there would be nos8aving in effort overaecomplet~e description
of the flow process. Onl the other hand, if conclusions may

This conclusion Can,1, Of course, also be readied b 'y at straight- be drawnt about such a model with the number and arrange-
forward comuparisoin of the conceptual tracer e>ýperiniUnts nieat of tan~ks left arbitrary, it is clear that they will apply
undevrlying g and h. We nuay see hoot this relaion that to a v'ery general class of mixing processes.
g iuni /4 zn eief.nu . a be. expectedl to be. equal Onc additional absumption is added to make the analysis
out *vwen neadotltfo rates it and w are steady, possible: that the interccinectimig flow rates vary in time as
noiiid v eudt tesm constant value. If, further, finite-state 'Markay processeit. Such processes are described
theinmiixing niysteiii itself is compldetely steady, without internal in detail hy Feller (1966). The fact that the states are

flututin, ad t treno olyequimi lint equal to t~he same (discrete is not important, since their number is arbitrary.
functiion oth ilcdfene:The fact that the process is Markov is a rathe~r mild restrictionl

because the dinicusionality of the state space ini arbitrary,
g s )-h(,t (i - 8) This allows the state of many non-Markov processes to be

Now, wihtepoaiitcinterpretation of flow rates redefined to include information about the history, making
u and U:a11dcIbVw a construct the density, f', of the new process Markov.
sojourn times Ifor a random particle (caught at the nmomient Krambeck ef at. (1967) showed how this model could be
it enters t~he system) iii the. form analyzed in terms of the random passage of a single particle

through the system or, alternatively, in terms of the randomly
(1 (O)g (a, a+ 0) fluctuating concentrationi; in the various tanks. In the

(a~u))present study, the same methods are used to analyze the
situation with fluctuating inlet and outlet flows in more

ilumt siiniet (it) - (iii, aind suiice all niean values depend only detail. The concepts developed are then illustrated by the
onl time( differences, fie nuay, taikiiig account of the relation p~roperties of a single tank with fluctuating throughput.
dlevelopecd ab~ove betwteei g anid h, write this as Some of the derivations given in the earlier work are repented

~()=(1 (T -' . )w (r)) here.

(atv~)) Formulation of Model

aitud so interpiret it also its the density of sojourn times for a In the most general ease the model consists of nc stirred
ranidonm particle caught at. the moment it leaves the systemi. tanks arbitrarily conneicted by interstage flows (Figure 1),
This (IeusitY f, is just. the density of ritsideuce times in the where the volume of the ith tank is vi, and the volumetric
systeiti, anid is precisely that. dieveloped for our concrete flow rate from the ith to the jth tunk is wil (i, j - 1, 2, . . ., ni).
inixinig miodel ill this paper, usinig the inlet flow state distri- The inlct stream is distributed to the tanks arbitrarily, and
butioii corresponinilmg to Eqiuationi 16. As long ats iinlet aind the feed rate to the jth tank is (denoted w0j. The contribution
outlet- flow rates it andl tv really fluctuate, it. iniay be expiectedl of the jth tank to the outlet stream is similarly called Wj.i
to differ fromii f, andi f_. Tihe sojourn tiujues dlistributed The amount bypassing the system enitirely is

aiccordling to f,, wii nuot aiccortding to fv om- f,. have ta mean
value give'i n iinLl iti ratur way its th liertio (if the miieaii system
volumiei to thei incuut iniputt-ouitpult flow rattc. This fact is W2i

develoe li vexplicit. tigel raiv calculation for our cnret
mixing miunlel in Equtnalion 25. A.less precise, hut somewhat
niore geinerail, iituiitive airgumenit to the ,ame! i~onclusioni

ap~peair. ill :It Appendi~ix.
Thliis Ii qit r ainis to tatke the whole line. of intuiit ive Coll-

saerliom d iiUCet a)ove, aiint reduce themi to pm-cise calcu- V 1
lat ion is fir a broad class of minii ig models, iiiak ing clear the v
coinmec itaios a niong sojounrni t in de(istribut ions, tracer experi-
uiemil. andthlde Is'hutviir (if the mixing systemi for first-order Figure 1. Typical flo*. network
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Although the flow rates are permitted to vary with time, Mod1l aes Random Walk
it is assumed that the volumes, v,, remain constant. Thus, When the system is followed from the point of view of the

the total flow entering the jth tank at any instant is equal random passage of a single particle t6rough the systenm, he
to the total flow lcea ving i : ~probability of the particle being in tank i while the flow is

+ 1 , +) in state a at time t, p4 i(t), satisfieswojfi 1 wi.,; j -!,2, ..... n 01)

Also, the total flow entering the system is equal to the total d p )-1 r, )
jeaving. D'enoting vnis qu L6iI.) Ljy W, j - 1, 2,..., n + 1 (12)

W = t-"wj = wj.,.4 (2) The specfication of an initial probability distribution, p.,(0),
J-1 J-0 will then deternii ii pro1 rtiet of L ,, .uuJLe

It is convenient to define "diagonal" quantities of the form completely.
wji such that the total inlet flow to the jth tank (equal to the In thi- cas, however, the stationary distribution is of no
total outlet flow) is the negative of wtj. Thus, particular interest, since the particle eventually finds its

way to the outlet with probability I. It is necessary to state
+= , a ( explicitly the initial distribution, in order to calculate the

w - w - w; 1 .. , ( probability structure of the ranlom walk. If the total flow
through the system, w., is constant (u'. = w; all a), the

Flow rates tvwj so defined fill out a square matrix (n + 1 by initial distribution is given by
n + 1) which has the property

psi (0) - Ps (Wos/w) (13)

Stvq = -i1 - 0; j = 1,2, . .. , n (4) which is to say that the flow state distribution is in its sta-
`1-0 k-1 tionary condition, and that the probability of starting in a

and where all elements wue with i - j are nonnegative, certain tank, given the flow state, is proportional to the flow
The random variation of the flow states with time is as. to that tank from the inlet stream. In case the total flow is

surited to arise from a Markov process with a finite number of not constant, some ambiguity arises. One could either as-
states. Each state of the Markov process corresponds to a sums that at the insttnt a particle enters, the flow state
given matrix of flow rates. Letting a lie the index of a flow probabilities have their stationary values, fo, implying that
state, the flow rates corresponding to a are written the chanc(, of a particle entering at a certain time is hide-

•0, 1, nee; n1, 2, n + 1 PVIiCIIt of t6e flow state, or could assumne that the chance
of a particle entering at a given instant is proportional to the

For every state a total flow rate at. that instant, so that the initial distribution
K+1 of flow states, say p•, is different from 71s, in the first case

- wi. E w/h - 0; j - 1, 2, ... , n (5) tMe initial distribution would be given by
9,-0 k-1

M+1 ft ps,(O) - P-s s (14)Ew/ W. = E w..+l. - w.; all a (6) U'd

i-* i-0 In the second case,
The probability structure of the flows resides in that of the
transitions of the underlying Markov proess. Denoting the 1) = w (16)
probability of transition from state a '.o state 0 in a time since the arrival of a particle in a short time, given that the
interval r by •ro(r), one has, for small time intervals, flow state isa, is proporttional to w, and the initial distribution

i=o (r) - 6.o + X?.r + 0(r) (7) of the process is then

w h ere the X. p satisfy P si (0 pl P a(

If all the w. are equal, Equations 14 and 16 are identical to
X.. >__ 0; a i 0 (9) Equation 13, The initial distribution (Equation 14) corre-

The matrix of switching rates, X°p, then defines the prob- sponds to tracer experiments in which the tracer is injected
abilistic behavior of the process completely, as a pulse at a random time or as a step function in tracer

Krarnbeck et al. (1967) showed how one may derive flow rate (constant flow rate of tracer fluctuating iulet con-
differential equations describing the evolution in time of centration). The initial distribution (Equation 16) corre-
various probabilities. The probabilities of being in the sponds to tracer experiments in which a constant concen-
various states 0 at time t, deinoted by functions p$(t), satisfy tration of tracer is fed regardless of instantaincous total flow
the simultaneous differential equations rate.

At amny rate once the initial distribution is specified by
dp. = ( Z X.sp,,(t) (10) either Equation 14 or 16, the complete time history of the

dt probability distribution, poi(t), can be calculated. The cu-
mutative residence timec distribution is then given by

The equilibrium distribution of flow states, j)., which obtains
after long times when the process becomes stationary, then (t() = • PS,4IQ) (17)
satisfies

SX-PP = 0 (11) whikh is the probability that. a particle entering the system
" at time zero will be in the outlet at time 1.
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It i- iiiterv.-t in, to ,otoputt, cult' t Mli re-idtnce time to met, hlut the prohabilities for 'he outlet statc- tire Riven by

hM%% it Co'ipacrcs aitiI the valh' fur a stealy s! teLii ill Shihil
(':kse it %w lluld I i 1. th l totd v ltii.' dividhd bIi t total foId i_ d . =.l( (27)
raei.. Tlo -lii this, di d-i Vi

Tile Iutiantity psa.., 1, ini then the lproblability that at lime f
I -- it) I tsj, (t) (18) the particle hua lift the mystem anid thaLt when it left, the flowd p'-i

was in state 0. As -- ,this will just be the probability
whihh siKimlv states that I -F (") is the probability that a that the flow state was J at the instant the particle left.
Iiiprtirh, wliihi eiiterod ait tlii zerli is Itill its eli syshi lu at Tihs. delioting this quantity by Po"

litl 1 T en0 11. ovllrsielcetili'.isgienIPA, - P0.1+1 (_ ) (28)
0 = L I -I- t l )lt dt - te L s i/)t (t) 'l(his IIIRlY IK' expresied ift ternms oif the 9., defined earlier anid

0 A J [ given bY luatin 21. Thusn(f

IntegralilIg I[iLltl11titll 12 olo filiils + (1
115 PO( (0) - (I ) di (20)pi' = l ) - ,u ) A h).--iC0 + Inpi(L)i dt +

Vi-- ' or

W! - Pj,.+t (0) + , w,+,,__ 0, (30)

x. p.(I) dt; j 1,2.... (20) =i l + i'

D)efinintg For the initial distribution Equation 16, Oej is given by
Eluaittion 24 and

0d, = -psi di p,,+(0) -"0 Thus
anil noting that paj(im ) = 0 (j = 1, 2. n), this beeonies

-pi(0) 90i - + --'-;; j= 1, 2,(2)
c-I Vi whici gives

Irf lEquation 21 is Sol'vd for th' 0,1 the Ini rsidlenee I tOe lis' =- PA tw-/.) = PA" (32)

can then be calculated: This result is reasonable, since initial distribution Equation
S16 corresponds to a particle chosen at random from the entire

0 = 8 01s (22) population, which would imply that the rate of leaving is
# '-t proportional to the instantancous total flow, just as is the

Substituting the initial distribution (Equation 16) into rate of entering.
Equation 21, For the initial distribution Equation 14 the 0pj depend

more on the detaUs of the system, so the p,? cannot be caleu-
-P$ - 0i-- + X.0o.,; j - 1,2, . . n (23) hated so simply.

' i- 'i * The joint probability po,.,c(t) can be expressed as the
This equation may' be2 tolveN to yield product of the probability that the flow state is af when the

particle leaves with the conditional probability that the
Th; i Laybei olve particle has left by time f given that the flow state when it

1b,'( leaves is . Thus

as Call be Ween ll ubsititutioil, and by using Equiiois= POOP.+(tIa) (33)
and 5. Muihstituving 24 into 22 gives If now a particle is chosen in the exiting stream at a random

time, the distribution of the flow states is P. rather than p..
a (25) Thus the joint probability of leaving in flow state a at a time

leos than t for a particle so chosen is given by P*.,+o(),
which states that tue mean residence time is just the total where
volumiie over the iuiean totil flow, However, the initial distri- P R,.+1 =/ .ps+u (t ia) (34)
bution (,'Equpaliot 14) does not give this result. This gives

When disutiss•itg the significance of tracer experimcnts -a
another stutistih:il iroperty of the randoni passage proved PL.+( P...+ " (35)
useful: thi, dist.rilbtioin oif residence tinics for a partidce

lioseti at a rairdotin timue fromt the outlet of the system, For initial distribution Equation 16, this gives
called tihe- outllet age distribution. To discuss this situation,
it is useful tic ii lify tihe tranisitionl probatbilities slightly so P%.I M = -Pa,+ 1 (0 (36)
ias (ouiiialke all the outlet states, (a, n + I), absorbing. We
Thus, for j P i + I, the pirohbailities again oibey The outlet age density under these conditions becomes

-() P s(i)• + -". P.,(t) .(t) = !!=2 )+2 a c P.i ( 7)
i-i I. W e ' 11 W, Vi

j = , 2, n (26) Thus f.(1) is the density function of residence times for a
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Ilarticle chosen at a random time from the outlet stream, from one measturing the response to a step in op(t). In theI
auigthat particles enter in proportion to the instan- first. came the tracer inlet concentration wouid DC axedu nu

waeotis total flow rate. the feed rate of tracer would fluctuate in time with the total
* While it is iiore difficult to calculate, one can a1150 def.iia flow, while in the second case the feed rate of tracer would

P ~ ¶, ION question of whether to measure outlet concentration or outlet
91"'- !!L (38) traer flow rate. Denoting the outlet concentration by:z and

P., U!. -0 P., V. the outlet tracer Hlow rate by ik we see triat
when the iiiitial distribution is given by Equation 14. How-
ever, y,,y) has no civiar pronabulsic oalicu;1ug v.l' ~i- a - = u .. I .Xi + 0." (45)
to the mystemt as suchi. It refers to a sjpec:Iic experiment
only-the case when tracer is introduced to the systemn at a For iniitial conditions to Equation 42, ussume that at the
fixed rate independent of total flow rate. In that ease f,,0() instant the experiment is begun the flow state probabilities
gives the sojourni time (distribution of a tracer pairticle ehosen have their stationary values, fi.. In other words, the experi-
at a r-andomi time at the out-let. All other distributions, ment is begun tit a random time iudependent of the flow
while relating to tracer experiments, have a lprobabilistic state with the systemt runining continuously. Thus
interpretation for the system as much andl the tracer is just it,(,z P8x)(g *~f)(6
measuring device, .(,X . 0 (2 . Z)(6

Once the conditions of the tracer experiment arc set through
Tracer Experimelant an Model either Equation 43 or Equation 44, the coinldete probability

Kranbeckel l. 067)showd tht wun snicprocss tructure of the process is determined bky Equation 42 to-
occus i th moel hic obys dffeental quaion ofthe gether with the initial conditions (Equation 46). The prob-

foccrm ntemdlwihoesdifrnileutoso ability structure of ý or z can then be determined by taking
form appropriate combinations of the x's, as prescribed by Equation

cdr, 45.
dt A. f(t, X); i = 2 , .. (30) To understand the relationship among the various possible

tracer experiinetits anl the probability structure of residence
whierc f- (x) depends on tlmc random flow state, a, is, well at; times its studied in the previous section, Iet tus considler the
the set xil the proilaililitv denisity p.(1, x) will Sat isfy first moments of 1,. (1, x) defined as follows:

ape~x (f X)q d )s ) (0 ,., (
- -Cfi , ) s(1 )J ~ X.ap. (t, Z')(4)IAI() =Jzp i, z~) di=(zxi)p 1,2, n (7~ioxJf

The function p. (, z) is defined so that the joint probability Multiplying Equations 42 and 46 by xj and integrating gives
that the flow state is a and the state of the system is in
(ir, z + dz) at time Iis given by p. (i, z)dz. A tracer mna- dM5,) f~ + i, +

+ - -Ad, +terial bailance gives di v', i- mu,

dz-ijr (i) 5 Wi ,j 1,2, ... n (48)
x,+E-r; =1, 2,..11 (41) 5Finddt. v, (- Vi's 0 0 (40)

where xi is the concentration of tracer in tank i and V~ is the
rate at which tracer is fed to tank iwhen the flow state is a. The expected outlet concentration response is given by

romacrio of Eqjuation 41 with 30 and 40 shows that, for W) +I . (

apeQ (,X) + + x)e and the expected o*.tlct tracer flow rate by

X~p (t z) (42) ()= t*flL + P~.&1 (51)

The inlet flow rates of tracer to the individual tanks may It is interesting to compare Equation 48 with Equation 12.
he expuressed in terms of the inlet, conrxentration schedule, or The systemms becomie equivalent wihm variables identified as
of the total feed rate of tracer schedule. Thus, if x,(t) is in 52 to 55:
the inilet concentration schedule and vt(t) is the total feed p1i (1) = vjp (t); j = I. , 2. (52)
rate schedule, the two explressions mire psi()6 () =finessij(t) ; j = 1, 2. n (53)

and ,j~l()(3 f () d_ E=s-.0 (54)

=. ' SO) (14) d
tv O - E Ef4Q ~'

fit a system'm with fluctuating total throughput, an experiment f()=dt 0 l'i~t

measuring the response to a step in r,(t) would be different where f (f) is thme residence tiime dniyfunction for piarticles
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F'h--11 A ranhoi fiI hi :i ('viire populat ion or for particles Ili the prescnce of reaction, Equittion 41 becomnes

eoth'rioi he sl,"•%eýtvm ;it at rahdon1t |Ilone, and( f,(l) is the resi- xa

ies low im eimiiy for jitrtielo- leaving tile system at a V, - j (f ) W+- wqlX, - viR (X1 t (62)
Ilhdlolllii, provid'ed inlitcii diiriiution Equation 16 ap- di

* 'l'iv The dlif'I'rent iniial t list rihutlions, 14 and 16, can be where z, is now the concentration of reactant in tank I,nlawheA Isy Y l pplyinvg the alppropriate tracer inputs. Thus, and R (z) is the reaction rate expre msion. Aplplying Equation
to ilewrieIm. statisticail quantities for initial distribution 40, it is found that the joint prubability distribution of

Itl/Iatitlqui 14) eXli(,rioiutie~iyiu,. ie i ri'rr iiitiiit iiiiiit •" reaction concentration and flow state in given by

tpfi(t) = " U() (56) 4-~t 4- .• !"- ft 4,, 1 .•.,

%d iili,' ,; i n 6 -, : h h vv e d h y : il i n ipu l -hin Ir a v~ e r Ife e d r atl e : E X . Op . ( 1, x ) (6 3 )

¢(Q) = ,(f) (57) 8
Ir, considering the model as a reactor, one is primarily

rl dhvihroniti •iali.tieval phuuntiti ez f,'r initial distribution concerned with its stationary behavior, that which prevails
E.'quation Wtilth inpilt is at some large time after startul). Such a stationary distri-

ulj 8  bution will exist only if p is independent of t. Again, two
- a(') (58) possibilities occur, depending on whether one feeds reactant

lp, at a constant rate or at constant concentration, Thus either
Which canill ib lichievedl with i n itupsl in in let cuncentrattion:

.-,,(t) = (Ii/f")l(t) (59) or

T h'le a mil o un t hi jecte d fo r til t im p~u l se in fl o w ra te is th e 'P J W e /* 6 5
saflle for eih ri Ltwil in coet- w

trati, tile monotunt injected is Iproportional to tile instali-
twLtcous inlet flow rate (which in practive is impractical). where x. is the constant inlet concentration and p is the

,icic i the system of Equations 48 is line:Lr in the ;i#andi constant reactant feed rate. Definingfio(x) = p.(• ;x),
a l'o ill A-01 icr vfl() or mX, (twhicliever is used to dlescribe the W, ar~ ~
tratier, ini,, th•- expjected respons,,es to :ir,,it r:ar, inputs are • -- -:-x,-(x;) Ps(r) =Xi
given by the convolutions: j-ixLtt 11 V ci Vi

, (08)

(r))mx(r) dr The outlet reactant concentration and reactant flow rate will

again be given by Equation 45.
fO)= J U To compare the reactor behavior to the tracer response

r)r dr behavior, define

(z(t)) f z,(z - r))x.(r) dr (60) mai - ( = jipo (x) dx (67)

Then, from Equation 66,

0 J(z, (t - r) )v (r ) dT (RpoXj = ,+ W-ms~+~~m,
(0t (X .Pit F.n Mi+T am

o VJ- i -a

where #, (t) is tihe respoise in flow rate to an impulse in j = 1, 2, ,., n (68)
coicentration, €€() is the response in flow rate to an impulse
in flow rate, z,(t) is the concentradion response to an impulse The expected outlet concentration is then given by

in convcntration, mtitd :, (t) is the concentration response to i w1 .%+t,
al, inipulse in tracer flow rate. The various residence time (z) - £._--- m=i+ E P. f=2 (60)
densities are g;ven Jby . ai tW8  8 tA'8

which corresponds to Equation 50 for tracer experimemits.
f.") = (I/11') (4.0)) Similarly, the expected outlet, flow rate of reactant is given by
.rei:) = 40,,(t)) %I A

4 (i) 1 WI.r+l.omo, + Pa(Pa..+i (70)

where f, () ik the resilence t it'e density of al particle chosen which corresponds in a similar way to Equation 51. The
at railomt front the ettire pIopnhariol, f,(t) is that' of a set of Equations 68 determines in.i completely only if R(xi)
1)trte h1osen Aat : ri lo F'14i0 tine at the inlet of the systeili, is a linear function of xi. Thus, let R(xi) = kzý. Then
3114d f,( ) is thIait of a paartiled chosen ait. a rdoil Io tite at the one obtains
outhlet of tilte s estvi . 1Žroin Equattion 60 it is clear that tile -- ,+ o ;
reslpiose to a ..tep input is just the integral otf the corre- kmi, =)o + 49-.+;
ilJo:dii g i.nqulsv response. Thus, the distribution fuictions Vy 1- s Vt
etirrespowling to f,, f,, and fo are just the expected step j= 1,2, ... ,n (71)
nvsIpons,%. The ii ipul.A response (zv (t)), however, is difficult
to il'lie'lmnt is a problaililty distribution, which is a set of algebraic equations sufficient to determine
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K ~50I
thme rim5,, t.omparing Lquatiom iii wmtn Equationt -so it w
seen that replacement of ipal(t) in 48 with pal () where 0 11=(1 f. (1)
vs, is constant, makes 71 the Laplace transform of 48 with (0,M) f.MQ (77)
transform variable k, and with

inf= e~'pm51(I) di (72) wheru ~) fv(i), anid fý(i) are the resiulence time density
0 functions for different loopummtionim of pnrt1icIes, F'unctionm

Thus, the moments of reactant concentration, mpi, for a f(1) Iis tile denmsity for tile enitire pmopuilationi of particles that

-- ---- I_ :. _J ... , 411 puss through thle systemi. This is the "true" residence timeo

4pa are Just the Lanplace transforms of the moments of trucer dyltens dity. Its IIi IVti :Vt 'IiiiV i Pjitmi itm 1111 01100i flow ltiti e
concentration, pq (I, wihtracer feed ratte ~A(.Since wie h otie ltium imsd mitiienrlimeti
tile expected outlet concntcratio lot' ilm the cxmupvv 14 outkL of~Omry iitmi ~( s 1 slimetiii ne i if

flow rate of tracer and reactant are giveni hy thle sain l'CI'iaear paoprt% .i I injct ion mit) istim e rust emmi i ta imi dnbm i ilne % i

comin~iiationt of individual nmonmenits, ,andi sincu the Laplace particl injeted reimlete mIlle detisil fift Imit 110(111 tikel. finin

transform operation is linear, the expected outlet couicen- ti ultsrai i ~idtiPt.I eiri l he

tration in the reaction case will be thle Laplace transformn of fti ou ret steream it. I1001 toime. Ili (I) 'm d , all tierthrer

the eximected outlet conmcenmtrationm for thin corresponding tracer fIJctloSel Irelatiferen t. luIt Iow0v, fftim eitilm( the firmertiour

experitmient, and the expected outlet reactant flow rate will be coeyritd.ApinI=0,for(0)ioj.(ý Stel e~l1eritiicnts
can be shown to becqul~iil Efv(0) =f().Seeprne

the Laplace transform of the expectedl outlot tracer flow rite. crepnigt h toeipleeprnvnscnIIob
The tracer input that corroesponds to the constant. inlet corcstonin to fid tile p ihobab imilyd str eibu iiition t nsuchm csiso bhe

conicentrationl reactor calse, expected Rtel) resiponse isl tile inistributioim funmctionm of residence

()- W-15 zAX-6) (73) times.
When eutnventit~oiiii experiteneim l teehniiii 1 es tire used, not

as comparison with Equation 43 shows, is an inmptulse in nil the resptonses firme its rcomnvenient to dectertiniie, It is usutid

tracer inlet concentration Of height X.. Similarly, the tracer to measure traicer outlet cuntcentrmitionl directly. 1)etermili-
hilmut corresptondling to the constant reactwnt feed rete case is nation of tracer outlet flow rate thus rcqtlireti wiinultmtecolus

40knowledge of toatl out let. flow rate andi concenitrantion. Also,

(1Q 1-- tr (1) (74) it is inore convetnienit to iniject piulses (if constanut nitoutit-,
WOwhich correspmotid to pulses8 ili inlet tr-'er flow rate, than to

which is seen to he an i:lmpulse iii trucer feed rate of height V vuiv the art oittts iii l m)oiot ioii to the i nsmitataneouis itotal

on cotaparison with Equation 44. Since J. (i ) and f, (t) ate inlet flow rate, win, li woulmdi etirmesi itm to p ulses mm inilet

the expected rcsponses in outlet tracer flow rate for an concentration. Of course, since the exptected responhe of the

impulsfe in inlet tracer concentration (of height '/tD) and a sytmdpnslealonheiptereoseoa
unit impulse in inlet tracer flow rate, rtrnpectively, it is seen concentratiotn impulse man be dieterminedi by' injecting equal
that, for a reactor with constifnt inlet reactunt concentration pulsem but mulitipilying the output by the total flow rate at

the instant of injection before averaging the realizatiomis
together. Again, this would require knowledlge of the total

-- J e- tfhQ) d. (75) flow rate. Thme two step it.Jmuts, constant- inlet tracer concen-
0~, traticri anti constantt inlet tr.crfo ae cs eahee

without measurinig flow rate. Thus, if total flow rate is
anti for one with a constant inlet reactant flow tate, measured tiloing with outlet conceentrationi, fill the responscs,

ef,()d(7) both inipuise tind1 8tet, can be nieasured., If total flow rate
- - f f t(6 is not measuredl, however, only the impulmuse respotnse (z (i))

and the step responses corresiponuding to (z, (1) aimmi (Z, (1))

Similarly, one can express the expected outlet concentration, can be foundi. (;:,(t) ) ir hard to interpiret in at probabilistic

of reactant as time Laplace triunsform of the expected outlet setuse, while~ (ISi)), gives the residenice time deli~sity for a
tracer concentration for the api-opriate tracer input. The special Clabf, of pamrticles, those eholsem, at rIaIIdotmm trilles fromn

terms on the left of Equations 75 and 76 are the expected the outlet streamt. The true residlence tithe (lensit~y, f,(f)-

fraction of reactant which leaves unconverted. The situation (,(t) ), could tnot be determinincd by such expterimfenits.

of Equation 75-fixed concentration of reactant in at fluctu- In most cases' nicasuring :,(I) is thme intheloml imost con-

mutink feedi stream-is by far the moore common. Trhe situ- Venietit and therefore genecrally ubeda. It hats no dnirectt

ation of Equatimo 76--fixed flow of retictanit-howevcr, arises probabilistic intitineinmtationi, bmut pirovidies iimpmortmant imitor-

in certain contexts. nuttionm about tile system. If we wiutmt eihmer to coimfirimi or
conistruct- it simmiltifiet flow imodlel fom our process~, Z, sci ves

Interpratmutlon of Tracer Uxperimen.s this Iturpi)se us wt II r,,ý f~il% mof the other thiac fummetiotis.
When at first-order reactoni Oeccurs ini time systenm, tilemeaniim

Four impmulse response vxlteriiaeits were discussed: k,~, the outlet flow rate ti ntcimonmvertedl reactanlt is given by time

tracer flow rate responmse to -. concentratioti implulse; ý#, the Laplace. traunsformm (If f,(it' -lt' (~ whetn reactant.
tracer flow rate response to it flow rate impulse of tracer; enmters fit conustanizt- cncenlirmittiotm, find hy that oif fe,(t) =

z,, time concenitration re~s~onse t4? iL concentramtiotn impulse; (4,,.Q) whenm reaict-ant enters mut aI uotstankt flow rtite. Thme

aind z,, the concentration resp~onse U~ i flow rate imptulse, ineaim outlet conmccntrationi of tiunconvertcmd reactanmt, is given

When the inlet atid outlet flow rates tire constunt-i all four by the Lalahlmce tranmsfonrmm of f,,(t) =~I for time coimistantt

responses are identical. In general, however, the expected intlet- coumrettrattiom eaeL fimnd t6m6t. Of (Z,(t)) for the comnstant

values of three of these ca etmix given mm probabilistic imiterlire. inmlet. reuiifnitt flow ratte case,
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An Example +, " - he h + s -

To illtrirt,, the, kid 4f l-,'h:vior e'xhi\hjid by stoehwatic !,() = (.()) --v c-• • b•-
•y ii'l,,thie fo~re'g iigalig ' ;kmd N a I :11plit'dhll to itnIil~lp , exiulqlh"t b i0 i-

oif Ihi' e,,ivrid lhvh:lm,.i ic imlhel lieviouis ' dsls rilbed-- it single (s9)
hlak wilh II thlrtwtintlg i ihroilghlult. It i2 also assuilned ID bbi - (90)

that ithe flo ritt i-.Uii. otlly io vaIwe, iigrnin for ýini- t!'(z.(t) = ! b-5i (90)
pli h . I'ii(.cr I .eM e'toluidilitlt., I':4u1isliol 10 Ih .otites ( YI-- b, -V - (01)

dpi I where b, and b, are the two roots of- -2 -1mq z
V ' , + -x•- + (N, + x,••-0 (01)

.. , "The concentration.concentration response, fi(t) (s.())O, is
it liot quoted above, since it is identically equal tof'(1). This

These equatiions LL readily he solved, and the transition is not true in general. It happens here because this illu.-
irobaiiiities rid(r), al) = 112, get down explicitly by taking trative case, involving only a single flow state, is too thin to
the aiiplropriabte ititial cOnidlitions for pi and p2. All the permit the distinction between these two sojourn time distri-
probubilihiet go exponentially to their steady values butions.

X2 NJ Function f,(() of Equation 88 is the true residence time
T?, - (70) strihution for the system-that is, the distrlbution for

the entire population of particles. Its mean value is just
.as -- , with the thitc constant X, + Xt. With the (single) equal to v/tD. This is not true for the mean sojourn time
flow rate w takihg just the two values w., a = 1,2, one way calculated from Equation 80-that is, for a particle caught
realdily comltnit its mieani at a random moment in the inlet (or, in this exa;aple, in the

IT - liw + Juý () outlet). Indeed, the mean value from Equation 89 is

and th' covarianec function may :Ilso he sKel to be is sinitle V( + ((-2)

exponential 0\ + w1
p (T) = -hi~(iei - 1 )2.c-(C+xstIfI (81) which always overstates v!/W, sometimes appreciably. If the

W ttri oft fw state,,s average residence tine is independently known (from direct
Lth e ll rnliility ir of the ftow M eatal- ineasilrelnelnts, say, of the volume and the miean flow rate),

lished, one can readily investigate the tracer response of the the size of the ovemtatement given by Equation 92 is itself
model. For a single tank, the tracer material balance, valuable information. Also, if we have some preconceived
Lquation 41, becomnes notion about the flow, f,, provides sufficient infor'nation to

dx estimate the parameters for a flow model. For such esti-
S- -- (() mationsf, is just as good asf. and there is therefore often no

incentive to meaure f,,
Wo need work here only with the probability distribution The concentration response to vn impulse in tracer flow
p. (1, x) for a single x, and apply the machinery of Equations rate is shown in Equation 90 multiplied by tD. to make its
46 to 48 to give the lohent~S - dimensions consistent with those of the other responses,

This reolponse corresponds to the most common kind of
A. (W - f xp i(, x) dx; a - 1, 2 (83) tracer experiment, and it is not a probability density at all.

Frt.~. Equations 50 and 51, we see that the imoan outlet Indeed,

tracer concentration is given by O r, (i)) dt - 0,/v

(> ' m + As (84)
andi the mean outlet, tracer flow lih rather than unity.

In the limit of fast switching rates, the roots of Equation
(4) - ulul + w&U2 (85) 91 become

We nutty now calcuhate the response to an imlpuibe in tracer -v
concenltration, wliere bZ-- -, - + (XI +X 2); NJ. X2-1o1 (93)

.(t) -oS(t); a - 1,2 (86) and all responses coalesce to the common exponential

and to an impulse in tracer flow, where

8 (1); a 1, 2 (87) 1 (04)

The gen-tal liroceulens noted earlier theri give for the different
mlean respionlses that iQ, to the response for a steady system with constant

flow rate, t,. illustrutive plots of f,, I.ý from Equation 88
1 muh + AIUY bie" - WO and 89, and the limitint' f of Equation 94 are shown inhit = - <€,(-

01i I41 - b2 Figure 2. These are all f r
j411 +uv,-w,)U I} C -u " -
-- +_+_P + _-_ -- " (g8 ) -+-- ý ,8
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52
and 20 r

V

%o that

All curves are shown with the time scale normalized on v/tD. ,
For these values, 8, is 40% greater than v/ltb.

A useful device for evaluating residence time distributions
Is Lu expreas ti u rtm a 1i' tC..• • ,,,, , ,I IM . ... ='to 't•w

defined by Nauor and Shinnar (1963):

[(1 h f) /) ft)ds= 1((t) if 0(t) )F(0 0o ts o 15 o |$ |

where f(9) i6 the residence time density function and I/ (1) is TIM,.t

the corresponding distribution function, h(i) has the sig- Figure 2. Illustrative residenco time densities
nificance of the fractional rate at which particles which have

been in the system a time t will escape from the system. *eildestce time density vs. lime

This is plottel in Figuna 3 for the density functions of Figure
2. In the graph, h,(i) corresponds tof,(t) asid hr.(t) corre- 20

sponds to f5 (1). In a steady system, when the curve of h(t)
decreases over some rahge, it is an indication that the flow

I pattern exhibits bypassing or stagnancy, since the tendency 1.5
Sof a particle to leave the system is higher when it has been A

in the system a short time than it is at longer times. This ' tt)
"effect is present in both h.(t) and h,(t) (Figure 3), but is
much more noticeable in he (1). Thus the effect of the fluetu- 0 -- - No - -TU-TI-
ating flow rate is similar to that of bypassing.

We conclude this discussion of our illustriutive example by
mrtking out the mean conversion for a first-order reaction. 1 05 *
Here, Mlowing Equation 62, we have

dxV di = 7- wex.z - kx (96)
0 3 2 3 4 6

and we: .iek the solutions of the stationary distribution TIM, .t
Equations 86 for the two feed conditions:

-r',ia-1, 9)FIgure 3. Illustrative escope intensltiesp a- wzx.; a-- 1, 2 (97)

"corresponding to a constant reactant inlet concentration, and hCap, Ientinty vs. lime

ep, - 0 a - 1, 2 (08) The result for (za)/x. is not quoted here, since it turns out

corresponding to a constant reactant feed rate. As before, to be identically equal to (#)/€. As in the tracer experi-
we work with the moments meats for this example, this is not true in general, but is an

St accident of this particularly simple illustrative case.
Ma - z.p.(x) dx; a - 1, 2 (99) Equations 102 and 103 give the fraction of reactant un-

f #converted under the two different feed conditions being
"in terms of which we may express the mean outlet flow rate studied; Equation 104 does not quite do this. Still, as the
of unconverted reactant, switching rates X1X2--- , all the equations coalesce to the

" in, m + t•mg (100) common value

and the corresponding mean outlet concentration (105)x." 1 + vk/t (05
"S (s) " ??t+ lmt (101)

which is the unconverted fraction for a stewdy flow t1. Figure
The main result is contained in the system of Equations 71, 4 shows illustrative plots of the utcotiverted fraction from
and solving them gives, for the different interpretations of Equations 102 and 103, and the limiting value of 105. The

" fraction of reactant unconverted: . -..... . ... . . .

4 _ E(fiwil -+ f 2w2 )/mD3k + (u'wiV'eA) + (tZ'v)(XI X2) (!02)
zDx, k' + [E(wi/ + (w2/v) + X1 + X2]k + (wV1i2/) + (t0/v) + X2),

Vý 0 + [ (w1/v) + (ujh) + X, + Xj]k + (uhtWI/V 2 ) + (ilT/v) (,',, + X) (03

, (z,,___ (t/)k + ("wt/t,2) + (IL/A) (XI + NO) + TmlfsE[ M/0 - (104)
4 0 + E("t/) + (wg•/v) + A, + ,t3k + (*Mw/v 2 ) + (9/u) (X, + 24)
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.01

0.1 at* AO 1.0 U0 40 R) to 40 100

FIRST OWNRDEATE CONGIANTA

Figure 4. Illustrative behavior for first-order reaction

Fraction of reactant un~converted vi. firi-ordep rate conflant

numerical values tirc those choseii for the plots of Figure. 2, systemn at time i. We imiagine further the whole history of
and the first-order rate constant k is normalizeu il on/ the mixing systemn spread over the (long) time interval

It hinay he seen fruni l'igurc 4, and directly from Equations 1. < I< it, so that u -e wmS 0 before t., and after it, and
102 andmu 103, that the mwon~hverte(( fractions hased onl Constant suppose thfkt over its life the system handles A' paiticles, so
inlet reactant contentiatio iin15 cons Itan~t I)t reaitet UIfeed't NOtV t hat
*-trald~le the limitinag valuie of Equatiomi 10.1 11-1 UQ) di J v (1) de A (108)

(00) 1 _01 to0)-
V '/m, ?t. Meant vitlues here are simply time averages over the interval

I., it, so that
Appendix. Meon Residence Time N

T1his Appendlix aims at an in tuitive proof that for it broad iito-L
clams of inixing systems, thle inealt residence time is the ratio T1he time interval to, ti represents the w',hole life of the

rate. ;%s a general miatter, t-his is not on especially stir- or that tracer experiment. bn the simplest situation uf con-
piigresult, plhu"itul' iiit StCIll)Kt)0 arise from iitinie. to stn oui n lwrts emgtfrisachave

titic n he isessoiiof aricuarmixing ntes Th
proof is offered here as an intuitive base for tlic detailed caleu- N'
lations on the ntochastic mi xing minodels piresenlted iln this I-t
paper, although it alI)plcS to 111110k iohre getieral mixinmg N
syitemms. Indteedl, tie argumment is altogether mtoduml-free, andu v - , 1. + a < I< (I
proceeds by a straightforward accounting for tihe sojourn it - to- a
time, in the s4ySteml Of eacht material element piissilig through where a is the time needed to fill (or empty) the vessel.
the systemi. We adduce no statistical considerations, nor Sup)pose the mixing sysiteml to have certain stagnant
tiny general considerations of stationarity, but instead carry regions. Physically, such regions communicate very slug-

au sipelvery long trnientfo tne, over whti miaiy vesregade its gishly with the main body of the system, andi can introduce
a vey lng ransentfro th monentthemixig vsse is serious dliscrepancies between the ratio of volume to flow

brought (empty) on streamn till it is retired (empty) from rate and thn mean residence time as calculated front tracer
service.

Consider accordlingly at mixing slystem of voluumie V, with expoimeiments. W~e represent these stagnant regions here as
zones that do not communicate with the main body oi the

inlt ati ut-et lowrats uandw, espctielyoilvaring system. Specifically, we consider that there is within the
withhil' im suh a ay hatmixing system at aill times a completely stagnant region of

dV (constant.) voluime V., When the system is brought on
U4 - IV (107) streami at timec to, and when it is removed from service at

dt ~timeI it, We take it to be empty except for this volumne V..
The working fluid we take to be inmade up) of identifiable V. is then the common value of IV at t. and ait it, and we (see
material pikri+ Ian 1bseah lliiitk linilg its Own idlentity, andI for on integruting Equation 107 that
VItIvilYi ionev, we a~gree to nitemsure V, it, and Itv in p articleI
uttits, So that 1' (1) is tiitiply tie nuimbier of particles in the V () V. + u (a) (a) I(do
sysetteim t time 1, andm 0 (1) and w (t) tire, rc78fmeetivey, the J

numbhers of iarticles pe unit time entering and leaving the integrating this now over the whole range I., Lt to formn the
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mean value of V gives by time I given that flow state when it leaves

, 1 f' g p*. +l() joint probability of a particle chosen in oudet
(V) = -- -'+-J dt n(s). - w(s)l as stream at a random time leaving in flow state

°' t oa at a time less than t

a'el interchanging the ordcer of integration and applying p. t, x) joint prohability distribution of flow state andconcentrationD
Equation 108, we are left with R(x) -reaction rate

I I Ir I' V - volume of single tank

(VW) -V. + sw(s) do - au (s) do (110) vt - volume of tank i
93 w - inlet and outlet flow rate

N o w in E q u a tio n 1 1I0 , th e in te g lri o f a -u (a ) s in i l vh eu rn u la te m w. " ,lu l ý ," , U i~ ; " V , ,ý. l • , ' , . 0 ý .; ;. 'a •
. tti flow rate from tank i to tank j

the times at which all the particles enter the system, and the wc flow rate from tank i to tankj when flow state iu

lntcgral ! .. the timr! ant w- hih, th 1 le,'.e. Their

difference is accordingly just the sum of the sojourn times in it mean inlet flow rate

the system of all the particles that have passed through x single tank concentration

(luring its history, and if we denote the sojourn times of the xZ concentration in tank i

individual particles by 0R, 6:, etc,, we have x set of concentrations, - {x,, x,,.. ,, x.1
X6 inlet concentration

1 z outlet concentration
(V) - V, + - (6 + 0" + +. ) z8 () - tracer concentration response to an impulse in

concentration

The mean sojourn time we identify simply us z, (t) - tracer concentration response to an impulse in,
flow rate

8e-+62+ ... + ( z+ - outlet reactant concentration for constant
-l)inlet concentration

Zo z - outlet reactant concentration for constant inlet

and, cnosulting Equation 109, we find reactant flow rate

(V) , V+ (w)g (112) GRELK LEi-irvms

c - mean residence time
Equation 112 is the result sought. For Constant mixing 0.t - partial mean residence time (Equation 21)

volume V, and vanishing stagnant volume V0, it reduces to 0. - see Equation 02

the result in Equation 25. That the mean snojourn time, 0, Nap = switching rate

should be computed from tlle residence time distributionf,- xl X12

that is, from the sojourn time distribution for a random X2 - Nit4
particle, and not from the distributions f, or| fo for particles ju#,(t) - partial mean concentration (Equation 47)

entering or leaving at random times-is evidenced simply by St(t),,s(t) - Mi(t),i(dt) for single tank

the form of Equation 111, where each particle passing through Mai - Laplace tranbform of p=i (1)
the system is weighted equally in the evaluation f , . (T) - transition probability

p(r) - autocovariance function
- variance of flow rate

Nomenclature - inlet reactant or tracer flow rate

Illb, rconsidence (Equation 98) ,- inlet flow rate of tracer to tank i when flow rate

, - restdnc time density function is a

p(t) = residence time distribution function •(t) -- ;Q() for single tank

,(k.) - Laplace trandsform of f()-- outlet reactant or tracer flow rate
MGk - resLaplace timefor sity fut) for, (1) - outlet tracer flow rate response to concentration

-- residence time density functiou for particles impulse

chosen at a ral0t nm time in outlet stream 0) -. outlet tracer flow rate response to flow rate
- true residence time density function

100 - residence time density function for particles
chosen at a random time In inlet stream Literature Cited

J9t (W - residence time density function for particlese
chosen at a random time in outlet stream American llear l Aslociation,, New York, 'in 't sie nt of the
while being fed in inlet stream at a constant Circulation. 1962.
rate l)amickwertk, P. V., Cherm. E,,q. Sri. 8, 03 (1D5).

fA. (C, x) - time rate of change of x, Feller, W., "itlrothiction toi Prolhalhilit Theory v 'and Its Applica-

h W - intensity function (Equation 95) tits." Vol. 2, Wilhv, New Yoi', I1it106.
q -rcorteKrambeck. FI. J., SI tar, It., Katz, S., INI). l.N ,c. CIrM.

- reaction rate constant Fm•'s.Omr.\TAt.s 6, 27t (11)67).
Mi - partial moments of reactant concentration Krnuiler, 11., WvsteIterhrp K. It., "l'E:,,e t, of Chieticil ltt:trtor

((xi,=) .)esi)n ali Operation," Academic Prs,, Now York, 100•3

P() - flow state probability distribution Ntor, "J., Si1110'r, It., INn. ENl;. ('.mtsIt IFUNDi)AMENTAL') 2,

S flow state probtabrilityh distritbuti.on127S (1913).
- stationary flow state distribution 1wietedug, Th.N., Chem. E,,l Sci. 11, 1 i195|!).

P., flow state distribution at instant an average itztrivrn for review March 19, 1968
particle enters Act,.mv:ie March :1, 1969

P1 flow state distribution at instant a particle
leaves \Vrk stYip/oettd by t-he Air I'tt)re Oelliot of S-civtifie llesearch

p.( joint probability distribution of flow state and utder A FOSIt rtuant No. 921-67. l'arL ,,f the r,-eIarclh carried
out bv one of the auitlttrs (F. J. Kratuliuk, at The City Uni-

particle location versitý' of New Y'ork itt partiul futlilln't of tie reqitirtnomas

P.+t (I I a) conditional probability that particle has left fit the legou ,of doct," of phihwuplhy.
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A naly s-is o-f Som~e Random Blending Processes
F. 1. KRAifBECKi:R. SHINNAR and S. KATZ

Department of Chemical Engineeri g, The iaytollege of the City U.-iecrsity ol New York,
'New York, N.Y., U.S.A.

A common problem In the design of mixing and blend. Un prohhime courant dans la conception de 1'outiliage
Ing equipment is the estimation of the size of the equII;'ment de malaxage et de m4elange eat l'estimA des dimensions de
needed to achieve a certain specification. If the statiptical l'ontillage qui dolt riipondre A des exigences spoiifiques.
properties of the uon-uniformities In ths productioný lots.. Si Von connait les propr~itis statiatiques des facteurs de
to he blended are known one can calculate by known non-unifornmit6 dans Ic. portiow, des mat~riaux it milauger,
methods ... the reduction in the variance of the prodivct on pent calculer par des mit~todes connues (rififrence 1 )
properties. Specifications however are normally given not In diminution de ]a variance des proprl~tes du produit.
in terms of a variance but in terms of limits. These can Toutefois, on formule normalement lee exigences en termne
be estimated from the variance by assuming a Gaussian de limites plutitt que de variance et on peut lea ivaluer i
distribution. In this paper a inethod Is discussed which- partir de Ia variance en supposant l'exlstence d'une distri-
allows one to calculate these limits directly for some blend. bution de Gauss. On discuta, dans cc travail, une mithode
Ing problems in which the soitrce of the nonuniformity is qui permet de efuiculer era limites directement, dans le cas
due to the production of an off-grade lo. This not only tie certains problitmes de milange ofi le manque d'unl.
allows more accurate design procedures, but also gives some forniiti~ eat dit a ]a production d'une quantiti de produit
insights as to the magnitude of the error made by assuming .qui @'icartes de Is quallti d~sinie. Ceci permet, non scule.
a Gaussinn distribution. ment l'obtention de procidst s plus pr~cis pour Ia concep-

tion, manis donne une Wde de l'amplcur de l'erreur qui
resulte de l'existecne prisum.~e d'une distribution de Gauss.Jn a previous paper by one of the authors("1 thc cifeer of a

mnixing tank on fluctuations in thc fecdstrcamn compositions It often happens, however, that specifications arc expressed
w~as discussed and methods were described which allow One to ini terms of limiting concentrations or limitng values of some
ealculate some statistical properties Of the Output in terms of other parameter, rather than in terms of a variance, and fhic
the staristical properties of the input. For examiple, one can miethod mentioned does not provide this kind of information,[ use this method to calculate the correlation function of the out- exc~pt for the special ease where the probability distribution of
put, p.(r) = <t)c (t + -r) > in terms of p,,,(r), the cor- the ialer concentration is Gaussian. In this special case the
relation function of the feed stream. If thL e-mccntiratioll is outkc.concentration wvould also be Gaussian, and knowledge of
c.,prcsscd relative to the mecan, so that <r,,:> and <c*> arc the miean and variance determ..ine the distribution com..pletel, .

zer, p. o) is the variance (if the output. T he iiethi d g~iven It' the fl uctuations in in let concentration ca: not be reasonably
in)cani be applied to anyv systemi w~hichb can lie rvas inahl ' v descrilwk byli a G aussi an dist ribut ioni, the above imethod eaniu ir

described Ib' a linearized model, as welas to blending proccsses. he used fti deeroimine confidence limits on the output.

Re'printe'd in Canadan from
THE CANADIAN JOURNAL OF C'HEMICA '\. NGINFERING

45: 203-209: AucUL1S 1967
A Ptihlication of The Chemical Instittute of Canada[ ~151 Sialer Siredt. Ottawn 4, Ontario, Canada.



1hu~-dll~ws1~mh~d W>ilrilied whi Iiý pciiiits the \ Fx
cotpitto of the complete, probability distribution of the 7r(X Y;!) y wx +0(l

7" ~~iiptitl*. ltin tcrcsting~o rote that in thec ases studied the Gassa 1prxmtowudb n'prcabeerr ( V 0 4
Gausianappoximtio wold b in~ppecible rro. ~f~v(- x+o~~j. .......... (4)

7 ~ ~ ~ i%~eBhd jrca The first term on the right hind side is the product of the pro-
In some industrial procecsses thc occurrence of off-grade :

batchies cannot be prcvcnted. Somectimes a certain amount of bability of no pulse arriving in the interval r, 1.- !) times
off-grade material is produced during the startup of a process.
Oftcn this off-grade material can be blended into the, product the 6-function, which cxpresscs the certainty of what will
provide-. -t ocnrto os'o xedacranlmtn happen if no pulse arrives, namely that the concentration will
viluc. -One waiy of* dealing with such a situation is to provide change according to Equation (2). The second term is the pro-
anl off-griide storagec tank,Cand feed the matcrial slowly into the duct of the probability that a pulse will arrive, times the density
product, streami. T,1his possibility is discussed in reference('). function for y that will result from this occurrance. This I Is
If the-proc-ess contains- some j~r~gqblcnding facilities one might derived from the function 1(m) by s~ubstituting-v*y- - x) +
considerlihe altci-natc possibility of feeding all the material into u(l) for m, since for a small eniough time interval thc change in
a single blending tank. This is the situation that will be studied
here. It will be as-7mcd hat off-grade batches occur at rand6m concentration resulting from the pulse will bc e Tefnto
times, wvith' the time intervals betwvteii-ITem distributed cx- V

pneitidally. The capacity of the'blending tiank will be assumed must be multiplied by v because dmi = vdy.
large compared to the volume ot-ff grade in a single batch-,' so

- produt ier 7 etaik --. We then expand the 5-function it. a power series in T

amount of offgradc otie in each pulse is also a random +5 - -+ ' - - --

variable, with densiiy function f (m). In case the real problem V ~)
does not involve impurities but~rather a large deviatiton in same L oF ~
quantity like molecular wcijlit, Color-, etc. -one -can aliwlys X (y - V)x~ r + 0(r)......(5)
treat this deviation from the avUragc in the same way--that:-im- -

purity-conc~entration~is treate'd here. We now proceed to set ansutite()nd5)no(3toid
upthe blending equations.

The pulses occur at a mean rate 1/0 and the number of w t d
Pulses occurrin~g in a f~xcd time interval is a Poissoji randoom 00L + 'r, Y) - 0(t.t Y) - 00, Y) + r Vw- I Y' 00, Y) I +
variable. The outlet concentration of impurity, X.thefi71atisfies

the equi)mf-- f d.s 0(1 ~ 9  d , xf lv(y - x) + o(1 )l o~r) .... (6)
dx _

- . Changing the integration variable and rearranging yields
where w is the total volumetric flo%,' rate, v is the volume of the I + 7, Y) - 00, Y) I _ so d
tank, and the tj are the random pulse times. The pulse heights. 00(, Y)-+ [Y 00~ (, y)] +
md are distributed according to f(m) .Thus in between pulses 7Vdy

the concentration will satisfy

V -sos...................(2) ~ dn(.-+il)(n + ( . 7

and, as r 0*, we find
while each pulse wvill cause an instantaneous surge in concentra-
tion by the amount mi/v. a0(1t) I (,x) +

We define transition probabilities r~x - Y, y-7) so that the 0 ~~tx
probability that the outlet concentration is in the interval I

(y,y + dy) at time t + r given that it was equal to x. at time I- L 0(tX)l + 1 Ig (x T) f(md . 8
tis ur( 'x - y ; r)dy. We also define the probability density v dx 0 J ' v/

function of outlet concentration, 0(t,x), so that the probability
that the outlet concentration is in the interval (x, x + dx) at 3
time f is 0(t,x)dx. By writing the transition probabilities in the Setin ilsteeuto o h ttoaypo
above form, we have assumed that the probability distribution balty itiuinfrtepoes
-it a later time, I + 7, depends only on the state of the system bblt itiuinfrtepoes
at time tand not on any previous states of the system, and also d V
that this dependence only involves the time interval between - X0(Xfl OW -() ~ - f(m)dni. ... (9)
the two points of time in question rather than on the times dx fo V
measured from some absolute reference. These two assumptions metofOttCo etain
classify the process as a stationary Markov process. Reflection Moeto/O ltCnc trin
will show that they are true for the present problem as stated. Let
Nny process of this type will satisfy the Chapman-Kolmogorov
equation: j - fxq5 (.v)dx aiid Xk - f~u~f(n)don

ON + 7, y) fdx 0(t,.v tr(x - y; r) ...... (3) Multiplying Equation (9) by ?~ and integrating we find
(There is an extensive literatr ontetIr fMro

processes. Svc, for examnple, reference';'). - kk j) A'X
The transitionu problabiilities can he expressed for small time J ~O n

intervals as follows: or
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d, (

Equstion (1 0) cxprieseis the kek moment of the outcl-ctoncentra -

tion in terms of the moments of~the pulse height distribution and 1 Ji'

.the first k-i moments of the contititatibin-so that the momentsW
may b,, callaed in urn.o eaple The foregoing Equations, (14) and (1 5), give the, probsbility

At' distribution of outlet concentration. However, for theC design
i'i~ -of a blending tank, one must consider thc fact th.ar a pulse of

impurity will produce a sudden jump in outlet concentration,
-X 2 +Lý'_7and it is the height of this jump that one wishes to limit. Thus
2ý-o + we consider, the distribution of outlet concentration given that

a pulse has just entered the system. Since the probability of a

* X2 + ~pulse occuring in a given time interval is independent of when
i= o - the previous pulse occurred, it is also independent of the state

* 2vwOof the system. Therefore the outlet concentration distribution

Thu the variance of the outlet jocnr-aIto su st before a pulse occurs is the same as the previously computed
Thu cocetraionis-x jdistribution (14), (15). The distribution in concentration just

-The mome nts may also be found through a Laplace trans- afeapueistnthtotesmx+
form method. Taking Laplace transforms in Equation (9) we atrapleithnhtofhesmx+V

- obtain
AThe independence of the two random variables permits the

V- V~~ = A....(1 calculation of the distribution of their sum by convolution:

whr 4 #(x)= vf~v(x - ý)]0Q)dý ...........(16)

0(j) f ~~xd (Eqruation (16) can also be derived by-a more Careful-arguiile.1L
given in the appendix)

which is solved to yield Substituting (14) and (122) into (16) we obitaini

in~(s) -. fd..... (1)(/).............(17)

r (-U4[ Since Ab-(~) - 0(s) ,diffrentiation of Equation
ds 01c which is also a gamma distribution. The cumulative distribution

(12) gives the moments of 0 in terms of the moments of f. now becomes

[ Distribution G1 Output for Exponentially I ) P(+. .......

Distributed Pulse Heights

For exponentially distributed pulse heights we have The distribution characterized by 4, and *~ may be called the
distribution of surge concentrations. Roughly speaking, the

(2) distribution (D &ivcs the fraction of total material which does
not: exceed a given limit, while the distiibution 4$ gives the

~f(m) e-.........( a fracrion of surges which wiil not exceed a given limit.

7 Thc moments of the outlet concentration distribution can
where here X is the mean pulse height. be found fronm Equation (10). The moments of the pulse height

Taking the Laplace transform we find distribution, f(m) are

1 l = k! Xk k = 1, 2,..( - 1+ ~t .... (13) thus, substituting in (10),

Suibstituiting 1)ino(2 yields A

v - k! j -

j which- can be inverted to give the gabniia distribuition: In particular, the mean and variance are

OWA. 0 . ...... (14x

V - r2 = IA.,X2

(¾ -V two~
t Ilhe ctinmiiilivc dism ,ilititioi IFiciiwrni corrcsvspoi1n it th ris I .c us int r(,ducc the fobllowina'i dimnsvnionless variabicse to neduvce

l(:r~it% is IS le i 11colii plte gamm iia ftiret ion (4): the number of pa raimerers iv izýved.c
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,.. • " ••o , ,,,i 7and -

- -I r(q)
The moments of the dimensionless distribution are

-1
0  

=0.5 " --' - 47:: . . . .. ,

Figure 1 gives some curves of O(z) vs, z for typical vaiues of
/ the dimensionless pulse frequency, q. Figure 2 gives confidence

0 I limits for the dimensionless concentration at different values of
Figure 1-Probability density of outlet concentration for q. The abscissa of the plot in Figure 2 is z - I. where z is the

exponentially distributed pulse heights, value of dimensiotilcss outlet concentration that has probability
a of being exceeded:

CL = 1 - (z) = 1- P(qqz) "

0 The confidence limits on surge concentration are given in Figure
3. These curves are given by

". a -_I -'(z) = I - P(q + 1, qz)

1-... -7 Itshould be kept in mind when using plots that the limit on
Sconcentratioh will be exceeded a fraction' a of the time, while
th- 5imit on surge concentration will he exceeded for a fraction
i% of the surges. This-will obviously result in a much smaller
amount of spoiled product.

Distribution of Output for Constant Pulse Heights
oI For equal pulse heights the function f is given by

1.0 10.0 81"

Figure 2-Design chart based on confidence limit of con. f(m) (X - m)A.............(19) ,,•
centration for exponentially distributed puke heights, where X is the pulse height. The Laplace transform is

Ato-

f)=.............. (20) J

Substitution of (20) into (12) yields

A I1 e11 -- '

InO() U10- f t -dt

or I

† † † † † † † --† † † † † + †n + 'Y .....†(21)

where [K',

,E:(x) E() di andy is Eu!er's constant (ref. (4))
0 1.0 Mo, 9il

Figure 3-Desigu chart based on confidence limit of surge
concentration for exponentially distributed pulse heiglts. Since (2W) is difficult te invert, another method will be used to

determine O(x). However it will be uscfui v, obtain a limiting
form of O(x) as x -0 . This is done by studying O(s) as

0(s) - e -- _

The parameter q is equal to the average number of pulses per

residence time of tile blender and z is a dimensionless concentra-
tion equal to the outlet concentration divided by the mean _
outlet concentration. In this way 0 ,)

~~~~~~~~ jr 'r-I(qq)--- -)...... ... (22)
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(9):

d 2_0

B.C: 4(x) 0 when x < 0 :

Equat ion (23) can be solved stcpwisc to yield 0

0 < x <of
O i X" 0 1 1 o

2( X FiucPrbblz dnjyo outlet concentration for

V<x constant pulse heights.

xe-Y

-w 0<x <-

- ll

Fro- u )t-on (22 )............. we 0

S(25 ) .1 o 1[0 -, 10.0
rQ )Figure 5-Design choart banied on confidence limit of con-

centratirn for constant pulse heigt.

Since the integrals in (24) soon become uinwicidly, the functions 10. r--

0 and (D were computed numerically for some typical cases.
* _For the case of constant pulse heights, the distribution of surge
conpositions is just

and

*(X) L

In this case the , nocnts off(m) arc divoi bN

xh =

The inanents of the output concentration arec1

4iv- r-I 1'\~ ; 1.0 Ii10.

Ak -h Figure 6-Design chart based on q'onfidence limit of surge
concentration for constant pulse heights.

In partice lar. the mean and variance are
1 2

q,0

0x= A L -- 'U1 -- 0 f'-)
Again wc introduce the di c, nsionfless variables qy and Z, with
the sanimc sinitcace as before. ou tp ien

The mopenrtts arc gieaen a rn r

r(q) 2
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0AUl[ 0IAM C WITHIjo ,•USMAN WlITH goSM W• ~
"SAME VARIAN.CE 10.001

0\ 
\L

,,1 0."01, B-

Figure 7- Comparison of confidence" limits for constant Figure 8--Comparison of confidence limits for exponenti-

pulse heights with Grussian approximation, ally distributed pulse heights with Gaussian approximation.

One notes that for the same mean and an equal value of q the APPENDIX-
variahee-•f-outlet concentration for equal pulse heights is half
of that ;or exponentially distributed heights, Figure 4 shows Distribution ol Surge-Concentrations
some typical curves of 41(-) and Figure 5 shows the cor- Consider sue ssive surge concentrations. as points in a
responding confidence limits. The confidence limits on surge Markov chain. Xc define one-step. transition probability
concentration are given in Figure 6. densities ir(x -y) so that the probability that the surge con-

centration is in thiinterval (y, y + dy) g T

surge was of heightx is ir(x -. y)dy. We may derive this
Comparison with the Gaussan Approximation density in terms of the density of pulse heights, f(m), and the

It was stated in the introduction that in the absence of any density of times between surges, - e-10 as follows: Since the
other method one can try to estimate the confidence limits by
assuming that the distribution of output is approximately normai, height of the last surge was x, the value of concentration just
In this case the confidence limit z for d = 0.001i s+K
3.09u, where a is the standard deviation, and g, is the average - .,

value of z which is one. In the case of constant pulse heights, before the next surge is x e , where t is the time between -

I surges. The concentration is then increased by an amount
g- while in the case of exponentially distributed pulse m !',e e l s u p- , so that the random variable Y depends on the variables t

2q V
I ~ ~and m according to the equation 1i

heights, r = a . The actual confidence limit for constant a con o e t

ulse height is compared with the Gaussian approximation in m
Firure 7, for a = 0.001, and in Figure 8 with the exponentially -
distributed pulre height case. One notes that for high values or
q, (q > 5), the Gaussian approximation gives fairly close Ihe joint density function of t and in is the product of the two
results whereas for low values of q the deviations are consider-
able. For q = 0.1 the Gaussian approximation underestimate., respective densities, - er'e f(m). Thus I
the upper concentration limit by about a factor of 2 for the r

conistant pulse height case and 3 for the exponential pulse height
case. Another type of comparison is illustrated by the following.
Suppose it is desired to design a blending tank for offgrade lets Pr yY < Y) I e-" vy - xe-
such that the maximum outlet concentration of impurity is less f0 r T

than five times the average outlet concentration with a pro-
babilitv of 99.9%. The average outlet concentration is that d -

which'would result if the offgrade material were evenly dis- - Pr { Y < y= ir(x -- y) = f e-10 vf [v(y - xe )I di
tributed over the total production. In the exponentially dis- dy 0
trihutcd pulse height case the required value of q would be
1.26, while the Gaussian approximation gives .39. In the con- The Chppman-Kolmogorov equation (for the stationary dis- 1
stant pulse height case the -equired value is .45 vs. the Gaussian tribution)
prediction of .183. Thus the (;aussian approximation would
predict a miuch smaller )lend!cr size. 4(y)= fO(x)r(x -y)dx

In general one could conclude that in any case of a stoch- then becomes
astic input where the input deviatcs strongly from a Gaussian
distrillrion the assumption that the outlct ceoncentration is
Gaussian is onIy -,,od if the time scalc of the input Hluctuation s %,) J f* f dt #(.a) . )
is siall conilrcrLd, t the residencc tie (it'rhc rank. of a 0fL

2e8I
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Taking Liplace transforms, m, = pulse height of i'l pulse

-(s) - q - dimensionless tank volume (or pulse rate)

ow" e we ) .- - Laplace transform var-able

where 0 1 time
t . timeof ilk pulse
v = volume of tank

0(s) -, f e-#(x)dx w - volumetric-flow rate
- x - concentratinn of impurity

"Lt__ = dimensionless impurity concentratiol
- . - --•-... .--- a- =--probability of eyreeding conlidence limit

-e h re = mean time between pul ses
u -se .The expresion then becomes X = mean pulse height (=-XI)

k = k'h moment of pulse height distribution
JA k'= moment of outlet concentratin distributionIf U)-v(u du .-r = transition probability\ / • u .p = correlation function

- flerentiating, G .-r -stdard deviationSn = probability density of outlet concentration
r 4~) d (istribution fUncti6m.Xif outl t cuiicentmtrati
I ~( ) - = probablt dest osurgetconcentration

-- - d(s) distribution function of surge concentration
=_~~ ~ as O S ._is ,

The wnrrrejp'rted-hcre was n•,mport-.d in part under AFOSR Grant No.
or 921.65. Some of this work is pari of the reiearch canriedcunt L:y,Onco-- o-
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Methods in
I I %ýJLclVI I I Ly

SSystems

A stochastic approach to particulate
The gonerol mathematical background of this

prcsigsystemns ca ietereviow4 is to be found In anry one of a great
number of books cm probability theory. For the

investigator insight into underlyinqg reader interested to learn or re-learn this subjoct,

mechnism andthe atur ofwe are fortunate to be able to direct him to the
mechanismsr the nture f u two-volume work of Folier (2),

'on. o th. g ea t$ o~ of this century.. A rather
obser'ved fluctuations in particle ultcwter Introduction to our part of the subject Is

siz an nu bergiven. in the. recent, crisp book of Karl~n (3).
size nd nmberAnd a treatment of Markov proc*,,ms with a

good many physical applications may be f-oun~d
in th. book of Bhorucha-Reld (1).

0 louds of particles in chemical processing syttems arc (1) Shra cha-Rod, A. T., "Elements of the Theory
perhaps onie of the newer contexts in which prob- of Marlcov Processes and their Applications,"

abilLStic analyses come to the fore. But while tile. context McGraw-Hill, Now York, N. Y., 1 960.
may be new, the mathematical mnethods ha,ýe much in (2) Feller, William, "An Introduction ikj P.'ob-

P com'mon with studies in biological populations, on the ability Theory and Its Applikations," Wilay,
one hand, and in classical statistical nicchanics on theNeYoN.YVl1,19O Vo.216.
other.

The chemical processing context itself offe!rs a good (3) Kaulin, Samuel, "A.First Course In Stochastic
deal of variety. It includes, for example, problems in Processes," Academic Press, Now York, N. Y.,
crystallization, in mineral flotation, ý,nd in fluid bed 1966.
dynamics. In the ri~alm of submicroscopic particles,F. there are polymeri7ation problems. And if we permnit
a more abstract viwof our particles, we find problems
in turbulent mixing.

I ) In these different cases, we look for the probability
distributions associated with the particie populations-
the distributions of population size and the joint dis-
tributions of population size and the appropriate inca-
sures of particle quality. We would like to know these
distributions at single times as well as the corresponding

joint cistributions at two or mome times. We begin the
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search, mathematically speaiking, with some-plausible variances, covaria ices. We are particularly willing to
gues at the randomin~echanishi underlying the -poula- settle for this kfar fof summary information for arge

tion" changes. 'This -tentative --specification of the ps mit o s
2 mechanism always cuntains rate parameters describing leads us to expect that variances will be of the same order

til, sfiort-termt ýýhangcs in the system, and while these of magnitude as mniarn-and standard deviations, accord-

can rarely bc dliretl• measured, wve may estimat, them, ingly, small fractios of the corresponding means.
if we can push the mathematic•alfwork thiough-to the Also, for large' populations, an older point. of view

-f end, by comparing the final &alc'tlated probability asserts itself-that we.need not bother explicitly with
distributions with appropriate measurements on the random mechanisins at all, but may simply describe the
actual particle populations. macroscopic perl(,-mance of our systems phenomeno-

For example, in studying a continuous crystallizer, we logically. From this point of view, we simply introduce
Smight postulate a random nucleation mechanism forming plausible rate mechanisms for the processes of interest
new particles 'at some average rate, a random takeoff and embody theni in coniservation laws for the system
mechanism -withdrawing particles at sonica average properties we are" trying ii follow. True, we no longer
fractional iaite, and a deter~fiinistic growth mechanism. have a hold on the statistical fluctuations of our systems,

What we would hcpe to leai•n from the analysis would but we have good reason to believe that these are small
be how the growth rate and zthe average nucleation and anyway. This is, of course, a familiar procedure in the
"takeoff rates affect the jditit distributions of particle study of conventio:nal transport phenomena, and in our
count and :size. M. .ny pol-•merization problems could problems, just as in thermodynamic fluctuation theory,
be studied! in an entirely. girhilar way; the particles we find a very illuminating methodological connection
"would be-growing radicals, and account would be taken between the ph6iomenological laws, on the one hand,
of suitabfe'termination mechanisms. - and the statistical underpinning on the other. The

To take'a slightly differe-at example, in studying a connection is through a kind of repeated averaging
flotation cell, we might postulate random feed-takeoff on the underlying random process. This averaging,
S mechanisis'-for air bubbles andfir mineral particles, repeated at every instant of time: leads to equations that
and a random collision mechanism wheroby particles are we may identify With the phenomenological equations;
attached-to bubbles. What we would ihope to learn the average rates associated with the underlying random
would be how the averag,-.!rates of takeoff, withdrawal, mechanisms apje'ar as the instantaneous phenomeno-
and attachment affect the joint distributions of free logical rates. W,3hat comes out of the solution of these

- particle count and air bubble count and loadii:g. The equations is not necessarily the true average of the under-
average rates appearing, in the underlying random lying random p,'ocess, but for large populations it is not
mechanisms need not of course be constantr, but may usually essentially different, and we are often most
depend on the particle "4uality itself, or on awsociated willing to settle for it.
environmental fa6ctors. Thus, a crystal growth rate may Now the bulk of our engineering applications in the
well depend on the crystal size as well as on the solute study of dispersed systems is in situations where the
concentration, and in aRflotation cell the average rate of number of particles is always, in fact, large, and we may
attachment of plarticle to, air bubble will likely cepend ask what in these cases is the point of a probabilistic
on how heavily the bubble is already loaded. arialysis. The -chief technical reason is that from a

To ask for the full history of the probability dis- probebilistic stuiy we may learnjust how large a popula-
tributions of particle count and quality is, in most cases, tion w.t teaiiy -need before we can properly say that
to ask for more than we can reasonably expect to get. deterministic phenomenological equations describe, its
That is, the technical problems that arise in bridging the behavior satisfacCorily. This will especially be the case
gap from a postulated random mechanism to a full in systems havir.g a certain linear character, where the
knowledge of the probability distributions are often so results of repeated averaging are in fact equal to the
formidable that we must content ourselves with partial true means, no xnatter what the population size. Here
information. Sometimes this partial information is we will often be able to compute variances and see under
found by simplifying the random mechanisms to the just what circurs.tances the standard deviation becomes
point where more tractable mathematical problems a sufficiently small fraction of the mean.
emerge. But more often we are not willing to accept In other cases, repeated averaging will not lead
a perhaps oversimplified mechanism, and we look precisely to the true means for small populations, and
instead for partial information in the form of suitable here we will con mnonly have to rely on semi-intuitive
averages of the underlying random process-means, judgments of the population size necessary to reduce

variances to a low enough level so that we may properly
equate the two after all. In this general connection,
we might note that there are situations where statistical

AUTHORS Stanley Katz and Reuel Shinnar are both Professors fluctuations are important even though the population
of Chemical Engineering at The City College, City University sizes are large; these large fluctuations turn out, on
of New York. This review was presented at the 34th Chemical analysis, to be due to too close a statistical relationship
Engineering Symposium of the ACS Division of Industrial and between successiv- influences on the population, or to be
Engineertnrm Chemistry held at MIT in Dece mber 1967. the effects of very :are events, perhaps as arising from an
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in dally small population :size. There is every reason procedures to find the time history of mean and variance,
to believe that for a vigorous random mechanism operat- evaluate two-time probability distributions and the

iimg on poptlations that are and have been large, statis- associated covariances, and so on. Ifwe cannot evaluate
tical fltituations are" infact unimportant, the transition probabilities in general, we can go back

"Apart from this technical reason for undertaking a to the equations describing them and try to rework
"probabilistic analysis of a dispersed system with a large them into simpler, self-contained equations for summary
"numbfer of particles, there is the matter of a certain quantities of interest such as means, variances, co-
conecptual conmenience in formulating equations for the variances.

* sy.*ebi behavior. Here v focus on situations where the For systems in which we deal always with a large
number of particles is always so large-an emulsion number of particles, we might not be interested in the

Nil polymierization, for example-that statistical fluctuations detailed probability structure, and might prefer instead
in the;population as a whole play no role at all. If we to set utp the repeated averaging procedure noted above,
wish to study, say, the polymer molecular weight dis- and use it as a guide to the construction of phenomeno-
tribution, we might develop the appropriate working logical equations. These phenomenological equations

; •equations in terms of macroscopic balances on the popu- might of course be derived directly as macroscopic
lation of emulsion: particles-introducing instantaneous particle balances, but the probabilistic formulation
phenomenological: rates for the capture of primary may serve as a useful guide to our physical intuition,
radicals by emulsion particles, and so on. and will in any case show directly how the average

It would, however,; be very natural to interpret the rates associated with the underlying random mechanisms
fraction - of 'emulsion particles containing a certain are to be interpreted as the instantaneous phenomeno-
number of growing radicals as the probability that a logical rates at which processes transpire.
given particle contains that number of radicals, to inter- We may now set down the plan of this review. Follow-
pret the capture rate of. primary radicals per particle ing a sketch of the basic mathematical machinery for
as the average rate associated.with the random arrival Markov processes, we set up the repeated averaging
of radicals in a given particle, and so on. With this procedure noted earlier and show, by way of illustra-
interpretation, we might well find it much more con- tion, how it may be applied to lead to the familiar
venient simply to formulate the prc'-ability equations phenomenological equations for a crystallizer and to

7 for a single emulsion particle than to set up the deter- a set of perhaps less familiar equations for a mineral
ministic equations for the whole population of particles, flotation cell. Then we illustrate the nature of statistical
Especially if the differential equations that arise call fluctuations in small populations, in contexts drawn from
for the application of boundary conditions, the form of studies in chemical kinetics and general particle popula-
these boundary conditions might be seen much more tion studies. Following this, v'w illustrate the nature of
clearly from probabilistic considerations. From this some problems arising in particle interactions by way of a
point of view, the probability machinery furnishes a familiar model for turbilent mixing. These are theS conceptual guide to the construction of suitable phe- main technical points of this review, and we close with a
nomenological equations, probability dist'ibutions for the discussion of the concep I convenience often found in
single particle. appearing simply as a shorthand for describing the behavior of particulate systems prob-
number fractions over the whole universe of particles. abilistically, even when populations are large and deter-

No, ; the entire program, as sketched out in the fore- ministic descriptions open to us: this discussion is illus-
going, has a technical language and a variety of technical trated by application to an emulsion polymerization
methods in terms of which we msy try to implement it, study.
and fo:' our purposes, we may take this technical appa- It should perhaps be note.d that while this review does
ratus to be that of Markov processes. It is not that all nit contain any new results, neither does it systcmatically
random processes are Markov, but rather that, allowing survey the existing literature. It offers instead simply

f full freedom in specifying the states of our systems, we one point of view on the role of probability methods
may describe a great many-perhaps all-of our par- in formulating and studying problems in particulate
ticulate systems in terms of Markov processes. We systems. There are accordingly no formal references
begin the study of a Markov process by specifying the made here to the existing literature, but our friends and
probabilities of the short-time transitions from one state 0ollcagues will surely recognize how much we have
to another. This specification, which contains the learned from their work, and how freely we have made
average rates associated with the underlying random use of it.
mechanism, is summarized in a linear operator on func-
tions of state, the generator of the Markov process.

With the generator in hand, we may set up equations Markov Processes
describing the transition probabilities in general, and, We sketch out here, for later reference, the basic
in sufficiently simple cases and with luck, proceed to mathematical machinery of Markov processes. To keep
solve them. These transition probabilities, once known, the ideas as concrete as possible, we restrict ourselves
furnish the complete probabilistic description of the sys- to three special cases: discrete state processes, con-
tem. With them, we may carry forward any initial tinuous jump processes, and diffusional processes.
probability distribution in time, carry out averaging These examples do not begin to exhaust the variety of
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the chemical processing applications, but they may serve which describes the independence of past and future

to illustrate adequately the underlying mathematical characterizing such processes. To find the general

ideas. Further, we restrict ourselves, this time for con- behavior of the system, we would want to solve the

ciseness, to stationary Markov processes, that is, those for Chapman equation, Equation 2, subject tc the short-

which the transition probabilities between two states at time condition, Equation 1. This task is facilitated by

two times depend only on the time difference. Again, developing differential equations in the ptj from Equa-

this ýxcludcs many applications in which the particle tion 2. We begin by letting s ý 0 in Equation 2-small

environment is changed systematically with time, but last step-and applying Equation 1. What emerges is

we hope it will be fairly clear how the machinery is to be dp~,(t)

extended to cover such cases. -PfQ0aj + E Pa(0akfi (3)

By way of introduction to what follows, we may note dt k

that our summary of the properties of Markov processes i.e., Kolmogorov's forward equation (the familar Fokker-

is grounded in the generator, 9, of the process, and its Planck equation) in the transition probabilities. The

adjoint S*. Both are linear operators, taking as their short-time behavior, Equation 1, is subsummed in the

domains of operation suitable functions of the state of coefficients of Equation 3 and gives rise also to the initial

the process. They appear variously as matrices, as condition
integral operators, or as differential operators, depending
on the topology of the state space and the nature of the p00) - ati (4)

process. The adjoint operator, 9", appears in the A perhaps less familiar equation in the transition prob-

Kolmogorov forward equation. This is the equation abilities is found by letting I ý 0 in Equation 2-small
describing the history of the single-time probability first step-and applying Equation 1. This leads to
distribution of the process, and is accordingly the im- Kolmogorov's backward equation
portant working equation in most of our applications.
The generator 9, itself, appears in the Kolmogorov dp,(s) = -aipoj(s) + a, E ,pao(s) (5)

backward equation. From the point of view of the ds

mathematical structure of the process, the backward together with the initial condition Equation 4.

equation plays a more fundamental role than the The structure of the forward and backward equations
forward. But in our applications, it appears primarily emerges a little more clearly if we recognize their right-
as the carrier of the method of repeated averaging noted hand sides as matrix products. If we introduce the

earlier, to be applied to the development of phenomeno- matrix elements
logical equations for the system under study.

We begin now with discrete state processes and let the go

integer i serve to index the states; in a typical applica- g" tao; J i

tion, i might be a particle population count. We shall so that the short-time transition probabilities, Equation 1,
discuss such processes in some detail, as serving to illus-
trate the methodology in the simplest context. The
underlying random mechanism for such processes we po(t) - 8o + g,$; t ý 0

take in the following form: the system, in state i, will in a then the forward equation, Equation 3, becomes

short time t leave it with probability aft; the system,

leaving state i, will go to state j with p-obability Off-- dplj(t) p'(t)gk• (6)

i.e., a, is the average jump rate from state i, and ctipj is dt k
the average jump rate from i toj. Here, #i = 0 and and the backward equation, Equation 5, becomes
F,,, -= 1. If we denote the transition probability fromJ dp,,,(i) E ,p jt 7
i toj in time t by pj(t), we find that we have specified dt =( E - p(i) (7)

the short-time behavior ofpi. dt k

P -,,l-- a(t, j j t) 
T h e m a t r i x

Equations such as Equation 1 are sometimes written is the generator of the Markov process. It serves as a
1 - cta • dr, j = i linear operator on functions of state, that is, on vectors up.

p,j(di) = icq0j • dr, j 0 i We might illuminate the central role of the generator
by noting that the forward or backward equations,

to emphasize the fact that the transition time dit is short, together with the initial condition, Equation 4, have the

but we shall not use this convention here. formal matrix solution

Now the general behavior of the transition probabili- pjj(l) -(egt)

ties of a Markov process is regulated by the Chapman-

Kolmogorov equation The generator also appears in a natural way in the

/p1)(t + 5) , P1k(i)P'kJ(S); t, S >, 0 (2) evaluation of conditional means (conditional expecta-

tions) of functions of state. If we take an initiai vector
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ub(0) and form its conditional expectation at a later time f This is not quite the backward equation, Equation 8,

-- E but if 9 has an appropriately simple character, we may

find that the mean values of suitable vectors u satisfy

e fsomething very much like the backward equation, and,
we find from the backward equation, Equation 7, that in fact, turn out to be equal to the corresponding condi-
this conditional expectation satisfiestional expectations.

du 0 This concludes our discussion of discrete state proc-

Sdt g k esses. We turn next to a brief sketch of continuous
jump processes. We restrict for convenience to one

The differential equation, Equation 8, "will, with suitable dimension and let x serve as the index of states. An
choice of vectors u,, serve as the basis for the method of application of these jump processes will appear below
repeated averaging to be discussed below. Since in the discussion of a familiar method for agglomerative

gtk = 0, we see that qu, or rather u + qu, is of the mixing. The underlying random mechanism for such

nature of a smoothed version of u, so that a solution of processes we take in the following form: the system, in

Equation 8 really represents a kind of continued smooth- state x, will in a short time t make a jump with prob-

ing. ability a(x)t; the system, leaving state x, will jump to

• If, leaving conditional expectations apart, we wish to the interval y, y + dy with probability #(.%,y)dy; the

study directly the evolution of an initial probability system, between jump:, will change state continuously

distribution in time, we turn to the forward equation. according to the differential equation dx/dt = f(x).

An initial probability distribution v,(0) develops at a That is, f(x) is the translation rate at state x, a(x) is the

later time t into average jump rate from state x, and a(x)#(xy) is the?1 average jump rate density from x toy. Here, f 3(xy)dy
v) v(tO)JjP(10) 1. If we denote the transition probability density

from x to y in time t by p(xy; t, we find that we have
S and we see from Equation 6 that this distribution satis- specified the short-time behavior of p in the form

fies
d• p(xy; t) ,', [1 - ta(x)l 5 [y - x - sf(x)] +

7t The((X)h(xnm); t 1p 0

As a matrix, 9" is simply the transpose of S. As an The Chapman-Kolmogorcv equation, here appearing as,

operator, 9* is adjoint to 9 in the sense that p(xy; t + s) = fp(x,z; )p(zy; s)dz (10)

Svi(u), = • (9*V)Ju then leads, as for discrete processes, to a forward equation
for any vectors u, v. ap(x,y;*) -p(x,y;ty - (y ) +

-t - {p(x~y; OA)f P(Yy)} ~ )
It might be noted that Equation 9 is just of the form by

of the forward equation, Equation 6, and Equation 8 is fp(x,z; t)-(z)O(zy)dz (11)
ust of the form of the backward equation, Equation 7.

S Accordingly, if we could find analytical solutions of and to a backward equation
either of them that were general enough to satisfy the ap(xy; 0 f p(x,y; t)
different initial conditions, we would have in hand the ft Ox

complete probabilistic picture of the process. The
applications being as complicated as they are, we very a(x)f.r(x,z)p(zy; t)dz (12)
rarely succeed in doing this. Instead, we try to distil together with the initial condition
from Equation 9 simpler equations for summary proper-
ties of the distribution vj, such as the leading moments, P(XY; 0) = 6(y - x) (13)
and only infrequently compute a detailed distribution. From Equations 11 and 12, we may extract, as before,
Alternatively, we go over to the phenomenological point the generator 9 and its adjoint

of view and look for suitable vectors ut which, taken to
Equation 8, will form a tractable self-contained set of = ) du(x)
equations in what we may hopefully interpret as mean (SU)(X) = (x)U(X) +

values of quantities of interest. In this connection, we a(

may note that the mean value of a vector u

(u) =,VuSVO dy ,(y)f(y)] .- v(y)(y) +

where vt is the single-time probability distribution, satis- fv(f)f.(z)\O(zo)d. (15)
fies, according to Equation 9, the differential equation

Here 0o* is adjoint to p in the sense that
di = k fv(x)(ezu)(x)dx = f(e*v)(y)ul',)dy (16)
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With 9*, we may follow the evolution in time of an initial ;p(x,y; t) = p(xy;) - + k2(x) (23)

+fx klx 2 )p -Y )(3probability density v(v; 0). This density evolves in a at x)x2

time t into
together with the standard initial condition, Equation 13.

v(y; t) =fv(x; O)p(x,y; t)dx (17) We may accordingly recognize the generator 9 and its

which, according to the forward equation, Equation 11, adjoint as

satisfies 
(9u)(x) = f(x) +u(x) +1 k (x) (24)

= * dx 2 dX2-Z = 9 *V (18)+ -() /--
•td I a2(18)onn (9*v)(y) d [v(y)f(y)] + -.- [v(y)k1(y)] (25)

With 9I, we may follow the conditional expectation of an dy 2 dy2
initial vector u(x; 0). This conditional expectation is where 9* is adjoint to 9 in the familiar one-dimemional

u(x; t) = fp(x,y; t)u(y; O)dy (19) sense of Equation 16. With 9 and 9' in hand, we may

and, according to the backward equation, Equation 1'", develop working equations for probability densities andsatnsfins conditional expectations just as before. Thus, a density,

v, defined according to Equation 17, satisfies a forward
au = G(20) equation, '.quation 18, while a conditional expectation u,
at defined according to Equation 19, satisfies a backward

The use of Equations 18 and 20 in the applications equation, Equation 20.
With diffusional processes, the question of boundary

follows that of the corresponding equations, Equations conditions comes up, as indeed it may also for the trans-
9 and 8, developed for discrete processes, and the dis- lational aspects of the continuous jump processes. The
cussion made there applies here as well. general guide here seems to be that if a transition into a

This concludes our sketch of jump processes, and we forbidden zone is possible, it must be guarded against by
turn finally to diffusional processes. Again, we restrict imposing a suitable condition at the zone boundary.
ourselves, for convenience, to one dimension and let x Consider, for illustration, a population problem modeled
serve as the index of states. Here, we characterize the diffusionally, where we wish to forbid transitions to
underlying random mechanism for the process by negative population size x. It would be natural to
thinking of the system as being continuously shocked impose on the transition probability density p(xy; t)
in such a way that a jump from x in a short time I has the boundary condition
mean f(x)t and mean square kl(x)t. That is, we take
the transition probability density p(xy; t) from x to y ip(x,y; t)
in time I to have the short-time behavior b)- = 0; x = 0 (26)

f(y - x)p(xy;t)dy - f(x)t \ 0 (21) drawn from the behavior of a reflecting barrier in a
f f(y - x)5p(xv; :)dy -k(x)t~ random walk. This would amount to attaching the

A model for such a process may be formed in a way boundary condition

familiar from Brownian motion studies by taking du(x)

dx dxa = f(x) + k(x)w(t) ,
to the defin~ition, Equation 24, of the generator, and

where w is a white noise with unit spectral density, that is accordingly the boundary condition
to say, where 1ld

(w0)) = 0, (w0)w: + s)) = 6(s) v(y)f(y) -- - [v(y)k"(y)] = 0; y = 0 (28)

the pointed brackets denoting mean values. Other to the definition, Equation 25, of its adjoint. This last
models will appear below in connection with population amounts to saying that the transition probability density
size problems. p also satisfies the boundary condition

The Chapman-Kolmogorov equation has the standard
one,-dimensional form, Equation 10, and we may re- 1 b
cover from it, by consulting the short-time behavior, p(x~y; s(y) - - [p(xy; t)k-(y)I = 0; y = 0 (29)
Equation 21, a forward equation inp

The boundary condition, Equation 29, would have to be
p(xy; t) - [p(xy; t)(y)] + attached to the forward equation. Equation 22, in the

1 ()transition probability density, and the condition, Equa.

I b,2 tion 26, to the backward equation, Equation 23 Simi-
2 - b [p(xy; )k2 (y)] (22) larly, the boundary condition, Equation 27, would have

"to be attached to the working backward equation,
and a backward equation Equation 20, for conditional expectations, and the condi-.
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tion, Equation 28, attached to the working forward system at any moment by the number m of particles

equation, Equation 18, for probability densities. Indeed, present, together with their sizes xb, X2, . . ., x. (say,
the condition, Equation 28, turns out to be just what is oldest first), we see that we have specified the short-time

g needed to preserve the normalization of v in Equation 18. behavior of the transition probability p(rnxi.. . Xm,
nyi... y.; t) from state m, x 1, ... •, X, to state-n, y I .. . Yn.
Taking p to be a probability in n jointly with a proba-

Repeated Averaging bility density in yi, Y2, .. , y., we may write:

We discuss here the construction of phenomenological
equations associated with a Markov process. In a
macroscopic view of the process, these are deterministic Bt 6,.,,m+l(y1 - x). ... 6(y, - x,,)(y,,+t) +
conservation equations in quantities of interest. From
the point of view of the underlying random structure, Dt E.m 6...i6(yi - x). ... 6(yj-i - xj-) X
they are equations in suitable conditional expectations.
The generator of the Markov process, which we have 6(yj - xjit)... •(y--I - xm) + [1 - (B + mD)t]a,,,. X

seen above to be of the nature of a smoothing operator, 6[y, - x, - G(x
1
)t]... 6[v, - x. - G(xm)t]; t 1 0

will accordingly play a central role in the development,
and since the phenomenological equations will be of the Now all this represents a rather more complicated

general form of Equation 20, we see that what is in- situation than in any of the Markov processes sketched
volved in their solution is really a kind of contihued out earlier. Still, we may apply the same basic ma-

averaging. Our task here will be to develop these chinery, and extract from it a knowledge of the generator

phenomenological equations from the Markov process, c for the process in hand. We find
discuss them as macroscopic conservation equations, and
see how the elementary average rates of random change (gu)(mxi.. .x.) - • G(x1 ) X
subsummed in the generator are interpreted macro- -t

scopically as instantaneous deterministic rates of change au(,nxm... X,0+ Bu(m + 1, x,... x. 0) +
in the system. oxj

To illustrate the ideas as concretely as may be, we
proceed by example, considering first a crystallizer with D _ u(m - 1, xi... .xjxj+. . .x,,)

random formation and discharge of particles together
with deterministic growth of existing particles, and (B + mD)u(mx1 ... x,,,) (30)
second a mineral flotation cell with random attachment With 9 in hand, we are ready, in principle, to set up
of particles to vacant sites on air bubbles. It will and try to solve the equations for the underlying prob-
emerge from the discussion that the conditional expecta- ability distributions. Or, turning aside from such an
tions appearing in the phenomenological equations will ambitious effort, we may look instead for suitable fmnc-
sometimes be precisely equal to the true mean values, tions of the system state-i.e., of mx ... x,,, for which we
sometimes not-as an engineering matter, this seems to may construct self-contained phenomenological cqua-
depend on whether the particles in the system interact or tions of the form of Equation 20. A natural function
not. \Ve will, however, argue on semi-intuitive grounds of this kind is the number distribution of crystal sizes in
that even when the two arc not equal, they become the system:
approximately equal for populations that are and rema;n )
large. Indeed our argument will be that in such cases, F(x) F, A(x - XJ) (31)
variances and covarianees become ,mall, distributions -

become singular, and th2 processes involved become where A is the Heaviside unit step function. Applying

essentially deterministic. However, to illustrate the Equation 30, we find that

uncertain character of this reasoning, we discuss briefly dF(x)
some problems in population size, too simple to be of (9F)(x) = -G(x) dX- DF(x) + BA(x)

any engineering interest, but which show that this
method of repeated averaging may falsify essential so that the conditional expectation of lqmiation 31

features of the system behavior even when the popula- we may denote this F(x,t)-satisfics

"tions are large. 1) ol(
Crystallizer. We turn now to a consideration of the -t G(X) ox D" P+ /A(x)

crystallizer. We consider a mixed continuous crystal-
lizer with clear feed, and, for convenience, take the Finally, introducing in place of the number dktrih•titiotn
chemical environnment to be constant. The underlying F its density f = ZI'/Ox. we find the Imictu' fau111iliar

- randomn imechanism of the process we take in the follow- equation

ing forum: in a short time, 1, a new particle, of vanishingly of
"sIIall yi.zc, will be formed with probability Bi; in a short + G (x) = 11 . 8 (x) -- 1 - f (32)
tilic, t, any given particle will be discharged with

prlalilt I)I, a particle of size x in the systel, Indecd, Ecluation 32 is of thie lslt•l fortm ol' the
at the ratc dx/dl = G(x). lfwe describe the sta, phenomnctological e'quatioll for ai •'oltilliUoIIs 1tlixcd
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crystallizer, and if we interpret fdx as the number of (90)(uxox xs,.., B Io(U,Xo + 1, X1, X2 ... ) +
crystals per unit working volume with sizes in the range, Dxo. 0(u, xo - I, x1, x2. .. ) DxI0(u, Xo, xI - 1,x2. . ) +

x, x + dx, we may identify B as the rate of nucleus forma-
tiun per unit volime and 1/D as the nominal rcsidcnce +. Aouxopo(u - 1, xo - 1, x, + 1, x2...) +
timc 'n the crystallizer. Now Equation 32 has been
developed for a conditional expectation, not for a true ,
mean value based on how the underlying probability (B + E Dx, + • Anux,)0(uxoxix2...) (33) r
distributions evolve in time. In this case, a calculation ,
will show that the true mean value satisfies the same With 9 in hand, we are ready, in principle, to try for
differential equation, although this would no longer be the whole probability history of the flotation process.
so if we introduced particle interactions, say by way of a However, thc. interaction between particles and bubbles
supersaturation-dependent crystal growth rate, and the makes this an especially ambitious task, and we turn
associated solute balhnce. But here, with the mean instead, as for the crystallizer, to the search for suitable
number density, f, of crystal sizes satisfying Equation 32, functions of state whose conditional expectations will .
we may confidently expect that for large crystal popula- satisfy self-contained sets of equations of the form of
tions, there will-be no appreciable statistical fluctuations Equation 20, here taken in the representation, Equation
inf, and accordingly that Equation 32, viewed as a deter- 8. The state variables themselves are such functions,
ministic phenomenological equation, will, in fact, give a and bringing u, x0, x1, X2... in turn to Equation 33, we
satisfactory complete description of the process. (The find i.
fluctumations to be expected in over-all particle count du
will be discussed in the next section of this revicw.) -- = - Aux,,
However, while we may be very willing to use analogous di

equations in more difficult cases, we should bear in mind dxo
that they wil' not necessarily describe the true mean B- -
values of interest, but only related conditional expecta-
tions. xtions d = -Dx. + A._lux._t- Anux.; n F& 0

Flotation cell. This concludes our discussion of the d+
crystallizer, and we turn next to'a consideration of a We may readily identify Equation 34 as a set of phe-
mineral flotation cell. We consider, for convenience,
a simple experimental situation: a mixed batch cell nomenological equations for the performance of thý flota-

with particles all of one size and an equal likelihood of tion cell. If we interpret the variables per unit working

attachment to a vacant site on an air bubble, the bubbles volume, so that u is the number density of free particles
•hemsclves being well mixed throughout the working in the cell and x. the number density of bubbles carrying

volume. We may accordingly describe the random n particles, then we may interpret the A, as rate con-
mechanism underlying the process as follows: in a short stants for the attachment of particles to bubbles, B as a a g i
time t, a bubble, particle-free, will be introduced with feed rate of bubbles, and /lD as the average residence
probability BI; in a short time, t, any given bubble, with time of bubbles in the cell. It should be noted here
its particle loading, will be discharged with probability that the actual mean values of the quantities 1, x, as theunderlying probability distributions evolve in time du
Dr; in a short time, t, any given particle will attach d
itself to any given bubble already carrying n particles not satisfy these phenomenological equations, as the
with probability Aj, where n may be 0, 1, 2, etc. If we analogous mean values do for the crystallizer-the
describe the state of the system at any moment by the bubble-particle interactions stand in the way. Indeed,
number, u, of free particles present together with the an attempt to construct working equations for the true

numbers X(, Xj, X2, etc., of bubbles carrying 0, 1, 2 mean values (we denote them here by pointed brackets)

particles, etc., we see that we have specified the short- leads to
time behavior of the transition probability p(uxoxi..., d(u) ii
vy0y 1 ... ; t) from state u, xo, xi, ... to state v, yo, yi .... d : du

p(uxoxm. ... , tyoyt. ..; ) - Bt5ru5,,7 i+t H" 4-1.,, + d(xo) "
',,o 0 _ B - D(xo) - Ao(uxo)

E Dxt .8 ,,A,,..,,,_ II + di

2 A,,ux.t H ,,.,.,. + dt = - D(x,,) + A,,_I(ux._,) - A.,.<x.); n 7 0
n m On, n+l

- (B + ' Dx, + F, Aux.)t)a,,, 17I amm; t 0 o These differ from the phenomenological Equations 34
.1 n "a only in that their right-hand sides involve mean values

Now the variables of state u, x,, are integers, so that we of products, (ux,), rather than products of mean values,
have herc a multidihensional version of the discrete (u)(x,). Now (ux,,) differs from (u)(x,) just by the
state process of Equations I through 9. We may covariancc between u and x,., and this covarianceaccordingly recover, as there, the :ncrator of the process is bounded in absolute value by the product of the stan-

in thc form: dard deviations of u and x,. Accordingly, if the appro-
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priate populations are large, so that the standard devia- di = BP (37)
tions are small fractions of the corresponding means, dT
the mean values (ux.) become approximately equal to

Sthe products (u)(x.), and we may not only con- Again, we would not hestitate to identify this as a phe-

fidently identify the conditional expectations in Equ4- nomenological equation in the deterministic population
tions 34 with the true mean values, but also argue that, size, i. But now the conditional expectation behaves
the statistical fluctuations being negligible, the deter- rather differently from the true mean value of the under-
ministic phenomenological Equations 34 give an essen- lying random birth process. The conditional expecta-
tially complete description of the process. tion equation, Equation 37, starting from an initial

The approximate equality of (ux,) with (u)(x.) population size i0, has the solution
for large populations may be described as a kind of
asymptotic orthogonality of the i andom quantities u I = i--
and x., and the verbal arguments we have just made I -Bit

S represent an attempt to deal on intuitive grounds with Thus, according to Equation 37, the population grows
the mathematical question of specifying the conditions hyperbolically, exploding at the tiinc = 1/Big. Now
under which u and x, will be approximately orthogonal. this is a very short time if io is large, but a careful analysis
This is a characteristic question in the study of systems of the underlying random process, nevertheless, shows a

Sof interacting particles, and we shall return to it, in a finite probability of having an infinite number of births
somewhat sharpened form, where the issue is indepen- in every time interval. Consecquently, right from the
dence rather than simple orthogonality, in a later section outset, there is a finite probability of having an infinite
of this review, population, and the true mean population size is in-

This concludes our discussion of the flotation cell, finite. Before taking too seriously the practical im-

Sand we turn finally to two simple examples of popula- plications of this divergence between ronditional expecta-
tion growth which show some of the pitfalls in the use lion and true mean, we should note that this is a very
of this method of repeated averaging, unrealistic example, and that suitable constraints on the

Examples of population growth. We consider birth process, designed to mitigate its explosive behavior,
first a linear birth process where, in a short time t, would likely serve also to bring the conditional expecta-
a population of size ijumps to size i + 1 with probability tion of population more into line with its true mean.
Bit. If we characterize the state of the system at any
moment by its population size, then the machinery of the Small Populations
discrete states processes (Equations 1 through 9) applies We present here three examples to illustrate the nature
directly. We find of the statistical fluctuations to be expected in small

pjj(t) - Bit bj,i+l + (I - Bit) ty,; f J 0 populations. One is of a first-order decay process, and
may be taken to apply to first-order chemical kinetics

so that or to simple radioactive decay. Another is the linear

birth process that was discussed briefly in the preceding
(Cou), = Bi(u,+t -- ut) (35) section. 'Ihfi last ;s of a combined birth and death

S Taking for u, the population size i itself, we find accord- process and may apply to a study of particle populations
4 ing to Equation 8 that its conditional expectation satis- in a mixed vessel, or perhaps to growing radical popula-

fies tions in an emulsion particle.
di We turn accordingly to the first-order decay process,
di- Bi (36) where, in a particle population, any given particle dis-
dt appears in a short time t with probability Dt. We may

This is of the expected exponential form, and we have no imicrpret D as a radioactive decay constant, or as a

hesitation in identifying it as a phenomenological cqua- first-order chemical rate constant. The siz, i may be

tion in the deterministic population size, i. Further, a taken to index the state of the process, and the machinery

straightforward calculation shows that the actual mean of the discrete state processes sketched in Equations 1

value of the random population size, as the underlying through 9 applies directly. \Ve have the generator in
distribution evolves in time, satisfies just this same th, forTil
equation, Equation 36. 0

So far, so good, but if we consider instead a (luadratic ,i 0 (38)

birth process, where, in a short time t, the population
size jumnps from i to i + 1 with probability BTht some- and iis adJoint
thing mimich moic dramatic happens. Formally, the
machinery works as before. We find (c=*i) = -nivt, + D(J + I)tr'j~

(91), = B1*(ujij - ) Ve may aIcordin)ly set up the forward and backward
equations (Elquations 3 and 5) for the transition prob-

and, taki niz for ii, the population size i itself, we see from abilities /pj, aid sce that they have the solution inl simple
lqitltatioii 8 that its conditional expectation satisfies binomial form
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fi D Thus, the ratio alp is asymptotically independent of thc

)(eWm)(l - eD9)-; j = 0, 1, 2, . initial population size N, depending only on the de-

creasing mean, IA; as long as ;& remains sizable, the rela-

0; j = i + 1, i + 2, (39) tive fluctuations will be correspondingly small.
Finally, with the transition probabilities, Equation 39,

From Equation 39, we may follow the probability and the single-time probability distribution, Equation
history of any initial population. If we take a popula- 4.0, in hand, we can readily assemble the joint distribu-
tion initially of size N, so that its initial probability tion of the population sizes at the two times t, t + s.
distribution is The results are not worth quoting in any detail, but we

vj(0) = am may, by way of illustration, give the correlation co-
effic.ent between the two populations. For an aged

we may see that it evolves into system-large t-this turns out to be simply e-Ds12.

This concludes our discussion of the first-order decay
VJ(t) = (e-r')J(1 - e-DI)N-. (40) process, and we turn next to the linear birth process.

This process was discussed briefly in the preceding see-
satisfying a forward equation tion of this review; with birth rate B and population

dV1 size i, it has the generator Equation 35. We shall not
dt= -- Djvj + D(j + l)vj+i (41) describe this process in as great detail as the first-order

decay, but simply quote some key results on means and

of the form of Equation 9. From Equation 40, we find variances that seem to cast some light on the role of a con-
the mean population size to be tinuingly large population size in ensuring that statis-

tical fluctuations stay small. These results are all readily
A = le-Do derivable by straightforward calculation from the

discrete process machinery of Equations I through 9.
This satisfies the differential equation We have, for a population initially of size N, that the

dA - growing population size has mean
di d = Ne"'

which may indeed also be developed directly from
and varianceEquation 41. We see, incidentally, on consulting

Equations 38 and 8, that the conditional expectation of a2 Ne 2B9 (1 - e-B9)

the population size also satisfies just this differential
equation, so that the method of repeated averaging so that
would give us the true mean for this process, although
this would not necessarily be true for more complicated - 4J1 _
decay mechanisms. _ ' N

We may also calculate the variance a' of a population
initially of size N-either directly from Equation 40, For large t, a/p becomes simply 1/V/N, and two points
or by developing a differential equation in a2 from emerge. The first is that if the population is initially
Equation 41. We find in any case large, and hence always large, the statistical fluctuations

are, as we expect, small compared to the mean. The
or2= NDt( - eD) second, and more surprising, is that if the population is

and from this we may infer something about the statis- initially small, say N = 1, the fluctuations are of the L
tical fluctuations in population size. We see, for ex- same order of magnitude as the mean, even though the
atmple, that mean itself increases without bound as time progresses.

To mitigate this surprise, we should, however, note
-D et) that while these large fluctuations might be expected in,

N N say, a particle break-up process (and of course biological
processes of various kinds), they would not arise in a

is ,nilormly small for large N, so that the fluctuations in process whereby new particles are formed, or appear, at
an initially large population are always small compared a rate independent of the population size. If we take,
to the initial size. More rc',ealing is the ratio as in a Poisson process, a new particle to appear in a

_ --_ e' - short time I with probability Bt, and, as before, index
the population size on i, we find for the generator

This increases exponentially ,'.tit i no matter what the (9u)1 = B. (u,+i - u1)

size of A, but for large t it behaves as follows: in contrast with Equation 35. Calculations of mean and

- 1 ;variance, for a population initially of size 0, then lead to

A A/A p = a = Bt
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so that equilibrium, satisfies, according to Equation 9, the equa-

tion

- = (9'*V)j = 0
and is seen to bc of the familiar Poisson form

which becomes quite satisfactorily small as soon as a s bDr s o

reaches a sizable value. vi=e-nl•(BID)'
At this point we might mention one well-known j!

physical example for a process involving large numbers This has mean u and variane a2 both equal to BID,
which shows significant statistical fluctuations. Con- so that

sider again a crystallization, but now let us assume that
we are dealing with a case where primary homogeneous o _
formnation of nuclei is a very rare event. In the presence VIA
of crystals, most of the nucleation will be secondary
nucleation due to break-off of dendritic growth on the and we may accordingly expect that small populations
surface of a growing crystal. A melt or a solution might will exhibit pronounced fluctuations about their means.

be heavily undercooled before the first crystal appears, The conditional expectation of the population size, as

but once it appears, nucleation and formation of new computed from Equation 5, will incidentally be equal

particles are almost explosive and may lead to almost to the true mean, u, for this process-although this

instantaneous solidification of the melt. While the would not necessarily be true for more complicated

final number of crystals is large, the total number of particle disappearance mechanisms. Finally, we may

crystals will show significant fluctuations with time as derive from the forward equations, Equation 3 or 6,
the experiment is repeated, in the transition probabilities differential equaticns in

This concludes our discussion of the linear birth the lagged covariances for this process. and find, for

process, and we turn finally to our particle birth and example, that at statistical equilibrium the correlation

death process. We describe the underlying random coefficient between the population sizes at times t and

mechanism of the process as follows: in a short time, 1, 1 + s isjust -C', entirely independent of B.

a new particle appears with probability BI; in a short We might also note here that birth and death processes
time, t, any given existing particle disappears with of this kind can also usefully be modeled in terms of the

probability Di. For a particle population problem in a diffusional processes sketched in Equations 21 through

mixed vessel, we might interpret B as'the particle feed or 29. From the short-time transition probability be-
production rate, and 1/D as the mean residence time of havior, Equation 42, we may see thait

particles in the vessel. In the context of an emulsion (j - i) (B Di)
polymerization, where we study the population of grow- Di) t 0
ing radicals, B might be the arrival rate of primary - i (B +
radicals in an enmulsion particle, and D a rate constant Accordingly, consulting Equation 21, we find frun
for the escape or spontaneous termination of growing Equation 24 the generator
radicals. As before, the population size, i, may be
taken to index the state of the process, and the machinery (0oi) (i) = (B - Di) + - (B + Di) (45)
of the discrete state process sketched in Equations 1 di 2

throuigh 9 applies directly. The transition probability and from Equation 25 its adjoint
p o(t) has the short-time behavior:

d

pj(t) - Bt 6j.1+1 + Dit 6j.,-i + (g*v) [v(j) = (B - Dj)] +
dj

(1 - Bt- Dit)a1 t; t 1 0 (42) 1

and we may recover the generator of the process in the 2 dj- (B + Dj)] (46)

form Here i and j are continuous variables representing the

(t)• = B . (ui+, - ti) + Di(-tt - ,i) (43) population size. To keep the population size positive,
we would want to apply boundary conditions in the

and its adjoint as manner of Equations 27 and 28, that is, to attach to
Equation 45 the boundary condition

(9*v)o = -By 0 + D 1 i

S (q*v)= B(i'j-i - vj) + D(j + 1)vj+t -Djvj; -d;- = 0; i 0 (47)

j # 0 (44) and to Equation 46 the boundary condition

- We shall (Iuote here only a few illustrative results d

- readily derivable from Equations 43 and 44. The (j). (B - Dj)- - d [v(j) . (B + Dj)] = 0;

probability distribution vj of the population size, once

the process has settled down into a state of statistical j 0 (48)
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Vith the generator given by Equations 45 and 47 and The solution of Equation 49 would certainly tell us a
its adjoint by Equations 46 and 48, we would be pre- very great deal about how the systemn evolves in time

pared to begin a study of the population process accord- from some initial state. But quite apart from the diffi-

ing to this diffusional model culty in solving it, it would tell us rather more than we
want to know-all the information we really want about

Particle Interactions the system is contained in the one-dimensional marginal
Alt•ost oll of our exatupIles up to this point have dealt distribution for a typical particle, and indeed in the

with particles that behaved quite independently of each leading moments of this one-dimensional margin.
other, andI ihis was for the good reason that problems Besides, we would be hard put to assign a numerical
involving significant particle interactions are commonly value to N, which we think of rather vaguely :,s large.
very dilhicult. We propose here to discuss what seems Accordingly, we recognize first that if v(v) is symmetrical
to us to be a key difficulty in treating clusters of inter- in the y's, so is oo*v(,), so that, according to Equation 49,
acting particles. The difliculty is, of course, simply a distribution initially symmetrical stays symmetrical.
that the particles dto interact, so that the properties of We then proceed to integrate out Y2, •3 ... yv in Equa-
the individtta particles are not statistically independent. tion 49, hoping to obtain an equation for the typical
This difliculty has already co'.ne up in our earlier dis- single particle distribution
cussion of the mineral flotation cell, but rather than
return to this ear!:.ir discussion, we shall illustrate it v("(yi;) = . ft(N)(y; t)dy2dy3 .. dyv
anew in terms of a familiar agglomerative model for what emerges is
turbulent mixing, which brings uts to the difficulty in a
sharper, more transparent form. v01)(yx; t) _

According to this model, the turbuler.t mass is divided of - [R@ )('; t) I -2 Av(l)(yi; t) +

up into N equally sized droplets, the particles, which
undergo binary collisions at the average rate NA, where A 2Aff v(-)(xi,x2; t) 1- X1 + x dxldx2 (50)
is a measure of the mixing intensity-i.e., in a short time 2 2
t, any given particle pair will collide with probability
2At/(N - 1), so that sonic pair will collide with prob- Itut this involves the typical two-particle distribution

ability NAt. The colliding particles merge, equalize v(2)(yy.; f fV("(y;t)dy3...dyV
concentrations, and immediately separate. If we denote
the concentrations of sonic key substance in the in- If we try to close matters off by integrating out only
dividual droplets by xi, x 2, .... xv, then the vector x = y3..y N in Equation 49, we find an equation very much
(xt, x*.,, . . ., Xv) may be taken to represent the state of like Equation 50 with v(2) in the derivative terms and
the system, and we find a multidimensional version of the three-particle distribution v0' in the integral. We
the jump process, Equations 10 through 20, with cannot, that is to say, develop self-contained equations

in the lower order marginal distributions and must
+ either return to the full equation, Equation 49, or make

(XY) 6 Y - 2 x some judicious approximation to close off the hierarchy
N(N 1) .<. 2 of lower order equations.

X + x\ Now we may make an intuitive interpretation of
6 - X I (Y, -- x) Equation 50 in terms of macroscopic variables, in a way

2 / $m,n suggested by the variables appearing in our earlier
We may also introduce a translation rate into the discussion of the flotation unit. Without bothering
process by imagining a chemical reaction going on in about the repeated averaging machinery, we may
the system, the concentrations xm in the individual renormalize the probability distributions--v0) to the
droplets continuously changing according to the rate total number of particles, v(2) to its square--divide tip
equation dxI/dt = R(x,,), m = 1, 2..., N. the concentration space into cells, and interpret the

Now we find on applying the machinery of Equations integrals of the renormalized distributions over these i I
10 through 20 that the probability density of system cells as the actual numbers of particles and particle
states as defined in Equation 17-we denote it here pairs with concentrations in the appropriate ranges.
v'v'(y; t) = v("•0y,,.. •y.v; t) -satisfies the equation If the particle population is large and the cells are suffici-
&v('Vx(y; t) cntly broad so that there is a large number of particles in
.. .. (9*v('.v•(y; t) each cell, these cell counts will be random variables with

small variances and hence small covariances, just as the

" [l?(y,,,)v.(,(Y;t)] 'Aiv(Xv(y;t) + particle and bubble counts in the flotation unit were.
ay,, ' We may then argue, as there, that for a typical cell pair

2.'1 g.,h (y X,,
E ffv'(i x X, . .Y. yv t) x I (2) VI(.'~x,1f< (x JaJa -'(xi,x.; t)dxidx2 =I)(xs,t)dxi >,(. + ,), +x . .6y- x". X) 6 - X (l dx,,dx,, (49) 0v(') (x2,t)dx 2
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so that, if the cells arc in fact not too broad, we have in in an emulsion polymerization system. This situation

general would seem to be rather complicated to formulate in

2 =terms of over-aU deterministic balances for the emulsion

S V2 (xi,x...; t)dxidx2. = v~n(xi; t)dxx . v 1)(x2; t)dx2  system as a whole.

This relation may then Ihe returned to Equation 50 to We turn accordingly to the consideration of an

give a self-contained equation in v). emu]s;:K polymerization system and focus attention on

There are, of course, formidable difficulties in making a single emulsion particle. For reasons of analytic

this line of argument precise. We don't attempt to do simplicity, we take the particle to be in a fixed chemical

this here, but simply point out that very much the same environment and igncre variations in its size :and.in its

difficulties arise in the kinetic theory of gases in making monomer concentration. We can then dscribe the

a systematic development of the Boltzmann equation. underlying random mechanism affecting it in terms of

The questions there, however, are commonly posed in a three parameters, B, G, D: in a short time, t, i• primary

somewhat different mathematical way-i.e., one recog- free radical enters with probability Bt; the inolecular

nizes that the foregoing intuitive argument leads to the weight of a free radical grows at the rate G, in a short

statement that the concentrations xi, x ..., xN for the time, t, any two growing radicals terminate, by corn-

particles in the system are independent by pairs. Ac- bination, with probability D1. The parameters B, G, D

cordingly, one sets it down as such: have, of course, a direct interpretation in terms ()f macro-

V(2) (Xs42; V( 1)(X; V( 1)(Xs; 0) (51) scopic rate constants. If we describe the stare of the

eniulsion particle at any moment by the number m

and recovers fron-. Equation 50-the v's are probability of free radicals present, together with their sizes X1, X2,

.4 densities again- .. ., x, (say, oldest first), we see that we have specified
)the short time transition probabilityp(mx. ... xm, nyfi...y";

v( t) - {R(ys)v0)(y; t) } -- 2 Av(t)(ym; t) + t) from state m, xi, ... , x,, to state n, y,, y. yn time t.
SYt Liý Taking p to be a probability in n Jointly with a prob-

'~~~, 2A f6i( it) ()( 2 * x-X1 + X2\d~ x ability density in y~ 1 ,yn, we have' 2A f f 0) (x 1; t) 0) (x2; t)X 2
2 p(mxi... x,, nyi ... y,;t) -Bt . ,.m+ " . (y1  - XI)...

(52) 8(y. - x.)5(y.+,) + Dt - 3.,•2 6 (yi - X0).

a self-contained working equation in v(0). Oi.e realizes,
.5 of course, that the statement, Equation 51, is not under 6(y- -- X--1)3(v - Xi+l) ... (V,- - XJ.-.I) X

:P all circumstances true, and asks various mathematical
"* questions aimed at clarifying the conditions when it is 6(y-I -- xj+l).. 6(y.--2 - Xm) + I1 - Bi

true. We might perhaps close this discussion with one L

of them. If Equation 49 - solved for an initial distribu-
'. tion in which the y's are independent, what are the Dt an,(yi - xi - Gt) ... ,,- x. - Gt); t , 0

S conditions under which the y's remaia independent in

the solution--i.e., under what cor.,u.tions does inde- We may note that we have taken the molecular weight
S pendence preserve itself in time? Our nituitive answer of a primary radical to be vanishingly small.

would be: when the population is large. This process is, inathematically speaking, a rather
more complicated version of the crystallizer process

Problem Formula*lon discussed earlier. It is not specifically included in our
The technical part of this review being completed, sketch of Markov processes, but an application of the

we devote this final section to a consideration of why same general machinery will yield its generator. It

we should formulate engineering systems probabilis- will be convenient first to symmetrize the short time

tically at all. It goes without saying that if the process transition probabilities in the x'g and y's. Since we are

exhibits fluctuations in the macroscopic scale-imperfect concerned here only with the forward equation which

reproducibility, in experimental terms-that it may be governs the singl-time probability distribution, we

S very useful to describe it in terms of a random mechanism quote simply the adjoint of the generator for the sym-

rather than to look for a very fine grained deterministic metrized process:
description. In our applications these large-scale
fluctuations are usually associated with small particle (Vq*m)(n, y...y,) = - G • •v(n, yl.

S populations. Our point here is that even for large + ,
populations, where the over-all behavior is quite deter-
ininistic, there is often a certain conceptual convenience - E v(n - 1,yi...yj_, ),j+,.. y,)b(yj) +
in making a probabilistic fornmlation at the single n j

particle level, interpreting the single particle probability n+2 2
distributions in terms of number fractions for the whole 2 D ff t(n + 2,)m... r, s)drds

ensemble of particles. We proceed, as throughout,
by example, contenting curselves here with the single [B + (( .

example of the study of molecular weight distribution 2
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where it is understood that t, is symmetric in the y's. .G C dp" 2 [ +
WVe are con-'erned here, in fact, only to find the dis- B dz n

tribution of states after the process has settled down into D Rn + . 2
statistical equilibrium. Denoting this by v(n, yr... y.)-- (,,-o -- T.) "+y -- " + 2 / , (56)
symmetrized in the y's--wc note that according to B X 2 , n 2

Equation 9 or any of its continuous analogs, it satisfies The solution to Equation 53 being known,

This really concludes the probabilistic part of the story. -, = D 2y 2 ~~
It remains only to reduce the equations describing the On \D/ D[16B(
equilibrium distribution, v, to a convenient workingD
form. This can readily be done by introducing the
marginal distributions: with

0,,f.= i..,,di.d, _-j 0(~Ii )
0.y= fv(n,yt... .y.)dy, ..dy. -- 4 B

#n,(YiYi) = fv(n,y... .y)dyi... dy,,

where 0, is the probability of having n radicals present, and

€,. is the joint distribution of radical count and molecular (2) B
weight of a typical radical, and so on. We recover, L,,- 2 --fl

after some calctlation, a difference equation in 0.n

we may readily undertake to organize first the numerical

+D [( + 2), _ (n\ 0 solution of Equation 54, and then of Equation 56.o0 B 2 2 It turns out to be conveniett to work with the cumula-
tive distributions of the tails. - Letting(53)

ordinary differential equations in the p,(y) li(y) = f .

BG . = _1 [.O16(y) - '._11 + (€._• - P.) + P. (y) = PB dy n

S[(n+-2) nwefind from Equation 54

( n we
and partial differential equations in the 4,n(Yy1, y2) Bndy - --

G + D [(n+2)4 (n)4,]; y >0

4.(0) = On

-L- 1 ;'_l(yi)6(y2) + Vn-l(Y2)6(Y1) - 2 4,n-i] + and from Equation 56

1 [( + ( 2) n 2.--G-- 2-1"1+2P.ý-P
B dy n +

(5) B fl 2 )P.+ 2 (f 2 )P.]; y>0

The probability density for the molecular weight -f P.(0) = On
the combined product can be expressed as It is then a straightforward matter to truncate thcse

/ , ( )systems of equations at some value of n past which 0, isn ) , O ý(y1,v0).(,'I +y. - Z)dX,/dy,2  negligibly small and to organize a direct numerical2"
I(- =_ - -sol; tion. The tails distribution of the product molecular

n ) 0,weight

and this sugests that we introduce the functions F (Y) = f
p,,() = ffi'(v, y,,2)5(vt + y+2 -- z)dyidy2  can be recovered from these solutions in the form

whichd, tcclinst to Equation 55, satisfy the ordinary F(y)=2 DE(n\)p(y)
difVO.6ntial NO(.I4AtiofRs B , 2

VOL. 61 NO. 4 APRIL 1 969 73



IrI



ij

/) -'

�Ih, -
S

I r 
I �L

I 
t

I -I
I. Ii
I�iI 

.1

3 

4I IA

1�

I & .

I

Ii 
Ii

S 

� I

II'

0 
'p

-4 
I

BLANK p���..
1Ir�

I

A',
-4

-I

p.-

'IA
II: ii

-. - �- - LZ�. 7r�..sr



Chemical Engineering Science, 1969, Vol. 24, pp. 1497-1511. Pergamon Prc.s. Printed in Great Britain.

-l

A stochastic model for fluidized bedst

FREDERICK J. KRAMBECKt STANLEY KATZ and REUEL SHINNAR

Department of Chemical Engineering. The City College. The C'ity University of New York. Ncw
York. U.S.A.

(First received 13 August 1968; in revised furn 7 March 1969)

-Astract-- A mathematical model for gas-fluidized beds is proposed that allows for a randomly fluctuat-
ing flow pattern. It is shown how mean first-order conversion is related to contact time distribution
-for arbitrary models'of this type. A simplified version of the model is then studied. and it is found that
-the effect of fluctuating flow is similar to that of stagnancy in steady systems. This effect is inconsistent
-with the usual steady-state models, but it is shown that some published data on conversion in fluidized
beds [6] exhibit this effect.

I. INTRODUCTION The output of the system for steady input might
ONE OF the readily observable features of the therefore be almost completely deterministic
flow patiern in fluidized 'beds is its fluctuating and we can deal with the system as a steady
character. The varic,us elements of dense-phase system.
fluid are intermitt.ntly exposed to bubbles of This assumption might be correct in high
different gas conitosition. Since one is normally narrow fluidized beds as used in pilot plants
interested in the averagt; behavior of the beds, or where vertical pipe heat exchangers are used
rather than in the details of the fluctuations, it is to break up the bubbles in large beds but should
usual to represent such systems by steady-state not hold for large scale unbaffled fluidized beds.
models. It is the purpose of this paper to investi- The time scale of the internal mixing processes
gate by help of a simple model the effects that and the gas residence time are here of the same
stochastic fluctuations might have on the behavior order of magnitude. Gas bubbles are often large
of the bed. especially in the upper part of the bed and the

Of course, with the present state of knowledge. local concentration of bubbles exhibits fluctua-
it is rather difficult to determine the parameters tions. the time scale of which has the same order
of even steady-state models accurately, or to of magnitude as the residence time. The concen-
choosc between different models. Thus it is tration fluctuations in the dense phase should
unlikely that this can be done with a stochastic therefore undergo similar fluctuations which
model either. It is, however, of some interest might effect the behavior of the bed as a reactor
to determine properties of stochastic models and might be important in its control.
appropriate to fluidized beds to gain an under- As will be shown in this paper the inclusion
standing of how and under what conditions of the unsteadiness of the reactor explains some
these unsteady properties might affect the behav- puzzling phenomena (see for example[61) and
ior of the bed as a chemical reactor. it is hoped that it might be helpful for a better

Now every turbulent reactor is an unsteady understanding of the fluidized bed.
system. The reason that in many situations we The kind of model to be considered is similar
can neglect this unsteady behavior is the fact to that described in [ l]. This consists of a neiwork
that the time scale of the fluctuations is often of ideally stirred tanks interconnected by flows
small as compared to the time scale of the system. which fluctuate randomly in time. -'he new

.esented at A.I.Ch.E. Annual Meeting, New York, November 1967.

t Present address: Mobil Research. Pri'iceton, NJ. 08540. U.S.A.
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feature to be considered here is the presence randomly in time with a definite probabilistic
of two types of tanks corresponding te zones structure, that of a discrete-state Markov

he d=.-n.: r:--" -d thp haihhle nhase of Process. The tanks are taken to be of constant
fiuidi/ed bed,,, It should he noted tht,'t such u volume, and the fluid is assumed incompressible.
model %kith steady flows can he used io approxi- The system of tanks will be assumed here to
mate arbitrarily cioseiy any othci sld.-5tatc po.,,..css onlyX a single inlet stream and a single
to-pha|se model of the fluidized bed. outlet stream. although more general situations

It is often assumed that the dense phase is may be treated. The new feature introduced here
either completely well mixed or that it 0; in Is the special consideration of some subset of the
plug flow but, again, that lateral mixing is corn- tauks as an "active region" of the model, cor-
plete. On the other hand. the contact with large responding to the dense phase of a fluidized bed.
bubbles assures good instantaneous mixing Thu, when the model is viewed as a chemical
only in the immediate neighborhood of the reactor, only the fluid contained in the active
bubble. As said before, the time scale of the region of the system at any instant will undergo
mixing in the dense phase is of the same order of reaction.
magnitude as that of the fluctuation in bubble It was shown in 11, 21 how the random walk of
concentration, and therefore it may not be a single fluid molecule through the system may
desirable to assume that the dense phase is well be described analytically, and how various
mixed. On the other hand. every part of the properties of this random walk may be related
dense phase comes into contact with bubbles, to tracer response statistics and first-order
so that the dense phase would be homogeneous reaction behavior. Thus the expected response
in some time-averaged sense. Now the model to a certain tracer experiment is equal to the
mentioned before describes a different physical residence time density function, and the mean
situation where the dense phase is well mixed conversion for a first-order reaction as a function
or at least can be described by a network of a of the rate coefficient is just the Laplace trans-
few well stirred tanks but the transfer rate to form of this function. In order to extend such
those tanks fluctuates with time. But if we results to the present situation a new random
consider the total physical effect of the fluctua- variable, the contact time, is introduced. For the
tions on the local behavior in the dense phase random walk of a single fluid molecule through
we note that this model captures the basic physics the system, this is defined as the total time
of this unsteady behavior and should at least spent by the molecule in the active region during
predict correctly in what way this unsteady nature its sojourn through the system. This will, in
of the tranport processes might interact with general, be less than the residence time of the
the kinetic behavior of the reactor. molecule, defined here as the time spent in the

system as a whole.
2. SOME PROPERrIES OF THF GENERAL. We denote the number of tanks in the model

MODEI. by n, the volume of the ith tank by vi, and the
The analytical structure of the stochastic volumetric flow rate from the ith tank to the jth

mixing models was developed, and various tank by w1kj,, where a is the state of the under-
properties were derived, in reference[]]. Here lying Markov process, called the flow state. The
we derive some new results which are required flow rate from the inlet stream to tank i is called
for the application of these models to hetero- ii',, and the flow rate from the ith tank to the
geneous systems. exit stream is called , It is convenient

In general, the model consists of n ideally to define quantities of the form w~,, so that
mixed tanks which are interconnected by flow , )
streams in some arbitrary manner. The inter- =- Z - • wjr. (I)
connecting flow rates arc allowed to fluctuate 4 TPA,1)

1498
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The total inlet flow rate (equal to the total out- shown that if 1j.. OR)dO is defined as the joint
flow) will he denoted ,,.Then: probability that the particle is in state (, it

where a* is the flow state and i is the lank number.
-�I'--und thal the contact time is between 0 and 0+ dd.

if 0 P"'I . to) .0.M~jr )

Note that direct bypassing. w,.,., , ,s allowed di -
: fo r. ••wj

hfr W state transitions are governed by a /,(t. o) j-r to), I } 71
The flows

switching matrix A, such that. for small time I

intervals r. and

7r a j• ( 'r ) = 8,, A + k ,,,f, + O ( T") ( 3 ) LP11I -, -• + ,
ht I" I.. V,"-/}• 8

where 7r,,(7) is the probability of transition from
state u to state P3 in a time interval T, and the where the sulfix , denotes the outlet state: a

function o(7) has the property U n(a.n+I)}. The initial distribution. P,,i(O. 0).

Sd)is given by (see 121)

The matrix , has the properties-' (9)

x, 0: a 1 (4)

0 , (; all T hlie dili'acintial Eqs. (7) and kS) togcthcr \ ith
initial conditions (9) give the P,,A(, 0) completely.

We now consider the random passage of a The contact time density function..f•,0f). is then
single particle of fluid through the system. In given by

heterogeneou, reaction systems the importantS property of the si~l particle random pus-i.age ,i(t lira/,(,m. 1"P0)l

is the contact time distribution. where ;ontact
time is defined as the total lergth of time a It is not necessary it) solve (7)and (8)completely

particle spends in the "active" part of the sys- to determine this funclion, however. Thus. inte-

tcrn during its passage. In the two-phase model of grating (7) and (8) lror n - 0 to I

the fluidized b.•, this would he the dense phase
residence time distribution. The variation of dX0 ( 0) -. ,1,4
contact time. o. with clock time, t. is given by do

o = , . x'. :"o) (I(5) I)

where A is the set of active states for the particles. + c

,ind +t.() = -, 1 ---- " .o If 'I.

Ii' ta.j) eA ifi

S)(a.i) tO; (a.j)OA' (6) 1

where %(t) 00 l'U,1. o)d,. The initial condi-
"Using the methods of reference I[I it can he lions for the system oftequations (111)are

1499r[
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S,~t /,.jh•.,,(0 I 0 . 1 13 a PD(z, x) _-__x_

0. + n"s' - X. +

In this vtd. the function J"(f) can he found by k (
sol ing the %,)stem of ordinar' differential X.--- ,J)kxj P.4t, x.oP,,(tx), (19)
and algebraic Eq. i i I . rather than the sysitei
ofpartial differential Eq. (7), It has been assumed in (19) that a first-order

It is of some interest to calculate the mean reaction oc.curs in the active region of the model

contict time, f = fJ qfl./()do. In the Appendix. only. with rate coefficient k. After a time, a

it is shown that stationary probability distribution will be
approached. This can be calculated by setting

=T- •"lJ)/0 t (14) the time derivative in ( 19) equal to zero.
i-' 1 It is possible to calculate the first aoments

of P,,(t.x) without solving (19). however. Thus
where 1/ is the stationary probability distribu- if we define l = f xjPI'(t. x)o r we find. as in Il1,
tion of flow states, which satisfies

A ,,,P,, 0= all(3. (15) d '- = J

and f' is the mean total inlet flow rate: -XA(3,j)kpA.j+ , (20)

Here. again, we calculate the stationary values

t sof M,,, by setting the time derivative in (20)
It a set A consists of certain tanks in the model qual to zero. The mean outlet flow rate of un-
independently of flow state, then converted reactant is given by

X4(IP 6A X J(17) i1i In W ~tJu4 i,,iJtj+Y 1 PO)un+I.OXio.
aa, * a

k~t 0 J- 1

(21)
and

V , (18) If the Laplace transforms of Eqs. (I I) and (1 2)
W -. are compared with (20) and (21), it is found that,

for the stationary value of (0),

In other words, the mean contact time is equal
to the volume of the active region divided by the (111) = ) (22)
mean total inlet volumetric flow rate. This
result is independent o(f vhethcr the inlet flow A
rate or the internal flow rates fluctuate. It may where fAk) = f I e-I1f,.(t)do. Thus we may con-

be noted that if the set A includes all the tanks elude that the Laplace transform of the contact

Eq. (18) will give the mean residence time. time distribution is equal to the mean unconverted

This concludes our discussion of a single fluid fraction of reactant when the inlet concentration

particle through the system, and we turn now to is constant and stationary conditions have been
the other point of view of individual tank con- achieved.
centrations. This is formulated in terms of the
joint probability, P,,(t,x)dx. of the flow state 3. SIMPLIFIED MODEL

being a and the concentrations of the individual (a) Description

tanks. (x ..... ,,) = x. being in the volume dx The general model described in the previous

containing x. Using a slight modification of the section has great flexibility, and by using

derivation in [II we arrive at sufficient tanks and connections one could

1500
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W, undoubtedly match it to any experimental data. time. however. It may he noted that while the
Before undertaking such a project, however. assumption of' perfect mixing in the particulate
it would be useful ito have some feeling for hoA pha'e seems reasonable, on the basis of the

_ the fluctuating mixing flows affect the properties observed uniformity of temperature in such sys-
01 sucfl moucis. For this purpose it very %mmp;tel isI. III&AL U1 MI CL piun
n odel of the previous type will be postulated. seems doubtful. In fact it Is often assumed that

on a tlirxelv intuitive basis, and its properties the bubble phase is in at condition of plug flow.
will be investigated. It will be shotikii. ho,,kever. that many properties

Various steady-state models of fluidized beds of the sy stem are independent ot'thi. assumption.
* have been proposed bused on the two-phase so it "sill be made for convenience. Tlhe assum p-

0 picture of such systems. Common ito these tion that the bubble phase is of constant volumle
models is the assumption, based on observation, results from defining the boundaries of the

7 that the partic~ulate phase behaves as an incom- reactor appropriately.
1, pressible fluid whose volume is the same ai that The equations of' change for the system of

* of the bed a. incipient fluidization, and that the Fig. I are
* amount of gas passing through the bed in the v

form of bubbles is just the excess of the total L, d- = rivx,- [rir+ iv,, JX, + Wmx..
* gas flow over that at incipient fluidization. The di(2.1)

models differ in the assumed mixing between dx.%
and wsithin the phases. For the purposes orf this ~ IIrix ,X

study, the simplified model shown in Fig. I-
will be assumed. In this miodel the particulate
phase is assumed Ito be of constunt volume and Z = rx1 + I I- r 2 (240)
well-mixed. The quantity r.. is the interstitial
).lume of' this phase. TFhe total flow iate. i. %% here ffxt is the lead ion raoe ex pression. It

is constant with time, as is the fraction of the is assumed. as before, that only one reaction
total flow which travels in the form of bubbles, occurs and that it occurs only in the particulate,
r. The tbubblc phase is assumed to be of constant phase. The concentrations of reactant in the
volume. v~, and is also well-mixed. The mixing bubble phase and the particulate phase are
flow rate, iv,,, is assumed to fluctuate with rx and v, respectively. IFor tracer experiments,

Rix) is jUst zero. The quantity Z is the outlet
W concentration,

(b) S~eadv flo hc'havior
rw -OwBefore kdiscussing the effects ol'fluctuations in

I,,on) thc sv stern behavior, it is useful ito first

L ~derive some properties of the systemn with con-
Sstant it.Under this condition the miodel

_____ is just another in the general category previousl\
Oe _ J men~ioned. but thecR ecke of fluctuations can only%

he made clear hý co.mparison with this steadli
behavior. Also, by analyzing the steady model
from the point oft viewk developed for the so
drastic mrodels sonme interesting results alle
discovered.

1W BHecause the reaction takes, phicc. in the model.
Iig t. only in tank 2, the residence time dist ributit on oft
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the system is of minor importance compared of iO, where 14, is the superficial gas velocity at
to thI contact time distribution of gas particles incipient fluidization, and u is the superficial
with the particulate phase. One of the difficulties gas velocity at the system conaitifns. ihe ratio
with using tracer experiments to study the of the two volumes corresponds to a porosity
properties of such syste.ms is the fact that. n of 0.5 in the particilate phase. and ratio of bed
experiment performed with a trac.-r that does height to bed height at incipient fluidization,
not interact -Aith the solid rarticles can furnish H/q,, of 2. These va!ues are thought to be
information only about the residence time dis- typical of commercial fluidized beds. The values
tribution and not ahou- the contact time distribu- vi + t'= = i. = I are chosen by assuming appro-
tion. It is th,:riefre interesting to compare the priate scale factors. Under these conditions the
two distributions, mean residence time is equal to one.

The residence time density Cuncton is obtained The three curves shown are for three values of
by solving Eq. (; I) with all the states mcluded the mixing flow rate.,iv,. covering the range from
in the set A. This is found to be zero to infinity. It is seen that the resid':nce time

distribution is only slightly affected by changes

1(t) = + l.2-• e - b2e" in w,.
t • 2 Lv j h- The contact time density function is calculated

_{= _._ -[r (l-ry12 l in the same way, with only tank 2 included in
+! I. - j+w+-,, [ .I ] + the se, A. The result is.

b e& t25) f...) r8(0 W-(I -rt5 )2c- (27)><h•- I;,,.--•,(2• f()=ra• -

where bi and h, are the two roots ot where r& is given by

r,+[ ,- rb=r + !_ (2n
V, 1  t 2  V1  L'2

The quantity r, above is just the fraction of gL"

h b+ r(l -r)p- 2 + -0. (26) which bypasses the particulate phase entirely,
L'r. U. Vv, and thus has a zero contact time. When WM = 0.

it is seen that rb = r, meaning that when there is
The corresponding distribution function, F(t), no mixing between the phases, all the gas that
is just the integral of Eq. (25). This is plotted passes through the system in the form of bubbles
in Fig. 2 for typical values of the parameters. The bypasses the particulate phase completely. The
value of r =0.9 corresponds to a ratio ufu. corresponding distribution function. Fr(o).

which is just the integral of (52), is plotted in
0Fig, 3 for the same system as was used in Fig. 2.

For these values, the mean contact tinie. v2,..
is equal to 0,333, Comparison of Figs. 2 and 3

o18 shows quite clearly that while the mixing rate,
'i,,. has only a slight effect on the residence time

04. W.distribution. it has a pronounced effect on the
contact time distribution.

02 An additional factor which makes the estimate
of the transfer rate even more difficult, is the

0 &5 o 5. zo a5 •o fact that it is also sensitive to our assumptions

Redi ,z . as to the nature of the mixing processes within
Ii•'. e. the phases.

IS.O?
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r being given in their v, ork by

r,, = re " 3010
y uV• wk.ro A] io. th& niimrrhr nf trvinkfor isnit.i In farl

o4 as long as the flows ate stet-dy, it can be shown
t that the contact time distribution for the well-

"mixed particuiaie phse is given by Eq. t27 j
regardless of the nature of the muxing processes
in the bubble phase. This is seen b. noting that

0_ _J ______ _ ., whenever the set of ý;tates .4 consists of only a
0 05 1, , 0 2o 3.0 single state, the system of Eq. (11) reduces to

CUmCt ; a single linear differential equation. Its solution

must then be of the form
The contact time distribution of this system is

closely related to its reaction behavior. Thus the J; (a) = r(,8f) + ae"' (31)

conversion for a single first-order reaction :s
just the Laplace transform of f,(). The convei- where a and h are constants. It is known, how-

sion and selectivity of complex first-order systems ever, that the integral ofl.f(fl) is one, and that the

'Ire also determined by this function. Finally, mean cc'rtact time is uiv,. These two conditions

for many reactions, the method of Zwietering determine i and h.
and Dankwerts[3, 41 can be used to find bounds Tliis fact points up another difficulty in using

on conversion on the basis Of./;.J3). Since such .acer experiments for studying such systems.

large differences inj.M.). as shown in Fig. 3. are namely. that while the reactor performance is

consistent with such slight differences in fPt). relatively insensitive to the nature of the mixing

the residence time distribution, it must be con- in the bubble phase, the residence time distribu-

cluded that measurements of f(t), that is tracer tion is just as sensitive to these mixing processes

experiments performed with non-interacting as to those occurring within the particulate

tracer, whare the tracer is introduced in the inlet phase and between the two phases, %o that
and is measured in the owlet stream, provide a different assumptions about the mixing in the
very poor basis on which to construct a model of bubble phase would allow very different con-

the system's reactor performance. clusions about the paurticulate phase and the

The steady conversion for a first-order reaction interphase mixing, based on such experiments.

- catalyzed by the solid particles can be calculated On the other hand, for purposes Of studying the

from Eqs. (20) and (21), or by taking the Lap- reaction behavior of such models, the assump-

lace transform of J;.(f). The resulting fraction of tion used here.that the bubble phase is well-mixed

unconverted reactant is then given by is seen to he of minor importance.
"The unconverted fraction given by Eq. (29)

, Z (I - rt,) is Plotted it Fig. 4. It is seen there that the
-1 k+ .v mixing rate. it',,. hs a very large effect on first-

order conversion, substantiating the conclusion
about the importance oof this parameter. At each

It is interesting to note that this expression is value of iv,,, the unconverted t'racltion approaches
identical to that derived by Davidson and Harri- an asymptotic value as A. the rate c:onstant, goes

i sonlSl by assuming plug flow in the bubble phase to infinitl. [his -aluc is i,,t op,, the ,ypass

and complete mixing in the par!iculate phase. fraction.
Only the expression for r,,, the bypass fraction. Another point that emerges is thit Eq. (27)
in terms of the system parameters is different. for the contact time di,,trihution con1iil, onlY,
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one unknowkn parameter, r,,. In general, it, and r = P-( I -r)8(O)+-- 1 (0) 4(+ h1(0)
will be knovrn in advance. Thus, it" one is willing doA'.•.

Sto assume that the particulate phase is well + A, g(O) 0 3)
mixed and that the fluctuations in the rate of 1 ('3)
Sexchange bet\seen the twto phases is unimportant+
a deter minatioui of the single quantity rb can be with g,,4 (O) g.22() = 0. Tro find the residence
used to estimate the contact time distribution, time distribution the zeros on the left of the first
This quantity can be measured by carrying out a two equations of (33) are repluced by dg11/do
fast reaction in the system or by usin,' a tracer and dg,,/do respectively.
that is completely absorbed on the solid particles, It is found again that f,(0) contains an atom of

probability at zero contact time which is the
M() Behaior trith ftu'iwllitigfi)V bypass fraction of the system. For the fluctuating

It will now be assumed that the mixing flow. case, this fraction is given by

1.2w I,1

;7,,= P- P ICPgE (34)

,. i ý, 7. T e 7P - 1") T+ X'1(A

w,M, fluctuates by switching between two values, where( = ",Il I- 1',,,2 and ',,,, is the mean mixing
W,,, and iv,,, Under these conditions. the equa- flow. Comparison of (34) with (28) shows that

Stions for the contact time distribution. 0 II) the bypass fraction with fluctuations is alway:s
and ( 12). become greatLr than that without for the same mean

mixing rate, and that at high switching rates
r ' ", .(I -- (XI + "- the two become equal. To illustrate

C -. ( the effect of fluctuations on r,,. this quantity is
plotted for sonic values of the parameters in

)(32) Fig. 5 and 6. In Fig. 5. the quantity e/iv,,, has
V2• been given its maximum allowable value. In
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-[lhil hC 6•act that the .ulr%12- in Fig. ar.ppioi.ch
,asymptotic values depcnds on the facl that com-

04 riclc cutoff t)ciurs in One ol the flov" state%.
Otherwise r& would approach zero.

Wnen complete cutoff does not occur. it I%
N" ol• ••0• •"--11. ,seen from Fq. 034) that the ati. 0r i,, to the

0 1 v ad ' of " , .' it h t.. .. .v flX a z f. i. v iv e n h % F u . (2 91 .
o ,,beconmes constant under the abhoc condilions.

Vhus

2 . 0 4 0 I .s ; 0r1i

,• I il. 5.P.TP,)- "•%. i,

,37)

One notes that. according to (37). the bypass
.'A fraction approaches an asymptote thai i d: nde-

pendent of switching rate. In Fig. 6. ej]-,,,, has
been taken as 1.8. with the reýt ot'lhe parameters
the same Is those in Fig. 5. Again the ele•t or
the fluctuations on r,, is appieciable. For smallk;
values of r.:.,, the effect of fluctuations on ,

is much smaller. ThuIs if 1 ;,,, - I0 per cent

- the ratio gii.en hý (V will he ý- I per cent.

0 1 L I From the discussion in the previous section
0 to204ý 1 Zý ý about the behaii;ior of' the s~stemn with sternly;

SMt, ,hnino ,;,. flow, it is clear that changes in r,, have a large

F is. 6. effect on the reactor performance. Thus the flue-
tuations will have an effect on the reactor perlor-

. , general, to keep the flow rates positive, mance by changing r,,. Howe•er. when I model iS
set up f\or a particular unit, the liannieter r,,

"-""-- ~ --'-.will be fixed by exlperintental mi;ns. sinc: it is
P.: n'i*,, P1  so important. Gne wou!d then he inti.tcsted in

In thre case shown. = /P, -- , so 4E has how the fluctuations would affect r'e;itmw perI-
been taken is 2. It is seen that curveCs of rI, fo•rnane once ?, i' fixed.
vs. cv,, appear to approach asymptotes. Inspec- Figures 7 and 8 illustrate the effc.t of fluctUa-
tion of Eq, (58) shows that, if EJi'T,, is held lions on the contact tinme distribution with r,
constant, fixed. The distribution has been plotted in the

' "I T', " J I• - I
i lim,{r•,i= 2+i----P(P--I,)÷----x,:N.,)~~i t (r", 21|'| l

I 6 I
SO: -- • ~z < -- < -. '1

p..
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I he behikvior of the fluctuating system with
-05 first-order reaction is analyzed in terms of first

~ moments hy applying t!qs. utUt) anud izi. auti
J.D0 9 526 in terni-. of secoiid moments by similar methods,

06O 096 ;4% explained in I II.
The mean outl~et c:oncentration and the coeffi-

cient of' variation, = ff4LA. are shown in Fig. 9
2 ~for the sarric pakarneter valuies as used in Fig.

Steadyflow8. It is seen 'iat the fluctuations have the effect
of' decreasing mean Qonversion, and that the

- coetlicient of variation of the out put can be (4dite

0 lag ,e p cal o high reactiun rates. Since
0 3 4involves an experiment with high reaction rates

C~ Wft.9(K - ). whatever fluctuations there are~ would
I P '. make themselves quite' noticeable in the course

torm ft h,0f)), the contact time intensity function f(iexrmnt
191. where *; i

larerfor0-, than lbkr rt, = (105. In both cases,
the drfct Isi to decrease the value of IdfO) to 01 X 5

Vlarge 11, which mcans that within the particulate C1021
phase itself ih,-ic Is a stagnancy (or bypassing) ;
effect. in addition to the direct bypassing due 0 1i 04 ,o 20 40 10 20 40

to the bubble-,. Raot constont,k

Fig. 9.

4. DISCUSSIONS
4 The contact time distribution for fluidized

beds was first definedt by Orcutt. Davidson and
3 Pigford[61. These authors made the contact

time dimensionless by dividing by its me-an
2 74 1value. so that the resulting di~stributioni has a

(D 168 125mean of unity. It was then suggested that this
(Z M 137 distribution be measuired by carrying out a fi'st-(I 7W6 11-0 order reaction in the be~d so as to daternfine the

.0ceL~aplace transform of the density function. The
0 - L Lr~ osatwsMd iesols in sucl, a

0 2 c Ayia h euliggop ,i quiv'alent
carii tff'sO t 0,is dfind i thepreentstud, uderthe

Sý uualassuptin tht te rae o reatio onaI50
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given mass of catalyst and at a given gas composi- it is seeci that
lion will oe the same in the dense phase of a Z
fluidized bed as it is in a packed bed Thus a plot x -, (411
of unconverted fra:tion of reactant vs. K should
be the Laplace lian4orm of a dernsity function where the time t in (it) has been scaled by the
with unit mean. ruean contact time. It is not clear how the

Actually. the Ilur ol hersion of an cxpcr.ri- tlihi ex)rcmc. maxirnum mixedneN-. could be
mentally measured Laplace translorm can bc calculated from ithe tnrisform. however.
subject to large errors. Since the conmact time It was noted tha! the effect of lluctu.! ions on
distribution cannot be measured directly. it is contact time distribution is to decrease the values
probably more useful to think in terms of its of the intensity function, /if0). at large value! A*
Laplace transform. It is not necessary to in,.ert it. Such a shape for h(H) indicates that the tail of
the transform in order to calculate con•ersion the contact time distribution has more weight
and selectivity for first-order reaction systems, than it would for the case of ideal mixing in the
for example. since such reaction schemes can be particulate ph.ise with no fluctuation. a condition
mathematically decoupled17, NJ. Also, the very which fot steady flows is termed stagnancyI101.
fact that the meawured rate data can he inter- This results in high vilues for the higher moments
preted as the Laplace tran.,form ofa valid density of the contact time distribution. The correspond-
function places some restrictions on its st, ticture. ing effect on the Laplace transform of the di:mtri-
It must be completely monotone. for example. bution can be seen by expanding it in Taylor
Because it is so closely related to actual conyvr- series:

sion data. it scems that the function .(k, is a
more uscful way' o characterize fluidized bed (,K) - i42)
reactors than resuAlts of tracer exrpeliments.
especially since these are rather insensitive where 1A,= f,, Hf(I)d0.'l'hus
to the interphase mixing. A

The only situation that comes to mind in which f(K) = I - K + 1( I + )K .... (43)
it would be more desirable to have the contact
time density f(H) rather than its transform is The effect of stagnancy, then, on.'K) is to in-
where the method of Danckwerts and Zwietering crease it, ai least in some region near K = 0.
13,4] is to be used to predict bounds on conver- This result is borne out in Fig. 9 (note that
iion for nonlinear reactions. Even then one can abscissa on Fig. 9 is equal to 3K). This argu-
use the transform to derive one of the hounds, .a
thal of complete segregation, as long as the ment does not imply 1hat j(K) will incre''se at
batch conversion data can be approximated by a all values of K. but in fact it does in Fig. 9.
sum of exponentials. Thus if c(it is the un- One c:.-9 also put the above argument in a
converted fraction for a batch reaction, the somewhat different form. If the tail of the distri-
limiting unconverted fraction for complete bution has a strong weight this is just another
segregation is way of saying that a small fr;,.tion of the gas

has residence time considerably longer than that
Z f fexpected in a stirred tank. In a steady flow

X ')o)f(O)d# (39) situation this is often caused by a stagnant region
in the flow in which particles become trapped.

whecre'f() is the contact time distribution. Then, Such a stagnancy can be easily recognized from
if the fact that the intensity function has a decreas-

ing region (9)_ We note that the unsteady flow"(V) aie- (40)
has the same effect on the contact time distribu-
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tion as stagnancy has in steady flow. Now in be below if the axial diffusion coefficient model
order to detect the effect of this onf Q) one needs is correct. In fact,
a very accurate measurement of the tail. If our
experimental method is such that wejust measurelir. ,oK(I - = - (46)
the main part of the curve (such as in a pulse) K--. K- (I -- )J "2+1
we often do not detect this tail. We then find
that the average value of the contact (or resi- where C2 is the variance of the contact time
dence) time is less than its expected value, distribution. This was tried with some data
namely volume divided by flow rate. from the literature in Fig. 10 in which some of

It has often been assumed in theoretical work the experimental results of[6] are plotted. It
that the state of axial mixing in the dense phase can be seen that the presence of stagnancy is
is somewhere between that of complete mixing clearly indicated.
and plug flow. In a steady state model, this In [61- it was noted by the authors that the
results in a contact time distribution with variance average contact time as measured trom the slope
less than that for. steady complete mixing in the of •(K) was too low. There are two possible
dense phase, with the same bypass fraction. The explanations for this. Either the reaction rate
stagnancy effect discussed" above, however, is lower than in a packed bed, which is hard to
results in a variance greater than that for steady believe, or part of the bed is inactive. Now in a
complete mixing in the dense phase with the same fluidized bed the solids are well agitated, and at
bypass fraction. The existence of stagnancy is first it is hard to conceive of any inactive region.
thus inconsistent with steady state models using But the mixing processes of the solid phase have
an axial diffusion coefficient in the dense~phase. the same time scale as the contact time of the gas,
It is consistent, however, with the observation and with respect to this time scale the solids are
of Rowe [91, that the axial dispersion in a fluidized not well mixed. If we consider a region of the
bed is due to batches of the solid being carried dense, phase, then, it experiences periods of
up in the wakes of individual bubbles rather than intimate contact with the gas phase followed
intimate mixing throughout the bed. This allows by periods of very little contact with the gas
the possibility that certain zones of the dense phase. The time scale of the fluctuations is of
phase will be relatively stagnant for short time the same order of magnitude as the residence
periods, time. Over one residence time the total fraction

It would be interesting to test experimentally of dense phase in intimate contact with the
whether such a stagnancy effect exists. A method bubble phase might be only half. This effect is
for doing this is arrived at as follows: For clearly borne out by Orcutt's experiments[6]
steady flow and complete mixing. the uncon-
verted fraction is given by 0

0-5-

0. 0

solving for rh gives
00

pK -2 0 ( i
rb = K (l) (45) A- 0 0 -

A plot of the right hand side of (45) against K ,
will be horizontal for complete mixing and 0 2 4 6 8 0 2 4 6

steady flow. will be above its asymptotic value Fig. 10. Conversiondnstn
Fig 10 Coveriondata exhibiting stagnancy (Orcutt:

at low K values if stagnancy is present, and will 6 in. dia.. 0-46 ft sec. 24 in. packed height, V/IV,, = 33).
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] and might change from bed to bed. It is regrettable have a mean value given by the dense-phase gas
that similar results for large beds are not avail- volume divided by the mean volumetric inlet
able. flow rate. and the mean unconverted fraction

In the context of our simplified model, the with a first-order reaction is just the Laplace
effect of a fluctuating exchange rate would also transform of the dense-phase residence time
express itself in a variance larger than unity. density function.
This is, however, a result of our assumption that Consideration of a very simple example of
the dense phase is well mixed. If we would such two-phase models indicates that the tracer
assume that the dense phase is better represented response of the system is quite insensitive to

Sby two stirred tanks in series, each of them certain parameters of the model, so that measured
having a fluctuating exchange with the gas phase, tracer response curves carry little information
then the variance of the contact time distribu- about them. It was found that fluctuating behavior
tion can be less than unity. h(t) will, however, has a large effect on the bypass fraction. which

Sstill have a decreasing region and again we might, is an important parameter for a catalytic reactor.
under some conditions, note a reduced apparent Also, if the parameters of the model are adjusted
average contact time. The effect of the fluctua- so as to keep the bypass fraction constant,
tions on performance should decrease if the fluctuations cause a change in the dense-phase
bubbles are small as compared to bed height, and residence time distribdt~on and in the mean
should be largest in large reactors with no internal first-order conversion which are similar to the
structures to reduce. bubble size. effects of stagnancy in a steady flow model.

While our crude model at this stage may not The average contact time as measured by the
represent a reactor accurately, it still allows us conversion at low values of k will appear to
to estimate the effect of the unsteady nature be lower than its real average as defined by the
of the transport processes on the performance void volume of the dense phase divided by the
of the reactors. We may evaluate the behavior of total flow rate. This behavior is in good agree-
any chemical reaction system in the above model ment with some experimental data on contact
by numerical methods and compare it to a steady- time distributions. and provides a reasonable
state model. While the parameters of the model explanation for them. This does not, of course.
are not known they can be estimated from verify that the model is adequate under the given
measurements of the transform of the contact conditions, since this would require that the
time distribution as outlined in [6]. experimental data exhibit fluctuations of the size

Such model studies could be important for predicted. and data on such fluctuations are not
scaling as one can quite safely assume that. available.
during scaling, the size of the bubbles relative The proposed model could be of use in situa-
to the bed height is going to increase and there- tions where the fluctuating output is important
fore the relative time scale of the fluctuations is and a dynamic model of these is desired, or where
also going to increasr,. -1 hese effects are, there- a simple model of a fluidized bed is needed
fore, going to be more important in a full-sized exhibitinig the basic feature of the unsteady
plant than in a pilot plant, and studies of this nature of the transport processes. In either
model could indicate for what reactions this might case experimental data would be required to
be of importance. fix the values of certain parameters. If. however.

we just intended to estimate what effects thi-,
5. CONCLUSIONS unsteadiness has on conversion or control.

Certain average properties of quite general estimates on the parameters of the modce are
two-phase fluidized bed models are independent accessible and in that respect the model could
of the presence of fluctuations. The dense phase hopefully be of use even in the absence of more
residence time or contact time distribution will accurate data.
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APPENDIX- d"'- - - ' "

MEAN CONTACT TIME

to derive Eq. (14) for the mean contact time, we begin by + X -- x (#). (A 1)
summing the system ( II t over# andj to give .-
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Then. using Q2 I ad 112). we find inlegraing 14. (1

', 7, ',-r'

Itilegrating (AZZ) witri initnimlconamnioil ii 'ligi

1-1,44) i "', X I -- I -I" (A 1 InI
IL 

(A~.~gAI h)-(,,-- A

aind initgjrtifling agin gilves
Fly iflr%pý,]ionf it is NCcfl that the milution to I.AhistI

Em '(Ji.jPf), (A4) -t7

where 0 g,,vHndo. Thus the mean contact time, 6. c-uin
be expressed as. a s~um of individual contact limes. 0),. for when FEqs, 424 and (4) are taken into account. Suhsti~utinlg
the states making up the set A4. The vo,. aire Calculated by WA) in (A4) give% F4. (14).

Ii~sutni--- On propese un mod~Ic mamth~matiquc pour dts couches de gaz tfhiidisiie9 permettitni un

courant prisentant des fluctuations au ba-sard. On dt~montre lu relation d'une conversiotn mimyenne

de premier ordre 4 la distribution des temps dc contact, pour des mud~cls arbitraires du cc type. Une
version simpliflie du mod~Ie est ensuite itudide et on truuvc que l'effet du courant dc fluctuation est
similaire ht celui Lie la stagnation dan% les syslime! stables. (Cet effet est contradictuire huu modi~es

habitucls it Petat stable, mais l'on montre que certaines informations publites sur la conversion des
couches fluidi~ces 161 pricsnlent cet eftet.

Ztmuaitieufinsuing-Es wird eim mathematisches Modell fiir dur,-h Uas betiiligtc Wirbeischichten
vorgesehiagen, Jus emn zufallsma%%.gen Schwankungen unterworfenes Striimungshild in Bceracht

Licht. Die Beziehung d!r Jurchschnitt lichen U msetzung ci ner Reuktion v rmter Ordnu ng zur VetilcilIung
der Berfihrungszcit fur willkiirlich gewiihltm Modelic dieser Ar) wird geteigt. I-s wird dann cinc
vercinfachic Version des NModclls untcisiicht. und cs wird fcstgestellt. das% der Fifeki ciner sclowank-

enden Siromung ;ihnlich dcm einer Staghtltioti in stationaren S5stemen ist. Dieser [(jekl ist mil den

ublichen Modcllen des stationdten Zatiandcs un,,crcinbar, doch %wird gctcigt. daN verschicdcnc
uiber die Umsetzung in Wirbelsehichien gemachle Anguhen(lf' dieseit Effekt auft~eigert.
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Scale-up Criteria for Stirred Tank Reactors
J. J. EVANGELISTA, STANLEY KATZ, and REUEL SHINNAR

The City College, CUNY, New York, New York

A method is derived for the design of stirred tank reactors for homogeneous reactions. A simple
mixing model proposed previously by Curl (4) Is used to compute the effects of finite mixing
time on complex chemical reactions. It is also shown how the parameters of the model can be
obtained by tracer experiments, or estimated theoretically by the assumption of isotropk
turbulence. It is shown that in many practical cases the assumption of ideal mixing is a good
approximation. However, the effects of imperfect mixing are more likely to be felt in a large
reactor than in a pilot plant. Some quantitative exomples ore discussed. Methods are derived
to compute the average outlet concentration for complex systems such as outothermic reac-
tions, polymerization, crystallization, etc.

In a number of recent publications the effect of mixing unit volume increases proportionally to L2 . If we want to
on homogenous chenical reacnons is discussed. In this keep the Reynolds number above 104 in the snall vesselpaper an attempt ib '1 to summarize this work into a we eithet have a relatively small scale up ratio or we end
design and scale up pru,;edure for stirred tank reactors. sip with an unrealistic energy consumption in the large
The method as described is limited to reactants which vessel. We therefore often have to live with the fact that
completely mix though it can be extended to certain during scale up the mixing time increases and tzy to esti-
heterogeneous reaction systems. mate this effect in a quantitative way. These considera-Now in any such scale up problem the first question tions apply not only for the design of continuous reactors
that one has to answer is what are the dangers involved, but also to the design of batch reactors, if one of the re-If there is only a simple one path reaction, then the only actants is added continuously.
question is how much is the conversion affected, and this Zweitering (17) has shown that if ihe reaction is of
can be relatively easily handled either by safety factors or nth order and the feed is prernixed one can estimate
by some of the estimation procedures described In the bounds on the conversion. One bound (a max'mum for
following. The more complex and challenging case is the n> I and a minimum for n < 1) is the case of maximum
one in which the product quality itself might hu affected segregation, where all particles are asumed to mix onlyby the scale up, and in this case there is no way of com- with particles having the same age and waiting time, the
pensating for our lack of precise knowledge by a larger re- other bound is the case of maximum mixedness, which in
actor volume. This is true especially in complex r,,actions, the case of a stirred reactor with a Poisson residence time
where side reactions might be favored by local overcon- distribution is the same as the ideally mixed reactor. Ob-
centrations. Other systems very sensitive to local over- viously for a first-order reaction the conversiou Is inde.
concentration are systems involving nucleation, such as pendent of mixing and depends only on residence time
crystallization and certain polymerization processes. distribution. For more complex reactions these limiting

The problem of scaling up a homogeneous reaction is cases do not resslt in any bounds on conversion, and other
therefore basically to evaluate the effect of mixing on the methods to obtain these'bounds for more complex systemsreaction. The first question that we have to ask ourselves have been proposed (15). While these methods are not
is what changes when we scale up. One property we want rigorous they still give a fairly good estimate of the
to maintain during scale up is a similarity in the basic bounds.
flow regime. It was shown in previous work (8, 9) that Such bounding is especially useful if the bounds are
this criterion can be fulfilled by choosing the size of the close together. This indicates that the system is insensitive
gilot plant or bench reactor such that the Reynolds num- to mixing and can be scaled up quite safely. However, in

er is large (> 104 or preferably 101). This ensures that the cases where it matters most, namely, in complex re-
the average velocity distribution is a function of space actions, nucleation, etc.. the bounds are very far apart,
coordinates only and fairly independent of Reynolds num- and thus bounding methods based on residence time dis-
ber, resulting in a similarity in the oversa velocity dislti- tribution alone are not very useful. Luckily most agitatedbution between geometrically similar re T 5, second reactors are, in their behavior. very close to ideally stirredcriterior. commonly used and explained elsewhefe (S, 9) tanks. Mixing times in most reactors are measured in see-
is that the energy input per unit volume should be con- onds whereas residence times are normally measured in
stant, as this gives a similarity of the turbulent flow regime minutes or hours. Unless we deal with a system sensitive
in the high wave number range of the turbulent velocity to mixing or with very large reactors, it'is very hard to
se trum. This is important for heterogeneous systems, as measure any deviations from complete mixing (see for
the velmcity field that a single particle sees around its example (16) ]. We therefore normally deal with the case
periphery remains constant during seal- up. It was pointed of a reactor which at least in the pilot plant is very close
out that the time scale of mixing changes during scale up to ideal mixing and our main problem is to esthiate
at constant energy input per unit volume. To keep this
time constant during scale up of geometrically similar 1. How large is the deviation from ideal mixing likely
vessels (with large Reynolds numbers) one would have to to become in the large scale reactor?
keep the agitator speed constant. For homogeneous reac- 2. How sensitive is the process to small deviations from
tions the overall mixing time is really the important cri- complete mixing?
terion, and as long as we can keep both the Reynolds A quantitative approach to these two problems is out-
number high and the revolutions per minute constant, lined in the following sections.
then we could scale up with considerable confidence. This
is however in most cases imnractical. At constant revolu- THE MODELtinns per minute the Reynolds number increases linearly
with the characteristic lergth L and the energy input per The mixing model for a stired iank reactor used here
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is the one used by Curl (4), Spielmnan and Leenspiul 9
* (11). Kattain and Adler! (I8). auid othuer% in this and to- + - ax )Q. ,I ~ (p.(z. Y, s)-p(X.Y.t)}

latod contexts. Briefly, it regasrds. the ri-acting mass as e
me&, ui of a large nuwnbcr of equally~sized parcels of +2 .f ~ 0~" I,')
material (particles), r.luich from time to' time undergo I, fP fV'fe!. 1)1,e.Y

* independent pair collisions, equalize curcentrations, and -e+X
then separate. Between collisions, each parcel of fluid y )r x8 Z L dx'dy'd~

L behaves like a little batch reactor. FrcAl mnateriarl is fed 2
at a constant rate. and the wlithdrawal takes a representa-
tUve cut of the contents of thre vessel. Oneu speaks of thenc - p(z, Y )l (4)
pairticles as thouglu they had a definilte material ideuntity.J
This is reasonable tar dispersed phase systemis but nere Cluain fratrpromneacrigt qa
whore we are deasling wvith Ioromogenous Iphase systems, Cacltosfretrpromne ridngoEua

* they might pe~h.bps be better regarded fur the present tions (2) and (4) for somne common one and two reaction
f prp~eas primitive represenitations of turbulent eddies. schemes will be founrl below.

If wc conuidler, for concieteness, a simulon reactioni %%here The~ basic equation in 1) may be applied as well in the
the concentration : of reagent behaves hi batch according study f certain polymerization reactions, where we are

* to concerned, to describe, the molecular weight disributioin.
In a homugeneous radical polyrnerization, ior examsple, we

de-ro ) 1 are conceiincd It, dc~tfbc the coniccntration of initiator
dt (cataly!.) i(t), of moneffler rn(t), of growing radicals

* then we may describe the contents of the reactor at iinv hvn oeua egtbten7adT+d,~r ~r
time I by the concentration distribution p~c. t) of par. n ftrlaejJne aigmlclrwih e

dcls t tattim. echicll spakng,1)is pobailty tween r and r + r, ý,rrt)dr, Assuming termination by
Ucl attha tie. echicaly peaing p s aproabiity combination, the h'tch performnnce of such a polymeriza-

density In r, with f ,p(c, t)dc giving thie proportion of do systein may be described following referent 19 by

P ticies having conclentratioa between a and b at time t. 8* (ft) (,)
Thre distribation p, according to what has been said, -a + G "
satisfies the integro-cdifterentul equation (4) DIt)() D(,I)Jd

" *p(c. t) a _BIt8r (.1 d
firj.- (rc)p. i) ~ 0 e )-p(c. t))

Orr(r, 1) t r-r )cr
+ fs fl J (e', t) pc. I) a.....+ c ),de'/ at2

PC (2) de-

C -m(t) f dr
where p.(c, t) is the conicenstration distribution for the dt *-

feed, I/* the, nominal residence time of mastorial irn the
tank, and .8 a measure of the agglomerative triblng in- Here, the minoccular weight Is re~coned in monomer
tensity. Thc mean concentration of reagent in the vessqel units, s. is the number of radicals formed by each molecule
and outlet is simply the first moment of )). and this is tlie of decomposing Initiator, and H, G, D are rate constants
working measure of os crall reactor performance for a fo. Initiation, poa a rinaid termination, respectively.
given L-inetic systern. Informition about the iandom fluc. Again, Introducing the moments oC the size. distributions
Nuations In a turbulent mixing system is given by the

Ishog~ruldnse rts. tliat the cnetaii.variable pcnifittn

Equtio (2 ma Iescale inanyoncofa number of we find, (10) a set of batch kinetic equations In these
coneuint ays prvidd oly hattbebasic property moments mird the concentrations I, in;

of veagngoila ~ i pesrved dascribed bay
wrie (2)wid yieurld cnertstionexvn of reuactionn,(1) dx1  nx -Dx

so o, inplae ofC, umrai~tiomis ofe (2)heres, with toe..non iii-DX

letow the ineticn so h attekntisaedscieeyd

we fnd nturl gocralzatons f (2. Tus, ith wo 2t- Gixj - Dxxci

deenen Decd

wo ~ ~ 2 hoede (x, y)(3
dt dy, D)

(X..~~dy Y)1 x .1 (Xi'r 4 xM'
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LS
IIITIRPRITA ION Of TRACERt tXPERIMItHiI I
-d- We are concerned here to attach am empiricAl inter-
din pretation to the mixing it(nIitV par.ameter o ff E':quation
-._. = - Cr. (5) (2) rnd its hig•hr.-dinmt-nioiai n au•tglues. hibi interpre.

- da tation is to be found in the analysis of tracer mixing
experiments, aod we accordingly begin by writing (2),

These serve is an= eight dimensional version of (1), and N.ithout the kinetic term, in the (onu
%we have correspunding to them oun eight dimensional
version of (4) in the distrihution p(xoxu,xa,yo,iuy2 ts.-t). Op (c, t)
Froin the distribution p, we may recover, say, the 'vti:ht ( (c. 0 - p tc )
average molecular weight ot rawlicai together Wk,'. j,v,y-
meras +a29fff

___,_.,__ .._____,______ 2, {fS p(c', t) p (c". t)
1. ~ ~ ~ X + Y:) P ixodxudh,, 41dy,,7dJr! f" dr~~-~ct 8

f (Xi + 1 PdV,(1dxd V 2p)dcd

Entirely similar considerations nav be applied to the (6)
"study of such particulate systems' as crystallization renSaction. WVe may note at once thait t'ie inforniation we want Is

Now the methods of solution of Equatiotis (2) and 14) contained in the statistical fluctuations of concentration
that are developed below apply regardless of the numb6" about ltq mean. As far as mean values go, the mixing
of independent reaction variables, providcd oeily that the system (without reaction) behaves like a completely
kinetic expressions may be taken as polynomials in these mixed vessel with input-output time constant a.
reaction variables. They may accordingly furnish a useful Indeed, if we denote the mean concentration by
guide to how the mixing interacts with strong nonlineayi--
ties in the kinetics, as in the crystatibn-tion nucleation c(~) 9)dt
rate, or with an independently varied crliical feed stream, f I
as in the Initiator feed to polymerization itactors. We do
not however present any results along these lines here, equation
hut reserve these studics for later report. du.

Solutions to Equation (2) for several simple reactions c- a(P -t) (7)
have been published (4, 7, 11). In the literature (11) a dt
Muote Carlo method was used and (7) a direct numerical
me~hod was employed. A muthod wi11 bhe described in independent of q, whero

Sthis paper which allows one to obtain the moments of c
pi(c) in a simpler way. it) J c p.(c, t) dc

The authors want in no way to imply that the above
model represents the real mixing processes in a turbulent Is the mean of the feed distribution 1,o. And if we put a
reactor. These are f(or more comp ex and defy as yet an step of tracer into the feed of an initially tracer-ftee yes-
analytical description. The above model has, however, sel, so that
one Important similarity to turbulent mixing. As will be p.(c, 0) = 8(c - c.); t > o (8)
shown below a concentation disturbance (in the absence and
of reaction) as computed from this model shows the same p(o) - o (9)
sort of decay as in isotropic turbulence, the variance (or
the second moment) of the concentration in fluctuations we find from (7) that the mean tracer concentration in
in both cases decreasing exponentially with time. We the vcssel and its outlet Is
furthermore do not claim that it is possible to predict a
conversion aecurately if #/a is not very large. Our claim M(t) - cO(1 - e-0) (10)
that this simplified model is useful in design is based on
the fact that the behavior of the conversion with respect the familiar strred tank exponential response.
to 8/a reaches an asymptotic value for high values of The Rrst menasure nf the. concentration tinrtna=tion is
81/a. As long as 8/a during scale up stays arg4e enough given by its variance
so that we remain in a region where our results are in- I

F sensiUve to 0/a, we have good justification to assume st c--,(t)}Sp(ct)d:
that a real mixing process will also be insensitive to mixing
in the same range of mixing times. In the desig, of re'i and we find from Equations (6) and (7) that it satisfies
stirred tank reactors we mostly deal with small deviations the differential equation
"from complete mixing. To say that the results are insen. d~ s
sitive to the value of!/a provided 8/a is large enough -, + a(,.,- 3) -- A., (11)
"is the same as assuming the vessel is ideally mixed. The dt
method described above allows one to estimate the uuxing where
intensity required to approach ideal mixing. Now even if fc
the vessel is not ideally mixed, and the results depend on ¢,s(t) j {¢- po(t)}s p.(, t)dc
'8/a, as long as the deviations from ideal mixing are small,
the above method should estimate these effects fairly ac- is the variance of the feed distribution. Again, with a step
curately. The question that we still have to answer is how of tracer (8) in the feed of a vessel that is initially tracer-
can we relate f/a to an experimentally measurahto quart. free, so that we have, besides, (9), the initial condition

* tity, or how cans we estimate it in the absence of suitable
measurements. '2(o) -0 (12)
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we find by s..dving (11) alatco. itit '.(10) thi.t tthe ;ii id it is hoped that fii tIw nctear ftislurc allure trcast-rvtlw tit
variance ot tracer concentration in 'he vessel and it% outlet w Ifll e atvailable, entabliig (tile to correiate ý with agitator

'1,~~ isdesign.
C- - - e- (13) It mauy he isoted fintally that each value of the inixinig
-OC2 (13) Intensity ~8 corresponds to a deffitite vailue of Zwe-.itrri~kqs

- ~ -degree of segregation (17) ill tile reactor. Indeed, if we
With careful rooiiitoring of .11 uit outst line, dth ecxprebsson denote the degree of segregation by v,. we have simply
for the v.ariance fit (1~3) waya serve as a guide to the
estimation of P. This variatice rises from 0J to a rnaxilflurna
at a4-S

I -a1 with vmn~idiing A giv'ing complete segregation, tand Infinite
~ .8. cmipietc miixinýg. rhits. nrn estimate of thle degree of

hi-oredecyi igagat to0, ii wth k ssI te hre segregationi, obist icd perhaps by study lug a particular
1-l'ation of thais titaxiinumn wili givv sonit, cstimuatw of .,reaubllo sYstemi (not first order), can be tronslated directly
Pven without detailed knowledgc of dii variance, history.

The step Input experimenits descrdwcd above funraish
pierhaps the most eullelmivnt mceans fur an EY~npilccal de. APPLICATION OF TURbULENCK THEORY
termination of Ai, although the utaderlyiq ug Ep tioxi (0)
can readily be inade to yield results ippropsnilc to quite The work of Batclielor (1) and Corrsiul (3) and otihers
different expetlitnetital si Ituations. Indeed, the noast (11001 onl tile application of thle tlicoiv of turbulotice to the seal.
wily of visualizinig tlie efrect of A8 is via ia hatch e,'perilreVnL up of stirred tank rvectorb he~lds directly to ati estimiatc of
wvith no0 Input-output at all, If, in (0), we arop, tht input. the mlixing Intensity ' 6 in terms of the large-scale propcr-
output terms, we are left with (4) tics of thle turbulene, Accordinigly, we recapitulate the

basic results here, aild dikcuss their biealing on the prar-
2.8 j f ()) , 0 P W', 0) Uv-al estimation of fl. ''ihe anialysis is all for a homogenoucs

Of ~~Isotropic t Olbleni.5llC
The development begins with ktme stinrlurd partial dif-

ac)dc'due p(, If (14) fcrel tial equation for Fick's law dilfusion superimposed
on turbulent ccuxection, in anl isolated systemn, front

and e my se fom hisequaloi - CL) trccr which one argues fiu the usual wity that

conlcenitrationl is consitant T2

and that the variance decays accordling to Here D is the molecular diffusiv-ity., c is a concentration
fluctuation, and the ovt~rbar dvnotc4 an average so thut

d~~yJ is shinply thle variacnce o2 of concentration iii ii batch
(15) experiment. The mean sqjuare gradient in concesiltralioms

fluctuation is related back to crl hy inti-oducing a micro-
I.Thus, lin a pure, batch experimnent, %%here a quantity of scale 1., for the turbulmnt mnixing, according to which the

tracer Is injected Initially into some portion of the VeSscl, mean square components of (lhe concentration gradient dll
the resulting inhoioogeneity in the distribution of tracer have the common value
in the vesself decays, as far as variancec goes, according to - 1E I 10 -1

~()CL2 Ox 2Oy 2  azI

that is, wimiply with tho time constant A. According to 'his so that
direct interpretation, .8 can bie related to tile cliaractemii-
ties of the turialnkt flow in the vessel, and we shall rc- 43 T-,
view belowv these relations and Ilicir implication for tile .
traissiation of 8 fromt one scale of operat!on to another. d

lin order to get allt expctieneital nicaftrnwif~lt of ft we 12D~
can therefore perfoirn three types of experiments. (ole is
to introduce. anl amrount of tracer anid mneasur-e the decay

*of the concentrationi fluctuations, The second is to intro- This represents a simple exponenptial decay fin maialmre,
duco it step lin tracer concentration and perform tiw, SaiISI and consulting (1J5), we see that

r t~~neasmreinetlt. The thild k~ ill the case of mnultipleic feds; to
introduce a tiaeer ilt one rtf the feed 5sarealns onily -wid 12D2)n

* ~~~meastire thle variance of the conceontrationl ihictuitiops -~(0
over the 6csscl it steady %tate. (Tile latter can also readily
be computed.) Its cads ctise we nled~ a mtethotd whlicht IS Ilifornitetiuli about (ti-, turbulent velclity field Itself is
able to llsniisurt conicuntratiots fluctulationls onl a very smiall however mlote na0turally expresscd fin termis of the Taylor
scale. (di~ssipation) milcroscaic L1,1 and of a correspattdilg BleVii-

Two nncethodý have 15(551 rccetltty developed biellc olds ntumbier R. 'rile chtlractcrihtir' velocity appearing fils
should make ait imnportant cntI011ributioin to our uinder- this litynrilds numbe115r Is thle root inean square vclw~i tv
staniding of tin: ttinitin' prcs it) s111 red Ut~s One de- fluctuation ti. For nn isotropic turbulencee, this ro:1t mal,
vehopd Il hIi K ti W lhlalu k5 ) is b ased Ott till, scatter. squalre flucituation Is the. 5s 1110!i eaich coordinate direction.
Ing of lig git di~ gradieuts ill tI refractive itux 'I'es -Tt

*second by htrodkev (2') uste., filinr optics and cnlui c-Iu tjj 1-.
tiracers, As ycet tlir'lc hive beetn vcry fewv actual studies
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96

and die appropriate Reynolt: number-is accordingly de- awl, consu!ting (16)
finted as (1/ 1)

R (17) Th e -W" )) (22

The first inference commonly drawn from (22) is that

where P is the (molecular) kinematic viscositI of the in order to keep the same reactor mixing properties on
working fluid. The two microscales are rclated (appro,:.- scale up, one should maintain similarity, and also keel

Inately) by the fact that the ratio e/L2 constant. In geometrically similar vessels,
as €is proportional to NIL%, this means keeping the agi-

!,,2  2 tator speed N constant during scale up. Also, since e is

----- --• (18) the power input per unit mass, keeping ,/L 2 constant
a amounts to making hte actual power input proportional

this relation being valid for R hu ge, but D/v not too large. to LM, a demand which often results in uncommonly high
We may note, as a guide, that diffusivities in water are px)wer requirements. More realistically, we may use (22)
of theorder of 10-' to 10-1 sq. cm./sec., while the kine- to give a numerical estimate of fp for a sppc'ied reactor
made viscosity V is 10-- sq. cn|./scC. lit most practical si-e L and-powcr input per unit mass e, and then use the
liquid reaction problems D/v is less than or equal to methods developed below to estimate the effect of this 9
unity. [Should D/, bo large the literature (1) shows bow on the reaction system in hand. 'To do this requires of
"the following analysis might be modified.] course a knowlcd c of the constant A-, but since this is

Nowthe Taylor microscale la may be related tG a char- scale-free, it can be estimated economically in small scale
acteristic linear dimension L of the mixing system as a by means of the tracer experiments discussed above.
whole (the paddle diameter, say- or the vessel diameter The dependence of f. on f and T, shown in (22) might
Itself) by taking of course also have been obtained by a straightforward

Ld A dimensional- argument. But the analysis based on turb,-
T, R ence theory leads also to some idea of the actual numeri-

cal magnitudes involved that may serve as a useful guide
or, applybig the definition (17) of the Reynolds number to practice in the absence of thetracer experiments sug-

gested above. From work in wind tunnels and In pipe
ill AY ilows, Corrsin cites the (approximate) values

y (19) so that (22) gives A-,20,q-1/2

Here A is an empirical parameter, indepeudent of the 1,3 ((23,• ()
scale of the mixing system, but varying from one mixing 2 L•1 .
configuration to another. One would expect A to depend, In a typical commercial application, with L = 100 Cr.,
for example, on the physical properties of the working i = 2 X 10W sq.cm./sealca ihp of water),

fudonthesaeo h tre namxdvseadtpcl s~m/e. (1 bhp./100 ga. o ae)fluid, on the r ape of th stirrer in a mixed vessel, and Equation (23) gives 9i ., .--3 M /see. It may be noted thaton the ratio of stiffer diameter to vessel diameter, but to with these same numerical values, (21) gives for the root
have the same value for geometrically similar in, ing Sys- mean square velocit fl,,ctuation, u - 34nl cm./see., atemns working on the same fuInd. - -y

Te Taylorkin ronescame fluid. m as replausible figure for the circulation velocity in the vessel
The Taylor mieroscale f may also se related to the (which in this context we identify with the turbulentpower input to the turbulent fluidd. Using a conservative vlet lcuto)numricl fcto, oe tkestheenegy isspatoneeronit tn fctaio)numerical fartor, one takes the energy dissipation per unit In agitated vessels both A anti ,) should str-nigly depend

mass of fluid to be 10/3 V u2/142, and, with an empirical o gitatodeses h and on hould n gly de- e
efficiency factor j, one mly identify this as the actual on agitator design and one would need more accuratestudies before onec could really predict A and avon the
power input c to the mixing system per unit mass of work- basis of the geometrical design of the vessel.
Ing fluid There are several studies available on the affect of

S-(20) agitator design on overall mixing time. Van De Vusse (13)
10 "0 measured mixing time by observing the disappearance of

large scale refractive index gradients via a Sehlieren
The efficiency q~ %neasures that fraction of the power in- method. While this ig not the same as the tracer experi-

. put to the system which goes directly to the turbulent ment described in this section, we can still get an estimate
velocity field (and is only later dissipated as heat), as of 6, by writing-
distinct from that fraction which goes directly to heat. m
One would expect vp also to be independent of the scale'
of the mixing system, but varying from one mixing con- ru
figuration to another, where the constant of proportionally rn depends on the

The basic nhysical relations in question are now con- sensitivity of the method used to determinc the time of
tained ir ,IA), (19), (20), and these may be solved di- complete mixing ('i should vary from I to 5). Choosing
reedy fo" u, 4, I,-i. i= 1 gives a real lower bound on P, and this is exactly
One finds what is needed in our case.

2A" 1For a baffled completely stirred turbo or paddle mixer,
-) (,L)"' Van De Vusse recommends a scale up equation derived

by dimensional arguments which is exactly equivalent to
/ ,* I/ Equation (22). If one compares values of .8 estimated

Id= (10.0 A2) 1/s -S--) (21) from Van De Vusse's work to Equation (23) one finds
that the values from (23) are too high. However, one

/D3L5  ,should remember that Van De Vusse measured di&sap-
1,, = (80.0 A2n,) 1s pearance of a dye, and that by choosing r we9 made a very conservative estimate of 6. In view of this
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the ep'irnental results are real!y in surprisingly goodpf ) dx 1(
agreement with our a priori estimate. (

Van Do Vusses data correlate well with If is a p(lynomitil of degree N, then (20) furnishes

(.1 Y,/ an overall relation among the first N moments of p. In
0.1Vki.1 J particular, for a first order reaction with rate constant k,

where x is the concentration of reAgent so that f(x)
"As said before the constant in this correlation strongly -kx/a, we fird for the mean reagent concentration in

depends on agitator design and should preferably be vessel and outlet the. standard result
eitherMeasureZ or in the absence of more accurate' data
estimated from the literature (13). In case a high value =
of 0 Is desirable strong emphasis should be given to cor- + k
rect agitator design and correct placement of the feed a
pipes. Multiple agitators and multiple feed points can
Increase the value of,8 considerably. (independent of the mixing intensity A), whel6 #;.: Is .he

oi bmean reagent concentration in the feed.
CALCULATION OF REACTOR PERFORMANCE In general, however, 1 (but not po) and its moments

, We are oneruedhcr to establisht a systematic a o depend on the mixing i:,tensity, and we proceed by ex-
solvWne Equatios (2) and Its thigaer-dimeimlonal any- panding (24), (26), (27) in powers of I/): We remind

vuogussca Equation ( 4) und ernditionso sady outselves thai in almost all practical applications k is huge' ogues suefi as Equation (4) under conditions of steady as compared to unity, and we therefore expect such an

state reactor operation. These equations seem in general expansion to conierge fadrly rapidly.
, to be very diflicult to solve, and since our interest corn- Wexwrite formally

monly centers on high mixing rates, we proceed by cx-
apon in power% of a//p. What results is a succession of

linear integral equations In the successive contributions p(x) M (x) 28)
a to the overall p, and while these don't seem to be easily " j0 Al

solvable either, they do lead to sets of linear algebraic and
equations In the moments of the successive contributions 1. 0) (29)
to p. The procedure closes, that is, it gives at each level 71

* of appmximation, a self-contained iet of equations in a that
finite number of leading moments, orovided the rate ex-

* presslons (1), (3) and so on are polynomials. The result- I,,O) f, p) (f)d& (30)
Ing linear equations in the moments can be solved by

Sstandard means. The overall average reactor performance Bringing (SS), to (24) and equating eaefrieients in ,
is found .usal'y by adding up the contributions to the first gives for p")'

* moments of p.
We begin with the one dimensional Equation (2). We P(0) (X) 5 P(0) W) J(,) W)

, drop the time dependenew, introd-r', a neutrai variable x
to stand for concentration, yield or whatever, and divide
through by the iijput-output time constant a to fid for + d'dx" - 0 (31)
the distribution 1 for p(2

"M dz Io p P ,+ "-x ee(f (x)x)-2 fpfpo W,')o W"8 (5 + X -x ) dx

X•+X - d

- ff X')1(X") (', z) d.x)edx" (21) 0pW(x) - P(x) W- 7-{f(x)p(x)) (32)

- Ier ;i(x) represents the feed distribution, conunonly and for the higher p(J)
S(x -- xo) for a suitable ro, f(x) is the rate expression

." nortalized on ,. and 2(2 p("(x) -2ff p(O)(x')p(i) ( X" + 5" - dx'dx"

2,- (25) 2ff MW ) X)8 2 -c xI-

- is a dimenmiotihNss mixing ittetisitv. The first result we = f J p("(x')pjI-)(x")8 (18-- x) dx&'dx"
wvant from (2.1) i% an overall average material balance. Jf i=1 2

- we denote the motltents of )) by d
- 0- 11WZ(x -- W [X)l,('-N)X) ; 1-= 2,3• . . . (33) .

f x" p(x) dx

- and those of p,, by Similarly, bringing (28) and (29) to (26) and equating
coefficients in X gives in 1)O)%:0o=,x" pq (x) d% •

we find this natvial balarce by multiplying (24) through Ft (°- f (x)p(°V(x)dx 1qt0 (34)

hy x and int,'gr:dig aand in the highcr Ip('

-- ff(x-) ;,(x) dt -- m- t - (20) V.--- 5f(r),p•(x. -.f 0; f 1, 2,... (35)

NVc note aj,' l,..1- t1v , p(x) is to6 l6 a prfYwrly r1,un4-al l-
ized ptollahilitv d84li8.. :.o 010 Finally Irrn ý2i)..ve have that
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0) 1 (36) moments can be found at will, this causes no special dif-
while ficulty. Finally, having evaluated the partial moments for

P 0; j 1, 2. (37) as many i as desired, we may see explicitly the effect of
Now t tn. the mixing intensity on the overall performance of the/ rNow the equation (31) in pý0) simply represenlts tile reator from (29). -

behavior of the perfectly mixed reactor (infinite fi), and r.......from.(29).
Its solution is - o 1 + 1 + -

p)(x) =, 8;[x-5 (] (38) ,.,j = 0,,) + -- + - " +X... (43)
which satisfies the normalization (36). The mean value This completes our solution of the one-dimensicnal

Ltt(Q is determined by the overall material balance (34) equation (24). Entirely similar considerations apply to
pjl(t) -- fg-.C•.1( 1 - ,.. (39) the higher dimensional versions of (2) such as (4). For/ .... ..... the working equation, we have in place of (24)

With p(O) in hand, we may attack the equation (32) in t

the first correction p't by taking partial moments (30), - (_=)__
that is, by multiplying through by successive powers of x 4 , {f,(x)P(x)} = POW - (1 + ))p(X)
and integrating. We find, taking due account of (37), r-1
linear algebraic equations in the R of the form + Xff p( ')p(,") + x'+ x -X)dx'dx (44)

2 2 (2 )p N Uft(l) where x stands for (x x2, ... , xjt), dx for the volume
m4 element dxt, dx 2, ... dxR, and the 8-symbol for the ap-

•".0- -LuC)n]" + n[ti°(OEp "-1f[sl( ]; n = 2, 3..... propriate product of 8-function':. The moments of p are
(40) now multidimensional, and we denote them

there being no information in the moeo." -quations for P f X1"mX2  ". P(Z)dX
n - 1. This loss of information is however made up by with
the overall material balance (35) for I - 1. with

There are now R overall material balances in place of

If f is a polynomial of degree N, Equation (41) is another (26)
independent relation among the first N moments of p(l), -. fflxpx)dx 1 .pi

and taking it together with the Equations (40) for n -
2, 3 .... , N, we find a set of N linear algebraic equ',tions
in jutl" .. , 1N() which can be solvel by standard nu- --f .(.)p(x)do - pp.... 1xo--i:0 . (45)
merical means. With these first N moments in hand, as
many further moments as desired can be generated by tak- and ti,.-se determine entirrly the average behavior of the
ing (40) for n - N + 1, N+ 2, etc., in turn. system for first order kinetics. The single normalization

The same procedure applies to the higher p"' of (33). condition (27) stands.
Taking moments, we find a set of algebraic equations very The expansion (28) applied to (44) leads to (31) for
much like (40), indeed having the same left hand sides pCo), to

1 I&j _ "(nP p(' m(x) f~ f P(G) (XI) P~(x")s + ddx( -i 1"' -(Mn )

n-iR-i = p0(x) -p(1)(x) - I * (1,(z)p"11(x) (43)
II M-1inp for p(l), and to

.4-• n- +nfxI If(x)p(S-1)(z)dx p((x))-- 2ffpi(0)(X)pc(X")a(e +)'---x)d dix"

J=23 .(2) ' ~Jfp (x':)p~j )x")8 +...~ x-) dx'dx-
n .- .3, .... (4)-f

t=-l 2

the right hand sides for each I involving moments of the it
earlier pri). Again, there is no information in the moment _p(Jt1 (x) _ (
equations for n = 1, but if f is a polynomial of degree N, ,= r
we find for each j a closed set of equations in pl(J), ,,(J

1.. M"
1 by taking Equation (42) for n = 2, 3,..., N for the higher p(J). The rioment expansions

"together with (3Z). As before, once the first N moments i. 1 ,
of p(J) have been fomnd, as many higher moments as de- p,-s . - 5S5,S. (48)
"sired can be generated by taking (42) for n = N + 1,

SN + 2 etc. It should be noted that the integral term on with
"* the right hand side of (42) leads to a certain cascading Q) C

in the number of earlier moments required as we go to (x),2... j x 1"1X'2.., XRRp(x)dx (49)
successive values of f. 'Thus, with f of degree N, we need: applied to the material balance (45) give R eqtations in
2N I- moments of p1l) to find N moments Of p('2 ; p ei

N 2 moments of p(1) to find (2N -- 1) moments of p (-)c

ps) to find N moments of p "31; etc. But since higher 1Ae0 ... .0 f,(x)pC)(,) d,
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- - f,~axpo~xdx =.uo... 1:0 (50) .. ~f
and R equations in easch of the higher pWl...

- ,51!".. J f, (x) p(J)(z) dx 0 tc;Z

Finally, the momnelt expansions applied to thec normaliza-
tion (27) give fi~ 7 1 '

PO 0(52) =H'
and ~~:.V .

. Poo~.o~0; p1,2,... (53) K. T _  K
- -The Equation (31) in p(O) is solved just as for one di-

mension. WVe have Fig. 1. Second order reactions; 2A ~21 . ........ Asymptotic
values.

W~)x (X l . )..A(R-Fo..1 (54) 1) (ni
satisfying the normalization (52), with the It first nio- P11l112 .. fin5 25+..+R-
mcnts determined by the R material balances (50). 2%1~

(0) (0) (0) v

- eoo... 1-fit [F:.0). a.... t.poo.O. .1 'poo ... l;o (55) U))

* For the first correction 1)(1), we take moments. WF- 0 (0. 1)n2m -~~m -. SI

from (46) 1 "sn"R Z

Fm I ... vin .n I -l in-"n '5.... %RJ
+ fR j xf Xii . . . vr1. .. x I, fr(x)p(J'"(x)dx

[C0) (57)f

FRIN .. "I; 0- [F0,0 . ]",... 400...O"Rand for polynomial /,. these equations can again be closed
+ n1[j 1o. (0. 01l- ... (PO ..OI off by applying the overall balance (51) and the non-nali-

zatlon condition (53). Th~ere is again, as we take succes-
(0) (0) sive values of J, a cascading requirement for the number of

IIEPI;. .. .0....Poo... 1) +... moments of the earlier p,, but these can asbefore be gen-
(0) (0)1 e .~ rated in turn once each basic set of ec tations for the

+ flatFso .."I ... [O . ~R1leading m enshsbeen solved. Finally, having evalu-

(0, (0) r rrrr r r rrr[f

nl+'52+...+fla>l (56) t7 HT
Agai, te Icdin term in the sum on the left hand side

disappears by virtue of the normialization (53), and we
- find no informnationi inl the equations for n, + n2 + + 7

nt=- 1. Assuming these f, to be polynomials, each of
degree :! N in each argumnent, this defiicincy is made up) 1:1;
as inl the 1 dimcensionasl case by taking the E quations (56) ~-7: 4

with n1, 112." eaRcIh running fromn 0 to N (but ex- 1n.
cu ing n+n2+ .+ TR = 0,1), and adjoining to I

themn tc R1 balance equations (51) for j1. Whiat results
is a self-contained( set. of NiR + R - 1 linearaleri I

eq1uationls in the leadling monients of 1,( I . Even in complex i I
C. ce, this is by tio w eanls a very large niumrber for standard i.
nuiverical matneiids. Trhms, for (the polymerization kinetics *~.iI
(5), svitli N = 2~ imd 11 = 8, we w;ould have only 23 L1:;
equations. rig. 2. Bimnolecular reactions; A + B - 2C. Separate feeds for A

Thec proced~ti- iiiay as before he extended to the higher and B, p0(x, y) 1/2[6 U-2) 8 (y) + 8 Wx 6 (y-2)], Co
1)(1 by taking niranivits in (07). We find 112x. /~ 1/2 ........---- Asymptotic Yalues
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r r r P not quoted herc. In practical design problems X is almst

" "MI C small values of X ire therefore of little interest in our con-
.1 i 1.. text.

DISCUSSION AND EXAMPLES
S................. One can now summarize the preceding discussions into

S. :v'r . a design procedure for stirred tank reactors.
:- ,- The first and most important point is tu determine

.. " - - whether deviations from complete mixing will have ai "::::'::: •: ::'::t :'z:.- : :::::::::::.::::: .. .. ................ . . :: detrim ental effect. Q uite often the opposite is true. T hus

....... ....... :for example in a homogeneous premixed second-order re-
.......- ..... ........ = = : . action a degree of segregation different from zero would

.... .... . improve conversion. Several authors have therefore pointed
, .- . . .• out that assuming complete mixing will lead to an over-it H... estimate of the required volume. The authors do not agree

Fig . 3. Adiabatic reactions; x - concentration of product, yield = to this as in our experience most agitated vessels are very
x averaged over contents of vessel......... Asymptotic values. close to complete mixing. It is not practical to control the

mixing so that it should be incomplete, while maintaining
good agitation heat transfer. If no agitation is necessaryated the partial moments for as many i as desired, we may then we should a priori use a plug flow reactor in such asee explicitly the effect of the mixing intensity on the over- case. If mixing is necessary and it is further desirable toall reactor performance by assembling-the R first moments minimize the variance of the residence time distribution

from (48). then this can be achieved by using a cascade of stirred

1 ~ 1 ~tanks or similar devices. Therefore the main problem In
$10.. o----o..o+- o...o " 0+... designing or scaling up a stirred tank reactor is to decideA whether small deviations from complete mixing have a

(0) 1 ( 2) devrimetital effect or not.
goo. +IoA .. I" + X2 t-u o o+... (58) L. Figure I the effect of X = 2ft/a on conversion isX plotted for some typical cases of a second-order, reaction.

We note that for valves of X larger than 100 the conversionThis concludes our development of the solution to the is already insensitive to variation of X. This is not the casereactor performance equations for high mixing intensity, for X close to unity, but in stirred tank reactors such low
and the series expansions and moment methods developed values are quite uncommon. Consider again a practical ex-
here are applied below to the calculation of reactor be- ample. For a 10 liter vessel with a standard turbine agf-havior for some common reaction systemns. It might be tator and power input the low estimate of 8 according to
noted that similar results can be developed for low mixing the literature (18) would be 0.05 to 0.1 sec.-'. A value of
intensity by expanding the basic equations in powers of X of 5 would mean a residence time of 50 sec. Fcr a 10,000
,8a, that is, in powers of the x of (25) rather than 1/A. liter vessel the lowest estimate of 8B under the same con-What results is a hierarchy of differential rather than in- dition would be 0.01 to 0.02 and a value of X = 5 would
tegral equations in the successive contributions to p, the correspond to 250 sec. residence time.
leading term being that corresponding to a completely As we stated already our main problem In the design
segregated reactor. Moment methods are no longer ap- and scale up of stirred tank reactors concerns reactions onpropriate, and indeed the successive (linear) differential which a too low value of X is detrimental. The simplest
equations can readily be solved: directly, for. the one- such case would be a reaction whose tutai order is less
dimensional case; via characteristics, for higher dimension, than unity. Such reactions are very scarce in liquidThe methods are quite straightforward, and the results are homogenous systems and again the effect of A is small.

Another fairly simple case is wliere two reactants "enter
=,rrr •- r r'rrrr the vessel in two separate feed pipes. In Figure 2 the con-

""i. . .. version for a simple irreversible second-order reaction with
-- 44L•>44n•1 = ' : sVparate .cý pl Fottcd as a function of X. Again the. , . .- - effect is sn.all for values of X over 100.

'-M .. .. ,. I Here however, in very large vessels the effect would.. :. _... lead to a significant reduction of X and should be evaluated
:•"":•::'• :I-• • -:.'5.r• !:-• :=•.•==•"=:•=l=:•:•::Fi•,':j quantit~atively.; I : -F. A second case with similar features is an autothermic

:it: 1tL t pt--.:t .71r reaction, in which a cold feed is introduced into a hot re-
-l 1•;:;: r:. : '. £ r. .-. .. .1 action mixture. Again in this case incomplete mixing al-

: : .. ways reduces the conversion. In Figure 8 a numericalS ,-- -- - example of the effect of X on one typical autothermic reac-:.i. , . •. tion is given. In computing the effect of a on the reaction
d:.. . we made use of a method introduced by Spalding (10),: . namely the fact that for most exothermie sdiabatic reac-

S1 Several author, have diacuused the ewe of a zero order reaction. •Me
assumption of a zero order reaction is ho,vever a simpli.ed descriptionFig. 4. Parallel reactions; A - ; B rate constant k1  2A - 2C; rate of the limiting reaction velocity of cata'ytic reaction at high pressures.These reactions are not zero order at high conversions, where the effectconstant k2. S = C/Co-CA, selectivity. - -------- Asymptotic of X would be noticeable. Ftrthermore. our method (as well as Zwieter-

values. in,'s) does not apply to heterogeneoi's catalytic reactIoUln.
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tions the effect of conversion on reaction rate can with fluctuations all the nucleation might occur in the small
sufficient accuracy be described by unmixed region. This will be discussed in detail in a future

paper.
-x A ) 5 One last and somewhat discouraging conclusion that we(1 -(I + c)- (59) can draw from the above discussion is that direct empirical

- evaluation .of the effect of agitator design on complex re-SThe constants ;, and m are determined by a best fit to the actions is impossible in the 'ilot plant. If a reaction is sen-
actual reaction rate dependence which normally contains sitive to mixing time then this sensitivity is a strong fune-
.n exponential ",nn, such as tion of ,8 and therefore a reaction might be insensitive to

d- agitator design in the pilot plant while it is very sensitive
= A(l - x)u e-u/r= A(I - x)he-Z/RIo(1 + ax) to correct agitator de,:!gn in the large scale plant. This by

"- z tho way is true of other systems sensitive to agitator de-
(60) sign (9).

Spalding has shown that for most exothermic reactions ACKNOWLEDGMENT
the mistake made in writing (59) instead of an Arrhenius
.relation is small. Equation (59) has the' advantage that it The work reported here waw supported under AFOSR Grant
_ can hc treate, by the' moment r.t~hed o th .. ' Nn. 991-67. Some of the worl: reported here is a part 'of the

ýqkti~on. Y.ý. . .. -,3P1 A- ý" research carried out by J. J. Evangelista in partial fulfillment ofA low value of). leads always to a o'wer conversion and the requirements for the Ph.D. at The City University ofA New York.
the effect is quite pronounced. However for values of a

_ larger than 100 the effect of 8 again becomes small.
These last cases are examples of a broad class of cases NOTATION

- in which the only effect of a low value of m is a reduced A --empirical parameter appearing in Equation (19)
-conversion. WVe can always compensate for this by a larger A = rate constant in autothermic reaction expression
residence timc, and in fact we might wanta to compare the a, b bounds on concentration
cost of intense mixing to the cost of an increased residence B = rate constant for initiation step in polymerization
time. A quantitative evaluation, similar to the one in the scheme
examples given, will lead to a conservative design pro- CA = outlet concentration of Acedure as long as w~e use a conservative estimation-pro- Ca outlet concentration of B
cedure for X. Cc outlet concentration of C- A simple example of the second class of problems in C concentration
which a low value of X might change the quality of the c', c o" =-inenty variables
product is given in Figure 4, where the reaction is as- c, = concentration of A in fced
sumed to consist of two parallel reactions of different order D = molecular diffusivity
[for an example see (14)]. As the undesired reaction is of D - rate constant for termination step in polymerl7a-

a ihrorder, thle concentration of the reactant should tion scheme
be as low as possible everywhere. A low value of X will = rate expression
therefore favor the undesirable side reaction. = rate expression, r = 1, 2, ... , R

If the side product is not separated, and the conversion C = rate constant for propagation step in. polymeriza-
is high the reduction of X due to scale up might have a tion scheme
serious effect. One notes here, that just increasing the i(t) - initiator concentration
residence time without changing' the intensity of agitation k = reaction rate constant Iwill not be sufficient, -as the side reaction will occur in the L = characteristic length of the mixing system
concentrated region near the inlet. There is a whole class Id = Taylor (dissipation) microscale
of reactions of this type, and what complicates this case i. = microscale for turbulent mixing
further is the fact that in many cases the exact mechanism rn = constant of proportionality
and kinetics of all the possible side reactions is unknown, in = exponent in approximate rate expression for auto-
As another example of this type one might mention reac- thermic reaction
tions in which the pH is controlled by acid addition and rn(t) = monomer concentration
where high piI in the nonmixed region might cause side N = agitator sp-ed, rev./min.
reactions. N = degree of polynomial f f

If the kinetics of all possible undesired side reactions is n - exponent in approximate rate expression for auto-
at least approximately l:nown then the above methods can thennic reaction
be used to estimate the minimum value of A nccessary-to n, = integer in moment definion; r = 1, 2, ... R
guarantee the specifications. Sometimes it might turn out p = concentration distributionr
to be impractic-al to obtain a sufficiently high value of x in Po = concentration distribution for the feed
a very large tank and several parallel smaller reactors p -= jth term in expansion of p
might provide simpler and cheaper solution. R = Reynolds number .

One might also want to investigate ways of increasing X R = number of independent concentration variables
by improving Ix,th the design of the agitator and the de- r = batch rate expression
sign of the feed disttibution. It is unfortunate that we do r linear dimension of crystal
not possess sufilicienitly accurate data for the effect of the r = molecular weight
feed distribution on agitator design. l• t it is apparlrnt that s - degree of segregation
using inuiltipl agitator; (single or multiple shaft) and s = batch rate expression
"multiple fc,'" injection for cach agitator, we can consider- = time
ably increas- A witldiout inereasing thei eiergy consumption. u = root mean square of velocity fluctuation

Similar 'olidCh1u.'ioiis apply to the case of systems with u = x-eoniponent of u
)Icleatiom, in which the effect of X might be the inost pro- itu = y-ctmponent of u
mmounced, as e.en \with rel:atively very low concentration ti Z-Ml.o onpoemt c!
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THE EFFECT OF IMPERFECT MIXING ON STIRRED

COMBUSTION REACTORS

JOHN J. EVANGELISTA, REUEL SHINNAR, AND STANLEY KATZ

Department of Chemical Engineering, The City Comlege, City University of New York, New York City

Mixed gas reactors, even when special pains have been taken to ensure good nixing, often
depart quite noticeably from the ideal of instantaneous mixing on the micro-scale. The
present paper offers a quantitative measure of the extent of this departure, and shows how
it is related to the reactor performance.

The intensity of the mixing is characterized by a single parameter that measures the time
scale of decay of nonuniformities in composition in the reactor. This is related to the design
parameters of a gas reactor by dimensional arguments drawn from the theory of isotropic
turbulence. The analysis of reactor performance is carried out in terms of a coalescence model
for the micro-mixing that incorporates this time scale. The mixing model is borrowed from1 chemical engineering studies.

Calculations are presented for adiabatic reaction systems, showing the shift in the effective
reaction-rate curve, and especially the reduction in blow-out limit, with decreasing mixing
intensity. Such calculations permit one to see how high a mixing intensity is needed to ap-
proximate perfect mixing, and how this level depends on the reaction kinetics.

1. Introduction correlations based on pressure drop were sug-

gested to compensate for this effect.
The concept of an ideally stirred reactor has Real stirred reactors may also deviate from the

had several important applications in combustion. ideal by having residence-time distributions that

A spherical adiabatic combustor has been intro- are not in the (Poisson) exponential form. SuchS duced by Longwell to study the kinetics of fast deviations are reported in Ref. 16. It is the
reactions, 1 and in the interpretation of the data authors' experience that, by suitable placement of
one normally assumes that the reactor is ideally inlet and outlet, it is almost always possible to
mixed. It has also been observed2-4 that an ideally achieve a residence-time distribution closely ap-I stirred tank might be a useful simplified descrip- proaching that of a stirred tank. The present
tion of some industrial combustors. The concept paper, accordingly, confines itself to the situation
of an ideally stirred reactor has also contributed where perfect mixing at the macro-scale has been
coisiderably to our understanding of the stability essentially achieved, and develops methods thatI and control of autothermic reactors.2 ,5  permit one to make quantitative estimates of the

It is quite obvious that a perfectly stirred effect of imperfect mixing at the micro-scale.
reactor is an ideal concept that can be only ap- Admittedly, turbulent combustion is a very
proached, but not reached, since real mixing complex process and cannot be given a completeI processes occur at a finite rate. In Longwell's analytical description. However, in a well-
spherical reactor, considerable effort went into designed reactor, mixing intensities are very high
the design to approach instantaneous mixing. and the mixing time is very short as compared to
This is not true in industrial combustors, where the residence time. In a previous publication,6S the mixing is much less intense. The question it wos shown that a rather simple stochastic
then arises as to what effect the imperfect mixing mixing model allows one to simulate the basic
has on the performance of such a reactor, and a features of the real turbulent mixing l)rocess.
general discussion of this point is given in Refs. For such an ideal turbulent mixing process, it is

S 2 and 3. It has been shown further13 that, even for possible to compute both the steady and the
a small spherical reactor as used in kinetic studies, dynamic behavior of many complex reaction

- mixing processes are important. Thus, the blow- systems, and for small deviations from complete
out velocity was shown to be considerably mixing, one can reasonably hope that the results
influenced by injector design, and some empirical of such computation will predict quite well how

901
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far the performance of the actual combustor rate (intensity)#$, such that
should deviate from an ideal one. From this, one
gets reasonable estimates as to the mixing in- del/dt= -- a2.
tensity required to -achieve conditions close to
ideal mixing. In Ref. 6, this was applied to the An initial nonuniformity o2 thus decays in time
behavior of reactors stirred by turbines commonly according to t-i

used in the chemical industry. In particular, it
was shown that the mixing intensity necessary to
approach ideal mixing strongly depends upon the a2 (t) =o 2 exp (--it),
kinetics of the reaction. The same method is
applied here to combustion reactors. and we may regard 1/,3 as a micro-mixing time.

For a fully developed turbulence, Corrsin
estimates the mixing intensity # in the form

2. The Mixing Processes # = const. (E/L2)1"', (2.1)

While there is a considerable body of experi- where e is the power input per unit mass of
mental investigations on the mixing performance working fluid, and L a characteristic linear dimen-
of mechanical agitators, there are few data on the sion of the mixing system as a whole. The con-
quantitative aspects of mixing in gas reactors of stant in (2.1) is a mixture of empirical parame-
the Longwell type. It has been shown" that con- ters, involving an estimate of the Taylor micro-
siderable recirculation exists. Furthermore, mix- scale of the turbulent velocity field, and an
ing of a jet introduced into a stagnant fluid has estimate of how efficiently the power input is
been studied extensively. Now, it was shown6 in transformed into the kinetic energy of the tur- IA
that, for mechanically agitated reactors, purely bulent fluid. This constant may be expected to be
theoretical estimates of the mixing time are in independent of the scale of the mixing system,
reasonably good agreement with the experimental but to vary from one mixing configuration to
results. It is therefore reasonable to hope that the another. One would expect it to depend, for
same methods should lead to reasonable estimates example, upon the physical properties of the gas,
in the present case. the shape of the vessel, and the configuration of

The mixing pattern can be divided into two inlet jets and outlet ports, but to have the same
parts. One is the macro-motion of the fluid, in- value for geometrically similar mixing systems .
troduced by the jets, that should cause a circula- working on the same gas.
ti.in in the reactor. The second is the 'iss;pation The form of (2.1), of course, might also have
of local concentration fluctuations by v:,rbulence. been obtained by a straightforward dimensional
One of the first conditions for good cver-all argument. But the analysis based on turbulence ,_
mixing is that the jets have sufficient energy so theory leads also to some idea of the actual nu-
that their penetration length into the reactor is rmerical magnitudes involved that may serve as
very large as compared to reactor diameter, so a useful guide to practice. From work in wind
that the turbulent energy is not dissipated near tunnels and in pipe flows, Corrsin finds (approxi-
the entrance of the jet. In a highly agitated mately)
reactor, the turbulent. motion on a small scale
becomes quite uniform and locally isotropic.'5  0 l ( /V/)M. (2.2)
For such cases, one can estimate the mixing time
by the methods derived by Batchelor$ and Corr- This concludes Corrsin's argument from tur-
sin." These methods lead to an exponential decay bulence theory, which applies very generally,
in the variance of an initial concentration non- regardless of the source of the energy that sup-
uniformity in the vessel, and we identify the ports the turbulence. For mixing of a gas reactor
characteristic time of this decay with the micro- by its feed jets, we may rework it into a more con-
mixing time. venient form. Suppose, accordingly, the vessel is

The turbulence theory estimate of the micro- fed by a system of jets at inlet velocity v, through
mixing time we quote from Corrsin," as reworked a total crosssection area S. The energy input per
in Ref. 6. It appears first that, if a nonuniformity unit mass in the reactor may then be written
in concentration is described by its variance oe,
that is, by the mean-square departure of the = Sv'v 2 /•r1 L'. (2.3)
concentration from its average value, then a
homogeneous isotropic turbulent mixing gives (We take L to be an equivalent spherical diame-
rise to an exponential decay in a2. That is, there is ter for the vessel.) We may also identify the flow
associated with the turbulent system a mixing rate per unit volume of reactor (reciprocal mean
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residence time) as a representative cut of the contents of the vessel.
While, in two-phase mixing studies, these par-

SS/IrL3 . (2.4) tieles may have a definite material identity, they1 amight perhaps better be regarded for the present
Eliminating v and E among (2.2)-(2.4) gives purpose as primitive representations of turbulent

eddies.
F-1 If we consider, for concreteness, a single

Ola] / (/21/S)II, (2.5) reaction where the concentration c of reagent
behaves in batch according to

which relates the mixing intensity f directly to
the jet design parameter L1/S. de/dt= r(c), (3.1)

A good many different designs of spherical
reactors have been used for kinetic studies, with then we may describe the contents of the reactor
reported values of 21/S ranging from 30 to 3000. o

The alus o fla etimaed rom(2.) wuld at any time Iby the concentration distributionThe values of #/a estimated from (2.5) would p(c, t) of particles at that time. Technicallyi! accordingly vary approximately from 2.5 to 50. speaking, p is a probability density inR c, with

In deriving (2.5), the fluid was assumed to be
incompressible, but compressibility effects can b
readily be introduced. One shnA.d also note that, p (c, t) dc
in comparing dbfferently sized reactors with the
same mean residence time (that is, the same a),
constant L2/S (constant 0/a) requires v/L to giving the proportion of particles having concen-
remain constant. Thus, the necessary pressure tration between a and b at time 1. The distribu-
drop through the injector increases with in- tion p, according to what has been said, satisfies
creasing reactor size. For short residence times, it the integro-differential equation
is much easier to achieve high mixing rates in a
small reactor, provided of course the size is large [op (c, )/alg] + (O/Oc)Ir (c)p (c,O)
enough to ensure a highly turbulent flow.

The above dimensional considerations lead to = alpo(c, t)- p(c, 1)) + 23f p(c', t)p(c", 1)
quite reliable relations for comparison of geo-

metrically similar reactors of different size at high
Reynolds number. They also allow some estimate X 6[1 (c' + c") - c]dc' dc" - p (c, t)! (3.2)
of the highest mixing rates possible under,
optimum design conditions.

It must be noted that the empirical constant I where p0 (c, t) is the concentration distribution for
in (2.5) cannot be taken as anything more than a the feed, 1/a the nominal residence time of
rough indication of oider of magnitude. Its real material in the tank, and 63 a measure of the
value will depend strongly upon the geometrical coalescence rate (mixing intensity). The mean
design, and. #/a there~ore will depend not only concentration of reagent in the vessel and outlet
upon L"/S but also upon the number and location is simply the first moment of p, and this is the
of the jets. The constant in (2.5) should be working measure of over-all reactor performance
determined at need for a given mixing configura- for a given kinetic system. Information about the
tion by suitable tracer experiments. Sonic of random fluctuations in a turbulent mixing system
these are discussed in Sec. 3. is given by the higher moments. As indicated in

Ref. 6, a similar equation can be developed for
the appropriate multi-dimensional distribution p

3. The Reactor Model when several reactions are going on simulta-
neously.

The reactor model used here is a coalescence The parameter a in (3.2) is just the flow rate
model introduced by Curl,'2 and used by him and per unit reactor volumne, as in Sec. 2, and it will
others in studies of mixed reactor performance, appear that the mixing intensity # also has the
and of two-phase mixing. Briefly, it regards the same meaning as in Scc. 2. These points emerge
reacting mass as made up of a large number of from a consideration of conceptual tracer experi-
equally sized parcels of material ("particles"), ments on the model. We give only a sketch of the
that from time to time undergo independent results here, since they are worked out in detail
pair collisions, equalize concentrations, and then in Ref. 6.
separate. Between collisions, each parcel of fluid The connection of the 3 of (3.2) with that of
behaves like a little batch reactor. Fresh material See. 2 may be seen by adapting (3.2) to the

- . is fed at a constant rate, and the withdrawal takes situation of an isolated vessel (a = 0) with no

,|!
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chemical reaction going on (r = 0), but with the bare location of this maximum will give some
mixing intensity maintained somehow at the estimate of 0, even without detailed knowledge of
level 0. If we define the mean concentration by the variance history.

We turn now to a consideration of methods of
f solving (3.2) so as to ascertain the effect of 0 on

f(t) cp (c, 1) de, the reactor performance. We are concerned here
only with single reactions, and we work atc-

and the variance by cordingly in terms of the conversion x rather than
the concentration c. In place of (3.1), we write

e:0) f (C -- )Vp(c, 1) dc, dzl/ r r(x), (3.3) 7

the reduced form of (3.2) gives: first, that e is, and, in place of (3.2),
as it must be, constant; and second, that

[ IOp(x, 0)/6t] + (O/Ox)Ir(x)p(x, t)j
Mdo/dt -- e,-

a= (x) - p(X, t01 ±)p(v, t)
so t•hat the variance of an initial inhomogeneity in ""
concentration decays exponentially, and this + .6 (,
may be identified with the # of (2.2) or of (2.5). X b• (u + v) x]du dv - p (X, t) (3.4)

A more reasonable kind of tracer experiment
for gas reactors is one in which a step in tracer
concentration is switched into the feed line of a where the inlet distribution 3 (x) represents a feed
tracer-free vessel at time 0, and the resulting of unconverted material.
tracer concentration measured at the outlet. This The rate function r(x) in (3.3) represents the
we may analyze by suppressing the reaction term reaction rate normalized on the inlet concentra- r
in (3.2), taking ihe inlet concentration distribu- tion of reagent. for nth order isothermal kinetics,

* tion in the form we have accordingly

p0 (c,) -' -(CCo) t > 0, r(x) = k-.(1 -- x)n. (3.5)

and taking the initial ioncentration distribution Allowing dependence on temperature in the usual
iki vessel and outlet to be .Arrhenius form. we have

p(c, 0) = 5(c). r = A exp (--E/RT). (1 X) 2.7

We find then: where T is the absolute temperature, and E the

activation energy. For adiabatic operation, tern-
(() cl = - exp (--at)l perature may be directly related to conversion in

2 (t) = ac I exp (-at) the usual way, and we find

-- IRT ' :
X I exp (-at) e (- ]/'- a)}. r(x) A exp( 1 + - ,/RT,'x

The exponential response for i indicates that the (1 - x (3.6)
vessel is, on the macro-scale, well-mixed, with -
input-output time constant a. The response for
a2 contains information about #, and, with where T, is the inlet temperature, and T1 the
careful monitoring of an output line, as perhaps temperature reached at complete conversion.
with the colored tracers and fiber optics tecli- The rate expression (3.6) is analytically rather
niques of Brodkey,1.lo it may serve as a guide to intractable, and for exothermic reactions, where
the measurement of A. Thus, a' rises from 0 to a E/RTj may be of the order of 20 to 80, and
maxiMUM at (TI - Tj)/Tj of the order of 2 to 6, Spalding7

has suggested that it may be usefully approxi-
8= (- a)-1 In C(8 + a )/2a] mated in the form -

beftre decaying again to 0, and, with a known, the r (x) = k. (x - E)m. (1 -- x)n. (3.7) -

1
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where, p)ro,'iild m and n are whole inumbers, f is a which, together with the over-all material balance
polyntofmial in x. Equation (3.4) may then be
writteii

wItop ý'it 1)43]ten;') o 1f( ff(x)p1 ) (x) dx = (atk)pt",

forms a self-contained system in AIO), u2,.',

frx - ,( A') that can be readily solved by standard
-= t3(x) -- p(.r, t) ± (243,/a) 1] (u, tp(v, t) numerical methods. In Ref. 6, it is shown how the

expansion (3.10) can be carried to terms of higher
- order in a/s, and how the whole procedure can be

--- X 6[, (;a + V) - xdu V - p (X, ) (3.9) extended to situations where several reactions are
" f proceeding simultaneously.

of. The method sketched above produced the body
With t scaled on tv- 1 , the belhvior Of thie syý-tcm of results discussed in See. 4. However, these
for any given form of f(x) is seen to be controlled results were spot-checked to estimate the range of
I)% the, d&leiisionless mixing intensity t3/a and validity of the expansion (3.10), and to test the
the dinenisionless flow rate a/k. The polynomial (dynamic stability of tbh, solutions by another
character ol f greatly simlplifi,-s the solution of method formally independent of the size of the
(3.9). The results diselusedl in'Sec. 4 are all for mixing intensity #. This method consists of
the kinetic form (3.8). developing moment equations from (3.9), and

Since our interest centers in high values of closing them off into a self-contained set by
tU)" mixing_ intensity 0, our principal me' hol of assuming a suitable iunction form for p. It
(Iefing with (3.9) is by expansion in poivers of proceeds by taking moments
I/fS. We work with the steady-state solutions,
and give only a sketch of the methods here, since
they-are laid out in detail in Ref. 6. It is con- U,( M xnp (x, t) dx
veniient to take the expansion in the form

in Eq. (3.9)

P P) +(x) (+/20)pt ,(x) + . (3.10) a-' =dl) = it f .r' 1f x)p(r t) & - .

where p(") (x) is the distribution in the ideally /fn\
mixed limit (infinite $) + (2j/a) A, 2. PmAtn,-m - •.n•

p 0)(x) W (x--•), n= 1,2, (3.12)

For pollynonial f, the integral term on the right-
withl given by solving hand side of Eq. (3.12) is a linear combination of

moments, in general, of order > n. However, the
f(0) = (a/k)%. (3.11) order can be reduced by imagining a convenient

functional form for p, and expressing higher
moments in terms of lower in a way suggested by

We may work in turn with the stable amid the un- this form. A suitable functional form here is th-.
stable solutions of (3.11). In any case, the dis- B-function distribution
tribution pc') is etaracterized in terms of its
moments p (x, 0) - [-x")-i (I - x) 6(')-1]/{B[a(t), b (t)]

=" f x"P(. ) (/X. 1, 2, ... with

-u EB(a + n, b)]/['B(a, b)],

anrod, whenj i• a polviiinial of degree N, we find, so thatall moments of order >2 may be expressed
ont bringing (3.10) to k3.9), a set of linear in terms ofAt,Ii 2 . This moment-cIosingapproxima-
a!gebraic equationq in these moments tion can be brought to Eq. (3.12), and gives, on

dropping the time term, algebraic equations for
- /n\ the steady-state mean and variance. Transient

solutions and linearized stability analyses were
also carried out in this way.

(n-- )•", n = 2, 3,. N It may be noted here that we do not suggest
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Fie.. 3. Effect of mixing intensity on blow-out limit; various kinetic parameters (7n).

that the model discussed in the foregoing-repre- serves as a time constant for the reaction.) How-
sents the real mixing processes in a turbuJent ever, autothermic reaction rates may depend
reactor. These are far more complex, and defy upon composition in so many different forms that
as yet an analytical description. Howev&r; t,he we give here only the results for one typical class
model has one important similarity to'turbulent of cases. These results are based on the Spaldinrr
mixing-the exponential decay of an initial con- approximation for exothermic reaction rates
centration inhomogeneity. We do not believe discussed in See. 3, according to which the
that "he model will predict conversion accurately reaction rate under adiabatic conditions can be
uaaless/Ice is very large (or very small). However, expressed aw a function of conversion x in the
conversion goes asymptotically to the limit of form
ideal mixing as 0,/a gnes to infinity, and we think
that the model captures enough of the basic r(x) = kx. (1 - x)n.
phy.•ical behavior of the mixing to tell us how
large 0/a ned he to validate the assumption of Figures 2-4 show the result, of a number of cal-
perfect mixing, and in what way departures from culations based on the approximate kinetics over
this level are likely to damage the reactor per- a range of values of :, and with n = 1. Similar
formance. curves, of course, ca'l be developed for higher

values of n.
4. Applications Figure 2 shows how the effective reaction rate

curve, taken in the dimensionless form r (x)/k, is
For any given form of reaction rate, it is shifted under the influence of the mixing intensity

possible ouce and for all to compute the effect of 3 /a. These curves are obtained by calculating the
imperfect mixing, and exhibit it in a generalized average conversions according to the methods of
form, by piotting the conversion as a function of Sev. 3, and plotting them along lines whose slope
the mixing intensity //a, for different levels of the is the corr"sponding a/k. Three steady states are
throughput a/k. (Here, the mixing intensity 0 is obtained for each operating condition, the intei- -

normalized on the reciprocal mean residence time mediate one being unstable just as for complete
a, and a itself (which measures the throughput) mixing (and the lowest representing, to this "
is normalized on the kinetic piar:tmeter k that kinetic approximation, no conversion). For each
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0/a, the resulting curve then has the same In Fig. 3, the critical value of a/k at blowout is
character as r(x)Ik for ideal mixing (infinite 0), plotted as a function of l/a for different values of
in that its intersections with lines of slope a/k 7n. One notes again that the larger in (or the
give the average steady conversions. One notes steeper the dependence of reaction rate upon con-
that, for high values of 0/a, the curve approaches version), the stronger the effect of Ol/a. I Iowever,
the curve for infinite mixing. The value of 6/a for 0/a > 30, the mistake made is relatively
for which the mixing, for practical purposes, small, and in the most sensitive case (m = 20)
becomes ideal, increases with increasing in. The does not exceed 20 per cent. Nevertheless, the
averaged reaction rate is also much more sensitive dependence of the blowout limit upon the reaction
to mixing for high value6 of a. That means that, kinetics does indicate that attempts to correlate
near the critical flow rate at which the reaction it with parameters of injector design, such as the
extinguishes, the system is most sensitive to pressure drop, should be viewed with some
mixing, which is in good agreement with the ex- caution. Further, the fact that the reactor is
perimental evidence. Figure 5 shows a corres- insensitive to mixing for a specific reaction at one
ponding family of curves for one example of an mixing rate, does not guarantee the same inde-
autothermic second-order reaction. The effects pendencc for other reactions at this mixing rate.
are seen to be similar. However, the results of Figs. 2 and 3 should
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provide some good guidelines in this direction. It combustion to highly localized combustion at
may be noted that a comparison of the values of lower mixing rates. The model can also b? used to7 B/We from Fig. 3 with the values predicted in Sec. 2 investigate the dynamic stability of the reactor
for some typical Longwell reactors indicates that, under conditions of incomplete mixing. These
while some designs seem to approach the desired effects will be discussed in more detail in a future
level, some of the injector designs reported in the paper.

1 literature seem to have mixing rates considerably
i below the desired level.
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draw from the above results. One is that quite
high mixing intensities or pressure drops are Tho-i,•'k reported here was supported under
needed for exothermic reactions to approach con- Air Force Office of Scientifiu Research Grant No."ditions of ideal mixing. But, with a well-designed AF-AFOSR-921-67. Some of this work represents
reactor, such mixing rates are still feasible. Fur- a part of the research carried out by one of the
ther research on the mixing reaction patterns in authors (J.J.E.) in partial fulfillment of the require-
such reactors would be very worthwhile. As ments for the degree of Doctor of Philosophy at the
pointed. out previously, we have little experi- City University of New York.
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COMMENTS
G. G. de Soete, Institut Franqais du Pdtrole. analysis predict these conclusions, which one

The determination of kinetic parameters by the obtains intuitively?S- - irrd-r':e t,-p.hamp d- miit-deaL w tha..supple- ... - i-

mentary difficultv: the iiiix iii~ ffk-p ewhich-does The Authors. 'I hese conclusions tieuimlkia;i,,
not exist in the laminar premixed flame methods. the coalescence model, and can be exhibited by
The paper shows the strong effect of mixing time expanding the working equations in powers (andi
and reaction kinetics, but it is not clearly pointed reciprocal powers) of the mixing time/reaction
out whether the influence of the residence time/ time ratio, with the residence time/reaction time
mixing time ratio on the measured rate constant ratio treated as a parameter. The emphasis in the
should be expected only on the pre-exponential text being slightly different, the results there are
factor, or could result also in an apparent change developed instead from expansions in powers of
in the measured value of the average activation the mixing time/residence time ratio, with the
energy. If the latter, great attention should be reaction time/residence time ratio varied as a
paid to the interpretation of 'over-all activation parameter.
energies obtained by stirred-reactor methods; in
particular, the well-mixedness should be carefully
proved out.

S- - - - :J. Swithenbank, Sheffield University. I would
The Authors. Departure from perfect mixing like to draw attention to the important connec-

certainly does affect the measurement of activa- tion between lie theoretical study contained in
tion energy. The apparent reaction-rate curves in this paper and the design of practical combustion
the text show that, as the mixing intensity de- systems. This arises as a result of the appli-
creases, the curves broaden somewhat and shift cability of the treatment to real, incompletely
down toward lower conversion, thus giving the mixed systems. Optimization of the combustor
effect of a reduced activation energy. We hope to design then may be obtained by minimizing the
explore these effects more fully in further work. pressure ,nergy required by the stabilizer in order

to stir (i.e., generate turbulence in) the combus- -
tor. This can be carried out by an energy balance
as shown in Swithenbank and Chigier (this -

V. A. Sirignano, Princeton University. Two Symposium), which is complementary to this 1!
characteristic times were mentioned in the pres- paper. These considerations lead to the need both
entation: a residence time and a mixing time. for accurate measurements of flame turbulence
Actually. n: third time appears, that must be im- intensities, in excess of 100%, and clarification of
portant: the chemical reaetkiit time. When the the position regarding flame-generaLed turbu-
reaction time is considr .tbly longer than the lence. I would suggest that systems in which the
mixing time, the rea-.or is essentially perfectly total pressure loss due to the baffle aerodynamics
mixed. On the othr. hand, when the mixing time is large compared to the pressure loss due to heat
is considerably eonger than the reaction time, addition (i.e., most practical systems) have a
mixing is the rrte-controlling factor and reaction negligible contribution to stirring by flame-
may be considered as instantaneous. Does your generated turbulence.
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conceptual models that have been evaluated, with varying particle passing through the reaction zone would be less than
degrees of rigor, may be divided into two broad classes: 1) 10P. A simple, one-stage, bimolecular reaction with an activa-
those in which the rate-controlling processes are presumed to tion energy of less than 25,000 cal/mole and a steric efficiency
occur at or below the propellant surface and to be part of the of unity could occur in this time. However, any more corn-
vaporization process and 2) those in which the rate-controlling plex mechanisms involving unstable intermediates or active
procc.sthR-are prestmed to occur in thegas-phage flame which radicals becomes virtually impossible in this time scale. It
consumes the vapors that emanate from the propellant sur- is very difficult to believe that the gas-phase reaction among
face. Theories of the latter class are older, more fully do- the decomposition products of ammonium perchlorate could
veloped mathematically, more fully tested experimentally, be a simple bimolecular reaction without intermediate steps.
and more generally accepted by those conducting research in If the reaction cannot occur with the required speed, then
this field. The authors of this Note disagree with this the flame will not be thin enough to support the reaction wave.
"orthodox" interpretation of the available evidence and wish A more serious argument against the application of gas-
to present arguments that throw the credibility of such phase. flame theory to ammonium perchlorate combustion
nechanisins into dor.bt. can be made in consideration of the strong catalytic effect of

For didactic purposes, attention will be focused on the copper chromite reported by Levy and Friedman,6 and many
combustion of ammonium perchlorate, either pure or with others. Or,-half percent of this additive, which has a parti-
minor percentages of impurities. This is done because the cle size of 1L ,_, doubles the burning rate and even smaller
combustion of this rather weakly exothermic material pre- quantities have significant effects. With a concentration of
sents an amazingly valid simulation of the combustion of 1%, the average distance between catalyst particles would be
strongly exothermic composite propellants,' because it is a 50 14, about 50 times the thickness of the postuiated flame.
pure crystalline material whose thermodynamic properties The catalyst could affect the reaction rate either homo-
are fairly well established, and because its physico-chemical geneously or heterogeneously. In order for homogeneous
and combustion characteristics have been investigated widely. catalysis to occur, there would have to be an appreciable con-
As in the case of composite propellants, the combustion rate centration of copper chromite in the gas phase. Even if cop-
of ammonium perchlorate is accelerated by the presence of per chromite were volatile under the surface conditions, which
minor amounts of catalysts and by increased ambient pres- it is not, the geometry of the flame is such that mixing would
sure. be negligible. The diffusivity of the gases in the flame would

The presumption that the rate of propagation of a combus- be of order 102 cm 1/sec. The lateral diffusion distance dur-
tion wave-through solid ammonium- perchlorate depends on ing the 10-4 sec residence time in the flame would be about
the rate of reactions in the gas-phase flame zone, requires an 1 j. This is clearly not enough if the average interparticle
acceptance of the applicability of the thermal theory of distance is 50 p. Since homogeneous catalysis is implausible,
laminar flame propagation2.2 to this specific situation. The heterogeneous -catalysis should be considered. Again, the
theory is-widely. accepted and well tested and. m.st be a good -. ,transport processes necessary to affect a flame of the postu-representation of manc6mbustionp-rocesses.6 i - .... • - etry aie simply not available. There is not enough

The application of laminar flame theory to the combustion time for an appreciable amount of the gas to reach the catalyst
of a substance in a condensed phase is postulated on the as- surface. Even if there were, the heterogeneous reaction would
sumption that the rate of energy supply from-the flame is have to be very fast indeed to accelerate a process which oc-
sufficient to supply the latent heat of vaporization. Johnson curs in 10 seconds without a catalyst.
and Nachbar' have provided an analytical solution for this The strong catalytic action of a heterogenous solid catalyst
specific case of a laminar flame. In some instances, as in the leads to an almost insoluble conflict when considered in light
classical study of the combustion of nitroglycerine by Bela- of a one-dimensional flame model and a reaction zone 1-p
yev,' this procedure seems to work. The vaporization of ___thick. It is necessary to change the dimensionsof the process
nitroglycerine, at atmospheric pressure, satisfies the required by at least one or two orders of magnitude before reasonable
conditions. results are obtained. The combustion of ammonium per-

In the case of ammonium perchlorate, however, this as- chlorate must therefore be far more complex than the simple
sumption appears to fail. Levy and FriedmanO and many normally accepted laminar flame mechanism.' would indicate.
others have studied the combustion of ammonium perchlorate. These considerations indicate that the heat transferred
The adiabatic flame tempera ure is approximately 1000'C, back from the gas phase must be considerably smaller than
and the temperature at the solid surface is several hundred normally assumed. It must then be presumed either that
degrees lower. At these temperatures the bulk of Ihe energy the heat of evaporation of AP is very small or that heat is
transfer within a one-dimensional flame zone would be con- generated during the decomposition of the solid either at the
(luctive rather than radiative. Levy and Friedman have surface or below it. Such exothermic reactions could occur in
calculated the magnitude ofenergy feedback necessary to the liquid layer observed by Hightower and Price.7  Part of
vaporize sufficient ammonium perchlorate to supnort an this heat could also be generated by a low-temperature de-
experimentally observed burning velocity of 1 cm/scc at composition reaction below the surface. Such low-tempera-
1500 psi. This calculation was based on the assumption that ture decomposition reaction could well be catalyzed by copper
the vaporization process involves the formation of ammonia chromite. . . "
and perchloric acid, a reaction that is endothermic by 56-60 The purpose of this Note is neither to establish an alterna-
kcal/mole. On the basis of purely thermochemical considera. tive mechanism for the burning of ammonium perchlorate nor
tions and mass continuity they show that the energy flux at to claim that the ga';-phase flame is of no importance. Gas-
the surface must be 1300 cal/cm2 sec or 32 Btu/in. 2 sec. This phase flames certainly exist and may play an important role
is an immense conductive heat flux. in the combustion process. This Note is intended to show

Since the total temperature rise from the surface to the that although the presently accepted theory has achieved
flame temperature is of the order of several hundred degrees, some success in fitting burning rate vs pressure data it leads
and since the thermal conductivity of the gas is of order to some quite unreasonable assumptions as to the magnitude
2 X 10-' cal/cm°C see, they concluded that the flame zone of thermal gradients, reaction rates, and transport processes.
thickness would have to be of order 0.2-1.0 p. This is especially true if the effect of heterogenous catalysts

If the averac gas velocity in this region is about 30_cm/sec on the burning rate are considered. It is therefore highly un-
then the residence time in the reaction zone has a magnitude j-ikely- it--n he-burning of pure AP-is governed solely by an
less than 3 X l0-, set. Thus, the reaction has to be ex- endothermic evaporation followed byran exothermic reaction
tremcly fast. The number of collisions experienced by a in the gas phase close to the surface.
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THE EFFECT 0' PEtTUPURBATI ONS . FLOW-P2ATr

ON A STIRPRED CO,.-3USTOR

, 1 •Introduction

r: radý!f in~' a-'is flow-rato on

the performance of a well-stirred combuxstor wil). be studied

by means or- an idealized model. Such a model can be applied,

for example, to automotive exhaust gas afterburners, whore

the iluctuations in flow rate are quite substanticnl, to the

recirculation zone behind a flame holder, where the fluctuations .'

arise from flow disturbances .and turbulence, or to the design

of stirred comrbustors for chemical kinetic measu'.emcnts, where

one would like to estimate the effects of flow perturbations

on the accuracy of manasured reac. ion rates In addition, if

one thinks of a turbulnt f:.,, as a I,- a. ens le of •u•h

' . reactors, it is possible that some insight as to the effects

of turbulent fluctuations on complox %inetics, apparont activation
i[ " energies, otc. may be obtained f nm conL.Worat. ft o- the

statistics of this model.

2.. The Model

The model consists of a woll-stircd vessel of volume v

with an inlet and outlet volu;,,.etric flow rate equal to W.

Thin flow rate fluctuates ran.lcmly betl.wocn thc two fixed values
-. negie, tc ma b otaiedfrm cn.idratiuoe of the~~o

w! and w2. according to the probability - ,ructur of- a ?4irkov
Sprocess.• .nis is a pecial case of a model treaed it lcnqth

in fi).. Othe'.: ".Spcct-• arc prosented in [2,3,4]. Denoti.:-.

the robabiXly that W'=w by -,I and te ý obability that

% b ion ',;atit, P¶T k iF evolvy %:ith tý.M•o• • •.•2 b 2ý



di.

dt
•"where %, and Xn are the meanx twitching rat.. in' the respect.vo''6.

directionss.

A material balance on the reactor gives an equait.on oi

. change of the form

d xSdX - f (w, %)(2
dt (2)

where x is the corncentra't.on of r'cntant. Wc now define

functions pl (x) and pa (x.) rn that tho joint probability that.

w=N41 a-ne x is in the interval (x,x+d-.) is given by pv (x) dx.

-These then satisfy v

r[f (w1 ,x) p (r)) - Xp 1 (x) + %p2 (x) X
S(3). J

=-f IX )p(x) -( •p)(x)

We have 'assumed here that the process has reached its 'stationary'

probability distribution. The overall probability density function

is Just given by p, (x) + pa (x).

Adding the'tw:0 equations in (3) together, we find

d (x~p~ (x .-m ~ (x) p- (X) 0

wohere f, (f:) = f (wz ,x). ihu.
' • ", (x)pj (×) •: f3 ()•. (×5) " C ':''

wbr c is so6 'constant-: indupnd"tf x.

If the dxpectc~d-value of f(w,x) is finite, it must hLalpen that c=O,sincc
<f(.-,::>:. I_. W rl.-:) M× + (; {.-);"2 (X) '.'d

I



f .0 P, ( W) (4)

i Sub tttn.(4.) ite'. (3).,,

L (x,' ÷ 2.() f• (.x)p• (x) • 0 (5)

[ .-

,Sinc•: p, and Pa -are probbbilities 2~ev ..... he non-negativo.

Then (4) impli.es. that p. (x) and p. () can .fo rr zro only at

points where f, (x) and f£ (x) differ in sig,. Defining

q • (x) If I •(×•X) P, - If;, W •x r,:aW (5), becomes

or

. g] (x(x)

"the points where either fC (x) or f' (x) passes through zero.

I' . Since p• (x) ,- is a probabi)..ty density it must be

* integrable. Jnless Ifl' (x) n at the Tcint where f(x) - 0,

. an unksua! situation, g(x) must approach zero at such a point.

[ • " " Thus equation (6) is applied to regions on the x-ax.% over

'which f,_ and f2 are of oppozs.teto T he values of a at the

end points of such a region. 'whica are ncce.;sari.y Leros of

either f1 or f.), are znro . In fact, a fu~t1her condition must

be satisfied by' f1 and f'0, over the region. Since g - 0 at each

singul.ar point (i.e. a zero of aitheo fr or f2), In g.40 Thus

"In 0 ',,ust a+ . at th left, ,nd of the region and - at the
S[ right "end, no lth-at the "" kict-I'', ozooa t .. I 3, cen . , .n••o. th.:t goesn to. zero at the -lest

* .'. ,, . .

__,____.__v_.___._______.___ ._____________________ "______ _'



Shatt whic , _ . f. .. n .. - , . , it '_ :er

thc .egion. o hr,, ' -n ;,ý'u,' regic'n o' th." ,-ax.'s wLho 3 (r.)

is non-zero, skt hto IurI! 'A;on:. • iuZiL , c In A

the sketch:
stedy"taes -he •region whore g is ncn-zero

Physically,.the points v.hexe f. or fZ pass thro.ugh zero are

steady states when the flow is fixed at w, or w2 resloectively. The

requirement that the slopes of f.. and fz be negative at these

"points for rcolutions to exist between them is just the svmo as

bho conditions for stability of those steady stateo. At the

stationary ccnd t.•oL', then, the c.ste. will oscillate in a region

""bounCed by stable steady states corresponding to the two different

f low rates.

- " Some additional qualitative information on tho shape of the

. prcLabil-.'y donsity function may be infoered from the behavior of

* equation (6) near tho ends of a stable region. Near the roots of f,

where a, is the -oot in question. 3f a, is a stable root, then fl (a3)

-.. will be ncezgtive. For vwtlue of x near a2,, cquation (6) then becomes

d

Lnce %2/"X/ (x) will be'negligible co;pz.red to %,/f' (a;) (x- al)
............. ............. ,.•...'. ... i.

This gives ..

g(x) • c x  -a, . • ... ..

Then, asx-a ' X .,,.......
c. r

_ _-" .. . . . .. .. ... ' 2 1 ... ,



miere r anar s r;rc .v-rn L)

Thus we cee that tho pro>ability density, p, (x) + p. (x) , will.

have an infinity at x-al if r<1 and a zero zt x-al if r>l. It will have

an infinity at x = a 2 if < I and a zero there if c > 1. in

the fortuitous case where r - 0 or s 0 0, the densi.ty will

approach a non-zero constant at the respective point.

3. Iesutits for Sinnie " t

Unhile we are interc:ztcd pri'.aril.y in tho behavior of the

modol• in the case of an ~c1liabatic, e>:othermic rea'ction, wu

first derive the results for simrN;ler reactions for com.rarison.l

Thus for an isothermal first order reaction, t:he right hand

side cf equation (2) becomes .

"f(w,x) -w ,(xo-X) - ' (8)
V

where xO is the inlet concentration and k is the rate coeffiC.ient.

Defining a new variable y by.

x- W,.. , . W ; X ^- W ! - : e,V . . . . . . . - . .....

I W 1 I>v r-(

"The solution to equation (3) is

pi-(Y) PI~-ll

"P: : ) (' +-1 a 122 (9)

1 . '.. (.y)

i...."'..Y " •( ,s Z •,



W, +~'4

V V

s olrn t\'pi.c~j cvi:vQ.s £oYi : (x + -,, (x) Cciic.lated i'rorm (S) are

shown in~ 1ijz~ . In Perfo,-'i-,; the c~1cu2.ation the tiime

has been scacdcc so thit v/%-,, the residence time, in unity.

xhc et!r ud a. t~nc vi~oiw'

W P!w. W1 W

(W - W /,

!;ox Lho F;oCOn-e-()ý lc c~ a, the -ýcjh-l heand

nide of equation (2) becomes, - . I

(W~ ~ ~ ~ , x-IO-) ký

V

T'hin~ cain be re;-v'rit-tcn in the f o n.m

(w kxa~ (x+b,, .

* Sol2-.vin Czp~'ti*on (3) then gives

C, Lx'ab l j x-zt'

wn~ecl 3 n rorma1i~z--tIon conrUunt calculaaL.cd nuiwerlcalty.

Curves Calculated. fromr- (10) 106;< quite r'iltliar to thAose Ca-

cu1lxted fro-u (9). An ixapl o£iu-n[3.3

Oe~ry n c.3c~a~.>eb:r~ ruac.'On under l5 ~iabati C

122



r n: t-ý ti it ~c onc ii t rcC o Ic ot~oi1 n xcý

d x~~.x R- '.

dt

C t..

ve c n. (2.4) (3)

Sin.co w Vr~r PocL'i- h

Or sca liy, c-0 rh ' tc %1c r-

'h C16 'uO .~c v! chA aZ n ). ng 411,fc

the zt;t.nr cLuion uvc±n *if c'n'ý vtz:e C"!. w~t cZ

n acj A 4v c, p~c0v 6 Od oln".1 t-hr',t

-~ -,.1211



F

R )Y.,c x n (171,

where

11h~r for this caFse,

The intorcs~tincj foazture of tuhis. systcm-i is the existence of

mul2tiple rooto of f~()and f.(xallowing t-he possibi)ity

Ofe elisjmt. rcio o non,-n c!:o pro:.'ri lizy. :-'igure 2, 'or

!ý,hovei a cnzo whorn bot Ah Z, (:.) and f,.3 (%) havo three

in thiti case the entire probabi lity distribution would

bc containe(7. in two smrall rcgions. one amogion is boancled by

th c zinallc--t root -of f, (x) and t-he 'smallest root of fza (X), and

* the otl,.crt by tho lit%~ root of f. (x) and thae largest. root of

~(X) . The latteor two points are vcry close together and also

very C_.r..jrOn týo X-l, so thiat 2Liuv canxiot be seen distinctly' on

the g:aph. Note t~hat tlicre will be no probability of being

betwecen thLei two mi'.edl2e ::oot-s, since f~(x) and f~(x) c).-oss the

axis with positivLý slope at these poi.nts. The middle roo'ýs of'

the two c-Lirves rrentunotable steady states of the system"

with coný:t,7-it flcm rates. .,.I relativc wceigh1ts of the tL.,.

rcgio~i- arc arbit'rary, ceopcnAin on thc init-ial probability

dit~tributi ,'on ol! thlli sys tem.- The fact tlbat thev rrobabi1.3 ty

of being z,.nrvhcre hetwoe,,,cn the two regions is ,7ero, together

ý*..I thr t thi;ý' ther cornecntration varies; continuouoly with

~ nce t. conce:.k ViA on of~ tho



two tAcrccjion3, it .. il rwe )rcc'~ f

'The I-,it I2cr~~r O'd ccncorntýatiorn, or h-!-h con-

k version, corrcerronds to an ignrite-0 stzoto of' a cor-buotion

proccss, while t-h~e stablec rccjion at hi.gn concentration, OIZ

udrcond.-tionn CV.ere 0ahofte6 lw ae

* tlvcoiioh -th.,e stirred rear-tor rermli- +n c~ ur ir"n-

icgnited steady si~titc when Inold slteadly, tlvpoýti~t dis-

tribution will be concentratýýc3 ovwýr two st~tblo regjions. if

the system is once igniter-d it wilnot bec<nw- cxtiný,"'iE-hcd,

ndif it is rnot ivnitcd0 .t )i -iot rpnn-.;)ncousl ii.

*A more int-cresting rsitvation -,.:i,~wh the Nlrcln~eter.

valuc.- arc Such t' f., (.-.0 lhvr only a w cont n

(icjnicd) root and :C (m) hcv. only a i h-oc'nrton (r'.x-

* iniihe)root. This v~2lbe 4il)untlratcd w ith aco crt

ex:avple, namely, the oxidal-ion of CO i~n aul onot~vo cxliau~zt

* gas a-4terburncr. RecUti-O.1 rate C:XPrOztC'rS-- for thi3 - ce,

* are given by 1(ozlov [6 1 7or xa gas won .riont y

ap :mr.chis oequat-ions (rcua~hly) by

LCQ3 -3. 16 X. 10~Co ?': I

(i.e. 3. 16 x 10 F, -?z 32,2L-O0) . As umrig na00%

and AT~ 440'r, whichi vc.'u~itldli occu-- tncc'½: t-

load eng4ine cond.t-ionts, N,.'c finc. ý 20 azn,ý C' 0.3.., ScaliL'C"

the time by, tVh rcoiA'.ýnco -tt.nLm L"' th1ý1 x'-10 t('~

9 eqation (18) ir c~~ to w~ nzh:.-¶~ h c~dnette

* x'~t Pr vzbh'.ob y 1VCY!.z 1 :cI%--"r-A e (

erc ~ ~ "A,"."



J.27 riý:.cc. and for tw.ýo diffc.c'nt valluez of the fluctuation

r~LL o A vitlue of h-l i-),liCf that,ý the flow SwitChes o11

trne averagle, once erres-l~enee tx~n. It can '1c snen that

derisity is rquitec senFitj-vc to the fl.uctuation rate. In the
ahvsenca of C'ctxati~oný, t6-he pý, amotar valuer.-s used give two

st-able sten&-xy 'Iat~ nr Y2~ .752 E,9 t can be seen

that aL the fluctuatiori rate increases the probabil.ity dcnt2.;.ty

CL~veCICLý.CPc roak-s- in the area of he Points.

Tio comp~iare the pc'por't-ior: of ou-r mnodel to those of a

~tid'flow.' systc'.-n 3.t is t~u to COmtpl'te the vcanou'ý.ct

concecutrat4,on. In doi~n- so, one rmust ~.t.gihbetvcen the'

Itimlc-averacjv(r4 and th fow-avc;~.e, v<le ,%c~

<x> jp (X) +n*ý (m) ICIX .(20)

~an t16he flow''-iAverageC by(2.

<x> Sx" P', (W) + wz. &

* it is thc' f ow-avoeragjed value that detcrmines tho conversion

* cfrficiency "or CO oxidation, w'hile the timc-average io the

*.value that would bu measured by a prolbe at the ouitlct.

Curves SIM.Uar to those In "igure 3 were calculated for

* dif -ferent" residenc ti, s The flow-avereace conccentrations

obtai.ncd xrro thcstý, are plotted in X'icoure.4. The curve for

*stoady f lowy is also ýýivon -'or cornparis on.' it can be soon that

the nain er-ect of thc fliuct-~tiatons is to smear out the regjion

of blownut, m,'ýkino' it more cirac2ual. In add, tion, as th fu C-

r~c c~'~nthebowt po:lr.nt i's r'hifted s orewhatt
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Ntwards ew reSid U n the.

region of lo'.y conversion the fluctuations improve the per-

* ',' .. ,formance somewhat. In apractical design, one which gives

nhigh conversion, the fluctuations will always decrease con-

version, however. The magnitude of this decr'czse can be

kep. small by a design which o•Trates far from blowout,

Another queztion of some interest concerns the errors

that result in measured reaction rates due to flow perturbat'.ono.

To asses this effect an Arrhenius- plot 'as constructed for t..e

, same conditions as Figure 4. This is shown in Figure 5, where

In (kNaM) is plotted against E/fKT>. Haere ka is the apparc,. t

• -iate coefficient. Curves are rhown both for time-average L&.d

flowu-average data.,* It can be seen that if the data cove.:s -

sufficiently large range the errors in ieasurcd rate %qill bh,

small for the particular cond4_tions uscd.

5. Closure

Thus, we ,have seen how this iclealiz,2d model can be unccd

to evaluate the effects oý' flow-rate pertu'rbations on the

.:rorrmance of a well-mixeck corbustor. It must be emphasized,

Sthat ,con~clios dawn n this manner depend stronqly

on the assu.rtption of perfect, mixi'v. Thus one must use

caution, in applying th-s procec½.ur to situations where depa-tuw:es

. .fro perfect mixing 'may be mooren, ±t than f uaLJ'xnt in

,.............. . ...... *

. . . . . .. . .- .



191
1.F. J. ~rr' 'T -orhantic XL*i.-na Model. CfOr Turbulent

~½ator'' i'.D.~.:;i, itl.y Universýity of Now Yorkn (19%8),

r2 . J* . R.a~-'k P1.5hinn,- and S'. Katz, "Stochastic
mixincioq l for Chcroincal 1?.cc'ctors", 1,40C 1"undameritals 6,I

3. F. J. rn&ckS. Xat:z and R~. S1,1nnar. "Interpretation
of ~ ~ - -~e ~r.~nt yt~ zt lcuating Throughput",

I/Ec Pun w;c~t~l 4,4311 (1969)

-. 4. P. -f. Nrij-mbec' S. Xatz tand R. Sh nnatr, "A Stochast1tic
xc~dol for ý'Iuldizud Be~ds&', Chenm. xEng. Sci. 24, 1497 (1967).

S . I. XIa. Xats and N.. N. Xrauovski~i, "On the Stability of
S Y c-m s w itPh Rtr, dorni u? cters" 24 , 8 0 9-0823 ( 196G0)

G.. G. Xr. 11ozlov, " On INign ToeauoOxidation a-. Methane",
£t~vcnt-h sy mooium (int- c-nt ion,%!) on Combuctioll, 142-149 (.~)

* cp '(( 1eit -Thlis yOrt- las bc-cn tSupport cC by the All~ Force, officre
of Scien i £iic Researcli AVCQSR Grant ;',. '921 C67

2 9.



I Rb ~ i " fI-- D ' i UI- I.,

.. .. . ... ... . .. . .......... .

...........
I~~. . . . . ..I; ..... ''*'

... ..... . . ...

..... .........

- 1..:. i: ;W I

.. .. .. ...

II I

,,,,,,.......... ...........

I t
_ . . . .. .. .. . .

I.. ~ ~ ~ ~ ~ ~ ~ .. ...i....i.I:ii~I .........I

..' .~ ., . I

I .~ .' .I

.: .. .. .



.. ... . ...... ..1..
I , ,~ .......... ....

t i t .. .. . .... . I

.'' i' ' ' .. .. .. .1 ........... .... . . .. .. ..

~.... ...........I
. . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .... . . . . .. .. . . . . l .. I I.. .IIi

aI . 11 . ... .. .

J iw ... 'I.. :uii::'[lz II 'I * I ý

4.4..}..... ... . i*

L.. ... .. L. ..........t...
;T liii: Ifii'

j u i 1

At 17- I 7- I .

.. .. . .. I .....

. I . .a I -. 4

L.5J1, ;



IA- I - I

-- '---j--IL

l i -4' 44 1 1 F .I

* -~7-1 44-1-1- I I . - 1- -_ _ __ _ _

I 17 -1 Ai il

LAI



LU
---- -----

II j

I IM
T. I--

-l 4- 1 1 4 *

I L!

It_ LI l;1Ij1
t

j )

iI i r

til ~-1- r

S _ ±1- d.q



134

L.,I,, -T.*
"H+.L i I ti-**--**',*

-4.........

M..
I'', T

r I,

*--.-~17'-. 77,

.7 ILH :4..+1 4iIII 'S '\~,II I

.1. 11 ii .~vK~-i14

+ ri

PH , j-,,


