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ABSTRACT

In the study of chemical reactions in turbulent flows
and packed and fluidized beds, the flow itself is Loo compli-
cated to allow an accurate analytical description. 1In the
analytical study of these reactions, some strongly simplified
idealized flow models are commonly used to allow an analytical
treatment. 1In these idealizations the stochastic nature of
the transport processes as well as their spatial inhomogeneity
are usually neglected, This investigation encompnasses research
to evaluate the possible effect ¢of the stochastic and non-
uniform nature of the transport processes on nonisotherual
nonlinear reactions, It is especially in fast cxothermic
reactions that the magnitude of these effects could be con-
siderable, as the concentration and temperature gradients are
often steep as compared to the sciale of the stochastic pro-
cesses. New approaches to the evaluation of the magnitude
of these interactions are made, and phenomenological models
for turbulent flows are proposed, and related tc real flows
by tracer experiments. The use of tracer experiments in the
design and study of turbulent combustion reactors is discussed,

The results of this study of the effect of the random
and non-uniform nature of transport processes on nonisothermal
nonlinear chemical reactions in turbulent flows and the be-
havior of energetic chemical reactions under transient and
oscillating conditions should aid in understanding the start-up
and control of chemical reaction and propulsion systems,
unstable burning in rocket motors, and design of supersonic
combustors,
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A difficult problem that faces the design of any com-
aguirmant iec tha fart that the flows are turbulent
and often complex and defy a complete analytical description.
Mixing processes are very important in any fast reaction and
often they are the dominant factor.
There have been historically several approaches to

the problem.

1) Modeling oi the tflow systewmn Ly some simplified snlvtion
of the Navier Stokes equations, making some strong assumption
about the average properties of the turbulent fluctuations,
An example of this approach is the work of Corsin (1, 2), and

Spelding's recent work on modeling of combustors.

2) Modeling of the flow system by some simple phenomenological
models such as stirred tank or a network of stirred tanks, and
plug flow reactors (3, 4), or simple diffusional models such

as eddy diffusivity (5).

3) Modeling techniques based on tracer experiments (21). 1In
some sense this leads to a better formulation of the simple
models mentioned, but it also allows some direct conclusions

as to effect of mixing processes on chemical reactions.

This final report summarizes a siy year effort in this
area. Our apprcach centered mainly on the third apprcach on

phenomenological models, based on tracer experiments. As we
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had no experimental program our main goal was to provide better
tools for the experimentalist and the designer, and to provide
a theoretical base for an understanding of the effects that
turbulent mixing processes have on combustion reactions and
the way this effects proper design procedures. The special
and central featurea of our work in contrast to others, was
that we nade an attempt to include the stochastic and fluctu-
ating nature of turbulent flows. Most simple phenomenological
models simply neglect this feature and replace the non-steady
mixing processes with steady state models, which describe the
average pbehavior of the system.

It might be useful to divide the description of our

results into two main areas,

1) Use cf tracer experiments in the study of reactors and flow

system. ,
The first publication (ref. 6) still dealt with tracer

experiments in steady flow systems and tried to show the re-
lation and similarity between eddy diffusion and models huilt
on networks of stirred tanks. It showed that networks of
stirred tanks can describe diffusional process to a very good
approximation. Such models are mathematically far simpler to
treat than models based on eddy diffusion. In complex turbu-
lent flows eddy diffusion itself is only a very approximate
description, and the added complexity introduced bv the use
of diffusion models as compared to networks of stirred tanks
igs v~~r seldom justified. Ref, 6 also introduces methods to
inc: - s3e local age and antiage distributicns, and discusses

their application to reactor modeling.
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In ref. 7 an attempt was made to include the stochastic
nature of the mixing processes in such stirred tank models by
allowing the flows between the stages of the network to vary
with time in a random fashion. The main flow in and out of
the system was still Xept steady. In ref, 8 the mzain £low was
also allowed to vary. In these two papers we tried to eluci-
date two things. One is the effect of the quasi steady fluc-
tuating behavior ¢f the mixing ﬁrocess on the overall behav-
ior of the system, and second, how to evaluate and perform
tracer experiments in a fluctuating flow. An understanding
of the latter is lmyortant if we want to use tracer experi-
ments to model a turbulent flow. The problem is not only im-
portant in reactor design but also in physiology, ref. 9. A
useful concept in Modeling r;actggi the basis of tracer ex-
periments is the residence time distribution, and age distri-
bution as well as local age and antiage distributions. 'These
concepts derived for éteady flow is generalized in these two
publications for randomly varying quasi steady flowé, and can
be very helpful in studying such reactors. '

A theoretical framework is presented for the interpre-
tation of tracer experiments in quasi steady-flow systems,
where the inflow and outflow, as well as the internal flows,
exhibit statiohary fluctuations about fixed central values.
The fluctuating throughFut leads to'the consideration of dif-
ferent types of sojourn time distribution cof material in the
system. These are discussed in detail, and related to dif-
ferent ways of carrying out tracer experiments on the system,
The standard experiment, in which a known amount of tracer is

injected quickly into the inlet and its concenitration measured

-
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in the outlet, leads to none of these distributions. Ref. 7
and 8 also discuss methcis that enable one to compute the

probability distribution of the outlet concentration for such

-r

networks with random int=zistage Zlcws., TFor. firet arder reac-
tions the results are analytical and can also be directly com-
puted from tracer experiments. For second order and adiabatic
systems, numerical solutions are required, but this is still
simpler than simulation motheds. IFor a single stirred tank
with fluctuating throughput or fluctuating outlet concentra-
tion, analytical solutions are possible for any system in
vwhich the reaction rate is expressible as a function of a
single state variable, This therefore allows analytical
treatment of adiabatic irreversible n-th order reactions.
This result is used in ref, 16 which will be discussed later,
Understanding of random mixing processes is also important in
quality control in the preparation of propellants. Applica-
tion of our methods to such problems is dicussed in ref, 10,
A ditterent approach to tracer experiments in modeling
flow reactors is the use of a reactive tracer. Two experi-
mental methods have been proposed. The first was.by Orcutt
(11) who used a simple first order reaction (decomposition
of ozone on a catalyst) and varied the reaction rate by varyw
ing the temperature., Another more promising apprcuch was
formulated by Zahper (12) who used a complex consecutive reac-
tion (exchange of neopentan with deuterium). 1In both cases
one obtains a Laplace transform of the residence time distri-
bution. This is of special advantage if one deals with
multiphase system where the reaction cccurs only in one phase

as one obtains directly sojourn time distribution only in the
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active phase. The difficulty is that one obtains a Laplace
transform instead cf the more commonly used residence time .
distribution. Inversion of experimentally determined Laplace
transforms is difficult. In ref., 13 which is available in

preprint form, a method was developed which circumvents this

Aifficulety. It is shown that the informaticn needed for
purposes of reactor modeling and design can be directly ob-
tained from the experimentally measured Laplace transform,
without any inversion. In fact, in many cases this informa-
tion might be more useful than a regular tracer experiment
with a non-reactive tracer., Till now, the method has only
Loen applied to fluidized beds, but it could be a powerful
tool in the study of complex flows occurring in combustion
reactors.

The methods described in (7) and (8) can alsoc be ap-
plied to the description of particulate systems. Particu-
late systems, involving distribution of particle sizes, and
gimultaneous nucleztion- and growth are quite Important in
combustion. (Metal oxides in solid propellants, so@t forma-
tion in jet engines, combustion of droplets in rocket motors,
etc,). There is an advantage in using probability theory in
describing such processas as it often leads to simpler fornu-
lation of the equations. This is discussed in more detail
in rei. 14.

The basic methods described previcusly, especially in
ref. 7 and 8 were applied to practical prohlems in reactor

design and modeling of combustion reactors.

2) Design and Modeling of Combustion Reactors.

Ref. 15 deals with fluidized beds which recently are

[T g




becoming more and woi€ important a2s ocombustion reactars,
So0lid particles can be burned in fluidized beds, but there
is alsn an alvantage of combusting gaseous anda liquid fluids
in fluidized l1eds of inert particles, or solid parti~l.s con-
taining a catulyst. The bed keeps the temperature uniform
and provides a large constant temperature sink, aliowing
stable combustion to be carried out at lower temperatures,
which reduces nitrogen oxide emission. One of the disadvan-
tages of fluidized beds that the gas solid contact is quite
non-uniform, as the gas forms large bukbles, The local
transport processes are therefore highly fluctuating in
time as the time scale of the fluctuations is of the same
order as the residence time. Using the modeling methods
discussed in (7) and (8) it could be shown that the net re-

sult of this fluctuation is to reduce the effective volume

of the reactor. Only part of the particles are reacking iw J.dt

any time. This helps to understand and explain some of the
known behavior of fluidized beds.

Ref, 16 deals with a completely different problem.
In some combustors the feed rate is varied, and fluctuates
for different reasons either due to control or disturbances,
If one looks at a small region on a turbulent combustor one
can also look at it as a mixed region in which the inflow
and outflow rate, as well as inflow and outflow composition
changes. Now if we consider a single stirred tank with
fluctuating throughput (or fluctuating inlet concentration
or temperature) the method described in 7 and 8, allows one
to obtain analytical solutions, even for exothermic reac-
tions., What one obtains is not just the average outlet con-

centration and temperature but the whole probability distri-




bution. This gives one an understanding of the eiffect of
random fluctuations on a combustor, especially with respect
to atability, apparent activation energy and average conver-
aion_  Por eome comhnatnre where the Aisturhancaes are in tha
feed rate, this is a quite realistic modeling of the process,
For real turbulent mixing,guhis is a strong over-simplifica-
tion, but st!ll it has the advantage of giving an analytical
solution for complex reaction systems. The methode derived
could also be useful to study the effect of unstable burning.
A completely different approach was taken in ref, 17
and 18, in dealing with stirred combustors. Intensely stirred
combustors have played an important role in the study of com-
bustion kinetics (3, 4). They are also used as highly compact
efficient combustion devices, Mostly such ideally stirred
combustors are treated as if they were ideally stirred tanks
of completely unitorm concentratior. 1In reality, this is
seldom *rue as the residence_ﬁime in combustion is very short.
In (17) 5;6 (18) the following method is used to estimate the
effect of imperfect mixing on combustion. The feed is assumed
to consist of small droplets or pockets, which maintain their
identity. If two such pockets or droplets collide they mix
completely and separate immediately into two droplets of the
same average concentraticn and temperature. A mathematical
machinery is set up which allcws one to follow the distribu-
tion of concentration and temperature in time. TIhe mixing
rate of droplets can be measured from a tracer experiment and
can also be approximately estimated from theoretical consider-
ations. We car. now estimate the minimum mixing rate necessary

for the results to be well approximated by an ideally mixed
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reactor. We can also see in what direction incomplete mixing
effects the results, In ref, 18 some guidance is also given
as how to design and scale up an efficiently mixed stirred com-
bustor for gaseous reactants. It is also shown that many of
the kinetic data reported in the literature were taken under

conditiona where the assumption of an

........ 2 iy 2

ideally ‘stirred reactor
is not justified, and mixing effects cannot be neglected.

In ref. 19 the effect of transport processes on the

heterogeneous combustion of solid ammonium perchlorate is dis-

cussed, It is shown that some commonly utused theoretical models
for the combustion process of AP lead to totally unrealistic
reaction rates and diffusion rates.

Ref. 20 (available in preprint) deals with the design
of nonisothermal reactors. It shows that for any first order
reaction a plug flow reactor with a prescribed temperature
profile is as good or better than any other reactor configura-
tion. This is not true for adiabatic reactors but only for a
régctor in which the temperature can be imposed from>the out-
side., While this is in itself an important result in chemi-
cal reactor design the method by which this is proven may be
of more general interest for the combustion researcher.

Complex first order reactions can be looked at as Markov pro-

cesses, in which the concentration of a species is interpreted &$

the probability of a molecule to be in state i. Reaction rates
are then equivalent to the transition probability of a molecule
to go from state i to y. This gives one some powerful tool for
studying nonisothermal reacticns, as the mixing history (where

history means the distribution of successive sojourn times in
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each temperature region) completely describes the composition

at the outlet.
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Abstract—A general method for calculating residence tinie distributions for systems with internal
reflux is described. The method allows the derivation of the Laplace transform of any system com-
posed of mixed vessels with both forward and backward fiow between them. In particular, the
properties of a lincar cascade of mixed vessels with forward and backward flow between the vessels

s discussed.

INTRODUCTION

FLow systems with internal back-flow or reflux are
frequently encountered by the chemical enpincer. In
many cascs this reflux is induced intentionally,
whereas in others it is inherent in the propertics of
the flow system used.

In many complicated flow processes the enyincer
uses some simplified flow models to describe the
fluid—dynamic behavior of the system. Such an
approach has been especially fruitful in reactor
design, where it allows an approximate analytical
treatment of the kinetic processes in the reacter
One such flow model, which is of very general in-
terest, is a network of mixed vessels with both for-
ward and backward flow between themn [1-3). The
advantage of this model is that with a large number
of vesscls it approximates molecular or eddy
diffusion.

As there is soine similarity in their residence time,
such networks with a forward flow only have also
been proposed as a model for packed beds {3, 4).

As mentioned in a previous publication [§),
measurement of residence time distributions often
allows a good evaluation of the suitability of a
specific model to a specific process equipment,
However, only few residence time distributions for
systems with internal reflux have been published
[6-8).

In the following, a mcthod suitable {or the cal-
culation of the residence time distribution of any
system with internal backflow is described, residence

timc distributions for networks of mixed vessels are
riven and the general properties of such systems are
discussed.

GENERAL METHOD

Consider a system composed of » stages in series
(see Fig. 1). It is not necessary to assume that
various stages and/or flows are equal but all stages
are assumed to be ideally mixed vessels. For a
complete definition of each stage it is necessary to
know:

(a) the volume of the stage V,

(b) the four streams 1, w;, 4;~y, and w4,

U, U; \!:I - U Uy v
Y W W, Ve {w,  w] Y [wa, W Va

Fio, 1. Schematic diagram of system.

While the link velocitics u, are not necessarily equal,
the law of conservation of mass renders
U+ W =+ w (1a)
aind
Ui —Wm =W =V (1b)
where v is the forward drift velocity of the fiuid, a
constant characteristic of the whole system, and

pertaining to each stuge. The average residence
time in the total system is given by

E(H)= % (10)

* On leave of abscnce from Technion, Israel Institute of Technology, Haifa, Isracl.
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! "All ptoblems dealmg with residence tinte distribus--
ion ‘can’ either bc formulated by’ deﬁmng the dif-
ferent flows and transport processes of the systent;

¢oor, altematwely, may be approached (and defined) -
iby viewing a singlé partxcle and describingsits pass--

age through the system'in terms of probabilities.’
For-the system described in Fig. I the latter
.-approach cah: be exhibited in. the following fashion..
i A particle starts its residence time in the system by
entering the-first.vessel— Tt s'ays there for-a random’
-.time..and ; .moves forward into- thc scoond \csscl
! _After: an- addmoﬂal*rand(’m txme, -durmg whuh 1t
.' stays.in ‘the second “vessel, it ca “either move for-

_ward"into -the third vessel, or backward into ‘the"
+ « first-with prescribed: probabllmes for each-of these. -

alternatives. However, it can-move to a-neighboring

" .vessel only or, in the-nomenclature-of thetheory of - -

stochastic pro¢esscs, to a neighboring state. This
- type of proccss is usually referred to as.“‘birth-and
" death. process”. ~ We. note that the first vessel is
different from the othersasa pamclc in it can'move

“forward only; the last vessel is also unique, as'a

particic leaving it in the forward direction, cannot
- return to the system. - This is the termination.of the ..
. process apd in the nomcnc[atunc of birth-and-death
.(as well as diffusion) processes the.time elapsing -

between entry into some state (in our case: the first

vesscl) and absorption on entering another state.(in
our casc: a ficlitious (n4-1)th vessel from- which
no return to the n-th vessel is possible) is termed a
Jirst-passage-time. Thus, for instance, in other areas
of birth-and-death process applications. the bisy
period of a server (in queueing theory), the time fo
first emiptiness (in dam theory), etc., are first-
passage times. The residence time of a particle in a
system of connected agitated vessels is a first passage
time and it is worthwhile to analyze it as such so as
to make use of well-cstablished theory and lines of
research. To dcfinc the system on these terms one
now has to specily:

(a) The probability distributions for the sojourn
times e,(?) in each stage (thc sojourn time being the
uninterrupted time a particle remains in each state).
The average sojourn time in any state is obvicusly
equal to

Vi

Eft}=
‘{} "|+M‘

RevtL SHINNAR and PinHAS NAOR - - -

" If we assume the vessel under consideration to be’
1deally mixed the sojourn txme is an cxponcntlally
“distributed random-variable -

ef(t)= 'he-"" o )

. where #, is the reciprocal averige sojourn time

m=[E,{:}1* e @

(-b) ~Thc.probabxlmcs of a partlcle assocxatcd thh
for\vﬂrd and hackward movement: mto a nexphbor-

mg state, Clearly in our.case ‘of ideal mixing -such =:

“probability is independent of thé realifed sojourn
time -and can_ be: derived-from the flow -velocities.

. P Wy
R L T »
. _u,+w,

- -and-the bomplemchiary probability of - moving for-

ward is obliously given by [ —p,.

Let us fix attention on a particle in the i-th state
and inquire into the characteristics of the random
variable “future residence timet (as measured from

®) -

-The prob_ébility otimé,vingébackward- equals - o . .

the present-instaat) of the particle i the systéri™, =

It is convenient to refer to this randony variable as -

““anticagé” since it is completely anatogous fo ":rge
of the particle in .the system. : -

On considering the -physical sxgmﬁcance of the -
“two conccpts ‘anti-age of a particle resndmg in the
first state” and “‘total residence time™ one draws
the conclusion that one density function, f,(¢) say, is
representative of both. It is connected with the
density function of anti-age in the second state
through a simple convolutional relationship

fl(‘);—‘j;@‘i(’—x)fz(x)dx';et(')"‘fz(f) (62)

-The dch"sity function of anti-age in an intermediate
state (i.c., other than the first and the last) is related
to those of both its neighbors

fn(’)’ Pi(’l(’)*f_s- {(D+(1=plen*f, (1) (6b)
(i=2,3,...,n-1)

t In some studics (e.g. [19]) this is rcferred to as “life
expectation™. However, in-the statistical literature the term
“expectation’ is uscd to denote an average; hence we prefer
the notion of “‘anti-age™.
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The mterprctatxon of the right-hand side of Eq (6b)
is the following: The duration of sojourn in the
ith state is associated with the density e; regardless
‘of the particle’s future course; a transition to the
(i—I)th state will take place with probability p;;
and . the. additional future residence time (as
measured from tim: of entry into that state) is
governed by the density f;_,(f); the alternative

.,_transnuon to the (i+ 1)th state posesses probability
(1—pkand in thatcase it is f; ., () Whicn- reprcscms

the density of the future residence time.
Analogously the anti-age dens:ty function of the
Iast statc is 'gnven by

SO O (1

We have then a set of # equations in n unknown
functions. Let us now apply the Laplace tr.ms-
formahon on the set (6); we define

L{s)= f o @

on designating the Laplace tiansform e (1) byé(s)

and making use of the fact that the Laplace trans- .
form of the convolution. of two functions is the -

product of the Laplace transforms of the contribut:

ing functions-the set (6) can be triansformed into:a"

set of n lincar cquations with » unknowns L,.

Ly=#,{s)L, - (82)

L= pEds)Lie 1 +(1 = gLz, (1<i<n)(8b)
Ln = p.é.‘S)L,, -1 + ( l - pu)én(s) . (SC)

In principle this can be solved in an.elementary
fashion. The residence time distribution is obtained
by inverting L. In many cascs it will be impossible
to invert L, into a (relatively) simple functional
form but for practical purposes the residence time
distribution can still be computed by standard
numerical procedures. Moments of any order can
be directly derived from the Laplace transform,
which serves as 2 moment gencrating function,

The anti-age density fi(¢) for any stage can also be
obtained from the above equations: the physical
meaning of this is best presented as the residence
time density of a particle injected at the i-th stage.
This might be of special interest in the experimental
evaluation of complicated flow models.

By injecting a tracer pulse or step input at different

e (6c>

* points mto the systcm and measuring the concen-

tration of interest in the outflow, one can obtain a
set of experimental anti-age densities and thereby
get a more accurate check on the applicability of
the model. Similarly, the age density in the i-th
stage can be obtained by measuring the time of

equivalent concentration response in the i-th stage

resulting from a tracer pulse added to the first stage.

It may suitably. be:called a focal age density. " The - .-~ e
Laplace transform 741 can now be expressed inan

explicit form. Since sojousn time is exponentially
dlstnbutcd with parameter n we have °

n+s

We ridte that:for the first: vessel p, is:zéro and -
~oy- is then nj/n +s and «*=0. ‘The  Laplacc -
transform, L,(s), of the first passage time density .
- .. ~the function of main-interest—can be cvaluated. - - -
"By mtroducmg the. above. quantltxcs into’ set. 8)

we obtam

L,.(s)=EZ'ﬂ (2

‘Where A is the determinant

1 a
RS -2
¥ 1wy

3(:_ 1 1 Xy
o 1
(all other entries being zero). T his can also be written

* e *® *
A=1-)aal + 3 ao¥eal
{ §>irt

® * *
- Z a‘1‘+11j11+‘akak+l+. .« (1221)
k> j4Ti+2
where the first sum contains {"7') terms the

sccond sum ("3?) terms and so on.
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The above Laplace transform can be inverted in

the following way: For any finite n the above

expressions can be written in terms of polynoms of s

_f(s)=f,—8 3

which has a_standard inversion in terms of the

‘charactenstxc roots 2% of the polynom p(s). -

I ACHIS

\ o e Zq(a,‘)e )

We note, in-passing,'that the choice of the pro-

spective random variable “anti-age of a particle” is
arbitrary, to some extent, for:the purpose of our
investigation. An alternative course would be to
_subject the retrospective random variable “‘age of a
particle” to the type of argument used in 'this
. section. A set  of relations analogous to (5) would

be generated and the: desired result—the- residence

time density (or rather its Laplace transform)—
would be obtained in the ‘‘guise’ of the age density
in the last state. Equation (12) pertains to. the
Laplace transform of thrce concéptually different
densities: residence time (or first-passage time),

anti-age in the first state, and agein the last state, A

little reflection confirms the’ Iog:cal tdemity of the
three concepts,

The mathematical techniques uscd inour analys:s
_are a modification of Bachelier’s methods—ex-

pounded, for instance, in BACHELIER [9]--combined
with the application of the Laplace transformation.
Altcrnative techniques for the (clementary) evalua-
tion of first-passage time distributions are described
by BHARUCHA-REID {10] and SAaty [11}.

A CASCADE OF EQUAL, MIXED VESSELS WITH
FORWARD AND BACKWARD FLow

Equation (12) gives the Laplace transform of a
residence time distribution for any cascade of mixed
vessels without restrictions as to their relative sizes
or their connecting links. In the majority of cases
‘the chemical engineer is dealing with simpler cas-
cades in which both the stages and the flow links can
be assumed to be equal. In compartmentalized

REUEL SHINNAR and »Pnéms Nma :

runknowns L) (=2, 3, . . . 1) 160 can g
‘ﬁéﬁ?ﬁ“’%m “terms of the above quamltles - and“‘f‘ i

eqmpmcnt technical consxderatxons, such as design

simplicity;- - usually prescribe identical” vessels and,
flow iinks:—In cases where the cascade is just an-

idealized flow model, as in packed beds, these
simplying assumptxons are also often justified by the

nature of the system. It is therefore of interest to .

study in some more detail the properties of such a
cascade,

At first sight it appears that there are still four »

parameters descmbmg the specxahzed model:

) the number of‘ states, n, in the system
- (2) the total volume of the system; V;
(3)-the average drif*. velocity, v;

- (4) the average forward flow velocity, u, between

- the adj jacent states.

Two only of these four parameters are non-tnval :

No loss of generality is incurred if we set both ¥ and
v to equal 1.
gained if explicit use is made in our developments of

- all four paiameters (and of other quantmes dcpcn-

dent on.them).

We drop the general subscrxpts {rom the letters
.denoting various quantitics in the last secticn. The
forward'and backward flow velocities in any double.
_link are denoted by u and w, respectively.. The re-
“ciprocal sojourn times-—the parameters of the per-.

tajning exponential distributions—in. all inter-
mediate (i.e.”other than first and last) vessels are

"1dent1cal -and the use of the letter  will be retained
‘for their description

__n(u+w)
7

For terminal vessels (both the first and the last) we
introduce ¢ as the reciprocal average sojourn time

n(v4w) nu u
¢ | 4 V usdw (16)
The probability, p, of a particle leaving an inter-
mediate vessel in the backward directiont is given
by '

(135

tIin(6)a backmmng rano a is defined as
w
a= W/V";:—'
«

Thus p=a —] +2a-
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Residence time distributions in systems with internal reflux

. £ ‘om.
5 ——E | — - (/)
hWtw n

The anaiogous quantity in the first vessel equals
2zero. In the iast vessel this probability will be
denoted by n; it is given by

nn_l_..-_z..z.__=..-—| 18
vew u 1-p § 18

This can be rewritten as
L (19)

p n

which is convenient for some purposes. It is evident
that restrictions on possible values of n are rather
mild

Osn<t (20)
whereas p is rather constrained
O<p<i 1)

Physically (20) and (21) may be interpreted as
foliows: At the end of the system we can “reflux”
any desircd fraction of the material; however, the
bulk of the materiul—located in the first and the
intermediate vessels——has to possess a forward drift
movemert (I —p)>1.

The expected residence time in the system (first-
passage time) can be expressed in terms of the above
quantities

L(s)=

Uy A2y — (

StV M A1 ..
eIty ( w) (-mp
1-2
u

Next we shall derive the residence time density
function—by inversion of the Laplore transform---
in the simplest cases: n=2 and n=3.

‘In the first of these cascs—n=2—Eq. (12) is
reduced to ’

Ll(’) l"aldz. l— -i 2n
E+s

_ $2(1—n)
E(l—m) 425 4 52

- (1 ~n)
s+ + mEY[s+ (0 — 7))

(23)

The inverse, f(1), of this expression can be obtained
by standard procedures

f(1)=“2l\7;)(e"“ VI ¥ T

V=R, 4. -
=-\/—7_:t€e ‘smh(fvm) (24) -

If we increase the number of states to the case
n=13 complexity is greatly increased but a closed
expression for the density is still obtainable.
Equatioi-(12) bccomes

L)’(.”_)(n —pX1=m)
E4s) \n+s

T—a,0,% — 2,2, | _(

14
;JL. (.lL_)p—-
§+s/\n+s)

BNEAE
n+s)\é+s

$(-n) -
(s+& s+{2i"$’_l(8n 477) S+¢?_‘*‘_7=—v/(87f+ﬂ22
2 2
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The inverse transform of (25} is given by

- 4. st ,__.z‘
L \,’8R+n

+cush(a\/$n + n’) ll

-7_!. - e e .. -
n 7‘)

For large valucs of n the roots of p(s) have to be
found by numerical methods.

Of course, as was stated before, approximations
to the density functions can be obtained and precise
values of momen. cumulants, ete. can be made
available by standard methods. Without fuctorizing
p(s) we shall derive rhe variance (and  other
quantitics of interest) of the residence time fur a
general s by using a varizat of Bachelier's procedure:

Let the expected aati-age of u particle in the i-th
veusel be denoted oy (7. By considerations very
similar to those ' made for deriving set (8) we obtain

(26)

E{rl};n{r}=l-j—“§

B{T) =t PETic} (1= PE(T,o1)
(#t,m)y (N
E{T.) =34+ E(T,1)
The solution of (27) is given by

E{T,}a%[(n——ﬁl)+(n-x‘+2)n+ ...
A ]

t
+m:"'+l"L] (=1,2,...n) (28
~n

t Digressing we nale that in 4 systera composed of
identical vessels and of identical double links symmetry
considerations gencrate the following relation: Expected
anti-age in the iith vessel==Expected age in (n—i+th
vessel.  Actualiy the symmetry reaches farther—<ven the
distributions are identical,

The exccted anti-age £17°), in the system (or, what ¢

is the same, the expecied age in the system) is then
equal to :

1 & I un 1=x"
E{T}=-) E{T‘}=—;[——‘
nay ns

l=n 1=n
-t —pnt
N Sl P Bl SV
I—n -7
1—n? e un+1)
20— 41 =] -
N 1-n+ ] n’l: 2
, +(1_——n;35((n-l)—nn+ 7:")] (29)

Now it is known from SMOLLCIOWSK!'s work?
[18) thut the expected value of the life expectation (or

age) and the moments of residence time are 1elated
as follows

EY Eu

gy =B EO Ly (20)
2E 2

where 3 is the cocfficient of variation of the re-

sidence time distribution, (that is the rutio of the

standard deviation and the average of the residence

time distribution)., Combinatior: of (29) and (30)
yields

2 1 2

[l g

ftn=1)=nn+2m

—l-l:‘—i[n(n—l)+7:’(n—2)+ R SR (1))
non

Since in many (but by no means all) engineering
situations the performance of mixing equipment is
judged by the variancej of the residence time distri-
bution, relation (31} is of some importance. A usc-
ful representation of (31) is oblained by drawing
contours—-that is, lines of cqual y--on a graph
whose abscissa§ and ordinate denote 1 and =, re-
spectively (sce Fig. 2),

¢ The present notion of anti-age is identical with
Smoluchowski's concept of “‘Erwartungszeit''.

3 The reciprocal of the squared coeflizient of variation is
sometimes deseribed as the “cqguivalent” number of vessels,

§ The quantity », origirally conccived as a natural nuinber
can casily be thought of us (i.e. gencralized (o) a positive,
not necessarily intcgral, number,
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]
4 ] (b) Letnequala fixed positive integsr (other than ‘
: ; 1) and assume n=0; this corresponds to a pure X
o - bitlh  process and indeed the correct value— i
! I y}=1/n—of the dimensionless variance (i.e., the i
; i squared cocflicicnt of variation) is obtained. !
i i () Let again n cquul a fixed positive integer |
; . (other than 1) and let » approach 1. Physically, it is :
e : ‘meaningless to let ¢ be equal to | (and # finite at the }
same time) since in that cuse material could not flow . ]
- - “at all through the system, If, however, formally r is |
Y ade eqal to 1, we obtain |
H . 2 1 2 ‘
. of. Vet S[n=D+n=2)+ ... +1] i
i ; [ [ ] i
i 7 ) .
S 20 |
! ol nont 2 i
{ ‘ i.e. that value of 37 which is assceiated with a single
. , exponential vessel. The physical interpretation to )
f be attached to a situation where = approaches |
; . by e - x 5 arburarily closely is the following: the birth-and-
{ wEW death model of a particle fow through n vessels can
[ , F1o. 2a). Cumulative residence time distribution be made to approilch the single e.xponcmial VFSSC’
: t for a cascade of two identical mixed vessels model ., (arbitrarily) close as desired by making «
L' 3 with internul reflux, judicious ct oice of the reflux paramcter a.
i : (d) Let #tend to infinity and simultancously both .o
: 2] - . E{;}z(L ’.) B
| ) ) - T-n¢ 2o
; = "8 x=01 . o R S : i
; E / and a(# 1} ere held constant; clearly -0 and the i
‘; z 1| x=0% case under consideration involves plug-flow. o
v “ o =09 (e) As a final example consider the case where #
f o tends to oo and simullancously = approaches 1 such :
i 04 . that |
{ i S . ; n(1-m)=p (32)
) /et

F1o. 2000 Intensiy fanction e of where p is positive and firite. *his isithe case of
10. 2(b). Intensily function for a cascade of two o o2 O
identical mixed vessels with internal reflux, diftusion and 7* can be cx., el iction of p

' 2 =
The flexibitity of the present model can be Y =;+m{-l*m'
demonstrated by examining special and extreme LM et i
cases; +[(]_(]-.n))_l-—x] . l i
() Let nequal 1; inthiscase there is no physical J s
meaning to the notion of » but even formal use of

; k n=coo, o1, n(l=n)~p i
: (31) with an arbitrary = renders the correct result: )
‘ y¥= 1. The present case simply represents the single Y Gl U ) (33) i
: exponential vessel, s
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Diffusion will be discussed in the next section in
same more detail. Tt i« wall known that hv a anit.
able limiting process the different equations, des-
cribing the behavior of a cascade of mixed vessels
with forward and backward fiow, transiorm into the
diffusion equation. In order to illustratc both the
similarity and the difference between the two cascs
it might be illuminating to perform this limiting
process in terms of the residence time distribution
for a particle.

Equations (8)-associated with the birth-and-
death process—may be regarded as a set of second-
order difference equations. If proper assumptions
are made a second-order differential equation in the
desired Laplace transform (2s a function of the
location of the particle under observation) can be
derived. First we make the homogencity assump-
tion, i.e. all vessel volumies are equal and all double
links connecting adjacent vessels are identical, Next
we define a variable Z depending on i (and ») by

Az=$ ©0<z <) (34)

The required second-order differential equation
will next be set up. Under the simplifying homo-
geneity assumption Eq. (8b) reads (for i#1, n)

Liep L +(0-p-LLyy  (39)
n+s n+s

If we introduce (in obvious notation)

az=! (36)
n

AL"L‘+|“'L‘ (37)
and
A(AL)= Ll#l -2L(+ L‘.. 1 (38)

we can—on multiplying by (4+5) and rearranging
terms—cast (35) into

(I~=pmLiy =+ )L+ pyL, 4
m{pyLis—=2pnli+ pnl,- )
+[(1=2pLisy = (1 =2pn)L;) =L,

- bnd(AL) (1-2p)AL

i —sL;=0 39
n?AZAZ"  n AZ 9

We take note thai—on going to the limit (1~ ,

n=sl: mlamimspdlathe cosfliciente nnfr? and

(1 =2p)n/n tend to the following simple expres-
sions .

min_t  »n 1 40
n? n? E{t}n(l-—n)_‘pf{l} @0
(1=2p)y_1=2p%_(1=2)5_ | @

n 1-pn n _E_{:—}

After multiplying (39) by pL{t} the differential
equation is cstablished as

d3L  dL .
——+p—=—pL{t}sL=0 42
IR (42)

and boundary conditions are set up as counterparts
to the equations for L, and L, in the set (8)

dl.

— =0 (CX))
<dz)(z:o»

dL\

—_— +plizeyy—p=0 44
(dZ)(z.U Plzeny—pf (44)

It can be seen imniediately that the quantity

p= n(l—-n)
nsew n—l

which appears in the diffusion case is equivalent (o

the Peclet number UL/D. It is therefore only

natural to suggest that n(1 —rx) should be identified

with the Peclet number also for the case of a cascade

made up of a finitc number of mixed vesscls.

The proper boundary conditions for the flow
reactor, the correct choice of which has caused some
discussion in the literature {7, 12, 13), are here
obtained directly. It should be remembered that L
refers to the anti-age.  As the anti-age in stage 1 is
the analoguc of age at stage #, the normally used
boundary conditions are hiere inversed with respect
to the length coordinate Z. Equation (42) together
with boundary conditions (43) and (44) can be solved
by standiard methods, details of which will not be
presented here {4, 7, 14). Let a quantity ¢ be defined
as

0=\/(pz+4pE{l}S) (45)
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We have then the follov.ing expression as the solu-
tion of Eq. (42)

ot -2l 5 inh 92 4 coun I8
¢ 'Lpsn 5 >

i ' (46)
[p +2E{1 }stinhg + cosh;

L

This is the Laplace transform of' the anti-age density
given that the particle under consideration is located

_on site Z within the interval (0, 1). By virtue of

arguments analogous to those used before, expres-
sion (46) is also the transform of the age density
function of a particle located on site (1--2); finally,
it is the Laplace transform of the first-passage time
density of a particle injected into the interval (0, 1)
at Jocation 7. The residence time density is
associated with the particular choice of the para-
meter Z=0. The inversion of the transform into a
density function of closed simple form seems to be
impossible, but again precise values of all moments,

_cumulants, cte., can be derived by standard (though
~cumbersome) procedures and approximations 1o the

deusity fuhction are readily cstablished.

We note here that the formulution of first-passage
time problems in terms of second order differential
equdtions in the Laplace transform goes back to the
work ol DARLING und Siegekt [15).

"PROPERTILS OF CASCADES OF MIXED VEsstiLs
WITH FORWARD AND BACKWAKD Frow

In principlec the methods discussed in the previous
chapter allow the derivation of the Laplace trans-
form for any system with internal reflux, provided
the system is made up of elements with known re-
sidence time distribution. Specilic solutions were
obtained for cascades of equal mixed vessels and
some typical results are aiven in Figs. 2-5.

In plotting the various residence time distribu-
tions, both the cumulative distribution

Fo)= J “ fndr

and the intensity function /(f)

A= _&._— —~dInF*(n)
F*'(t) dr

are given, It was shown in a previous paper [5]
that tie inlcnsixy tuncion iy ui advaiiage b piot-
ting such distributions as it allows a better physical
insight into the nature of the mixing processes in the
system.

Fe{t}

2 & O N @w-
T ¥ 1

23 i z 3
/€ (1)

~

Fro. 3(a). Cumulative residence time distribution
for a cascade of threc identical mixed vessels with
internal reflux.

w0
el
r=0-$
=09
- 1 b 1
Q ' R L]
/e (1)

Fia. 3(b). Intensity function for a cascade of three
identical vessels with internal reflux,
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b R 3] 23 3T
t/E {1}
Fio. 4o). Cumulative residence time distribution
(1) for a cascade of five jdentical mixed vessels
with internal reflux.
8
4
7e0
Y
-
=
o 2 wuO3
[ o2t
' a0
1 H - L}
[ T ¥ L] L)

H/E 1)

Fia. 4¢b). Intensity function for a cascade of five
{dentical mixed vessels with intetnal reflux,

Figure 2 gives the cumulative residence time
distribution and the intensity functions for two
cqual mixed vessels in scries and different vatucs of
1. Figure 3 gives the same functions for three equal
vessels in scries.

In Fig. § the intensily function (sce [5]) of
cascades with cqual cocflicients of variation but

24

:: ) el
20 ik
s

os: ya033

£,
L3 e

° e v . Y ¥ 7.0

t/€ )
Fio. 8. Intensity function fer cascades haviag the
same cocllicient of variation (Q-33) but differem
aumbers of vessels.

different values of n are compared to each other,
f-or higher values of u the solution converges very
rapidly to the solution for axial diffusion,

For cqual coefficients of variation it can be seen
that increasing the value of 1 reduces both 4, and
the value 4 for very low times. The asymptotic value
of 7 is, however, approached at lower values of 1
than in the model with forward flow only, and the
5 function, or i other words, the escape probability
resermbles & step function.t

). can be faund directly from the Laplace trans-
form. Itis equal to the root of p(s) in Eq. (13) which
has the lowest absolute value, In the case of a flow
reactor with uxiai difusion [1q. (46)), -, is givea
by

4 in our previous paper [4) it was stated crroncously that
the intensity function for axial dittusion increases to infinity
with 1. This was duc to a mistake which is corrected here.
The case discussed in the previous paper {Fig. 2 of [5)
referring to {163 Fa. (19)]

[
F*() w%er/J—E;"ﬁ +]§

deals with o semi-open system. There is nu clearly defined
oxit after which a particle can nol diffuse hack into the
systerm. The resuils of tracer experiments wilt therefore lead
1o a tocal age distribution rather than a residence time
distribution. In the case where there is an cadwall through
which particles can pass forwiud bt not backward, Ta. (46)
in this paper or the solutions given in (4] and {14] apply.
The difference between the 1wo cases has been discussed in
{7 and [3]. The correct value for 4. in this casc s
a¥/b which is equal to p/d.
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Residence time distributions in

where a is the lowest root of the equation

a lana_p
2+ 2 4

For high values of p, i, becomes p/4,

For huge residence times the effect of diffusion is
thus somewhat similar to that of a plug-flow reactor
with n mixed vessel in series. In the asymptotic
region both reuciors behave as single ideatly mixed
vesscls. This means that the. particle has a high
probubility of being in the last vessel.

In recent chemical engingering literuture (for
exemple [i14]) the similarity between a cascade
of stirred tanks and molccular or eddy diffusion has
often becn stressed. In 1most cases the comparison
is based on ¢qual variance of residence time, This,
for example, leads to equal dampening of low fre-
quency concentration fluctuations in the input of
the two systems.

However, even for high Peclet number (or low
values of y) the (wo systems are still basically
different. A discussion of the influcnce of the de-
tailed structure of the mixing processes on cheraical
reactions will be given in a separate paper.

The model for the cascades under considuration
in this study possesses two independent, none
dimensional parameters and we may choose scveral
modcs of representation, Thus, in one set of
circumstances, we may consider # and n to be the
underlying basic paramecters; in other analyscs we
may wish to start out with y? and n(l —n). If z=0
(forward flow only) y? becomes 1/n and if n-co,
n—1 such that #(1-n) remains finite, n(l-x)
becomes the equivalent Peclet nuniber. In Fig. 6

"~y

systems with internal reflux

and 7, y? is given as a function of 2 and #(l - =) for
various values of # a1.d for axiai diffusion (n=>w},

In some physical cases there is a considerable
advantage in using as u theoretical flow model a
finite cascade of mixed vessels with forward and
backward flow between the vessels. Asan example,
consider a packed bed or a turbulent flow reactor.
Describing the transport processes in such a system
hy an overall eddy diffusivity introduces consider-
able difficulties when dealing with the transient
behavior of highly non-linear reactions. These

+0,

o8

(-3)

o1l

¢-6

N

O

o4

[-B-)

§ DU Y N T (Y IO O
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Fio. 6. 43 as a function of n for a serics of
equal vesscls with backflow.
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a cascade of equal mixed vesscls with backflow,

1379

- o

R PR DL

i VPPV YRTEIP

& e s an




e vy

neagilinctgy
a——

- T . ™R L

-~

[

-1

ReUCL SHINNAR and PiNHAs NAOR

difficulties can be considerably reduced by sub-
stituting the above described monci of 4 finiis as-
cade. 11 one now realizes that the physical system
8180 contains mixing zones of finite extension, then
this model might even be a bewter approximation of
the aclual flow than the model of axial e¢ddy
diffusion.

A model with forward flow only, as proposed in
(17} is even more simple to treat. However,
such a onc-purameter model is less flexible and
harder 1o fit to an experimental residence time dis-
tribution. The two-parameter model described
above should in many cases lead to a more realistic
description of the trunsport processes,

In conclusion we would like to point out one

property of flow models based on cascades of mixed
vesscls with internal seflux which is useful in reactor
design. In reactor design it is often sufficient to
estimate a minimum and maxitaum conversion with
the help of the residence time distribution. The fuct
that the intensity function A(f) of these models
reaches an asymplotic value very fast simplifies the
computational proccdures considerably. . From
Figs. 2-4 it can further be seen that the intensity
functiqn can often be approximately represented
by a step function. Many practical residence time
distributions of packed Leds (for example, Tig. 6B
of [5)) exhibit the sume property. fn such cases
approximating the /-function by a step function
tends to a further simplification. A step function in
2is nothing clse but a plug-flow reactor in series with
a single stirred tank, The residence time of the
cquivalent stirred tank can be found fiom A, the
asymptotic value of 2, us

E{ =~y

and the residence time of the plug reactor is the
valuc of 7 at which the step cccurs. From this simple
flow model one can compule 4 first-order approx-
imation of the eflect of transpoit processes on con-
version with considerable accuiavy,

SUMMARY AND CONCLUSIONS
A method was derived which allows onc to com-
pute the residence time distribution, for any net-
work of stirred tanks with arbitrary flows betveen

time for a single particle also allows one to com-
putc the 232 dlerribenian and anti.age distribution in
any of the ctirred tunks, comprising the network.
These can be considered as local nge and anti-age
distributions and may be measured experimenially.
The method gives the Laplace transform of the
distributions and also allows one to obtain directly
the moments of the distributions.

The method is demonstrated for a cascade of
stirred tanks with reflux between them. 1 all the
tanks are equal and the reflux is constant a special
simple two parameter model is obtained, these
parameters being the variance 3 and a dimension-
less group n(1 -- 7). If = is zero the model reduces to
the well-known case of a cascide of stirred tanks
with forward flow only. If at constant resident time
the number of tunks as well as the backflow is in-
creased then the case approaches assymptotically
the case of one dimensional diffusion in a flow
reactor, and n(l~n) becomes the well-known
PPeclet number.

Such a model with a finite number of tanks might
be a good approximation of one dimensional eddy
diffusivity. Furthermore, if n is large as compared
to n(l==2) the intensity function is quite well
approximated by a step function.
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PIUMENCLATURY,

cliaraeteristic root

density function of sojourn time in i-th
mixed vessel

Laplace transform ef e ()

(1) density function of iesidence time

J(s) Laplace transform of a function

n  number of stales or vessels

p, probubility of a particle in state / moving

into state (I—1)

Qg
ef1)

¢(s)

the tanks. The method which is based on comput. p5) polynom in s
ing the probalytity density function of the residence g(s) polynomin s
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Residence time distributions in systemis with internal reflux

u, forward velocity between vessels / and L Laplace transform of a residence time

syatemn lg volﬂxl‘m'e of i-th :?sse‘l
w, backward velocity between vessels i and L quantity describing location
(i=1) &, & fur;gtrl;ns associated with Laplace trans-
7 - ve ! M
E‘;Q average resience Lime , y coeflicient of variation
1} second moment of residence time : . :
E o . L L A(t) intensity function
,{l average sojourn (lmc m.Hh stite or vessel probability of a particle in state » moving
E{T} avcrage age or anti-age in system backward
E{T,} average anti-ugs in i-th vessel p constant equivalent to i+ slet number
F*(1) distribution function (cumulative to the ¢ J(pP+4pE{t)s)
right) &, n reciprocal average svjourn times
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v forward drift vclocity of fluid through UL/D Peclet number

Résumé—Unc méthode générale du ealeu! des répartitions du temps de rédidence pour des systémes
ayant un reflux inferne, est déerite. La méthode permet 1a dérivation de la transformation de Laplace
de tout systeme composé de récipients mixtes.ayant entre eux un courant Jdaiss les deux sens, Ln
particulier, les proprictés d'une cuscade linéaire de récipients mixtes avee courant dans les deux scns
entre cuxX, cst discutd,

Zusammenfassung—Eine allgemcine Methode zur Berechnung der Verweii: eltverteilungen flie
Systeme mit inncrem Rilckfluss wird beschricben, Die Methode gesiattet die Ableitung der -
Laplace-Transformierten flr jodes System, das sich aus Gefdssen init Vorwitris- und Rickwirtsfluss
zwischen ihnen zusammensetzt. lin besotideren warden dic Eigenschafien und das Verhalten cinee
Linearkaskade gemischter Gefiisse mit Vorwiirtse und Rlckwirtsfluss zwischen den Geliissen

besprochen.
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10031

, “Turbulent chemlcol reactors are modeled by nc*works of shrred ianks, )vuth the siochashc naiure of the
I mixing introduced by taking the interstage flows to be stationary Markov processss. Some ‘general fea-. ‘
tures of tracer experiments in these quasi-steady ﬂows are discussed, together with their relation to residence
‘time distributions. - The statistics of. tracer. expenmenh are anolyzed, ond reloted on.the one hand to the esti-
. “mation of m:xing parameten, and: ‘on the’ other. hand 1o the forecast of average yield from the reactor
“isystem under first-Grder kinefics. Tho variablhly of the reac'or performance ‘and- the general story of
more complucatecl kmehc meclzamsms are deferred for.a Iater reporf.

Tm. first l'caturc ofa turbulent mvc ng system that calls’ for

mathematical modeling "is its* avcragc behav:or,kboth as’
mixer and as chernical reactor.:
extensive literature of such modcls—-for cxamplc 4,9, 70)-—
from arrangements of stirred tanks to cddy dlﬂ'uqnon systems, :
all capturing the salient features of this average behavior,

Turbulent mixing systems, however, ‘exhibit pronounccd
statistical fluctuations about their avcragc bchawor, and:
these fluctuations are in fact oftcn the dominant feature;of the -
actual performance of the system. Now the full*statistical -
behavior of such a system is in principle opened. to mathe-
matical analysis by entering the differcntial equations for con-
centration change with suitable” forms of random turbulent
velocity. But the studics of Corrsin and,others have shown
(7, 5, 6) how hard it is to follow this linc of analysis to the point
where one can sce working engineering results,

Another approach for dealing with turbulent flow systems
as reactors is the use of residence tine distributions, obtained
from tracer experiments (4, 7, 70). Such residence time dis-
tributions are not only helpful in deriving a reasonable model

. for the average flow behavior, but they also allow the direct
computation of conversion in first-order reactions, as well as
the derivation of upper and lower bounds for the conversion
for sccond-order reactions.

Obuaining a residence time distribution from a single tracer
experiment implics that either the flow is completely steady or
at least the residence time distribution of any small volume of
fluid entering the system is eonstant and independent of the
time the material entered the system (8). This is approxi-

“mately true for the turbulent flow in a very long pije, but does
not apply to many other common flow systems,  For example,

276 1&EC FUNDAMENTALS

And- ‘thereis of ‘course an’

7. .
s

‘hc study of mdu#trxal ﬂuxdnzcd bcds the unslcady naturc of

f'dr nce umc dxstnbutnons, as rcpcatcd tracer cxperiments \nll
gwc varying results.

- The study of these unsteady only statlsucally dctcmnncd

‘. propcrtlcs ¢l ther flow i is‘of twofold interest to the reactor dc-

‘sxgner First of all,"even in systcms in \whlch thc fluctuatizns

'averagc,out suf'ﬁcxently to give a unique responsé to a tracer

}'mput one would cxpcct the- unsteady. nature of the flow proc-

"as eddy diffusivity or a cascade of stirred tanks with fmrward
and Sackward flow between them, |
- Secondly, one is interested in applyi ing the” methods. of traccr

cxperiments -and residence iime distributions to systcxm in

which the fluctuations arc strong cnough to become apparent

in tracer cxperiments, and to obtain the maximum informa-:

tion from such experiments about the nature of the flow.
- The approach that we have chosen-in this rescarch, of which
this is the first publication, is to study the propertics of some
ideal flow systems.which on the one side show all the essential
propertics of a flow with strongly time-variant behavior and on
the other allow one to perform exact calculations. It is hoped
that this will not orly allow quantitative checks on some
common assumptions but also allow one to get some insight
into the genceral properties of such syStems. R
What we present here is a kind of ad hoe engincering model
for turbulent mixing systems, that permits one to make working
calculations of both the average behavior of suchfsys(cms and
their statistical fluctuations. The model does not go back 10
the fundamental differential equations for a tnrbulent flow, but

“esses “to have- strong “cffects ‘on highly nonlincar reaction |se
" tems which are not described by stcady-state flow modcls such -

‘the; ﬂow Teads"to consldcrablc difficulties in’ dctcrmmmg resi- -
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instead separates in a pragmatic way molecular mixing etfeets
from large scale turbulent effects, allocating the former 10 a
number of stirved tanks and the latter to suitable interconnecte
ing {lows,  Our picture of the mixing system thus appears as a
network of stivred tanks, with interconnecting {lows that are
random funciions of time.  And in application, we would
hope to be able to seleet suitable networks, and the correspond-
ing random Hows, to model chemical processing systems
ringing from fluid bed reactors to turbulent flames.

We note that in the steady-state case any residence time
distribntion can be arbitrarily closely represented by a network
of stirred tanks.  Thus a cascade of stirred tanks with forward
~and backward flow between them approaches the onc-dimen-
sional diffusion cquation in the limit, if the number of tanks
approaches infinity while their tetal volume remains constant.

‘The model presented here allows one, with a very large
number of tanks and interconncctions, to describe both the
steady and time-dependent behavior of any wrbulent {low
phenomenon to any desired degree of approximation.  How-
ever, as such very complicated models are not easily amenable
to analytical treatment, one should hopefully be uble to eluci-
date the basic featurcs of the behavior of such systems with a
relatively simple network,

A word may be in order on the mathiumatical form in which
we describe the random flows. e wish to consider flow
systems with a quasi-steady character, and to this end, we take
our flows to be, technically speaking, stationary random
processes—that is, random functions of inie whose statistical
propertics are unchanged by any shift of the time axis.  Specif-
ically, we take the flow pattern for a given system in the form
of a stationary Markov process, so as to be able to take advan-
tage of the very considerable body of knowledge about such
processes—for example, (5). Since, for technical reasons, we
need to control the flows to have nositive values, we cannot
conveniently ase the familiar € aussian processes such as arise
in the description of Brownian motion, and we confine our-
selves instead 1o the mathematically much simpler situation of
flows that ke only a finite number of presclected values.
Indeed,” the numerical calculations we present below are all
for two-valued flows.

The statistical history of a Markov process is governed
entirely by the probabilities of transition from one state to
another. Its present alone is accordingly all that is needed to
forccast its future. The concentrations that develop in our
mixing-reactor systems under the influcnce of the Markov
flows cannot by themsclves form a Markov process, since the
concentration patterns might change in this way or that, de-
pending on the state of flow. The concentrations, when taken
tlogether with the state of flow, do, however, form a Markov
process, and the equations describing how the joint probability
distribution of concentration and flow evolves in time serve as
the working equation fo. our mixing and reactor studics,
Restricting the flows to a finite number of presclected values
does not correspondingly restrict the concentrations. They go
[reely over the whole range of physically possible values.

~In th s paper, we aim to set down a fairly complete mathe-
uatical description of our system, and carry out a preliminary
analysis of its behavior as mixer, and as reactor. The plan
is accordingly as foilows. After sctting down the description
of our mixing model, we construct a random walk for the
passage of a particle of fluid through the system. We then
develon the equations describing tracer experiments on the
model, and discuss their relation with the random walk prob-
abilities, in particwiar with the residence time distribution
of fluid in the system.  Next, we present and discuss the results

31

of sone sample caleulations of the statistics of tracer experie
ments. Finally, we formulate the eqguations describing the
behavior of our mixing systems as chemical reactors, and, .f()l'
first-order reactions, discuss the relation between conversion
and residence time.

The Model

To fix the description of our mixing model, we take n stirred
tanks, connected, quite arbitrarily, by interstage flows (sce
Figure 1). We index the tanks by { (running from 1 to n),
deriote the volume of the ith tank by vy and the volumetric flow
rate from the ith tank to the jth by wyy.  Since each tank may
receive part of the feed. it is convenient to assign the index
value i = 0 to a feed station, and denote the feed rate to the
Jth tank by ;. Since each tank may contribute 1o the outlet
stream, it is convenient to assien the index value i = n -+ 1
1o an outlet station, and denote the outlet rate from the jth
tank by w).,41.  The quantity ic,,, 4 may be taken to be the
flow rate of material that bypasses the mixing system al-
together.

The flow rates wy, will be permitted to vary with time, but
the volumes #; are to be held constant.  Accordingly, we require
the equality of inlet and ontlet flows, tank by tank:

Z Wy = Z ey, ) = 1,2, R ] (1)
fw [
'-‘w‘ 3]

"This entails, of corse, the equality of the total inlet and outlet
flow ratcs, so that, denoting this over-all flow rate by w, we
may write

a1 n
2 Upy = Z Wyl = W (2)
j=t im0

We have so far not attached any mezning o the “diagonal”
expressions w;; but if we denote the common valtue of the two
sides of Equation 1 by —uw;;, we will have filled out a square
matrix (n + 1 by n 4- 1) of flow rates wi;, £ = 0,1,2, ..., n,

7=1,2,.. ., n+ 1 (sec Table I), for which
L] LRS! ~ ~
Dy =, we=0;j=12...,n 3)
im0 ket

We have so far not said anything about the random variation
of the flows, and we now cxplicitly recognize the flows as
arising from a Markov process. We consider for this purpose
only Markov processes with a finite number of states, and if we

. S
W v Wa - va Wzs
w. | Wiy W32 w
w v ¥3e
Figure 1. Typical flow network
Table I. Typical Flow Matrix for Figure
Colurn Index
! 2 3 4
0 1 i 0
Row Index 1 [—31 2 1 0
2 2 {—3] 0 1
3 0 1 -2} 1
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inaex the states by a, we have in the systens at any moment a
KJuare imatrix

vege; £ w 01, 0
ond-1

npresenting the flows in state a. Conditions 2 and 3 hold for
every state u, 2. " we may write them ac

j= 12

- -0l
Yty = Y wpe =0 =L n 0)
im0 tLal
add -
.
2 Uy = }_, Wiatlg = g all a (5)
Jwl 1=0

In Equation §, #-, represcats the total feed (take-oil) rate for
the system wher the flows are in state a. - We note explicitly
that the tnk volurmes are not subject to variation with the
Hows, und keep their constant values z,.

‘The probability struciwve of the lows now resides in how we
describe the waisitions of the underlying Markov process
from one state « to arother 8. Denoting the wobability of
stich a transition in a time ¢ by s{a = 3, 1), we mav deseribe
the Lehavior of ® for small 7 by sctting

rl@—= ;1) = har + 0(r); o # 8

wheie A,q is some assigned matrix of switching rates and ofr)
is a function of r which voes 1o zero faster than r. Since, in a
tim~ g, state q can cither become some other stiate or remain
uncianged, we complete tie characterization of » for small r
by setiing the probubility that state o ronains snchanged,

pla=ra,1) =1 =~ (3 Ag)r+ oln)
° ax

I now we define the diagonal guamitie. X, to inake

);: Aag = 05 alla ()

we hav e i Tull squave matrix of switching rutes Az in terms of
which we may compactly deseribe the transivion probabitities,
r:

sla— B 1) = 8,5 + Aapr - o(1) (7

where 8,4 is the Krounecker delta.

We may now deseribe the probability bistosy of flow states a.
If we denote by p, (1) the probability that the lows e in state
a at timie 4, we have, from the characteristic property of Markoy
processes, that

Pl 1) = 2 pald) - xla—Bir)
a
Applying Nquation 7 gives the setof diflerential equations

!{/,';“(,) = L Mgt ®)

whose solution catries with it the complewe evolution of the
distribution of fiow states with time. Now we shall be eon-
cerped in what follovs ondy svith quusi-steaedy How systems- -
that iy, only with Hows nastationay state, whose probabitity
distribution  ne lonser vanes with dmes This statistical
equilibiinn disuibntion is given from Fyuation K s those
prebabilivies oo for which

YU
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¥ étake our Murkov flow procesies alwayy 1o be of the weii-
behaved kind that have a unique stationary distributian,

defined by Equation %, ug~ther with the normalization

Z.: fa =1 ' (10)

This amounts algebraically to reyniring that zero, which is
alway an eigenvalue uf the matrix Ay be onlv a single, uot a
BIU L, i iYalGs.

Finally, the equilibrinn corresponding to oudr stationary
flows is a statistical equilibrium only— that is, the flows con-
tnue to exhibit random ffuctuasions, but the statdadea! charaes
ter of these flustuations does not change with time.  And tne
system inay of course exhibit other random feawres that do not
share the stationary character of the flows. ‘This will certainly
be the case when we comie to discuss tracer experiments,

A Rondom Walk

The physical nature of the mixing system we have just
described can be studied on two levels: in teems of the random
passage through the system of a particle of tracer put initially
in the feed line; or in terms of the random concentration
pattern developed in the system when the tracer is fed accord-
ing 10 an assigned schedule.  The sccond we analyze later
under the heading “Mixing Equations’; what we do here is
set up the random walk for a single particle.

The system, for this purpose, consists of the 2 tanks plus the
outlet station, and the state of a particle is accerdingly deseribed
by its location indes § (ranging from 1 to n -+ 1), We regard
cach tank in the usual way as a Poisson {exponential) holdup
for the particle, so that the probability that the pacticle gocs
in a short ime 7 fram tank i to tank j is just {teq,/v() 7. The
probability thatit stays in tank i is

1—(E'ﬂ)r=1+‘fi‘f
1R [AFS

the cquality holding by virtue of Equation 4. And, once the
particle is in thcoutlet stale, § = n 4 1, it stays there.

The flows wy; must, however, be regarded as random quan.
titics w - ‘Thug, the location of the wacer particle cannot
alone be a Markoy process, sinee the transition probabilities
from onc location to another depend on the state of the fow.
Howuever, if we lump together e and i, the state of the Dow and
the location of the particle, we find a compaosite Markov poocess
whose structure can be described in terms of the probability
x(a, § — 3, j; 7) of making a transition from state a, { 1o state
8. jin time 7. Following Lquation 7, and the Poisson holdngs
character of the individual tanks, we may deseribe the behavior
of this x for sinall 7 by setting

[
| ®loay i =8, j; 1) = [b,9 + Nagr + o(1)] [51; +

HA
{ S ol | A1)
| ]

i

[ wlo, 1041 = 85 1) = [Sapt Aaar + o(1} Bayis

We may now deseribe the probability history of the com-
posite flow-particle location states in ters of the distiibution
£ai(), the probability that the flow is in state o« and the traver
particle in location fattine . Setting down the charactesistic
property of the Markov process, that

Pl 1) = 20 palt) rla.i-e B, ji 1)

T T T B R STan . - e o ettt i

e s oy

Py




and applying Eguation 11, gives the set of dilferential equations

doi g trom
L}

P ralt) + E“: Mgy § o= 1,20 o mee

(12)

The particle’s being initially in the input line, we describe by
distributing it initial location probability over the » tanks
(and the outlet) in proportion to the feed rates—-that is, we
take

1
Pas(0) = g "um; j=52,..,n+1 13
8

where fiy is the stationary distribution of flow states defined by
Fquations 9 and 10.

‘Ihe differential Fquations 12, together with the initiai
Conditions 13, determine the whole development in time of
the joint probability history of flow state and particle location.
If we sum pg; over j, we recover simply the probability dis-
tribution of the flow states:

41
pelt) = ,E-:i bas(0)
If we sum Equations 12 and 13 over j, applying 4 aud 5, we
find

4
1:?) - §2 AapPall)

/‘ﬂ(o) = Pa

that is, the difTferential equations (R) for the flow state probabili-
tics, with the stationary distribution as initial conditions. [t
then follows from our carlier discussion that the flow state
probability p,{r) remains at the stationary initial value fi, so
that, for all time,
a1
,'Zl pas(t) = P (14
Equations 12 and 13, or rather, their solution, contain all
the basic information about distribution of age and residence
time in the mixing system. Thusz £s5(t) is the probability
8

that a particle, initially in the inlet, is in location j at time &
Suitably normalized

Z Pai(D)
o) = gt (15)

j 2 paslO)dt
0 8

it is simply the age diswribution of material in location j, in the

n
sense thatf £3()dt is the probability that a particle in location
.
7 has been in the system a time between 4, and ¢4, One can
accordingly, for specified flow models, compute such over-all
measures of the performance of the flew system o5 the local
age distributiuns and local life expectancy distributions which
again can bomeasured by trucer experiments.
Also,

F@) = ; Pami(?) (16)

is the probability that a particle, Initially in the inlet, has found
its way to the outlet by time f-—that is, /7 is the cumulative
residence time distribution of materiai in the system, aad will be
related, in what follows, to the average response of the system
to suitable tracer experiments.

33
Mixing Equations

We set up here the mathematical methods for studying
tracer experiments in our flow systems, The mean response,
as well as suitable measures of fluctuations about the mean,
will satisfy certain ordinary ditlerential cquiations rather like
Equation 12, and their sohition in illustrative cases is discussed
later under the heading ¥ Tracer Calculations.™

If we arrange to load into the input lines of our mixing
systems ¢ft) moles per unit time of tracer material, then the
concentration x; (in moles per unit volume) of tracer in the jih
tank develops under the influence of the random ow states &
according to the differential equations

&1
dx L . "
05w o) + T ke = T ity
dt 1w, =1 K=1
inj kptj

. . e
Introducing the pseude-flows teyy,. and calling on Equation <,
this material balance may be written compactly as

. »
v '.i:\" l.‘."i’ v({) -*- Z "'l}n"b' j 3 ‘, 2, ey (17)

! dl. - wy fwl

If further, we arrange that the system be initially cpty of
tracer material. we may add to Equation 17 the initial condi-
tion

";I:-n m0;f=1,2 ...,n (18)

Now, for the reasons noted carlier, the set of concentration
values

X = {.l'], X2y .0y .\‘,,}
docs not alone form a Markov process, but the composite
fa, ¥} = {a; x1, 22 ...y ¥a)

of low state and concentration pattern does.  ‘The structure of
this compositc Markov process is governed by the transition
probability density, x{a, v — 8,3, ¢t, ), where

b by
f f xla, v = B,y 4, )dyy ... dyy
o an dy !

I

is the probability of making a transition from flow state e with
concentration patiern x = xi. X2, ..., ¥y al time ¢, to flow state
B with concentration in the jth tank between ay and by a time 7
later. The time ¢ appears here explicitly in # because of the
time dependence of the “racer feed rate, . .

Following Equation 7, and the fact that the x; are bound by
the differential Equations 17, we may express this x for small
7 in the form

wlo, x =~ 3,55 t, 7} = (B4 + Aagr + o(7)] -

5 [},1 - % — (tf'l’.‘_' fg) 4 i Wiy ,\-‘) r 4 n(r)].
We 1 iml U1
o [y" - (; 0y 3 e ) r o] (19)

Un

where the 8's in the concentration variables are Dirac deltas.
We may now describe the statistical history of the compuosite
flow-concentration states in terms of the probability deusity,

Palv,t), where
bn by
f e f Palxt)dxr ... dry

is the probability that at time £ the flow is in state «, and the
concentration in the jth tank is between 7y and 4, We set
down the characteristic property of the Miurkov process, that
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cad

Palvit 4+ 1) = % f oS raadrtae v 3 Lrddy L dh

L d
where the integrals are over-all values of the 1, just as the sum
is over all flow states . Then, applying Equation 19 gives
the partial ditferential cquation

bfﬁ(}'.l) LI {“ g () [ s \
o * ;1 dy, [ we €, + .‘;. . s.{ pals.t)
T daspalint)  (20)

Further | we may interpret the iniual Conditions 18 as iinplyving
an initial condition for the distribution pg(y,1), in the form

Pa(30) = g+ 8(x1) ... 8(xa) (21)

where iy is the stationary probability distribution of flow
states defined by Equations 9 and 10, .

With Equations 20 and 21 in hand, we noie first that, if we
iutegrate FaUn) G ey, e ingeans tuaning over aii
possible valucs), we find simply the probubility distribution
of the flow states

P = f . L palsdyi ... dy

If, similarly, we integrite Equations 20 and 21 over the 35, we
find

dhy(t
/'.a_ : L Aaata(t); £p(0) = py

that is, the differentinl Lguations 8 for the flow state proby-
bilities, with the stwionary distribution as initial condition.
It follows, as in our discission for the random walk, that the
flow state probabilities p;(f). remain at theiv siationary initial

. values flg, 5o that for all time

S Loy . dye = g 2)

Now he partial differeatial Equation 20, although lincar,
presents in general forinidable complications, and we propose
accordingly to confine aurselves o a study of the leading
moments of the concentration variables.  We begin by defining
the partial imean cancentrations

ﬂ,u(') = f e
Bringing this definition to Equation 20 and 21 and applying 22
we fined the system of ordinary diffevential equations with inital
conditions

ST psOondy oo dyay J=1,2, .., (23)

ad g (.

dall) Tl Ly z, m.m + 30 s (4)

dt vy ey
pg;(0) = 0

These are the equations that will be solved Lelow for illustra-
tive flow systems to produce the mean response o tracer
inputs.  Vhe mean rate (o moles per unit time) at which
tracer material leaves the system may be calealated from the
solution of Lguation 24 e

p) = 2 S f[{l-..,:‘w;r_f ety 4= Ty .l,,,y,] X
a i
paly vy ... dya

which we may write as

MOED [,-.,., ' ) Z 1:-,.....,,1“,,,<n] (25)
o N4

i -
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3L

l( appears from Fouations 24 and 25 that the functions
ga, (), w{t) are elated lincarly and homogeneously o the
tracer feed schedule i), They are accordingly convolutions
of suitable kernels with . In particular, we may set

. }
plt) = J; f(t = )e(r)dr (26)

where /(1) is the mean response in outlet tracer flow to a unit
pulse in inlet tracer;

s() = () for (1) = 4()

That is, as far as mean values (finit momenta) go, the responsc
to an arbitrary tracer lved schedule ¢ is simply the convolution
of ¢ with the impulse response /, just as it Is for a determinis-
tically modcled mixing system. In particular, the mcan step
response is the inwgral of the mean finpulse response,

Further, the mcan response described by Equations 24 and
25 can be related directly to the random walk probability dis-
tributions (12, 13, and 16). If we enter Equation 24.with
e(t) + 8(t), and interpret the 3-function terms suitably as
initial conditions, we sce that the average molar amounts of
racer yug, (1) arc exactly the probabilities pg,(t) for j = 1,2,
v oot Also, under these circumstances, we have from Equa-
tion 25 that

10 =3 ["‘ A a0 + i B )]

and a comparison with the random walk cquations shows that

. dF)
fy = S

so that the incan impulse respanse is just the probubility density
function of residence times in the system.  This is simply an.
other indication that, as far as first moments go, our stuchastic
mixing models behave in very much the same way as deters
ministically modeled systemns,

We turn now lu a consideration of the second moments of

- the concentration variables.  Defining the partial mean values

of the products (squares included) by
Spn() = [ .. [ympsdyi ... dyn (27)
k=12 ...,n

and bringing the definitions to Equations 20 and 21, we find the
system of ordinary diftereniial equations with initial conditions

S5 g balt) |t ug)0
Ber (‘,‘ i3 () | tors Es_J.E_)) elt) +
"y wy vy by
w
z oF S+ e Sau(')) + 2 AapSan(t)
Suu(O) =0 jik=12..,n (8)

with the ug,(6) defined by Eqguation 24, These are the equa-
tons that will be solved below for ithisirative flow systems to
produce the varianees in response to wacer input. The mean
square rate at which tracer leaves the system can be caleulated
froi the solution of Eqguition 28 as

s =3 f[”""”" A0 +

s
] -I‘J
T‘ Wyt .ﬂ"iJ paeidyy oo dva
J=-

which we niy write as




(48]
(W) |

Sy )‘ﬁ', [m (""""”"’)’ PO

Lo\ ey

g met, "
2 ") )_. wyaing up(l) +
g s

Z E WCym el g Hknsl,g s“hk] (29)
1ol laal

Finally, calling on Equiation 25, we may caleulaw the variance

of the vutlet respunse o the tracer fead schedule ¢(¢) as

ot(1) = SN = u¥1) (30)

In the sume way we ean calculate the variance of the local
concentration I‘(“])Oll.\'c m l;mk j to lil(? tracer I-('L'd .‘Ch(‘dllic
¢, These measures of the statisiical fluctuation in the
system response have of course no counterparts for determinis-
deally modeled mixing sysiems,

Anaother siatistical average that can be calculated from the
results of tracer experieents is the autocorvelation function,
#4(r), delined as follows:

(1) = CQHE D) = Gt 1)
T eW)alt + 1)

where 2(¢) is the rate at which tracer leaves the system at tiine ¢,

For o cationary vandong process this would e a function of »
cndv bot ncer vesponse Bonet stationay, o calealane dhie
function tur the madel we note that

”

. e, .
(1) = : e I ): Myaita Yt
"

@ 1=

( Wt + 1)) = yljgd + ,)& w.d il Con p_l,g> +

ity

(1) <1!_'0;i';_f|1u 2 Wymst g \')(f + ,)> +

et + ”)< u‘:;l 2 2.4 Ty ety -"/(’)> -
< > Z TR TS () DR (2 r)>

Jal iwl
where a i the flow state at time ¢ aned 3 is the low state at
time £ 4 . In case there is no divect bypissdng (g, 11,0 =
0 for all «), the first tiee wrms vanish. Otherwise they can
be caleulited by methods similar to 1that shown below for the
last tenn. We now express the expectation in terms of the
probability distribution,

<Z 24 e a4l,q Wkyn H.,‘j"}(’)\’l.(’ + 7’)> -

I
L] n
Won " W3, f f dey oo degdyy L. dyy Z 2, }:l El wym4t,a X
jomlim
w
————— ——— Whn 1 gt Soafaltn)Tlog x = 3, 30 r) = 3, 5; Wy i1, 518
]
v; where
Wotw 13w .
PR 2_,‘ Wt J oo Sds o digdyy L dy X Vabas
Figure 2. Porallel tank madel ‘"
(W2l s~ B, y; 1)
W Woie v Yize vs Wenas W The product p, (3 )ra, « — 3, ¥; 7) ahove is just the joint
Won distribution of (u,x) and (3y) at ¢ and ¢ + 7, respectively.
The transition probability = (e, ¥ — 4, y; 7) satisfies the same
Figure 3. Series tank mode! differential cquation as g (¢ -+ 7, v)-—namely,
(vllvl"l|/"x'lxz.;~Q|Ial|/z)
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Figure 4, Typical step response for parallel case
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Figure 6. Effect of fluctuation magnitude on mean
response 10 step input for porallel case {replotted)
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wla, v = gov: 0) = 8,800 — n)

From this equation we find that

X ale — 3; r).’l']A,_.l_u",(ﬂ I-

{l’q(d ey i E
o 7

dr iy 'y
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Figure 7. Effect of fluctvation magnitude on escape
intensity, h(t), for parallel case

vim oy, pom Yo, Ao Ay Ao )
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This set of equations can Le solved in conjunction with the
previous setfor uy, and Sy

By methads similar to the above one could compuite many
other statistical measures of the tracer vesponse of the model
which could be directly compared with values determined
esperimentally for a rveal system, The measures entioned
above, u(r), otr). and p, (1), are probably the easiest 1o obtain
accurate estim:ites of experimentally. In certain sitwations,
however, one might want w study the elfect of uasteadiness in a
systein for which the vivdinee of the response, at the outlet,

a¢), i small but sizable luctnations aconr in otiver parts of
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intensity, h(t), for porallel coso

viwv,rm Vo, A = A e )

the system.  {n this case one could measure statistics of the
respunse at various points within the system and compare (his
with the correspondine statistics of varions tanks in the model.

Once a model has bren formulated and the parametors
have been fixed by comparison with tracer experiments, one
can procred o study how the unsteadiness of the system af-
feets vivious types of chemical reactions.

/

v

Tracer Calcutations

We now apply the foregoing analysis to two simple mixing
systems.  In these examples the variable flows are assumed to
take on only two values.  The matrix of switching rates be-
comes two-by-two, and application of Equation 6 allows us to
express the four elements of the matrix in terins of two guanti-
tics My and Ay, as follows:

{ad
e
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Figure 10, Effect of flucluation mugnitude on
olt) /ult) 5f step response for parallel case
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Figure 11. Effcct of switching rata on a(t)/uli)
of step response for parallel cose

vt = Vi, N w A e s

xll = _x'nl o= xl

3
Ap = —hay = Ny D
Thr meaning of these quantities is given by Fquation 7:
(1= 2, rj = Nir -+ olr)
r(l=1;7) =1 = N1+ o(r) 32)

(2= 1;1) = M + o(r)
Yy

2= 25 7) = 1 = Aer 4 o(r)

‘The equuations for the probability distribution of the flow states
(Equation 8) then take the form

d,
:“‘l = — Mg 4 \opy
(33)
dr
ot APy V1
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The s:‘atiom\ry distribution is then given by " - w,,aw__g, . ,-,,59; w12 )

A A

e NEw TN 09
We may define a mean switching rate, X, by
2N\ iAg
- B\ Ay = 35
X Pid + Pads M N (35)

In the first of the two cases, the system consists oi two tanks
in parallel (Figure 2), where the total flow, w, is constant.
The split of flow between the two tanks will vary, however,
The flow states will be described by the fraction of the total
flow entering tank 1, 7,»

ot

r., = iy
L l" .

a=1,2 (36)

We then let

o= P+ jise
(37

ry = 7 — fhe

where 7 is the average split of flow and ¢ is equal to ry — ra,
the size of the variation.  Using the analysis of the previous
section we may write differential equations for the tracer
response of the system.  The material balance (Lquation 17)
hecones, for this case,

I’\‘|
N, Fae(t) — trgvy

p (38)
1 Y A = r)el) = w(l = r)va

dt

In the second of the two cases (Figure 3), the system con-
ststs of two Goeks i sertes, Awain the total How, e, is constant,
The vartable flows in this Gee are thoss bhetween the two
ks, o this case the fows are conveniently deseribed by the

fquantity 7, where
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In this case the material balance becomes

" (':-‘l" m o(1) — w(l + st b wrgxe
(40)
dxs
vt w(l + rdxy — w(l + rp)xe

In both cascs equations corresponding to Equations 24, 25,
27, 28, and 29 may be written describing the first and second
moments of the tracer output, resulting in a system of 10 lincar
differential equations in cach case (although the equations are
not all coupled). The solutions to these were found for some
typical scts of parameters.  The differential equations for the
autocorrelation function were also assembled and solved for
typical valucs.

Figure 4 is a rcalization of the step response of the parallel
system calculated by a Monte Carlo method.  The time has
been scaled so that the average residence time is unity.  Al-
though the expected step response is identical to the cumula-
tive distribution of residence times, individual realizations
cannot be interpreted as distributions. ‘This  particular
example is not even monotone.  The mican step response for
various fluctuation magnitudes, ¢, is shown in Figure 5.
Even though the mean flow distribution is the same in cach
case, the residence time distributions arc in fact different,
because the flow distribution does not affect the output of the
systemn in a lincar way.  To show more clearly the nature of
the difference between the various curves, the quuantity 1~
F(1) has been plotted on semilogarithmic coordinates in Figure
6. The nerative of the slope of this curve, which, as a function
of time, has been referred to as the intensity function (Fqgua-
tion 7), has the physical inwerpretition of an escape rate,
Thus denoting the eseape intensity function by A(e), il a par-
ticle has been in the system actime ¢, §ts probahility of eseaping
in the next dr seconds is he)dt. “This quantity is plotted in
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Figure 14, Effect of fAuctuation magnitude on mean
response to step input for series case

Vivwowy, T om N w Ay, A )

Figure 7, We sce that as the flow disturbance is increased
the magnitude of A(t) decreases for Jarge & Generally speak-
ing, a curve of /() that decreases over some interval is charac-
teristic of systems exhibiting stagnancy or bypassing, so the
effect of the flow fluctuations on the residence time distribution
of the parallel model is similar to these effects.

In Figures & and 9 we sec the cffect of switching rate on the
mean step response of the same system.  As the switching
rate increases with fixed disturbance size, the response is scen
to approach that for the same mean flow with no flow fluctua-
tion [A(f) =='1].  As the switching rate decreases, the decrease
in 4(t) with"increasing ¢ becomes more pronounced, suggesting a
greater amount of stagnancy or bypassing.

The quantity a(t},/u(t) for the step input has been plotted
in Figure 10 for various Hurtuation magnitudes and in Figure 11
for various switching rates. As could be expected, o{6)/u(l)
increases with increasing fluctuation magnitude, but the shape
of the curve is relatively unaffected.  In Figure 11 we sec that
increasing switching rate has the cffect of increasing the peak

TIME, t

i I
Figure 15, Effect of fluctuation magnitude on
escape intensity, h(t), for series case ‘

VlﬂV:,;a‘,X|=X1,-X"'

in the curve of ¢(1)/u(t), but causing the peak to accur carlier
and the curve 10 go to zero more quickly.  For very high
switching rates the varisnee of antlet concentration eaec to
7ero almost fwmediately. ‘The autocorrelation function,
pel7), is shown in Figure 12.  The dependence on r is different
for different values of 4, although for a stationmy process the
function would be independent of t. The autocorrelation of
the fluctuating How rate (which is stationary) is shown for
comparison. 'The autocorrelation of the step response ap-
proaches zero rather slowly at large =, indicating a long
“memory time™ of the process compared to that of the flow.
This is especially pronounced at values of ¢ near unity, meaning
that if the part of the step response in the vicinity of ¢ = 1
is on one side of the mean, there is a good chance it will be on
the other side from about £ = 2 onward.

A realization of the step response of the series syster is shown
in Figure 13, It appears that the flow fluctuations have much
less effect on the output than in the paralls! caes. Thic is

borne out in Figures 14 and 13, where we see that even in the
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Figure 17, Effect of swilching rate on escape
intensity, hit), for series case

= V-g,; m ], 2 Ny, e = 2

case ¢ = 2, which is the maximum fluctuation magnitude
obtainable with the given 7 and N /Xo. the eflect on the mean
response and the escape intensity is slight. Figures 16 and
17 show that the effect of switching rawe on these curves is also
slight.  The cffeets on the coellicient of variation, e(¢)/u(t),
are shown in Figures 18 and 19, While the fluctuation magni-
tude aflects the curve practically linearly, the switching rate
just increases slichtly the rate at which the curve drops to zero.
The autocorrelation function for the series case (Figure 20)
shows a very long memory time,  For small values of 1, as ¢
increases cach suceessive curve is lower than the one before,
but for values of ¢ greater than 1 this trend s reversed, A
similar eflect occurved in the parallel case, afthough less pro-

nounced.,

Reactor Equations

We et up here the nathentical methods for studying
chemieal reactions in ow mixing systems, and apply them 10
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first-order rcactions. The methods follow closcly the carlier
development under the heading “Mixing Equations.”

There is no partcular difficulty in formulating the prob-
ability equations for complex reaciion systemns, but we confine
ourselves here for concretencess to single reactions

A—DB

which we follow in terms of the concentration of A. Denoting
this concentration (in moles per unit volume) by v, we describe
the rate at which reagent A is consumed (in moles per unit
valume per unit time) by the rate function R{x). I we load
¢ mole of reagent per unit time into the feed line of our reactor
system, the reagent concentration x, in the jth tank satisfies,
following Equution 17, the diilerential equation
g _ o

v, V(/l = g d + ‘;I I('U‘g\’i - l',“\'(.\",‘) (4])
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R TOI WL s

e e U it R i S o 2B

e e e o e et e e



e il

- oae— [ ¥ ]

L 2kl ]

FUNCTION, 0, )

1
o
o

AUTOCORRELATION

FLOW CORRELATION
-1 ‘

'—\‘

- —

TIME

INTERVAL, T

Figure 20, Typical autocorrelation of step response for series case
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Now, just as in the treatment of the mixing equations, it is the
composite

‘a’\'}

of flow state and concentration pattern that we may follow
as a Markov process. ‘The corresponding probability density,

Palx,t), with
bn 5y
f f Palet)der ... dx,

giving the probability that the flow is in state & and the con-
centration in the jth tank between a; and b, satisfies, following
Fquation 20, the partial differential equation

[a Xy X ,...,x..}

Opa(\ l) ] {wg;a ¥
o! + ,; 0),[ wg v; +

R(,"i)} pd(.)'v’)] = z kaﬁpn()'-‘) (42)

LI
3 dus

im] Uf

We are not here concerned to follow the history of the
probability distribution in time. but rather to go directly 10 a
study of the stationary distribution, which represents the quasi-
steady behavior of the reactor system. . Denoting this stationary
distribution by pg(y), we find from Equation 42 the defining
cquation

"D [{mom V
=1 Oy Qwa vy

I w
+ Z _';'Qy‘_.

iml Vs

’

K ' R()',-)} ﬁa(,v)] = 22 Nagpa00) (43)

to which we must add the normalization condition

; f . f f)g(}')(l)ﬂ cosdyy =1 (44)

the integration being carried out over all the values of the y,.
We note that in Equation 43, the reagent feed rate, ¢, is a con-
stant,

If we integrate i45(y) over the y, (the integration running over
all possible values), we find simply the probability distribution
of the flow states:

f f T-’ﬂ()')'l)'l coodyn = Pp

Carrying ont this integration in Equations 43 and 44 gives just
the defining Fquations 9 and 10 for the stationy flow state
probabilities, so that the jy in Fquation 45 ave just these
stationary probabilities.

Now any general treatment of the distribution Equation 43
presents substantial analytical difficulties, and sccordingly we
restrict ourselves in this preliminary study to first-ceder reac-
tions, with  ~

(45)

R(x) = kx f

so that Fquation 43 becomes !
"0 jw.,,g v } . i
gl B9 Suic: B AN RO
Salta b - mp o]

int U
2 Napfaly)  (46)
a B
For these first-order reaction systems, we can readily develop
working equations for the leading moments of the concentra-
tion variables.
We define the partial mean concentrations as

“mgg = f S v s F=1,2, .., 0 (47)
Bringing this definition to Fquation 46 gives
. Pg tosn ¥ Wyg
kmgy = + Z ma; -+ E NagMass
vy g i=1 v,
J=12...,n (48)

which appears as a sct of linear algebraic equations which one
might solve for the mg;. The mean rate (in moles per unit
time} at which unconsumed reagent leaves the system may be
calculated irom these solutions as

= Zf f[“""*"’l+$" u'jnHm‘Jx
8

wg iz
Pa(dn ... dys
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which we may write as

n
Wy, 1,
m o~ 2 [f’ﬂ St v+ Z‘ "’J.uH.S’"ﬂ)]
] e

w,

(49)

We may sec now that the average conversion in first-order
reactions is related to the residence time distribution of the
mixing system in just the same way as for deterministically
modeled systems.  Specifically, Equotions 48, stitably scaled
on the reagent feed rate 3, are just the Laplace transforing
(with transform variable the rate constant, £) of Equatinns
24 with the tracer feed rate ¢(¢) = 3(t)—that is,

ﬁ‘-’=f e Mug ()t
12 °

The same remark applying to outlet Feuations 49 and 25,

~we may conclude, applying Equation 26, that

s- j;!e'ff/(r)dz

wherce /(1) is equivalently the mean tracer impulse response of
the systems, and its residence time distribution (density func-
tion).

Such simple relationships are no longer at hand for the
higher moments of the concentration variables, which express
the statistical fluctuation about their mean values, and indeed
these statistical fluctuations have no counterpart in determinis-
tically modcled systems.  Expressions for these higher moments

28R I1&EC FUNDAMENTALS
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can readily be developed from Fquation 43, in the same
manner as for the mixing eeuztions, but we defer these studics
of the variability and the ussociated correlziion structure of our
reactor systems, e
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FREDERICK J. KRAMBECK, STANLEY KATZ, AND REUEL SHINNAR

Departmeru of Chemical Enginesring, The City College, The City Universily of New York, New York, N. Y. 10081

A theoretical framework is presented for the interpretation of tracer experiments in quasisteady-flow sys-
tems, whare the infflow and camflow, ns well as the itemal flows, axhibit stationory Auctuations about Aived
central values. The fluctuating throughout leads to the consideration of different types of sojourn time dis-
tribution of material in the system. These are discussed in detoil, and related to different ways of cari ying
out tracer experiments on the system. The standard experiment, in which a known omount of tracer is in-
lected quickly into the inlet and its concentration measured in the outlet, leads to nune of these distributions.

lN FLUID systems serving s chemical reactors, mixing

processes have pronounced cffecta on reactor performance.
Ofton, these processes involve turbulent motion of the fluid,
introducing randomly fuctuating behavior into the system,
In many biological flow networks, large fiow fluctuations
oceur in o roughly periodic way. In both cases transient
tracer experiments are often used to charncterige the system,
but the analysis of these experiments is generally based on
the behavior of stesdy-flow systema (American Heart Associ-
ution, 19062; Danckwerts, 19568; Kramers and Westerterp,
1003; Naor and Shinnar, 1963; Zweitering, 1950). When
the flow distribution of the system fAuctuates, the tracer
response of the system is a random preecess, and only the
statistics of this process nre experimentally accessible, Even
if the flows are strictly periodic, the starting time of the
tracer experiment is usually random, so the samc situation
exists. One wouid like to know the relationship among the
statistics of tracer response experiments, the probability
distribution of particle residence time, and the statistics of
the system’s performance in the presence of a first-order
reaction. In discussing the properties of a proposed sto-
chastic mixing model, Krambeck ¢! al. (1967) showed how
the above data are related when the inlet and outlet flow
rates of the system are constant but the internal flow distri-
bution fluctuates. The samme method is used in this paper
to study the problem with fluctuating inlet and outlet flows.
Some beginnings were made in this direction in earlier work,
and are here developed further.

For a flow system with an unambiguous inlet and outlet,
three diffcrent distributions of sojourn time can be defined:
for a random particle, for & particle chosen at & random time
from the outlet stream, and for o particle chosen at a randoin
time from the inlet stream. These distributions differ only
in respect to fluctuations in the inlet and outlet flow rates,
and merge into a common residence time distribution when
these flow rates become steady. In the general situation,
the distribution for a random particle is to be identified
with the over-all residence time distribution.

The differences nmong these three distributions can be
shown intuitively for a situation somewhat more general
than the particular mixing model which underlies the detailed
caleulations in this paper. Consider accordingly a mixing
system of volume V, with volumetric inlet and outlet flow
rates, u and w, respectively. The volume and flow rates
vary with tisne, in a jointly stationury way, with (u) and
{w) having the same constant values. The pointe:d brackets

denote probability averages, or, as may be sometimes con-
ceptually more convenient, long-term time nverages.

For such a mixing system, we may define two conditional
probability densities, each with a direct interpretation in
terms of idealized tracer experiments. Consider first that
we inject a quantity of tracer into the inlet at time 8, and
measure that fraction of this inlet quantity which has emerged
by time {. This fraction we may interpret as the probability
that a particle of material entering the system at time &
leaves it before ¢, and denoting it by

/.'g(s,r) dr

we may accordingly interpret the differential g (s, ¢)d! as the
probability that a particle entering the system at time &
leaves it during ¢, {4 di. Consider next that, starting at
time s, we label all the material entering the system, and at
time ¢ measure thal fraction of the material in the outlet
stream which is lubeled. This fraction we may interpret
as the probability that a particle of material leaving the
system at time ¢ has entered after s, and denoting it by

/.‘h(cr,l) de

we may interpret ki (s, t)de as the probability that a particle
leaving the system at time ¢ has entered it during s, 8 + ds.

The conditional probability density, g, may be used to
define the density, f,, of sojourn times ¢ for a particle entering
the system at a random time. We set

L) = glo.a+ 1))

where, because of the stationarity, the mean value dependa
only on the diffcrence of the time arguments in g. This
distribution is thus casentially the mean response in trucer
outlet flow arising from the teed of a certuin quuntity of
tracer. Similarly, A may be used to define the density, f,,
of sojour: times ¢ for a particle leaving the system at a rudlom
time. We set

folt) = h(r—- 7))

and this distribution is thus cosentially the menn response in
tracer outlet concentration arising from n certain level of
tracer concentration in the feed. The distributions f, and
f. are just those developed for our concrete mixing model in
the body of this paper; in particular, f, is the Jdistribution
given in Equation 37.
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The conditional probbility densities, g and 4, arc of course
related through the inlet and outlet flow eates, 1w and w.
This relation urises through a natural probabilistic interpre-
tation of these flow rates, wherehy we take (up to s common
vonxtant of proportionadity ), the probubility that an incoming
particle enters during (he time 8, 84 ds to be given by
u(3)da. and the probubility that it leaves during ¢, ¢ + d¢ to
be given by w(Ddt. Reealling the formal specification of
g8 Odt ns the probability that a particle lenves during
t 14t wiven that it entered nt 2, we sce that the probability
that & particle enters during 8, & -+ Jda and leaves during
t, t4 di ix proportional to w(ads-g(s, t)dt. Further, re-
culling the formal specifiention of & (s, t)ds us the probability
that u particle hus entered during 8, s =+ ds, given that it
lenves ut £, we xee that the probability thut a particle enters
during 8, & + da und leaves during t, t 4= dt is (with the same
constant of proportionality) also proportional to (s, t)ds:
wt)dt so that

u(s)g (e, ) = his, Hw(t)

This conclusion ean, of course, nlso be reached by o straight-
forwanrd comparison of the conceptual tracer ciperiments
underlying g and A We may see from this reluiion that
g and A (und henee f, nnd £,) may be expected to be equal
only when inlet und outlet fAlow rates u wnd w are steady,
and hence cqual to the same constant value.  If, further,
the mixing system itself is completely steady, without internal
fluctuntion, g azsd k ure not only equal but equal to the sume
function ot the time difference:

g8, ) =his, t)=f(t — &)

Now, with the probabilistic interpretation of flow rates
u and w made above, we nny construct the donsity, fy, of
sojourn times ¢ for u rundom particle (cuught at the moment
it enters the system) in the form

{ulo)g(e, a + 1))
(u(o))

But sinee (u) = (w), and sinee all mean values depend only
on time differences, we may, taking sccount of the relation
developed above between g and b, write this as

hir =t r)w(r))
(w(r))

and so interpret it also as the density of sojourn times for o
random particle caught at the moment it leaves the system.
This density fe is just the density of residence times in the
system, and is precisely that developed for our concrete
mixing model in this paper, using the inlet flow state distri-
bution corresponding to Equation 16, As long as inlet and
outlet Aow rates u and w really Auctuate, it muy be expected
to differ from f, and f.. The sojourn times distributed
uecording to f,. und not aceording to f, or fu. hive v mean
value given in o natural way as the ratio of the mean system
volume to the mean input-output flow rate. This fuct is
developed by explicit algebruie ealeulntion for our conerete
mising maodel in Fquation 25, A less precise, but somewhut
more general, intuitive argument to the same onclusion
appears in an Appendix,

This paper wims to take the whole line of intuitive con-
sitlerations adduced wbove, and reduce them to precise caleu-
lations for a broad elass of mix i models, making clear the
connections among sojourn time distributions, tracer experi-
ments, and the behavior of the naxing system for first-order

L) =

() =
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reactions.  The mixing model chosen is that developed by
Krambeck et al. (1967), which has a very considerable degree
of flexibility, slthough for rearous of technical simplicity its
properties have been developed for fixed mixing volumes.
Specifically, the model consists of a network of well-mixed
tanks, where the connecting flows fluctuate randomly in
time. The number and arrangement of tanks arc left arbi-
trary. It is ussuincd that the tank volumes are fixed and
that the flow is incompressible. 8Such a model with steady
flows enn be used to simulate anv steadv mixing process by
taking an approprinte nrrangement of tanks and allowing the
number to increuse. Axial diffusion, for example, may be
approxininted to any degree with a sufficiently large number
of tanks in cascade, with forward and backwaid flows be-
tween esch tank. The added feature of randomly fluctu-
ating flows should muke it possible to simulate stochastic
mixing processes if sufficient numbers of tanks are taken. Of
course, such o large number of tanks might be required that
there would be no saving in effort over a complete description
of the flow process. On the other hand, if conclusions may
be drawn about such 4 model with the number and arrange-
ment of tanks left arbitrary, it is clear that they will apply
to an very gencral class of mixing processes.

One additional assumption is added to make the analysis
possible: that the intercunnecting flow rates vary in time as
finite-state Markov processus.  Such processes are described
in detail by Feller (1966). The fact that the states are
discrete is not important, since their number is arbitrary.
The fnct that the process is Markov is a rather mild restriction
because the dimensionality of the state space is arbitrary,
This allows the state of many non-Markov processes to be
redefined to include information about the history, making
the new process Muarkov.

Krumbeck et al. (1967) showed how this model could be
analyzed in terms of the random passage of s single particle
through the system or, alternatively, in terms of the randomly
fluctuating concentration; in the various tanks. In the
present study, the same methods are used to analyze the
situation with fluctuating inlet and outlet flows in more
detail. The concepts developed are then illustrated by the
properties of s single tank with fluctuating throughput.
Some of the derivations given in the earlier work are repeated
here.

Formulation of Model

In the most general case the model consists of n stirred
tanks urbitrarily connccted by interstage flows (Figure 1),
where the volume of the ith tunk is v;, and the volumetric
flow rate from the tth to the jth tunk isw; (1, 5= 1,2, ..., n).
The inlet stream is distributed to the tanks arbitrarily, and
the feed rate to the jth tank is denoted w,;.  The contribution
of the jth tank to the outlet stream is similarly called w; n41.
The nmount bypassing the system entirely is w31

Wi
W
-—d.' v, Wy, Wy
A\
[
A . L Wi T
v,
s -
Wer Yy >

Figure 1. Typicol low network
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Although the flow rates are permitted to vary with time,
it is assumed that the volumes, v,, remain constant. Thus,
the total flow entering the jth tank at any instant is equal
1o the total flow leaving it:

L} a4l
Y wy= T ow; j=1,2,...,n 1)
(=0 i ] PRy

Also, the total fluw entering the aystem is equal to the total
jeaving. Dienoling ubis qusniivy by w,

at] L]
U= T Wy = L, Wiasl (2)
= =0

It is convenient to define “diagonal” quantitics of the form
wy; such that the total inlet flow to the jth tank (equal to the
total outlet flow) is the negative of w;;. Thus,

n nel
wy=— L owi=— ¥ owy j=12...,n (@3)
(o), {pd § {m) (ptj

Flow rates w;; 8o defined fill out a square matrix (n+ 1 by
n <4 1) which has the property

" n+l
Juwy= Lwpe=0; j=1,2,...,n )
=0 kel

and where all elements wy; with 1 p£ j are nonnegative.

The random variation of the flow states with time is as.
suimed to arise from a Markov process with a finite number of
stutes. Each state of the Markov process corresponds to n
given mutrix of flow rates. Letting o be the index of o flow
stute, the flow rutes corresponding to a are written

Wie; t=0,1,...,n; j=1,2 .., ,n+1

For every state o

n ntl
Zwl'}c"zwlh-(]; J=1,2..,n Gy
(L] k=t

n+l "

Y Woja = L Winita™ s ala 6)

Jm=1 (=

The probability structure of the flows resides in that of the
transitions of the underlying Markov proress. Denoting the
probability of transition from state a ‘o state B in a time
interval 7 by mea(7), one has, for small time intervals,

7¢B(7) = Oap + An[l""+' 0(1‘) (7)

where the \.p satisfy
Ao = — Z Aag (8)
Ba

Aas 2 0; a#p (9)

The matrix of switching rates, A.s, then defines the prob-
abilistic behavior of the process completely.

Krambeck et al. (1867) showed how one may derive
differential equations describing the evolution in time of
virious probubilities. The probabilities of being in the
virious states 8 at time ¢, denoted by functions ps (£}, satisfy
the simultancous differentinl equitions

dps(t)
dt

= 2 NasPa (1) (10}

The equilibrium distribution of flow states, s, which obtains
after long times when the process becomes stationary, then
satisfies
zhul"-= 0 (11)
a

L&
Model as @ Random Walk

When the system is followed from the point of view of the
random passnge of a single particle through the syatem, the
probability of the particle being in tank ¢ while the flow is
in atate a at time ¢, p,; (1), satisfies
d_Pﬁ, (l) - i W,

— pai() + L NapPas(1);
dt i= Uy a

=12 ....n41 (2)

The specification of an initial probability distrihution, p,, (0),
wili then determine ihe properlies of the randum juesage
completely.

In thiz ease, however, the stationary distribution is of no
particular interest, since the particle eventually finds its
way Lo the outlet with probability 1. It is necessary to state
explicitly the initinl distribution, in order to calculate the
probability structure of the random wulk. If the total flow
through the system, w,, is constant (w, = w; all ), the
initial distribution is given by

Ps; (0) = fig (woja/w) (13)

which is to say that the flow state distribution is 1n its sta-
tionary condition, and that the probability of starting in o
certain tank, given the flow state, is proportional to the flow
to that tank from the inlet stream. In cuse the total flow is
not constant, some ambiguity arises. One could either as-
sume that at the instant a particle enterg, the flow state
probabilities have their stationary values, fis, implying that
the chanee of n particle entering at a certain time is inde-
pendent of the flow stute, or ecould nssume that the chance
of a particle entering at a given instant is proportional to the
total flow rate at that instant, so that the initial distribution
of flow states, suy py°, is different from s, In the first case
thic initinl distribution would be given by

~ Uojs
Pa (0) = i — (14)
iy
In the second case,
ps° = Pats/ T Patta (18)
since the arrival of u particle in u short time, given that the

flow state is a, is proportional to 1, and the initial distribution
of the process is then

Woyg . Woid
Ps;(0) = Ps"’wi = s~ (18)

If all the w, are cquul, Equations 14 and 16 are identical to
Equation 13, The initial distribution (Lquation 14) corre-
sponds to tracer experiments in which the tracer is injected
a8 a pulse at u rundom time or ns 1 step function in tracer
flow rate (constant flow rate of tracer fluctuating iulet con-
centration),  The initial distribution (Ilquation 18) corre-
sponds to tracer experiments in which n constant concen-
tration of tracer is fed regardless of instuntuneous totu) flow
rate.

At any rate once the initinl distribution is specified by
cither Equation 14 or 16, the complete time history of the
probability distribution, pg; (), enn be calculated. The cu-
mulutive residence time distribution is then given by

K = g Paan () a7)

which is the probability that a particle entering the system
ut time zero will be in the outiet at time (.
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It is interesting to compute the mewn residence time to see
how it compares with the value for o stewly svstem in which
euse 1t would he the total volume divided by the towd flow
rate.  “To do thix,

L= F)= 2 3 ps, () (18)

g =i

which simnly stutes that 1 ~ F () s the probability that o
particle which entered at time zero is still in the system at
time £ Then 8. the oean vesidence time, is given by

0=/ [=rnld=3% z[ pa (At QW)
[ 4 =ty
Integrating Fquation 12 one flady

pai (@) — pg; (0) = Z ' pgi (1) dt +

- Ui Jg

T [ pad 5= 1280 @)
0

9s/=fnp.~:/(‘)dl
0

and noting thut pa () =0(j=1,2, ...,

Delining

n), this becomes

;4 . .
20 = £ gt Tl S 1.2 m @)
jem] . a
If Equation 21 is solved for the 8y, the menn residence time
con then be ealenlated:

6= 2 Zom (22)
Jeai
Substituting the iuitinl distribution (Equation 16) into
Equation 21,

v o Wy
~po 2 = 0+ Thadei =12 (23)

This equation may be solved to yield

P8
0y; = 2 (24)

a8 eun be seen by substitution, and by using Equations 11
and 5. Nubstitucing 24 into 22 gives

"
0= X v/ (25)
=l
which states that the mean residence time is just the total
volunie over the wean total low, However, the initial distri-
bution (Equation 14) does not give this result.

When diseussing the significance of trucer experiments
nnother stutistical property of the random passnge proved
useful: the distribution of residence times for o particle
chosen at o rundom time from the outlet of the system,
culledd the outlet age distribution.  To discuss this situation,
it is useful to madify the tennsition probabilities slightly so
s to make all the outlet states, (a, n+ 1), sbsorbing,
Thus, for j # n + 1, the probabilities again obey

i D3 2w
”’ ) = T2 ) + L g ()

i=12 ...,n (26)
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but the probabilitics for *he outlet stater ure given by

dpg.a. .
P8.a I(._)__' zu nlﬂ]}a‘u) (27)
dt -t
The quantity psa.‘t; 18 then the probability that at tine ¢
the particle has left the aystem and that when it left, the flow
wax in stute 4. As {—> o, this will just be the probability
that the flow state was 8 at the instant the particle left.
Thus, denoting this quantity by pg*

P = paan(®) (28)

This may be expressed in terms of the fa; defined enrlier and
given by Equation 21, Thus

Winil g

P8 = Poan(®) = Deat (0) + z / pes()di (20)

or
wy, 15
P = pran(0) + T 220, (30)
-l U
For the initinl distribution Liquation 16, 8; is given by
Lquation 24 und

Penii (0) = fig (Wons1.8/0)

Thus
"
P e @1)
{m]
which gives
pst = fig(wa/i) = pg° 32)

This result is reasonable, since initial distribution Equation
16 corresponds to o particle chosen at random from the entire
population, which would imply that the rate of leaving is
proportionsl to the instantancous total flow, just as is the
rate of entering.

For the initial distribution Equation 14 the 8s; depend
maore on the details of the system, so the ps* cannot be caleu-
Iated so simply.

The joint probability pg.a+1(¢) can be expressed as the
product of the probubility that the flow state is @ when the
purticle leaves with the conditional probability that the
particle has left by time ¢ given that the flow state when it
lcaves is 8. Thus

Pansr(t) = po'Pasa (t]8) @33)

If now o particle is chosen in the exiting stream at a random
time, the distribution of the flow states is f, rather than p.*.
Thus the joint probability of leaving in flow state « at a time
less than ¢ for u particle so chosen is given by p*a.nas(t),
where

P‘a.nﬂ = PaPanr (t l“) (34)
This gives

Prann(l) = Y pa.n«H( ) (35)

For initial distribution Equation 18, this gives
. w
Plaann () = — pa~n(l) (36)
Wy

The outlet nge density under these conditions becomes

fol) = z e wo.‘:‘ﬂ.a&(t) + Z il_wi;ﬂ.a Par (f) @a7)

L) o i

Thus f,(t) is the density function of residence times for o




o e

-

narticle chosen at a random time from the outlet stream,
assuming that particles enter in proportion to the instan-
tuneous total flow rate.

While it is more difficult to calculate, one can also define
a sojourn time distribution for a particle chosen nt o randowm
time from the outlet, assuniing that particles enter at a rate
independent of the instantanecus total flow rate. This
quantity, fe (), i8 given by

’ i = “‘p‘ w"“".\m.;. b S“ﬂ_'.,.,,_p‘_‘(t.) (38)

Pt
a P- U, ﬂ (-l P- v,

when the initial distribution is given by Equation 14, How-
over, fa () has mo ciear probabilistic meaning v.31 jespect
to the system as such. It refers to a specilic experiment
only—the case when tracer is introduced to the system ut a
fixed rate independent of total flow rate.  In that case fop (1)
gives the sojourn time distribution of a tracer particle chosen
at o random time at the outlet. All other distrihutions,
while relating to tracer experiments, huve a probabilistic
interpretution for the system us such und the tracer iv just n
meunsuring dovice.

Tracer Experimants on Model

Krambeck et al. (1967) showed that when some process
accuts in the model which obeys differentinl equutions of the
form

%’=f;.(l.!); i=12.. (30)

where fq(x) depends on the random flow state, @, ns well as
the set {r}, the probability density pg ((, x) will setisfy

aps
”’( x)+ ):——Efu(t palt, )] = Thesnat, 7} (40)

The function pg (1, x) is defined so that the joint probability
thut the {low stute is a and the state of the system is in
(x, x 4 dx) at time ¢ i3 given by py(¢, x)dx. A tracer ma-
terial balance gives

dzy  ¢ai() Wija

—_————— — 2z J=1,2,...,n 41

dt v E vy v )
whero z; iy the concentration of tracer in tank 1 and ¢, is the
rute ot which tracer is fed to tank ¢ when the flow state is a.
Comparison of Equation 41 with 39 und 40 shows that, for
tracer experiments,

apa(f.x)+ o 9 [(m_i_ ¥ '”z«)pa(! x)]

ot =1 01; =1 U
E )\naﬂu (’y l) (42)

The inlet flow rates of tracer to the individual tunks may
he expressed in terms of the inlet conventration schedule, or
of the total feed rate of tracer schedule, Thus, if x,(t) is
the inlet concentration schedule and ¢(¢) is the total feed
rate schedule, the two expressions are

Paj (l) = Wojalo (’) (“3)
and

Cart) = 2 (1) (44)

In a system with fluctunting total throughput, an experiment
measuring the response to a step in 2,(f) 'vould be different

L8

from one measuring the response to a step in ¢(¢). In the
first case the tracer iniet concentration wouid be fixed und
the feed rate of tracer would fluctuate in time with the total
flow, while in the second case the feed rate of tracer would
be fixed and the inlet concentration would Auctuate. Of
course, if the total throughput were constant, thia ambiguity
would not arise.

The case of fluctuating total throughput also raises the
question of whether to measure outlet concentration or outlet
trecer flow rate.  Denoting the outlet concentration by £ and
the outlet tracer flow rate by ¥ we see that

LY
Ym g = Y Wikt oTi + Guait 45)
i=t
For initial conditions to Lquation 42, nssume that ot the
instant the experiment is begun the flow rtate probabilities
have their stationary values, i..  In other words, the experi-
ment ig begun st a random time independent of the flow
state with the system running continuously., Thus

Palo, X) = flad (21)8(2s). .. 8(24) (46)

Once the conditions of the tracer experiment are set through
either Iiquation 43 or Equation 44, the complete probability
structurc of the process is determined by Enuation 42 to-
gether with the initinl conditions (Equation 46). The prob-
ahility structure of ¥ or z can then be determined by taking
appropriate combinations of the z's, as prescribed by Equation
45,

To unilerstand the relationship among the various possible
tracer experiments and the probability structure of residence
times as studied in the previous section, let us consider the
first moments of pa(t, x) defined as follows:

ug[(t) = /T;pa(f,!) dx = (:c;), j= l, 2, R (47)

Multiplying Equations 42 and 46 by z; and integrating gives
dusy f s

@ s (1) + Z -H-’ua. 2 Nagitaii
] a
1 i=1,2 ..., n (48)
Anc
upi(0) = 0 49)

The expected outlet concentration response is given by
o Wimil, _ Camt
(= L —pu+ Tha—" (50
a =l Wa a Wo
and the expected ouatlet tracer flow rate by

n
(JP) = 2 Z Winilakai + Z ﬁa@'u,nl_-l (51)
a  fes) a

It is interesting to compare Equation 48 with Equation 12.
The systems become equivalent with varinbles identified as
in 52 to 35

psi({)=t'iu3i(t); J= 1121"')"' (52)
Ps}(0)5(3)= fisesi(); j=1,2....,n (53)
f) = ;mm(i) = ) (64)
a -
L0 =5 T prenn(t) = w(z) (53)
Ly

where (1) is the residence time density function for particles
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chosen at random from the entire population or for particles
entering the syatem at o randon time, and f,(0) is the resi-
denee e density for particles leaving the aystem at o
eatidom time, provuled nitial distribution Equation 16 ap-
plics. The different initial distributions, 14 and 18, can be
miatched by supplying the approprinte tracer inputs,  Thua,
to determine statistival quantities for initial distribution
Cquation 14 experimentaify, e treer ingan masi ine

vaill) = -’ff’ (1) (56)

which can be achieved by an tpulse in Graeer feed rate:
() = &) (67)

To determine statistienl quuntities for initial distribution
Egquistion 18, the input is
“nJB

wail) =

6( (] (58)

which can be nehieved with an impulse in inlet coneentration:
ra(t) = (LAp)e () (59)

The amount injeeted for an impulse in flow rate is the
swme for ench realization, while for an impulse in concen-
tration, the amount injected i3 proportional to the instun-
tuncous inlet flow rate (which in practice is impractienl ).

Ninee the system of Fquations 48 is linear in the pgy and
also neither ¢ (2) or . (1), whichever is used to describe the
teacer input, the expeeted responses to lrhnlr.tr\ inputs are
given by the eonvolutions:

WO = [ @at= i) dr
0

W)= [ Gult= ey dr
]

t (60)
) = f (22(t ~ 2) )Xo (7) dr
)

]
t@r= [ Gl =mewrdr
[}

where ¢, (1) is the response in flow rate to un impulse in
concentration, ¥, (1) is the response in flow rate to an impulse
in flow rate, 2,(t) is the concentracion response to on impulse
in concentration, ud 2,(t) is the concentration response to
an impulse in trncer flow rute. The various residence time
densities are given by

Loy = (/@)= (1))
fott) = (1)) (61)
fult)y = {2:U})

whewe £ (15 ix the resitlence tite density of a particle chosen
at random from the entire populution, f,(t) is that of u
particle chosen at o rndom tune at the inlet of the system,
and £,(0) ix that of a particle chosen at u random time ot the
outlet of the systeni. FProm Equation 60 it is clenr that the
response to a step input s just the integzal of the corre-
sponding Tmpulse response.  Thus, the distribution functions
corresponding to fr, f., and f, are just the expeeted step
respouses. ‘The Bapulse response €z, (1) ), however, is difficult
to interpret us a probubility distribution,

fi

1]
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In the presence of reaction, Equation 41 becomes
d.l'; hd
b T e ) + L wiperi = v Rz (62}
)

where z; is now the concentration of reactant in tank j,
and R (z) is the reaction rate expression. Applying Fiquation
40, it is found that the joint prubability distribution of
reaction concentration and flow state is given by

dpaltx) s‘ g [I“’"-;- 3 - Iuml-ma x)]
ot |dl; v -l U ]

Z }\-aP- (tl x) (63)

In congidering the model as a reactor, one is primarily
concernedd with its stationary behavior, that which prevails
at some large time after atartup. Buch a stationary distri-
bution will exist only if ¢a; is independent of £.  Again, two
possibilitics occur, depending on whether one feeds reactant
ot a constant rate or at constant concentration. Thus cither

Paj = Wojulo (64)
or
w,
Vet = = ¢ (65)
Wy

where z, is the constunt inlet concentration and ¢ is the
conatunt reactant feed rate.  Defining Pq (X) = po(o;x),

i: 0 [{ v, + Z MI‘ - R(I))} [)S(x)] = Z)‘asﬂn(x)

1025
(66)
The outlet reactunt concentration and reactant flow rate will
again be given by Equation 45.
To compare the reactor behavior to the tracer response
behavior, define

may= (= [ 2 (x) dx o)
0
Then, from Equation 66,

w,
(R(z))p = m— + 2 —"—’m.( + T hasma;
J=12..,n (08)
The expected outlet concentration is then given hy
w - o
(z) = z?: ":"‘ Mas + }_‘,ﬂ" 2 (8p)
a =] a

which corresponds to Equation 50 for tracer experiments.
Similutly, the expected outlet flow rate of reactant is given by

W=x ‘Elw\'."+l.u7nai 4 X fafanst (70)

which corresponds in u similar way te Equation 51. The
set of Lquations 68 detcrmines mqay complotely only if 2 (x;)
ia o linear function of z;. Thus, let K(x;) = kx;. Then
one obtains

Wija
kmg; =, Z —=mpi+ L Nat?as;

1= Uj

i=1,2..n (1)

which 18 n set of algebraic equations sufficient to determine




the my, Comparing Equation 7i with Equaiion 48 il w
scen that replacement of ¢g;(t) in 48 with ¢a8(t), where
¢s, is constant, makes 71 the Laplace transform of 48 with
transform variable k, and with

me; = fay = f eHiugy (1) dt (72)
[1]

Thus, the moments of reactant concentration, my, for o
pyswin with fet-oider icaction and with fead diswribution
g ure just the Laplace transforms of the moments of trucer
concentration, pe;(t), with tracer feed rate ¢g,8(1). Since
the expected outiet concentration nnd the expected outiet
flow rate of tracer and reactant ure given by the same liaenr
combinution of individual moments, and since the Lapluce
transforin operation is linenr, the expected outlet concen-
tration in the renction ease will be the Laplace transforin of
the expected outlet concentration for the corresponding trucer
experiment, and the expeeted outlet reactant flow rate will be
the Lupluce transform of the expecteil outlet tracer flow rate.
The tracer input thut corresponds to the constunt inlet
ccnecentrution renctor case,

wny (L) = woyazed(t) (73)

08 comparison with Lquation 43 shows, is an impulse in
trucer inlet concentrution of height z,.  Similnrly, the tracer
input cortesponding to the constunt renctrnt feed rote case is

W, .
e () = —Z b (t) (74)
wy

which is secn to be an impulse in trucer feed rate of height ¢
on comparison with Equation 44, Since fu(t) and f, (¢) are
the expected responses in outlet lracer flow rate for an
impulse in inlet tracer concentintion (of height -/1b) and
unit impulse in inlet tracer flow rate, respectively, it is seen

that, for a reactor with constisnt inlet reactunt concentration .

To,

@) [
E-[e"f;(t)a- (18)

and for one with a constant inlet reactant flow i'étc,

%-)- /:' e (1) dl (76)

Similarly, one can express the expected outlet concentration
of reactant as the Laplace trunsform of the expected outlet
tracer concentration for the appwopriate trucer input. The
terms on the left of Equations 75 and 76 are the expected
fraction of resctant which leuves unconverted. The situation
of Equation 75—fixed concentration of reactant in u fluctu-
ating feed stream—is by fur the more common. The situ-
stion of Equatirn 768-—fixed flow of reactant—however, urises
in certuin contexts.

Interpretution of Tracer Experiments

Your impulse response cxperiments were discussed: ¥, the
tracer flow rute response to © concentration impulse; ¢, the
tracer flow rate response to u flow rate impulse of tracer;
z,, the concentration resjonse to n concentration impulse;
and z,, the concentrution response to a flow rate impulse.
When the inlet and outlet flow rates are constunt. all four
responses are identical. In general, however, the expecied
vulues of three of these can be given a probabilistic interpre-

(V)W ()} = fa (1)

W) = 1o () 7

(&:(t)) = futt)
where f: (1), f,(t), and fo(0) ure the residence time density
functions for different populutions of particler,  Function
f.(t) is the density for the entire population of particles that
puss through the system. This is the “true” residence timo
denmity. 1t menn vaue 18 equsi to the 1ot voiume of e
system divided by the average inlet und outlet flow rute,
while the other distributions de not, in general, have thiy
property.  Funetion f,(t) iz the residence time density of
particle injeeted into the seatem ot w rdome time, and
fo(t) iv the residence time density of & porticle taken from
the outlet stremn at o random time,  In general, all three
functions nre different.  owever, f, (0) s g, (1) nre ruther
closely reluted. At point 1= 0, for example, the functions
can be shown to be equal £ £, (0) = £o(0)].  Step experiments
corregponding 10 the above impulse experiments can nlso be
used to find the probability distributions,  In such cases the
expected step response is the distribution function of residenco
times.

When conventionnl experimental technigues are used, not
ali the responses nre ux convenient to determunie, 1t is usund
to measure tracer outlet concentrution direetly. Determi-
nution of tracer outlet flow rate thus requires simultancous
knowledge of total outlet flow rute and concentration.  Also,
it is more convenient to inject pulses of constant amount,
which correspond to pulses in inlet trieer flow rate, than to
vury the umounts in proportion to the instantancous total
inlet fiow rate, which would correspond to pulses in inlet
concentration. Of course, since the expected response of the
system depends lincarly on the input, the response to a
concentration impulse can be determined by injecting equul
pulses but multiplying the output by the totul flow rate at
the instant of injection before avernging the reulizations
together.  Agnin, this would require knowledge of the totul
flow rate. The two step itnputs, constunt inlet tracer concen-
truticn and constant inlet tracer flow rate, cun be achivved
without mensuring flow rute. Thus, if total flow rate is
measured along with cutlet coneentration, all the responses,
both impulse und step, can be measured,  If totul Aow rate
is not measured, however, only the impulse response (2, (1))
and the step responses corresponding 1o {z.(0)) und (2:(t))
can be found. (%, (1)) iz hurd to interpret in o probubilistic
sense, whilé (z:(1)) kives the residence time density for o
apecinl class of purticles, those choser, at fundom times from
the outlet streum.  ‘The true residence time density, fr (¢) =
W= (1)), vould not be determined by such experiments.

In most cases meunsuring z, (1) is the method .uost con-
venient, and therefors gencrully used. Tt has no dircet
probabilistic inteipretution, but provides important infor-
mation about the system. If we wuant cither to confirm or
construct u simplificd flow madel for cur proeess, z. seives
this purpose as well nsany of the other three funetions.

When a first-order renetion oecurs in the system, the mean
outlet flow rute of wnconverted reactant is given by the
Laplace transformn of f2(13 = (1/8) = (t)) when reactant
enters nt constant concenirution, and by that of f.(t) =
(Ve (1)) when renctant enters ut » constant flow mte. The
mean outlet coneentration of unconverted reactant is given
by the Laplace transforin of £,{f) = (1)) for the constunt
inlet coneentration cnse and that of {z,()) for the constant
inlet reuetant flow rate ense,
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An Example

Foillustrate the kid of behavior exhibited by stochastic
wystems, the foregoing anadysis s applied to a simple example
of the geneend stochaatic twadel previously deseribed - o single
tank with o fluctuating throughput. It s also sssumed
that the flow rufe nssumes only two values, aguin for sim-
plivity. Undder these conditions, Equation 10 becomes

dp! s
at A T hapy
(78)
ll[);l
o = NMjn — M

Theae cquations ean readily be solved, and the trunsition
probubilities m,3 (), mp = 1,2, set down explicitly by taking
the wpproprinte initisl conditions for py and pg.  All the
probabilities go exponentially to their steady values

iy = _l_ = _.M_ (79)
’ A+ Ay M+ N

as t— o with the time constunt My + Ag.  With the (single)
flow rate w tnking just the two values w,, a = 1,2, one may
rendily computo its menn

T = gy 4 Pyuy (80)

and the covarinnee function may also be seen to he u siniple
exponentinl

p(r) = sy = tog)se~Orrralrl (81)

With the probability strueture of the flow states estab-
lished, one can readily inveatigate the tracer response of the
maodel, For u single tank, the tracér material balance,
iZquation 41, becomces )

1

"g’;-'f'a(') —Wwer; a=1,2 (82)

We need work here only with the probability distributiorn
Pa(l) z) for u single z, and upply the machinery of Equations
46 to 48 to give the moments

u.(l)-fzz;.(f.z)dz; a=1,2 (83)

Fre.a Mquutions 50 and A%, we see thot the mean outlet
tracer concentrution is given by

() = m+ e (84)
and the mean outlet tracer flow hy
W)~ wim + wuny (88)

We mny now ealeulste the response {o an impuise in tracer
concentration, where

falt) = wabt); a=1,2 (88)
and to un impulse in tracer flow, where
¢all) =8(); a=1,2 (67)
The genueal procedures noted earliee then give for the different
mean rcspnnsun.
Prus? = fwg® Ingtt = beetti
oo h—b

folt) = — (\P:(l)) =

l/‘nwﬂ + e (o~ ug)

0] 0

. LMI — Cbll
1'1)\1, Py (88)

438 1&EC FUNDAMENTALS

Whet — M pan’ + gl &V —
L) = @) =~ r— " Py

(88)

(90)

Dbt — bt Y = o
"<"(”)’u'lb1—:e° -5

where & and b are the two roots of
b
lr"+['i‘+'~?+ x.+x,]b+ S =m0 @)

The concentration-concentration response, £,(¢) = (5:(()), ie
not quoted above, since it is identically equal to f, (1), This
is not true in gencraul. It happens here becauee this illus-
trativae case, involving only a single flow state, is too thin to
permit the distinction between these two sojourn time distri-
butions.

Functlon £, (t) of Equation 88 is the true residence timo
distribution for the system—that is, the distribution for
the entire population of particles. Its mean value is just
equal to v/, This is not trua for the mean sojourn time
caleuluted from Equation 80—that is, for a particle caught
ot a rondom moment in the inlet (or, in this exa:aple, in the
outlet)., Indeed, the mean value from Equation 89 is

o = _( Pifa(wn ~ ws)?
‘W b (MAs) + wy

which alwnys overstates v/ib, sometimes appreciably, If the
average residence time is independently known (from direct
measurcments, say, of the volume and the mean flow rute),
tho sizc of the overstatement given by Equation 92 is itself
valuable information. Also, if we have some preconceived
notion about the flow, f, provides sufficient infor-nation to
estimnte the puramcters for a flow model. For such esti-
mations f, is just na good as f; aud there is therefore often no
incentive to measure f,.

The concentration response to sn impulse in tracer flow
rate is shown in Equation 90 multiplied by 1, to make its
dimensions consistent with those of the other responses.
Thiz responso corresponds to the most common kind of
tracer experiment, and it is not a probability density at all.
Indecd,

(02)

[ 06 w) de= a8,/
0

rather than unity.
In the limit of fust switching rates, the roota of Fquutlon
91 become

—-v
b ry “MtN); MM (93)
and all regponses conlesce to the common exponential
-t
I'l)"’—if‘o‘l)( v)t 04)

that is, to the response for a steady system with constant
flow rate, 1. lllustrutive plots of f;, f, from LEquation 88
and 89, and the limiting f of Equation 94 are shown in
Figure 2. These are ali fcr

—uy
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and
W
xl = x’ = e
v

<o that
Pi=pr=}
All curves nre shown with the time scale norimalized on v/1D.
For these values, 6, is 409, greater than v/,
A ueeful device for evaluating residence time distributiona

. T v ) LU UL I V'L SR
8w t:xpruaa e 1 erms v e CHBIR HIICUNLY ) (h(¢)) e

defined by Nuor and Shinnar (1963):

© ) .
h(l)-.f(l)//‘ Jis)ds = m (85

where f(¢) is the residence tine density function and I (1) iy
the corresponding distribution function, h(¢) has the sig-
nificance of the fractional rate at which particles which huve
been in the system a time ¢ will escupe from the system.
This is plotted in Figuiz 3 for the density functions of Figure
2. In the graph, h,(t) corresponds to f,(t) and A, (t) corre-
sponds to f,(!). In a stendy system, when the eurve of k(¢)
decreases over some range, it is an indication that the flow
pattern exhibits bypussing or stagnancy, since the tendercy
of a particle to leave the system is higher when it has been
in the system a short time than it is at longer times. This
offect is present in both A:(¢) and h,(t) (Figure 3), but is
much more noticeable in A; (t). Thus the effect of the fluctu-
ating flow rate is similar to that of bypussing.

We conclude this discussion of our illustrutive exuinple by
meking out the mean conversion for a first-order renction.
Here, " llowing FEquation 62, we have

vg-w.—w.z-kz (96)
dt -
and we: sock the solutions of the stationary distribution
Equations 08 for the two feed conditions:

Ca™ Welo; a= 1,2 97)
correaponding to o constunt reactant inlet concentration, and

corresponding to a constant reactant feed rate. As before,
we work with the moments

My = fz-p.(x)dx; am=12 v9)

. . [
in terme of which we may express the mean outlet flow rate
of tinconverted reactant,

(V) = wam + vumg (100)
and the corresponding mean outlet concentration
(z) = my+ my (101)

The main result is contained in the systein of Equations 71,
and solving them gives, for the different interpretations of
fraction of reactant unconverted:

o
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Figure 2. lllustrative residence time densities
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Figure 3, lllustrative escape intensities
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The rosult for (z,)/2, is not quoted here, since it turns out
to be identically equal to ($)/e. Ar in the tracer experi-
ments for this example, this is not true in general, but is an
necident of this particularly simple illustrutive case.

Equations 102 and 103 give the fraction of renctunt un-
converted under the two different feed conditions being
studied; Equution 104 docs not quite do this. Still, us the
switching rates MAg=— «, all the ecquations coalesce to the
common value

1 i
z, 1+ vk/d
which is the unconverted fraction for 4 stendy flow . Figure

4 shows illustrative plots of the unconverted fraction from
Equations 102 and 103, and the limiting vulue of 105. The

(108)

) L -+ paws?) /vl 3k + (wawy/t?) + (8/9) (M + M)

Wro K4 L@/vs F (/) + M+ Mk + (/) + @070) =+ M)
W) W@/0)k + (uwe/v?) 4 (@B/v) A1+ A1)

¢ B+ Lw/v)+ (w/v) + M+ M+ (/) + (@0/v) (a4 h)
D) __(0/v)k+ (o) + (@/v) 7+ M) + Pufisl (wve) — (wo/e) T

¢ B [w/v) + (u/v) + M+ Mk 4+ (wiw/?) = 5/v) s+ 29)
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llustrative behavior for first-order reaction

Fraction of reactant untonverted vi. fint-order rate conttant

numerical values nre those chosen for the plots of Figure 2,
and the first-order rate constant k is normalized on /v,

It may be seen from Figure 4, nnd directly from Equations
102 and 103, that the unconverted fractions hased on constunt
inlet reactant coneentrations nnd constunt renctant feed rute
straddle the limiting value of Fqguation 105

W) 1 _
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Appondix. Mean Residence Time

This Appendix nims at an intuitive proof that for n broad
cluss of mixing systems, the mewn residence time is the ratio
of the menn working volume to the mean input-output flow
rate.  As o generul matter, this is not an especinlly sur-
prising result, althoush the point seemn to arise from time to
titne in the discussion of particular mixing models, The
proof is offered here us an intuitive base for the detailed culeu-
lations on the stochustic mixing models presented in this
puper, sithough it applies to much more general mixing
systems.  Indeed, the argument is altogether model-free, nnd
proceeds by a straightforward necounting for the sojourn
time in the system of ench material element pussing through
the system. We adduce no statistical considerations, nor
nny general considerntions of stationarity, but instead cnrry
out simple averaging in time, over what may be vegurded as
a very long transicut from the moment the mixing vessel is
brought (empty) on strewm till it is retired (empty) from
service.

Consider accordingly n mixing system of volumme V', with
inlet aud outlet flow rates u and w, respectively, nll varying
with time in such a way that

4 = ] 107

T U — (107)
The working fluid we take Lo be made up of identifinble
material purticley, each maintaining its own identity, and for
convenicnee, we ngree to mensure V, #, und w in particle
units, so thut V(1) ig siniply the number of particles in the
systen ot time {, and v (0) and w(l) are, respectively, the
numbers of particles per unit time entering and leaving the

440 1&EC FUNDAMENTALS

system at time ¢, We imagine further the whole history of
the mixing system spread over the (long) time interval
fh<t<t, so that u e we= 0 before {, and after {, and
suppose that over its life the system handles A particles, so
that

1y (13
/ u(l)dt==j w(t)dt= N (108)
! .

to 0

* Mean values here ave simply time averages over the interval

lo, &1, 80 that

) = () = 2 (109)
H -t
The time interval £, & represents the whole life of the
mixing aystem, und not the much shorter duration of this
ot that tracer experiment. In the simplest situation of con-
stant volume and flow rates, we might, for instance, have
N

s ———— [ <I<~a
Il-t,,—a

v = ——l—, Lt+a<it<y
h—tlo—a

where a is the time needed to fill (or empty) the veasel.

Suppose the mixing system to have certain stagnant
regions. Physically, such regions communicate very siug-
gishly with the mnin body of the system, and can introduce
serious disereponcies between the ratio of volume to flow
rate and the mean residence time as culeulated from tracer
exporiments.  Wo represent these stagnant regions here as
zanes that Jo not communicate with the moin Lody of the
wystem.  Specificully, we consider that there is within the
mixing system at oll times n completely stagnant region of
(constant) volume V, When the system ia brought on
stream at time 4, and when it is removed from service nt
time f, we tuke it to be empty except for this volume V.
V, is then the common value of ¥ at t, and at 4, and we see
on integruting Equution 107 that

4
VO = Vot [ (u) = v ds

Integrating this now over the whole range &, 4 to formn the




| B

mean value of V gives
‘ 1o
V)= V. — dt | {u(s) — w(s)l ds
tl Il to te

unl interchanging the order of integration and applying
Equation 108, we ure left with

15 'l
ds — d 1
/ sw(a) ds /:’ su(s) a} (110)

V)=V, + l {
g~

Now in Equation 110, tho integrsl of 8+ u (8) simply cumulutes
the times at which all the particles enter the ayatem, und the
integra!l of sewfs), the times at which they leave  Their
difference is accordingly just the sum of the sojourn tinies in
the system of all the purticles that have passed through
during its history, and if we denote the sojourn timee of the
individuul particles by , 6;, etc,, we have

) 1
(V)= Va+;"—:-t' G+6+ ... +6y)

The menn sojourn time we identify simply us

_91+ﬁa+»~+51v

138!
J N ()
and, cnnsulting Equation 109, we find
(VY= Vot (w)d (112)

Equation 112 is the result sought. For constunt mixing
volume ¥V, and vanishing stagnant volume V,, it recuces to
the result in Fquation 25. That the meun sojourn time, g,
should be computed from the residence time distribution fi-
that is, from the sojourn time distribution for & random
particle, and not from the distributions £, or f, for particles
ontering or leaving nt random times--is evidenced simply by
the form of EEquation 111, where each particle pasring through
the system is weighted equally in the ovaluntion of 8.

Nomaenclature

by, by = conatants (Fiquation 88)

f = residence time density function

F{t) = residence time distribution function

Jk) = Luplace transform of f(t) ’

Joll; w regidence time density function for particles
chosen at a randnm time in outlet stream

() == true residence time density function

So® = rosidence time density function for particles
chosen at a random time in inlet stream

S ) = residence time density function for pariicles
choson at a random time in outlet strcam
while being fed in inlet stream at a constant
rate

Ja(t,x) = time rate of change of z,

ht) = intensity function (Equation 93)

k == reaction rate constart

Mag = partial moments of reactant concentration
((I;).)

Patny == flow state probobility distribution

2 = gtationary flow state distribution

P = flow state distribution at instant an average
particle enters

P’ = flow state distribution at instant a particle
leaves

Pai (¢) = joint probability distribution of flow state and
particle location
et (t] @) = conditional probability that particle has left

54

by time ¢ given that flow state when it leaves
ie R

P*ansi(t) = joint probability of a particle chosen in ouilet
stream at a random time leaving in flow state
a at a time less than ¢

Pa(t,x) = joint probability distribution of flow atate and
coneentration

Rz;) = reaction rate

v = volume of eingle tank

v = volume of tank ¢

w = inlet and outlet Jow rate

Wy = et and vutivt Tuw 16LE WHEs HUR BLeS 13 w

wij = flow rate from tank 1 to tank

Wyja = flow rate from tank ¢ to tank j when flow state is
“u

i = mean inlet flow rate

E> = gingle tank concentration

T = concentration in tank ¢

x e= get of concentrations, = {1y, 2,,.. ., Za}

Zo = jnlet concentration

2z = outlet concentration

2, (1) = traccr concentration response to an impulse in
concentration

z,(0) = tracor concentration response to an impulse in
flow rate

2 = outlet reactant concentration for constant
inlet concentration

z, = ouilet reactant concentration for constant inlet

reactant flow rate

Greek LerTERs
mean residence time

9 -

i = partial mean residence time (Equation 21)

R = gee Equation 02

Nad = switching rate

N = \p

M - Ay

Mai (8) = partial mean concentration (Lquation 47)

pi (8), Hg () s= g (1), paa(t) for single tank

Dot w Laplace trensforia of pai(t)

s (7) = transition probability

p(r) = gutocovariance function

s = variance of flow rate

@ = inlet reactant or tracer flow rate

Cai (1) = inlet flow rate of tracer to tank ¢ when flow rate
i

wall) = g, (t) for single tank

v o= outlot reactant or tracer flow rate

v () = gutlet tracer flow rate response tn concentration
impulse

V. (1) = outlet tracer flow rate response to flow rate

impulee
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Analy51s of Som me Random Blending Processes

Y 2 B KRAMBECL,»R. SHINNAR and S. KATZ

" Department of Chemical Engineérjtgg, The__(ﬁlytbollege of the City University of New York,
' New York, N.Y., US.A.

A common problem in the design of mixing nnd hlend-
ing equipment is the estimation of the size of the equipment
needed to achieve a certain specification. If the statistical
properties of the non-uniformities in th= production lots
to be blended are known one can caleulate by known
methods ' the reduction in the variance of the product
properties, Specifications however are normally given not
in terms of a variance but in terms of limits. These can
be estimated from the variance by assuming a Gaussian
distribution. In this paper a mcthod is discussed which-

allows one to calculate these limits directly for some blend- ~ ~

ing problems in which the sonrce of the nonuniformity is

due to the production of an off-grade lot. This not only -

allows more accurate design procedures, but nlso gives some
insights as 1o the magnitude of the error made by assuming
n Goussion distribution.

In a previous paper by enc of the authors® the cffect of a
mixing tank on fluctuations in the feedstream compmmom
was discussed and methods were described which allow dne to
calculate some statistical properties of the output in terms of
the staristical propertics of the inpur.  For cxample, one can
use this method to calculare the correlation function of the out-
put, p.(r) = <e(t) ¢ (1 4 7)> in terms of p.o(r), the cor-
relation function of the feed stream.  1f the concentration is
expressed relative to the mean, so that <e,> and <e> are
7ero, p o) is the variance of the outpur,  The methad given
i can be applied to any system which can be reasonably
deseribed by a lincarized model, as well as o b\cnding processes,

Un probléme courant dans la conception de l'outiliage
de malaxage et de mélange est V'estimé des dimensions de
Poutillage qui doit répondre & des exigences spécifiques.
Si Pon connait les propriétés statistiques des facteurs de
non-uniformité dans les portions des matérianx & mélanger,
on peut calculer par des métaodes connues (référence 1)
la diminution de la variance des propriétés du produit.
Toutefois, on formule normalement les exigences en terme
de limites plutét que de variance et on peut les évaluer a
partir de la variance en supposant I’existence d’une distri-
bution de Gauss. On discutz, dans ce travail, unc méthode
qui permet de culculer ces limites directement, dans le cas
de certains problémes de mélange ol le manque d’uni.
formité est dit a la production d'une guantité de produit

. qui s*écarte de la qualité désirée. Ceci permet, non seule-

ment 'obtention de procédés plus précis pour la concep-
tion, mais donne une idée de 'ampieur de Perreur qui
resulte de Pexistence présumse d’une distribution de Gauss.

It often happens, however, that qpcciﬁutions arc expressed
in terms of liniting concentrations or limiting values of some
other parameter, rather than in terms of a variance, and the
method mentioned does not provide this kind of information,
exeept for the special case where the probability distribution of
the inlet concentration is Gaussian.  In this special ease the
outler.concentration would also be Gaussian, and knowledge of
the mean and variance determine the distribution completely.
it the fluctuations in inlet concentration cannot be reasonably
deseribed by a Gaussiaa distribution, the above method cannot
be used 1 determine confidence limits on the output.
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_comiptitation of the complete probability distribution of the
~output of a blending _
= . inputs. - It-is intcresting:to rote that in the cases studied the

" Gaussian approximation would be in appreciable crror. .

" Description of t.ie Blonding Procsss

 barches cannot be prevented. Sometimes a certain amount of
off-grade material is produced during the startup of a process.
Often this off-grade.material can be blended into the product

——. . _provided. it concentration does not excced a certain- limiting

~rvalug, “Une way of dealing with-such a situation is to provide

an off-grade storagétankﬁand feed the matcrial slowly into the

rroduct ‘stream. This_possibility is discussed in reference®.
f the-process contains_some. large-hlending facilities one might
considerthe alternate posiibility of feeding all the material into
a single blending tank. This is the situation that will be studied
here. It will be assumed that off-grade batches occur at random
times, with' the time intervals between-them distributed ex-

nentially. - The capacity of the blending tank will be assumed
arge compared to the volume of—’?‘fig;r'adé in a single batch, so

M‘M J— A . A% " . . — .
- e rthat-eachitch - can-he-consider~ T DT P leasin_tie - These -

5€

i What follows 4 miethod s -dcscribed which: permits the'

tink for some specific, non-Gaussian:

';r(x S y7) ='.(1‘/—%)5[y —xh =t ”(')-l +
. . v J :

5;f[v(y - %) +o(l):l ............... 4)

ST . : L " The first term on the right hdmd side is the product of the pro-
I some industrial processes the occurrence of off-grade -

N g . a N » T .
bability of no pulsc arriving in the interval 7, [ 1 - —é , times

the &-function, which expresses the certainty of what will
happen if no Pulsé arrives, namely that the concentration will
change according to Equation (2). The second term is the pro-
duct of the probability that a pulse will acrive, times the density
function for ¥ that will result from this occurrance. This is
derived from the function i[(m) by substitutingw(y” — x) +
#(1) for m, since for a small enough time interval the change in

m
concentration resulting from the pulse will be —. The function
v

must be multiptied by © because dmr = vdy.

We then expand the &-function ir 2 power serics in 1.

product is fed o the tank and WithlFaw contmuonsyT—Fhe———p — —~—— -

amount of offgrade_contained in each pulse is also a random
variable, with density function f(). In case the real problem
- does not.involve impurities but.tather a large deviatién in some
quantity like molecular weiglit, color, ctc. -one can always
treat this deviation from the avitage in the same way: that-im-
purity.concentration .is treated here. We now proceed to set

up the blending equations. - s
The‘pulses__,occur’at a mean rate 1/0 and the number of
pulses occurring in a fixed time interval is a Poisson random
variable, The outlet concentration of impurity, x.then’ satisfies
_the equation™="~-~ . - - PR et
»'~
dx L
v— =T 6(t — )M ~wx......7 000D
dt [ - .- B

where 2 is the total volumetric flow rate, v is the volume of the

tank, and the # arc the random pulse times. The pulse heights -

m are distributed according to f(m:) .Thus in between pulses
the concentration will satisty ;
dx

va— T o WX e :..(2)

while cach pulse will cause an instantaneous surge in concentra-
tion by the amount /2.

We define transition probabilitics w(x — y ; 7) so that the
probability that the outlet concentration is in the interval
(y,y + dy) at time ¢ - 7 given that it was cqual to x at time
tis m(x - y ; r)dy. We also define the irobability density
function of outlet concentration, ¢(t,1), so that the probability
that the outlet concentration is in the interval (x, x + dx) at
time ¢ is ¢(1,x)dx. By writing the transition probabilities in the
above form, we have assumed that the probability distribution
1t a later time, ¢ + 7, depends only on the state of the system
at time ¢ and not on any previous states of the system, and also
that this dependence only involves the time interval between
the rwo points of time i question rather than on the times
measured from some absolute reference. These two assumptions
classify the process as a stationary Markov process. Reflection
will show that they are truc for the present problem as stated.
Any process of this type will satisfy the Chapman-Kolmogorov
equation:

il +71,y) = Ldedp(tx)mx =y, 7)........(3)
(There is an extensive literature on the theory of Markov
processes. See, for example, reference’™),
T'he transition probabilities can be expressed for small time
intervals as follows:
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‘ . N ’ )
*W’Ey “x 4Tt o(r)J e = B
. v

LW d ) B
oy -~ —;x[‘—i;ri(y—- \):lr+o(r) ........ (5)
_g@jt{bstit_ute (4) and.(5) into (3) to find 7

d
L +73) = $lL3) — LBl ) 75 AL CE

L fgfdx¢(t' )y = x)+o(1)] -o(r)...... (6)

Chang}ng the integration variable and rearranging yiclds
2(‘ + T y) - ¢('I 22 -

= T

- :;fdnnb (l, y - ? + b(l))f("tJ +a(r) )]

and, as r — 0, we find

dp(ex) .
ot

1 A w d
- 54’(" y);_+ v 3 [yo(t, v +

~ 5800 +

a¢
Setting o = 0 yiclds the cquation for the stationary pro-

bability distribution for the process:

d
= L)} = ;}";,4»@) - wlg f ¢ (x - —’3) Somydm. . (9)

Moments of Outlet Concentration
Let
e o= Sar@(x)dy and Ny = St f(ndddm

Multiplying LEquation (9) by x* and integrating we find

v A AT Y
by = oy — > () 20A
M wf Ha w8 j-o (k) i

or

pomm my



[ e |

A

- TN i

¢ ‘_.’ MR.;, ST
By = m‘,?c-(k) —-—F .............. (10)

..

. Equation (10) expresses thie #* moment of the outlet voncentrs-
" tion in terms of the moments of the pulse height distribution and
the first k-1 moments of the concentratibn;’so that the moments

= may be calculated in turn; For exanple: %

A
M oo
T, e = Ay —-—-—“"\‘ o -
- 2vwd wlh
: . gy B
Y ——— L e -
. S 2008 t -
-' Rl ' . )\2
Thus the variance of the outlet concentration is —— .

U

“The moments may also be found t};’uﬁough a-Laplace trans-
form method. Taking Laplace transforms in Equation (9) we
obtain , ‘

‘A
PRS- B B ) LAl

&(s) = f e
which is solved to yield
sl
a v [ —1
n@(s) = Ef'_t—d!"(n)
[ .

|

d’ A
Since u, = (—1)‘—«3(:) , diffcrentiation of lquation
ds A

1=0

(12) gives thc moments of ¢ in terms of the moments of f.

Distribution ¢f Output for Exponentially
Distributed Pulse Heights

For exponcentially distributed pulse heights we have

fim) = ;\e"_x ................. (12a)

where here A is the mean pulse heighe,

‘Taking the Laplace transform we find

50 = 1 13
0y = g (13)

Substituting (13) into (12) yiclds

v
A DY b
é(s) = [1 + ——] e
!Y
whick can he inverted ro give the gamma distribution:

N A
B(x) = A(‘_(_A) .\.-0 ¢ A

Jr
(%)

The cumulative distribution function corresponding to this
density s the incomplete gamima function (4):

(A e
“b(x) ’-"-'I-*" Y fr € dr ! (wﬂ'l)“”(ls)
Rl

The foregoing Equations, (14) and (15), give the. probzuility
distribution of outlet concentration. However, for the design
of a blending tank, one must consider the fact thar a pulse of
impurity wiﬁ produce a sudden jump in outlet concentration,
and it is the height of this jump that one wishes to limit. Thus
we consider the distribution of outlet concentration given that
a pulse has just entered the system. Since the probability of 2
pulse occuring in a given time interval is independent of when
the previous pulse occurred, it is also independent of the state
of the system. Therefore the outlet concentration distribution

* just before a pulse occurs is the same as the previously computed
- distribution (14), (15). The distribution in concentration just

, . m
after a pulsc is then that of the sum x + — .
: v

The independence of the two random variables permits the
calculation of the distribution of their sum by convolution:

V)= f oflete — DB (16)

(Equation (16) can also be derived ‘by“i more careful argunient =
given in the appendix)

Substituting (14) and (12a) into (16) we obtain

.'—‘+
(v/\) iy
- ™
v
I‘(\u—6+1>

which is also a gamma distribution. The cumulative distribution
now becomes

W)

V(x) = P (u—"o + 1'—;;) .............. (18)

The distribution characterized by ¥ and ¥ may be called the .
distribution of surge concentrations. Roughly speaking, the
distribution & gives the fraction of total material which does
not cxceed a given limit, while the disttibution ¥ gives the
fraction of surges which wiil not exceed a given limit.

The moments of the outlet concentration discribution can
be found from Equation (10}, The moments of the pulse heighe
distriburion, f(a) are

N =RIA B =1,2, ...

thus, substituting in (10),

v At fk m)\k-i .
By = ku'(ij-o(i) ey (& — j)!
v A k! #;)\"i
k'wﬂ,-oj_! i

In particular, the mean and variance are

A

H «wh
0 = gy — @yt = LS
vid

Letus introduce the following dimensionless variables to reduce
the number of parameters involved.
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Figure 1-—Probability density of outlet concentration for
‘exponentially distributed pulse heights,
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Flgnre 2~—Design chart based on confidence limit of con-
centration for exponentially distributed palse heights.
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Figure 3-——Design chart based on confidence limit of sucge
concentration for exponentially distributed pulse heigiits,
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The paramcter g is cqual to the average number of pulses per
residence time of the blender and 2 is a dimensionless concentra-
tion cqual to the outlet concentration divided by the mean
outlet concentration. In this way

as

1
thiz) = l‘(,,)f"- lemrdr = P(qqz)

0

206
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q
I'(q)

¥(s) =

20-lgmn

The moments of the dimensionless distribution are

=1

1
ot = -
T .
Figure 1 gives some curves of ¢(g) vs. g for typical vaiucs of
the dimensionless pulse frequency, 7. Figure 2 gives confidence
limits for the dimensionless concentration at different values of

_g. The abscissa of the plot in Figure 2 is 2 — 1. where 2 is the

"~ value of dimensionless outlet concentration that has probability

a of being cxceeded: .
a=1—-®0C) =1=P~Pqgg) >~ -

The vonfidence limits on surge concentration are given in Figure
3. These curves are given by

a=1=¥3) =1~ Plq+1,qz)

It _should be kept in mind when using plots that the limit on

concentratiori will be exceeded a fraction a of the time, while ~

“the 'imit on surge concentration will be exceeded for a fraction
a of the surges. This_will obviously result in 2 much smaller
amount of spoiled product.

Distribution of Outpu! for Constant Pulse Heights
For equal pulse heights the function f is given by
: Som) =8N = m) (19)
where A is the pulse height. The Laplace transform is
| oy =e™ o (20)
Substitutién of (20) into {12) yields
Ve

1 =M

A v
e = - | =

Ing(s) = — wj—GI:E‘ (Z:f) + n (%) +'y]“...(21)

L3

or

where

3
E\(x) = PT dt and 1y is Euler’s constant (ref. (4))

(x4

Since (21) is difficult te invert, another method will be used to
determine ¢(x). However it will be usefu: ¢ obtain 2 limiting
form of ¢(x) as x — 0. This is done by studying ¢(s) as

J — ©;

i

——n m
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‘(’ “To selve for ¢(x), Wésﬁbﬁﬁ(’dtg Equmm Q
d“ , v v of A
Ra A ke (“),M

B.C: ¢lx) = Owhenx <0 ) '

Equation (23) can be solved stepwise to yield

A

0<x <~
: v

o(x) = ¢ ' -

ete. e, (24)

Since the integrals in (24) soon become unwieldly, the functions
¢ and ® were computed numerically for some typical cases.
For the case of constant pulse heights, the distribution of surge

cornpositions is just
A
o= o(e-)
v

Y(x) = d)(x — ?)

In this case the moments of f(m) arc given by

A = N

and

The moments of the output concentration are
v itk “i)\‘-]
Uy = 7 p2 N Ry
kuwfj-a\j] vri

In particular, the mean and variance are
p

A

M=
02 = T ,.52_
T TS

Again we introduce the dimensionless variables ¢ and z, with
the same significance as before. Then
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Figure 4—Probability density of outlet concentration for
constant pulse heights.
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Figure 5—Design chart based on confidence limit of con-
ecntraticn for constant pulse heigh ..
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Figure 6—Design chart based on confidence limit of surge
concentration for constant pulse heights,
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Figure 7 — Comparison of confidence” limits for constant
pulse heights with Grussian approximation.

One notes that for the same mean and an equal value of ¢ the

variahceof-outlet concentration for equal pulse heights is half-

of that jor exponentially distributed heights. Figure 4 shows
some typical curves of ¢(z) and Figure § shows the cor-

responding confidence limits, The confidence limits ‘on surge

concentration are given in Figure 6.

Comparison with the Gaussian Approximation

It was staced in the introduction that in the absence of any
other method one can try to estimate the confidence limits bv
assuming that the distribution of cutput is approximately normal.
In this case the confidence limit of 2 for a = 0.001 is yuy
3.09¢, where o is the standard deviation, and g is the average
value of = which is onc. In the case of constant pulse heights,

1
¢ = ——, while in the case of exponentially distributed pulse

VZ{]

heights, o = The actual confidence limit for constant

i
V7 ,
ulse height is compared with the Gaussian approximation in

igure 7, for a = 0.001, and in Figure 8 with the exEoncntially
distributed pulee height case. One notes that for high values of
¢, (¢ > 5), the Gaussian approximation gives fairly close
results whereas for low values of 4 the deviations are consider-
able. For g = 0.1 the Gaussian approximation underestimates
the upper concentration limit by about a factor of 2 for the
coastant pulse height case and 3 for the exponential pulse height
case. Another type of comparison is illustrated by the following.
Supposc it is desired to design a blending rank for offgrade lots
such that the maximum outlet concentration of impurity is less
than five times the average outlet concentration with a pro-
bability of 99.9%. The average outlet concentration is that
which would result if the offgrade material were evenly dis-
tributed over the total production. In the exponentially dis-
tributed pulse height case the required value of ¢ would be
1.26, while the Gaussian approximation gives .39, In the con-
stant pulse height case the -equired value 1s .45 vs. the Gaussian
prediction of (183, Thus the Gaussian approximation would
predict a much smaller blender size.

In general one could conclude that in any case of a stoch-
astic input where the impur deviates strongly from a Gaussian
distribution the assumption that the outlet concentration is
Gaussian is only good if the time seale of the inpur Auctuations
is small compared to the residence time of the tank.
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- Markov chain. - We define one-step

to CAUSSIAN WITH  \ - =
“SAME VARIANKCE

o bt A
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Figure 8—Comparison of co}nﬁdence Timits for exponenti-
ally distributed pulse heights with Gaussian approximation.

APPENDIX

Consider sucedssive’ surge concentrations as points in a
transition probability
densities o (x — ) so that the probability that the surge con-
centration is in the‘interval (y, y 4 dy) given that the last
surge was of height.x is w(x — y)dy. We may derive this
density in rerms of the density of pulse heights, f(m), and the

: 1
density of times between surgcs,a ¢~'® as follows: Since the

height of the last surge was x, the valuc of concentration just

- t
before the next surge is x ¢ , where ¢ is the time between

surges. The concentration is then increased by an amount

o
— , so that the random variable ¥ depends on the variables ¢
v ,

and 7 according to the equation

-2
Y¥=x¢ ' +2
v

‘I'he joint density function of ¢ and 2 is the product of the two

1
respective densities, é ¢ f(m). Thus

D
f(m)dm dt

® oy — xe
Pr {Y<y} = 5/'%6‘“’0 .o/'y

et yflv(y — ve

t

)t

LN

| -

d @
d—&Pr {Y<y} =1r(x—>y)=a/‘

The Chapman-Kolmogorov cquation (for the stationary dis-
tribution)

¥(y) = SY(om(s — y)dx

then becomes

»
.

Vo) = Fe g Sty = e 7 e
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!
1
]
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o
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pulse height of i pulse

-
i

v .
dimensionless tank volume (or pulse rate) = — ¢

: . »
. & Lafs\ = ‘0 -t wl
T (s - 'éf 9 ,;r € (se * dt s = Laplace transform variable C
he ) t = time -
where : ) . . 4 .= time'of i pulse
- b5y = F en ~ "9 = volume of tank .
L $) = S emf(x)dx w = volumetric-flow rate
s N : x = cuncentration of impurity .
Let . - em o treinB.__= dimensionless impurity concentration
- . = - = ——--gq~ ~=-probability of erreeding confidence limit
- . ) - € = mean time between pulses
o= s . T'he expression then becomes A = mean pulse height (=)
- e A+ = k% moment of pulse height distribution
v = af\ s =-1, uy = k% moment of outlet concentratinn distribution
np(s) -~ v A=), u*? &(u)du = transition probability - .-
: wh AvSA p = correlation function
. . T e e e ¢ Zostandard déviation S 2T
o “~Differentiating, ¢ = probability density of outlet concentration
: @ = distribution functioi-of outlel condentration
: : ¥ = probability density of surge concentration
metroL dvf(:) ¥ = distribution fiinction of surge concentration
—— R ———— - L
T ds X . Ty .
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A stochastic approach to particulate
processing systems can give the
investigator insight into underlying
mechanisms and the nature of
observed fluctuations in particle

size and number

louds of particles in chemical processing systems arc
perhaps oue of the newer contexts in which prob-
abilistic analyses come to the fore. But while the context
may be new, the mathematical methods have much in
common with studies in biological populations, on the
on¢ hand, and in classical statistical mechanics on the
other.

The chemical processing context itself offers a good
deal of variety. It includcs, for example, problems in
crystallization, in mineral flotation, and in fluid bed
dynamics. In the recalm of submicroscopic particles,
there are polymerization problems. And if we permit
a more abstract view of our particles, we find problems
in turbulent mixing.

In these different cases, we look for the probability
distributions associated with the particie populations—
the distributions of population size and the joint dis-
tributions of pepulation size and the appropriate mea-
sures of particle quality. We would like to know these
distributions at single times as well as the corresponding
joint ¢istributions at two or mors times. We begin the

60 INDUSTRIAL AND ENGINEERING CHEM!STRY

The genercl rﬁulhcm_aﬂcol background of this

reviow is to be found in uny one of a groot

number of books on probability theory. For the
reader intarested to leamn or re-leamn this subjoct,
we ure fortunats to be able to direct hiin to the
very baautiful two-volume work of Felie: (2),

~ -one-of the great. toxts of tis. century, . A rather.
- shorter introduction to our part of the subject is

. given_in the recent, crisp book of Karin (3)."
And o treatment of Markov processes with a

good many physical applications may be found
in the book of Bharucha-Reid (1).

" (1) Sharucha-Reid, A.T., “Elements of the Theory -
"~ of Markov Processes and their Applications,”

McGraw-Hill, New York, N. Y., 1969, ,
(2) Feller, Willlam, “An Introduction ¢, F.:ob-
ability Theory and Its Applications,” Wilay,
New York, N. Y., Vol. 1, 1980; Vol. 2, 1966,
(3) Karin, Samuel, "A First Course in Stochastic
Proceues," Academic Preu, New York, N. Y.,
- 1966.
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scarch, mathcmaucally spcakmg, with some’ plausnblc
guess at the random- mcchamsm undu‘l) ing the popula-
tion changes. : This -tentative - specification - of
mechanism always contains rate parameters describing
the whort-tcrm ghangcs in the system, and whn]e these
can lmc.v be dlrer*tlrmcasurcd we may cstlmatc them,
if we can push the mathematical ‘work tlu‘ougkvto the
end, by comparing the final calgulatcd prebability
distributions with approprlatc mcasurcmcnts on the
actual particle populations.

For example, in studying a continuous crystalhzcr, we

‘might postulate a random nucleation mechanism forming

new particles at some average rate, 2 random takeoff

vmcchamcm wuthdrawmg particles at sonic’ average

fractiona! rate, and a deterydinistic growth mechanism,
What we would hcpe to learn from the analysis would
be how the growth rate and :the averane nucleation and
takeoff rates affect the _]omt distributions of particle
count and size. Mzny pol /mcnzatxon problems could
be studlcd; in an entu-cly siriilar way;: the particles
would be-growing radicals, and account would be taken
of suitable"termination mechamsms.

To take a slightly dxﬂ'crent cxamplc, in studymg a

flotation ccll, we mxght pdstulatc :random feed-takeoff

K mcchamsms For air bubblcs and for mmeral partxclcs,

. and attachment affect thg: joint distributions of free

and a random collision mcchamsm whcreby particles are
attached” to' bubbles. What we would 7hope to learn
would be how the averagsrates of takéoff, withdrawal,

particle count and air bubble count and loadirg. The
average rates appearing! in the underlying -random
mechanisms need not of course be constant, but may

depend on the particle quahty itself, or on aseociated -

environmental factors. Thus, a crystal growth rate may
wecll depend on the crystal size as well as on the solute
concentration, and in a: ﬂotaimn cell the average rate of
attachinent of particle fo air bubble will likely cepend
on how heavily the bubble is already loaded.

To ask for the full: history of the probability dis-
tributions of particle count and quality is, in most cases,
to ask for more than we can reasonably expect to get.
That is, the technical problems that arise in bridging the
gap from a postulated random mechanism to a full
knowledge of the probability distributions are often sc
formidable that we must content ourselves with partial
information. Sometimes this partial information is
found by simplifying the random mechanisms to the
point where more tractable mathematical problems
emerge. But more often we are not willing to accept
a perhaps oversimplified mechanism, and we look
instead for partial information in the form of suitable
averages of the underlying random process—means,

AUTHCRS Stanley Katz and Reuel Shinnar are both Professors
of Chemical Engineering at The City College, City University
of New York. This review was presented at the 34th Chemical
Engineering Symposium of the ACS Division of Industrial and
Engineering Chemistry held at MIT in Dece mber 1967.
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variances, covariadces. We are particularly willing to
settle for this kind.of summary information for .arge

the - “populations, whert, an intuitive reliance on limit theorems

leads us to expect that variances will be of the same order

"+ of magnitude as means-and standard deviations, accord-

ingly, small fractiors of the corrcsponding means.

Also, for large. populations, an older point. of view
asserts itself—that we - need not bother explicitly -with
random mechanisins at all, but may simply describe the
mance of our systems phenomecno-
logically. From this point of view, we simplv introduce
plausible rate mechanisms for the processes of interest
and embody them in conservation laws for the system
properties we are tfying to follow. True, we no longer
have a hold on the statistical fluctvations of our systems,
but we have good reason to believe that these are smail
anyway. This is, of course, a familiar procedure in the
study of conventional transport phenomera, and in our
problems, just as in thermodynamic fluctuation theory,
we find a very illjuminating methodological connection
between the phénomenological laws, on the one hand,
and the statistical underpinning on the other. The
connection is through a kind of repeated avcraging
on the underlyiig random process. This averaging,
repcated at everyinstant of time, leads to equations that
we may identify with the phenomenoclogical equations;
the average rates associated with the underlying random
mechanisms api:éar as the instantaneous phenomeno-
logical rates. What comes out of the solution of these
equations is not nccessanly the true average of the under-
lying random pcocess, but for large populations it is not
usually essentially different, and we are often most
willing to settle for it.

Now the bulk of our engineering applications in the
study of dispersed systems is ir situations where the
number of particles is always, in fact, large, and we may

"ask what in these cases is the point of a probabilistic

analysis. The “chief technical reason is that from a
probabilistic stutiy we may learn just how large a popula-
tion ws reaily need before we can properly say that

. deterministic phenomenological equations describe its
behavior satisfactorily.

This will especially be the case
in systems havirg a certain linear character, where the
results of repeatcd averaging are in fact equal to the
true means, no matter what the population size. Here
we will often be zble to compute variances and see under
just what circumistances the standard deviation becomes
a sufficiently small fraction of the mean.

In other cases, repeated averaging will not lead
precisely to the true means for small populations, and
here we will con monly have to rely on semi-intuitive
judgments of the population size necessary to reduce
variances to a low enough level sc that we may properly
equate the two after all. In this general connection,
we might note that there are situations where statistical
fluctuations are important even though the population
sizes are large; these large fluctuations turn out, on
analysis, to be duc to too close a statistical relationship
between successive influences on the population, or to be
the effects of very rare events, perhaps as arising from an
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initially small population size. There is every reason
to believe that for a vigorous random mechanism operat-
iug on pupulations. that are and have been large, statis-
ucal fluctuations are in-fact unimportant.

” Apart from this technical reason for undertaking a
probabnhstlc analysis of a dlsperscd system with a large
“numbhcr of parncles, there is the matter of a certain

"3 conccptual convenience m formulating equations for the

sys“¢n1 behavior. Here v+ focus on situations where the
number of particles is always so large—an emulsion
polymerization, for example—that statistical fluctuations
in the population as a whole play no role at all. If we
wish 1o study, say, the polymer molecular weight dis-
tribution, we might develop the appropriate working
equations in terms of macrescopic balances on the popu-
lation of emulsion’ particles—introducing instantaneous
phcnomenological; rates for the capture of primary
radicals by emulsion particles, and so on.

It would, however, be very naturai to interpret the
fraction - of ‘emulsion particles containing a certain
number of growing radicals as the probability that a
given particle contains that number of radicals, to inter-
pret the capture rate ol primary radicals per particle
as the average rate associated. with the random arrival
of radicals in a given particle, and so on. With this
interpretation, we might well find it much more con-
venient simply to formulate the prchability equations
for a single emulsion particle than to set up the deter-
ministic equations for the whole population of particles.
Espccxally if the differential equations that arise call
for the application of boundary conditions, the form of
these boundary conditions might be seen much more
clearly from probabilistic considerations. From this
point of view, the probability machinery furnishes a
conceptual guide to the construction of suitable phe-
nomenological equations, probability dist-ibutions for the
single particler appearing simply as a shorthand for
nuinber fractions over the whole universe of particles,

No 7 the entire program, as sketched out in the fore-
going, has a technical languagc and a variety of technical
methods in terms of which we may try to implement it,
and for our purposes, we may take this technical appa-
ratus to be that of Markov processes. It is not that all
random processes are Markov, but rather that, allowing
full frcedom in specifying the states of our systems, we
may describe a great many—perhaps all—of our par-
ticulate systems in terms of Markov processes. We
begin the study of a Markov process by specifying the
probabilitics of the short-time transitions from one state
to another. This specification, which containg the
average rates associated with tiic underlying random
mechanism, is summarized in a linear operator on func-
tions of state, the generator of the Markov process.

With the generator in hand, we may set up equations
describing the transition probabilitics in general, and,
in sufficiently simple cases and with luck, procced to
solve them, These transition probabilities, once known,
furnish the complete probabilistic description of the sys-
tem. With them, we may carry forward any initial
probability distribution in time, carry out averaging

62 INDUSTRIAL AND ENGINEERING CHEMISTRY

procedurcs to find the time history of mean and variance,
evaluate two-time probability distributions and the
associated covariances, and soon. Ifwe cannot cvaluate
the ‘ransition probabilities in general, we can go back
to the equations describing them and try to rework
them into simpler, self-contained equations for summary

~ quantities of interest such as mecans, variances, co-

variances.

For systems in wh1ch we deal always with a large
number of particles, we might not be interested in the
detailed probability structure, and might prefer instead
to set up the repeated averaging procedure noted above,
and use it as a guide to the construction of phenomeno-
logical equations. These phenomenological equations
might of course be derived directly as macroscopic
particle balances, but thc probabilistic formulation
may serve as a useful guide to our physical intuition,
and will in any case show directly how the average
rates associated with the underlying random mechanisms
are to be interpreted as the instantancous phenomeno-
logical rates at which processes transpire.

We may now set down the plan of this review. Follow-
ing a sketch of the basic mathematical machinery for
Markov processes, we set up the repcated averaging
procedure noted earlier and show, by way of illustra-
tion, how it may be applied to lead to the familiar
phenomenological equations for a crystallizer and to
a set of perhaps less familiar equations for a mineral
flotatior: cell.  Then we illustrate the nature of statistical
fluctuations in small populations, in contexts drawn from
studies in chemical kinctics and general particle popula-
tion studies. Following this, w : illustrate the nature of
some problems arising in particle interactions by way of a
familiar model for turbulent mixing. These are the
main technical points of this rcview, and we close with a
discussion of the concep 1 convenience often found in
describing the behavior of particulate systems prob-
abilistically, even when populations are large and deter-
ministic descriptions open to us: this discussion is illus-
trated by application to an emulsion polymerization
study.

It should perhaps be noted that while this review does
not contain any new results, neither does it sys.cmatically
survey the existing literature. It offers instead simply
one point of vicw on the role of probability methods
in formulating and studying problems in particulate
systems. ‘There are accordingly no formal references
made here to the existing literature, but our friends and
collecagues will surcly recognize how much we have
learned from their work, and how frecly we have made
usc of it.

Markov Processes

We skeich out here, for later reference, the basic
mathematical machinery of Markov processes.  To keep
the ideas as concrete as possible, we restrict ourselves
to three special cases: diserete state processes, con-
tinucus jump processes, and diffusional processes.
These examples do not begin to exhaust the varicty of
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the chemical processing applications, but they may serve
to illustrate adequately the underlying mathematical
ideas. Further, we restrict ourselves, this time for con-
ciseness, to stationary Markov processes, that is, those for
which the transition probabilitics between two states at
two times depend only on the time difference.  Again,
this éxcludes many applications in which the particle
environment is changed systematically with time, but
we hope it will be fairly clear how the machinery is to be
extended to cover such cases.

By way of introduction to what follows, we may note
that our summary of the properties of Markov processes
is grounded in the generator, G, of the process, and its
adjoint G*. Both are linear operators, taking as their
domains of operation suitable functions of the state of
the process. They appear variously as matrices, as
integral operators, or as differential operators, depending
on the topology of the state space and the nature of the
process. The adjoint operator, G* appears in the
Kolmogorov forward equation. This is the equation
describing the history of the single-time probability
distribution of the process, and is accordingly the im-
portant working equation in most of our applications.
The generator G, itself, appears in the Kolmogorov
backward equation. From the point of view of the
mathematical structure of the process, the backward
equation plays a more fundamental role than the
forward. But in our applications, it appears primarily

“as the carrier of the method of repeated averaging noted

earlier, to be applied to the development of phenomeno-
logical equations for the system under study.

We begin now with discrete state processes and let the
integer { serve to index the states; in a typical applica-
tion, / might be a particle population count. We shall
discuss such processes in some detail, as serving to illus-
tratc the methodology in the simplest context. The
underlying random mechanism for such processes we
take in the following form: the system, in state i, willina
short time ¢ leave it with probability a; the system,
lcaving state #, will go to state j with probability 8;—
i.e., a; is the average jump rate from state 7, and efy, is
the average jump rate from i to j. Here, 8y = 0 and
3.8, = 1. If we denote the transition probability from
7

i toj in time ¢ by p,(t), we find that we have specified
the short-time behavior of py;.

1—ae, j=i
P ~ AL g o S deio ®

Equations such as Equation 1 are sometimes written

1 — e dt, j=i
dl) = . .
pud) {atﬁu edt, j#EI

to cmphasize the fact that the transition time d¢ is short,
but we shall not use this convention here.

Now the general behavior of the transition probabili-
tics of a Markov process is regulated by the Chapman-
Kolmegorov equation

pult +35) = Zk:/m(t)/lu(S); s 20 )
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which describes the independence of past and future
characterizing such processes. To find the general
behavior of the system, we would want to solve the
Chapman equation, Equation 2, subject tc the short-
time condition, Equation 1. This task is facilitated by
developing differential equations in the py; from Equa-
tion 2. We begin by letting s § 0 in Equation 2—small
last step—and applying Equation 1. What emerges is

dpu) _

e —pu®ay + 2 pa(t)anbr 3)
.

i.e., Kolmogorov’s forward equation (the familar Fokker-
Planck equation) in the transition probabilities. The
short-time behavior, Equation 1, is subsummed in the
coefficients of Equation 3 and gives rise also to the initial
condition

24(0) = &y 4)

A perhaps less familiar equation in the transition prob-
abilities is found by letting ¢ § 0 in Equation 2—small

first step—and applying Equation 1. This leads to.

Kolmogorov’s backward equation

dpeyls) _
ds

together with the initial condition Equation 4.

The structure of the forward and backward equations
emerges a little more clecarly if we recognize their right-
hand sides as matrix products. If we introduce the
matrix elements

—apy(s) + o zk: Buprs(s) (5)

- {—a,; j=1
gu afy; JALE

so that the short-time transition probabilities, Equation 1,
may be written

pult) ~ Sy +gut; t 40

then the forward equation, Equation 3, becomes

dpyy(t
—p—;'(—)' = 3 pal(t)grs 6
t k
and the backward equation, Equation 5, becomes
dpy(t
%’;(—) = 2 guprs(t) ™
E
The matrix
g = (&)

is the gencrator of the Markov process. It serves as a
linear uperator on functions of state, that is, on vectors u;.
We might illuminate the central role of the generator
by noting that the forward or backward equations,
together with the initial condition, Equation 4, have the
formal matrix solution

pis(®) = (8

The generator also appears in a natural way in the
evaluation of conditional means (conditional expecta-
tions) of functions of state. If we take an initiai vector
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#;(0) and form its conditional expectation at a later time ¢
u(t) = 2 pis(t)us(0)
J

we find from the backward equation, Equation 7, that
this conditional expectation satisfies

d du,
. = T guts = ) (8)

The differential equation, Equation 8, will, with suitable

choice of vectors u,, serve as the basis for the method of -

repeated averaging to be discussed below. Since
2 gu = 0, we see that Gu, or rather u + Gu, is of the

na ure of a smoothed version of u, so that a solution of
Equation 8 really represents a kind of continued smooth-
ing.

If, leaving conditional expectations apart, we wish to
study directly the cvolution of an initial probability
distribution in time, we turn to the forward equation.
An initial probability distribution #,(0) develops at a
later time ¢ into

”:(f) = 2‘ 2:(0)p (%)

and we see from Equation 6 that this distribution satis-
fies

dv

_a'?! = 2 gy = (G*0), | ®
As a matrix, G* is simply the transpose of §. As an
operator, G* is adjoint to G in the sense that

; vy(Gu)¢ = ; (§*v) uy

for any vectors u, ».

It might be noted that Equation 9 is just of the form
of the forward equation, Equation 6, and Equation 8 is
ust of the form of the backward equation, Equation 7.
Accordingly, if we could find analytical solutions of
cither of them that were general enough to satisfy the
different initial conditions, we would have in hand the
complete probabilistic picture of the process. The
applications being as complicated as they are, we very
rarcly succced in doing this. Instead, we try to distil
from Equation 9 simpler equations for summary proper-
ties of the distribution v;, such as the leading moments,
and only infrequently compute a detailed distribution.
Alternatively, we go over to the phenomenological point
of view and look for suitable vectors u, which, taken to
Equation 8, will form a tractable sclf-contained set of
equations in what we may hopefully interpret as mean
values of quantities of interest. In this connection, we
may note that the mean value of a vector u

(uy = Z Ul
k

where v, i3 the single-time probability distribution, satis-

fies, according to Equation 9, the differential equation
d(u)

E U Z. gesy = (Gu)
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This is not quite the backward equation, Equation 8,
but if § has an appropriately simple character, we may
find that the mean values of suitable vectors u satisfy
something very much like the backward equation, and,
in fact, turn out to be equal to the corresponding condi-
tional expectations.

This concludes our discussion of discrete state proc-
esses. We turn next to a brief sketch of continuous
jump processes. We restrict for convenience to one
dimension and let x serve as the index of states. An
application of these jump processes will appear below
in the discussion of a familiar method for agglomerative
mixing. The underlying random mechanism for such
processes we take in the following form: the system, in
state x, will in a short time ¢ make a jump with prob-
ability a(x)¢; the system, leaving state x, wi'' jump to
the interval y, y + dy with probability 8(x,y)dy; the
system, between jumpe, will change state continuously
according to the differential equation dx/dt = f(x).
That is, f(x) is the translation rate at state x, a(x) is the
average jump rate from state x, and a(x)B(x,y) is the
average jump rate density from x toy. Here, f B(x,y)dy
= ], If we denote the transition probability density
from x to y in time ¢ by p(x,y; ¢), we find that we have
specified the short-time behavior of p in the form

play;t) ~ [1 = talx) 3y = x — tf(x)] +
ta(x)Bxy); ¢t {0
The Chapman-Kolmogorcv equation, here appearing as,
plegs ¢+ ) = fplx,z; Dplags o)dz (10)

then leads, as for discrete processes, to a forward equation

plxyit) _

> — plxy; Ha@y) +

e
~ % {plxy; DI}
So(xz Da(2)Bey)dz (11)

and to a backward equation

p(xys ) _ ., Oplry; 1)
fol4 = /&) Ox

— a(x)p(xy; t) +

a(x) fB(x2)p(zy; )dz  (12)

together with the initial condition
p(xy;0) = 80y — %) (13)

From Equations 11 and 12, we may extract, as before,
the generator G and its adjoint

@00 = 160 2 _ st +

alx) [ B(x,2)u(z)dz (14)
G*0) = — jy ()6)] = v()aly) +

Jo(2)a(x)B(zy)d:  (15)
in the sensc that

Jo(x)(Su) (x)dx = f(g*v) (uly)dy (16)

Here G* is adjoint to G
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With G*, we may follow the evolution in time of an initial
probability density »(v;0). This density evolves in a
time ¢ into

v(y; ) = So(x; 0)p(xy; )dx (17)

which, according to the forward cquanon, Equation 11,
satisfics

dv
ot
With G, we may follow the conditional expectation of an
initial vector u(x; 0). This conditional expectation is

u(x; 1) = [plxy; Huly; 0)dy (19)

and, according to the backward equation, Equation 12,
satisfics

g% (18)

ou
._=gu

ot

The use of Equations 18 and 20 in the applications
follows that of the corresponding cquations, Equations
9 and 8, developed for discrete processes, and the dis-
cussion made there applies here as well,

This concludes our sketch of jump processes, and we
turn finally to diffusional processes. Again, we restrict
oursclves, for convenience, to one dimension and let x
serve as the index of states. Here, we characterize the

(20)

underlying random mechanism for the process by

" thinking of the system as being continuously shocked
in such a way that a jump from x in a short time ¢ has
mean f(x)¢ and mean square £*(x)t. That is, we take
the transition probability density p(x,y; t) from x to y
in time ¢ to have the short-time behavior

{f (y = Dpley; ddy ~ f()t }‘ Lo
S = xplxy; Ddy ~ K(x)t

A model for such a process may be formed in a way
familiar from Brownian motion studies by taking

(21)

= f(x) + k@w() .

where w is a white noise with unit spectral density, that is
to say, where

(@) =0, (w®w(t + 5)) = 8(s)

the pointed brackets denoting mean values. Other
modecls will appear below in connection with population
size probiems.

The Chapman-Kolmogorov cquation has the standard
onc-dimensional form, Equation 10, and we may re-
cover from it, by consulting the short-time behavior,
Equation 21, a forward equationin p

Opxy; ) _ O _
- ot = ()y [/)(-\',)’, l)f()’)] +

1
3 o [p(xy; DE(Y)] (22)

and a backward cquation

DP(Xy, )]

%2

ap (x,)‘; l/
Ox

Op(xy; )

ot @3

=fx) = k’( )
together with the standard initial condition, Equation 13.
We may accordingly recognize the generator G and its

adjoint as

du(x) R d*u(x)
(Qu)(x) = f(x) 'é‘ F(x) e @49
W) = — L OYO)] + == poke) (@5
G*) () = — b OV + X NEM]  (25)

where G* is adjoint to G in the familiar one-dimensional
sense of Equation 16.  With § and G* in hand, we may
develop working equations for probability densities and
conditional expectations just as before. Thus, a density,
v, defined according to Equation 17, satisfies a forward
equation, ".quation 18, while a conditional expectation u,
defined according to Equation 19, satisfies a backward
equation, Equation 20.

With diffusional processes, the question of boundary
conditions comes up, as indced it mnay also for the trans-
lational aspects of the continuous jump processes. The
general guide here seems to be that if a transition into a
forbidden zone is possible, it must be guarded against by
imposing a suitable condition at the zone boundary.
Consider, for illustration, a population problem modecled
diffusionally, where we wish to forbid transitions to
negative population size x. It would be natural to
impose on the transition probability density p(x,y; )
the boundary condition

Op(x.y; ¢)

ox =%

x=0 (26)

drawn from the behavior of a reflecting barrier in a
random walk. This would amount to attaching the
boundary condition

20

dx =%

x=0 @7
to the definition, Equation 24, of the generator, and

accordingly the boundary condition

vNfG) = 5 = WEM] =0; y=0  (28)
to the definition, Equation 25, of its adjoint. This last
amounts to saying that the transition probability density

p also satisfics the boundary condition

102

pley; () = 5 (s D8N =0; y=0 (29)
The boundary condition, Equation 29, would have to be
attached to the forward cquation, Equation 22, in the
transition probability density, and the condition, Equa-
tion 26, to the backward cquation, Equation 23 Simi-
larly, the boundary condition, Equation 27, would have
to be attached to the working backward cquation,
Equation 20, for conditional expectations, and the condi-
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tion, Equation 28, attached to the working forward
equation, Equation 18, for probability densities. Indeed,
the condition, Equation 28, turns out to be just what is
needed to preserve the normalization of » in Equation 18.

Repsated Averaging

We discuss here the construction of phenomenological
equations associated with a Markov process. In a
macroscopic view of the process, these are deterministic
conservation equations in quantities of interest. From
the point of view of the underlying random structure,
they are equations in suitable conditional expectations.
The generator of thc Markov process, which we have
seen above to be of the nature of a smoothing operator,
will accordingly play a central role in the development,
and since the phenomenological equations will be of the
general form of Equation 20, we see that what is in-
volved in their solution is really a kind of contitued
averaging. Our task here will be to develop these
phenomenological equations from the Markov process,
discuss them as macroscopic conservation equations, and
sce how the clementary average rates of random change
subsummed in the generator are interpreted macro-
scopically as instantancous deterministic rates of change
in the system.

To illustrate the ideas as concretely as may be, we
proceed by example, considering first a crystallizer with
random formation and discharge of particles together
with dcterministic growth of existing particles, and
second a mineral flotation cell with random attachment
of particles to vacant sites on air bubbles. It will
emerge from the discussion that the conditional expecta-
tiuns appearing in the phenomenological cquations will
somctimes be preciscly equal to the truc mecan values,
sometimes not—as an engincering matter, this sccms to
depend on whether the particles in the system interact or
not. We will; however, argue on semi-intuitive grounds
that cven when the two are not cqual, they become
approximately cqual for populations that are and remain
large. Indeed our argument will be that in such cascs,
variances and covariances become small, distributions
become singular, and th> processes involved become
cssentially  deterministic. However, to illustrate the
uncertain character of this reasoning, we discuss bricfly
some problems in population size, 100 simple to be of
any engincering interest, but which show that this
method  of repeated averaging may falsify cssential
features of the system behavior even when the popula-
tions are large.

Crystallizer. We turn now to a considcration of the
crystallizer. We consider a4 mixed continuous crystal-
lizer with clear feed, and, for convenience, take the
chemical environment to be constant.  The underlying
random mechanisin of the process we take in the follow-
ing form: inashort time, ¢, a new particle, of vanishingly
siall vize, will be formed with probability Bt; in a short
time, ¢, any given particle will be discharged with
probability Dt; a particle of size x in the systen
at the rate dx/dt = G(x). [ we deseribe the sta
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system at any moment by the number m of particles
present, together with their sizes x1, x2, ..., xn (say,
oldest first), we sce that we have specified the short-time
behavior of the transition probability p(mx;... X,
ny1...yn; t) from state m, xq, ..., X tOSALE N, Y1y ..y Vi
Taking p to be a probability in n jointly with a proba-
bility density in yy, ys, .. ., ya, we may write:

plmxy. o xpy ny1 . yns ) ~ -

Bt 6n.m+16(yl - xl)- . 6(}’": - xm)a(}’m+l) +

Dt _Z!é,.,,,,_lﬁ(yl - Xl) . .5(}’]_1 -_ Xj_l) X
j=

6(}'/ - xj+l)- . -6(ym—l hant xm) + [1 - (B + mD)t]anm X
Ofyr —x1 — G(x)]. . . 8[ym — xm — Glxp)t]; ¢t} 0

Now all this represents a rather more con.plicated
situation than in any of the Markov processes sketched
out carlier. Still, we may apply the same basic ma-
chinery, and extract from it a knowledge of the gencrator
G for the process in hand. We find

(Qu)(mxy. . .xpm) = ?ml Gix)) X

du(mxy. . . %)

+ Bu(m + 1, %,...x, 0) +
Dx,

D.E’ ulm — 1, X1, . Xy a¥p1. . X)) —
i
(B 4+ mDyu(mx,y...x,) (30)

With G in hand, we arc ready, in principle, to set up
and try to solve the equations for the underlying prob-
ability distributions.  Or, turning aside from such an
ambitious effort, we may look instcad for suitable func-
tions of the system state—i.e., of mxy. . . xm, for which we
may construct self-contained phenonienological cqua-
tions of the form of Equation 20. A natural function
of this kind is the number distribution of crystal sizes in
the system:

F(x) = ilA(x - x;) (31)

where A is the Heaviside unit step function.  Applying
Equation 30, we find that
dF(x)

QF)(x) = —G(x) —;"°

— DF(x) + BA(®x)
dx

so that the conditional expectation of Eqguation 31
we may denote this F(x,)—satisfics

oK ol

== =G(x) .~ DI+ BA(y

ot ) ox + B
Finally, introducing in place of the munber distribution
Fits density f = 0/7/0x, we find the more familiar
cquation

of

d
o o (G - fl=D8B -3~ —-D.f (32)

Indeed, Equation 32 is of the usual form of the
phenomenological  equation for a continnons  mixed



crystallizer, and if we interpret fdx as the number of
crystals per unit working volume with sizes in the range,
x, x + dx, we may identify B as the rate of nucleus forma-
tion puer unit velume and 1/D as the nominal residence
time in the crystallizer. Now Equation 32 has been
developed for a conditional expectation, not for a true
mcan valuc based on how the underlying probability
distributions cvolve in time, In this case, a calculation
will show that the truc mecan valuc satisfies the same
differential cquation, although this would no longer be
so if we introduced particle interactions, say by way of a
supersaturation-dependent crystal growth rate, and the
associated soiute balance. But here, with the mecan

number density, f, of crystal sizes satisfying Equation 32, .

we may confidently expect that for large crystal popula-
tions, there will-be no appreciable statistical fluctuations
in f, and accordingly that Equation 32, viewed as a deter-
ministic phenomenological equation, will, in fact, give a
satisfactory complete description of the process. (The
fluctnations to be expected in over-all particle count
will be discussed in the next section of this revicw.)
However, while we may be very willing to use analogous
cquatinns in more difficult cases, we should bear in mind
that they wil! not neccessarily describe the true mean
values of interest, but only related conditional expecta-
tions.

Flotation cell. - This concludes our discussion of the
crystallizer, and we turn next to a consideration of a
mineral flotation cell. We consider, for convenience,
a simple experimental situationi: a mixed batch cell
with particles all of one size and an equal likelihood of
attachment to a vacant site on an air bubble, the bubbles
chemselves being well mixed throughout the working
volume. We may accordingly describe the random
mechanisim underlying the process as follows: in a short
timic ¢, a bubble, particle-free, will be introduced with
probability Bt; in a short time, ¢, any given bubble, with
its particle loading, will be discharged with probability
Dt; in a short time, ¢, any given particle will attach
itsclf to any given bubble already carrying n particles
with probability 4., where n may be 0, 1, 2, etc. If we
describe the state of the system at any moment by the
number, », of free particles present together with the
numbers x¢, xi, X2, ec., of bubbles carrying 0, 1, 2
particles, ctc., we sce that we have specificd the short-
time behavior of the transition probability pluxery. . .,
woy1. . .5 1) [romn state u, xo, X1, ... to state v, yo, y1, ... :

/)(llxo-\’l. ERER 410 AT I) ~ Bt&,ub,gﬂ_l Hoaym_:m +
mpd

2 Dxat + 838y ram H Oymizm +
n men

Z A,,le,,l . 6n.u—lsvn.!»—|6h+! 1Thel H 5Vm1'm +
n men ntl

{1 =B+ L Dx+ 2 Auexa)t} e [ 8z ¢t 1 0

Now the variables of state «, x,, arc integers, so that we
have here a multidimensional version of the discrete
through 9. We may
accordingly recover, as there, the 7 enerator of the process
in the form:

state process of Equations 1

€3

Qo) (uxoxyxz. ..) = B « p(uxe + 1, xy, x2...) +
Dxgeo(uyxog — 1, %, %2, . . ) + Dxyo(u, xo, %1 — 1,%2...) +
coo A Aguxgelu — 1, xp — 1, x3 + 1, x5...) +
Awxiou — L, xo 51 — Lo+ 1...) 4+ ... —

(B + Xn: Dx, + ; Aquxp)o(uxexixa, . .)  (33)

With g in hand, we are ready, in principle, to try for
the whole probability history of the flotation process.
However, the interaction between particles and bubbles
makes this an especially ambitious task, and we turn
instead, as for the crystallizer, to the search for suitable
functions of statc whose conditional expectations will
satisfy sclf-contained sets of equations of the form of
Equation 20, here taken in the representation, Equation
8. The state variables themselves are such functions,
and bringing u, xo, %1, X2. .. in turn to Equation 33, we

find
37“ = - zn: Az,
dx
_d_t‘.’ = B ~ Dxo — Agux, (34)
doy
W = —Dxy + Ap_ttxn_y — Apuxy; n %0

We may readily identify Equation 34 as a sct of phe-
nomenological equations for the performance of the flota-
tion cell.  If we interpret the variables per unit working
volume, so that u is the number density of free particles
in the cell and x, the number density of bubbles carrying
n particles, then we may interpret the 4, as rate con-
stants for the attachment of particles to bubbles, B as a
feed ratc of bubbles, and 1/D as the average residence
time of bubbles in the cell. It should be noted here
that the actual mean values of the quantitics , x, as the
underlying probability distributions evolve in time do
not satisfy these phenomenological cquations, as the
analogous mean values do for the crystallizer—the
bubble-particle intcractions stand in the way. Indeed,
an attempt to construct working cquations for the true
mean values (we denote them here by pointed brackets)
leads to

d(w) _
B =T 5 A

d
_<;l°_> = B — D(xo) — Aoluxo)
‘-{—<:TIQ = -— D(»'n) + An—l<uxn—l> - A"("x">; n 0

These differ from the phenomenological Equations 34
only in that their right-hand sides involve mean values
of products, {ux,), rather than products of mean values,
()xn).  Now (uxy) differs from (u)(x,) just by the
covariancc between © and «x,, and this covariance
is bounded in absolute value by the product of the stan-
dard deviations of « and x,. Accordingly, if the appro-

VOL 61 NO. 4 APRIL 19489 67

et ey

PR
H

————

Craning
.

RS

[ |

[ Prses

[ RN ¥']



priate populations are large, so that the standard devia-
tions are small fractions of the corresponding ricans,
the mean values {ux,) become approximately equal to
the products {u){xy), and we may not only con-
fidently identify the conditional expectations in Equa-
tions 34 with the true mean values, but also argue that,
the statistical fluctuations being negligible, the deter-
ministic phenomenological Equations 34 give an essen-
tially complete description of the process.

The approximate equality of (ux,) with {()(xs)
for large populations may be described as a kind of
asymptotic orthogonality of the 1andom quantities u
and x,, and the verbal arguments we have just made
represent an attcmpt to deal on intuitive grounds with
the mathematical question of specifying the conditions
under which ¥ and x, will be approximately orthogonal.
This is a characteristic question in the study of systems
of interacting particles, and we shall return to it, in a
somewhat sharpened form, where the issuc is indepen-
dence rather than simple orthogonality, in a later section
of this review.

This concludes our discussion of the flotation cell,
and we turn finally to two simple examples of popula-
tion growth which show some of the pitfalls in the use
of this method of repeated averaging.

Examples of population growth. We consider
first a lincar birth process where, in a short time ¢,
a population of size { jumps to size { + 1 with probability
Bit. If we characterize the state of the system at any
moment by its population size, then the machinery of the
discrete states processes (Equations 1 through 9) applies
directly. We find

pis(t) ~ Bitd; 1+ (1 = Bit) 8,5 ¢ } 0
so that
(Qu)e = Bi(upr — uy) (35)

Taking for u, the population size i itself, we find accord-
ing to Cquation 8 that its conditional e¢xpectation satis-
fies

di

7= Bi (36)
This is of the cxpected exponential form, and we have no
hesitation in identifying it as a phenomenological cqua-
tion in the deterministic population size, /. Further, a
straightforward calculation shows that the actual mean
value of the random population size, as the underlying
distribution cvolves in time, satisfics just this samc
cquation, Equation 36.

So far, so good, but if we consider instead a quadratic
birth process, where, in a short time ¢, the population
size jumps from § to 7 4 1 with probability Bi% some-
thing much more dramatic happens.  Formally, the
machinery works as before. We find

(GuYy = Bi(upr — )

and, taking for «, the population size 7 itself, we see from
Equation 8 that its conditional expectation satisfies
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% = B (37)

Again, we would not hestitate to identify this as a phe-
nomenological equation in the deterministic population
size, {. But now thc conditional expectation behaves
rather differently from the true mean value of the under-
lying random birth process. The conditional expecta-
tion equation, Equation 37, starting from an initial
population size 7o, has the solution

. o
" T 1T B

Thus, according to Equation 37, the population grows
hyperbolically, exploding at the time ¢ = 1/B{,. Now
this is a very short time if 74 is large, but a careful analysis
of the underlying random process, nevertheless, shows a
finite probability of having an infinitc number of births
in every time interval. Consequently, right from the
outsct, there is a finite probability of having an infinite
population, and the true mmcan population size is in-
finite. " Before taking too scriously the practical im-
plications of this divergence between conditional expecta-
tion and truc mcan, we should note that this is a very
unrealistic example, and that suitable constraints on the
birth process, designed to mitigate its explosive behavior,
would likely scrve also to bring the conditional expecta-
tion of population more into linc with its true mean.

Small Populations

We present here threc examples to illustrate the nature
of the statistical fluctuations to be expected in small
populations. Onc is of a first-order decay process, and
may be taken to apply to first-order chemical kinctics
or to simple radioactive decay. Another is the lincar
birth process that was discussed bricfly in the preceding
scction. The last is of a combined birth and death
process and may apply to a study of particle populations
in a mixed vessel, or perhaps to growing radical popula-
tions in an cmulsion particle.

We turn accordingly to the first-order decay process,
where, in a particle population, any given particle dis-
appears in a short time ¢ with probability Ix. We may
intcrpret D as a radioactive decay constant, or as a
first-order chemical rate constant.  The size { may be
taken to index the state of the process, and the machinery
of the discrete state processes sketched in Equations 1
through 9 applies directly.  We have the generator in
the form

(g”)o =0
{(gu), = DiGua— u)y 1 #0 (38)

and ire adjoint
G ), = =Djry + D@+ Dy

We may accordingly set up the forward and backward
cquations (Equations 3 and 3) for the transition prob-
abilitics p(j, and sce that they bave the solution in simple
binomial form

T



( ,: >(""")’(1 — ety j=0,1,2, ...,
pult) = (M

0; j=i+1,i+2... (39)

From Equation 39, we may follow the probability
history of any initial population. If we take a popula-
tion initially of size N, so that its initial probability
distribution is

v,(0) = &
we may sce that it evolves into
o) = () it = o= (40)
J
satisfying a forward equation
dv, . . ’
"Tt‘ = —DJU] + D(J + 1)0,4-1 (41)

of the form of Equation 9. From Equation 40, we find
the mecan population size to be

u o= Newdd
This satisfics the diffcrential equation

dp

a =~ ~Dw

which may indecd also be devcloped directly from
Equation 41. We see, incidentally, on consulting
Equations 38 and 8, that the conditional expectation of
the population size also satisfies just this differential
cquation, so that the method of repcated averaging
would give us the truc mean for this process, although
this would not neccessarily be true for more complicated
decay mechanisms.

We may also calculate the variance ¢ of a population
initially of sizc N—ecither directly from Equation 40,
or by developing a differential equation in ¢* from
Equnation 41.  We find in any casc

0 = Ne= P41 ~ =2

and from this we may infer something about the statis-
tical fluctuations in population size. We see, for ex-

ample, that
v /5—01(1 —~ DY)
N N

is vnitormly small for large N, so that the fluctuations in
an initially large population are always small compared
to the initial size.  More revealing is the ratio

a 8'” — 1

B N
This increases exponentially v ith ¢ no matter what the
size of ¥, but for large ¢ it behaves as follows:

I 1

~o s
I3 \/p

t ! o

71

Thus, the ratio o/u is asymptotically independent of the
initial population sizc N, depending only on the de-
creasing mean, u; as long as u remains sizable, the rcla-
tive fluctuations will be correspondingly small.

Finally, with the transition probabilities, Equation 39,
and the single-time probability distribution, Equation
49, in hand, we can readily assemble the joint distribu-
tion of the population sizes at the two times ¢, ¢ 4 s.
The results are not worth quoting in any detail, but we
may, by way of illustration, give the correlation co-
efficient between the wo populations. For an aged
system—large f—this turns out to be simply e—2%/2,

This concludes our discussion of the first-order decay
process, and we turn next to the linear birth process.
This process was discussed briefly in the preceding sec-
tion of this review; with birth rate B and population
size 7, it has the generator Equation 35, We shall not
describe this process in as great detail as the first-order
decay, but simply quote some key results on means and
variances that scem to cast some light on the role of a con-
tinuingly large population size in ensuring that statis-
tical fluctuations stay small. These results arc all readily
derivable by straightforward calculation from the
discrete process machinery of Equations 1 through 9.
We have, for a population initially of size N, that the
growing population size has mean

p = Nett
and variance

o = Neot (1 — ¢=5t)

_ Jl — e8!
b N

For large ¢, ¢/u becomes simply 1/ \/X;, and two points
emerge. The first is that if the population is initially
large, and hence always large, the statistical fluctuations
are, as we expect, small compared to the mean. The
second, and more surprising, is that if the population is
initially small, say N = 1, the fluctuations are of the
same order of magnitude as the mean, cven though the
mean itself increases without bound as time progresses.

To mitigate this surprise, we should, howcver, note
that while these large fluctuations might be expected in,
say, a particle break-up process (and of course biological
processes of various kinds), they would not arisc in a
process whereby new particles are formed, or appear, at
a ratc independent of the population size. If we take,
as in a Poisson process, a new particle to appear in a
short time ¢ with probability Bt, and, as before, index
the population size on 7, we find for the gencrator

so that

q

(Gw)¢ = B (ugs1 — uy)

in contrast with Equation 35. Calculations of mcan and
variance, for a population initially of size 0, then lead to

“=o'2=Bt
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which becomes quite satisfactorily small as soon as u
reaches a sizable value.

At this point we might mention onc well-known
physical example for a process involving large numbers
which shows significant statistical fluctuations. Con-
sider again a crystallization, but now lct us assume that
we arc dealing with a case where primary homogencous
formation of nuclei is a very rarc event. In the presence
of crystals, most of the nucleation will be sccondary
nucleation duc to break-off of dendritic growth on the
surfacc of a growing crystal. A melt or a solution might
be heavily undercooled before the first crystal appears,
but once it appears, nucleation and formation of new
particles are almost explosive and may lead to almost
instantancous solidification of the melt. While the
final number of crystals is large, the total number of
crystals will show significant fluctuations with time as
the experiment is repeated.

This concludes our discussion of the linear birth
process, and we turn finally to our particle birth and
dcath process. We describe the underlying random
mechanism of the process as follows: in a short time, ¢,
a new particle appears with probability Bt; in a short
time, f, any given cxisting particle disappears with
probability Di.  For a particle population problem in a
mixed vessel, we might interpret B as'the particle feed or
production rate, and 1/D as the mcan residence timne of

. particles in the vessel. In the context of an emulsion

polymerization, where we study the population of grow-
ing radicals, B might be the arrival rate of primary
radicals in an emulsion particle, and D a ratc constant
for the cscape or spontancous termmination of growing
radicals. As before, the population size, i, may be
taken to index the state of the process, and the machinery
of the discrete state process sketched in Equations 1
through 9 applies directly. The transition probability
pt) has the short-time behavior:

pu(t) ~ Bt é; gy + Dit 8,1 +
(1 — Bt — Dit)é,; t | 0 (42)

and wc may recover the generator of the process in the
form

Guye = B - (w1 — 1) + Dilwer — ) (43)
and its adjoint as
(G*2)o = —Buo + Doy
(©*); = B(vj=y — v)) + D(j + Dvjsr — Dyy;
J# 0 (44)

We shall quote here only a few illustrative results
readily derivable from Equations 43 and 44. The
probability distribution v; of the population size, once
the process has setled down into a state of statistical
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equilibrium, satisfies, according to Equation 9, the equa-
tion
(G*»); = 0

and is seen to be of the familiar Poisson form
(8/D)’

i
This has mean g and variance ¢* both cqual to B/D,
so that

v; = e=HBIP

o 1

© \/y

and we may accordingly expect that sinall populations
will exhibit pronounced fluctuations about their means.
The conditional expectation of the population size, as
computed from Equation 5, will incidentally be cqual
to the truc mean, g, for this process—although this
would not nccessarily be true for more complicated
particle disappearance mechanisims.  Finally, we may
derive from the forward equations, Equation 3 or 6,
in the transition probabilitics differential equations in
the lagged covariances for this process. and f{ind, for
example, that at statistical equilibrium the correlation
coeflicient between the population sizes at times ¢ and
t + s isjuste=P* entirely independent of B.

We might also note here that birth and death processes
of this kind can also uscfully be modeled in terms of the
diffusional processes sketched in Equations 21 through
29. Trom the short-time transition probability be-
havior, Equation 42, we may sce thot

G0~ 0 = D)
(G = ) ~ B+ Dief' ¥ °

Accordingly, consulting Equation 21, we find frem
Equation 24 the generator

Qu)()) = (B — Di) ‘ﬁ’iﬁ + % (B + Di) dz{’{’lf_"z (45)

and from Equation 25 its adjoint

@mm=—§wm~w—wn+

d*

pE [2(j) - (B + D] (46)

o —

Here / and j are continuous variables representing the
population size. To keep the population size positive,
we would want to apply boundary conditions in the
manner of Equations 27 and 28, that is, to attach to
Equation 45 the boundary condition

—s = () 1 =0 (47)
and to Equation 46 the boundary condition
. . 1 d . :
S AB = D) = [0(G) - (B A D)) = 0
« q

J =0 (48)



With the generator given by Equations 45 and 47 and
its adjoint by Fquations 46 and 48, we would be pre-
pared to begin a study of the population process accord-
ing to this diffusional model.

Particle Interactions

Almost all of our examples up to this point have dealt
with particles that behaved quite independently of cach
other, and this was for the good reason that problems
involving significant particle interactions arc commonly
very diflicult. We proposc here to discuss what scems
to us to be a kev difficulty in treating clusters of inter-
acting particles. The difficulty is, of course, simply
that the particles do interact, so that the properties of
the individual particles are not statistically independent.
This difficulty has alrcady comne up in our carlier dis-
cussion of thc mineral flotation cell,
return to this carlicr discussion, we shall illustrate it
ancw in terms of a familiar agglomerative model for
turbulent mixing, which brings us to the difficulty in a
sharper, more transparent form.

According to this model, the turbulent mass is divided
up into N cqually sized droplets, the particles, which
undcrgo binary collisions at the average rate N4, where 4
is a mcasure of the mixing intensity—i.e., in a short time
t, any given particle pair will collide with probability
24t/(V — 1), so that some pair will collide with prob-
ability NAt. The colliding particles merge, equalize
concentrations, and immediately separate.
the concentrations of some key substance in the in-
dividual droplets by xi, x2, ... xy, then the vector x =
(x1, x2, ..., xy) may be taken to represent the state of
the system, and we find a multidimensional version of
the jump process, Equations 10 through 20, with

alx) = NA
Xm + X,
ﬁ(x!}') V(V Zm<§ 5(}'»- - _2‘——) X
5( n— n t x,,) X #I;_‘[ﬂ 8(yr — x)

We may also introduce a translation rate into the
process by imagining a chemical reaction going on in
the system, the concentrations x, in the individual
droplets continuously changing according to the rate
equation dx,,/dt = R(x,),m = 1,2 ..., N.

Now we find on applying the machinery of Equations
10 through 20 that the probability density of system
states as defined in Equation 17—we denote it here
2 (p; ) = 2 (yiya. .y 1) —satisfics the equation

(V) ; !
ATV (gmenngyy ) =

ot
- Z () [R(ym)l"(lv‘(y; l)] - A’\’AU('\')(}'; t) +
v 1 Z fov(\](yl vt X
- m<n

6(}'"! - o :_ }'") 5('n - 'Y‘m +‘i'1) X dxmdxn (49)

but rather than .

If we denote

13

The solution of Equation 49 would certainly tell us a
very great deal about how the systein evolves in time
from some initial statc. But quite apart from the diffi-
culty in solving it, it would tell us rather inore than we
want to know—all the information we really want about
the system is contained in the one-dimensional marginal
distribution for a typical particle, and indeed in the
lcading moments of this onec-dimensional margin.
Besides, we would be hard put to assign a numerical
value to ¥, which we think of rather vaguciy s large.

Accordingly, we recognize first that if v is symmetrical
in the y’s, so is §*»™), so that, according to Equation 49,
a distribution initially symmetrical stays symmetrical.
We then proceed to integrate out ya, y3 ... yu in Equa-
tion 49, hoping to obtain an cqualion for the typical
single particle distribution

Wy t) = f ...
what emerges is

[§3) .
93—5‘,2&9 = - ’b*, (RGN (y5 )] = 2 Avi(ya50) -+

Sv(y; 1) dyadys. . dyy

24 L v® (xr,x0; 1) 5(}'1 — ﬂ%ﬁ-‘) dxidxa  (50)

But this involves the typical two-particle distribution

SNy ) dys. . dyy

If we try to closec matters off by integrating out only
¥s...yn in Equation 49, we find an equation very much
like Equation 50 with @ in the derivative terms and
the three-particle distribution »@® in the integral. We
cannot, that is to say, develop self-contained equations
in the lower order marginal distributions and must
either return to the full equation, Equation 49, or make
some judicious approximation to close off the hierarchy
of lower order equations.

Now we may make an intuitive interpretation of
Equation 50 in terms of macroscopic variables, in a way
suggested by the variables appearing in our earlier
discussion of the flotation unit. Without bothering
about the repeated averaging machinery, we may
renormalize the probability distributions—s®™ to the
total number of particles, ¥® to its squarec—divide up
the concentration space into cells, and interpret the
integrals of thc renormalized distributions over these
cells as the actual numbers of particles and particle
pairs with concentrations in the appropriate ranges.
1t the particle population is large and the cells are suffici-
ently broad so that there is a large number of particles in
cach cell, these cell counts will be random variables with
small variances and hence small covariances, just as the
particle and bubble counts in the flotation unit were.
We may then argue, as there, that for a typical cell pair

by h
f f ¢ )(yhx.:’ t)dxldxz = f v(”(xl,t)(lx, X

b
f oD (x9,8) s
a1
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so that, if the cells are in fact not too broad, we have in
general

v @ (x1yx05 Odrrdes = v (x1; dy « v® (xe; dxe

This relation may tlien he returned to Equation 50 to
give a self-contained equation in v,

There are, of course, formidable difficulties in making
this linc of argument precise.  We don’t attempt to do
this here, but simply point out that very much the same
difficuliics arise in the kinetic theory of gases in making
a systematic development of the Boltzmann equation.
The questions there, however, are commonly posed in a
somewhat different mathematical way—i.e., one recog-
nizes that the foregoing intuitive argument lcads to the
statement that the concentrations xi, %o, . .., xy for the

particles in the system are independent by pairs.  Ac-
cordingly, onc scts it down as such:
¥ (x1%25 1) = 2O (xy; oD (xz; 8) (51)

and recovers frori: Equation 50—the ¢’s are probability
densities again— - .

WO (yy; 1)

ot B byil (RGN0} — 2 A1) +

x1 + xo

24 So®(xy; o (x0; £) X 5(y1 -

)dxldxg

(52)

a self-contained working equation in ¥®. Ou.e realizes,
of course, that the statement, Equation 51, is not under
all circumstances true, and asks various mathematical
questions aimed at clarifying the conditions when it is
true.  We might perhaps close this discussion with one
of them. If Equation 49 is solved for an initial distribu-
tion in which the y’s are indcnendent, what are the
conditions under which the y’s reniai1 independent in
the solution—i.e., under what coru'tions does inde-
pendence preserve itself in time?  Our nituitive answer
would be:  when the population is large.

Problem Formulation

The technical part of this review being completed,
we devote this final scction to a consideration of why
we should formulate engineering systems probabilis-
tically at all. It goes without saying that if the process
exhibits fluctuations in the macroscopic scale—imperfect
reproducibility, in experimental terms—that it may be
very useful to describe it in terms of a random mechanism
rather than to look for a very fine grained deterministic
description. In our applications these large-scale
fluctuations are usually associated with small particle
populations. Our point here is that even for large
populations, where the over-all behavior is quite deter-
ministic, there is often a certain conceptual convenience
in making a probabilistic formulation at the single
particle level, interpreting the single particle probability
distributions in terms of number fractions for the whole
enscible of particles. We proceed, as throughout,
by cxample, contenting curselves here with the single
example of the study of molccular weight distribution
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in an emulsion polymerization system.
would seem to be rather complicated to fornulate in
terms of over-all deterministic balances for the emulsion
system as a whole. .

We turn accordingly to the consideration of an
emulsi1 polymerization system and focus attention on

This situation

a single emnulsion particle. For rcasons of analytic
simplicity, we take the particle to be in a fixed chenical
environment and igncre variations in its size and.in its
monomer concentration.  We can then describe the
underlying random mechanism affecting it in terms of
three parameters, B, G, [): in a short time, ¢, o primary
free radical enters with probability Bt; the inolecular
weight of a free radical grows at the rate G; in a short
time, f, any two growing radicals terminate, by com-
bination, with probability Dt. The paramcters B, G, D
have, of course, a direct interpretation in teris of macro-
scopic rate constants. If we describe the stare of the
emulsion particle at any moment by the number m
of free radicals present, together with their sizes xy, xa,

.., %m (say, oldest first), we sce that we have specified
the short time transition probability p(mx1. . . Xm, 2¥1. . . yns
{) from state m, xi, ..., xn to state n, y1, ..., yp- 0 time &
Taking p to be a probability in n iointly with a prob-
ability density in y1 . . ., yn, we have

plmx1. . Xmy WY1, Yns {) ~ Bt bnmer - 5(y1— x1).
8(ym = xm)8(ymy1) + Dt - Suomz - 2 2 8(y1 —x1). ..

1<y

8(y1-1 — 2 )80y — Xiy1). . .60,_, — x50 X

50t = X341) . 6(pms — xa) + [1 —Bi—

(;) Dt:! bamb(y1 — x1 — GO .. . 8(ypy — X —Gt); t 1 O

We may note that we have taken the molecular weight
of a primary radical to be vanishingly small.

This process is, 1nathematically speaking, a rather
more complicated version of the crystallizer process
discussed earlier. It is not specifically included in our
sketch of Markov processes, but an application of the
samec general machinery will yield its generator. It
will be convenient first to symmetrize the short time
transition probabilities in the x's and y’s.  Since we are
concerned here only with the forward equation which
governs the singie-time probability distribution, we
quote simply the adjoint of the generator for the sym-
metrized process:

G*)myi . yn) = = G X Oulny y1. - 30
J a}'j

+

B
e 2ol — 130 ey Yt 3a)8(yy) +

J

<n+2

) )D JS vt + 2,50 3y 1, drds —

I:B + ( ; )D} v(n, v .5)



where it is understood that v is symmetric in the y’s.
We are connerned here, in fact, only to find the dis-
tribution of states after the process has settled down into
statistical equilibrium.  Denoting this by 2(n, y1.. .ya)-—
symmetrized in the y's—we note that according to
Equation 9 or any of its continuous analogs, it satisfies

This really concludes the probabilistic part of the story.
It remains only to reducc the cquations deseribing the
equilibrium distribution, 2, to a convenient working
form. This can readily be done by introducing the
marginal distributions:

0, = fo(n,y1...y
) = Soln, yi. . yadya. .
Valyy, y2) = fo(n, yi. . .ya)dys. . . dy

where 8, is the probability of having n radicals present,
¢n is the joint distribution of radica! count and molecular
weight of a typical radical, and so on. We recover,
after some calculation, a difference equation in 6,

D + 2
0= (on—l "on) + ‘F[('l 2 )0u+2 - <;>0n]

(33)

n)dyL . .d)’n

en(y1 - dyn

ordinary differential equations in the ¢,(y)

G do,

B dy

-%— [0a-18() — @na1] + (pu1 — ¢a) +

2[4 (3)] 00

and partial differential equations in the ,(yy, y2)

O¥n | O¥n) _
B (ay1 + Oy':)

1
. Lonci(0)8(y2) + @na(32)8(y1) — 2¢na] +
D [ /n 2
e = v+ 2 [ Y= (3 ) va]

The probability density for the molecular weight -f
the combined product can be expressed as

Z( 2 ) S S 4503066 + 32 - 2 /dys
S =" n
Z( 2 ) o

and this suzeests that we introcluce the functions

pa(2) = JS¥a(ry, y2)800 + y2 — 2)dydye

according to Equation 55, satisfy the ordinary
differential equations

(55)

which,

5
dpa 2
2. %—d"— = 5 L@ = el +
n + n B :
(pn-1 — pn) + "E‘ [( 2 ) Pnyz — (2) Pn] (56) ‘ :

The solution to Equation 53 béing known,
8B Al
1 (2 B)W b (\{"’\
V2 ( l; 163) -
I —_
D

e T

O =

with
i (y)
n(),. \/ D
( 163)
D
and

= (%

B
)e= 55

we may readily undertake to organize first the numerical
solution of Equation 54, and then of Equation 56.

It turns out to be convenient to work with the cumula-
tive distributions of the tails. - Letting

(b,,(y) = f (23 ' .
v !

Pn(y) = f Pn o
v .

we find from Equation 54

G _ (1
de - q’n—l""‘l’u'*‘

2[4 o (o] oo

®,(0) = 0,
and from Equation 56
2 .G db, = i<I>.._1—§-(1 —-Z—)P,,_.l — P, +
B dy n n
5 ((3)re-(3)n) roo
Py(0) = ¢, |

It is then a straightforward matter to truncate these
systems of equations at some value of » past which 4, is
negligibly small and to organize a direct numerical
sol ition.  The tails distribution of the product molecular

weight
Fo) = [T

can be recovered from these solutions in the form

e (;)no
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A stochastic model for fluidized bedst

FREDERICK J. KRAMBECK.t STANLEY KATZ and REUEL SHINNAR

Department of Chemical Engineering. The City College. The City University of New York. New
’ York, U.S.A.

4 (First received 13 August 1968; in revised form 7 March 1969)

-Abstract — A mathematical model for gas-fluidized beds is proposed that allows for a randomly fluctuut-
ing flow pattern. It is shown how mean first-order conversion is related to contact time distribution
-for arbitrary models of this type. A simplified version of the model is then studied. and it is found that
“-the effect of fluctuating flow is similar to that of stagnancy in steady systems. This effect is inconsistent
-with the usuval steady-state models, but it is shown that some published data on conversion in fluidized

beds[6] exhibit this effect.

- 1. INTRODUCTION

ONE oF the readily observable features of the
flow pattern in fluidized-beds is its fluctuating
character. The varic.us elements of dense-phase
fluid are intermittontly exposed to bubbles of
different gas composition.’ Since one is normally
interested in the average behavior of the beds,
rather than in the details of the fluctuations, it is
usual to represent such systems by steady-state
models. It is the purpose of this paper to investi-
gate by help of a simple model the effects that
stochastic fluctuations might have on the behavior
of the bed.

Of course, with the present state of knowledge.
it is rather difficult to determine the parameters
of even steady-state models accurately, or to
choosc between different models. Thus it is
unlikely that this can be done with a stochastic
model ecither. It is, however. of some interest
to determine properties of stochastic models
appropriate to fluidized beds to gain an under-
standing of how and under what conditions
these unsteady properties might affect the behav-
ior of the bed as a chemical reactor.

Now every turbulent reactor is an unsteady
system. The reason that in many situations we
can neglect this unsteady behavior is the fact
that the time scale of the fluctuations is often
small as compared to the time scale of the system.

The output of the system for steady input might
therefore be almost completely deterministic
and we can deal with the system as a stcady
system.

This assumption might be correct in high
narrow fluidized beds as used in pilot plants
or where vertical pipe heat exchangers are used
to break up the bubbles in large beds but should
not hold for large scale unbaffled fluidized beds.
The time scale of the internal mixing processes
and the gas residence time are here of the same
order of magnitude. Gas bubbles are often large
especially in the upper part of the bed and the
local concentration of bubbles exhibits fluctua-
tions, the time scale of which has the same order
of magnitude as the residence time. The concen-
tration fluctuations in the dense phase should
therefore undergo similar fluctuations which
might effect the behavior of the bed as a reactor
ana might be important in its control.

As will be shown in this paper the inclusion
of the unsteadiness of the reactor explains some
puzzling phenomena (see for example[6]) and
it is hoped that it might be helpful for a better
understanding of the fluidized bed.

The kind of model to be considered is similar
to that described in[1]. This consists of a neiwork
of ideally stirred tanks interconnected by flows
which fluctuate randomly in time. The new

.esented at A.1.Ch.E. Annual Meetiny, New York, November 1967.
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feature 10 be considered here is the presence
of two types of tanks corresponding t¢ zones
in the denes nhace and the huhble phase of
fluidized beds, 1t should be noted thet such u
maodel with steady Aows can be used 1o approxi-
mate arbitrarily ciosely any other sleady-staie
two-phase model of the fluidized bed.

It is often assumed that the dense phase is
either completely well mixed or that it is in
plug How but, aguain, that lateral mixing is com-
plete. On the other hand. the contact with large
bubbles assures good instantaneous mixing
only in the immediate neighborhood of the
bubble. As said before, the time scale of the
mixing in the dense phase is of the same order of
magnitude as that of the fluctuation in bubble
concentration, and therefore it may not be
desirable to assume that the dense phase is well
mixed. On the other hand. every part of the
dense phase comes into contact with bubbles,
so that the dense phase would be homogeneous
in some time-averaged sense. Now the model
mentioned before describes a different physical
situation where the dense phase is well mixed
or at least can be described by a network of a
few well stirred tanks but the transfer rate to
those tanks fluctuates with time. But if we
consider the total physicul eftect of the fluctua-
tions on the local behavior in the dense phase
we note that this model captures the basic physics
of this unsteady behavior and should at least
predict correctly in what way this unsteady nature
of the transport processes might interact with
the kinetic behavior of the reactor.

2. SOME PROPERTIES OF THE GENERAL
MODEL

The unalytical structure of the stochastic
mixing models was developed, and various
properties were derived, in reference{1]. Here
we derive some new results which are required
for the application of these models to hetero-
geneous systems.

In general, the model consists of n ideally
mixed tanks which are interconnected by flow
streatns in some arbitrary manner. The inter-
connecting flow rates are allowed to fluctuate

randomly in time with a definite probabilistic
structure, that of a discrete-state Markov
orocess. The tunks are taken to be of constant
volume. and the fluid is assumed incompressible.
The system of tanks will be assumed here to
posscss only a single inlet stream and a single
outlet stream, although more general situations
may be treated. The new feature introduced here
is the special consideration of some subset of the
tunks as an “active region” of the model, cor-
responding to the dense phase of a fluidized bed.
Thus when the model is viewed as a chemical
reactor, only the fluid contained in the active
region of the system at any instant will undergo
reaction.

It was shown in {1, 2] how the random walk of
a single fluid molecule thiough the system may
be described analytically, and how various
properties of this random walk may be related
to tracer response statistics and first-order
reaction behavior. Thus the expected response
to a certain tracer experiment is equal to the
residence time densily function, and the mean
conversion for a first-order reuction as 4 function
of the rate coefficient is just the Laplace truns-
form of this function. In order to extend such
resuits to the present situation a new random
variable. the contact time, is introduced. For the
random walk of a single fluid molecule through
the system, this is defined as the total time
spent by the molecule in the active region during
its sojourn through the system. This will, in
general, be less than the residence time of the
molecule, defined here as the time spent in the
system as a whole.

We denote the number of tanks in the model
by n, the volume of the ith tank by v, und the
volumetric flow rate from the ith tank to the jth
tank by wy,,, where a is the state of the under-
lying Markov process, called the flow state. The
flow rate from the inlet stream to tank i is called
Wuw, @nd the flow rate from the ith tank to the
exit stream is called w,,.., It is convenient
to define quantities of the form w,;, so that

n+l Hn

Wi = — 2 Wi = 2 Wiia- H
J=1 J=0
iy i
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The total inlct flow rate (equal o the total out-
How) will be denoted +,. Then:

".l n -
=Y Wi = Y Winita 4]
) v

Note that direct bypassing., wy,.. .. 15 allowed
for.

The flow state transitions are governed by a
switching matrix A, such that, for small time
intervals 7.

Mol T) = 849 + Aou7 + 0(7) 3)

where m,4(7) is the probability of transiiion from
state u to state 8 in 4 time interval 7, and the
function o(r) hus the property

{o(r)} 0.
T
The matrix A, has the properties

Ay 200 a#f
2 Aast = 0; all w.
I}

lim.

r—{}

(4)

We now consider the random passage of u
single particle of fluid through the system. In
heterogeneous reaction systems the important
property of the single particle random pas-age
is the contact time distribution, where ontagt
time is defined as the total lerngth of time &
particle spends in the “active™ part of the sys-
tem during its passage. In the two-phase model of
the fluidized bed. this would be the dense phase
residence time distribution. The variation of
contact time. 4, with clock time, ¢, is given by

dy ,
m'—'—'x.(n“/) (5)
where A is the set of active states for the particles,
and

by (. j) ed

Kol = {gf (00, (6)

Using the methods of reference(l]. it can be

shown that if P,tr.9dd is defined as the joint
probability that the particle is in state (a.i)
where a is the flaw state and i is the lank number,
und that the contact tlime is between 8 and 6+ dé,

APyt YN
L——L——:—x.(ﬁ.j]—"f———
ar af

LTI
+3 —Lj—” Pult. )+ APt ) (7)
=1 “

and

dl)n“ (” —_— = 2 2 Wi, H+1, IIP‘”(, H) (8)
1 =

where the sutlix « denotes the outlet state: ¢ =
U{(e, n+ 1}}. The initiai distributicn, P,(0. #).

is given by (see [21)

P.0.)= P, "—_'- A(H)
N
PO M= ).Pu ““""bm)

i

The differenuial Egs. (7) and (¥) together with
initiul conditions (9) give the P, ) completely.
‘The contuct time density function, f{0). is then
given by

f40) = l‘ig}. Pt 0. )
1t is not necessary L solve (7) and (8) completely
to determine this function, however. Thus, inte-
grating (7) and (8) from1 = 0 to s = =,

dk’m“” s “ [

+ S‘ —= RBI(“) + 2'\."‘1 ¢,utth (h

o

"

tun-)l’ """“’WH\‘ Z.“': 2L )
Sl| !

(12)

where g, () = [ Pyl de. The initial condi-
tions for the system of equations (1 1) are
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X B e 0 =0. (Y RT)

In this way. the function f4#) can be found by
solving the system of ordinar:  differential
and aigebraic Eq. (i b, rather than the system
of partial differential Eq. (7).

It is of some interest to calculate the mean
contact time. # = [* 470000, In the Appendix,
it is shown that

- .
V== z > XA BNPy (14)
e

where £, is the stationary probability distribu-
tion of flow states, which satisfies

E )‘u#i’u:’o; u“ﬁ. (15)
and w is the mesn total inlet flow rate:
v = 2 Py, (16)

It & set A consists of certain tunks in the mudd
independently of flow state, then

X,|(ﬁ-./') = 2 Bjk “7)
Kot
and
0=l.21'k- (18)

w Aed

In other words, the mean contact time is equal
1o the volume of the active region divided by the
mean total inlet volumetric fow rate. This
result is independent of whether the inlet flow
rate or the internal flow rates fluctuate. It may
be noted that if the set 4 includes all the tanks
Eq. (18) will give the mean residence time.

This concludes our discussion of & single fluid
particle through the system, and we turn now to
the other point of view of individual tank con-
centrations. This is formulated in terms of the
joint probability, Pt x)dx, of the flow staie
being « and the concentrations of the individual
tanks. {(x,,....x,) =t being in the volume dx
containing x. Using a slight modification of the
derivation in{ 1] we arrive at

aP,(: vu)"_z ,u,”bl 0+2

""" = x.{8. ﬂkx,}l’q(l n] T Al 0. (19)
a

It has been assumed in (19) that a first-order
reaction ozcurs in the active region of the model
only. with rate coefficient A. After a time, &
stationary  probability distribution will be
approached. This cuan be calculated by setting
the time derivative in (19) equal to zero.

It is possible to calculate the first .ooments
of P,(1. x) without solving (19), however. Thus
if we define ug = [ x,Pu(r. x)oy we find. as in[1],

dl-‘m 5 Wus W Uu
d ¢ P 8 J u+ E v

= Xa( B Dkpu+ Y, Aapptig (20)

Here. again, we calculate the stationary values
of uy by setting the time derivative in (2(0)
equal 1o zero. The mean oullet flow rate of un-
converted reactant is given by

()= % ng “'J-'Hl,u#m"'% PD“’mnu.ﬂ"lh
(21)

If the Laplace transforms of Eqs. (1) and (12)
are compared with (20) and (21). it is found that,
for the stationary value of (U1,

W) _ ¥ k) (22)

WXy

where j”\,(k) = [z e *f(A)dH. Thus we may con-
clude that the Laplace transform of the contact
time distribution is equal to the mean unconverted
fraction of reactant when the inlet concentration
is constant and stationary conditions have been
achieved.

3. SIMPLIFIED MODEL
(a) Description
The general model described in the previous
section has great flexibility. and by using
sufficient tanks and connections one could
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undoubtedly match it to any experimental data.
Betore undertaking such a project, however.
it would be useful to have some feeling for how
the Auctuating mixing flows uffect the properties
of such modeis. For (his purpose a very simpie
mode! of the previous type will be postulated.
on a larely intuitive basis. and its properties
will be investigated.

Various steady-state models of fluidized beds
have been proposed bused on the two-phase
picture of such systems. Common to these
models is the assumption, based on observation,
that the particulate phase behaves as un incom-
pressible fluid whose volume is the sume us that
of the bed at incipient fluidization, and that the
amount of gas passing through the bed in the
form of bubbles is just the excess of the totul
gas flow over thut at incipient fluidization. The
models differ in the assumed mixing between
and within the phases. For the purposes of this
study, the simplified model shown in Fig, |
will be assumed. In this model the particulute
phase is assumed 1o be of constant volume and
well-mixed. The quantity r, is the interstitial
volume of this phase. The total flow rate. w.
is constant with time, as is the fraction of the
total flow which travels in the form of bubbles.
r. The tubble phase is assumed to be of constant
volume. vy, and is also well-mixed. The mixing
flow rate, w,, is assumed to fluctuate with

w
L w {I-r)w
Wa
Butbie Porticulote _‘
phase phase J
w.
L
[] {l~r)w
w
big. 1.

time. however. It may be noted that while the
assumption of perfect mixing in the particulate
phase seems reasonable. on the basis of the
observed uniformity of temperature in such sys-
wms. thai of puiect miking in the bubble phane
seems doubtful. In fact it is often assumed that
the bubble phase is in a condition of plug flow.
It will be shown, however. that many properties
of the system are independent of this assumption,
sv it will be mude for convenience. The assump-
tion that the bubble phase is of constant volume
results from defining the boundaries of the
reactor appropriately.

The equations of change for the system of
Fig. | ure

t d—'r—l = piwex,— [P wyx + wes
dr (23)
r, 9'\—' = (1 = FIXy 4 Wt — [ = rpw -+, |
©dt
- . R(xy)
Z=ry,+(1-ru, (24)

where R(v) is the reaction rate expression. It
is ussumed, as before, that only one reaction
occurs and that it occurs only in the particulate:
phase. The congcentrations of reactunt in the
bubble phase and the puarticulate phase are
x, and x, respectively. For tracer experiments,
R is just zero. The quantity Z is the outlet
concentration.

(b) Steady flow behatior

Beture discussing the effects of fluctuations in
1w, on the svstem behavior, it is useful to first
derive some properties of the system with ¢on-
stant . Under this condition the model
is just ancther in the general category previously
meniioned. but the effect of fluctuations can only
bue made clear by compurison with this steady
behavior. Also. by anulyzing the steady model
trom the point of view developed for the sto-
chastic muodels  some interesting  results e
discovered.

Because the reaction takes place. in the model,
only in tank 2. the residence time distribution of
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the system is of minor importance compared
to the contact time distribution of gas particles
with the particulate phase. One of the difficulties
with using tracer experiments to study the
properties of such systems js the fact that an
expeviment performed with a tracar that does
not interact with the solid particles can furnish
information only about the residence time dis-
tribution and not abouwe the contact time distribu-
tion. It is therefore interesting o compare the
two distributions.

The residence time density functionis obtiained
by solving Eq. (11) with all the states icluded
inthe set A, This is found to be

o . bt .
R e
oty ty h,~b,
< o o
NS N T
v, v Py o
el — ot
Thi—bs (25)
8 h1 - b._.

where b, and b, are the two roots of

b2 ;'[m + “_"_),+l__+‘_]
Y ty Yty

r(l —ru? LY (26)
Uyl Uty

X b+

The corresponding distribution function, F(1),
is just the integral of Eq. (25). This is plotted
in Fig. 2 for typical values of the paramcters. The
value of r=09 corresponds to a ralio wju,

W00
LA

[e] -l 1 1 1 i
Q [5} 10 [} 20 FR) 30
Residence time, t

Fig. 2.

g1

KAT?Z urd R. SHINNAR

of iU, where «, is the superficial gas velocity at
incipient fluidization, and u is the superficial
gas velocity at the systern conaitions. i he ratio
of the two volumas corresponds to a porosity
of 0.8 in the particulute phase, und ratio of bed
height to bed height at incipient fluidization,
HIH, of Z. These vulues are thought to be
typical of commercial fluidized beds. The values
ty+,=w=1 are chosen by assuming appro-
priate scale factors. Under these conditions the
mean residence tirae is equal to one.

The three curves shown are for three values of
the mixing flow rate, w,,. covering the range from
7ero to infinity. ltis seen that the resid»nce time
distribution is only slightly affected by changes
inw,.

The contact time density function is calculated
in the same way, with only tank 2 included in

the set 4. The result is,
£ =r, aun+£iu e b g9
where r, is given by
ry= ;%- (28)

The quaatity r, above is just the fraction of ges
which bypasses the particulate phase entirely,
and thus has a zero contact time. When w,, = 0,
it-is secn that r, = r, meaning that when there is
no mixing between the phases, all the gas that
passes through the system in the form of bubbles
bypusses the particulate phase completcly. The
corresponding  distribution  function.  F(#6),
which is just the integral of (52). is plotted in
Fig. 3 for the same system as was used in Fig. 2.
For these values, the mean contact time. ty,.
is equal to 0:333. Compuarison of Figs. 2 and 3
shows quite clearly that while the mixing rate,
w,,. has only u slight effect on the residence time
distribution. it has a pronounced effect on the
contact time distribution.

An additional factor which makes the estimate
of the transfer rate even more difficult, s the
fuct that it is also sensitive to our assumptions
us 1o the nature of the mixing processes within
the phases.
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Drstwibgion funct on, F(1)
o
s

]
ve
[] L i 1 - 4 s
[ 08 ) 8 20 28 30
Conioct time, !t
Fig. 3.

The contact time distribution of this system is
closely related to its reaction behavior. Thus the
conversion for a single first-order reaction is
just the Laplace transform of f.(#). The conver-
sion and selectivity of complex first-order systems
are also determined by this function. Finally,
for many reactions, the method of Zwietering
and Dankwerts |3, 4] can be used to find bounds
on conversion on the basis of f401. Since such
large differences in £,(0). as shown in Fig. 3, are
consistent with such slight differences in fU1),
the residence time distribution, it must be con-
¢luded that measurements of f(7), that is tracer
experiments performed with non-interacting
tracer, where the tracer is introduced in the inlet
and is measured in the outlet stream. provide a
very poor basis on which to construct « model of
the system’s reactor performance.

The steady conversion for a first-order reaction
catalyzed by the solid particles can be calcufated
from Egs. (20) and (21), or by taking the Lap-
lace transform of £.(#). The resulting fraction of
unconverted reactant is then given by

é =r,+ ——-“ — )
X

QM

[
l—r,,f/\"—f

it is interesting to note that this expression is
identical to that derived by Davidson and Harri-
son{5] by assuming plug flow in the bubble phase
and complete mixing in the particulate phase.
Only the expression for r,, the bypass fraction.
in terms of the system parameters is different.

being givenin their work by

ry=re A (30)

whare N i the nimner of transfer units In fact
as long as the Aows are steady. it can be shown
that the contact time distribution for the well-
mixed particuiate phese is given by Eq. (27
regardless of the nature of the nuxing processes
in the bubble phuse. This is seen by noting that
whenever the set of states 4 consists of only a
single state, the system of Eq. (11) reduces to
i single linear differential equation. Its solution
must then be of the form

£A0) = r,86) + ue™ (31)
where « and b are constants. It is known, how-
ever, that the integral of f,(#) is one, and that the
meun contact time is wiz,. These two conditions
determine a and b.

This fact points up another difficulty in using
acer experiments for studying such systems.
namely. that while the reactor performance is
relatively insensitive to the nature of the mixing
in the bubble phase, the residence time distribu-
tion is just as sensitive to these mixing processes
as to those occurring within the particulate
phuse and between the two phases, so that
different assumptions about the mixing in the
bubble phase would allow very different con-
clusions about the particulate phase and the
interphise mixing, based on such experiments.
On the other hand. for purposes of studying the
reaction behavior of such models. the assump-
tion used here. that the bubble phase is well-mixed
is secn to be of minor importance.

The unconverted fraction given by Eq. (29
is plotted in Fig. 4. 1t is scen there that the
mixing rate. w,. has i very lurge effect on first-
order conversion, substantiating the conclusion
about the importance of this purameter. At cach
value of w,, the unconverted fruction approaches
an asymptotic value as A, the rate constant, goes
to infinity. This value is just r,. the bypass
tfraction.

Another point that craerges is that Eg. (27)
for the contact time distribution contains only
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one unknown parameter, 5. In general, w and ¢,
will be known in advance. Thus, it one is willing
to assume that the particulate phase is well
mixed und that the fluctuations in the rate of
exchange between the two phases is unimportant:
a determination of the single quantity r, can be
used to estimate the contact time distribution.
This quantity can be measured by carryingout a
fust reaction in the system or by usin;’ a tracer
that is completely absorbed on the solid particles.

() Behavior with fluctnating flow
It will now be assumed that the mixing flow,

U,

detak®) _ P.(1 —r)8(0)+"—'fﬂy,.w)+ Ai2(8)
de vy

- [LL-—')’l+’l—3 + )\g]}.’w(ﬁ) (33)
v U,

with g0 = g, ()= 0. To find the residence
time distribution the zeros on the left-of the first
two equations of (33) are repluced by dg, /dé
and dg,,/dé respectively.

It is found again that f(#) contains an atom of
probability at zero contact time which is the
bypass fraction of the system, For the fluctuating
case, this fraction is given by

.

S w 1 ]

= ru 4 10, | — P\ Pyé (34)
l [rw+ 7, ] (e + .+ e(P;=P+ v\, +}\2)]J

w,,. fluctuates by switching between two values

. where € = w,,, —w, and W, is the inean mixing

W, and w.. Under these coaditions. the equa-  flow. Comparison of (34) with (28) shows that
tions for the contact time distribution, (11) the bypass traction with fluctuations is always

and (12). become

(l—rm

. s me
JH) = T.’-.'n(m"'_"'_‘k'zl(”)"' L1206}
! '

(1-»)

L TO L) (32)

2

greater than that without for the sume meian
mixing rate. and that at high switching rates
{A;+ A, — =) the two become equal. To illustrate
the eftfect of fluctuations on r,. this quantity is
plotied for some values of the parameters in
Figs. 5 and 6. In Fig. 5. the quantity ¢/, has
been given its maximum allowable value. In
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.
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Mech mixing flow, W,
Fig. 6.

general, to keep the flow rates positive,
1 € |
- _—— 0,
P2 W PI 7
In the cuse shown, P, =P, =4. so €7, has
been taken us 2. It is seen that curves of r,
VS, 1, uppedr to approach asyniptotes. tnspec-
tion of Eq. (58) shows thatl, if' €, is held
constant,

(KRY)

I\

Thus the fuct that the cusves in Fig. 8 approach
asymptotic values depends on the fact that com-
plete cwoff occurs in one of the flow states.
Otherwise r, would approach zero.

Wnen complete cutoft does nat oceur, atoas
seen from Eq. (34) that the ratio of ¢, 10 the
value of 7 with steady (v as piven by Fa. 128y,

becomes constant under the above conditions.,
Thus

I+ (ki)(f’,--— P

. (rdee ) M,
lim. T } = . S y
- |+7—(P.,-P.)—I_’.P,(-_i}
W, Wi
(37)

One notes that, according to (37). the bypass
fruction approaches un asymptote that iv inde-
pendent of switching rate. In Fig. 6. ¢/, hus
been taken as 18, with the rest of the parameters
the same as those in Fig. §. Again the effect of
the fluctuations on », is appieciable. For smaller
values of ew,,. the effect of fluctuations on »,
is much smaller. Thus if €., - 10 per cent
the ratio given by (371 will be = | percent.

From the discussion in the previous secticn
about the behavior of the system with steody
flow, it is clear that changes in r, have a furge
ceffect on the reactor performance. Thus the fluc-
tuations will have an effect on the reactor perfuor-
mance by changing . However. when i model is
sel up for a particular unit, the purameter r,
will be fixed by exparimental means, singe it s
so important. Gne would then be interested in
how the fluctuations would affect reactor per-
formance once ry, is fixed.

Figures 7 and 8 illustrate the effect of fluctua-
tions on the contuct time distribution with r,
fixed. The distribution bas been plotted in the

T R

r[l +=£ (P:—I",)} i
W € 1 1 i
- R |
lim{r) = {2+ —(B,—Pp+-—in <) " : |
---- Wiy a1 |
1
L I (26)
L P, w, P )
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E s The behavior of the fluctuating system with
I . 08 first-order reaction is analyzed in terms of first
R " % moments by applying £gs. (20) and (2i). and
o7 826 in terms of second moments by similar methods,

' B Cios 998 as exphained in{ 1.

E @ 3 The mean vutlet concentration and the coefli-
= cient of variation, = o/u. are shown in Fig. 9
£ ) for the siume parameter values as used in Fig,

1 £ \e , Steady flow %, It is seen *hat the fluctuations have the effeqt

' ] —C—" '-QS'"'-"" of decreasing mean conversion. and that the

- 14 coetlicient of variation of the output cun be qaite

2 _ @ large. especially for high reaction rates. Since

’ o —— " N the determination of the mean bypass fraction

° ' B ? ¢ * involves an experiment with high reaction rates
Contoct e, 8 (K — x), whatever fluctuations there are would
e 7. make themselves quite noticeable in the course
of this experiment.
form of /1.0, the contact time intensity function
19]. where
f.4th

i = _l_~_/—~(7;> (IR)

k : 7 7 In Fig. 7 the purameters were chosen to keep

e B r,=0-8, while in Fig. 8. r, =005 The effect

F 2T of fluctuations on the contact time distribution is

' arger for O-S than fur r, = 0:05, In both cases,

! - the cffeet is to decrease the value of (#) for

g lurgge #, which means that within the particulate |

v phase itself there s o stagnancy (or bypassing)

%! effect. in addition (o the direct bypassing due o1 3% 84 R T E N A

) to the bubbles, _ Rate constont,k

. Fig. 9. '

4. DISCUSSIONS

‘ The contact time distribution for fluidized

v ) beds was first defined by Orcutt, Davidson and

s Steady flow Pigtord[6). These uuthors made the contact

4 Z time  dimensionless by dividipg by its mean

& E e éY/ % 1 value. so that the resulting distribution has a

- Di.s 128 mean of unity. It was then suggestesd that this

. @765 137 distribution be measured by carrying out a fisst-
2 @ 768 10 L .

T . 0008 order reaction in the bad so as to datermine the

’ Laplace transform of the density function. The

o T \ " rate constant was made dimensionless in suci; a

° ! 2 3 ¢ 3 way (hat the resulting group. K. is eguivalent

Contoct time, & 10 ko, us defined in the present study, under the

Lig. R usual assumption that the rate of reaction on a

1506

T o)




| S

TN
v -

fe s}

A stochastic model for Auidized beds

given mass of catalyst and at a given gas composi-
tion will be the same in the dense phase of a
fluidized bed us it is in a packed bed Thus a plot
of unconverted fraction of reactant vs. K should
be the Laplace bansform of a density function
with unit mean.

Actually. the nuitenical inversion of an cxperi-
mentally measured Laplace transform can be
subject to large errors. Since the contact time
distribution cannot be measured directly. it is
probably more useful to think in terms of its
Laplace transform. It is not necessary 10 invert
the transform in order to calculate conversion
and selectivity for first-order reaction systems,
for example. since such reaction schemes can be
mathematically decoupled|7,8]. Also, the very
fact that the measured rate data can be inter-
preted as the Laplace transform of a valid density
function pliaces some restrictions on its stiucture,
It must be completely monotone. for example.
Because it is so closely related to actual conver-

sten data, it seems that the function _;(k) is @
more useful wiay 10 characterize fluidized bed
reactors  than results of  tracer experiments,
cspecially since these are rather insensitive
to the interphase mixing.

The oaly situation that comes to mind in which
it would be more desirable to have the contact
time density f(#) rather than its transform is
where the method of Danckwerts and Zwietering
{3.4] is to be used to predict bounds on conver-
sjon for nonlinear reactions. Even then one can
use the trunsformn to derive one of the bounds,
that of complete segregation, as long as the
batch conversion data can be approximated by u
sum of exponentials. Thus if ¢(n is the un-
converted fraction for 4 batch reaction, the
limiting unconverted fraction for  complete
segregation is

'Zf= f () f(8)do (39
Xy u

where f(#) is the contact time distribution. Then,
if

=73 aeti (40)
i

itis seen that

Z )
= = 4 b)) an
Xy T @l ¢

where the time 7 in «tf) has been scaled by the
mean contact time. It is not <lear how the
vihei extreme. maximum mixedness. could be
calculiated trom ihe transform. however.

It wus noted that the effect of fuctustions on
contact time distribution is to decrease the values
o the intensity function, (i), at large values of
#. Such a shape for L) indicates that the tail of
the contact time distribution has more weight
than it would for the case of ideal mixing in the
particuliate phase with no fluctuation. a condition
which for steady flows is termed stagnancy [10].
This results in high values for the higher moments
of the contact time distribution. The correspond-
ing effect on the Lapluce transform of the distri-
bution cun be seen by expanding it in Taylor
series:

A . .
f =3k (42

where w, = [ #'f(0)d0. Thus
A .
SIKY=1—-K+l1+c2)K2. ... 43)

The effect of stagnancy, then, on ,f}(K) is to in-

crease it, ai least in soric region near K =0,

This result is borne out in Fig. 9 (note that

abscissa on Fig. 9 is equul to 3K). This argu-
A

ment does not imply ihat f(K) will increase at

all values of K. but in fact it does in Fig. 9.

One cin also put the above urgument in a
somewhat different form. If the tuil of the distri-
bution has a strong weight this is just another
way of saying that a small froction of the gas
has residence time considerabiy longer than that
expected in a stirred tank. In a steady flow
situation this is often caused by a stagnant region
in the flow in which purticles become trapped.
Such a stagnancy can be easily recognized from
the fact that the intensity function has a decreas-
ing region (9). We note that the unsteady flow
has the same cffect on the contact time distribu-
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tion as stagnancy has in steady flow. Now in
order to detect the effect of this on f(r) one needs
a very accurate measurement of the tail. If our
experimental method is such that we just measure
the main part of the curve (such as in a pulse)
we often do not detect this tail. We then find
that the avcrage value of the contact (or resi-
dence) time is less than its expected value,
namely volume divided by flow rate.

It has often been assumed in theoretical work
that the state of axial mixing in the dense phase
is somewhere between that of complete mixing
and plug flow. In a steady state model, this
results in a contact time distribution with variance
less than that for.steady complete mixing in the
dense phase, with the same bypass fraction. The
stagnancy effect discussed above, however,
results in a variance greater than that for steady
complete mixing in the dense phase with the same
bypass fraction. The existence of stagnancy is
thus inconsistent with steady state models using
an axial diffusion coefficient in the dense_phase.
It is consistent, however, with the observation
of Rowe[9]. that the axial dispersionin a fluidized
bed is due to batches of the solid being carried
up in the wakes of individual bubbles rather than
intimate mixing throughout the bed. This allows
the possibility that certain zones of the dense
phase will be relatively stagnant for short time
periods.

It would be interesting to test experimentally
whether such « stagnancy effect exists. A method
for doing this is arrived at as follows: For
steady flow and complete mixing. the uncon-
verted fraction is given by

_— . (l‘—"’,)2 44)
AL e (
solving for r, gives _
eK—(1—9p)
= 45
=K== @)

A plot of the right hand side of (45) against K
will be horizontal for complete mixing and
steady flow. will be above its asymptotic value
at low K values if stagnancy is present. and will

be below if the axial diffusion coefficient model
is correct. In fact,

. wK—(l—w)}___o2—l
i %) "o 9

where o? is the variance of the contact time
distribution. This was tried with scme data
from the literature in Fig. 10 in which some of
the experimental results of[6] are plotted. It
can be seen that the presence of stagnancy is
clearly indicated.

In [6]-it was noted by the authors that the
average contact time as measured trom the slope
of ¢(K) was too low. There are two possible
explanations for this. Either the reaction rate
is lower than in a packed bed. which is hard to
believe, ur part of the bed is inactive. Now in a
fluidized bed the solids are well agitated, and at
first it is hard to conceive of any inactive region.
But the mixing processes of the solid phase have
the same time scale as the contact time of the gas,
and with respect to this time scale the solids are
not well mixed. If we ccnsider a region of the
dense phase, then. it experiences periods of
intimate contact with the gas phase followed
by periods of very little contact with the gas
phase. The time scale of the fluctuations is of
the same order of magnitude as the residence
time. Over one residence time the total fraction
of dense phase in intimate contact with the
bubble phase might be only half. This effect is
clearly borne out by Orcutt's experiments[6]

FO

{($K=U-g1)/0K (6N
N -
o}

[o]

4
T

. 1
o] 2 4 6 8 10 12 14 16

Dimensioniess rafe constant, K

Fig. 10. Conversion data ecxhibiting stagnancy (Orcutt;
6 in. dia., 0-46 ft sec, 24 in. packed height, V/V, = 33).
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and might change from bed to bed. Itis regrettable
that similar results for large beds are not avail-
able.

In the context of our simplified model, the
effect of a fluctuating exchange rate would also
express itself in a variance larger than unity.
This is, however, a result of our assumption that
the dense phase is well mixed. If we would
assume that the dense phase is better represented
by two stirred tanks in series, each of them
having a fluctuating exchange with the gas phase,
then the variance of the contact time distribu-
tion can be less than unity. /i(f) will, however,
still have a decreasing region and azain we might,
under some conditions, note a reduced apparent
average contact time. The effect of the fluctua-
tions on performance should decrease if the
bubbles are small as compared to bed height, and
should be largest in large reactors with nointernal
structures to reduce bubble size.

While our crude model at this stage may not
represent a reactor accurately, it still allows us
to estimate the effect of the unsteady nature
of the transport processes on the performance
of the reactors. We may evaluate the behavior of
any chemical reaction system in the above model
by numerical methods and compare it to a steady-
state model. While the parameters of the model
are not known they can be estimated from

measurements of the transform of the contact .

time distribution as outlined in[6].

Such model studies could be important for
scaling as one can quite safely assume that.
during scaling, the size of the bubbles relative
to the bed height is going to increase and there-
fore the relative time scale of the fluctuations is
also going to increasc. These effects are, there-
fore, going to be more important in 2 full-sized
plant than in a pilot plant, and studies of this
model could indicate for what reactions this might
be of importance.

S. CONCLUSIONS

Certain average properties of quite general
two-phase fluidized bed models are independent
of the presence of fluctuations. The dense phase
residence time or contact time distribution will

have a mean value given by the dense-phase gas
volume divided by the mean volumetric inlet
flow rate, and the mean unconverted fraction
with a first-order reaction is just the Laplace
transform of the dense-phase residence time
density function.

Consideration of a very simple example of
such two-phase models indicates that the tracer
response of the system is quite insensitive to
certain parameters of the model. so that measured
tracer response curves carry little information
about them. It was found that fluctuating behavior
has a large effect on the bypass {raction. which
is an important parameter for a catalytic reactor.
Also, if the parameters of the model are adjusted
so as to keep the bypass fraction constant,
fluctuations causc a change in the dense-phase
residence time distribution and in the mean
first-order conversion which are similar to the
effects of stagnancy in 2 steady flow model.
The average contact time as measured by the
conversion at low values of £ will appear to
be lower than its real average as defined by the
void volume of the dense phase divided by the
total flow rate. This behavior is in good agree-
ment with some experimental data on contact
time distributions. and provides a reasonable
explanation for them. This does not. of course.
verify that the model is adequate under the given
conditions. since this would require that the
experimental data exhibit fluctuations of the size
predicted. and data on such fluctuations are not
available.

The proposed model could be of uze in situa-
tions where the fluctuating output is important
and a dynamic morlel of these is desired. or where
a simple model of a fluidized bed is needed
exhibiting the basic feature of the unsteady
nature of the transport processes. In either
case experimental data would be required to
fix the values of certain parametars. If. however,
we just intended to estimate what effects this
unsteadiness has on conversion or control,
estimates on the parameters of the mods! are
accessible and in that respect the model could
hopefully be of use even in the absence of more
accurate data.
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APPENDIX dx u;(ﬂl

;\“wﬁﬁ aw)~z Pyt ‘”'"‘aw)
MEAN CONTACT TIME /
To derive Eq. (14) fur the mean contuct time, we begin by +yy b -wf—“’g,,,-w). (A
summing the system (1 1) over 8 and f to give B imt g Y
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Then. using (2) ind (12). we find

.- dey ) 5
p)) 2 XolBo V- o S = ), (A
~ & dis)
Integrating (A2) wHRN il CONAIIONS Ui M gives
1=Fm =3 T xdB.jalth (A
[ RS}

and integraling ugun gives
0= T x/8.J10 (Ad)
"oyt

where 6, = 1 2,@)d0. Thus the mean contact time, 8. cin
be expressed us a sum of individual contact times, 8. for
the states making up the set A. The 8, ure culculated by

Résumé - On propes

integrating Fq. (11

TN oM,
R B (0 = s d0 )] = Py 2 Y
"

o4 D Al
(B} ‘"

ty

(AS)
LI TP9 ~ Moo
Sy + 3 Aty = = a7 (A6}
fourt r o |
By inspection, it is seen that the solution to (A6 Is
0 R
”qupué (A7)

when Eqgs. (2) and (4) are taken into account. Substituting
(AT)in (Ad) gives Eq. (14).

un modéle mathématique pour des couches de gaz fluidisées permetiant un

courant présentant des fluctuations uu hasard. On démontre la relation d'une conversion moyenne
de premier ordre @ la distribution des temps de contact. pour des modéles arbitraires de ce type. Une
version simplifiée du modele est ensuite étudiée et on trouve que I'efiet du courant de fluctuation est

similaire i celui de fa stagnution dans ies systém

et stables. Cet effet est contrudictuire sux modeles

habituels & I'état stable, mais I'on montre que certaines informations publices sur la conversion des

couches fluidisées [6) présentent cet effet.

Zusammenfassung — Es wird ein mathematisches Modell fiir durzh Gas betiitigte Wirbelschichten
vorgeschlagen, dus ein 2ufallsmiss.gen Schwankungen unterworfenes Striomungshild in Betracht
zicht. Die Bezichung der durchschnittlichen Umsetzung ciner Reaktion erster Ordnung zur Vesteilung
der Berlihrungszeit fur willkilrlich gewiihlie Modelle dieser Arl wird gezeigt. Es wird dann cine
vercinfachte Version des Modells unteisucht. und es wird festgestellt, diss der Eifeht einer schwank-
enden Stromung iihnlich dem einer Stagnation in stationidren Systemen ist. Dieser Effehtist mit den
iiblichen Modellen des stutionisen Zustandes unverembar, doch wird geseigl, dins verschiedene
iiber die Umsetzungin Wirbelschichten gemachie Anguben(6) diesen Fffekt aufzeigen.

C.ES. Vol 24No.9-G
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Scale-up Criteria for Stirred Tank Reactors

J. J, EVANGELISTA, STANLEY KATZ, ond REUEL SHINNAR
The City College, CUNY, New York, New York

A methad is derived for the design of stirred tank reactors for homogeneous reactions. A simple
mixing model proposed previously by Curl (4) is used to compute the effccts of finite mixing
time on complex chemical reactions. It is also shown how the parometers of the model can be
obtained by tracer experiments, or estimated theoretically by the assumption of isotropic
turbulence. It is shown that in mony proctical cases the assumption of ideol mixing is o geod
opproximation. However, the effccts of imperfect mixing are more likely to be felt in a large
reactor than in a pilot plant. Some quontitative exomples are discussed. Mcthods are derived
to compute the average outlet concentration for complex systems such os outothermic reac-

tions, polymerization, crystallization, ete.

In u number of recent publications the effect of mixing
on homogenous chemical reacuons is discussed. In this
paper an attempt 1 '~ to summarize this work into a
design and scale up procedure for stirred tank reactors.
The method as described is hmited to reactants which
completely mix though it can be extended to certain
heterogeneous reaction systems,

Now in any such scale up problem the first question
that one has to answer is what are the dangers involved.
If there is only a simple one path reaction, then the only
question is how much is the conversion affected, and this
can be relatively easily handled either by safety factors or
by some of the estimation procedures” described in the
following. The more complex and challenging case is the

one in which the product quality itself might % affected.

by the scale up, and in this case there is no way of com-
pensating for our lack of precise knowledge by a larger re-
actor volume. This is true especially in complex rractions,
where side reactions might Ee favored by local overcon-
centrations, Other systems very sensitive to local over-
concentration are systems involving nucleation, such as
crystallization and certain polymerization processes.

The problem of scaling up a homogencous reaction is
therefore basically to evaluate the effect of mixing on the
reaction. The first question that we have to ask ourselves
is what changes when we scale up. One property we want
to maintain during scale up is a similarity in the basic
flow regime. It was shown in previous work (8, 9) that
this criterion can be fulfilled by choosing the size of the
Eilot plant or bench reactor such that the Reynolds num-

er is large (> 104 or preferably 10%). This ensurcs that
the average velacity distribution is a function of space
coordinates only and fairly independent of Reynolds num-
ber, resulting in a similarity in the overall vef:‘city distri-

. bution between geometrically similar reactors, The second

criterion commonly used and expluined elsewhere (S, 9)
is that the energy input per unit volume should be con-
stant, as this gives a similarity of the turbulent flow regime
in the high wave number range of the turbulent velocity
sgectrum. This is important for heterogeneous systems, as
the velocity Beld that a single particle sces around its
periphery remains constant during scale up. It was pointed
out that the time scale of mixing changes during scale up
at constant energy input per unit volume. To keep this
time constant during scale up of geometrically similar
vessels (with large Reynolds numbers% one would have to
keep the agitator speed constant. For homogeneous reac-
tions the overall mixing time is really the important cri-
terion, and as long as we can keep both thc Reynolds
number high and the revolutions per minute constant,
then we could scale up with considerable confidence. This
is however in most cases impractical. At constant revolu-
tions per mninute the Reynolds number increases linearly
with the characteristic lergth L and the energy input per

VYol. 15, No. 6

AIChE Journal .

unit volume increases proportionally to L2 If we want to
keep the Reynolds number above 10* in the smzll vessel
we either-have a relatively small scale up ratio or we end
up with an unrealistic energy consumption in the large
vessel. We therefore often have to live with the fact that
during scale up the mixing time increases and try to esti-
mate this cffect in a quantitative way. These considera-
tions apply not only for the design of continuous reactoss
but also to the design of batch reactors, if one of the re-
actants is added continuously.

Zweitering (17) has shown that if the reaction is of
nth order and the feed is premixed one can estimate
bounds on the conversion. One bound (a maximum for
n > 1 and a minimum for n < 1) is the case of maximum
segregation, where all particles are asrumed to mix only
with particles having the same age and waiting time, the
other bound is the case of maximum mixeduess, which in
the case of a stirred reactor with a Poisson residence time
distribution is the same as the ideally mixed reactor. Ob-
viously for a first-order reaction the conversion is inde-
pendent of mixing and depends only on residence time
distribution. For more complex reactions these limiting
cases do not result in any bounds on conversion, and other
methods to obtain these hounds for more complex systems
have been proposed (15). While these methods are not
rigorous they still give a fairly good cstimate of the
bounds.

Such bounding is especially useful if the bounds are
close together. This indicates that the system is insensitive
to mixing and can be scaled up quite safcly. However, in
the cases where it matters most, namely, in complex re-
actions, nucleation, etc., the bounds are very far apart,
and thus bounding methods based on residence time dis-
tribution alone are not very useful. Luckily most agitated
reactors are, in their behavior, very close to idcallv stirred
tunks, Mixing times in most rcactors are measured in sec-
onds whereas residence times are normally measured in
minutes or hours, Unless we deal with a system sensitive
to mixing or with very large reactors, it'is very hard to
measure any deviations fromn complete mixing [sce for
example (16)]. We therefore normally deal witi the case
of a reactor which at least in the pilot plant is very close
to ideal mixing and our main problem is to estimate

1. How large is the deviation from ideal mixing likely
to become in the large scale reactor?

2. How sensitive is the process to small deviations from
complete mixing?

A quantitative approach to these two problems is out-
lined in the following sections.

THE MODEL

The mixing model for a stired iank reactor used here
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is the one wed by Curl (4), Spiclmun and Levenspicl
{11), Kattan and Adler (I18), and othicrs in this and re-
lated cuntexts. Briefly, it regards the rcacting mass as
made up of a large number of equally-sized parcels of
material (particles), v.hich from ume to time undergo
independent pair collisions, equulize corcentrations, and
then separate. Between collisions, each parcel of fiuid
behaves like a kittle batch reactor. Fresh material is fed
at a constant rate, and the withdruwal takes a representa-
tive cut of the contents of the vessel. One speaks of these
particles as though they had a definite material identity.
This is rcasonable for dispersed phase systems but here
where we are dealing with homogenous phase systems,
they might perhaps be better regarded for the present
pu as primitive representations of turbulent cddics.

It we consider, for concieteness, a single reaction where
the concentration ¢ of reagent behaves in batch according
to

a .
< = re) (1)

then we may describe the contents of the reactor at any
time ¢ by the concentration distribution p(e, t) of par-
ticles at that time. Technically speaking, p is a probability
density in r, with f ¥ p(c, t)de giving the proportion of

a
articles having concentration betveeen o and b at time ¢.
he distribution p, according to what has been said,
satisfics the integro-differentiul equation (4)

’—”‘—:‘-"— + 2 (0P ) = alpale, ) = ple, )

+ zp{ S e, :)p(c"_.;)a-("" LA )rz'c'dc”

2

- ple, e)} ()

whore pe(c, t) is the concentration distribution for the
foed, 1/7¢ the nominal residence time of material in the
tank, and 8 a measure of the agglomerative mixing in-
tensity. The mean conceutration o? reugent in the vessel
and outlet is simply the first moment ol p, and this is the
working measure of overall reactor performance for a
given kinetic system. lnformation about the sandom fluc.
fuations in a turbulent mixing system is given by the
higher moments.

It should Le noted that the concentration: variable ¢ in
Equation (2) may be scaled in any onc of a number of
convenicnt ways, provided only that the basic property
of averaging on aggloncintion is preserved. Thus, we may
wrile (2) with yicld, conversion, extent of reaction, and
s0 on, in place of ¢. Further, when there is more C.an one
reaction going on, so that the kinelics are described by
soveral simultancous equations in place of Equation (1),
we Bnd natural generalizations of (2). "Thus, with two in-
dependent reactions whose progress variables (say) fol-
Jow the kinctic scheme

dx
&Y

a1

+ -:7 (+(x g)p(5, yo ) )= alpetx, 4, ) = plr.gs )}

+2p{ [ S fow v opeymn
s (i-;:"_’)a( y";y" —y)dx’dy’dx”dy”

- P(‘.y. ')} (4)

Calculations of reactor performance acrording to Equa-
tions (2) and (4) for some common one and two reaction
schemes will be found below.

The basic equation in p may be applicd as well in the
study /f certain polymerization reactions, where we are
concemned, to deseribe the molecular weight distribution.

In a homugeneous radical pol{‘merization, for -exmmple, we *

are concemned to deszribe the concentration of initiator
(cacalyct) (), of momomer m(t), of growing radicals
having molecular waight between r and r + dr, ¢(r, t)dr,
and of terminated privmer having molecular weight be-
tween r and r + dr, y(r, t)dr. Assuming terminution by
combination, the b tch performnnce of such a polymeriza-
don systein may be described following referenc 19 by

ap(rt) _apint)
at +Gm ar

VB A(E)3() — D gl ) o

H(r, 1)
ot

di(t)
dt’
-‘!-';'7(‘-)-' - CGm(t) f¢dr

Here, the molccular weight s reckoned in monomer
units, v is the number of radicals formed by cach molceule
of decomposing initiator, and B, G, I are rate constants
for initlation, propagation, ancl termination, tespcctlv‘cly.
Again, itroducing the moments of the size distributions

e .’."4"’"9"“ f"‘ﬁd’

we find, (19) a set of bLatch kinctic equations in these
mements snd the concentrations 4, in:

B B Deg
cdt

-%:L = Gmxg — Dxoxy

d’g
—— r3 2Cnxy — D,
at mnxgy 0%y

== g.f (r, ) (r—r,t)dr

m— Bi(t)

d iayf‘ -G
L=alny) (3) d
¢ .._y'_ w ) xx
wo have de :
p(x,y t) 2 d
i‘—’-mL t g O )pla g 0) S b (i1 4 a)
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B A Cmx, (8)
e

These serve as an eight dimensional version of (3), and
we have corresponding to them an eight dimensional
version of (4) in the distribution p(xo,x,X3.9alnYa LonE).
From the distribulion p, we muy recover, say, the v.ight
average molccular weight of radicai together wiii [ruiy-
mer as

f(x, + ya} poduedn e dydy oy di dr

I(x. + 1) p dvodxydegdyodylygdi dm

Enticely similar considerations may be applied to the
study of such particulate systems os crystallization re-
actlon,

Now the mmethods of solution of Equatious (2) and 74)
that are developed below apply regardless of the numbe:
of independent reaction variables, provided only that the
kinetie expressions may be tuken as pelynomials in these
reaction vorfubles. They may accordingly furnish a useful
gukle to how the mixing interacts with strong nonlineati-
ties in the kinetics, as in the crystallization nucleation
rate, or with an independently varied ciitical feed stream,
as {n the initiator feed to pelymerization icactors. We do
not liowever present any results along these lines here,
but reserve these studies for later report.

Solutions to Equation (2) for scveral simple reactions
have been published (4, 7, 11). In the literature (11) a
Munte Carlo method was used and (7) a direct numerical
method was employcd. A method will be deseribed in
this paper which allows cne to obtaln the mements of
p(c) in asimpler way. :

The authors want fn no way to imply that the above
model represents the real mixing processes in a turbulent

- reactor. These are {ur more complex and defy as yet an

analytical deseription. The shove model has, however,
one important similarity to turbulent mixing. As will be
shown below a concentration disturbance (in the absence
of reaction) as computed from this model shows the samo
sort of decay as in isotropic turbulence, the varfance (or
the second moment) of the concentration in fluctuations
in both cases decrensing exponentially with time. Wo
furthermore do not claim that it is possible to predict a
conversion accurately if 8/a is not very large. Our claim
that this simplified model s useful in design is based on
the fact that the behavior of the conversion with respect
lo B/a reaches an asymptotic value for high values of
B/a. As long as 8/a during scale up stays large enough

so that we remain in a region where our results are in- .

sensitive to B/a, we have good justification to assume
that a real mixing process will also be insensitive to mixing
in the same range of mixing times. In the design of real
stirred tank reactors we mostly deal with smull deviations
from complete mixing. To say that the results are Insen.
sitive to the value of B/a provided B/a is large enough
is the same as assuming the vessel {5 ideally mixed. TEe
method described above allows one to estimate the mixin

intensity required to approach ideal mixing. Now even i

the vessel is not ideally mixed, and the results depend on
B/a, as long as the deviations from ideal mixing are small,
the above method should cstimate these effects fairly ac-
curately. The question that we still have to answer is how
can we relate B/a to an experimentally measurable quan-
tity, or how can we estimate it {n the ahscnce of suitable
measurements.
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INTERPRETASION CF TRACER EXPERIMENTS

We are concerned here tn attach am empirical inter-
pretation to the mixing mtensity parameter g of Tequation
(2) and its ligher-dimensional analogues. This interpre-
tation is to be found fn the analysis of tracer mixing
experiments, and we accordingly begin by writing (2),
v.ithout the kinetic term, in the ?onn

= a {po(c,t) — ple, t)}

+ 26{” p(e,1) p (6", 1)

4 (c,:cn-uc)dc'dc”—p(c,t)}

(6)

ap (c, t)
a

We may note at ance thut the information we want s
contained (n the statistical fuctuations of concentration
about its mean. As far as mean values go, the mixing
system  (without reaction) hehaves like a completely
mixed vessel with input-output time constant a.

Indeed, if we denote the mean concentration by

w() = J opla e
we fiud from (B) that u satisfies the ordinary ditferential
equation
du

'&‘;"G(Fo"‘l‘) (7)

independent of 8, where

wolt) = f ¢ (e, 1) de

is the mean of the feed distribution po. And if we put a
step of tracer into the fecd of an initially tracer-fice ves-
sel, 50 that

polc,t) =8(c—co);t>o0 (8)
and

ple) =o (9)

we find from (7) that the mean tracer concentration in
the vessel and ils outlet is

n(t) = co(l —e~ot) (10)

the fumiliar stirred tank exponential response.
The Arst measure of the concentration Hnctnation s
given by its variunce

o(t) = fie— w1t pla 0de

and we find from Equations (6) and (7) that it satisfles
the differential equation

de
o =alp,—u)l+alot—03) ~ B84 (11)

where

ook (t) = f(c — po(t)}3 po(e, t)do

is tho variance of the feed distribution. Again, with a step
of tracer (8) in the feed of a vessel that is initially tracer.
free, so that we have, besides, (8), the initial condition

o2(o0) = o (12)
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we hnd l)y solving (11) ana cousulting (10} that the
variance of tracer concentration in the vesse! and its outlet
bopiee N

c—-uf —_— e-M

B—a

With careful moitoring of an output hne, the expression
for the variunce in (13) may scrve as a guide to the
estimation of 8. This variance rises from U 10 a muximum
at

.o) —=GC9’C_"'

(13)

1 B+a
l-——pta—’u—-g—

be-fore decaying again to 0, wnd, with a knowa, the bare

- bation of this maximum will give some estimate of 8,

evon without detailed knowledge of the variancee history.

The step Input experiments deseribed  above fumish
perhaps tha most convenient meass for an empitical de-
termination of B, although the underlying Equation (0)
can readily be made to vield results appropriate to quite
different expetimental situations. Indeed, the most direct
wiy of visualizing the effect of g is viu a batch experiment
with no input-autput at all, 1f, in (6), we darop the input.
output terms, we are left with (4)

—a'—’%'-ﬂ = 28 {ffp(c’.f)p(C", t)

S ( ¢ ".20 - c) de’de” — ple, t) } (14)

and we may sce from this equation that the mean tracer
concentration is constant
du

. —_

dar

and that the varfance decays according to

do?
—— = — Ayl 15
7 Bu (15)
Thus, in a pure batch experiment, where a quantity of
tracer Is infected initially iulo some portion of the vessel,
the resulting inhomogeneity in the distribution of tracer
in the vessel decays, as far as variunce goes, according to

(1) = 03(0) e~

that is, stmply with the time constaut 8, According to this
dircct interpretation, 8 can be related to the characteris-
tics of the turbulent fluw in the vessel, and we shall re-
view below these relutions and their implication fer the
transiation of 8 from onc scale of operation to another,

In order to et an experimental measurement of g we
can therefore perform three types of experiments, Cue is
to introduce an amount of tracer wnd measure the decay
of the concentration fluctuations. The second is to intro-
duce a step in tracer coneentration and perform the same
measurement. The thitd is in the case of multiple feeds to
introduce a tracer in one of the feed sireams only wnd
measure the variance of the concentration fluctuatiors
wver the vessel at steady state. (The Tatter ean also readily
be computed.) In cach cise we need a method which is
able to measure concentration fluctuations on a very small
scale.

Two methods have been recently developed  which
should make an important contribution o our under-
standing of the mixing process in stired tanks, One de-
veloped by Kiny and Willicln (5) is based on the scatter
fng of light due to gradients in the refractive index. The
second by Bredkey (2) uses fiber opties and  coloied
tracers. As yet there have been very few actual studies
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and it is hoped that in thie near filure more measvretnents
will be available, enabling one to correlate g with agitator
design.

It muy be noted finally that cach value of the nixin
Intemsity 8 corresponds to a defiuite value of Zweitering's
degree of segregation (17) in the reactor, Indeed, if we
denote the degree of segregation by 1, we have simply

« ¢
at+ B

with vaniching 8 giving complete segregution, und infinite
£, complete mixing. Thus, an estimate of the degree of

segregalion, obtained perhaps by studying a particular
reaclion system (not first order}, can be tunslated directly

~into an estimate of 8.

APPLICATION OF TURBULENCE THEORY

The work of Butchelor (1) and Corrsin (3) and olhers
on the application of the themy of turbulence to the seal.
up of stirred tank reactors leads directly to an estimate of
the nilxing jntensity 8 in terms of the lurge-scale proper-
ties of the turbulence, Accordingly, we recapitulate the
basie results here, and discuss their beiving on the prace-

cul estimation of 8. The aualysis Is all for 2 homogenous
isotropic turbulence.

The development hegins with the stinrdard partial dif-
ferential cquation for Fiek's luw diffusion superimposed
on turbulent convection in an isolated system, from
which one argues in the usual way that

da .
-—a"-' = — 2D ngacﬁ

Here D s the molecular diffusivity, ¢ is a concentration
fuctuation, and the overbur denotes an average so-thut
2 s shmply the variance o? of concentratlon i a balch
experiment, The mean square gradient in conceillrntion
fAuctuation is related back to o2 by introducing a micio-
scale Iy for the turbulent mixing, according to which the
mean square components of the concentration gracient all
have the common value o

1 9% 18T

93 ¥
— ——— ) ot —
2 2 &y

E_ 3 l -
2 dz lm2
so that

-
(grad. c)F = 6-1-":; ,
and
e 12D

——— i e —
a2

di

This represents a simple exponential decay In vinfance,
and consulting (15}, we see that

12D
[iD

Information ubout the turbulent velncity field dtself is
however more naturally expressed in terms of the Taylor
(dissipation) microscule L., and of a corresponding Reyn-
olds number R. The characteristic velocily appearing in
this Reynolds nuinber Is the root mean square velozity
fluctuation 4. For an fsotropic turbulence, this rost mean
square fluctuation is the siume in each coordinate dircetion.

O e

(16)

U;“‘Uu‘—- “.a.—:
R

%)
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and the appropriate Reynolls number_is accordingly de-’

fined as i
1 .
V8o o
where v is the (molecular) kinematic viscosity of the

working fluid, The two microscales are rclated {approvi-
mately) by the fact that

* oD
=5 (18)

this relation being valid for R large, tut D/v not teo large.
We may note, as a guide, that diffusivities in water are
of the order of 104 to 10~3 sq. cm./sec,, while the kine-
matic viscosity v is 10~ sq. cm./sce. In miost practical
liquid reaction problems D/v is less than or equal to
unity. [Should ID/» be large the literature (1) shows how
the following analysis might be modified.] :

Now the Taylor microscale I; may be related to a char-
acteristic lincar dimension L of the mixing system as a
whole (the
itself) by taking

b _A
L R _
or, applying the definition (17) of the Reynolds number
a’ = .
_ Y i 19
VW

Here A iIs an empirical parameter, indepeudent of the
scale of the mixing system, but varying from one mixin
configuration to another, One would expect A to depend,
for example, on the physical properties of the working
fluid, on the shape of the stirrer in a mixed vessel, and
on the ratio of stirrer diametcr to vessel diameter, but to
have the same value for geometrically similar mixing sys-
tems working on the same fluid.

The Taylor microscale l4 may also be related to the
power input to the turbulent fluid. Using a conservative
numerical factor, one takes the energy dissipation per unit
mass of fluid to be 10/8 » w2/l and, with an empirical
efficiency factor m, one may identify this as the actual
power input ¢ to the mixing system per unit mass of work-

ing fluid
=5 (20)

The efficicncy » wmeasures that fraction of the power in-
s put to the system which goes directly to the turbulent
velocity ficld (and is only later dissipated as heat), as
distinct from that fraction which goes directly to heat.

One would expect y also to be independent of the scale’

of the mixing system, but varying from one mixing con-
figuration t+ another. -

The basic nhysical relations in question are now con-
tained i~ ,:7), (19), (20), and these may be solved di-
rectly fo- u, ly, Im. .

One finds

- (0.2:42 )m (L 7

lg = (10.0 Azy) 178 (-’a-l"-)m ! (21)
. 4

Ln = (80.0 A2y)1/8 (-l;ﬁ’ )m J

Yol. 15, Mo. 6

addle diameter, say, or the vessel diameter -
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and, consulting (16)

{ 21.6 1/3 ¢ 11 .
B=\7y (r) (22)

The first inference comnonly drawn from (22) is that
in order to keep the same reactor mixing properties on
seale up, one should maintain similarity, and also keep
the ratio ¢/L? constant. In geometrically similar vessels,
as_e is proportional to N?L?, this means keeping the agl-
tator speed N constant during scale up. Also, since « is
the power input per unit mass, keeping «/L? constant
amounts to making the actual power input proportional
to L3, a demand which often results in uncommonly high
power requirements. More realistically, we may use (22)
to' give a numerical estimate of B for a speeitied reactor
size L and-power input per unit muass ¢, and then use the
methods developed below to estimate the effect of this 8
on the reaction system in hand. To do this renuires of
course a knowledge of the constant A%y, but since this is
scale-free, it can be estimated economically in small scale
by means of the tracer experiments discussed above,

The dependence of 8 on ¢ and L shown in (22) might
of course also have been obtained by a straightforward
dimensional argument. But the analysis based on turbn.
lence theory leads also to some idea of the actual numeri-
cal magnitudes involved that may serve as a useful guide
to practice in the absence of the iracer experiments sug-

ested above. From werk in wind tunnels and {n pipe

ows, Corrsin cites the (approximate) values -

A~ 20,72 1/2
so that (22) gives

‘ . 1 ( « )m

. A 2 M2
In a typical comncreial application, with L = 100 em,,
¢ = 2 X 10¢ sq.om./sec.® (1 h.p./100 gal. of water),
Equation (23) gives 8 ~» .63 V/sec. It may be noted that
with these same numerical values, (21) gives for the root
mean square velocity flnctuation, u ~ 340 cm./sec, a
plausible figure for the circulation velocity in the vessel
(which in this context we identify with the turbulent

velocity fluctuation). : .

In agitated vessels both A and » <hould steongly depend
on agitator design and one would need more accurate
studies before onc could really predict A and 5 on the
basis of the geometrical design of the vessel.

There arg several studies_available on the affect of
agitator design on overall mixing time. Van De Vusse (13)
‘measured mixing time by obscrving the disappearance of
large scale refractive index gradients via a Schlieren
method. While this is not the same as the tracer experis
ment described in this section, we can still get an estimate

“of B, by writing

m

B=—

where the constant of proportionally m depends on the
sensitivity of the mcthod used to determine: the time of
complete mixing (m should vary from 1 to 5). Choosing
m = 1 gives a real lower bound on g, and this is exactly
what is needed in our case.

For a baffled completely stirred turbo or paddle mixer,
Van De Vusse recommends a scale up equation derived
by dimensional arguments which is exactly equivalent to
Equation (22). It one compares values of £ estimated
from Van De Vusse’s work to Equation (23) one finds
that the values from (23) are too high. However, one
should remember that Van De Vusse measured disap-
pearance of a dye, and that by choosing 8 = 1/rn, we
made a very conservative estimate of 5. In view of this
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the exp:-imental results are really in surprisiogly good
agreement with our a priori estimate.
Van De Vusse's data correlate well with

g0l (é)m

As said -before the constant in this correlation strongly
de on agitator design and should preferably be
either :measured or in the absence of more accurate data
estimated from the literature (13). In case a high value

‘of B is desirable strong emphasis should be given to cor-

rect agitatur design and correct placement of the leed
pipes. Multiple agitators and multiple feed points can
increase the value of 8 considerably.

CALCUMT!ON OF REACTOR PERFORMANCE

We are concerued hicre to establish a systematic way of
solving” Equation (2) and -its “higher-dimensional ana-
logues such as Equation (4) under conditions of steady
state reactor operation. These equations secem in general

_ to be very difficult to solve. and since our interest com-
" monly centers on high mixing rates, we proceed by ex-

rans(on in powers of a/f. What results is a succession of
incar integral equations in.the succcssive contributions
to the overall p, and while these don’t sectn to be casily
solvable either, they do lead 1o sets of linear algebraic

. equations in the muments of the successive contributions
. to p. The procedure closes, that is, it gives at cach Jevel

of approximatior. a self-contained “iet of equations in a
finite number of Jeading moments, vrovided the rate ex-
pressions (1), (3) and so on are polynomials. The result-
ing linear equations in the moments can be soived by
standard means. The overall average reactor performance
is found fual'y by adding up the contributions to the first
moments of p. '

We begin with the one dimensional Equation (2). We
drop the lime dependence, introdyee= a newtrai variable x
to stand for concentration, yield or whatever, and divide
through by the inpui-output time constant « to find for
the distribution p

d
o H@)pa)} = e(x) = (1 4-2)p((2)

4 Affp(x')p(x") 8(’( -;x” --x) dede”  (24)

Here po(x) represents the feed distribution, commonly
3(x -~ xo) for a suitable vo, f{x) is the rate expression
nomwlized on o, and
28
A= (23)

-

is a dimensionless mixing intensity. The first result we
want from (24) is wn overall average material halance, If
we deaote the moments of p by

Pa =2 f " p(x) dx
and those of p, hy

pmo = § 5% pols) dx

we find this matesial balance by multiplying (24) through
by x and integrating
— S 1) Py e = o (26)

We note alos heve that pfx) is te be a properly newnal-

ized prolahility density, w0 that
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f p(x) dews 1 2n

If § s a pulynomiul of degree N, then (28) fumishes’
an overall relation among the first N moments of p. In
particular, for a first order reaction with rats constant k,
where x is the concentralion of reagent so that f(x) =
—kx/a, we fird for the mcan reagent concentration in
vessel and outlet the standard result

#1;0

k
14—
a

"‘

(independent of the mixing intensity 8), whais 4;2 is the
mean reagent concentration in the feed.

In general, liowever, p (but not pe) and its moments
depend on the mixing intensity, and we proceed by ex-
panding (24), (26), (27) in powers of 1/X. We remind
owselves thai in almost all practical applications \ is huge
as compared to unity, and we therefore cexpect such an
expansion to converge fairly rapidly.

We write formally

p(x) = 3% = p (x) (28)
. j=0 X
and

1
== E e (29)
so that

g = f 2np® () (30)

Bringing (£8). to (24) and equating coeflicients in
gives for p‘@ :

po (x) — ff'.,m () p© (")

¥ 45"
(22

- x) dode” =0  (31)

[or p(l’ x’ .
po () =2 J fpo @iy (Z22

—_ x) ddx’

= po(x} — p@(x) — ‘;l_, {f(x)p(x)}  (32)

and for the higher p¥

p(x) — 2ffp(o>(,g),,m(xn)s ( x’ -;xv

- )dx’dx"
-1 Y

=2 ” po () pi-b(x")8 -x:%c——--x) dvdx”
=1

— pU=B(x) — T‘Ii:c- {fle)pt-D(x)}; =2,8....... (33)

Similarly, bringing (28) and (29) to (26) and equating
cocflicients in A gives in pf® '

mO— [ f@pOEd = (30
and in the higher pt?
= S de =05 j= 12,0, (85)
Finully from (27}, *ve have that

Nevember, 1962
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#o® =1 ‘ (38)

while
" =0; [=12,.... (37)

Now the cquation (31) in p simply represents the
bohavior of the perfectly mixed reactor (infinite 8), and

its solution is
P (x) = 8[x— ;'] (38)

which satisfies the normalization (38). The mean value
#19 is determined by the overall material balance (34)

w1 = L] = g0 (39)

With p® in hand, we may attack the equation (32) in
the first correction p‘’ by taking partial moments (30),
that is, by multiplying through by successive powers of x
and integrating. We find, taking due account of (37),
linear algebraic equations in the ‘1 of the form

1 1 n
(I—F)h("_Fm=l (_":)[Fl@)]n—m“m(l)

=smo = (V1" + 0l @I @) 0= 2,3, ...
(40)

thero being no information in the momeu! equations for
n = 1, This loss of information is however made up by
the overall material balance (35) for f = 1.

11— f f(21p(a)de = 0 (41)

If f is a polynomial of degree N, Equation (41) is another
independent relation among the first N moments of pv,

and taking it together with the Equations (40) for n =

2,3,...., N, we find a set of N linear algebraic equations
fn p', .., py? which can be solved by standard nu.
merical means, With these first N moments in hand, as
many further moments as desired can be generated by tak-
ing (40) forn = N + 1, N+ 2, elc,, in tumn.

The same procedure applies to the higher p' of (33).
Taking moments, we find a sct of algebraic equations very
muck like (40), indeed having the same left hand sides

n—1

1 1 n
—_—— (¢} N 2: -
(1 on-t )""‘ gn—1 = (m) [}"1(0)]“ ™ l"m(n

=1 n=-1 n
(U} -0
2 2 ( m)l‘m Fn-~m

(=] mwuy

— =0 g [ en=1f(2) -0 () de

n=23,....

1=23,.... (42)

the right hand sides for each j involving moments of the
earlier p. Again, there is no information in the moment
equations for n = 1, but if f is a polynomial of degrec N,
we find for each § a closed set of equations in @, u,tH,
-+, a8 by taking Equation (42) forn = 2, 8,..., N
together with (3C). As before, once the first N moments
of p® have been found, as many higher moments as de-
sired can be generated by tuking (42) forn = N + 1,
N + 2 etc. Tt should be noted that the integral term on
the right hand side of (42) leads to a certain cascading
in the number of earlier moments required as we go to
successive values of j. Lhus, with f of degree N, we need:
2N — 1 moments of p'D to find N moments of n¥;
3N — 2 moments of p to find (2N -~ 1) moments of
P to find N moments of p'®; etc. But sincz higher

VYo!. 15, No. 6
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moments can be found at will, this causes no special dif-
ficulty. Finally, having evaluated the partial moments for
as many § as desired, we may sce explicitly the effect of
the mixing intensity on the overall performance of the
reactor from (29).

1 1
=0 L (D o (D, 43
#= +)«HA+A’H + (43)

This completes vur solution of the one-dimensicnal
equation (24). Entirely similur considerations apply to
the higher dimensional versions of (2) such as {4). For
the working equation, we have in place of (24)

R

S; = (=)p(2)} = pola) — (1 +3)p(x)
r=1 4
1 x'+x” » 4
o J Somens( : —z)dedr (49)

where x stands for (xy, x3, ..., xr), dx for the volume
element dx;, dxs, ..., drg, and the §-symbol for the ap-
propriate product of 3-function:, The moments of p are
now multidimensional, and we denote them

Hagng . .ng == f xMxa" .. XR"R p(x)dx
with
#ning .. Pgio = fxx"lx"i <o xR po(x)dx

There are now R overall material balances in place of
(26)

"'ffx(x)ﬂ(x)d! =80 .00 H10...0

— J P e = pon. . a=pon. 1 (45)

and tiose determine entircly the average Lehavior of the
system for first order kinetics. The single normalization
condition (27) stands.

The expansion {28) applied to (44) leads to (31) for
p(°)’ to

o) =2 f J poieyporiens (2 UL PR
R
=) —pO(x) = 3 (P (49)
r=y r

for pV, and to

pN{x) —2 ffp“’(a.’)p‘”(x”)a (

=5 J S (T ) acar

x

;— x"_ x) dx'dx”

=1 2
)3 3 )
=Dy S D -1 .
pU=v(z) Z’; o PR =28, (47)

for the higher p*’. The rioment expansions

Hning .. nR T ’EZ ;%‘Ml(:a) . sR (48)
with
Ering .. = _fxx‘lx,'z ... xx"epD(x)dx  (49)
a[()‘glied to the material balance (45) give R eauations in
P

Koo .0— ff‘(x)p“”(:)dx = He...00
Page 849



o ffu(ﬂp"”(x)dx =H0...u0 (50)
and R equations in each of the higher pt
P —f fi(x)p? (x)dx = 0
rod 1= J falx)p(x)dx = 0
f=12... (51)

Finally, the moment expansions applied to the normaliza-

“tion (27) give .
']
#00,..0=1 (52)
and :
: ) ’
. Boo...0=0; f=12,... (53)
“The E({uation (31) in p® js solved just as for one di-
mension. We have

"p‘“”(x) = §(x, — mq(?), .0)...8(xp —Fog?). .1) (54)

satisfying the nomalization (52), with the R first mo-
ments determined by the R material balances (50). '

) ) ©
pio...0—filpro. .o oo, 1] = po...00

(0 ) 0) '
poo.. 1= frlmo.  ore s, 1) = poo.. 0 (55)

For the first correction p1), we take moments, We .

from (46)

Ly _ 1 S
Franz. AR o ARl 2/

m1=0 .
nn -
m . n
( ) Leios. o= 3 ( ®
m mrp=0 mr
© ({2 _ m)
[Hoo...1]"R"™r Bmimg ... mp
0

)
= pmymg oo onps 00— [p10., 01" 0. (poo...1)"R

)
+ mluo. o]l (poo...1)"™R

) 0
fillewe. 0. . p00...0] + ...

3 )
+ nrlpo. .. 0]™ ... [pos. . 1]"R=1

) (0)
frlero.. 0000 s p00...1]

mtnt...4+nx>1 (56)

Again, the leading term in the sum on the left hand side
disappears by virtue of the normalization (53), and we
find no information in the equations for ny + ny + ... +
nr = 1. Assuming these fr to be polynomials, each of
degree = N in cach argument, this deficiency is made up
as in the 1 dimensional case by taking the Equations (56)
with ny, na, ..., ng each running from 0 to N (but cx-
cluding ny + n2 + ... 4+ ng = 0, 1), and adjoining to
them the R balance equations (51) for j = 1. What results
is a scif-contained set of NR + R — 1 lincar algebraic
cquations in the leading moments of P, Even in complex
cases, this is by no neans a very large number for standard
numerical methads. Thus, for the polymerization kinetics
(5), with N = 2 and R = 8, we would have only 23
cejuations.

The procedur= may as before be extended to the higher
P by taking moments in (47). We find
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Fig. 1. Second order reactions; 2A - 2B. - - Asymptotic
values, N

g

Baing , .

1 ko ng

"R Ton+ ... thg—1 2
2m "RTL e W

L)

’ R
(0) _ « np )
n m
(k1o . o)M™™. 00l D, ('nn
mR-

[{)] - [$})
(I‘OO v l)"R "R hmimg ... MR

= [ .
= —_— -
Myt 0o b
=1 21 "R o MM mr=o MR

[$)] =t (=1
Bmy...mréag-my, . . ug=mR " Hnin2 ... nR

R
+ 3 "rf ML xMh L a fr(x) pUn D (2)dx

r=t

ﬂx+ﬂs+-a--+;ln>1
1=238,.... (57)

and for polynomial f, these equations can again be closed
off by applying the overall balance (51) and the normali-
zation condition (53). There is again, as we take succes-
sive values of §, a cascading requirement for the number of
moments of the earlier p), but these can as before be gen-
erated in tum once each basic set of eq tations for the
leading moments has been solved. Finally, having cvalu-

) orerreer [ If [{f
TE T
1

r
13

=
B

3
=

L

an 2, Bimolecular reactions; A - B = 2C. Separate feeds for A
oad B, polx, ¥) = 1/2[8 (x—2) & {y) 4- & (x} & (y—2)], Co
= /20 = 1/2pp == 1 ecuccnann Asymptotic values.
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Fig. 3. Adiabatic reactions; x = concentration of product, yield =
x averaged over contents of vessel, - - - - .. « « Atymptotic values,

ated the partial moments for as many f as desired, we may

see explicitly the effect of the mixing intensity on the over-
all reactor performance by assembling the Rfirst moments
from (48). )

?’ 1 o

)
Ao, . o=#10...o+‘rﬂlo...

1
o+i-gl{o. o+...

1 1 ) '

Moo, 1=pe . +I-#o<:“1 L a” ok ... (58)

This concludes our development of the solution to the
reactor performance equations for high mixing intensity,
and the series cxpansions and moment methods developed
here are applied below to the calculation of reactor be-
havior for some common reaction systems. It might be
noted that similar results can be developed for low mixing
intensity by cxpanding the basic equations in powers of
B/a, that is, in powers of the A of (25) rather than 1/,
What results is a hierarchy of differential rather than in-
tegral equations in the successive contributions to p, the
leading term being that corresponding to a completely
segregated reactor. Moment methods are no longer ap-
propriate, and indeed the successive (linear) differential
equations can readily be solved: directly, for.the one-
dimensional case; via characteristics, for higher dimension.
The metheds are quite straightforward, and the results are

not quoted here. In practical design problems A is almost
invariably large as compared to unity, and the results for
small values of A are therefore of little interest in our con-
text,

DISCUSSION AND EXAMPLES

One can now summarize the preceding discussions into
a design procedure for stirred tank reactors.

The first and most hmportant point is to determine
whether deviations from complete mixing will have a
detrimental effect. Quite often the opposite is true. Thus
for example in a homogencous premixed second-order re-
action a degree of segregation different from zero would

. improve conversion. Several authors have therefore pointed

out that assuming complete mixing will lead to an over-
estimate of the required volume. The authors do not agree
to this as in our experience most agitated vessels are very

“close to complete mixing, It is not practical to control the

mixing so that it should be incomplete, while maintaining
good agitation heat transfer. If no agitation is necessary
then we should a priori use a plug flow reactor in such a
case. If mixing is necessary and it is further desirable to
minimize the variance of the residence time distribution
then this can ‘be achieved by using a cascade of stirred
tanks or similar devices, Therefore the main problem in
designing or scaling up a stirred tank reactor is to decide
whether small deviations from complete mixing have a
detrimental effect or not,

u. Figure 1 the effect of A = 28/« on conversion is
plotted for some typical cases of u second-order, reaction.
We note that for valires of A Jarger than 100 the conversion
is already insensitive to variation of A, This is not the case
for X close to unity, but in stirred tank reactors such low
values are quite uncommon. Consider again a practical ex-
ample. For a 10 liter vessel with a standard turbine agi-
tator and power input the low estimate of 8 according to
the literature (13) would be 0.05 to 0.1 sec.~!, A value of
A of 5 would mean a residence time of 50 sec. Fer a 10,000
liter vessel the lowest estimate of 8 under the same con-
dition would be 0.01 to 0.02 and a value of A = 5 would
cerrespond to 250 sec. residence time,

As we stated already our main problem in the design
and scale up of stirred tank reactors concerns reactions on
which a too low value of A is detrimental. The simplest
such case would be a reaction whose totai order is less
than unity. Such reactions are very scarce in liquid
homogenous systems and again the effect of A is small.®

Another fairly simple case is where two reactants ‘enter
the vessel in two separate feed pipes. In Figure 2 the con-
version for a simple irreversible second-order reactivn with
separate feods is nlatted as a function of A Again the
effect is small for values of A over 100,

Here however, in very large vessels the effect would
lead to a significant reduction of X and should te cvaluated
quantitatively.

A second case with similar features is an autothermic
reaction, in which a cold feed is introduced into a hot re-
action mixture. Again in this case incomplete mixing al-
ways reduces the conversion. In Figure 3 a numerical
example of the effect of X on one typical autothermic reac-
tion is given. In computing the effect of « on the reaction
we made use of a method intreduced by Spalding (10),
namely the fact that for most exothermic adiabatic reac-

® Several suthors have discussed the case of a zero order reaction. The

Fig. 4. Parcllel reactions; A — B; rate constant kg, 2A — 2C; rate
constant ka. S = Cp/Co-Ca, selectivity, ---«---- Asymptotic
values,

Yol. 15, No. 6
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pt of 8 zero order reaction is however 2 simplified description
of the limiting reaction velority of cataiylic reaction et high pressures,
These reactions are not zero order at higk conversions, where the effect
of A would be noticeable. Furthermore, our method (az well a3 Zwieter-
inx’s) does not apply to heterogencovs catalytic reactions.

Page 8531



-
. e B I TV TP TOp RSO

tions the effect of conversion on reaction rate can with

sufficient accuracy be described by

dx " " e
S =AQ— =+ (59)

The constants » and m are determined by a best fit to the

actual reaction rate dependence which normally contains

an exponential tenin, such as

= A(l—x)" e F/RT = A(] — x)'e'"‘./"TO(l + af)‘
| (60)

Spalding has shown that for most exothermic reactions
the mistake made in writing (59) instead of an Arrhenius
relation is small. Equation (59). has the advantage that it
can be treated by the moment meothod of the preccding

FEEEON, LT T TR et e R -

A low value of X leads always to a Tower conversion and
the effect is quite pronounced. However for values of
larger than 100 the effect of B again becomes small,

* These last cases are examples of a broad class of cases
in which the only effect of a low value of « is a reduced
~conversion. We can always compensate for this by a larger
residence time, ‘and in fact we might want to compare the
cost of intense mixing to the cost of an increased residence
time. A quantitative evaluation, similar to the one in the
examples given, will lead to a conservative design pro-
cedure as long as we use a conservative estimation-pro-
cedure for A, -

" A simple example of the second class of problems in
which a low value of A might change the quality of the
product is given in Figure 4, where the reaction is as-
sumed to consist of two parallel reactions of different order
[for an example see (14)]. As the undesired reaction is of
a higher order, the concentration of the reactant should

“at

be as low as possible everywhere. A low value of A will

therefore favor the undesirable side reaction.

If the side product is not separated, and the conversion
is high the reduction of A due to scale up might have a
scrious effcct. Oue notes here, that just increasing the
residence time without changing the intensity of agitation
will not be sufficient, as the side reaction will oceur in the
concentrated region ncar the inlet, There is a whole class
of reactions of this type, and what complicates this case
further is the fact that in many cases the cxact mechanism
and kinetics of all the possible side reactions is unknown.
As another example of this type one might mention reac-
tions in which the pH is controlled by acid addition and
wherc high plf in the nonmixed region might cause side
reactions.

If the kinctics of all possible undesired side reactions is
at least approximately Enown then the above methods can
be used to estimate the minimum value of A necessary. to
guarantee the specifications. Sometimes it might turn out
to be impractical to obtain a sufficiently high valuc of A in
a very large tank and several parallel smaller reactors
might provide simpler and cheaper solution,

Oune might also want to jnvestigate ways of increasing A
by improving both the design of the agitator and the de-
sign of the feed disttibution, It is unfortinate that we do
not possess sulliciently accurate data for the effect of the
feed distribution on agitator design. But it is apparent that
using multipl> agitators (single or multiple shaft) and
multiple feea injection for each agitator, we can consider-
ably increase X without increasing the energy consumption.

Similar consideratious apply to the case of systems with
nucleation, in which the effect of A might be the most pro-
nounced, as even with relatively very low concentration
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fluctuations all the nucleation might occur in the small

unmixed region. This will be discussed in detail in a fu'ture ,

aper. . -

P l())‘V:le last and somewhat discouraging conclusion that we
can draw from the above discussion is that direct empirical
evaluation .of the effect of agitator design on complex re-
actions is impossible in the pilot plant. If a reaction is sen-
sitive 1o mixing time then this sensitivity is a strong func-
tion of B and therefore a reaction might be insensitive to
agitator design in the pilot plant while it is very sensitive
to correct agitator decign in the large scale plant. This by
:the way is true of other systems sensitive to agitator de-

sign’ (9).
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NOTATION

A = empirical parameter appearing in Equation (19)

A = rate constant in autothermic reaction expression

a,b = bounds on concentration .

B =rate corstant for initiation step in polymerization
scheme _

C4 = outlet concentration of A

Cy © = outlet concentration of B

Cc . = outlet concentration of C

¢.. - = concentration ,

¢, ¢” ="dummy varidbles

Cy» = concentration of A in feed

D = molecular diffusivity

D = rate constant for termination step in polymerira-
tion scheme

f - = rate expression

fr == rate expression, r = 1,2,...,R

G == rate constant for propagation step in. polymeriza-
tion scheme .

#(t) = initiator concentration

k = reaction fate constant

L = characteristic length of the mixing system

ls. = Taylor (dissipation) microscale

In = microscale for turbulent mixing

m == constant of proportionality

m = exponent in approximate ratc expression for auto-
thermic reaction

m(t) = monomer concentration

= agitalor spzed, rev./min,
N =degree of polynomial f
n = exponent in approximale rate cxpression for auto-
thermic reaction

== integer in moment definition; r = 1, 2, ... R

= concentration distribution

= concentration distribution for the feed

= jth term in cxpansion of p

Reynolds number

= number of independent concentration variables

batch rate expression

= linear dimension of crystal

= molecular weight

= degrec of segregation

= baltch rate expression

= time

= root mean square of ve]ocity fluctuation

t; = x-componentof u

<

® e w oy
e

tty = y-component of ¢
U, = z-componeat ofy
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x = cuivajan GWoidiinato

x == progress variaule

v. = jth mowent of size distribution of growing poly-

mer chains

o, " = dummy variables

y == cartesian coordinate

y = progress variable

ys = jth moment of size distribution of terminated poly-

mor
¥, y* = dummy variables.
z = cartcsian coordinate

Graek Lettans
= inverse of nominal residence tima

8 = meuwsurc of agglomerative mixing intensily

« = actual power input to mixing system per unit mass
of fluid ’

) = empirical efliciency parameter

A — AAI‘Ainnb i_‘!jﬂuu) siarniciniy = ;.p'/u

» = mean concentration -

uo = mean feed concentration

sn = nthmomentof p

pae = ath moment of pg

#n! - = nth moment of p!

v . = kincmatic viscosity of working fluid

v | = number of radicals formed gy each molecule of
decomposing initiator

o s varlance of concentration distribution

a2 w varlance of feed distribution

¢i = mean residence time

tm == mixing time

102

4 s cancentration dictribution of growing polymer

chains

v = concentration distribution of terminated polymer
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THE EFFECT OF IMPERFECT MIXING ON STIRRED
COMBUSTION REACTORS

JOHN J. EVANGELISTA, REUEL SHINNAR, AND STANLEY KATZ

Department of Chemical Engineering, The City Coilege, City University of New York, New York City

Mixed gas reactors, even when special pains have been taken to ensure good 1n:ixing, often
depari quite noticeably from the ideal of instantaneous mixing on the micro-scale. The
present paper offers a quantitative measure of the extent of this departure, and shows how
it is related to the reactor performance.

The intensity of the mixing is characterized by a single parameter that measures the time
scale of deeay of nonuniformities in composition in the reactor. This is related to the design
parameters of a gas reactor by dimensional arguments drawn from the theory of isotropic
turbulence. The analysis of reactor performance is carried out in terms of a coalescence model
for the micro-mixing that incorporates this time scale. The mixing model is borrowed from
chemiecal engineering studies.

Calculations are presented for adiabatic reaction systems, showing the shift in the effective
reaction-rate curve, and especially the reduction in blow-out limit, with decreasing mixing
‘intensity. Such calculations permit one to see how high a mixing intensity is nceded to ap-

;"I

.«.,..

i

proximate perfect mixing, and how this level depends on the reaction kinetics,

1. Introduction

The concept of an ideally stirred reactor has
had several important applications in combustion.
A spherical adiabatic combuster has been intro-
duced by Longwell to study the kinetics of fast
reactions,! and in the interpretation of the data
one normally assumes that the reactor is ideally
mixed. It has also been observed?* that an ideally
stirred tank might be a useful simplified descrip-
tion of some industrial combustors. The concept
of an ideally stirred reactor has also contributed
considerably to our understanding of the stability
and control of autothermic reactors.2®

It is quite obvious that a perfectly stirred
reactor is an ideal concept that can be only ap-
proached, but not reached, since real mixing
processes occur at a finite rate. In Longwell’s
spherical reactor, considerable effort went into
the design to approach instantaneous mixing.
This is not true in industrial combustors, where
the mixing is much less intense. The question
then arises as to what effect the imperfect mixing
has on the performance of such a reactor, and a
general discussion of this point is given in Refs.
2 and 3. It has been shown further!® that, even for
a small spherical reactor as used in kinetic studies,
mixing processes are important. Thus, the blow-
out velocity was shown to be considerably
influenced by injector design, and some empirical

correlations based on pressure drop were sug-
gested to compensate for this effect.

Real stirred reactors may also deviate from the
ideal by having residence-time distributions that
are not in the (Poisson) exponential form. Such
deviations are reported in Ref. 16. It is the
authors’ experience that, by suitable placement of
inlet and outlet, it is almost always possible to
achicve a residence-time distribution closely ap-
proaching that of a stirred tank. The present
paper, accordingly, confines itself to the situation
where perfect mixing at the macro-scale has been
essentially achieved, and develops methods that
permit one to make quantitative estimates of the
effect of imperfect mixing at the micro-scale.

Admittedly, turbulent combustion is a very
complex process and cannot be given a complete
analytical description. However, in a well-
designed reactor, mixing intensities are very high
and the mixing time is very short as compared to
the residence time. In a previous publication,®
it was shown that a rather simple stochastic
mixing model allows one to simulate the basic
features of the real turbulent mixing process.
For such an ideal turbulent mixing process, it is
possible to compute both the steady and the
dynamic behavior of many complex reaction
systems, and for small deviations from complete
mixing, one can reasonably hope that the results
of such computation will predict quite well how

901
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far the performance of the actual combustor
should deviate from an ideal one. From this, cne
gets reasonable estimates as to the mixing in-
tensity roquired to.achieve -conditions close to
ideal mixing. In Ref. 6, this was applied to the
behavior of reactors stirred by turbines commonly
used in the chemical industry. In particular, it
was shown that the mixing intensity necessary to
approach ideal mixing strongly depends upon the
kinetics of the reaction. The same method is
applied here to combustion reactors.

2. The Mxxmg Processes

While there is a considerable body of experi-
mental investigations on the mixing performance
of mechanical agitators, there are few data on the
quantitative aspects of mixing in gas reactors of
the Longwell type. It has been shown! that con-
siderable recirculation exists. Furthermore, niix-
ing of a jet introduced into a stagnant fluid has
been studied extensively. Now, it was shown® in
that, for mechanically agitated reactors, purely
theoretical estimates of the mixing time are in
reasonably good agreement with the experimental
results, It is therefore reasonable to hope that the
same methods should lead to reasonable estimates
in the present case.

The mixing pattern can be divided into two
parts. One is the macro-motion of the fluid, in-
troduced by the jets, that should cause a circula-
tian in the reactor. The second is the dssipation
of locul concentration fluctuations by virbulence.
One of the first conditions for good vver-all
mixing is that the jets have sufficient energy so
that their penetration length into the reactor is
very large as compared to reactor diameter, so
that the turbulent energy is not dissipated near
the entrance of the jet. In a highly agitated
reactor, the turbulent motion on a small scale
becemes quite uniform and locally isotropic.’®
For such cases, one can estimate the mixing time
by the methods derived by Batchelor® and Corr-
sin.!! These methods lead to an exponential decay
in the variance of an initial concentration non-
uniformity in the vessel, and we identify the
characteristic time of this deeay with the micro-
mixing time.

The turbulence theory cstimate of the micro-
mixing time we quote from Corrsin,' as reworked
in Ref. 6. It appears first that, if a nonuniformity
in concentration is described by its variance ¢,
that is, by the mean-square departure of the
concentration from its average value, then a
homogeneous isotropic turbulent mixing gives
rise to an exponential decay in o2 That is, there is
associated with the turbulent system a mixing

STIRRED REACTORS

rate (intensity) 8, such that
de*/dl = —fBd,

An initial nonuniformity o¢® thus decays in time
according to

o2 (1) = a0’ exp (—Ht),

and we may regard 1/8 as a micro-mixing time.

For a fully developed turbulence, Corrsin

estimates the mixing intensity § in the form

B = const. (¢/L*)'3, 2.1)
where ¢ is the power input per unit mass of
working fluid, and L a characteristic linear dimen-
sion of the mixing system as a whole. The con-
stant in (2.1) is a mixture of empirical parame-
ters, involving an estimate of the Taylor micro-
scale of the turbulent velocity field, and an
estimate of how efficiently the power input is
transformed into the kinetic energy of the tur-
bulent fluid. This constant may be expected {o be
independent of the scale of the mixing system,
but to vary from one mixing configuration to
another. One would expect it to depend, for
example, upon the physical properties of the gas,
the shape of the vessel, and the configuration of
inlet jets and outlet ports, but to have the same
velue for geometrically similar mixing systems
working on the same gas.

The form of (2.1), of ccurse, might also have
been obtained by a straightforward dimensional
argument. But the analysis based on turbulence
theory leads also to some idea of the actual nu-
merical magritudes involved that may serve as
a useful guide to practice. From work in wind
tunnels and in pipe flows, Corrsin finds (approxi-
mately)

B3/ IP)5.

This concludes Corrsin’s argument from tur-
bulence theory, which applies very generally,
regardless of the source of the energy that sup-
ports the turbulence. For mixing of a gas reactor
by its feed jets, we may rework it into a more con-
venient form. Suppose, accordingly, the vessel is
fed by a system of jets at inlet velocity », through
a total cross-section area S. The energy input per
unit mass in the reactor may then be written

2.2)

e = Svedo¥/ix L3 2.3)
(We take L to be an equivalent spherical diame-
ter for the vessel.) We may also identify the flow
rate per unit volume of reactor (reciprocal mean
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residence time) as

a= Sy/}rL3 2.4)

Eliminating v and € among (2.2)-(2.4) gives

B/a= } (L7 8)*, (2.5)

which relates the mixing intensity 8 directly to
the jet design parameter L?/S.

A good many different designs of spherical
reactors have been used for kinetic studies, with
reported values of L?/S ranging from 30 to 3000.
The values of 8/a estimated from (2.5) would
accordingly vary approximately from 2.5 to 50.
In deriving (2.5), the fluid was assumed to he
incompressible, but compressibility cffects can
readily be introduced. One sha.ld also note that,
in comparing diJerently sized reactors with the
same mean residence time (that is, the same a),
constant L?/S (constant 8/a) requires v/J to
remain constant. Thus, the necessary pressure
drop through the injector increases with in-
creasing reactor size. For short residence times, it
is much easier to achieve high mixing rates in a
small reactor, provided of course the size is large
enough to ensure a highly turbulent flow.

The above dimensional considerations lead to
quite reliable relations for comparison of geo-
metrically similar reactors of different size at high
Reynolds number. They also allow some estimate
of the highest mixing rates possible under
optimum design conditions,

It must be noted that the empirical constant %
in 12.5) eannot be taken as anything more than a
rough indication of oider of magnitude. Its real
value will depend strongly upon the geometrical
design, and. 8/a there.ore will depend not only
upon L*/ S but also upon the number and location
of the jets. The constant in (2.5) should be
determined at need for a given mixing configura-
tion by suitable tracer experiments. Somc of
these are discussed in Sec. 3.

3. The Reactor Model

The reactor model used here is a coulescence
model introduced by Curl,'? and used by him and
others in studies of mixed reactor performance,
and of two-phase mixing. Briefly, it regards the
reacting mass as made up of a large number of
equally sized parcels of material (“particles’),
that from time to time undergo independent
pair collisions, equalize concentrations, and then
separate. Between collisions, each parcel of fluid
behaves like a little batch reactor. Fresh material
is fed at a constant rate, and the withdrawal takes

903

a representative cut of the contents of the vessel.
While, in two-phase mixing studies, these par-
ticles may have a definite material identity, they
might perhaps better be regarded for the present
purpose as primitive representations of turbulent
eddies. .

If we consider, for concreteness, a single
reaction where the concentration ¢ of reagent
behaves in batch according to

de/dl = r(c), 3.1)
then we may describe the contents of the reactor
at any time ¢ by the concentration distribution
p(c, t) of particles at that time. Technically
speaking, p is a probability density in ¢, with

./;bp(c, t) de

giving the proportion of particles having concen-
tration between a and b at time (. The distribu-
tion p, according to what has been said, satisfies
the integro-differential equation

[3p(c, 1)/8i] + (8/dc){r(c)plc, )}
= alpo(c,t) — plc, )} + 28 {f p(d, )p (", 1)

X 83+ ") — c]de’ d” — p{e, l)} , (3.2)

where po(c, {) is the concentration distribution for
the feed, 1/a the nominal residence time of
material in the tank, and 8 a measure of the
coalescence rate (mixing intensity). The mean
concentration of reagent in the vessel and outlet
is simply the first moment of p, and this is the
working measure of over-all reactor performance
for a given kinetic system. Information about the
random fluctuations in a turbulent mixing system
is given by the higher moments. As indicated in
Ref. 6, a similar equation can be developed for
the appropriate multi-dimensional distribution p
when several reactions are going on simulta-
neously.

The parameter « in (3.2) is just the flow rate
per unit reactor volume, as in Sece. 2, and it will
appear that the mixing intensity 8 also has the
same meaning as in Sec. 2. These points emerge
from a consideration of conceptual tracer experi-
ments on the model. We give only a sketch of the
results here, since they are worked out in detail
in Ref. 6.

The connection of the 8 of (3.2) with that of
Sec. 2 may be scen by adapting (3.2) to the
situation of an isolated vessel (e = 0) with no
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chemical reaction going on (r = 0), but with the
mixing intensity maintained somehow at the
level 8. If we define the mean concentration by

0= [t
and the variance by
20 = [ - e,

the reduced form of (3.2) gives: first, that ¢ is,
as it must be, constant; and second, that

do¥/dl = —fa?,

so0 that the variance of an initial inhomogeneity in
concentration decays exponentially, and this 8
may be identified with the 8 of (2.2) or of (2.5).

A more reasonable kind of tracer experiment
for gas reactors is one in which a step in tracer
concentration is switched into the feed line of a
tracer-free vessel at time 0, and the resulting
tracer concentration measured at the outlet. This
we may analyze by suppressing the reaction term
in (3.2), taking the inlet concentration distribu~
tion in the form

polc, t) = 8(c— ¢o) t>0,

and taking the initial 2oncentration distribution
in vessel and outlet to be

p(c, 0) = 8(c).
We find then:

E) = co[1 — exp (—at)]
o (t) = acy® exp (—at)

X {lexp (—at) — exp (—=B0)]/ B — o).

The exponential response for ¢ indicates that the
vessel is, on the macro-scale, well-mixed, with
input-output time constant a. The response for
¢® contains information about 8, and, with
careful monitoring of an output line, as perhaps
with the colored tracers and fiber optics tech-
niques of Brodkey '® it may serve as a guide to
the measurement of 8. Thus, ¢2 rises from 0 to o
maximum at

t= (8= a)'In[(8+ a)/24]

belore decaying again to 0, and, with & known, the

bare location of this maximum will give some
estimate of 8, even without detailed knowledge of
the variance history.

We turn now to a consideration of methods of
solving (3.2) so as to ascertain the effect of 8 on
the reactor performance. We are concerned here
only with single reactions, and we work ac-
cordingly in terms of the conversion z rather than
the concentration c. In place of (3.1), we write

dz/dt = r(z), 3.3)

and, in place of (3.2),
[3p (z, t)/a] + (8/0z){r(z)p(z, 1)}
= a{é(r) — px, )} + 28 {/fﬂ(u, Op e, t)

X 3w v)— 2)dudv — p(z, t)} , (3.4)

~ where the inlet distribution & (z) represents a feed

of unconverted material.

The rate iunction r(z) in (3.3) represents the
reaction rate normalized on the inlet concentra-
tion of reagent. For nth order isothermal kinetics,
we have accordingly

r(x) =k (1 —2)n (3.5)
Allowing debendence on temperature in the usual
Arrhenius form, we have

r= Aexp (—E/RT)- (1 — z)",

where T is the absolute temperature, and E the
activation energy. For adiabatic operation, tem-
perature may be directly related to conversion in
the usual way, and we find

N ' ~E/RT;
r(r) = Aexp (1 + [(T, - T;)/T-‘]'x)
«(I—2z)", (@3.6)

where T is the inlet temperature, and T, the
temperature reached at complete conversion.
The rate expression (3.6) is analytically rather
intractable, and for exothermic reactions, where
E/RT; may be of the order of 20 to 80, and
(Ty— T:)/T; of the order of 2 to 6, Spalding”
has suggested that it may be usefully approxi-
mated in the form

r(x) = ke(x 4+ €)™ (1 — 2)7, (3.7)
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The parameter € might be taken equal to zero  iween (3.6) and (3.8) in n representative situae
tion is xhown in Fig. 1,
o) =2 kepme (1 — p)" 3.8 With any of the forms [(3.5), £3.7), AN !
the rate expression r(e) may he wiitten

it onie were not especially inferested in capturing
the low conversion behavior, A comparison be. re) = AoSlu),
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where, provided m and n are whole itumbers, fisa
polynomial in x. Lquation (3.4) may then be
written

a"[()p (r, (),'.al] + (I\',"iz) (0/6!){ j_‘(.r)p (x, !);

= §(x) — plx, )+ (20/a) {/j ple, Dple, O

X o4 (44 v) — xldu dv — p(z, t)} . 3.9

With ¢ scaled on ™!, the behavior of the system
for any given form of £(x) is seen to be controlled
by the dimensionless mixing intensity 8/ and
the dimensionless flow rate a/k. The polynomial
character o f greatly simplifies the solution of
(3.9, The resuits diseussed in'See, 4 arve all for
the kinetic form (3.8).

Since our interest centers in high values of
the mixing_ intensity 8, our principal mettiod of
de~ling witit (3.9) is by expansion in powers of
1/B. We work with.the steady-state solutions,
and give only a sketeh of the methods here, since
they-are laid out in detail in Ref. 6. It is con-
venient to take the expansion in the form

pa) = pW @)+ (@/28)pV () + -+, (3.10)

where p™ (z) is the distribution in the ideally
mixed imit (infinite 8)

PO) =8 —§),
with £ given by solving
J(&) = (a/k)E. (3.11)

We may work in turn with the stuble and the un-
stable solutions of (3.11). In any case, the dis-
tribution p ix characterized in terms of its
moments

st = f.r"p(” (r) dr, n=1,2 -

and, when fis a polvnomial of degree N, we find,
on bringing (3.10) to (3.9), a set of linear
algebraic equations in these moments

IR 1 "2 in\. .
b= ) w = 5m 2 )T
- - H

n==1 \M!,

= (n— 1) n=2,3 ¢, X

which, together with the over-all material balance
[1@p @) de= /tm®,

forms a self-contained system in @@, u, <+,
ux® that can be readily solved by standard
numerical methods. In Ref. 6, it is shown how the
expansion (3.10) can be carried to terms of higher
order in a/B, and how the whole procedure can be
extended to situations where several reactions are
proceeding simultancously.

The method sketched above produced the body
of results discussed in Sec. 4. However, these
results were spot-checked to estimate the range of
velidity of the expansion (3.10), and to test the
dynamic stability of th: solutions by another
method formally independent of the size of the
mixing intensity B. This method consists of
developing moment equations from (3.9), and
closing them off into a self-contained set by
assuming a suitable iunction form for p. It
proceeds by taking moments

-

(@ = [ 2p@, ¢) ds
in Eq. (3.9)
o (dpa/dt) = n(k/a) f I (@)p (x, 1) dr — pa

n=0 \M

n=1,2 - (3.12)

+ (28/a) {51" i (n) Bmfnem = ;cn} }

For polyiiomial f, the integral term on the right-
hand side of Eq. (3.12) is a linear combination of
moments, in general, of order > n. However, the
order can be reduced by imagining a convenient
functional form for p, and expressing higher
moments in terms of lower in a way suggested by
this form. A suitable functional form here is the-
B-funetion distributiou

p(x, ) = [0 (1 — 2)*01/{Bla (), b(1)])

with
un = [B(a+ n,b)}/[B(a, b)],

so that all moments of order > 2 may be expresse
in terms of py, s, This moment-eclosing approxima-
tion can be brought to Eq. (3.12), and gives, on
dropping the time term, algebraic equations for
the steady-state mean and variance. Transient
solutions and linearized stability analyses were
also carried out in this way.

It may be noted here that we do not suggest
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.RECIPROCAL MIXING INTENSITY, d /A8

Fiac. 3. Elfect of mixing intensity on blow-out limit; various kinetic parameters (m).

that the model discussed in the foregoing-repre-
sents the real mixing processes in a turbulent
reactor. These are far more complex, and defy
as yet an analytical description. Howevér, the
model has one important similarity to-turbulent

mixing—the exponential decay of an initial con-

centration inhomogeneity. We do' not believe
that {he mode! will predict conversion aceurately
unless B/« is very large (or very small). However,
conversion goes asvmptotically to the limit of
ideal mixing as 8/e gres to infinity, and we think
that the model eaptures enough of the basic
physical behavior of the mixing to tell us how
large B/ need be to validate the assumption of
perfect mixing, and in what way departures from
this level are likely to damage the reactor per-
formance.

4. Applications

For any given form of reaction rate, it is
possible ouce and for all to compute the effect of
imperfect mixing, and exhibit it in a generalized
form, by piotting the conversion as a function of
the mixing intensity 8/e, for different levels of the
throughput a/k. (Here, the mixing intensity 8 is
normalized on the reciprocal mean residence time
a, and e itself (which measures the throughput)
is normalized on the kinetic parameter & that

serves as a time constant for the reaction.) How-
ever, autothermic reaction rates may depend
upon composition in so many different forms that
we give here only the results for one typical class
of cases. These results are based on the Spalding
approximation for exothermic reaction rates
discussed in Sec. 3, according to which the
reaction rate under adiabatic conditions can be
expressed as a function of conversion z in the
form ’ o

r(z) = kem (1l — z)™.

Figures 2-4 show the results of a number of cal-
culations based on the approximate kinetics over
a range of values of ., and with n = 1. Similar
eurves, of course, can be developed for higher
values of n.

Figure 2 shows how the effective reaction rate
curve, taken in the dimensionless form r (z)/k, is
shifted under the influence of the mixing intensity
3/a. These curves are obtained by calculating the
average conversions according to the methods of
Sec. 3, and plotting them along lines whose slope
is the corresponding a/k. Three steady states are
obtained for each operating condition, the intei-
mediate one being unstable just as for complete
mixing (and the lowest representing, teo this
kinetic approximation, no conversion). For each
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(B/a).

B/a, the resulting curve then has the same
character as r{z)/k for ideal mixing (infinite 8),
in that its intersections with lines of slope a/k
give the average steady conversions. One notes
that, for high values of 8/«, the curve approaches
the curve for infinite mixing. The value of 8/a
for which the mixing, for practical purposes,
becomes ideal, increases with increasing m. The
averaged reaction rate is also much more sensitive
to mixing for high values of . That means that,
near the critical flow rate at which the reaction
cxtinguishes, the system is most sensitive to
mixing, which is in good agreement with the ex-
perimental evidence. Figure 5 shows a corres-
ponding family of curves for one example of an
autothermic second-order reaction. The effects
are seen to be similar.

In Fig. 3, the critical value of a/k at blowout is
plotted as a function of 8/« for different values of
m. One notes again that the larger m (or the
steeper the dependence of reaction rate upon con-
version), the stronger the cffect of 8/a. However,
for B/a> 30, the mistake made is relatively
small, and in the most sensitive case (m = 20)
does not exceed 20 per cent. Nevertheless, the
dependence of the blowout limit upon the reaction
kinetics does indicate that attempts to correlate
it with parameters of injector design, such as the
pressure drop, should be viewed with some
caution. Further, the fact that the reactor is
inscnsitive to mixing for a specific reaction at one
mixing rate, does not guarantee the same inde-
pendence for other reactions at this mixing rate.
However, the results of Figs. 2 and 3 should

Morragmer 4
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provide some good guidelines in this direction. It
may be noted that a comparison of the values of
B/ from Fig. 3 with the values predicted in Sec. 2
for some typical Longwell reactors indicates that,
while some designs seem to approach the desired
level, some of the injector designs reported in the
literature seem to have mixing rates considerably
below the desired level. - )

There are two general conclusions that one can
draw from the above results. One is that quite
high mixing intensitics or pressure drops ire
needed for exothermic reactions to approach con-
ditions of ideal mixing. But, with a well-designed
reactor, such mixing rates are still feasible. Fur-
ther research on the mixing reaction patterns in
such reactors would be very worthwhile. As
pointed. out previously, we have little experi-
mental information about mixing rates in such
reactors. It would be useful, first of all, to test
various mixing configurations by standard tracer
experiments to sec how well their residence-time
distributions approximate that of a stirred tank.
This would not give any information about the
micro-mixing rates, but fortunately there are now
experimental tracer techniques available®®® to

- carry out this more delicate measurement, and

comparison of different designs along these lines
would be very valuable.

A second general conclusion can also be drawn
by invoking the resulte of Sec. 2. That is, since
according to (2.5), keeping B/a constant at
differert reactor sizes requires keeping L2/S
constant, and since, according to (2.4), keeping o
constant requires keeping Sv/L? constant, it
follows (as noted earlier) that, in scaling up in
such a way as to keep the same a and 8, we must
also keep the same v/ L. The pressure drop needed
to achieve the desired level of 8/a will then in-
crease with reactor size, and one should ac-
cordingly use as small a reactc: as will not give
excessive heat losses (or too low a Reynolds
number).

In Fig. 4, the variance of the conversion is
shown as a function of 8/a. (Only the stable
steady-state points are considered.) The standard
deviation, normalized on the mean conversion, is
essentially independent of the kinetic parameters
and the flow rate over ‘he whole workig range;
examples of departure from this standard form
for very low values of a/k arc shown for repre-
sentative values of m. One notes also that, for
high but reaiizable values of 8/a, the variance
becomes so small that our original assumption
that the reactor is mixed really applies. For lower
values of B/a, the variance starts to inerease
rapidly. If the variance becomes very large, our
model really does not apply because then the
reaction becomes localized and flame fronts may
start to exist. The model has the interesting
feature that it predicts a change from mixed

T R S IR R BRI prw e s i e e e
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combustion to highly localized combustion at
lower mixing rates. The model can also b= used to
investigate the dynamic stability of the reactor
under conditions of incomplete mixing. These
effects will be discussed in more detail in a future

paper.
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COMMENTS

G. G. de Soete, Institut Frangais du Pétrdle.
The determination of kinetic parameters by the

s ~gtirred-renctar-methad-must-deal. with_a_supple-_
mentary difficulty: the mixing process whichdoes ~

.not exist in the laminar premixed flame methods.
The paper shows the strong effect of mixing time
and reaction kineties, but it is not clearly pointed
out whether the influence of the residence time/
mixing time ratio on the measured rate constant
should be expected only on the pre-exponential
factor, or could result also in an epparent change
in the measured value of the average activation
energy. If the latter, great attention should be
paid to the interpretation of ‘over-all activation
cnergies obtained by stirred-reactor methods; in
particular, the well-mixedness should be carefully
proved out. '

The Authors. Departure from perfect mixing
certainly does affect the measurement of activa-
tion energy. The apparent reaction-rate curves in
the text show that, as the mixing intensity de-
creases, the curves broaden somewhat and shift
down toward lower conversion, thus giving the
effect of a reduced activation energy. We hope to
explore these effects more fully in further work.

- ——

é

V. A. Sirignano, Princeton University. Two
charactcristic times were mentioned in the pres-
entation: a residence time and a mixing time.
Actually, » third time appears, tuat must be im-
portant: the chemical reactina time. When the
reaction time is considr uoly longer than the
mixing time, the rear.or is essentially perfectly
mixed. On the othe. hand, when the mixing time
is considerably ‘onger than the reaction time,
mixing is the re.te-controlling factor and reaction
may be considered as instantaneous. Dces your

" analysis predict thesc conclusions, which one

obtains intuitively?

" The Authors. ‘t'Hiése conclusions fre impticiv e

the coalescence model, and can be exhibited by
expanding the working equations in powers (and
reciprocal powers) of the mixing time/reaction
time ratio, with the residence time/reaction time
ratio treated as a parameter. The emphasis in the
text being slightly different, the results there are
developed instead from expansions in powers of
the mixing time/residence time ratio, with the
reaction time/residence time ratio varied as a
parameter.

é
J. Swithenbank, Shefﬁﬁeld‘i University, I would

like to draw attention to the important connec-

tion between .ne theoretical study contained in
this paper and the design of practical combustion
systems. This arises as a result of the appli-
cability of the treatment to real, incompletely
mixed systems. Optimization of the combustor
design then may be obtained by minimizing the
pressure 2nergy required by the stabilizer in order
to stir (i.e., generate turbulence in) the combus-
tor. This can be carried out by an energy balance
as shown in Swithenbank and Chigier (this
Symposium), which is complementary to this
paper. These considerations lead to the need both

for accurate measurements of flame turbulence

intensities, in excess of 100%, and clarification of
the position regarding flame-generaled turbu-
lence. I would suggest that systems in which the
total pressure loss due to the baffle aerodynamics
is large compared to the pressure loss due to heat
addition (i.e., most practical systems) have a
negligible contribution to stirring by flame-
generated turbulence.
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conceptual models that have been evaluated, with varying

degrees of rigor, may be divided into two broad classes: 1)
those in which the rate-controlling processes are presumed to
occur at or below the propellant surface and to be part of the
vaporization process and 2) those in which the rate-controlling
processés ure presumed to occur in the gas-phase flame which
consumes the vapors that emanate from the propellant sur-
face. Theories of the latter class are older, more fully de-
veloped mathematically, more fully tested experimentally,
and more generally accepted by those conducting research in
this field. The authors of this Note disagree with this

“orthodox” interpretation of the available evidence and wish
to present arguments that throw the credibility of such
mechanisms into dorbt,

For didactic purpioses, attention will be focused on the
combustion of ammonium perchlorate, cither pure or with
minor pereentages of impurities. This is done because the
combustion of thiz rather weakly exothermic- material pre-
sents an amazingly valid simulation. of the combustion of
strongly exothermic composite propellants,! because it is a
pure crystalline material whose thermodynamic properties
are fairly well established, and because its physico-chemical
and combustion characteristics have been investigated widely.
As in the case of composite propsllants, the combustion rate
of ammonium perchlorate is-accelerated by the presence of
minor amounts of catalysts and by increaserd ambient pres-
sure,

The presumption that the rate of propagatlon of a combus-
tion wave-through-solid -ammonium- perchlorate depends on
the rate of reactions in the gas-phase flame zone, requires an
acceptance of the -applicability of the thermal theory of
laminar flame propagation?? to this specific situation. The

. theory is.widely. accepted and well tested and must, be a good

representation of many “combustion processes.

The application of laminar flame theory to the combustlon
of a substance in a condensed phase is postulated on the as-
sumption that the rate cf energy supply.from-the flame is
sufficient to supply the latent heat of vaporization. Johnson
and Nachbar* have provided an analytical solution for this
specific case of a laminar flame. In some instances, as in the
classieal study of the combustion of nitroglycerine by Bela~
vev,’ this pmccdure seems_to work. The vaporization of
mtrm,l\ cerine, at atmospheric pressure, satisfies the required
conditions.

In the case of ammonium perchlorate, however, this as-
sumption appears to fail. Levy_and Friedman® and many
others have studied the combustion of ammonium perchlorate.
The adinbatic flame tempera’ure is approwmately 1000°C,
and the temperature at the solid surface is several hundred
degrees lower. At these temperatures the bulk of the energy
transfer within a one-dimensional flame zone would be con-
ductive rather than radiative. Levy and Friedman have
calculated the magnitude o[ energy feedback necessary to
vaporize sufficient ammonium perchlorate to supvort an
experimentally observed burning velocity of 1 e¢m/sec at
1500 psi. This caleulation was based on the assumption that
the vaporization process involves the formation of ammonia
and perchloric acid, a reaction that is endothermic by 56-60
keal/mole. On thc basis of purely thermochemical considera-
tions and mass continuity they show that the energy flux at
the surface must be 1300 cal/em? sec or 32 Btu/in.2sec. This
is an immense eonductive heat flux.

Since the total temperature rise from the surface to the
flame temperature is of the order of several hundred degrees,
and since the thermal conductivity of the gas is of order
2 X 1074 cal/em°C sec, they concluded that the flame zone
thickness would have to be of order 0.2-1 Ou.

If the average gas v clomty in this region is abous 30 cm/sec

then the residence time in the reaction zone has & magnitude
less than 3 X 107¢ sec. Thus, the reaction has to be ex-
tremely fast. The number of eollisions experienced by a

" lated geometry afe simply not available.

_thick.

_on the burning rate are considered.
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- particle passing through the reaction zone would be less than

10%. A simple, one-stage, bimolecular reaction with an activa-
tion energy of less than 25,000 cal/mole and a steric efficiency
of unity could occur in this time. However, any more com-
plex mechanisms involving unstable intermediates or active
radicals becomes virtually impo3sible in this time scale. It
is very difficult to believe that the gas-phase reaction among
the decomposition products of ammonium perchlorate could
be a simple bimolecular reaction without intermediate steps.
If the reaction cannot occur with the required speed, then
the flame will not be thin enough to support the reaction wave.

A more serious argument against the application of gas-
phase flame theory to ammonium perchlorate combustion
can be made in consideration of the strong catalytic effect of
copper chromite reported by Levy and Friedman,® and many
others. Ore-half percent of this additive, which has a parti-
cle size of 1v ., doubles the burning rate and even smaller
quantities have significant effects. With a concentration of
1%, the average distance between catalyst particles would be
50 u, about 50 times the thickness of the postuiated flame.

The catalyst could affect the reaction rate either homo-
geneously or heterogeneously. In order for homogeneous
catalysis to oceur, there would have to be an appreciable con-
centration of copper chromite in the gas phase. Ewven if cop-
per chromite were volatile under the surface conditions, which
it is not, the geometry of the flame is such that mixing would
be negligible. The diffusivity of the gases in the flame would
be of order 10~2 cm?/see. The lateral diffusion distance dur-
ing the 10~ sec residence time in the flame would be about
1 u. This is clearly not enough if the average interparticle
distance is 50 .  Since homogeneous catalysis is implausible,
heterogeneous “catalysis should be considered. Again, the
transport processes necessary to affect a flame of the postu-

time for an appreciable amount of the gas to reach the catalyst
surface. Even if there were, the heterogeneous reaction would
have to be very fast indeed to accelerate a process which oc-
curs in 10t seconds without a catalyst.

The strong catalytic action of a heterogenous solid catalyst
leads to an almost insoluble conflict when considered in light
of & one-dimensional flame model and a reaction zone 1-u
It is necessary to change the dimensions of the process
by at least one or two orders of magnitude before reasonable
results are obtained. The combustion of ammonium per-
chlorate must therefore be far more complex than the simple
normally accepted laminar flame mechanism! ¢ would indicate.

These considerations indicate that the heat transferred
back from the gas phase must be considerably smaller than
normally assumed. It mnust then be presumed either that
the heat of evaporation of AP is very small or that heat is
generated during the decomposition of the solid either at the
surface or below it. Such exothermie reactions could occur in
the liquid layer observed by Hightower and Price.” Part of
this heat could also be generated by a low-temperature de-
composition reaction below the surface. Such low-tempera-
ture decomposntxon reactlon could well be catalyzed by copper

“chromite. -

The purpose of this Note is neither to establish an alterna-
tive mechanism for the burning of ammonium perchlorate nor
to claim that the ga;-phase flame is of no importance. Gas-
phase flames certainly exist and may play an important role
in the combustion process. This Note is intended to show
that although the presently accepted theory has achieved
some success in fitting burning rate vs pressure data it leads
to some quite unreasonable assumptions as to the magnitude
of thermal gradients, reaction rates, and transport processes.
This is especially true if the effect of heter«)genOLs catalysts

e burnin It is therefore highly un-
likely that ohe burning of pure AP is governed solely by an
endothermic evaporation followed by an exothermic reaction
in the gas phase close to the surface.

There is not enough .



PN I

S e T eV

e s

16

AIAA JOURNAL

References
t Adams, G. K., Newman, B, H., and Robins, A. B,, “The

- Combustion of Propellants Based upon Ammonium Perchlorate,”
" Eighth Symposium (Iniernational) on Combustion, Williams and

Wilkins, Baltimore, Md., 1962, p. 693.

* Evans, M. W., Chemical Reviews, Vol. 51, 1952, p. 363.

3 Zeldoviteh, Y, B. and Frank-Kamenetsky, D. A., Comples
Rendus de I’ Academte des Sciences URSS, Vol. 19, 1938, p. 693.

¢ Johnson, W.- E. and Nachbar, W., “Deflagration Limits in
the Steady Linear Burning of a Monopropellant with Applica-
tion to Ammonium Perchlorate, Eighth Symposium (Interna-
tional) on Combustion, Williams and Wilkins, Balt.lmore, Md.,
1962, p. 678.

§ Belayev, A. T., Acta Physiochim, URSS, Vol. 8, 1938, p. 783.

¢ Levy, J. B. and Friedman, R., “Further. Studies of Pure

Ammonium Perchlorate Deflagration,” Eighth Symposium (Inter-
national) on Combustion, Williams and Wilkins, Baltimore, Md.,
1962, p. 663.

7 nghbower, J. D. and Price, E. W,, “Combustion of Am-
monium Perchlorate,” 11th Symposwm on Combuslwn, Com-
bustion Institute, thtsburgh 1967, p. 463.

VOL. 6, NO. 5

;
i




117
o ) THE ErRRCYsS OF PERTURBATIONS AN
' FLOA=RATH ON_A SOIRIED COMDUSTOR
B - il - _“ , . ! BY
V ‘ - J e v, '\ **l ' .
Fredaricek J. Xrambeek. |
o e - S e ' . ”.-_. . . P .*
: N Stanléy Xatz
_ o ) ~ and
. ' o
Reoul Shinnax
* . . N . R Lo 1
'. T
. ! '
1} . ) .;I ’ .‘
. ’ . 3 L
' M . '
. g ‘o ! .
- " .
)I'l o v o '
RO Che
. "
( ‘ it .-
1]
o+ ~
¢ FRTR TN P

: w . . . .
b City Univeroity of Now Yoxk

"W
ilobil Rescanch and Develepnont Coip.,
Princeton, dov Jersay

— et o

e S PV SRR . P X




THE EFFECT OF PERTURDATIONS 7N FLOW=DATE
ON A STIRRED COMBUSTOR

, 1. Introduction

sote 28 vandam flusruations in aas flow=rate on

the porxformance of a well-stirred combustor will be studiced .
by means of an idealized model. Such a model can dbo applied,

for example, to automotive exhaust gas afterburners, whore

T T T T

" the fluctuations in flow rate are quite subst.antial, to the

‘

v : " recirculation zone bechind a £lame holder, wherc the fluctuations

T g

.. arise from flow disturbances .and turbulence, or to the design

4 ‘_‘:

I+ of stirred combustors for chemical kinctic measurements, where
l:_'“"f; one would like to astimate the cffects of flow perturbations
~+  on tho acburacy 0of measured rcaction rotes. In addition, if

¢ ensemnle of such

}—J

nyva

a one thinks of a turbuleat flume as a

%! {fflf reactors, it is possible that some insight as to the effects

~0f turbulent £luctuations on complex kinetics, apparont activation

} -
‘iph © . encrgies, etc, may be obtained from connidoration of tho

~statisties of this model.

2.. The Model - . e .

. '
-

AR The model conslists of a well-stirred vessol of volume v

.

-’ with an inlet and outlet volumciric flow rate cqual to w,
"+ This flow wate fluctuates randomly between the two £ixed valuos
b Wy and wz.according to the probability siructure of a Markov:

Vo process, This i8 a special case of a madel treated at length

in {1). Othox aspects are presented in [2.3,4), Denotivg
tho probability that wEW by my and the probabllity that

-

wew, by m,y; thiz implies that 7y and my evolvo with time
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__vwhere £, {2) = £(wy,x). Thus *

l"’_“.‘n - o A s
dt,
(1,
dma,  Amoc Aamg
dt
“where A; and A, are the mean switching raterz in the respective
directions.
A material balance on the reachoxr gives an equation of
" change of the form :
ax : ‘
= o f(w,x ey
ag = fwex) _ C(2)
where x is the concentration of veactant. We now d2fine
functions p; (X) and pg (@) £ that tho joint probability that
cwawy and ¥ 19 in the intarval (¥%,x+dx) is given by p; (x) dx. ' .
.These then satisfy ' o ;
d - ' o, : ) |
“d;[f(wi o2) Py )] = )\;Px (x) + Aapa (x)

Slewa, ) Pa ()] = Apy(X) = Aopa (%)

"We have 'assumcd here that the process has xreached its'statiohary .

."bEObability distributien. The overall probability density functioen

is Just given By py (X) + pa(x).

" AGding the' two cquations in (2) together, we find

-‘—;—;[f; (x)py {x) + £2 ()P (x)] & O

‘fi(x)Pi(x7'*'fa(x)pé(x)‘szc:

/

wherae ¢ is somd ‘constanty independont ' éf x.

I£-the expoctad-value of €(w,x) is finite, it must happen that c=0,sinco

' _<fj"(w.>:)>:-=' j_:[f: (Ipy (x) -+ £, G2dpa (%) Jax

, 2
et R S B

o [ "eax L;L‘j _
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T gx) = £ (YD, ()] = | £q (x)pa ()], (5) becomes

~~
.
~r

{\ “")?" ()\l = - I, -'1—

Subetituting (4) inte (3},
] )\ " ‘ ()
dx[f,(x)p;(x) + Lt G e fr(X)py (%) = C (5).
Since py and py are probabilities they must bhe non-negative.
Then (4) implies that p; (%) and p, () can diffor from zoro cnly at

points where £y (%) and £ (X) differ in siga. Defining

4o, M Tl Ty .
= “LlE e fa(x‘] g=0
or g
l, }\"“ - ! . .
'Q"C}n 9l = - { x(x * Ea () a (6)

To £ind boundaxy conditions on g to use with (6), consider
the points where either €, (%) or F»(x) passes through zero.

Since py (%) uifi%%)} iz a prebabil) iy density it must he

integrable. Unless £y (x)| = = at the peint where £(x) = 0,

. an unusuél situetion, g(x) must approach zero at such a pcint.‘
Thus equation (5) is arplied to regions on the x-axis over
vhich f; ané fg'arc of opvogite sign. The values of ¢ at the
end points of such a region, which are neaassarily weros of
~either £, or fq, are %Yo, In fact, a fusther condition must
be sat siled hy £, and fu over the xegion. ‘Since g = 0 at cach
gingular point (i.ec. a zero of 2ither £y or £3), In g = o, Thus

S_ 1n g rust ~ % @ at thé left ond of the region and - = at the

xight end, mo that the function thot goos to zero at the left

120 e
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chat which coos o v ro az ¢l ¢ ziaghn ond et He =ositive aver
the vwegion. Sherefore, in any reguoon ¢7 th. X-axis whoro ¢ (»)
is non-2¢xo, the functions I (%) and L, %) suwusi aposar as An

the sketch: ———

- “~\§\\\ region whore g is hcn-zZero

f; an:

“Za ,\\\; . -
Physically,ifhe points vhere f, or £, péss thrcugh zero are
steady stataes when the flow is fixed at‘wl or w, respectively. The
-requirement that the slopes -of £ and fa e negative at these
points for colutions to exist betwesn them is ﬁust the samo as
tho conditions for stability of these steady states. At the
stationary condition, then, the gystem will oacillate in a region
bounced by stable steady states corresponding to the two different
£low rates, .
Some additional qualitative information on the shape of the
prolabilicy density function may be infeorred f£rom the Lehavior of
equation (6) neax thoe ends of a stablo region. XNear the rocts of £, .
£y () e £ (2, ) (-2 ) | | '
where a; is the root in question. If a, is a stable root, then £ (a)
will be necgative. For value of x near ai, cywation (6) then boecomes

-,

4 - "
(e ) (=),

& g

sinee X\p /%5 (%) will e negligidble cémpércd;to k;/f{(a;)(g~ax).

(PR SN PR B . L !

This gives

LN e e
‘Z{r—(a‘.)\ .2 T

. \ ] . )
g ooy Ixeag | L e T
- ! Sl _
Then, as x = g, % . e e |
- e Cy ol . B 1
py (k) = e |57 o Lo :
oo Eeot T et

Da (.\’) - 0
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an infinity at X = a; i1f£ s < 1 and a zero there if ¢ > 1. In

Defmn;ng a new varisble y dy. © .. - . -
WyXn | T . .
' R = Wy FRVEY, . o T S e . "":‘.“_~ . .
y(x) B Y., M. o M Me l » - . .<:,m~"'"" ‘ L .
o CL L Wy RRY Wy RV o bl . = - .
The solution to equation (3) is ! v, . .. L
. S . ' T Tt
. _ oo Y) L
oy -—(-—— bo) ) . :
PI(Y) v H(*‘s_‘.l ._n-l PR .’ ; , ,

|

z T PO

— " o e
L m—— 3

R N

Here r and 8 nryeo gLvoil DY

-y
4
»
.
.
.
(k] t
[ [k
ot +
i
(>
“
'
(4]
w
"
3]
)
2
[}
T
Ih
e
-
el NSRS TR D |

v - o S gy, cm— . - Q?X-J:‘.——

T i) 0 T listaz)i

)
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Thus we gee that tho probability density, p. (x) + py (%), will

have an infinity at x=a, if r<l and a zere &t x=a, if r»l. It will have

the fortuitous case where ¥ = 0 or 8 = 0, the density will

approach a non-zexro constant at the re cct;ve point.

J. Results for Simele Kinectias

While we axe interested primorily in the dehavier of the
medal 1n ¢he case of an ediabatic, exotherxmic reaction, we
firet derive the resultu for simpler reactions f£or comparisoin.

Thus for an isothermal first oxder zeaction, the right hand

s’de ¢£ equation (2) becomes .
'fgw,x) ='g (xo~x).— x . f L ‘ : (8)
-

where Xy is the inlet conccn““atmcn and is tho rate coeificient.

. " S=l : : ' e
» 1...! - - : ‘. . ’
B T B a2z
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R(r.sL.r ¢X-1 s-1

(l-t) de
Some typlcal cuxrves for py (x) + », (%) caleulated from (2) are
shéwn in FPiguss L. In perZorming the caleulation the time
has becen secaled go that v/?, the residence ﬁime, io unity.
'fhe naramaoters used axe delined aa aOLlO'ﬂ:

W= Bywy 4 Davy ' ' : ' -

‘ . .=”.’i()\x”.}“)\'3")‘-““' | o .
| e = (wy=wy )/ R

ror the second=ander ieothermal casc, the right hand

side of equation (2) becomes . o , E. .;
£ {w,x) =={‘-, (o-x) = ks L T
Thir can be rowritten in the foxm"fié ? -,f“f;erl"-E,'v g
: £(wy, %) = = X(x=ay) (x+hy) - . f” o |
£(wy ,x) - - Xk (x=a5) (x+by) E '? .“*\f !
| .solving equation (3) *ch gives i ." _ : '%
| - - .
Comw e dERRSRERS

Pa () = oy I T L Rt

lx+b;]x s b,-;l’"r1

vhare ¢; 35 & normalization constant caloulated nmuie r¢cally“

‘Curves calculated from (lO) lookx guite similax to L‘ose ca’
!
culated from (9). An example is given-in (13, b

. P

4. Results for Comhustior

We now consider an.oxetharnie reaation under aqﬁabatwc

eantitions. Fox this'nliuntion heth the materiel .and’ enexgy o

123

" L Ay

RNCEA N




mest e

Malance

conatnno

v ‘C_i_g(- =W (X, .-v) -y
at o :

i Yot o in .2 .
inlet concontratoh X,

R(x,T)

and the cnorgy balance is

ar .. .

i Lo
v 2T£ W dlgT A}

T is

. . . Al
verasicn, Multiplyving (12) by -=* ond addi
“~0

tomperature,

o

-

The material balenece is,

is “he reuaction ratg,

38

Zor

and

AT ies the temporaturve incercace rosulting S2can complele aons

ng to (L3),

a"_a ,\
q o xaw 1 [t . / ] -
Yot [SXm T,J o DA g Do) e IS g
(5 L}io L ' °. 0 ]J
, . . . sy 1
Since w is alweys pocitive, the quoentity [ﬂ;{ + 'I‘J
S .
3~ .* B Y Y
wiild avnsroach [ To] wonozonienlly, oevelr Lhough w Zluc-

thae

Lactan, <0

vy 0 -y
ototlenary,

L

(

T = Te *+ AT

ox, scaling

so that

N T
Lasnr o

3w )

2q

*
T = To + AT (L-x)

Actually, can

erian fox Markow

the atationary solution

.

- —
\%
R IR L
L T ~ -
V.

These relations wrc aw

positive,

I oy v

h] .y T IS TSR * S~ e Y A
Lont wime, Whion the wprocous W ocomes

_\{o T,

e shown using the gen

Procenscs 51 that (LS

N2 !‘3' (,\1 ’*‘)\,Q )

“he ro

hcgativc, p.‘:ov{ded eniy &

< 5 (hy+Ag)

e

. -‘_'.;J—( A 1. *hy)

actioe

- — » 3 RN .,.' i
eral stabilitvy culit~

Y owoeuid be true for

even 478 one of the rtates of w wore
S . !
a0
. B :
) . L
[
PRI o Loy '
-

oy da L3 ~
A rata, Dx,m)

1

true 1wy and wy ove both
|

.. ! . e iy i
e WAY e octakor oo '
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Shhatitus ng (L5 into (16),

U ¢ a8
Serysia -
R{(»,?) = kx, ¢ <" . ; ' ) 'l
wherce
" |
n o= E_.. . 0 w2 1T ’
‘{l" 2] To

Thus, for this case,
ey e Yorvoey o n e S ,
£(w,x) = 5 (1-3¢) _k x"expl 1+CCI?k9 _ |

The interesting feature of this system is the existence of
multiple roots of £, (x) and £ (%), allowing the possibility

of disjoint regions of non-raro »¥obohility. Figure 2, fox

erample, showes a case where both 5y (x) and £, (%) have three

(17%

e

rooks. Ln this case the entire provabiiity distribution woulad

be contained in twe cmall rxegions. One reg ion is bounded by

the smallest xoot .of £, (X) and the smallest root of £, (x), and

the other by the lavgest xoo

tt
O
ih

£y (x) and the largest xoct of

f3{x). The latter two points are vexry close togethex and alué,‘

very ciosa to ®x=1l, so that ihey cannot be seen distinctly on

+

.the two curves r¥apyesent unstable steady states of the SYOth‘

"with constant £low rates. The relative weilghts of the two

reolone are arbitrary, depending on the initial probability

.
-

.diﬁtribu*ion of “he system.. The fach that the probkability
of being énywheore hetween the two regions is zero, together
with the foct thai the conecnirotion varies continuously with

aiva, shows that once the owc_ntratﬁox ia within one of tho

!
'the graph. Note that there will be no probability of being
. between the two middle roots, since I (x) and fg(x) cross the
" axis with positive slope at thegc po‘nt The mxddle roo:a of
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two sinble reglons, it will never leive Lhiv reagion,
The gtable region &% low concerniration, or hish con-
versich, corrceeponds to an ignited state of a combuction

precess, while the stable xegion 2% high concentration, ox

e ey e - od Pl b
AUW CONNCTALEN <o C:?’:“"

-~
e A

1t

: : b
' 0 an unianite” atata. Thus,

undeyr conditions wherxe cach of the allowable flow rates
thronoh the stirred weactor result <n hoth fenited ard une

-

ignited steady states when held sieady, the probubility dige

"tribution will be concentrated over two stablo ¥egions. If

the system is once ignited it will not become cxtinguished,

and Lf it is not ignitcd it Will not spoatancously dgndic.

A more lnbcrc ing situation ariscs vhen the pnrametar

values are such that £4 (%) has only a low-concentration

(ignited) root and £ (%) has only a high-concentration (ox-

'tinou_uhnd) root. This will »e illustrdto1'w1th a concrcte

examplc. namely, the oxicdation of CO in automntive exhaust

gas afterburnecr. PReaction rate cuprecsions Zor this »mrocess

are given by Kozleov [6]). For cxbauve gac condiiionz we may
I

approxinnte hiz oquations (roughly) by

- Pty

R

r_afcol =";3.16 x 108[30] (R < ”?.ZQQ>
. dt " o

(i.c. ko =‘3€16 > 108, oo 32,200). Assuming Ty = 1000°F

* » . n » .
and AT = 440°F, which wonld typically occur undex light-

.

load cngine conditions, we £ind x = 20 ond ¢ = 0.3, ,Scaling

the time by the recsldoence dime uf Lhe Ccaadhuntor, the % of

cquation (19). 5r Cqual to k7. whorueo 1 ds the vesidence time,
Probability densixios Lhat vecvde from the above paras
. . . BN . . . .

"\' Kadhia

, ~

Dofme o wactdonee wne of

3
>

v\ch" avn chaoaum in

L ¢

(19)
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density

~10-

127 msec. and for two different values of the fluctuation

rate A A value of A=l imolics that the flow switches, on

the average, once por residence time. It can 2o saeen that

At Chie narticniay r-nnr’wi--\nn e chanmn AfF +h,
chie naviac ne gharae © o8¢

-

12

s riuite sensitive to the fluctuation rate. In the

absence of fliuctuations, the pu ameter Valk.a used give two

stable steady states: XX = 208 and ¥ m 780, T+ can he seen

that as the fluctuation rate increascs the probebility density

curve develops peaks in the area of “hese pointa.

To compaxe the propertics of our model to those of a

steady f£low sysienm, it is uvseful Lo coaprte the mean ouclet

-3

concentration. In doing co, one mush ufht‘AGUl°h between the

, . timc~avexaged and the flow—avoxngco values  The time-averagefﬂ'

is given hy. : _ ,
< o= frlm () 45 () Jax L
and the l ﬂqucrqgc bv

(x) e J’x[wx Py (X)) + waps (32) 'ldx : '
\v’ :

It is the flow-averaged value that deterxmines the conversion
cfficiency for CO oxidation, while the time-average is the
value that would be measurxed by a probe at the outlet,

Curves similar Lo those in Figure 3 wexe calcoulated for

‘difforont residence times. The flow-average concantrations

obtainod from these are plotted in TPigure 4. The curve fox

stoady £low is also ¢iven Zoxr comparison. It can be scen that

".

s

the main effect of the fluctuations is to smear out the region

of blowout, miking it more gradual. In addition, as the flue—-.

Ctuntion mote Coereasns tho bleowout point is chifted somewhat

el o

| L (20)

_m>’

'

— v st =
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"1 towards h%her residence gmes Eower f ow Q: BLEn the.

. region of leow conversion the fluctuations irprove the per-

formance somewhat. In a practical design, one vhich gives

ST w-v‘w“ ; -

high conversion, the {luctuations will always decrease con-

-

-

vexsion, however.  The magnitude of this decrcouse can be

kept small by a design wﬁich qperates far from bldwout.
Ano%her cqueztion of some interest congerns the errors
that result in mcasured reaction rates duve to flow perturbatronz.
'>\To asses this eFfect an Arrhenius' plot was constructed for tae
- same conditions ag Fiqure 4, This';s shown in Figure 5, where
in(x /k ) is plott cd against B/KT>. Here X, is& the apparc. t
wate coefficient. Curves are chown both foxr time-average m.d
'fLOWmaverage data., It can be seen that'if the data covexrs o
'sviﬁmciently_§arge rangeltbe erroras in measured rata will bo

small for the particular ceonditions used. -

5. Closure
Thus - we have seen how this idealiz2d model can be uscd’
Lo evaluate the effects 27 flow-rate pcrtukbations’bn the

poriormance of a well-mixed combustor. It must be emphasized,

0
{4
O
3
4]
197

owevaer, that .conclu zawn in this manner depend stronygly
on the assumpiion of perfect mixing. Thas one must use
‘caution in applyinc this procndure Lo situations where depasztures

77 from pexfect mixing may be woxe iwmportant than. £luctustions in.

Hlow rates LR CREBE O
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