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ABSTRACT

An essentially self-contained elementary account, from a unified

variational point of view, is given of the theory of self-adjoint eigervaiue

problems with discrete spectra, governed by linear differential equations

of the form M(y) = X N(y). The theory is directly relevant for the various

types of appr re energy methods aplied in such problems, Included

herein are state-ments and proofs of the variational, minimum, and maxi-

mum-minimum characterization of the eigenvalues in all modes. Theorems

based on both the Rayleigh quotient and the energy quotient, including the

role of natural boundary conditions, are developed. In addition, existence

proofs, and discussion and proofs of completeness in both the N-nor-r and

M-norm are given.
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I. INTRODUCTION

1. This is the first of two reports in which the purpose is to present, in -s

self-contained a manner as feasible, ;he theory, with applications, of

energy methods in linear self-adjoint eigenvalue problems with a discrete

spectrum. The present report deals with the theory of the eigenvalue spect-

rum in such systems, and the second report will deal with the theory and

applications of the Ritz-Galerkin and related energy methods. AttentionI will be focused on problerms characterized by ordinary differential equations

of the form M(y) = X N(y), where M and N are real linear differential opera-

tors to be defined in further detail subsequently, y = y(x), x is real, and X

A.s an eigenvalue. M and N, and the associated (homogeneous) boundary con-

ditions, will be assumed such that the problen. is self-adjoint and with a

discrete eigenvalue spectrum. Such problems, despite their apparently

restricted nature, still include a considerable variety of specific phyEsical

1
and engineering applications, as exemplified in the book of Collatz . The

prototype !f such problems may be considered to be the free vibrations of

a Bernoulli-Euler beam, or the buckling of a column. The present report

includes the following items: (1) Variational, minimum, and maximum-

minimum characterizations of the eigenvalues, and relevant implications

of these characterizations. (Z) Use in (1) of the familiar technique of

Lagrange multipliers to establish the recursive minimum properties of

the eigenvalues. (3) Theorems relating to the energy, in addition to the

Rayleigh, quotient, and the role of natural boundary conditions in thf. general

case. (4) Proof, by the use of minimizing sequences, of the existence of

admissible minimizing functions for the general eigenvalue problem M(y) =

XN(y). Such a proof is especially relevant for Ritz type of energy approxi-

mation methods. (5) Completeness and closedness theorems in both the

Preceding page blank
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N-norm and M-norm. Self-contained proofs will be furnished throughout.

In view of the long and continual use of energy methods in many

types of applications, it appears worthwhile to present the theory of such

methods at least for the class of problems considered herein. Moreover,

the unified variational type of approach taken here appears especially de-

sl..rable for this purpose, since this is essentially the approach on which the

energy meth I s can be most directly based, at least in the self-adjoint sys-

tems with discrete eigenvalue spectra considered here. As will be seen,

the variational approach can be made quite elementary for this class of

problems, in the sense that only concepts familiar from "advanced calculus"

will be needed. Even such an elementary approach affords an opportunity,

as will be seen, to touch, albeit slightly, on such fields of classical and

modern interest as real variable theory, calculus of variations, appioxima-

tion theory and functional analysis. Despite the existing rich literature on

self-adjoint eigenvalue problems, there is no single reference which contains

an elementary, essentially self-contained account, from a variational pfInt

of view, of all of the items listed in the preceding paragraph. Moreover,

in order to keep the exposition simple, self-contained, but essentially

complete, the authors have furnished their own proofs or modified existing

ones in various instances in items (1) - (5).

In connection with the available pertinent literature, it is noted that

the theory of linear self-adjoint eigenvalue problems has been treated in

the following four ways: (a) Differential equations;(b) Integral equations;

(c) Operators in a Hilbert space; (d) Variational principles. These ap-

proaches are, of course, not mutually exclusive, and indeed the difference

in the approaches is sometimes mainly a matter of relative emphasis.

For example, (b) is based on the well-established Hilbert-Schmidt theory
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of homogeneous Fredholm integral equations with a symmetric kernel, while

(a) is based essentially on tht inverse operator of M, which in turn involves

p.. perties of the associated Green's function. The kernel in (b), howe-ver,

is closely related to the G:een's function. The approach in (c) is an abstract

generalization of the integral operators in (b) to operators with a certain set

of general properties. Even (d), which means here an approach based on

extremal properties of the Rayleigh or related energy quotients, is often

treated in conjunction with (a) - (), especialiy in connection with existence

theorems. The differential equation approach is given in Refs. 1-3. Ref. 1

also gives an elementary theory (i. e., without Green's functions, etc. ) for

the special case of a second-order differential equation with the boundary

conditions y(a) = y(b) = 0, and indicates its extension to a Darticular fourth-

order differential equation with certain boundary conditions. Ref. 3, in

addition to the differential equation approach, gives a self-contained varia.

tional approach based on the theory of M. Morse; however, both of the

approaches given in Ref. 3 are in rather abstract terms in a highly general-

ized setting, and the variational approach there appears rather different

from that io be given here.

In approach (b) thc differentia] equation is transformed into Zn integ-al

equation. If the differential equation M(y) = X N(y) is self-adjoint, and N(y)

is of the one-term type (as defined in Ref. I; e. g., N(y) = C (x) y) then the

differential problem can be made equivalent to finding the eigenvalues of

a homogeneous Fredholm integral equation with a symmetric kernel. An

exposition of this integral equation problem is gi-en, for example, in

Refs. 4-6. A Hilbert space Lpproach is shown in, e.g., Refs. 7-9. The

variational theory for self-adjoint eigenvalue problems is given in Refs. 4

and 10 for Sturm-Liouville (second-order) differential equations; variational
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aspects for Sturm-Liouville equations are also included in Refs. 11 and 12.

For the more general system M(y) = %N(y), a variational approach is shown

in Refs. 8 and 13. It is noteworthy that only Refs. 10 and 13 give a proof of

existence of the relevant minimizing functions by variational means, i. e.

by means of minimizing sequences. Thus, there appears to be no such type of

8proof available in the English-language literature. Even Mikhlin , who gives

a comparatively extensive account of variational principles, refers to his

5Integral Equations text for a proof of a compactness property which is as-

sumed in Ref. 8 for the purpose of an existance proof. Collatz , for the

general case M(y) = XN(y), proves the existence of an admissible minimizing

function for the Rayleigh quotient by means of Green's functions.

It is remarked, finally, that the type of problem to be considered

here -s a generalization of Sturm-Liouville problems. It is however, still

fairly :estricted. For example, the literature (including some of the refer-

ences cited above) now contains energy principles and methods for complex

operators, non-self-adjoint and/or nonlinear problems, and partial differ-

ential equations. Nevertheless, or perhaps even because of thia, it is

worthwhile to present in a unified review a reasonably complete, yet elementary

variational theory of energy methods of determining eigenvalue s at least for

the class of problems considered herein.
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UI. VARIATICAL T-HFORY FOR THE RAYILErH OUCTIENT

2. Self-adjoizt eigenvalue problems. As in Refs. I, 2, 8 and 13.

the problem will bt. considered in which it is desired to find ull the eigen-

values of X for which a non-trivial solutiou exists to the linear homogeneous

differential equation

MW() = \N(T)

subiect to the boundary conditivns

B(y) = 0 (2)

Here. M(y) and N(y) are asssuned ef the form
m

M(Y) L ( -l)" [ W (x. " v'x if,!

v= 0 (3)
n
X, Mv (V)

N(y) = (4) [g(x) y (x) W J

where f V(x) and g (xi are given (real) v-tixnes t!ifferentiable functions in

[a, b 1. It is assumed that m > n > 0. The boundary conditions (Z) may

be supposed as Zm (independent! conditions, each of the form

2m -1
(a y (a) + V y (b)) =0

where [a, b] is the domain of the independent variable x, and a and j are
Vp

given constants which will be here assumed independent of X. The domain

[a, b] throughout this analysis will be assumed finite. For convenience,

functions which satisfy aUl of the boundary conditions and have continuous

derivatives through order Zm in [a, bI will be called 0 comparisons functions

(a term used by Collatz). It may b- seen that the problem formulated here

includes, for example, free bend n; and torsional vibrations, and buckling,

o1
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of Bernoulli-Euler beams, and is. in fact, a gcneralizstioc of serand-order

Sturm- iUouville problems.

For functions u(x) and v(x), the following notatxon is intuoduced:

b
(u, v) N (v. u) a f uvdx

a
b

* (u. v) E (u, N(M )) a f u N(v) dx

* (u) Z- 4(U. a)f -.1 (u) dx

÷(u) M= ' ( u. U) f u. N(u) dx
a

The quantity (u, v) i3 often cafed the 0 inner productd of u and v. The

operators M and N a.-e called, positivou definite if, respectively,b(

f(u)*(,a f > 0 0 ua. b

(u) 11 (u, u) 3 uU2 dx (6)

a

wile a-D called the norm if u. More generally, if operators such as M ZT d

N are positive defdnite, then i(u) and j (u) may be called respectively the

norms of u cp in the energy of M and N. w or moye briefloy, the 6 M-normt

and a N-normi of u; they are in that case de cated respectively by hu I IM

and Ilu IIN '

The eigenvalue problem (1) - (2) is called self-adjoint if

'D(u,v) =(v,u) ; 4(u,v) = Ni(v,u) (7)
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for all comparison functions u and v. For given M and N in the form of

Eqs. (3), it will be found by successive integratin3 by parts that the self-

adjointness of the system will depend only oan the boundary conditions

(cf. Eq. (34djbelow), and will be satisfied under a variety of boundary con-

ditions commonly encountered in practice.

3. Orthofonality of the principal modes. If the eigenvalue problem

(1)-42) is self-adjoint, then for any two distinct eigenvalues XI and Xj, the

corresponding eigenfunctions y, and y. will satisfy the following orthogomality
j

relations:

'(yD " Y} = 0 (Yi., Y-) = 0 (8a, b)

The proof follows by first writing M(yi) = X, N(Yi), M(yj) = X. N(yj).

Multiply the first equation by yj and integrate over [a, b]; multiply the

second equation by yi and integrate over [a, b]. Now subtract the two result-

ing equat5ons. Then by virtue of the self-adjointness the left side vanishes,

while the right -ide becomes (Xi - X.) ] (yi. yj). Thus, Eq. (8a) follows.

Eq. (8b) then also i£-owe from either of the two equations which were ori-

ginally subtracted from e-ach other.

If to a single eigenvalue Xi there correspond r linearly independent

eigenfu~actions, yi' -, - "ir' X. is said to be of multiplicity r, In this case,

any linear combin-_: on of the eigenfunctions will also be an eigenfunction

corresponoing to ki, and it is then readily possible to thus combine

Yil ... Yir (Gram-Schmidt procedure 1' 4) to obtain r mutually orthogonal

eigenfunctions corresponding to Xi.

From the orthogonality relation (8a) it can be readily proved that

if the eigenvalue problem (l)-(2) is self-adjoint, and N is positiv 3efinite,

then all the eigenvalues must be real. For, if X were a complex eigenvalue, i
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with corresponding eigenfunction yi, then from the realness of the coeffi-

cients of Eqs. (1) and (2), the complex conjugate X = T. would also be an

eigenvalue, with the complex conjugate eigeniunction Y-i Eq. (8a) would

then imply * (yi y) = 0. Putting yi= u + v, Yi = u - iv this relation be-

comes ý (u) + tP (v) + i [4(v,u)- (u, v)] = 0. Since u and v must each be

comparison functions, the imaginary part of the left side of the lutter

equation vanishes, while by virtue of En. (5b) the real part must be positive.

Thus, assuming the existence of a complex eigenvalue leads to a contradiction.

4. Rayleigh quotient. For a function u(x), the Rayleigh quotient

R(u) in connection with problem (1) is defined by

R(u)_a (u, Mu)/(u, Nu) U t (u)/ (a) (9)

If Yi is an eigenfunction of Eq. (1), with eigenvalue Xi., :nd (yi) A 0,

it is easily seen, by multiplying both sides of Eq. (1) by yi and integrating

over [a, b], that

R(yi) = Z (yi)/4 (yi) (10)

It may be noted from Eq. (10) that if M and N are both positive definite, then

all the eigenvalues w;ill be positive.

5. Variational calculus. The few elements of the calculus of varia-

tions which will be used subsequently here, will now be introduced.

A functional, I(y), is a quantity wihose value is determined by a func-

tion, y(x). An important example of a functional is

b
I(y) f F(x,y,y',...,y(k))dx (11)

a

where a and b are given constants, and F is a given function. Clearly I

becomes determined once the (k times differentiable) function y(x) in [a, b]
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is specified. The quantities 0 (u), ' (u) and R(u) defined by Eqs. (4) and

(9) are important specific examples of functionals. We shall be concerned

with a admissible" functic-is y(x) for which I(y) is " stationary" . Quite

generally, an " admissible" function is any function obeying certain condi-

tions (usually certain types of continuity and differentiability properties,

in addition to certain boundary conditions) specified in advance. To define

what is meant by a stationary I for some admissible function y(x), consider

a second function y(x) + 6 y, where

5 y (x) = Cvl(x) , (12)

c is a small parameter, and Y(x) is an arbitrary function, independent of C,

such that y + Sy remains admissible. 6y is called a variation in y. Due to

such a variation, F will be changed by

AF= F(x,y+ ei(x), ... y(k) + C 7I(k)(x) F(xy...y(k))

+F OF OF t, + (k)
= (t-tl + y +F +k(.a ) by(k) (13a)

+ terms in higher power of e,

assuming that for all x in [a, b] F is expandable in a power series in e with

a non-zero ra.3ius of convergence. The (first) variation, 6F, in F is now

defined by the terms in the first power of E in AF, i.e.,

6F _2F n+ __2F 1 Y7' + + OF 7 (k) (13b)

Similarly, the functional I will be changed by 41, and this change to first

powers of E is defined as the (first) variation, 61, in I. rhus, if the limits

a and b in (11) remain fixed,

b
s= f (SF)dx (14)

a
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The functional I is called stationary at the function y(x) when 61 = 0 for

arbitrary (admissible) variations of the form (12), and hence for arbitrary

(but admissible) YI(x). The function y(x) is then called an " extremal" of I.

There is an analogy between finding the minimum (or maximum) of

a functional I for admissible functions y(x), and finding a relative minimum

(maximum) of a differentiable function '(x) at an interior point of a region

(x1, x 2 ) . In the latter case, if a relative minimum occurs at a point x = xo,

one considers the values f(x° + E ) in the neighborhood of x0 . Expanding,
f X0 f(Xo0)+E,( C2 1)f (Xo0+ 0 < 1. If f(Xo0) is

to be a minimum in the neighborhood of x 0 , then f(x0 + C > f(X0 ) for all

sufficiently small 1, [ A 0. If f(x0 ) 0 0, then it is clear that (with f" finite)

for sufficiently small je J, the minimum condition will be violated for at

least some range of values of E. Hence a necessary condition for a relative

minimum at is f' (X 0 0. It is noted that this manner of obtaiiang this

xamiliar necessary condition is equivalent to expressing Af S f(x + E ) - f(XE)

to first powers of c, and equating the result to zero, with E A 0 that is, it is

equivalent to requiring 6f = 0, Analogous considerations hold for finding the

absolute minimum of a functional. Suppose y(x) is an admissible function

for which I attains a minimum. Then I(y + E n(x))> I(y) :"or all E and any

arbitrary admissible function n(x). If one expands AI _I(yr + E n(x) ) - I(y)

in powers of c, it is seen that a necessary condition that AI > 0 for (at

least) sufficiently small Ic I A 0 is that the coefficient of E vanish; this,

in turn, is the condition

61 = 0 (15)

Thus, a neces, ry condition that I be a minimum for some admissible func-

tion y(x) is that its variation, 61, vanish for (first order) small arbitrary

admissible variations 6y; that is, I must be stationary at y(x).
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In actual evaluations of 61, it is useful to note that in general,

d/ dx (6y) = d/ dx (c n(x)) = C Ti' (x). But also, 6(dy/ dx) = [y(x) + C T,(x)1'

y' (x) = Y1'(x). Hence

d/dx (6y) = 6(dy/dx), or d(6y) = 6 (dy) (16)

T3 familiarize the reader with the variational process and the 6

notation, suppose it is required to find a differentiable function y(x) ( • 0)

such that

y(O) = y(l) = 0 (17a)

and such that
1 1

I2 I1- f12 -0 (x+l)y, 2 dx-• f y 2dx (17b)
0 0o

be stationary, where X is a constant. First, it is noted that 611 = 01 (x + 1)-
*0

6(y, 2) dx, since (x + 1) is a fixed function in the variation. Moreover,

6(y) = Zy' 6y,, since, by definition, only " infinitesimally small" varia-

tions are considered, i.e., the change here in y' 2 is to be found only to

first powers of E. Thus, one finds 5I = 2 f' (x + 1) y' 6y' dx. Now inte-
0

grate by parts, with u = (x + 1) y', dv = Sy' dx = 6(dy) = d(6y) ; hence

V = 6y. Then one finds 611 = 2(x+ 1) y' sy - 2 f + l) I 6ydx.

Since y and (y + 6y) must satisfy conditions (17a), it follows that &y = 0 at
1

x = 0 and atx = 1. Consequently, 6½ f [(x + 1)y' 6 ydx. 'In-addi-1 210

tion, 612 = f (y) dx Z 2 fy y dx. Thus, one finally obtains01 1
61 = 2 f[ (x+1) y') -ky] 8ydx (17c)

In order that 61 = 0 for arbitrary (admissible) 6y(x), it follows from (17c)

that it is necessary and sufficient that
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((x+l y) y -Xy:- 0 (17d)

Thus, y must be a solution of the (here of Sturm-Liouville type) differential

equation (17d) and satisfy the boundary conditions (17a). It is thus clear

that the variational problem (17c), (17a) is equivalent to the differential-

equation problem (17d), (17a); a solution of either problem is a solution of

the o' er. In this example, X will actually be an eigenvalue, since it would

be required to find the value(s) of X (if any) for which non-trivial solutions

of (17d) , (17a) exist.

The following type of variational problem with constraints will also

be of importance here. Let I(y) be defined by Eq. (U), where the limits a, b

are fixed. The functions y are now constrained not only to be admi.--sible

(as before) but also to satisfy s (8 isoperimetric) constraint conditions of

the form:

b
G:. f g. (Yy9 1,...,y I. dx= c. (j = ... , s) (18a)

J a

where the gj are given functions, and the cj given constants. Among all

such functions y, find that for which I(y) is a minimum. From (18a' the

variations in y must satisfy the conditions

b
6 G. af (6 gj) dx = 0 (j = 1,..., s) (18b)

a

As in the problem without the constraints (18a), a necessary con-

dition on y(x) is still that it make I stationary, but now under variations

which satisfy (18b). This problem is analogous to finding the minimum of

a (differentiable) function f(xl, ... , xp ), where the x. are subject to constraints

of the formh. , (Xl,'" )x c., i 1,...,s ; (s < p). In particular, the

io e. k-times differintiable and satisfying the boundary conditions.
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problem (15), (18b) can be solved by introducing Lagrange multipliers

K1i..., Ks, which for the isoperimetric constraints will be constants (as

yet imknown), and requiring

6 (1+ KIG 1+... + sG ) = 0 (18c)

without constraint conditions (except for admissibility) on y. Suppose the

general solution of (18c) for admissible y is obtained. This solution wifl

depend on the constants K 19 " " " Ks. The latter are then determined so that

the s constraint conditions (18a) hold. If such constants exist, the resulting

y is then the desired solution. For, first of all, it satisfies (18a). More-

over (18c) is satisfied for arbitrary (admissible) variations 6y, and hence

it wili also be satisfied for those particular 6y which satisfy (18b). However,

for such variations, (18c) implies that (15) will hold. Thus, y is a solution

of the problem (15) under variations satisfying (18b). Conversely, any solu-

tion y, of the problem (15), (18b) must also be a solution of (18c) with the K.i.

as determined above. For, such a y will satisfy (18c) under the constraint

conditions (18b), for any values of the K.. Therefore, such a solution must be

a subset of solutions of (18c) without any constraints on y. Thus, this solu-

tion must be included in the general solution of (18c) for any K it and must

hence be the solution of (18c) for those v.. for which (18a) is satisfied.

6. Stationary properties of the ei. envalues. It will now be shown

that if the problem (l)-(2) is self-adjoint, then any eigenfunction yi, with

corresponding eigenvalue X = %i, is such 4-hat the quantity (1 (y) - X p (y))

will be stationary at y = yi with respect to comparison functions y.

The proof can be carried out rather easily by first noting that since

M and N are linear operators

6 M(y) M(by) , 6 N(y) = N (6y) (19)
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From Eqs. (19) and (7) it follows that
b b bf yS M(y) dx f y M(Ey) dx f M(y) 6y dx.

a a a

Consequently, from (4),

bb b b
(y) - y6 M(y) dx + SM(y) 6y dx f M(y) 6y dx (20a)a a a

Similarly,
b6 (y)- 2 f N(y) 6y dx (20b)

a

Equations (19) and (20) hold for any comparison function y and (first-order

small comparison) variations 6y. Suppose now that yiis an eigenfunction of

(1), (2) with corresponding eigenvalue Xi. Multiply Eq. (1), with y = yi'

k = )i, by 6Yi and integrate with respect to x over [a, b]. Then by virtue

of Eqs. (20a, b) it is immediately seen that the variational equation

(1/2) (6 z (yi) - X. 6 i4(yi) = 0 is obtained. With k = k.i kept fixed in these varia-

tions, the variational condition can be written as:

6 X- = 6 (ý-X )= 0 (21)

This proves the theorem.

The ccnverse of the above theorem also holds. That is, if a com-

parison function y and X are such that the variational condition (21) holds

for arbitrary comparison variations 6y, then y and X are an eigenfunction

and corresponding eigenvalue of the problem (1), (2) when the latter is self-

adjoint. This follows by noting that Eq. (21) in conjunction with Eqs. (20a, b)

will imply

b
f (M(y) - X N(y))6y dx 0 (22)

a

Since (except for being a comparison function) 6 y(x) is arbitrary, this
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implies Eq. (1), and the theorem is proven.

It is now noted that wheai 4 (u) V 0, Eq. (21) is equivalent to the

condition

BR = 0 (23)

where R is defined by Eq. (9) and the variations are with respect to com-

parison functions. This follows by simply noting that 6R = (1/4 2).

[4(u) 60 - t'(u) 6S] (1/4'I [6 - R 84]. The condition (21), with X Q R,

is hence equivalent to cond-tion (23).

Thus, if the problem (l)-(2) is self-adjoint, the eigenfunctions are

the comparison functions for which the Rayleigh quotient R assumes station-

ary values, and the corresponding eigenvalues X will be the corresponding

stationary values of R.

The above stationary property of the eigenvalues is already sufficient

to indicate certain computational procedures by energy methods, such as

Galerkin' s method, to obtain at least approximately, the eigenvalues and

eigenfunctions of (l)-(2). This will be discussed in a subsequent report.

It should, however, be noted that these stationary properties do not as yet

establish the minimum characterizations of the eigenvalues. The latter

properties will now be established.

7. Existence of a greatest lower bound of R. It will now be assumed

that in addition to being self-adjoint, the operators M and N are respectively

positive semidefinite and positive definite, i. e.

q (u)> 0, 4'(u) > 0 (24a)

for any comparison function u not identically zero. It then follows that

R (u) > 0 (24b)
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Thus, the Rayleigh quotient R(u) has a lower bound in this case, and hence

it must have a greatest lower bound, B (say). Clearly, B > 0.

8. Minimum characterization of the lowest eigenvalue. The follow-

ing theorem can now be readily proven. Let the eigenvalue problem (l)-(2)

be self-adjoint. Moreover, let the Rayleigh quotient R(u) for comparison

functions u have a greatest lower bound B, as is the case,for example,

when the inequalities (24a) hold. Finally, let there exist a comparison

function u = yl for which R(yl) = B Then the lowest eigenvalue of (1)-(2) will

be X = X -= B, with y = y, a corresponding eigenfunction.

The proof follows readily by observing that under the conditions of

the theorem, R(u) attains a minimum when u = y1 , and hence the first varia-

tion, 5R, in R vanishes for arbitrary comparison variations, 6u, in Yl

(Sect. 5). It then follows from the stationary properties of the eigenvalues

established in Sect. 6, that u = y1 is an eigenfunction. From Eq., (10), the

corresponding eigenvalue is X - R(yl). Since R(yI) B, Xl= 1. The fact

that B is the lowest eigenvalue follows from the fact that if X. is any eigen-

value, with eigenfunction yi, then from Eq. (10), ki = R(yi). But

R(yi)_> B. .*. Xi _> B.

If yi is any eigenfunction of (l)-(2) then Ci yi is also an eigenfunction,

where C1 is an arbitrary constant. When ý (yi) ý 0 it is therefore possible

to " normalize" the eigenfunctions by specifying, for example, that ý (yi) = 1.

Under the conditions of the theorem just proven the lowest eigenvalue X

can then be characterized as the minimum value of 44u) with respect to all

comparison functions u for which

S(u) = 1 (25)
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•. Recursive rninimum charactcrization of the higher eigenvalues.

The higher eigenvalues of (1)-C') can be characterized by 1he following thecrem.

Let -.he conditions of the prece---. theorem hiud. In addition, suppose there

exists .- compariscon function u = uk satisfying (25). orthogona! to the first

(k - 1) eigenfunctions yr.. y-l in the sen•se of

(u,y.) = 0 Ui = 1 .... k - 1) (26)

and minimizing the integral 0 (u) with respect to comparison functions u subject

to the constraints (25) and (26). Then uk is an eigenfunction, with the cor-

responding eigenvalue \k = tlUk)" kk is the next higher eigenvalue.

This theorem can be proven using the familiar technique of Lagrange

multipliers (Sect. 5). Thus, introducing Lagrange multipliers x ..... Vk-i

the conditions of the thecrern imply 6 [ O(u) - Vk 4{u) - X I (u, y1 . .

K ki N, Yk-l) 0 when u = uk. Using Eqs. (ZOa, b) and (4) this is found

to imply: 2 16u, [M(u) - -Nu) )- K 1i (Ku, y. ) - . - Kkl '(6u, = O,

when u = ; hence, '-ince 6u is arbitrary

2 [M (Uk) - K;(: N+(uk)'" "+ I"N N(y- 1+) (27)

Multiply botn sides of Eq. (27) by yi (i = .. k-l) and integrate over [a, b].

Then by virtue of Eqs. (8a)and (7) it is found that K i _' (Yd 2= (uk, yi) -

S2 ik %D (uk, yi). But since M(yi) = X. N(y.), the preceding equation implies

K 1 2(k ( y,). From Eq. (26). and 0 (y.)> 0, it then

follow s that K. = 0 (i = 1, . . .k-i). Hence Eq. (27) yields M(u) = #k N(uk)"

This proves that uk is an eigenfunction, with corresponding #igenvalue

k =k' Applying this result recursively to ), 2'3 ... it is seen that

each Xk+l>_ Xk(.k = 1,2,.,. ). For, kk = min (u) with u subject

(25) and to fewer of the orthogonality conditions in (26) than Xk+l* Thus
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the set oi permissible functions for uk4. is anly a subret of those for

henceX kk÷ >_ \k'

It remains to pV-ove that with the X thus characterized recursively,
k

"there can be no eigen-alue bptwren X and Xk-i This will then show that

the characterization of the eigenvalues riven in the theorem cf this section

exhausts all the eigenvalues. It will further show that the eigenvalues form

a discrete spectrum. Considerthen, an eigenvalue V' greater than Xkk_'

with eigenfunction u' satisfying (25). Then u' must be different from

V1'YZ .... Yk-l" Hence by Eq. (8a), u'is orthogonal to y * I" k-l" Thus

u' satisfies the same constraint conditions as uk. But by Eq. (10),

XI = 0 (u' 1. Hence from the present characterization of .k k X < X'.

Thus, there is no eigenvalue between Xk-1 and k\k

The recursive minimization theorem implies that (when it holds)

the set (spectrum) of eigenvalues will be infinite in number (as well as dis-

crete). Finally, it is noted that the recursive minimization theorem can

also be formulated without the normalization requirement (25) by replacing

4 (u) in the theorem by R(u).

10. Maximirn-minirnum theorem and some implications. The pre-

ceding recursive minimum property of Xk depends on the lower eigenfunctionr

yi- -" "' Yk-1' It is possible, however, to characterize the k' th eigenvalue

indepen~ently of the lower eigenfunctions, by means of a maximim-minimum

theorem, first emphasized by Courant. This theorem can be stated as

follows. Consider all comparison functions u which are orthogonal to

each of (k-l) given functions fl- 1 " (k-l'that is (u, N (ci)) 0 (i l ,...,k-l).

Consider now the minimum, Rmmn with respect to u, of the Rayleigh quotient

(9). Then the k' th eigenvalue X is the maximum value of R . which can
k ii
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be obtained by varying the functions • '" k-I

This theorem can be proven by first choosing a function in the form
k

U = Va 1 yi where yi is the i' th normalized eigenfunction. A set of ai,

not all zero, can be found such that (uo, N q j) = 0, j = 1, ... , k-1. For,

these conditions will lead to (k-i) linear homogeneous algebraic equations

in k unknowns (aI, ... , ak). Such a set of equations will always have a non-

trivial solution (which need not be unique). From the linearity of M and N,
k k

iý a' (y) But fro
and Eqs. (8a, b), one then finds R(u ) = a a.. But from

0 i k

Eqs. (10) and (25), 0 (yi) = X. Hence R(u) = a 2 aX2 This is a

weighted ,verage, with the non-negative weights aý, of X 1, X Hence

R(U 0 X., and thus R min X k' If the functions l,..., k-lare now

permitted to vary, it is known from the recursive minimum property of

Xk that R min X k when q i = yi. Thus, the maximum value of Rmin obtained

by varying lp 1,." k-l is Xk.

It may be noted that the max-min theorem can be stated with the

orthogonality conditions on the comparison function u in the form (u, Cp) = 0

(i=l, ... ,k-i). The proof would proceed exactly as above, except that in

the final step it is noted that now Rmin = Xk when i = N(yj).

The following implication of the max-min theorem should be noted.

Consider two linear self-adjoint systems S and S charac.erized by Eqs.

(l)-(3), and assume for both sufficient conditions for which the preceding

minimum and max-min theorems will hold. Let the boundary conditions

be the same for S and SO , but let the coefficients in S' be such that

R(u) < RI (u) for all comparison functions u. Then X k< "k in each mode

(k). (In actual applications of this principle the Dirichlet forms of - (y)

and 4 (y), dcfined in Eqs. (28) below, are often useful). This is proven by

first noting that among comparison functions of a given set, '(min < R'm.

- rain
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For, let u be the function of the set for which R is a minimum, and let u'

be the function of this set for which RI is a miminum; then Rmin = R(u) <

R(u') < RI (u') = Rmin. This immediately shows that X1< V' Moreover,

for the higher modes, let v by any comparison function orthogonal (with
the operator N) to the first (k-i) eigenfunctions of S. Thin Xk mi R(v)

k v

< min R' (v). But by the max-min theorem for S', min R' (v) <
IfV V

Hence k One application of this theorem is furnished by the

enclosure theorem of Collatz [Ref. 1, pp. 131-137],which is a generalization

of that first given by Temple.

A second important general implication of the max-min theorem is

the following. If two self-adjoint systems S and S' satisty, as above, condi-

tions for the existence of the minima of R, and are the same except that S'

is more constrained than S, meaning that the class of comparison funticns

for S' is only a subset of that for S, then the eigenvalues of S' will be at

least as large as the respective eigenvalues of S. Proof: Let u be any com-

parison function for S; and u' any comparison function for S', each ortho-

gonal to the first (k-1) eigenfunctions of S. Then, since the class of u' is a

subset of the class of u, min R(u) < mi R (u'). But X mi R(u). More-
u ut k u

over, by the max-mmn theorem for S', Xk' >min R(u') Hence >X.
k k'



III. THE ENERGY QUOTIENT

11. Dirichle'. forms. The various extremim theorems of Ch. II

c3ncern the Rayleigh quotient R(u), defined by Eq. (9), where u is a com-

parison function. There is, however, a related quotient, to be called the

" energy quotient", which also plays an important role both in the theory and

in applications. Before introducing this quotient, it is observed that with

M(y) and N(y) given as in Eqs. (3), successive integration by parts will

yield the following forms for 0(y) and 4b (y):

b m v))2b (Y) f I ] V (y dx+ M o(Y)

a v0 =
(28)

b n g 2
di(y) = f [ g (y(V 1 dx+ N0 (y)

a v=0

where M. and N are quadratic forms in the end-point values of y and itso

derivatives up to the (2m-l)th and (2n-l)th orders, respectively. Eqs. (28)

are called Dirichlet forms of 0(y) anti (y), and hold for all (suitably differ-

entiable) y.

If the boundary conditions (2) make the system self-adjoint, and if

y is a comparison function, then it will be found that the boundary terms

M and N can in general be written respectively as quadratic formein

the end-point values of y and its derivatives up to only the (m-l)th and

(n-l)th orders. A detailed proof of this is given in Ref. 13. A comparatively

simple, indirect type of proof can also be given, using the variational prop-

erties established in section 6. Thus, from Eq. (20a), for comparison

functions y,

b
f M(y) Bydx =6 (b(y) 2) (29)

a
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However, with M(y) given by Eq. (3), the left side of Eq. (29) can also be

evaluated by successive integration by parts (noting, e.g., Eq. (16)). This

will yield the form:

b b m M)2
f M(y) 6ydx = [ (1/2)f ( fV (y )dx]

a a v=O

M-i b
+[ A (y) Sy) (30)

p=O P a

where m
A (y) = (-) p+i (f.y(i)(i'l'P)

r pi=+l1

Similar equations hold with M(y) replaced by N(y), and m, f. and A replacedi p

by n, gi and BP . Eqs. (30) and (31) hold for any suitably differentiable func-p

tions y. From Eq. (29) it follows, however, that if y is a comparison func-

tion, then the right side of Eq. (30) must be expressible as the exact valia-

tion of some functional; in fact, comparing Eqs. (29) and (30), and noting

Eq. (28), it is seen that for comparison functions y,

rn-1 b2 1 A (y) 6 y(p)a = M (3)

P=O p a (2

Since, however, Sy(p) appears only for p < m - I in the left side of Eq.

(32), it follows that in any self-adjoint case M (and hence also the A )o p

must be expressible in terms of only the y(P) , p < m-i, when account is

taken of all the specific boundary conditions.

12. Natural, geometric and dynamical boundary conditions. For a

given variational problem, an "admissible" function may be defined, quite

generally, as any function among the permitted class of competing functions

for that problem. An admissible funr.tion for the Rayleigh quotient in con-

junction with the self-adjoint system (l)-(3), for example, would be any
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comparison function (as previously defined). A "natural" boundary condi-

tion for a given variational problem may be defined, in general, as one

which woul," always be automatically satisfied by a solution of the problem,

although the admissible functions are not constrained to satisfy this con-

dition in advance. A variational problem equivalent to a given differential

system (such as (l)-(3))may often be modified to enlarge the class of admis-

sible functions by modifying the functional to be stationary. This will be

illustrated here, and more generally in the next section, by an important

and well-known principle for the system (1)-(3).

In connection with the system (l)-(3), it will be convenient to define

"geometric" and "dynamical" boundary conditions, a terminology due to

14Biezeno and Grammel . Let the maximum number of boundary conditions

in Eqs. (2) that can be formed to contain only y and its derivatives of order

(m-l) or lower be k. Then these k conditions will be called the "geometric"

boundary conditions. The remaining (2m-k) conditions will include deriva-

tives of order m or _ ,r, and will be called the "dynamical" boundary

condit'Lns. Geometrical and dynamical boundary conditions are also some-

times called respectively " essential" and " suppressible", or " remaining",

after Kamke13 . It will be shown in Section 13 that by introducing a modified

quotient (the"energy quotient" ) in place of the Rayleigh quotient, a variational

problem equivalent to (l)-(3) can be formulated in which the admissible

functions need only satisfy the geometric boundary conditions. The dynami-

cal boundary conditions will in this case be automatically satisfied by any

solution of the problem, and will therefore be the natural boundary condi-

tions of the prob'-,'n. This has been shown for second-order (Sturm-Liouville)

4 11systems by Courant and Hilbert , Sagan , and many others. Biezeno and

Grammel14 have shown this for fourth-order (beam) systems, and an extension
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tu general self-adjoint systems of Zmn th order has been given by Karnke 13 .

A simplified treatment for this general 2m' th order case will be given in

Section 13.

To illustrate the statements in the preceding paragraphs, as well

as the more generil analysis to be given in the succeeding Section, consider

a beam of length L governed by the equation

(p(x y") X p(x) y (33a)

(p(x), p(x) > 0). By succehsively integrating by parts, it is found that for

any (suitably differentiable) function u(x) and (small) arbitrary variations

L L L 2 L
fo [ (pu") -X pu] 6u dx = 6 [fo (pu" /2) dx -X fo (Pu /2) dx]

IL Lj
+ (Pu")' 6u - pull 6u' (2 3b)

00 0

Suppose that the boundary conditions are:

y(O) = y' (0) = 0; (py")' (L) = Py(L) ; py" (L) = - cy'(L)

(fixed-elastic ends) and consider now only functions u which satisfy the geo-

metric boundary conditions u(0) = u' (0) = 0. Moreover, in view of the

given dynamical boundary conditions, put pu'L = - QuL, (pu")L = P uL
L

in the boundary terms of (33b). Then from (33b), Eq. (33a) is thus seen

heuristically to lead to the following va-iational problem:
L 2u-X L 2

s[f pu"l dx+ P1u+ aU,-J2 pu dx] =0 (33c)
0 L

where the admissible function u is any function with continuous derivatives
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Ole in [0, Li through order 4* which satisfies the given geometric boundary

conditions u(O) = u' (0) = 0. It will now be shown that (33c) is indeed equiva-

lent to the original problem.

Front '73b) it follows that for admissible functions u, i.e. satisfying

here u(O) = u' (3) = 0, Eq. (33c) implies

L
f (pu")" - Xpu ]Sudx + [IuL (pu")L] 6UL + [auL + p'O II 6 UL 0

(33d)

If 6u(x) is arbitrary in (33d)(except for being admissible) and 6 uL2 6UIL

are arbitrary , and independent of each other, then (33d) implies Eq. (33a)

together with the dynamical boundary conditions puL = - a uL, (pu!l )I = PUL"

The latter are thus the natural boundary conditions in the variational prob-

lem (33c). Condition (33c) is equivalent to
L

f pull2 dx+ Pu2 + a u' L

6R(u) 6 L 0 (33e)p u dx

R (u) is the I energy quotient" for this problem, and (33e) shows that the

original differential equation problem formulated here is equivalent to making

R (u) stationary with respect to admissible functions u only required to satisfy

the geometric boundary conditions.

The preceding result will now be generalized to the 2m'th order self-

adjoint system (1)-(3).

*Actually, as might be surmised from the form (33c), u need only have
a continuous derivative in [a, b] through order m-l = 1, and a piecewise
continuous derivative of order m = 2. This will be proven in Chap. IV.

** The importance of this arbitrariness will be illustrated in an actual
application in a subsequent report.
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13. Energy quotient. Using the Dirichlet forms (28), the " energy

quotient R (u), for self-adjoint systems governed by (l)-(3), will be defined

by

" (u) = Z (u)/4'(u) (34a)

where b (v)]

"(u) f b L V (u(] dx+ MI (u) (34b)
a o=-

Sb n
-•(u) =fa[ o g• (u(V) dx + Ro(u) (3 4)

and NM (u) and N (u) are the expressions for M (u) and N (u) after the values

of u and its derivatives at the end points, given by the boundary conditions,

have been inserted, and all the derivatives of u at the end points of order

nn and higher have thus been eliminated from M and No. Note that if u is

a corrparison function, then - (u) = 4ý (u), 4(u) = (u), R (u) = R(u). For the

example in Sect. 12, it will be found that uf 2 +" ,2 o 0

It will also be useful to define, analogously, the quantities 4 (u, v)

and 4T (u, v) for admissible functions u and v. For this purpose, consider

first 4 (u, v), as defined by (4), in conjunction with Eq. (3). Integrating by

parts, the following form is obtained:

b Mn bS(uv) fa ~o•f •'u(V ) Vv( ) dx + rMo•(,v 3•

where M (u,v) is abilinear form inu (r), v(s), 0 < r < m-1, < s <2m-1.

Suppose now that in the boundary term [Mo(u, V) I]a the values of u, v and

their derivatives according to the self-adjoint boundary conditions are in-

serted, thereby eliminating all derivatives above order (rn-1). The result

will be denoted by FA0o(u, v); 1 (u, v) is then defined by
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b M

7j(V ff u(V v(V) dx +M (u, v) (34e)u, v) -f fL, o
V = 0

with a similar definition of T (u, v), with f replaced by g, and M oy NO. It
0 0

should be noted that if u and v are admissible functions (satisfying only the

geometric boundary conditions), and the boundary conditions are self-

adjoint, then

M (u, v) = o(v, u) ; 0 (u, v) N o(v, u)
(34f)

S(u,v) -- (~) ~~~)=~vu

It may also be noted that from the definitions, 0 (u) a0(u, u) ; • (u) (u, u).

Finally it is observed that if u and v are comparison functions, then all

barred quantities will be identical with the corresponding unbarred quantities.

The following variational principle will now be established. When

the problem (1)-(3) is self-adjoint, the eigenfunctions y will be those Zm-

times differentiable functions u in [a, b] satisfying the geometric boundary

conditions, for which R(u) assumes stationary ralues; these values will be

the corresponding eigenvalues k. In this connection the quantity

P a (1/ Z)( X - X 4i) may be called the generalized total potential, since

the preceding principle is seen to be a generalization, in one dimension, of

the familiar principle of the stationary total potential in elasticity. The

principle implies that the dy'namical boundary conditions will be automatically

satisfied.

To establish this principle it is first noted that from Eqs. (30) and

(34b, c), it follows that the statement 6P = 0 is equivalent, for any (suitably

differentiable) functions y, to

*See first footnote of Section 12.
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b M-1 bZ f [ M~y) X ×N~y)] 6y dx+ 6 la- [Z I Ap(Y) 6y 1 .

a p=O a

sn-1 y b (35)+ Z E, Bz P (Yy(p) I] .69 0
p=O a

Suppose now that in M(Y), the rr,' th and higher derivatives of y have been

eliminated in accordance with the (self-adjoint) boundary conditions. Then

the resulting form M for M becomes:
0 0m-1b

K (y) n(P)] b(36a)

p=O P a

where the A (y) (some or all of which may be zero) are certain linear func-
P

tions, depending on the particular boundary conditions, of y and/ or its deri-

vatives up to (m-l)th order. By virtue of the symmetrical properties of

S(u, v) and M (u, v) for admissible functions (cf. Eqs. (34f) ) it follows now
0

that an equation corresponding to (32) will hold for variations in M with
0

respect to admissible functions, i. e.

m-1 b

6 Mo(Y-[ (y ) (y) 6y~)] (36b)
0 0 a

A similar expression holds for 6 N (y), with A replaced by B . Thus,o p p

Eq. (35) becomes:

b m-1 b
f [M(y) -X N(y) 6y dx- [ A0 A(y) X- A(y)} 6y( a]
a pO p a

n-i

2[ IBy (y)-B y)(Y"'()b 0 (37a)

In the example of Sect. 12 the equation corresp:;- i1ig to (37a) is Eq. (33d),

in which B(p) R P 0 for all p, (Ao)a =(I C. (A i; -i LA, .0,



(A 1, ,(x ) =u S . (A (Ac,:, L ' Sb ce"U L.

•,'%.%) is arbitrary. Eq. (?7a) is equivalent tc

Nflyi N N(Y)= (37- )
: and

"~ {A (v- - A, (y)+ • BP (Y) - B p(y)1 ) 6(,) 0 (370)

where 13= B = 0 for p > n-l. Eq. j37b) scows that the differentiai equation
t p

(1) will be satisfied by y. Moreover, as regards Ezj. (37c%. sup;ose first

that all of the bounda7-y conditions are dynamical. Then the Cy(P) at the end

points will all oe independer, of one another, and Eq. (37c) implies

A (a) - A (r) + x[ B (a) - B(a)] 0 (37d)
P r

S=a,b p = 0. , ..... u-

Eqs. (37d) may be ccinsidered as a set of Zm linear equations in the 2m

"-ý,owns (contained in tý,e A and R P) y(k) (a), yk1b), m < k < Zm - I. Coe

solution is clearly that in which the y (ia) have the values given by the dy-

namical boundary conditions. since then A (a) = A (a) and B (0d B (a).

Moreover, this will be the only solution of Eos. (37#d), since as can be seen

from the form of A (y. and B t I) i n 7.q. (31 the determinaL.t o: the equa-

tions wil not be zero. Ir. case sarne of the boundary conditions, say f of

them, are geometric this argument may be modihed by noting that there
Ic)

wi. now be I (iWnear) reiltions among the Sy W (a), with (lm-i) of the

6y(P) (a) whir- wili be independent of one another. Hence Ecs. (37 c) will

now yield (Zm-f I linear equations in (2-m-1 I derivatives of y of n-. th and

higher orders at the end points. Once again, these will be found -n have

as their unique solution the (am-I) dynamical boundary conditX, ns of the

problem.



Thus the variaticnal condition 6P = 0 with respect to Zm-times

differentiable fimctions satisfying the geometric boundary conditions has

been shown to imply satisfaction of Eq. (l), together wiih the dynarical,

as well as geometric, boundary conditions. It follows that the extrermal

solutions y will oe eigenfunctions of (lM-(M), with corresponding eigenvalues

k = R(y) = Rfyl. In a mranner previouasly shown for thz corresponding theorem

on the Rayleigh quctient (cf. Eq. (23)), the condition 6P=-- is equiva!erat to

6 R = 0. Moreover, in a manner analogous to that for R(, the energy quotient

can be characterized by minimum and max-mir: properties. In particular,

all of the ninqmuin and max-min theorems which have oeen established in

Chap.ter U for the Rayleigb quotient R remain valid when R is replaced by

S-j is replaced by in the orthogonality constraint conditions for the higher

modes, and the conmparison functions need only satisit?- the geometric bou.dary

conditions.
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IV. EXI3TENCE OF MINIMIZING FUNCTIONS. INFINITE

GROWTH OF THE EIGENVALUES

14. Null spectra; continuous spectra. The minimum, and max-min,

theorems which have been proven here for the eigenvalues and eigenfunctions

of self-adjoint problems are thus far all conditional in nature inasmuch as

it was assumed that certain relevant minimizing functions exist. In this

chapter it will be proven, under suitable sufficient conditions, that these

do exist.

In actual buckling and structural vibration problems, conditions are

usually automatically sufficient for the existence of minimizing functions.

In such cases, as already seen in Sect. 9, the eigenvalues are infinite ir.

number, but discrete (denumerable), with a loest eigenvalue \_I. Thus, to

one accustomed to such types 'a problems, and to such a set (spectrum) of

eigenvaiues, the existence of minimizing functions, which in specific cases

would be equivalent, e.g., to the existence of buckling or vibration mode-

shapes, might at first appear obiAcus, and hardly in need of proof. It will

be seen, however, that the existence of such functions, even under " ordinary'

sufficient conditions, is mathematically far from obvious, and is indeed one

of the fundamental and rmore difficult, but interesting, aspects of the theory.

Moreover, there are important classes of problems (occurring, e.g., in

physics) involving linear differential equations in which the spectrum of

eit.envalues can be of a quite different nature from the discrete spectrum

indicated above. This may occur when the differential equation is singular

at one (or both' end points, or when the domain [a, b] is infinite. In such

cases, the spectrirm of eigenvalues may still be of the "customary" type

indicated above, but it may also be of a variety of different types, depending

on t-e differential equation and on the boundary conditions (which now may



even be less in number than the order of the differential equation). For

example, no eigenvalues at all may exist, or the spectrum may consist of

a continuous set of numbers. In the first case, the spectrum may be called

"null", and in the second case the spectrum is called " continuous". A

simple example will suffice here to indicate these possibilities.

Consider the ("Euler-Cauchy" ) differential equation
2

(x2 y.) = Xy (38a)

with the domain [0, 1] for x. Eq. (38a) has a (regular) singular point x = 0,

but is nevertheless of the type (1), (3). The general solution of this equation

is

y = Ax + Bx 2  (38b)

where A and B are arbitrary constants, and nl, n2 are the roots of the

equation

n 2+ n- k= 0 (38c)

(a) Suppose the boundary conditions are:

y(O) = y() = 0 (38d)

Then the system (38a), (38d) is not only of the type (1) - (3) but is also

self-adjoint. It will be readily found, however, that there are no values of

X for which a non-trivial solution for y will exist.

(b) L.. the boundary conditions now be only

y(O) = 0 (38e)

n
If n2 = nl, then the general solution is y = x (A + B log x).
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Then (consiaering, for simplicity, only the real eigenvalues of X) it will be

found that the set of real values of X for a non-trivial solution is X > 0. This

is a continuous spectrum. (If (38e) is replaced by y(0) = finite, then the set

of real values for X will be X > 0).

The above illustration indicates the possibilities of a continuous

spectrum as well as of no (non-trivial) solution at all (null spectrum). Thus,

the existence of minimizing functions, etc., appearing in the theorems of the

preceding sections cannot mathematically be taken for granted apriori, but

must be proven, under suitable sufficient conditions.

The type of proof, based on minimizing sequences, to be given here

will also be relevant in the proof, to be given in a subsequent report, of the

convergence of the Ritz-Galerkin type of methods in all modes.

15. Auxiliary theorems on point sets and functions. In the proofs to

follow a number of well-known theorems on infinite sets S of real numbers

will be used. First it is recalled that a limit point, or point of accumulation,

of S is defined as a point P such that in any neighborhood of P there exists

an element of S distinct from P. P itself may or may not be an element of

S. The following theorems are now noted.

(a) If S has a lower bound, then it has a greatest lower bound.

(b) If S has a greatest lower bound B,thenB must have at least one

of the following two properties: B is a member of S, or B is a limit point of

S. (The proof follows almost immediately from the definitions*).

* By definition of greatest lower bound, there will be at least one element
s inS such that s < B + E for anye > 0. IfBis not in $, then this element
s must be distinct from B. Hence if B is not in S, B must be a limit point
of S. (This does not preclude the possibility that B is both in S and also
a limit point of S).



(c) If S has a limit point P, then there is a sequence of elements

e in S such that limr e = P.n n --e oo n

(d) If S is a bounded infinite set, then there exists at least one

limit point of S. (Bolzan -Weierstrass t' eorem).

(e) Aninfinite sequence {s k} of non-decreasing realnumbers with an

kkupperibound is convergent; its limit is the leastupper bound of the numberss.

(f) An infinite sequence {sk I of non-increasing real numbers with

a lower bound is convergent; its limit is the greatest lower bound of s

Theorems (a) and (c)-(f) are proven, for example, in Ref. 15. In view of

theorem (c), it is noted that the Bolzano-Weierstrass theorem (d) can also

be stated as follows:

(g) If S is a bounded infinite set then there exists a sequence of ele-

ments en in S which converges to a limit point of S.

In addition to the above theorems on sets and sequences of numbers,

several general theorems on functions will be needed. The notation of

Eqs. (4) will be used.

(h) Let M be any linear differential operator, and let u, v be func-

tions of a class for which the M-norm exists and for which M is symmetric,

i.e., D (u, v) = 0(v, u) for all u, v of the class. Then

2 2
1 (ru + sv) - r I (u) + 3 ((U, V) + s (D (v) (39)

where r and s are any constants. Eq. (39) follows readily from the defini-

tions. Suppose now that M is positive semidefinite. Then

2
( (u,v V ) < ýD(u) • (v) (40a)

The inequality (40a) follows by letting s = 1 in (39) and considering the right

side of (39) as a quadratic in r. Since the latter cannot be negative for any
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real r, it must either have no real roots or a double root. This require-

ment immediately yields (40a). For the special case of M = I, the identity

operator, (40a) is the well-known Cauchy-Schwarz - Bunyakow sky inequality:

(u,v) < (u,u). (v,v) (40b)

(i) Let f.(x) be a sequence of differentiable functions in [a, b],3

and let the sequence f: (x) converge uniformly in [a, b] to a function ) (x3

Moreover, let there be at least one point ý in [a, b] for which the sequenc e

f.(•) converges. Then the sequence f.(x) will converge uniformly in [a, b]

to a function F(x), such that 17(x) = • (x). This is proven in Ref. 16(with

series instead of sequences), and is related to differentiation of an infinite

series or sequence.
b

(j) if for a sequence of functions Uh(X), Lnf f f(x) u (x) dx
a b

is bounded, and f(x) is continuous and > 0 in [a,b], then Jh f u h(x) dx
a

will be bounded. This is readily proven by noting that the hypotheses imply

Ih < A, and also f(x) > C > 0 in [a, b],where A and C are fixed numbers.

Hence 0 < J /)f f(x)2 dx < A/C.a

(k) Let c, (x) be a given piecewise continuous function in [a, b],

and w(x) an arbitrary function with a continuous (m+ 1)th derivative in

[a, b] satisfying the boundary conditions

w (a)= ((b)= 0, v = 0,1,...,m (41a)

Suppose that
b w(m+l)(4b

f CW dx = 0 (41b)
a

for all w. Then m (x) must be a polynomial, P ,of m' th or lower degree.

This is a theorem of Zermelo.
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Proof. If rp (x) = Pm, then (41b) is satisfied, since

b P (x) w (m+l)(x) dx 0 (41c)
a

by successive integrations by parts, with the conditions (41a). To show

mthat ( (x) cannot be any other function, let Pro(x) -- CO + C X + .. + Cm X,

where the C. are determinerl so that1

b b
x Pn(x) dx xi(x) dx, i- 0,1,...,m (41d)

a a

Eqs. (41d) are a set of (in + 1) linear equations in the ým + 1) unknowns

Co, ... , Cm,, and will have a unique solution for a given q) (x). For, in the

special case in which cD (x) is a polynomial of m' th or lower degree, the

C. would have to satisfy (41d), while for such a (D (x) not identically zero,1

the right side would be non-zero at least for some i. Hence, since a
solution for the C. exists in that case, the determinant of the system in

that case cannot vanish, and therefore cannot vanish for any given T, since

the determinant is the same for all rp. It is now noted from Eqs. (41b) and

(41c) that for any given Cp,

f (p -Pm) w(m + 1) dx = 0 (41e)
a

for all w. Moreover, a w(x) exists (i. e., satisf-ring (41a)) such that

w ýn+l)(x) = p(x) - P (x) (41f)

The required w(x) is obtained by successive quadratures of (41f) each

satisfying the boundary conditions at x = a in (41a). The conditions at

x = b will then be automatically satisfied. For, the first quadrature yields
(in) X

w (x) W f [i (x) - Pm(x)] dx; by vi- tue of (41d) for i " 0, (41a) is satis-
a b d D (ml)I b

fled for v = m. It is next noted that I f x (x) dx = xa
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b b (m ),
- f w dx - f w ('x dx. But (41d)with i =1 and (41f) imply I1 0.

Wece x) f w rl(x) dx will now satisfy (41a) for i' = m and rn-i.a b 2(+1

By considerine I3 a f x2 w (x) dx, etc. one can finally show that w(x)a (in 1
will satisfy all the boundary conditions of (41a). In (41e) now, let w )(x)

be given by (41f). Then this will imply Cp (x) = P r(x) .

(1) Let uh(x) be an infinite :jequence of functions each of which has

continuous derivatives in [a, b] through some order p. Moreover, for some

q, ( 0 < q < p), let there be an interval (xi, x2) in [a, b] for which the sequence

x [uh~(x) ]2 dx is bounded. Then there will exist a sequence of points

in [a, b] such that for each v, q -< i < p, the sequence u( ) is

bounded. This is an important theorem here 'which can be proven in the

manner of Ref. 13, pp. 85-87, although tie theorem is not e.xplicitly stated

there in this generalized form.

(m) Finally, the theorem of Arzela, also known as the theorem

of Ascoli, must be noted. This is an extension of theorem (g) to functions.

In stating this theorem it is first necessary to define a set of equicontinuous

functions. A set of functions f(x) is said to be equicontinuous if for every

c > 0 there exists a 6 > 0, depending on c but not on the particular function

f(x) of the set, such that if Ix, - x2 < 6(c ), then Pffx1 ) - f(x 2 ) <e, where

xI and x2 are in the domain D of the independent variable. The theorem

of Arzela states that a set of uniformly bounded and equicontinuous functions

in a given bounded domain D is compact, i.e. from such a set it is possible

to choose a sequence of functions which converges uniformly to a continu-

ous limit function in D. This theorem is proven in Refs. 4 and 6.

16. Existence of a minimizing sequence for R. An I admissible'

function u for the energy quotient R(u) will henceforth be defined as one

which satisfies the geometric boundary conditions, and has a continuous
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(m-l)th derivative, and a piecewise continuous m' th derivative in [a, bh.

It will be assumed that M is positive semidefinite and N positive definite.

Then for any admissible function u, O(u) > 0, L,(u) > 0 and hence R(u) > 0.

Therefore by auxiliary theorem (a), R(u) has a greatest lower bound, say

B. Consider now the set S of all values R(u) for admissible functions u.

If S is finite then the function for which R(u) assumes the lowest value will

be the minimizing function, and the existence of a minimizing function for

R is thus proven. Suppose, then, that S i. infinite. Then from auxiliary

theorem (b), Bis a member of S or it is a limit point of S. In the former

case, the existence of a minimirl.ng admissible function for T is again proven.

Hence suppose that B is a limit point of S. Then from auxiliary theorem •),

there exists a sequence of values of R(u), with the corresponding sequence

1Uh' of admissible functions uho such that

lim R (uh) =B (42)
h - co

A sequence such as ih is called a minimizing sequence for R (u). Note that

the existence of such a sequence has been proven here without the necessity

of specifying how such a sequence is to be constructed in practice. (The

actual construction of such sequences forms, in fact, the basis of such

methods as the Rayleigh-Ritz to be discussed in a second report.)

The existence, just proven, of a minimizing sequence satisfying

an equation of the type (42), does not per se necessarily imply that an ad-

missible function U exists for which R (U) = B. A simple illustration of

this, due to Weierstrass and given in Ref. 8, is the foliowing. Find a

continuous function y, with a continuous derivative in I-l,1 1, which satis-

fies the boundary conditions

y(-1)= -1, y(l) = 1 (43a)

I.
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and for which the functional

2 2J.(y) 1 J_ x y' dx (43b)

is a minimum. Since I(y) > 0, I(y) has a lower bound, and hence a greatest

lower bound, say B, > 0. The value of B is here zero, as can be shown by

considering the set of functions y C (x) defined by

ye (x) = arctan (x/c)/ arctan (I/ ) (43c)

where e is a positive number. These functions are clearly admissible

here. (They satisfy (43a) and have a continvous derivative in [-1, 11))

Moreover,

(Y ) < f (x 2+ C2) y, 2 dx = 2c/arctan ("I!) (43d)

From (43d) it follows that I(y ) can be made as clos e to zero as desired

by choosing -, sufficiently small c > 0. Hence t-- greatest lower bound of

I(y) is B = 0, and a minimizing sequence for I(y) would be y (x), with

(for example) e = 1/n, n - 1, 2, ... Nevertheless there does not exist

any admissible function y for which I(y) = b = 0. For, such ? function

would here have to be such that the integrand x y' 2 is identically zero;2

the only such function is y = const., which cannot satisfy the Loundary

conditions (43a). It may also be noted, incidentally, that although each

function y (x) of the minimizing sequence (43d) is continuous in [.-11],

the limit Y(x) of this sequence as c-a 0 is a discontinuous function:

Y(x)= -lfor-l< x < 0; Y(C)= 0; Y(x)= lfor0<x< 1. (The con-

vergence of Y (x) to Y(x is non-uniform).,

It will now be shown, undcr certain suitable sufficient conditions,

that an admissible function TJ for which R(U) = B does exist. The proof,

based on applying the theorem of Arzela to a minimizing sequence for R(u),

will be along the lines of Ref. 1 3.



-41-

17. Assumptions. The problem defined by Eqs. (1) - (3) is assumed

self-adjoint, and f, (x) and gV(x) are assumed to have continuous derivatives

in [a, b] through orc, Moreover, it is assumed that:

f£ (x) > 0 ; f V(x)>- 0, g V(x)> 0 (v = 0,...,m-l)

fo(X)+go(x)• 01 ; o(u) > ; Ro(u) >. 0 (44)

S(u) > 0 ,D (u) oý

where u is any admissible function not identically zero. These assumptions

have all been grouped together for convenience. They are, of course, not

entirely independent of one aniother. In particular, the assumptions on

f Vx), gV(x), Mo(u) and N (u) imply 4) (u) 0. 0 (u) > 0. Here it is assumed

in particular that T (u) > 0, 1. e, N is a positive definite operator. The .on-

dition f (X) + g0 (x) j 0 can be relaxed, as will be indicated subsequently.

Although the assumptions (44) may perhaps at first sight appear somewhat

restrictive, it is noted that, among other possible physical situations,

they are typically satisfied in a variety of actual structural buckling and

vibration problems.

From i (u) > 0, 0" (u) > 0 it follows that R(u) > 0, and therefore

that ' (u) has a greatest lower bound, B. As shown in Section 16, there will

hence exist a minimizing sequence of admissible functions uh(x), h = 1, 2, ... ,

for R(u). Since 4 (uh) > 0, the functions uh(x) may be normalized so that

i(uh) 1 (45a)

Then from Eq. (42),

lim (uh) B (45b)
h-•oo

The nature and convergence of the sequence uh(x) and of the sequence, of

derivatives of uh(x) will now be analyzed.
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o--re -• .•x i•t a C tic. in I . b!. Moreover, from statement

-2a)z:e-it_ tc U a•.-.) tnxiir" -.ere-. () it follows that one can

Ct.Closel t ab-vr substeuence so that -a -f ::ev sequences u (V)(a).

0 < r- < :r-1. CCve7-.ZCS. 177r- auxiliarr t'ieorern (i) 'With f-() M2 I.I 'h

-,, a.- fra.-and ."-_- th--c cm-tereence in (47). it theu follows that

the sequence U... jx; is ur.if.-y couergeen. in [a, bh, with a limit func-

tioe U _•X) such tnatI Ut: ,x) = U1. (x). Apolication of auxiliary theorem

Irr.-3) (mn-3)
(i) r.-m to the sequence U.ý (m) 0sitws that the sequence 'nh (X) Wi~ll

.ei~o -znlr to a fun..i= U m.-3(x). where Ur(x) =M32

Purzter s--ccessive application of auxiliarT tcreren (i) thus shows that

u - (xI ccn-v.rges uni:,ir-nly to a limit function U (x), where for 0 < < m-2,

'• Cx) = U (x). De-otin U- (x) by U(x% it is seen that statement (4) will

readily follow. The fact that Ubc) -ifl satisfy tne e.-ometric boundary con-

ditions (whicE- inv-DIve orty U-(W). 0< <v < in-I I fc~lows, of coursv% from the

rest of statemewl (4) Just proven, and frown the fact that each uh(x) satisfies

these ccn-itions. Statement (4j and Eq. (45a) imply that

,• (12 = 1 (48)

1O. 2liferentiabilit, of U(x) through 2ml'th t rder. The function

1:(xz) cbtane'I in Section 1-S will now be shov-n to have c 'zinuous derivati-.- i

in Ia. b" tvhrough order Zm_ '_ifferentiability oi U-x) beyond the (m)l~th

order m•st be pr-,ved for at !eat two reason- Fir-t, in order to show

"that R (121 = B, it will be necessary to shtow that the derivative of at least
-. o1.3. r cf U exists in Fa., bh. Secon.5, it wil; thheki be desired to apply

the results of Setion "3 tc show that U must be a comxparisor, function

miniiz- .... t.e Rayleigh Quotient R. The anaiysis of Section 13, howe•rer,

a~sun'es the - 2mnh differenfiabilit- -f U.

The fo~lowing state-ment (A) will first be proven.
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. Let v hX) be a se-uin-e of adnissiblc functions for which 0 (vhI

and (v (Vh are bounded, and for wL:.h

b(U0. vh( 0 o49a)

Then

lira 0 (uht vb. -. (49 n

Proof: It is no-.ed (Eqs. (i4f) that for admissible functionIs u, v and

self-adjoint boundary conditions, 4'(u, v) = $ (v, ui, .' (u. v) = C7 (v, u). Hence

Eq. (39) will hold fer $ and Us. Let now r. aInd s be any chosen sequence

of comstants. Thex, wh = rh U. + sz vh will be admissible iuacticas, and

hence O (wh)• (Iwh)> B. Fromr Eqs. (39) fort and -(, (45a). and (41a),

this inequality, letting h > 0, is found to im.ply
rT r.h

h I_
(41c)

This must hiad for all h, rh and sh. lt is now obser-ed that b) the hypothesis,

the entire quantity on th.e right side of f4Qc) will remain bounried as h - o,

and be negative or zero. Moreover. althcu&,h% (4 (uh) - El wil be non -

negative, it will app-oach zero as h -cc (Eq. (4.b%)). Consequently, in

order that (43c) hold as h -- co for arbitrary (r h s h. Ec. 149b) must hold.

For otherwise, fnr some sufficiently- large !,, one could always .f'-nd an

(r 1 ! h of onposite sit-ni to " (ult. vh) in -such a way that W4•c) would be violated.

With the aid oi staterment (A), the following wil be proven:

(B) For every admissible -fnction w(x),

0 @{uhw)-B (u, w)- Cas h- co. (49d)

To prove this. 1-lt

S= w -4uh9u0, w) (49e
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Then vh will be an admissible fu-cthony Eq. (39) may therefore be applied

to';, to yield

7j (49f) S(vh) 
-- @(w) - Z• (ho w}@(n'w (Uh- w) @(• 4f

From !45a, b), 7 (uh) and 4. (uh) will be bounded as h - co ; hence from

(40a), I (uh, v) and J (uh, w) will be bounded as h - cD. Therefore (49f)

implies thLt also i (vh) will be bounded. From (39) applied to 44vh), and

from (45a), it follows that ' (vh) = 4 (w) - ';2 (uh, w). Hence the 4 (vh) will

be bounded. It is finally noted from (49e) that 4s (uh- vh) = • (uh", w - W (uh, w).

3. (uh) = 0. Therefore statement (A) can be applied here, to yield

& (.uh, vh) - 0 as h - w. With vh given by (49e), this yields 4 (uh, w) -

(Uh) j4 (uh. w ) - 0, which in view of (45b) yieids (49d).

It can now be shown that U(x" has a continuous Zm'th derivative in

[a, b]. Let w(x), as in the auirliary theorem (k) of Section 15, be an arbitrary

function with a coutinuous (in + l)th derivative in [a, b], satisfying the bound-

ary conditions (41a). For such a function M (uh, w) = 0. V) ( = 0.

and

(uh- ~ ~ ~ )dw)( Bg-w f(Iý V% w )dx
a V 0  0 (49g)

f. E. ,3A4e)). By integration by parts. each term on the right side of

(49g) can be transformed so that it will have a factor of w(M+Il). For thWs

purpose, as in Ref. 13, let

f (V)F[ (U- );[C

F "lk-:! (k] x [k-11 , x 1](uh}

V h (Uh G A v "'h M
a

4k
Note that for k > 0 the F (U- are es3entially integrals (k = 1) or iteratedNote~~ ~~ thtfrk h v(h) r



integrals (k > 1) cf f J V) Irzegrating by parts, and using conditions
v n

'41a), one then finds

a M1¶") w d -. (1 )rl F1Mv+l (Uh) '(j+1) dx (49i)

a a

and a similar equation with f arid F replaced by g and G, respectively.

From statement (B) (see Eq. (49d)), the left side of ( 4 9g) approaches

zero as h - co, and hence from (.49i),

"b I n Mn Im+)
r) F[mI v+ll u.) . B Gr (uh) dx = 0

h-co a V=O
(49j)

For the term with v = it is noted that

F[' (U. fm m fx - U ( l)

" n a a a --n h (49k)

Consequently, it is seen that on!-- uh and its derivatives through (m-l)th

order appear in (49j). Hence in view of statement (4) of Section 18, one may

replace uh t y U in (49j) in passing to the limit, and infer

e" F(n-v' B 0 Wv+
IV II~ V _

afV=O v:± 0

Applying the auiliary theorem (h) of Section 15, it now follows that

m n
, F,!n-vl 'U). -rB x,_ (Un)'-+l)j (U) = P (x) (49t)

where P m(x) is a polynoniial of degree m or :ess. i-ience t•ne left side oi

(4% 1 )is (continuousiy) differentiable m (and more) times.

Recalling from statement (4) of Section 18 that U is (continuously)

differentiablz at least through order (nn-l), it is noted that each individual

term on the left side of (491) for which 0 < v < m-i is differentiable.

This includes all terms in (49f) except the single term FIf] (U), w-hich
m

must therefore also be differentiable. But by (49k), noting that its right



(r-i

side involves only uh , it follows that

F Ill(U) = f U mr'' - f, U(m'-l) dx. Since the integral
m m J rn m-1)

here is differentiable, it follows that fm U and hence that U is

differentiable. Thus U must have continuous derivatives in [a, b] through

at least m' th order.

To prove U differentiable beyond the m' th order, it is noted, from

the definitions (49h), that by differentiating (491) now once, one obtains

!n-I n
f ~(rm) + \*0 F _ Gvm'v](U,=p (49m)

Each individual term beyond the first on the left side of Eq. (49m) is dif-

ferentiable. Hence the first term must also be differentiable, and this

readily implies U(m) differentiable. By successively differentiating (49m)

now one can similarly conclude successively that U~e+l), U( 2), are

differentiable, until one finally concludes that U has continuous derivatives

in [a, b1 through order 2m.

20. Existence of minimizing functions for R and R. It will now be

shown that

R (U) = B (50a)

Since U is admissible, it follows from (49d) that

b (u,1 U) - B 41 (Uh, U)-- 0 as h-- co (50b)

In passing to the limit here, statement (4) of Section 18 implies that one

may replace uh by U on the left side of (50b) in all terms other thaT. the

single term containing uh(M. This term is9 hs

b (mU) ( d_ u(nml) u(m) a(r-i) (m)
f mn h f u-hm (fni-um)' dx

a (50c
(50c) 4



One may now consider the limit of the right side of (50c) as h -- co, and

note that here one may rep!L:e uh by U ni the limit. The result then be-

comes identically fb f Um) U (m) dx, which is equivalent to replacing uh
a

by U on the left side of (50c). It follows then that (50L) implies 0 (U) - B4 (1)

= 0, which ie. equivalent to (50a), since 7 (U) = 1.

Thus, it has been provfed that the function U(x) is indeed a rninimiz-

ing admissible function for R (u). It has also bcen proved that this function

has continuous derivatives through order 2rn in [a, bh. Hence from Section

13, it follows that U will also be a comparison function satisfying (l)-(3), and

hence an eigenfunction of (l)-(3) corresponding to the lowest eigenvalue

S= B. Thus U is also a comparison function minimizing the Rayleigh

quotient R. The derivation given here shows that when the energy quotient

R is minimized,this eigenfunction can be obtained from a minimizing sequence

of admissible functions which need only satisfy the geometric boundary con-

ditions, and have a continuous (m - 11th, and pipcewise continous m' th

derivative in [a, b]. The existence of relevant minimizing functions for

(and thence for R) for the k' th mode can be similarly proven, with the

functions uh(x) now required to be orthogonal, in the sense of di (Uh, y1 ),

to the first (k - 1) eigenfunctions.

It is noted, finally., that in assumptions (44) the condition IC + go• ,"" 0

which is used only in the proof of statement (I) of Section 18, can, if necessary,

often be relaxed. It will suffice to illustrate this with a differential equation
It

of the form ( p(x) y") + k y" = 0, p(x) > 0. Such an equation pertains,

for exanmple, to the static buckling of a column. CleIrly, the condition

f + g0 $0 does not hold here. It is noted, however, from the remainder

of assumptions (44) and fromn Eqs. (34b, c) and .45a, b) that in general, re-
b

gardless off and g f g(x) U2 di must be bounded as h - o. In the
a
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b
present e-mple, glx) = 1; hence f u h dx must be bounded. Therefore,

a
from auxiliary theorem (1) of Section 15 with q = 1, statemert (1) of Sec-

tion 18 remains valid at least for 1 < v < m - 1. If now (as would usually

be the case in the present illustration) one of the boundary conditions re-

quires that y itself vanish at x = a or b, then statement (1) will hold also

for v = 0, and thus for all 0 < v < m - 1, as previously. If, on the other

hand, y is not prescribed to vanish at an end, but is included in the boundary

conditions and appears in F0 or - -,o thenfromthe assumptions M >0, N 2 0

and the other assumptions iii ,'•1 1, in conjunction with (45a, b), it maybe readily

inferred that y itself must remain bounded at an end point, so that state-

ment (1) is ralid also for v = 0. Finally, if the boundary conditions do not

involve y at all, then for self-adjointness, - will not appear in either R00

or N 0 (for admissible functions), and y itself will hence not be relevant.0

The existence proof can then be carried out for v >. 1, to show that there

will exist an admissible function U' (x) for which R attains its greatest lower

bound (minimum).

21. Unbounded growth of the eigenvalues. When sufficient condi-

tions such as (44) hold so that the minimizing functions for R or R, appear-

ing in the theorems of Sections 8, 9 and 13 exist, then as seen in Section 9,

there will be an infinite, but discrete, set of eigenvalues Xk of (1)-(3) which

can be ordered in a non-decreasing sequerre XI < .... Henceforth

under such conditions, the system (1)-(3) will be called "discrete* . It will

now be shown that for such systems the eigenvalues are unbounded as

k-- ac, i.e.

lim Xk (51)
k- CO

This can be proven by supposing the contrary to hold. Then the
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would have an upper bound,and from auxiliary theorem (e) of Section 15,

lira \ A (52a)
k- -co

where A is a finite number. Let be the corresponding normalized

eigenfunctions. Then, since R (yk) * 2ks

y(yk) urn yk A (52b)
k--co

Thus the ykwould satisfy the same conditions, namely admissibility and

Eqs. (45a, b) (with B replaced by A) as the uh functions of Section 18.

Following now the proof (statements (l)-(4)) in that Section, it is then

clear (under assumptions (44))that from the Yk one could form a subsequence

of functions, that may still be denoted by Yk' which would converge uni-

formly in [a, b] to an admissible function Y (say); moreover the yk(V)

(V)
would converge uniformly toy , 0 < v < m -1. From this it follows

tht(v)(x) (x) - in [a,b] as p, q - co hence, since n < m-l,p qv
that y - -)yq 0i e

lira m (y -y) = 0 (52c)
p, q -- , co q

Since Eq. (39) holds for 4, however,

S(yp- yq) (y) -2 (y, yq) + (yq) (52d)

Hence, since i (Y ) = 'P (yq) = 1 and q (yp, y ) 0, it follows from (52d)
p q pq

that in geneyal, for any two orthonormal eigenfunctions y and yq,

p qS(y p - v q)- 2 (52e)

This contradicts (52c), and hence contradicts the assumption that (51) is

false. Thus (51) is proven. It may be noted that (51) implies that any

repeated eigenvalues can each have only a finite multiplicity.
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V. COMPLETENESS, CLOSEDNESS AND EXPANSION THEOREMS

22. Bessel' s Inequality and Parseval' s Equation. Let A be a

positive definite linear differential self-adjoint operator, and let

S1 
) 2' "... be a set of com parison orthonorm al functions w ith respect

to A, i.e., satisfying

(A (pit Tj)=2 (j, A3 T 6ij (53a)

Then the series ci CD (x) will be said to converge, in the norm of the
i=l

operator A, to a function f(x) in fa. b] if

b
ira tf-mu irn f f- up) A (f- up) dx-- 0 (53b)

p- O P A p-oo a

where
p

U(X) -W c i (x) (53c)

The quantity ea2 f- u 112 may be regarded as the mean squared

error in [a, b],with the operator A, of the finite series representation,
p

c, of f (xj. When A = I, the identity operator, le I is the *norm"

of (f - u p), and the subscript I (in place of A) is then omitted in the notation

(cf. Section 2). Moreover, one then simply speaks ., I convergence in

the mean" of u to f without mention of an operator. For the more general
P ' 8

operator A, the terminology "energy convergence" may be used to mean

that (53b) is satisfied; lep I may then be called the " energy norm", or

"I A-norm' of (f - up).

A further condition which will be imposed on the operator A here

8
is that it be"positive-bounded-below"8, also called more simply 8 strictly

positive". This means that if u is any comparison function, then
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u > IV fu H (53d)

where y is some fixed positive constant, and where, in accordance with

the notation herein, (see also Section 2), 1 fuI IN (Au, , uu) u (u,u)
A

The following interpretation of (53d) is particularly pertinent here. Con-

sider the eigenvalue problem Ay = Xy, with associated boundary conditions;

A is assumed self-adjoint and positive definite. Suppose, in addition, that

the spectrum of eigenvalues is discrete. Then there will be a lowest eigen-

value X > 0, which will be the minimum v 1ue of the Rayleigh quotient

R(u)iB (Au, u)/(u,u) Ilull/, flul?. Hence Ilull / llul[2> Xl,

whence (51d) holds with y = ./2 Thus, if A is positive definite, self-

adjoint, and the eigenvalue problem Ay = ky has a discrete spectrum,

then (53d) will hold. An important consequence of (53d) is that under this

condition, convergence in the norm of A will imply convergence in the mean.

This follows readily by noting that if f is a comparison function, then so

is f - u Ihence from (53d), 0 < I ff- ,, I I < (l/lY) I If - up IIA Thereforep -- , p --

Iifu- up lA- o implies Iif - u p fl-.o as p--o.

If, for all f of a given class, a set cf constants ci (depending on f)

exists so that (53b) holds, then the set of functions p i is said to be com-

plete, in the norm of A,for such functions. By formally writing

f = Z cj (Pj, operating with A on both sides term by term, multiplying

by c i, integrating, noting Eqs. (53a) and assum'ng also ((p i Af) = (f, Aq, i),

one obtains

b
c.i f fA qi) dxW (f, Ami) (54)

a

The quantities (f, A (p i) are called the (generalized) Fourier coefficients

of the function f. Denoting ai = (f, A q i), it is readily found that for any

set of ci,
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p p
e _(f, Af)- ci a + c 2

p il = I i= 1

(f, Af)"i i i (c. - {) (55a)

F-rom (55a) it follows that the mean squared error will be a minimum

with respect to the ci (for given f and ; i) when ci = ai. Thus the Fourier

coefficients are the values of the c. for which e2 is minimized. More-
l p

over, when c. is given by Eq. (54), (i. e., c. = a.), it follows -from (55a)1 1 1

that
p
ycC = (f, Af)- e 2  (55b)

Since e2 > 0 for any p, it follows that
p-.

UD-2 . < (f, Af) (56)

(56) is known as Bes,.ol' s inequality, anJ shows that in general, if (f, Af)
00

is bounded and the c. are the Fourier coefficients of f, then . c on-
1 2 i o-

verges. Moreover, from (55b) it follows that lir. e2 0 if and only ifp-'W p

OD

ic~ - (f, Af) (57)
i=

Eq. (57) is knoun as Parsevall s equality, or the completeness relation.

It is seen to be equivalent to the completeness,in the A-norm,of the set

of functions ni.

The Parseval equation (57) can be generalized by considering any

two comparison functions u(x) and v(x) such that the completeness relation

(57) holds for u and v separately, and also for (u + v), Then inserting

f = (u + v) in (57), and letting a. and b. denote the Fourier coefficients
1 iI (defined by (54))of u and v, respectively, Eq. (57) yields

I
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0o b
ij= (ai + bi 2  f (u+ v) A (u+ v) dx

a

= (u, Au) + (v, Av) + 2 (u, Avi

Observing, from (57), that a. = (u, Au) and b (v, Av), it

follows that

_a.b (u, Av) (58)

Eq. (58) may be regarded as the * generalized" Parseval equation.

23. Completeness of the eigenfunctions in the norms of N and

of M. Consider n-ow the eigenvalue problem (1) - (3), with M and N

self-adjoint and positive definite. Further conditions on f (x) and g (x),

such as assunMptionb (44),are assumed which are sufficient for the exist-

ence of the minima of the Rayleigh quotient with respect to comparison

functions. Then it will oe showrt first that, in the norm of the operator

N, the orthonormalized eigenfunctions yi(x) (satisfying (5"a) with A = N;

cf. Eqs. (8a)) form a complete set for comparison functions f(x), i.e.

OD b
c. = f N(f) dx (59)

1=- a

where, in accordance with (54),

b
= J f(x) N(y.) dx (60)

a

To prove Eq. (59), let

p
rD(x) " f(x) - ci yi(. ) (61a)

where c.i is given by Eq. (60). Then rp (x) is a comparison function, and

moreover,
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b
Nr pNy) dx = 0 (i = I6'aPr) (61b)

Thus r is orthogonal to the first p eigenfunctions. Consequently, from
P

the recursive minimum characterization of Xp"1

*(r p)/f(rp) = R~r p)> X p+ (61c)

From M(yi) = kI N(yi), Eq. (61b) implies

b
farp M(y.) dx = 0 (i = l,...,p) (61d)

Putting f = ry +. I Ci Yi(x), and using (8b), (10) and (61d), one readily

finds
b p0 f ffMx-d t( c.Z •.(61e)

a 'br) ] .= 1

Since i (f) is fixed and bounded, and 0 (f)> 0, (r p)> 0, X I> 0 it follows

from (61e) that 0 (rp) is bounded as p - co. But f-.om (61c) ip (rp) < O (rp)A 1 .

Since X -p -o as p-. co, this then implies
P

lim '(rp) = 0 (62)
p-0co

Eq. (62) is identical to (53b), with A replaced by N. Thus the completeness,

-in the norm of N, of the set yi(x) for comparison functions f is proven.

Eq. (59) then follows from Parseval' s equality (57) with A = N.

From Eq. (61e), since 0 (rp) > 0 , it follows that

c . X.- f f M(f) dx (63)i i a

Inequality (63) shows that c 2 X . is convergent.
i=l 1

The above proof can be modified by using the energy quotient R,

and the associated functions • and T in place of R, 0 and 4 (cf. Section 13).
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The completeness relation then becomes

:= 'I(f) (64a)

where now

c. = Y(, yi) (6 4b)

Moreover, (64a, b) now hole1 for admissible functions f which need only

satisfy the geometric boundary conditions, and have a continuous (m-l)th,

and picewise continuous ml th, derivative in [a, bi.

The completeness relatior.s derived abcve can `)e extended to a

wider class of functions f than described there. For this purpose, it is

first noted,as observed in Refs. 4 and 6, that for the special case of

N(y) S go(x) y, the set of comparison functions, to be denoted by f, for

the problem (1) - (3) is "dense' in the space of square-integrable functions

f, that is: given such an f and any c > 0, there exists an T such that

I If - 7 IN < (65a)

For more general N(y) as defined by Eq. (3) one may consider the Dirichlet

form (cf. Eq. (28)), obtained by integrations by parts, of 11f - 1N-
b

f (f-f) N (f - f) dx B 4 (f - T). This will indicate that the denseness
a

property (65a) rf the set of comparison functions f will hold if f is now a

function whose N-norm exists, and which satisfies enough of the boundary

conditions (2) so that the boundary terms in the Dirichiet form of q (f - f)

can be made zero or as small as desired. The derivatives involved here

are of order (Zn-1) and less, and examination of p (f - f) will indicate that

the above requirement -n the boundary terms can be satisfied by prescrib-

ing 2n or fewer boundary conditions for f. By the use of Eq. (65a) for such

functions f, it can be shown, following the type of proof in Refs. 4 or 6,
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that the eigenfunctions of (1) - (3) will be complete in the norm of N for

this more general class of functions. This implies that Eq. (59) will hold

for such f; moreover, Eq. (58) will also hold, with A = N, and u and v

any two functions of this class f.

With the usa of the observations in the preceding paragraph, it can

now be shown that the orthonormalized eigenfunctions yi of (1) - (3) will

be a complei- set, in the norm of M, for comparison functions u. This

can be proven by applying the generalized Parseval Eq. (58) with A = N,

u = any given comparison function, and v a function sucn that

N(v) = M(u) (65b)

and satisfying sufficient boundary conditions (as explained in the preceding

paragraph) so that a comparison function T will always exist such that

(65a) will hold with f = v, and so that N will be self-adjoint for such func-

tions v. Then, in Eq. (58),

b
ai f u N(yi) dx . (65c)

a

b b b
b. - vN(y)dx= f yiN(v)dx= f yiM(u)dxfbi

a a a

b b
- f u M(yi) dx =f u XN(yi) dx = ki c (65d)

a a

Eq. (58), in conjunction with Eqs. (65b) - (65d), then yields

OD b
S Xi. =f u M(u) dx (66)

Eq. (66) is the same as Eq. (63), with the inequality sign now replaced

by an equality. Eq. (66) signifies the completeness of the eigenfunctions,
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in the norm of M, for comparisou functions u

24. Closedness theorems. An interesting and instructive alter-

native method of proving the completeness of the eigenfunctions, both in

the norm of N and of M.. will now be shown. For this purpose, the concept

of closedness of a set of orthonormal functions Ti will be introduced.

This, as will be seen, is intimately related to completeness . A set

of orthonormal functions p i (x) will be called closed with respect to func-

tions f of a given class if, under a given positive definite operator A

(assumed also to be linear and self-adjoint), there is no normalized function

f which is orthogonal to every p i in the set. One might expect intuitively

that closedness and completeness of a set are equivalent. This, indeed,

is the case for functions f for which (f, Af) exists (in the generalized,

Lebesgue sense). To prove that completeness implies closedness is com-

paratively simple. For, suppose a set is complete, but not closed. Then

there would exist a normalized function f such that c. S (f, A )= 0 for all i.
p

Hence lim I If " c, p , I = I If I I (f, Af) = 1, which contradicts
Sp -c" A A

the supposition that the set • is complete. The converse, namely that

closedness implies completeness, can be proven by using the well-known

Fischer-Riesz theorem of functional analyt.- This theorem states that

*Actually, as seen in this derivation, it is sufficient that u satisfy
enough of the boundary conditions in (2) so that (65a) will hold, and

b b

so that ay M(u) dx = ua M (yi) dx.

** In fact, the definitions of " completeness" and " closedness" of a set
of functions are sometimes interchanged in the literature.
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every Cauchy sequence f, of functions f for which the A-norm (f, Af)

exists, converges 'n the norm of A to such a function. A proof of this

theorem may be found, eg., in Refs. 7 and 17 for A = I, the identity

operator. The extension in the form stated above, to a general positive

definite, self-adjoint operator A, satisfying also (53d), is proven by

MilOilin8 (pp. 100-109). With this theorem, the statement that closedness

implies completeness can be proven as follows. Suppose the set of ortho-

normal functions , i is not complete. Then by (56) there will be a function

f(x) for which
OD

(f, A f) c' 0 (67 a)

where c. is given by (54). Consider now the sequence of functions

cg f-•.= Then Ifg -g - 2A = 1 c"- ° asp, q-- o, since
OD i=p ~A i=p+l
_•c. is convergent. Hence g is a Cauchy sequence, and by the Fischer-iL

Riesz theorem must therefore conveige, in the norm of A, to a function

g(x) whose A-norm exists. This function will be orthogonal to all of the

P.. For, (g, Api) = (g - gp, Aci) + (gp, A(pi)foranyp. Butfor

p >_i, (gip, A i =p c- ci 0. .'. (g, A ci ) = (g - gp, A ifor all

p> i. Moreover, given any c > 0, there will be a P such that for p > P,
(g gp, Aip.) <. Since (g, AX (p) is independent of p, it then follows

that (g, A (p i) = 0. It wil] now be shown, further, that I jg f12 > 0. For,
A

noting that g = p+ g , whe:e r7 B g - 9 , it is seen that
pp p p

I Ig 112 1= 112 +I I (', A gp) + I jgp112 (67b)
A Ap ( A

j.e., a sequence in whch IIfp- f q 2 -0 asp,q-co.
p A



This holds for all p, 'out for sufficiently large p the first three terms will

be arbitrarily small in absolute value, while (!, ( Af) -
ii~~ ~~ A-f f- .

In view of (67a), it therefore follows that for sufficiently large p, the

2right side of (67b) will be positive. Hence I Ig II > 0. Thus g is a
A

normalizable fuinction which is orthogonal to all the 0 Hence the c i

cannot be closed, if they are not complete.

Suppose now that the system (1) - (3) is self-adjoint, with M positive

semidefinite and N positive definite, and that the system has a discrete

spectrum. Then it will be shown that the eigenfunctions of the problem

G) - (3) are closed, under the operator N, for comparison functions f. To

prove this it is noted that X is the minimum value of R(u) with respect to
p

comparison functions u for which . (u) - 1 and

(u, Ny 1) = 0, (u, Ny 2 )= 0, ... , (u, Ny 1 )= 0 (67c)

Thus, X > > X . X Suppose the set of eigenfunctions yi were

not closed. Then there would exist normalized comparison fPnctions u

which satisfy (67c) for all the yi, i = 1, 2,.... For such functions u,

R(u) must exist, i. e. be finite. Moreover, since R(u) > 0, R(u) must

have a greatest lower bound, say X. But then X must be at least as

large as each of the Xi, i = 1, 2, .... This, however, is impossible,

since X. -- co as i - co. Hence the system of yi must be closed. Note

that this proof does not use any completeness theorems, and may hence be

considered as an alternative proof of completeness.

In a similar fashion, it can be shown that the system of eigenfunc-

tions yi is closed not only under the operator N, but also under M, when

M is positive-definite. To prove this, it is first recalled that the Yi are

orthogonal with the operator M, i.e., (yi, M(y.) ) = 0, i # j (Eq. 8b).
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It is then noted that the eigenvalue X can be characterized as follows:P

X is the minimum value of (P (u) with respect to comparison functions uP

for which (u) = land (u. M(yi)) = 0, i = 1,2,..., p - 1. This can be

shown in a manner quite similar to that already shown in Section 9 for the

corresponding theorem involving N (instead of M): In the equation im-

mediately before Eq. (27), the ý (6u, yi) are replaced by D (6u, y..),

i = 1, ... , k - 1. The proof then proceeds as in that section, with the

observation that N(yi) = (1/ X i) M(yi), and with the result that K.i . (yi) =

2 [1 - (Kk/X!)) 0 (uk, y,). But now 0 (u.k, yi) = 0. Hence, since 0 (yi)>0,

K 0 and the proof then continues exactly as in Section 9. With this

characterization of the eigenvalues, the proof that the eigenfunctions are

closed, under the operator M, is then the same as that in the preceding

paragraph. From this one may now infer that the eigenfunctions Y., or-

thonormalized with the operator M, form a complete set for comparison

functions f. Note that if tP (y.) = 1, then

Yi(x) = Yi(x) X i (68a)

Moreover, in the series E c! Yi(x) to represent f now, the values of the

ck according to Eq. (54), in conjunction with Eq. (60) for c., wili be

b b
c= f f(x) M(Yi) dx= a f(x) Xi N(Yi) dx

a a

h -1/2 1/2
f f(x) Xi N(yi) Xi dx = Xi ci (68b)

a

Hence the series • c, Yi(x) becomes ýci yi(x), as in the case of the

operator N, and the completeness of the functions Y.(x) in the M-norm1

signifies that 0 (r )-- 0 as p-- o, where rp is still defined by :q. (61a).

Eq. ý61e) then yields the M-norm completeness ielation (66). This may

be cornsidered as an alternative proof of Eq. (66) to that given in Section

23.
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25. Ex'pansion theorems. Eqs. (59) and (66) are the chief results

obtained in this Chapter, and, as will be seen in a second report, play

an important role in the theory of energy methods. It is noted, for ex-

ample, that Eq. (66) leads to the same r-sult that wou'.d be obtained if
0o

one first formally writes f(x) = ci yi(x), operates termwise with M
i=l

(which involves Zm differentiations) on both sides, multipliez. both sides

by f and then integrater- termwise over [a, b]. Eq. (66) justifies mathe-

matically the final result of such an operation, at least for any cemparison

function f. It should be observed, however, that in spite of the validity

of the final results of such an operation, it has not yet been established
00

here that the equatior, f(x) =i c. y.(x) itself actually holds uniformly

for all x in [a, b]. Such a statement would be an " expansion theorei.," .

Expansion theorems are developed in Refs. 4 and 12 for Sturm -Liouville

(second-order) equations, and in Refs. 1, 6 and 18 for more general sys-

tems of the type (1) - (3).

As will be seen in a subsequent report, it is actually the complete-

nesa relations of the type (59) and (66) which will suffice for the further

developments to be given there of the theory of energy methods. The

following remarks on expansion theorems may nevertheless be made here.

Considering first A = I, the identity operator, in the definition (53b) of

completeness, it is noted that convergence in the mean signifies that
c0

lirn [f(x) - "c. i (x)] will be zero " almost everywhere " (in the
p-ci=l

LebesguLe sense) in [;,, b], i. e., the limit will be zero at all x in [a, bi

with the possible exception of a set of poi-xts (of 0 zero measure" ) which
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would not contribute te the integral in (53b)

For A I. sufficient conditions for the uniform convergence of

c.- .Ix) to f(x) in [a, bi would be: f(x) continuous, all . (x) continuous,

and c. -. (x) uniformly convergent in ra, bh.

Consider now the self-adJoint system •1) - (3) with M and N positive

definite such that the eigenva~ue spectrum is discrete, and such that the

system

M (u) = Au 
(69)

with the same bcundary conditions will also have a discrete positive soect-

run. Then %I will be a strictly positiv-: operator, i.e., M satisfies (53d)

(with A = M, y = ;N > 0, the lowest eigenvalue of (69)). rom the com-

pleteness, in the norm of M, of the eigenti nctions yi of (1) - (3) for com-

parison functions f(x), e.tablished in Sections 23 and 24. it then follows

that the y, will also be complete im the sense of ordinar- convergence in

the mean (i. e. (53b) will hold with A = I, y ). Consequently, the
OD

foillowing staterrment holds: If c. v.(x) is uniformly convergent in

(a. 1i, where the yi are the orthonormalized eigenfunctions of (1) - (3) with
OD

the operator N. and the c. are given by (60), then N - yi(x) will converge

uniformly to f(x) for all x in [a.. hI. It is shown in Ref. 1 (pp. 144-145) that
0)

actuaay * c. y. (x), 0 < v < m - 1, converges uniformly (and absolutely)il y - -

in [a, bi. Consequently, the series / c, yi(x) will converge uniformly to

'ý As a simple exainple, with a sequence (instead of a series), let

f(x) = 0 in [0, 1], and consider the sequence f (x) = (1+ px)" Z/2

in[0,1], p = ,.. Then If - i-p1= f p =

I (1 4- px) dx = (L/p) log (1I+ p). Hence as p - en, 0O - f [2 ."0 P

Thus the sequence f (x) converges in the mean to f(x) 0. The se-
quence f (x) itself, iowever, is readily seen to converge to zero at

all x in O, 11 except at x = 0, where f = I for all p (and hence
f P 1). Note that the sequence fp(x) d(xl s not converge uniformly
p pin (0, ij to zero.
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f(x) for all x in [a. bh, and the serier may. -ti fact, be differentiateS term-

wise (m - 1) timcs.
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