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ABSTRACT

An essentially self-contained elementary account, from a unified
variationzl puint of view, is given of the theory of self-adjoint eigervaiue
problems with discrete spectra, governed by linear differential equations
of the form M(y) = \ N(y). The theory is directly relevant for the various
types of appr-yimaie energy methods apwvlied in such problems, Included

kerein are stitements and proofs of the variational, minitnum, and maxi-

_mum-minimum characterization of the eigenvalues in all modes, Theorems

based con both the Rayleigh quotient and the energy quotient, including the
role of natural boundary conditions, are developed, In addition, existence
proofs, and discussion and proofs of complateness in both the N-norn and

M~-norm are given,
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I. INTRODUCTION

1, ’fhis is the first of two reports in which the purpose is to present, in 1s
self-contained a manner as feasible, he theory, with applications, of
energy methods in linear self-adjoint eigenvalue problams with a discrete
spectrum, The present report deals with the fheory of the eigenvalue spect-
rum in such systems, and the second report will deal with the theory and
applications of the Ritz-Galerkin and related energy methods., Attention
will be focused on problems characterized by ordinary differential equations
of the form M(y) = \ N(y), where M and N are real linear differential opera-
tors to be defined in further detail subsequently, y = y(x), x is real, and \
is an eigenvalue, M and N, and the associated (homogeneous) boundary con-
ditions, will be assumed such that the problen. is self-adjoint and with a
discrete eigenvalue spectrum, Such problems, despite their apparently
restricted nature, still include a considerable variety of specific physical
and engineering applications, as exemplified in the book of Collatzl. The
prototype ~f such problems may be considered to be the free vibrations of

a Bernoulli-Euler bea;m, or the buckling of a column, The present report
includes the following items: {1) Variational, minimum, and maximum-
minimum characterizations of the eigenvalues, and relevant implications

of these characterizations, (2) Use in (1) of the familiar technique of
Lagrange multipliers to establish the recursive minimum properties of

the eigenvalues, (3) Theorems relating to the energy, in addition to the
Rayleigh, quotient, and the role of natural boundary conditions in the zeneral
case, (4) Proof, by the use of mirimizing sequences, of the existence of
admissible minimizing functions for the general eigenvalue problem M(y) =
AN(y). Such a proof is especially relevant for Ritz type of energy approxi-

mation methods, (5) Completeness and closedness theorems in both the
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N-norm and M-norm, Self-contained proofs will be furnished throughout.

In view of the long and continual use of energy methods in many
types of applications, it appears worthwhile to present the theory of such
methods at least for the class of problems considered herein, Morevver,
the unified variational type of approach taken here appears especially de-
sirable for this purpose, since this is essentially the approach on which the
energy methc 's can be most directly based, at least in the self-adjoint sys-
tems with discrete eigenvalue spectia considered here. As will be seen,
the variational approach car be made quite elementary for this class of
problems, in the sens= that only concepts familiar from '"'advanced calculus"
will be needed. Even such an elementary approach affords an opportunity,
as will be seen, to touch, albeit slightly, on such fields of classical and
modern interest as real variable theory, calculus of variations, approxima-
tion theory and functional analysis, Despite the existing rich literature on
self-adjoint eigenvalue problems, there is no single reference which contains
an elementary, essentially self-contained account, from a variational i)omt
of view, of all of the items listed in the preceding paragraph. Moreover,
in order to keep the exposition simple, self-contained, but essentially
complete, the authors have furnished their own proofs or modified existing
ones in various instances in items (1) - (5).

In connection with the available pertinent literature, it is noted that
the theory of linear self-adjoint eigenvalue problems has been treated in
the following four ways: (a) Differential equations;(b) Integral equations;
(c) Operators in a Hilbert space; (d) Variational principles, These ap-
proaches are, of course, not mutually exclusive, and indeed the difference
in the approaches is sometimes mainly a matter of relative emphasis,

For example, (b)is based on the well-established Hilbert-Schmidt theory




of homogeneous Fredholm integral equations with a symmetric kernel, while

(a) is based essentially on the inverse operator of M, which in turn involves
p. vperties of the associated Green's function, The kernel in (b), however,
is closely related to the Green's function, The approach in (¢) is an abstract
generalization of the integral operators in (b) to operators with a certain set
of general properties, Even (d}, which means here an approach based on
extremal properties of the Rayleigh or related energy quotients, ic often
treated in conjunction with (a) = (¢ ), especialiy in conuection with existence
theorems, The differential equation aporoach is given in Refs, 1-3. Ref. 1
also gives an elementary theory (i, e., without Green's functions, etc.) for
the special case of a second-order differential equation with the boundary
conditions y(a) = _y(b) = 0, and indicates its extension to a particular fourth-
order differential equation with certain boundary conditions, Ref, 3, in
addition to the differential equation approach, gives a seif-contained varia-
tional approach based on the theory of M. Morse; however, both of the
approaches given in Ref, 3 are in rather abstract terms in a highly geﬁeral-
ized setting, and the variational approach there appears rather different
from that to he given here,

In approach (b) thc differential equation is transformed into zn integral
equation, If the differential equation M(y) = A N(y) is self-adjoint, and N(y)
is of the one-term type (as defined in Ref. 1; e.g., N{y) = 5 (x) y) then the
differential problem can be made equivalent to finding the eigenvalues of
a homogeneous Fredholm integral equation with a symmeatric kernel, An

exposition of this integral equation problem is given, for example, in

Refs. 4-6. A Hilbert space cpproach is shown in, e.g., Refs, 7-9. The

variational theory for self-adjoint eigenvalue probiems is given in Refs, 4

and 10 for Sturm- Liouville (second-order) differential equations; variational




«5a

aspects for Sturm-Liouville equations are also included in Refs, 1l and 12,
For the more general system M{y) = \N(y), a variational approach is shown
in Refs, 8 and 13, It is noteworthy that only Refs, 10 and 13 give a proof of
existence of the relevant minimizing functions by variational means, i.e,
by means of minimizing sequences, Thus, there appears to be no such type of
proof available in the EnglishJdanguage literature, Even Mikhlins, who gives
a comparatively extensive account of variational principles, refers to his
Integral Equations text:5 for a proof of a compactness property which is as-
sumed in Ref, 8§ for the purpose of an existance proof, Collatzl, for the
general case M(y) = AN(y), proves the existence of an admissible minimizing
function for the Rayleigh quotient by means of Green's functions,

It is remarked, finally, that the type of problem to be considered
here is a generalization of Sturm-Liouville problems. It is however, still
fairly ‘estricted, For example, the literature (including some of the refer-
ences cited above) now contains energy principles and methods for complex’
operators, non-self-adjoint and /or nonlinear problems, and partial dii.:'fer-
ential equations, Nevertheless, or perhaps even because of this, it is
worthwhile to present in a unified review a reasonably complete, yet elementary
variational theory of energy methods of determining eigenvalues at least for

the class of problems considered herein,
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. YARIATICNAL THF.CRY FCR THE RAYLEKGH QUCTIENT

2. Self-adjnint eigenvalue problems. As in Refs. 1, 2, 8 and 13,

the problem will be considered in whichk it is desired to find ull the eigen-
values of \ for which a non-trivial solutior exists (o the linear homogenecus

differential equation
M(y) = \N{y) i1

subiect to the boundary conditions

Bly) = 0 (c

Here, M(y) and N{y) are assnumed of the form

13

Miy) = ;0 [, e vl !

v

3)
S 1 W), 10
Ny) = Y ) [ (=) y )]
v=0
where fv(x) and gv(x) are given (real) v~-times lifferentiable functions in
fa,b]. Itis assumed that m >n > 6. The boundary conditions (2) may

he supposed as 2m {independent! conditions, each of the form

2m-1 (v)
Y oo, yM@ g yMm)) <0

) T

where [a, b] is the domain of the independent variable x, and c_ and @ are
given constants which will be here agssumed independent of A\. The domain
{a, b} throughout this analysis will be assumeaad finite. For convenierce,
functions which satisfy all of the boundary conditions and have continuous
derivatives through order 2m in [a, b] will be called ® comparison® functions
(2 term used by Collatz). It may b= seen that the problem formulated herec

includes, for example, free bend ng and torsional vibrations, and buckling,

iy ¥ e
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of Bernoulli-Euler bheams, and is, in fact, a generalizatior of second-crder
Sturm- Liouville problems.

For funclions u(x) and v{x), the fcllowing notation is intsoduced:

b
tevi=(vaz [ uwvdx
a
b
(V)= (1, M*)) = [ o Mlv)dx
a

b

sfa,vi= (u, N(v))= [ u N{v) dx (4)

o

b
()= ®(u,a)= { a M(u) 3x
Ta

.’—

.

b
V() = $(e.u) = [ uNiu)adx
a

The quantity {u, v) i3 often called the ®" inner product® of u and v. The

operators M and N are called positive definite if, respectively,
®(u) > O : ) > 0 {5a, b)

for all comparisom functions u not identically zero. For any (square inte-
grable) function u(x)
b 2
Tul]l=® (v, v)® [ v ax (6)
Ta
will e called the norm of u. More generally, if operators such as M and
N are positive definita, then &u) arnd § (u) may be called respectively the
norms of u *ir the energy of M and N, ¥ or moze briefly, the * M-norm"
and " N-norm® of u; they are in that case de sted respectively by ! |u] ’M
and | ju] 'N'

The eigenvalue problem (1) - (2) is calied self-adjoint if

d(m,v) = &(v,u); d{u,v)= d(v,u) (7)
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for ail comparison functions u and v. For given M and N in the form of
Eqs. (3), it will Le found by successive integrations by parts that the self-
adjointness of the system will depend oniy on the bouadary conditions

(cf. Eq. (34d)below), and will be satisfied under a variety of bourdary con-

ditions commonly encountered in practice.

3. Orthogonality of the principal modes. If the eigenvalue problem

(1)-12) is self-adjoint, then for any two distinct eigenvalues )\i and )‘j' the

corresponding eigenfunctions y, and y_will satisfy the following orthogonality
) )

relations:

Lo T 3

1]
o

(8a, b)

The proof follcws by first writing M(yi) xi N(yi), M(yj) = \J. N(yj).
Multiply the first equation by ¥; and integrate over [a, b] ; multiply the
second equation by Y; and integrate over [a, b]. Now subtract the two result-
ing equations, Then by virtue of the self-adjointness the left side vanishes,
while the right side becomes ()\i - xj) b (Yi' yj). Thus, Eq. {8a) follows,
Eq. (8b) then also 1~llowe frcm either of the two equations which were ori-
ginally subtracted from each otner.

If to a single eigenvalue ki there correspond r linearly independent
eigenfuactions, Yip oo o0 Vi )‘i is said to be of multiplicity r. In this case,
any linear combinzt on of the eigenfunctions will also be an eigenfunction
corresponding tv )‘i’ and it is then readily possible to thus combine

1, 4) to obtain r mutually orthogonal

Yip o oo Yir (Gram-Schmidt procedure
eigenfunctions corresponding to Xi.
From the orthogonality relation (8a) it can be readily proved that

if the eigenvalue problem (1)-(2) is self-adjoint, and N is positiv Jefinite,

then all the eigenvalues must be real, For, if \; were a complex eigenvalue,

e A s - nm s




with corresponding eigenfunction Yy then from the realness of the coeffi-
cients of Eqs. (1) and (2), the complex conjugate )‘j = Ii would aiso be an
eigenvalue, with the complex conjugate eigenfunction ;i‘ Eq. (8a) would

then imply q;(yi, .‘;i) = 0, DPutting y;= u + fv, ;i = u - iv this relation be-

comes Y (u) + ¢ (v)+1i[¢(v,u) - d(u,v)] = 0, Since u and v must each be

comparison functions, the imaginary part of the left side of the l.tter

equation vanishes, while by virtue of Ea, (5b) the real part must be positive.

Thus, assuming the existence of a complex eigenvalue leads to a contradiction,

4, Rayleigh guotiént. For a function u(x), the Rayleigh quotient

R{u) in connection with problem (1) is defined by

R(u)= (u, Mu)/(u, Nu) & (u)/ ¢ (a) (9)

s

' If y; is an eigenfunction of Eq. (1), with eigenvalue )‘i’ and Lp(yi) $£0,
it is easily seen, by multiplying both sides of Eq, (1) by ¥; and integrating

over [a, b], that
;= Rly)) =@ (Yi)/\l' (y;) (10)

It may be noted from Eq. (10) that if M and N are both positive definite, then

all the eigenvalues v/ill be positive,

5. Variational calculus, The few elements of the calculus of varia=-

tions which will be used subsequently here, will now be introduced,
A functional, I(y), is a quantity whose value is determined by a func-

tion, y(x). An important example of a functional is

Uy) = ° ' (k) 1
y) = [ FEy,y, ...y )dx (11)
a

where a and b are given constants, and F is a given function, Clearly I

becomes determined once the (k times differentiable) function y(x) in [a, b]

A7 s PRI Sy ——
i e S 4 gt s




is specified, The quantities ® (u), § (u) and K(u) detined by Eqs. (4) and

(9) are important specific examples of functionals, We shall be concerned
with ® admissible" functic1s y(x) for which I(y) is " stationary", Quite
gencrally, an "admissible" function is any function obeying certain condi-
tions (usually certain types of continuity and differentiability properties,

in addition to certain boundary conditions) specified in advance., To define
what is meant by a stationary I for some admissible function y(x), consi'der

a second function y(x) + § y, where
Sy (x)=en(x), (12)
€ is a small parameter, and 1n(x) is an arbitrary function, independent of €,

such that y + §y remains admissible, 6§y is called a variation in y, Due to

such a variation, F will be changed by

AF = F(x,y + €n(x), . ..,y(k) + € n(k)(x) ) - Flx, v, . ..,v(k))

= €(-§§-n+ -gg,— n o+ ...+ ;‘;”E(‘-k-;na‘)) (13a)

+ terms in higher power of €,

assuming that for all x in [a, b] F is expandable in a power series in € with
a non-zero radius of convergence. The (first) variation, §F, in F is now

defined by the terms in the first power of € in AT, i, e.,

6F=c(—a-F—‘n+-Q£,n'+..,.+—a-E— )y (13b)

Similarly, the functional I will be changed by 4L, and this change to first
powers of € is defined as the (first) variation, §I, in I. Thus, if the limits

a and b in (11) remain fixed,

b

§1 = f (§F)dx (14)
a




The functional I is called stationary at the function y(x) when §I = 0 for ‘

arbitrary (admissible) variations of the form (12), and hence for arbitrary
(but admissible) n(x), The function y(x) is then called an " extremal® of I.
There is an analogy between finding the minimum (or maximum) of
a functional I for admissible functions y(x), and finding a relative minimum
(maximum) of a differentiable function I{x} at an interior point of a region
(xl, xz) . In the latter case, if a relative minimum occurs at a point x = X s
one considers the values f(xo + € ) in the neighborhood of x . Expanding,
S, +€) = £x )+ €8 (x )+ (€2/20) 60 (x_+ £€), 0< £< L Hilx)is
to be a minimum in the neighborhood of X then f(xo +€)> f(xo) for all
sufficiently small |e [ £ 0, If f('xo) # 0, then it is clear that (with f" finite)
for sufficiently small |€ |, the rninimum condition will be violated for at
least some range of values of €, Hence a necessary condition for a relative
minimum at x is f! (xo) = 0, It is noted that this manner of obtaiuing this
1amiliar necessary condition is equivalert to expressing Af = f(x0 + € ).- f(xo)
to first powers of €, and equating the result to zero, with € # 0; that is, it is
equivalent to requiring §f = 0, Analogous considerations hold for finding the
absolute minimum of a functional, Suppose y(x) is an admissible function
for which I attains a minimum. Then I{y + €n(x))> I(y) for all € and any
arbitrary admissible function n(x). If one expands AI =I(vr + € n(x)) - I{y)
in powers of €, it is seen that a necessary condition that AI > 0 for (at
least) sufficiently small |e I # 0 is that the coefficient of € vanish; this,

in turn, is the condition
81 = 0 (15)
Thus, a neces. ry condition that I be a minimum for some admissible func-

tion y(x) is that its variation, §I, vanish for (first order) small arbitrary

admissible variations §y; that is, I must be stationary at y(x).




In actual evaiuations of §I, it is useful to note that in general,

d/ dx (§y) = d/dx (en(x)) = €n' (x). But also, §(dy/dx) = [y(x} + en(x)]' -

y' (x) = €n' (x). Hence
d/dx (6y) = §(dy/dx),  or  d(by) = &(dy) (16)
To familiarize the reader with the variational prccess and the §
notation, suppose it is required to find a differentiable function y(x) ( # 0)
such that
y(0) = y(1) = 0 (17a)
and such that

1 ]
1= -1 = x+Dylax-1 [ y¥ax (17b)
0 0

be stationary, where \ is a consiant. First, it is noted that 611 = fl {(x+ 1)-

0
§(y! 2) dx, since (x + 1) is a fixed function in the variation, Moreover,
§(y! 2) = 2y' §y', since, by definition, only " infinitesimally small® varia-
tions are considered, i,e., the change here in y! 2 is to be found only to
first powers of. €, Tﬁus, one finds 511 =2 J(;l (x+1)y' §y' dx. Now inte-
grate by parts, withu = (x+1)y*, dv = §y' dx = &(dy) = d(6y) ; hence
v = §y. Then one finds §1, = 2(x + 1) y* &y ]];) -2 f:[ .+ Dy ]‘ Sy dx,
Since y and (y + §y) must satisfy conditions (17a), it follows that §y = 0 at
x=0and atx = 1, Consequenltly, 8L, = - Zf [x+Dy ] 5y dx, In addi-

1
tion, f § (y‘ ydx = 2 f y §y dx, Thus one finally obtains
8I=2;f[(x+l)y') -\y]éydx (17¢)
0

In order that §I = 0 for arbitrary (admissible) §y(x), it follows from (17c)

that it is necessary and sufficient that

Mabinaciid toa 3 hcasman,

s
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((x+1)y') -Ay=0 (17d)

Thus, y must be a solution of the (here of Sturm-Liouville type) differential
equation (17d) and satisfy the boundary conditions (17a), It is thus clear
that the variational problem (17c), (17a) is equivalent to the differential-

equation problem (.7d), (17a); a solution of either problem is a aolution of

the o*' er, In this example, \ will actuaiiy be an eigenvalue, since it would
be required to find the value{s) of \ (if any) for which non-trivial solutions
of (17d) , (17a) exist,

The following type of variational problem with constraints will also

be of importance here, Let I(y) be defined by Eq. (11), where the limits a, b

. . . .. *
are fixed, The functions y are now constrained not only to be admi=sible
(a2s before) but also to satisfy s (® isoperimetric® ) constraint conditions of

the form:
b

6.2 [ g txuyyeennyNax=c,  G=1...,9) (18)
J a J J .

where the gj are given functions, and the < given constants. Among all
such functions vy, find that for which I{y) is a minimurn., From (18a} the

variations in y must satisfy the conditions

b
scjafa (ng)dx=0 G=1...,s) (18Y)

As in the problem without the constraints (18a), a necessary con-

dition on y(x) is still that it make I stationary, but now under variations

which satisfy (18b)., This problem is analogous to finding the minimum of

a (differentiable) function f(xl, voe xp), where the x, are subject to constraints

of the form hi (xl, ey xp) = cp i=1...,8; (s < p). In particular, the

* i, e, k-times differcntiable and satisfying the boundary conditions,

L AT AT At s ey s
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problem (15), (18b) can be solved by introducing Lagrange multipliers
Kepooor Koo which for the isoperimetric constraints will be constaats (as

yet unknown), and requiring

6§ (I+ KlGl+...+'sts) = 0 (18¢c)

without constraint conditions {except for admissibility) on y. Suppose the
general solution of (18c) for admissible y is obtained. This solution will
depend on the constants k..., Kge The latter are then determined so that
the s constraint conditions (18a) hold. If such constants exist, the resulting
y is then the desired solution, For, first of all, it satisfies (18a). More-
over (18c) is satisfied for arbitrary {admiasible) variations §y, and hence

it will aléo be satisfied for those particular §y which satisfy (18b). However,
for such variations, (18c) implies that (15) will hold, Thus, y is a soiution
of the problem (15) under variationa satisfying (18b). Conversely, any solu-
tion y, of the probiem (15), (18b) must also be a solution of (18c) with the Ky
as determined above, For, such a y will satisfy (18c) under the const;'aint
conditions (18b), for any values of the Kye Therefore, such a solution must be
a subset of solutions of (18c) without any constraints on y, Thus, this solu-
tion nwust be included in the general solution of (18c) for any k i and must

hence be the solution of (18c) for those vy for which (18a) is satisfied,

6. Stationary properties of the ei. envalues, It will now be shown

that if the problem (1)-(2) is self-adjoint, then any eigenfunction ¥y with
corresponding eigenvalue \ = )\i’ is such that the quantity (® (y) - X ¢ (y) )
will be stationary aty = ¥; with respect to comparison functions vy,

The proof can be carried out rather easily by first noting that since

M and N are linear operators

§ M(y) = M(sy) , § N{y) = N (&) (19)

)

Pors
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From Eqs. (19) and (7) it follows that

b b b
[ ysMly)dx = J yMEy)ax = [ Mly) 8y dx,
a a a3

Consequently, from (4),

b b b
§2(y)= [ ys Mly)dx+ [ Mly)sydx = 2 [ Mly}sydx (20a)
a a a
Similarly, '
b
§uly) =2 [ Ny)8yadx (20b)
a .

Equations (19) and (20) hold for any comparison function y and (first-order

small comparison) variations §y. Suppose now that y;is an eigenfunction of

(1), (2) with corresponding eigenvalue \;. Multiply Eq. (1), with y = ¥is

A = \;, by 8y, and integrate with respect to x over [a,b]. Then by virtue

of Eqs, (202, b) it is immgdiately seen that the variational equation

(1/2) (5 ®(y,) - xi § q‘(vij = 0 is obtained. With X = \ kept fixed in these varia-

tions, the variational condition can be written as:

§P-N5¢Y=8(®-ry¢) = 0 (21)

This proves the theorem,

The ccnverse of the above theorem also holds., That is, if a com-
parison function y and \ are such that the variational condition (21) holds
for arbitrary comparison variations §y, then y and \ are an eigenfunction
and corresponding eigenvalue of the problem (1), (2) when the latter is self-
adjoint, This follows by noting that Eq., (21) in conjunction with Eqs, (20a, b)

will imply

b
[ (Mly) -\ Nly)8y dx = 0 (22)
a

Since (except for being a comparison function) § y(x) is arbitrary, this
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implies Eq. (1), and the theorem is proven,
It is now noted that whea y(u) # 0, Eq, (21) is equivalent to the
condition

§R = 0 (23)

where R is drefined by Eq. (9) and the variations are with respect to com-
parison functions. This follows by simply noting that §R = (1/y 2)-

[G(u) 68 @(u)sy] = (/) [6@-R §4]. The condition (21), with \& R,
is hence equivalent to condition (23), |

Thus, if the problem (1)-(2) is self-adjoint, the eigenfunctions are
the comparison functions for which the Rayleigh quotient R assumes station-
ary values, and the correspon?ing eigenvalues A will be the corresponding
\stationary values of R,

The above stationary property of the eigenvalues is already sufficient
to indicate certain computational procedures by energy methods, such as
Galerkin' s method, to obtain at least approximately, the eigenvalues and
eigenfunctions of (1)-(2), This will be discussed in a subsequent report,

It should, however, be noted that these stationary properties do not as yet
establish the minimum characterizations of the eigenvalues, The latter

properties will now be established,

7. Existence of a greatest lower bound of R, It will now be assumed

that in addition to being self-adjoint, the operators M and N are respectively

positive semidefinite and positive definite,i.e.

@ (u)> 0, $la) > 0 (24a)

for any comparison function u not identically zero. It then follows that

R(u) >0 (24b)
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Thus, the Rayleigh quotient R(u) has a lower bound in this case, and hence

it must have a greatest lower bound, B (say). Clearly, B> 0.

8. Minimum characterization of the lowest eigenvalue, The follow=~

ing theorem can now be readily proven., Let the eigenvalue problem (1)-(2)
be self-adjoint. Moreover, let the Rayleigh quotient R(u) for comparison
functions u have a greatest lower bound B, as is the case,for example,

when the inequalities (24a) hold, Finally, let there exist a comparison
function u = A for which R(yl) = B Then the lowest eigenvalue of (1)-(2) will

be\ =\

1 B, with y = v, 2 corresponding eigenfunction,

The proof follows readily by observing that under the conditions of
the theorem, R(u) attains a minimum when u = ¥y and hence the first varia-
tion, 5R, in R vanishes for arbitrary comparison variations, §u, iny,

(Sect. 5). It then follows from the stationary properties of the eigenvalues
established in Sect, 6, thatu = vy is an eigenfunction. From Eq. (10), the
corresponding eigenvalue is )‘1 = R(Yl)' Since R(yl) = B, X1= B, The fact
that B is the lowest eigenvalue follows from the fact that if )\i is any eigen-
value, with eigenfunction Vi then from Eq. (10), A= R(yi). But

R(yi) >B. .. X\, 2B,

If Y3 is any eigenfunction of (1)-(2) then C.1 A is also an eigenfunction,
where Ci is an arbitrary constant, When (yi) # 0 it is therefore possible
to "normalize® the eigenfunctions by specifying, for example, that § (yi) =1,
Under the conditions of the theorem just proven the lowest eigenvalue )\1

can then be characterized as the minimum value of &(u) with respect to all

comparison functions u for which

Yu) =1 (25)




3, Recvursive minimum characterization of the higher eigenvalues,
LR

Tke higher eigenvalucs of {1)-(2) can be characterized by the following thecrem.
Let the conditions of the precedi: ¢ theorem nold. In sddition, suppose there
exists » compariscn function u = w satisfying (25), orthogonal to the first

{k - 1) eigenfunctions Yoo Yoy in the sense of
'-'(u.\!i)=0 i=1....k -1 (26)

and minimizing the integral & () with respect to comparison functions u subject
to the constraints (25) and (26). Then w is an eigenfunction, with the cor-
responding eigenvalue \k = t(uk). \k s the next higher eigenvalue.

This theorem can be proven using the familiar techrique of Lagrange
multipliers (Sect. 5). Thus, irtroducing Lagrange mcltipliers Kir Xpe oo *k-1
the conditions of the thecrem imply & [ ®{u) - %y Wlu) - % Slu,y)) - -

Kol 8 (e, Yk-l) ] = 0 whenu = u . Using Eqs. (20a, b} and (4) this is found

to imply: 2 (5u, [M{u) - “ Nf) 1) - ol dldu,yy) - ool kg, G(bu, Vi) = 0,

when u= vl hence, cince §u is arbitrary

2 M{w) -« N(u.k)} = K Ny ootk Ny ) 27

Multiply both sides of Eq. (27) by A (i = 1,...,k-1) and irtegrate over [a, b}.
Then by virtue of Eqs. (8a)and (7) it is found that x i ] (-,'i)= 2® (uk, yi) -

2 K Y (uk' yi). But since M(yi) = Xi N(Yi" the preceding equation implies
Ky ¢ (yi) = 2()"1 - Kk) ¢ (uk, yi). From Eq. (26), and .;_:(yi) > 0, it then
follows that Ky = 0(i=1,...k-1). Hence Eq. (27) yields M(u) = e N(\‘.k).
This proves that Y is an eigenfunction, with corresponding rigenvalue

xk = K. Applying this result recursively to )\Z, )\3, ... it is seen that

each ) > )\k(k =12,... ). For, )‘k = min ® (u) with u subject >

k+l
(25) and to fewer of the orthogonality conditions in (26) than Merr® Thus
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the set oi permissible functions for o is cnly a subset of those for U,

hence \kﬂ > \k'

It remains to prove that with the \k thus characterized recursively,
therc can be no eigenvalue batwren Ay and \k I This wil! then show that
the characterization of the eigenvalues given in the theorem cf this section

exhausts all the eigenvalues. It will further show that the eigenvalues form

a discrete spectrum, Consider, then, an eigenvalue \' greater than \

k-1’
with eigenfuncrion u' satisfying {(25). Then u' must be different from

yl, YZ’ . 'Yk-l' Hence by Eq. (8a), u'is orthogonal to Yl' v Yk—l' Thus
u' =satisfies the same constraint conditions as U, - But by Eq. (10),

A' = ®{u*'). Hence from the preseﬁt characterization of )‘k’ )\k <A\t

Thus, there is ro eigenvalue between \ and \_ .

k-1 k

The recursive minimization theorem implies that (when it holds)
the set {spectrum) of eigenvalues will be infinite in number (as well as dis-
crete). Finally, it is noted that the recursive minimization theorem can

also be formulated without the normalization requirement (25) by replacing

#(u) in the theorem by R(u).

10, Maximim-mirimum theorem and some implications. The pre-

ceding recursive minimum property of )\k depends on the lower eigenfuncticns
yl, sea Yy It is possible, however, to characterize the k'th eigenvalue
independentiy of the lower eigenfunctions, by means of a maximim-minimum
theorem, first emphasized by Courant, This theorem can be stated as
follows, Consider all comparison functions u which are orthogonal to

each of (k-1) given functions n P that is (u, N (p i)) =0(i=1...,k-~1).

,,wk-l,

Consider now the minimum, Rmin’ with respect to u, of the Rayleigh quotient

(9). Then the k'th eigenvalue \, is the maximum value of Rmin which can

k
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be obtained by varying the functions ¢ Perer®yy e

This theorem can be proven by first choosing a function in the form

u = i; a ¥ where Y; is the i'th normalized eigenfuncticn, A set cf a;,
not all zero, can be {ouad such that (uo, N J.) =0,j=1...,k-1, For,
these conditions will lead to (k-1) linear homogeneous algebraic equations
in k unknowns (al, oy ak). Such a set of equations will always have a non-

trivial solution (which need not be unique). From the linearity of M and N,
k

k
and Egs. (8a, b), one then finds R(uo) = Zl azi o (yi)/ Z‘ a? . But from
i= k i= X
R - - Y 2 % 2 ..
Eqs. (10) and (25), @(y,} = \,. Hence R(u ) _12"1 a% xi/iél a%. Thisisa

weighted zverage, with the non-negative weights azi, of )\1, cees )‘k' Hence
R(uo) < )‘k’ and thus Rmin < )\k' If the functions ¢ PPl are now

permitted to vary, it is known from the recursive minimum property of

A, that R . =\, wheng,k = y.. Thus, the maximum value of R, obtained
k min i i min

k
by varying o Pl is )\k'

It may be noted that the max-min theorem can be stated with the
orthogonality conditions on the comparison function u in the form (v, 0 i) =0
(i=1...,k-1). The proof would proceed exactly as above, except that in
the final step it is noted that now Rmin = )\k when o= N(Vi)‘

The following implication of the max-min theorem should be noted.
Consider two linear self-adjoint systems S and S' characierized by Eqgs.
(1)-(3), and assume for both sufficient conditions for which the preceding
minimum and max-min theorems will hold, Let the boundary conditions
be the same for S and S', but let the coefficients in S' be such that
R(u) < R'(u) for all comparison functions u. Then )‘k < )\1'< in each mode
(k). (In actual applications of this principle the Dirichlet forms of & (y)
and § (y), dcfined in Eqs, (28) below, are often useful). This is proven by

. . : . . . < R' ..
first noting that among comparison functions of a given set, R_. < R nin
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For, let u be the function of the set for which R is a minimum, and let u'
be the function of this set for which R' is a miminum; then Rmin = R(u) <
R{u') < R'(u') = R;nin' This immediately shows that )\1 < X'l. Moreover,
for the higher modes, let v by any comparison function orthogonal (with
the operator N) to the first (k-1) eigenfunctions of S, Thon )‘k = rr‘lrin R(v)
< m\irn R'(v). But by the max-min theorem for S!, m\}n R'(v) < )\_l; .

k .

enclosure theorem of Collatz [Ref. 1, pp. 131-137], which is a generalization

Hence )‘k <\ One application of this theorem is furnished by the

of that first given by Temple,

A second important general implication of the max-min theorem is
the following, If two self-adjoint systems S and S' satisty, as above, condi-
tions for the existence of the minima of R, and are the same except that S!
is more constrained than S, meaning that the class of comparison funticns
for S' is only a subset of that for S, then the eigenvalues of S' will be at
least as large as the respective eigenvalues of S, Proof: Letu ve any com-
parison function for S, and u' any comparison function for S', each ortho-
gonal to the first (k-1) eigenfunctions of S, Then, since the class of u' is a
subset of the class of u, rr‘xlin R(u) < n\mli'n R (u'). But )\k = n}lin R(u)., More-~

over, by the max-min theorem for 5', )\1; > n:11|n R(u'). Hence )k' > )\k'
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III, THE ENERGY QUOTIENT

11. Dirichle! forms, The various extremum theorems of Ch, II

concern the Rayleigh quotient R(u), defined by Eq. (9), where u is a com-
parison function, There is, however, a related quotient, to be called the

" energy quotient™, which also plays an important role both in the theory and
in applications, Before introducing this quotient, it is observed that with
M(y) and N(y) given as in Eqs., (3), successive integration by parts will

yield the following forms for ®y) and ¢ (y):

Py (v)2
ely) = [ [ ) £ 45" ) dx+ Mly)
a v=0
(28)

b n (V)Z
oy) = [ I Zo g, (v ) 1dx+ N_(y)
) a V=

where M, and N0 are quadratic forms in the end-point values of y aud its
derivatives up to the (2m-1)th and (2n-1)th orders, respectively, Eqs. (28)
are called Dirichlet forms of &y) and y(y), and hold for all (suitably differ-
entiable) y.

If the boundary conditions (2) make the system self-adjoint, and if
y is a comparison function, then it will be found that the boundary terms
M0 and No can in general be written respectively as quadratic formsin
the end-point values of y and its derivatives up to only the {m-1)th and
(n-1)th orders. A detailed proof of this is given in Ref, 13, A comparatively
simple, indirect type of proof can also ke given, using the variational prop-
erties established in section 6, Thus, from Eq. (20a), for comparison

functions vy,

b
f M(y) 5y dx = § (@ (y)/2) (29)
a
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However, with M(y) given by Eq. (3), the left side of Eq. (29) can also be
evaluated by successive integration by parts (noting, e,g., Eq. (16)), This

will yield the form:

b b7 (v),2
[ Miy)sydx = s[(/2) [ ( ), £ (y") )dx]
a a vE
m-1 b
+1) Ay eyl (30)
p=0 P a
where m
A ly)= ), (Pt g ) 01e) (31)
f i=p+l

Similar equations hold with M(y) replaced by N(y), and m, fi and Ap replaced
by n, g and Bp. 'Eqs. (30) and (31) hold for any suitably differentiable func-
tions y. From Eq. (29) it follows, however, that if y is a comparison func-
tion, then the right side of Eq. (30) must be expressible as the exact vaiia-
tion of some functional; in fact, comparing Eqs., (29) and (30), and noting

Eq. (28), it is seen that for comparison functions vy,

m-1 b
a

(P) " 2
z[pzO Ay sytl] = 8 M (32)

(p)

Since, however, 5y appears only for p < m - 1in the left side of Eq,

(32), it follows that in uny self-adjoint case M0 (and hence 2lso the AP)

(p)

must be expressible in terms of only the y'' ', p < m-l, when account is

taken of all the specific boundary conditions,

12, Natural, geometric and dynamical boundary conditions, For a

given variational problem, an " admissible™ function may be defined, quite
generally, as any function among the permitted class of competing functions

for that problem, An admissible funntion for the Rayleigh quotient in con-

junction with the self-adjoint system (1)-(3), for example, would be any
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comparison function (as previously defined). A "natural®™ boundary condi-
tion for a given variational problem may be defined, in general, as one
which woul” always be automatically satisfied by a solution of the problem,
although the admissible functions are not constrained to satisfy this con-~
dition in advance. A variational problem equivalent to a given differential
system (such as (1)-(3))may often be modified to enlarge the class of admis-
sible functions by modifying the functional to be stationary. This will be
illustrated here, and more generally in the next section, by an important
and well-known principle for the system (1)-(3),

In connection with the system (1)-(3), it will be convenient to define
" geometric® and " dynamical® boundary conditions, a terminology due tn
Biezeno and Gramme114. Let the maximum number of boundary conditions
in Eqs. (2) that can be formed to contain only y and its derivatives of order
(m-l) or lower be k, Then these k conditions will be called the " geometric™®
boundary conditions. The remaining (2m-k) conditions will include deriva-
tives of order m or 'i-" >r, and will be called the " dynamical® boundaz‘-y
conditions, Geometrical and dynamical bourdary conditions are also some-
times called respectively " essential® and " suppressible", or " remaining”,

after Kamke13 .

It will be shown in Section 13 that by introducing a modified
quotient (the"energy quotient" ) in piaceof the Rayleigh quotient, a variational
problem equivalent to (1)=(3) can be formulated in which the admissible
functions need only satisfy the geometric boundary conditions, The dynami-
cal boundary conditions will in this case be automatically satisfied by any
solution of the problem, and will therefore be the natural boundary condi-
tions of the prob'~m, This has been shown for second-order (Sturm-Liouville)

systems by Courant and Hilbert4, Sagann, and many others, Biezeno and

GrammelM have shown this for fourth-order (beam) systems, and an extension
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to general self-adjoint systems of 2m'th order has been given by Kamkew,
A simplified treatment for this general Zm'th order case will be given in
Section 13,

To illustrate the statements in the preceding paragraphs, as well
as the more general analysis to be given in the succeeding Section, consider

a beam of length L governed by the equation

(plxyy) =\ plx)y (33a)

(p(x), p{x) > 0). By successively integrating by parts, it is found that for
any (suitably differentiable) function u(x) and (small) arbitrary variations

5u,

L . L ) L
f [ (pu™) -)«.pu]&udx=6[f (pu' ,/Z)dx-.\f {pu“/2) dx ]
0 0 0

L
- pu!' §u'

L

+ (pu' )' §u (23b)

0

Suppose that the boundary conditions are:

y(0) = y1(0) = 0; (py'")' (L) = By(L); py"(L) = - ay' (L)

(fixed -elastic ends) and consider now only functions u which satisfy the geo-

metric boundary conditions u(0) = u'(0) = 0, Moreover, in view of the

L
in the boundary terms of (33%). Then from (33b), Eq.(33a) is thus seen

given dynamical boundary conditions, put pu'! = -a up, (pu" ' o= ¢} up,
L

heuristically to lead to the following va-iational problem:

L .2 2 2, o2
S[IOpu” dx+puL+uu'L->\Jo pu“dx] =0 (33c¢)

where the admissible function u is any function with continuous derivatives

e
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in [0, L] through order 4* which satisfies the given geometric boundary
conditions u(0) = u'(0) = 0. It will now be shown that (33c) is indeed equiva-
lent to the original problem,

Fron: ‘23b) it follows that for admissible functions v, i.e. satisfying

here u(0) = u'(d) = 0, Eq. (33c) implies

L=0

(334d)

L " ]
[ (pu) - Apu]Sudx+ [Pu, - (pu''). ] 6u, +[au’ + putt ] &u'
fO L L L L L

If §u(x) is arbitrary in (33d){(except for being adinissible) and 6uL, éu'L

Fek
are arbitrary , and independent of each other, then (33d) implies Eq. (33a)
together with the dynamical boundary conditions pu‘}_‘ = -a u'L , (pu! )i = ﬂuL.
The latter are thus the natural boundary conditions in the variational prob-

lem (33c). Condition (33c) is equivalent to

2 2
t
fo pu'! dx+ﬁu1 +au‘I

§R(u)z 6 T =0 (33e)

2
d
.fopu x

2

R (u) is the * energy quotient™ for this problem, and (33e) shows that the
original differential equation problem formvulated here is equivalent to making
R (u) stationary with respect to admissible functions u only required to satisfy
the geometric boundary conditions,

The preceding result will now be generalized to the 2m'th order self-

adjoint system (1)-(3).

* Actually, as might be surmised from the form (33c), u need only have
a continuous derivative in [a, b] through order m-l = 1, and a piecewise
continuous derivative of order m = 2, This will he proven in Chap, IV,

*% The importance of this arbitrariness will be illustrated in an actual
application in a subsequent report,
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13. Energy quotient, Using the Dirichlet forms (28), the " energy

quotient" R (u), for self-adjoint systems governed by (1)-{3), will be defined

by
Ru) = & (u)/{(u) (34a)
where
= L )AL o
By = [ [ ), £ ")) )dx+ M _ () (34b)
a v=0-
T R (v),% J
T = [ ZO g, @) Tdx+N_(u) (34¢)
a v =

and I\—'Io (u) and No(u) are the expressions for Mo(u) and No(u) after the values
of u and its derivatives at the end points, given by the boundary conditions,
have been inserted, and all the derivatives of u at the end points of order
m and higher have thus been eliminated from M and No‘ Note that if u is
a comparison function, then ®{u) = ®(u), ¥ (u) = y(u), R(u) = R(u). For the
example in Sect, 12, it will be found that l\-/-[o = B uZL +a u'Ij‘ , I-\Io = 0,

It will also be useful to define, analogously, the quantities E (u,. v)
and § (u, v) for admissible functions u and v. For this purpose, consider

first @ (u, v), as defined by (4), in conjunction with Eq. (3). Integrating by

parts, the following form is obtained:

m
® (v, v) = fb Y, £ u") ¥ lax (M (v, v) ]b (34d)
s . vRo v L o ) a
where Mo(u, v) is a bilinear form in u(r), v(s), 0<r <m-=-1 1<s<2m-l,

Suppose now that in the boundary term [Mo(u, v) ]: the values of u, v and
their derivatives according to the self-adjoint boundary conditions are in-
serted, thereby eliminating all derivatives above order (m-l). The result

will be denoted by M (u, v); F(u, v) is then defined by

&
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m

v, v) = f: (v‘éo ¢ u) )y ax 4 M (v, v) (34e)
with a similar definition of'q'; (u, v), with f replaced By g, and ﬁo oy ﬁo' It
should be noted that if u and v are admissible functions (satisfying only the
geometric boundary conditions), and the boundary conditions are self-
adjoint, then

IVIO(u, v) = I\—/io(v, u) ; 'ﬁo(u, v) = 'I-\'Io(v, u)

(3 4f)
Fu,v) = B(v,u); F(u,v) = §(v,u)

It may also be noted that from the definitions, T (u)si(u, u) ; E' (u)!E' (u, uj,
Finally it is observed that if u and v are comparison functions, then all
barred quantities will be identical with the corresponding unbarred quantities,
The following variational principle will now be establiished, WHen
the problem (1)-(3) is self-adjoint, the eigenfunctions y will be those 2m-
times differentiable” function: u in [a, b] satisfying the geometric boundary
conditions, for which ﬁ(u) assumes stationary values; these values will be
the corresponding eigenvalues \, In this connection the quantity
P = (1/2) % - Ay ) may be called the generalized total potential, since
the preceding principle is seen to be a generalization, in one dimension, of
the familiar principle of the stationary total potential in elasticity, The
principle implies that the uynamical boundary conditions will be automatically
satisfied,
To establish this principle it is first noted that from Eqs. (30) and
(34b, ¢), it follows that the statement §P = 0 is equivalent, for any (suitably

differentiable) functions y, to

% See first footnote of Section 12,
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b mel
2 J [ M(y) - A\N(y) ] 6y dx + 6 M_ - [2 Lo A(v)sy“”l
p= a
_ (35)
L B(Y)SY(p)] 5N, | =0

p=0

Suppose now that in Mo(y), the m'th and higher derivatives of y have been
eliminated in accordance with the (self-adjoint) boundary conditions, Then

the resulting form I\-/-I for M becomes:

m-1

M y) = Z £ (y) NOM (362)

p=0 a

where the Kp (y) (some or all of which may be zero) are certain linear func-
tions, depending on the particular boundary conditions, of y and/ or its deri-
vatives up to (m-l‘)th order, By virtue of the symmetrical properties of

¥ (u, v} and IV[O {u, v) for admissible functions (cf, Eqs. (34f) ) it follows nuw

that an equation corresponding to (32) will hold for variations in 1\71'0 with

respect to admissible functions, i, e.

_ m-1 _ (0) b
s M) =2 ), B () ey’ (36D)
p=0 a

A similar expression holds for § 1-\I-O(y), with A-p replaced by f’;p. Thus,

Eq. (35) becomes:

h m-1
[ IMy) - AN sy ax- [ ) 1A ) - K (] 5y
“a p=0 a
o (p)]b
AT p;o {80 - Bt} ss®12= o (372)

In the example of Sect, 12 the equation correspaonding te {37a) is Eq, {334d),

i =R = = A L ALY - ,_. :
in which B(p) Rp 0 for all p, (Ao)a (1*.0. ., (‘Al';a, (_'\( )a 0,

v A4 i ot oven e it
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(A ), = o™ h (A =Bup, (A} = -puy, (A) =av'. . Since

Rwi«) is arbitrary, Eq. (27a) is equivalent tc

Mivi - Y N(y) = 0 378
and .
=2
(Y 1T -A M+ \[B -5 ter B a
io;ﬁ : p()) - 2 p(? + \} p("' - BP(})}! &y ja- 0 (37c)

wherc B = !'3__‘ = 0 for p > u-l. Eq. {37b) si.ews that the differentiai equation
#

~

[4

(1) will he satisfied by y. Moreover, as repards E3. (37c}, suppose Arst
that all of the bounda~y conditions are dynamical. Then the {y‘p) at the a2rd

points will all 2e independer® of one another, and Eq. (37¢; implies

A a) - Afed 2] B (a) - B (a)]=0 (374}

a=23,b p=00L...,m-1

Egs. 137d) may be considered as 2 set of 2m linear zquaticns in the 2m
unknowas {cortaired in the Ap and Ep) yﬂ()(a), ya(‘b',-, m<k< 2m-1. Cne
solution is clearly that in wlich the y(k-, {a) have the valzes given by the dy-
namical bourndary conditions, sirce then Ap(n) = .Ip(n) and B?(c.) = §?(n\.
Morecver, this wiil be the only soiution of Egs. {3:4), since as can be seen

from the form of A _(y} znd BP‘j') in =q. (31 the dezerminant of the equa-

oy

tions will not be zero. In case some of the boundary concitions, say ¢ of
them, are geometric this argument may be modified by noting that there
wi.. now be f {lirear) reiations among the Sy!p)(o), with (2m-f) of the
sy(P)(a) whir® wili te independent of cne another, Hence Egs. (37¢) wil”
now vield (2Zm-f) lirear equations in {2m-{) derivatives of v of m'tk and
higher orders at the end peoints. Cnce again, these will be found “o have

as their unique soluticn the (Zm-f) dynamical boundary condsiiins cf the

problem,

[P R STPRRIY PP
0
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Thus the variaticnal conditior §P = 0@ with respect to 2m-times
differentiable functions sa‘isfying the geometric houndary conditions has
been shown (o imply satisfaction of Eq. {1}, together wich the dynamical,
as wel: as geometric, boundary conditiors, It follows that the extremal
solutions y will pe eigenfunctions of (1)-(3), with corresponding eigenvalues
L= R{y) = f{-(y_\. In a m.anner previocusly shewn for ths corresponding theorem
on the Rayleigh quctient (cf. Eq. (23)), the condition § P=90 is equivalent to
§ R = 0. Moreover, in a manner analogcus o that for R, the energy quotient
R can be characterized by minimum and max-mir properties, In particular,
all of the n:inimum and max-min theorems which have been established in
Chapter I for the Ravleigh quotient R remain valid when R is replaced by
R Jis repliaced by - in the orthogonality constraint conditions for the higher

modes, and the comparison functions need only satisiy the geometric bouadary

conditions._
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IV. EXISTENCE OF MINIMIZING FUNCTIONS, INFINITE
GROWTH CF THE EIGENVAIUES

14, Null spectra; continuous spectra, The minimum, and max-min,

theorems which have been proven here for the eigenvalues and eigenfunctions
of self-adjoint problems are thus far all conditional in nature inasmuch as
it was assumed that certain relevant minimizing functions exist, In this
chapter it will be proven, under suitable sufficient conditions, that these
do exist.

In actual buckiing and structural vibration problems, conditions are
usually automatically sufficient for the existence of minimizing functions.
In such cases, as already seen in Sect., 9, the eigenvalues are infinite in
number, but discrete (denumerable), with a lowest eigenvalue )1. Thus, to
one accustomed te such types of problems; and to such a set (spectrum) of
eigenvalues, the existence of minimizing fanctions, which in specific cases
would te equivalent, e.g., to the existence of buckling or vibration mode-~
shapes, might at first appear obvicus, and hardly in need of proof. It will
be seen, however, that the existence of such functions, even under " ordinary®
sufficient conditions, is mathematically far from cbvious, and is indeed one
of the fundamental and rnore difficult, but interesting, aspects of the theory.
Morecover, there are important classes of problems (occurring, e,g., in
physics) involving linear differential equations in which the spectrum of
eigenvalues can be of a quite different nature from the discrete spectrum
indicated above, This may occur when the differential equation is singular
at one {or both) end points, or when the domain [a, b] is infinite, In such
cases, the spectrum of eigenvalues may still be of the ® customary" type
indicated above, but it may also be of a variety of different typés, depending

on the differential equation and on the boundary conditions (which now may

A blf Wrsspmsr e 0
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even be less in number than the order of the differential equation). For
example, no eigenvalues at all may exist, or the spectrum may consist of

a continuous set of numbers, In the first case, the spectrum may be called
" null", and in the second case the spectrum is called " continuous", A
simple example will suffice here to indicate these possibilities,

Consider the (" Euler-Cauchy" ) differential equation

2 "
x"y'") = Ny (38a)

with the domain [0, 1] for x. Eq. (38a) has a (regular) singular point x = 0,
but is nevertheless of the type {1), (3). The general solution of this equation
is

y = Ax + Bx (38b)

. %
where A and B are arbitrary constants, and n), n, are the roots of the
equation

2% + n-X=0 (38¢)

(2) Suppose the boundary conditions are:
y(0) = y(1) = 0 (38d)

Then the system (38a), (38d) is not only of the type (1) ~ (3) but is also
self-adjoint. It will be readily found, however, that there are no values of
A for which a non-trivial solution for y will exist,

(b) Le: the boundary conditions now be only

y(0) = 0 (38e)

n

*
If n, = np, then the general solution is y = x 1 (A + B log x).
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Then (consiaering, for simplicity, only the real eigenvalues of \) it will be
found that the set of real values of \ for a non-trivial solution is A > 0, This
is a continuous spectrum, (If (38e) is replaced by y(0) = finite, then the set
of real values for \ will be \ > 0).

The above illustration indicates the possibilities of a continuous
spectrum as well as of no (non-trivial) solution at all (null spectrumj., Thus,
the existence of minimizing functions, etc.,, appearing in the theorems of the
preceding sections cannot mathematically be taken for granted apriori, but
must be proven, under suitable sufficient conditions,

The type of proof, based on minimizing sequences, to be given here
will also be relevant in the proof, to be given in a subsequent report, of the

convergence of the Ritz-Galerkin type of methods in all modes,

15, Auxiliary theorems on point sets and functions. In the proofs to

follow a number of well-known theorems on infinite sets S of real numbers
will be used, First it is recalled that a limit point, or point of accumulation,
of S is defined as a point P such that in any neighborhood of P there exists
an element of S distinct from P, P itself may or may not be an element of
S. The following theorems are now roted,

(a) If S has a lower bound, then it has a greatest lower bound,

(b) If S has a greatest lower bound B,then B must have at least one
of the following two properties: B is a member of S, or B is a limit point of

*
S. (The proof follows almost immediately from the definitions ),

* By definition of greatest lower bound, there will be at least one element
s in S such that s < B + € for anye > 0, If Bis not in S, then this element
s must be distinct from B, Hence if B is not in S, B must be a limit point
of S. (This does not preclude the possibility that B is both in S and also
a limit point of S),




{c) If S has a limit point P, then there is a sequence of elements

e_in S such that lim e = P,
n n—-eco n
(d) If S is a bounded infinite set, then there exists at least one
limit point of S, (Bolzanc -Weierstrass t' eorem),

(e) Aninfinite sequence {sk} of non-decreasing realnumbers with an

upper boundis convergent; its limitis the leastupper bound of the numbers 81"

(f} An infinite sequence {sk } of non-increasing real numbers with
a lower bound is convergent; its limit is the greatest lower bound of 81 e
Theorems (a) and (c)-(f) are proven, for example, in Ref, 15, In view of
theorem (c), it is noted that the Bolzano-Weierstrass thecrem (d) can also
be stated as follows:

(g) If S is a bounded infinite set then there exists a sequence of ele-
ments e in S which converges to a limit point of S,

In addition to the above theorems on sets and sequences of numbers,
several general theorems on functions will be needed. The notation of
Eqgs. (4) will be used, |

(h) Let M be any linear differential operator, and let u, v be func-

tions of a class for which the M-norm exists and for which M is symmetric,

i,e,, ®(u,v) = @ (v,u) for all u, v of the class, Then
2 . 2
d(ru+sv)=r D(u)+ 3 ®(u,v)+ s™ @ (v) (39)

where r and s are any constants, Eq. (39) follows readily from the defini-
tions, Supposc now that M is positive semidefinite, Then

2
(2w, v)) < @(u)- &(v) (40a)

The inequality (40a) follows by letting s = 11in (39) and considering the right

side of (39) as a quadratic in r, Since the latter cannot be negative for any
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real r, it must either have no real roots or a double root, This require-
ment immediately yields (40a), For the special case of M = I, the identity

operator, (40a) is the well-known Cauchy-Schwarz-Bunyakowsky inequality:
(v < (@) (v, ) (40b)

(i) Let fj(x) be a sequence of differentiable functions in [a, b],
and let the sequence fj' (x) converge uniformly in [a, b] to a function ¢ (x)
Moreover, let there be at least one point ¢ in [a, b] for which the sequence
fj(g) converges, Then the sequence fj(x) will converge uniformly in [a, b}
to a function F(x), such that 1‘(x) = ¢ (x). This is proven in Ref, 16(with
series instead of sequences), and is related to differentiation of an infinite
series or sequence,

(j) If for a sequence of functions uh(x), Ihi’ fb f(x) ui (xz) dx |
is bounded, and f(x) is continuous and > 0 in [a,b], t?len Jhg f ui‘l (x) dx
will be bounded, This is readily proven by noting that the hypothises imply
Ih < A, and also f(x) > t(); > 0 in [a, b],where A and C are fixed numbers.
Hence 0 < J, < (1/ C) f__ f(x) ui dx < A/cC.

(k) Let ¢ (x) be aziven piecewise continuous function in {a, b],
and w(x) an arbitrary function with a continuous (m+ 1)th derivative in

[a, b] satisfying the boundary conditions

wia) = w"w) = o, v =0,1...,m (41a)
Suppose that
b
[ o w™ax =0 (41b)

a

for all w, Then ¢ {x) must be a polynomial, Pm,of m'th or lower degree,

This is a theorem of Zermelo.
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Proof, If ¢ (x) = Pm' then (41lb) is satisfied, since

b
[ P_x) L R (41c)
a

by successive integrations by parts, with the conditions (4la). To show :
that ¢ (x) cannot be any other function, let P_(x) = C +C. x+ .., +C xm,
m o 1 m

where the Ci are determineci so that

b, b .
falem(x)dx= faxlcp(x)dx, i=0,1,...,m (41d)

Eqs. (41d) are a set of (m + 1) linear equations in the fm + 1) unknowns

Co’ .os Cm” and will have a unique solution for a given ¢ (x). For, in the
special case in which ¢ (x) is a polynomial of m'th or lower degree, the

Ci would have to .sa.tisfy (41d), while for such a ¢ (x) not identically zero,
the right side would be non-zero at least for some i, Hence, since a
solution for the Ci exists in that case, the determinant of the system in
that case cannot vanish, and therefore cannot vanish for any given ¢, since

the determinant is the same for all 9. It is now noted from Eqs, (4lb) and 1

(4lc) that for any given g,

b
[ w-pyw™tax <o (4le)
m
a
for all w, Moreover, a w(x) exists (i.e,, satisfring (4la)) such tha* }
wm’”(x) = olx) - P_(x) (41f)

The required w(x) is obtained by successive quadratures of (41f) each

satisfying the boundary conditions at x = a in (4la). The conditions at

x = b will then be automatically satisfied, For, the first quadrature yields

w ™) = fx [o (x) - P_(x)] dx; by vi-tue of (41d) for i = 0, (4la) is satis-
2 P mid o] °

fied for v = m. It is next noted that Ix = f X w (x)dx = xw a
a
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b

b
- w™ay = - | w™hx) dx. But (41d) with i =1 and (41f) imply I, = 0,

1

a »
Hence “;m 1)(x) = f w(m)(x) dx will now satisfy (4la) for v = m and m-1,
a b
By considering I, = f xz w(mﬂ)(x) dx, etc, one can finally show that w(x)
- a

will satisfy all the boundary conditions of (4la), In (4le) now, let w (m + l)(x)

be given by (41f). Then this will imply ¢ (x) = Pm(x) .
(1) Let uh(x) be an infinite sequence of functions each of which has
continuous derivatives in [a, b] through some order p, Moreover, for some
q, f 0 < q < p), let there be an interval (xl, xz) in [a, b] for which the sequence
J*2

Jxl [uh

gh’ y in [a, b] such that for each v, @ < v < p, the sequence ug’)(gh, V) is

(q)(x) ]2 dx is bounded, Then there will exist a sequence of points

bounded, This is an important theorem here which can be proven in the
manner of Ref, 13, pp. 85-87, although tie theorem is not explicitly stated
there in this generalized form,

(m) Finally, the theorem of Arzela, also known as the theorem
of Ascoli, must be notéd. This is an extension of theorem (g) to functions,
In stating this theorrm it is first necessary to define a set of equicontinuous
functions, A set of functions f(x) is said to be equicontinuous if for every
€ > 0 there exists a § > 0, depending on € but not on the particular function
f(x) of the set, such that if [x, - xzf <8(e), then [f(x)) - f(xz)[ < e, where

X; and x, are in the domain D of the independent variable, The theorem

2
of Arzela states that a set of uniformly bounded and equicontinuous functions
in a given bounded domain D is compact, i.e. from such a set it is possible

to choose a sequence of functions which converges uniformly to a continu-

ous limit function in D, This theorem is proven in Refs, 4 and 6,

16, Existence of a minimizing sequence for R. An " admissible®

function u for the energy quotient R(u) will henceforth be defined as one

which satisfies the geometric boundary conditions, and has a continucus

e - st nie
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(m-1)th derivative, and u piecewise continuous m'th derivative in [a, b].

It will be assumed that M is positive semidefinite and N positive definite.
Then for ary admissible function u, au) > 0, Ji (u) > 0 and hence ﬁ(u) > 0,
Therefore by auxiliary theorem (a), ﬁ(u) has a greatest lower bound, say

B, Consider now the set S of all values _ﬁ(u) for admissible functions u,

If S is finite then the function for which .]:'_{(u) assumes the lowest value will
be the minimizing function, and the existence of a minimizing function for

R is thus proven, Suppose, then, that S ic infinite. Then trom auxiliary
theorem (b), Bis a member of S or it is a limit point of S, In the former
case, the existence of a minimi-ing admissible function for R is again proven.
Hence suppose thatB is a limit point of S. Then from auxiliary theorem (.),
there exists a sequence of values of _ﬁ(u), with the corresponding sequence

{uh} of admissible functions u,, such that

hl

lim R (u,) =B (42)
h—e o

A sequence such as 1, is called a minimizing sequence for R (u), Note that
the existence of such a sequence has been proven nere without the necessity
of specifying how such a sequence is to be constructed in practice. (The
actual construction of such sequences forms, in fact, the basis of such
methods as the Rayleigh-Ritz to be discussed in a second report.)

The existence, just proven, of a minimizing sequence satisfying
an equation of the type (42), does not per se necessarily imply that an ad-
missible function U exists for which R (U) = B. A simple illustration of
this, due to Weierstrass and given in Ref, 8, is the following, Find a

continuous function y, with a continuous derivative in [-1,1], which satis-

fies the boundary conditions

y(-1) = -1, y(1) = 1 , (43a)
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and for which the functional
1

e | %y dax (43b)

is a minimum, Since I{y) > 0, I(v) has a lower bound, and hence a greatest

lower bound, say B, > 0. The value of B is here zero, as can be shown by

considering the set of functions Ve (x) defined by
Ye (x) = arctan (x/¢€ )/ arctan (1/¢) (43c)

where € is a positive number, These functions are clearly admissible
here, (They satisfy (43a) and have a continvous derivative in [-1, 1] )

Moreover,
1

I (YE) < '{1 (x2 + e Z) y'ez dx = 2¢ /arctan (1/¢) (434d)

From (434d) it follows that I(yé_ ) <an be made as close to zero as desired
by choosing 2 sufficiently small € > 0, Hence the greatest lower bound of
I{ly)isB = 0, and a miriimizing sequence for I(y) would be Ve (x), with
(for example)e = 1/n, n=1,2,,.. . Nevertheless there does not exist
any admissible function y for which I(y) = b = 0, For, such » function
would here have to be such that the integrand xz y! 2 is identically zero;
the only such function is y = const,, which cannot satisfy the toundary
conditions (43a), It may also be noted, incidentally, that although each
function Ve (x) of the minimizing sequence (43d) is continuous in [~} 1],
the limit Y(x) of this sequence as € —» 0 is a discontinuous function:
T{x) = -=lfor = 1< x < 07 ¥Y(C)=0; ¥Y(x)=1for 0<x < l. (The con-
vergence of Ve (x) to Y(x} is non~uniform).

It will now be shown, under certain suitable sufficient conditions,
that an admissible function ) for which R(U) = B does exist. The proof,

based on applying the theorem of Arzela to a minimizing sequence for R{u),

will be along the lines of Ref. 13,

B bt P o 4

. e



17. Assumptions. The problem defined by Eqgs, (i) - (3) is assumed

self-adjoint, and fv(x) and gv(x) are assumed to have continuous derivatives

in [a, b] through orc. Moreover, it is assumed that:
£f.x)>0; f(x)>0, LX) 2 (v=0,...,me-l)
f(x)+g (x)# 0; M () > 0;
¥la) > 0

where u is any admissible function not identically zero. These assumptions

have all been grouped together for convenience, They are, of course, not

g v 7 “EE ']

entirely independent of one another, In particular, the assumptions on
fv(x), gv(x), ﬁo(u) and No(u) imply -\F (u)> 0, ®(u) > 0, Here it is assumed
in particular that J;‘ (u) >0, 1.e, N is a positive definite operator, The con- k

dition fo(x) + go(x) # 0 can be relaxed, as will be indicated subsequently.

Although the assumpticns (44) may perhaps at first sight appear somewhat
restrictive, it is noted that, among other possible physical situations,
they are typically satisfied in a variety of actual structural backling and

vibration problems.

From{y (u) >0, & (u) > 0 it follows that R (u) > 0, and therefore
that R (u) has a greatest lower bound, B, As shown in Section 16, there will
hence exist a minimizing sequence of admis sible functions uh(x), h=142,...,

for ﬁ(u). Since :b- (uh) > 0, the functions uh(x) may be normalized so that

m (g,) =1 (45a)

Then from Eq., (42),

lim E(uh) =B (45b)
h =" o

The nature and convergence of the sequence uh(x) and of the sequence. of

derivatives of Y, {x) will now be analyzed,




riform comvergense o z.. L), = 1 m-1l. The
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follcwing statement will first be proved. {i} Tur every 0 < » < m-l and

iv)

evesy 2, there is 2 point. £, in{a, D] so that the sequence o €, LhzL2,...,
. v

e - < .

is boundid. This 5 mrover By first noting from (33b, ¢k {34} and 432, 5:

] . x
. - - - >
thaay | {f Ve g(hx.h 2x must be heandaa, Hence, siznce fle T 9
- Q) » ~ — -
a X3

mst be bourdag, where b - ) is any imterval in ‘2,b!. From ass.mprioas

2 Zax
3
“o ' gohh

(44) there must exist an interval {x! Z} inTa, b for which io {x)+ golx) >3,
-
Cunsequerntiy, from the awniliary thecremn ) of section 15, !; ‘ui’
ke |

te lounded Mt2tement (1) then follows from the anxiliary theorem 1) with

dx wiil

p =m-1, 3 =3 there,

With the wse 3f stateinent {1) it 2r be showmn that: i2)For raca v,

< v £ m-l the sequence u(:) {x} ¢k =3 2....)3s oniformiy Luunded i

‘i -

{3.%}. Fer,

(x\rvl) 'l'n" L} *
ix) = (§a m_!)* 1 ,_‘(:zss),‘.t  146)
. h
Ty m-}
b
But iroin {33b), {45b), sad assumpmions (1), tie sequence | f.le 'm" dx

\]

=
must be bourndsd; hence, since :"p(r_) > 0 and is continucus in [a, bl, the

b
fm . . .
seyuence {-1:“ ) éx nv.st 2iso be bounded (awdiiiary theorem ;.

Mcreover, from (40b),

= p b . 2 e
Cri™ag < [pead | ! Th ax ;
- a e ."k i
henme | !u.{m' 1dx must be bounded. It then fecllows from Eq. (46), in
& - (m-1)
conjunction with statement {I), that she scquence \,."' {x) is uniformly

boundced in T2, bl. From Eq. {46) with m svccessivelv now reclaced by
{m-1), Im-2), etc.,statement {2} is readily seen to follow {or each of tre

v indicateqd,
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It will ace be provem that: 3) Foreacs y, © < 3 < m-l, the

) . - -
sequence a'h" (x) is equ.contiacous in f2,b]. For 2 < » < m-2, statement

.- «';oﬁ....-',,

{3) {olloas readily bx cbeerving, from si:atement {2} <hat for eack szch

-3 ; there wiil be a positive T . m*pemezt of i, such that for any x, and X,

e

in ya. bl, (',(Iz) ")f!-l‘r = : z'&:' "! ) éx : < I, -xi?C'-
z. ' <

Thus, taximg 8§{¢) <€’/ C . the equiconticuity definition (gives i 2uxilian

- . . ) £
theorem {m)) is seen to de satisfied for the sequence u‘g l(x). 0 £ -< m-2.

U A i 5 YA

For v = m-1, it is first observed that since f'n(x) > U and is comtinvr™us In
{a.b], ther= is a positive D suck that i (x1> Sin fa, bl. Hence, using aiso

{40%:),

. < Pxyex! * te, /D, from (340) and (44). Simce by (45D),
€{o, ) is bounded, statemeat {3) is thus seen to hold for v = m - L,

Cne can now prove the fcliowing: (4) For a suitably chosen s—b-
seGguence (whick may again be dencted by k) of the indices 3, -ne fuacticns
uh(xB and their deriratives nE '(::) ¢ < v < m-]l, comverge uriformiy to

ar admissibie function Uix) aad to U(V)(x), respectively, where Uix) kas

continuous derivatives through order {m-I) in {2, b}, and satisfies the

geometric boundary conditions. This statement, which is the main result
. of this Sacticn, follows by fizst observing irom statements (2) and {3),

and the theorerm of Arze:2 {auxiliary theorem (m)) appliec fnr 1 = m-1,

that a subsequence {which may stili be dencted by k) of the indices % can

be chosen s© thaet
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I Comiinuees oLt in [;, b'g_ \Mcreover, from statement

s
n

ahere ¥ Jxb

-y

v .. .
12) aoplied te u. fa) and v auxiliary tnesrem (2) it {ollows that one can

cncose the above subsegQuence so that =2, of the Seguences ugv)(a),
< « < .1, comverges., I zuxiliary theorem {i) with ij(x) = z.lsm'z)k),
224 § = a, 2n€ {rom the uniferm convergence in (47), it then follows that
‘{xy is uniformiy convergent in [a, b], witk a limit func-
tion tw-.‘(ﬂ such tnat l'm'_z{x) = l’m_l(x). Applicatior of auxiliary theorem
(1) now tc the sequence u;m-”lx) stows that the sequence u.;m°3)(x) will
converge amiformly to a function U s(x), where U“;-S(x) =T ix)
Further stccessive application of auxiliary thecrem (i) thus shows that
u‘.;)(x) ccavirges uni. nraly to a limit functior ’Jv(x), where for 0 <v < m-2,
T {x) = Uv{—l(ﬂ' Deaoting I.’o(x) by Ufx), it is seen that stateinent (4) will
readily follow., The fact that Uix) =ill satisfy the geometric boundary con-
ditions {whick invslve omly l.’"), 6 <v < m-1) fcliows, aof course, irom the

rest of statemeat (4) just proven, and from the fact that each mﬁ(x) satisfics

these cconéitions. Statement {4 and Eq. {#5a) imbly that

s{Cy=1 (48)

ie. Differentiability of Ulx) throagh 2m'th crder, The fonctor

T"{x) ohtained in Section 1§ will now be shown tc have cariinuous derivativz ;
in [2, b! through crder 2m. Difierentiability of Ufx) beyond the (n:-1)th
order must be proveéd for at lezst two reasoms  First, in crder to shew
that R {¥) = B, it will be necessary to show that the derivative of at ieast
mik orcer of i exists inia, bj. Second, it wili then be desired to apply

the resulis of Seztion 13 1o show that U must be a comparison function
minimizing tne Ravieigh quotient R. The anaiysis of Section 13, however,
assumes the 2m't+h differentiability of U,

The following statement (A) wiil first be nroven.
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A. Let \-hix) be a seguen-e of admissible {unctions for which @ (\'l_l

and o (v_1are bounded, and for wnich

h
Sy, v)=0 (49a)
Then
:_li_TT?‘ (u,, vy 3 = 3 (49n.

Proof: It is noted (Eqs. (34f) ) that for admissible functioas u, v and
self-adicint boundary conditions, 3{\1. v) = 2 {v, uj, : {u, ¥v) = < {(v,u). Hence
Eq. (39) will held fer ®and & . Let now ry aad sy, be any chosen sequence
of constants. Then S Th Y% + St Yh will be admissible functioas, and
hence % (w,)/3 (w,) > B. From Egs. (39) for #and 5, (45a), and (43a),
this inequality, letting 5 > 0, is fourd to imply

r 2

LT r - - -
"_u(uh,vh;+(~;‘—‘-) [ €} -Bi> -[F(e) -BIv,)]
h h ‘ ' ‘

-
2(~

{49%¢)

This must kuld for all b, 1% and s it 13 now cobserved that by the hypothesis,

he
the ertire quantity on the right side of (4%c) will remain bounced as h ;-m,
and be negative or zero. Moreover. aithougk [@ (uh) - Bl wif{. be non-
negative, it will app~cach zero as h —ac {Eq. (45b)). Consequently,in

order that (45c) hold as b — o for arkitrary :'h,/ s, b Ec. [(4%9) must hold,
For cotherwise, for some sufficientiy large i, ore counld aitways £ind an

(r?/ sh) of opposite sign to (uh. vh) in cuch a2 way that (4%c¢) would be viclated.

With the aid of statement (A}, the follewiny wiil be proven:

(B) For every zdmissible functiom w{x),
3“%'“’ -BE(U.H. w)—~C ash— oo, {494)
To prove this, let

vy o= wey 3y, w) (49¢)
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Then v, will be an admissitle function; Eq. (39) may theresfore be applied

to ¥, to yield

2 (vh) =3 {w) - Z:!a- (uh, w) ® (u.n, w) 4+ :};Z (uh, wv) ? (uh) (499)

From {45a, b), ® (uh) and U (uh) will be bounded as h — o ; hence from
(49a}, 2 (uh, w) and n (u.h. w) will be bounded as h—~ . Therefore (49f)
implies that also & (v, ) will be bounded. From (39) applied to ¥(v,), and
from (45a), it follows that v (vh) =3 {w) - Ez(uh,w). Hence the :!J_ (vh) will
be bounded. It is finally noted from (49e) that v (ay» ) = b (9, w) -3¢ fa,, w).
3 (uh) = 0. Therefore statement {(A) can be applied here, o yield
F) tu,,v )~ 0ash-—-c. With v, given by (49¢), this yields ® (uy, w) -
() v {u,. w)— 0, which in view of (45b) yieids (49d).
It can now be shown that ﬁ(x} has a continuous 2m!'th derivative in

[a,b]. Let wi{x), asin the auriliary theorem (k) of Section 35, be an arbitrary
funrtion with a continuous (in 4 1)th derivative in [2, b}, satisfying the bound-
ary conditions {4la). For such a fonction h.d_) (e, %) = 0. I-Qo (e, w) = 0,
and

b b

m
®(u,, w)-BY (o, %) = | (Zefv o =0hax -8 [ ¢
a v= av

L (v _(v)
'va‘lh \

Mx
(45g)

B

fof. Eg. {34e)). By integration by parts, each term on the right side of

(49g) can be transformed so that it will have a factor of w(m+l’. For this

purpose, as in Ref. 13, let

(v)_ [6}, .. i < ~[€]
iv Yh = Fv (“‘n) ’ gvuh - Cv “uh) (49h}
x
fic-2) S _
-f Fy fu, ) dx = F!:(} (v,); J!a G[v't 1 le,) dx 's’G[V“} ()

L3
Note that for k > 0 the }‘:k'(uh) are essentially integrals (k = 1) or iterated




integrals (k >!) cf f u.( v? Iriegrating by parts, and using conditions

\4la), one then finds

b
f f u (v) (-l)m+l f F‘[;m-v+l] (uh) w(m-i-l) dx (49i)

N

a
and a similar etiuation with f and F replaced by g and G, respectively.
From statement (B) (see Eq. {49d)), the left side of (49g) approaches

zero as h — o, and hence from {(49i),

-b m {
Bm | < F‘Em vl] (o) - B v G[rn vil] (u },)f mtl) o
h—- o "a v=0 ¢ V‘;o
(457)
For the term with v = m, it is noted that
x x
i -1) (m-1)

g (v} = f (m) = f o™ - [ fru dx

m h' m “h L S, m h (49Kk)

Consequently, it is seen that onl u and its derivatives through (m-1)th
order appear ir (49i). Hence in view of statement (4) of Section 18, one may
replace u, ty U in (49;) in passing to the limit, and infer
n
- m-v+il
I3 5‘ plmtll g 5 v glmoHl (U)‘w(mu) dx = 0
2 |v=0 vZo v ;

Applyi ng the auxilary theorem (k) of Section 15, it now follows that

m n
: JOCE vt}
S oplmviliyop Y gl p o (490

i

v=0 VY v=0

where Pm(x) is a polynomial of degree m or iess, %ence the leii side ol
(44 1)is (continuously) differentiable m {and more) times.

Recalling from statement (4) of Section '8 that U is {continuously)
differentiabl> at least through order (m-1), it is noted that each individual
term on the left side of (49¢) for which 0 < v < m-i is differentiable,
This includes all terms in (492 ) except the single term F‘E] (U), which

must therefore also be differentiable., But by (49k), noting that its right

b

amd i
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side involves only u.(m‘n, it follows that

n

4y X x ;
U(m " - fop ylm l dx. Since the integral

n
a
here 1s diffetentiable, it follows that fm Um-l, and hence that U(:'n-l)’ is

)y =
F o (U)=f_

differentiable. Thus U mmust have continuous derivatives in [a, b] through
at least m'th order,
To prove U differentiable beyond the m'th order, it is noted, from

the definitions {49h), that by differentiating (491) now once, one obtains

m-1l n
(m), v lm-v] Y ~[m-v] e
¢ U™y I, F! (U) - B v2=‘o G (Ui=P__, (49m)

Each individual term beyond the first on the left side of Eq. (49m) is dif-
ferentiable. Hence the first term must also be Qifferentiable, and this
readily implies U(m) differentiable. By successively differentiating (49m)

now one can similarly conclude successively that U‘mﬂ), U(rn+2)

9 e0 sy are
differentiable, until one finally concludes that U has continuous derivatives

ir {a, b) through order 2m.

20. Existerce of minimizing functions for R and R. It will now be

shown that

R(U) =B (50aj

Since U 1s admissible, it follows from (49d) that

E(uh,U)-BE(u,U)—-Oash—-m (50d)

In passing to the limit here, statement (4) of Section 18 implies that one

may replace u, by U on the left side of (50b) in all terms other than the

single term containing u}fm). This term is
b 1 b b
r ,(m) {m) . _  (m-]) (m) (m-1),. (m)}!
J.afm\.h v ax = u, £, U ’a-f’ u, e T ax

(50¢)

oy
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One may now consider the limit of the right side of (50c) as h— o, and

note that here one may replace wy by U 1 the limit, The result then be-

) . . .
(o} dx, which is equivalent to replacing uy

by U on the left side of (50c). It follows then that (50} implies ® (U) - B (U)

comes identically fb fm U(m) U
a

= 0, which ie equivalent to (50a), since ¥ (U) = 1,

Thus, it nas been prowed that the function U(x) is indeed a minimiz-
ing admissible function for R (u). It has also bcen proved that this function
has continuous derivatives through order 2m in [a,b]. Hence from Section
13, it follows that U will also be a comparisonfunction satisfying (1)-(3), and
hence an eigenfunction of (1)~(3) corresponding to the lowest eigenvalue
Ll = B, Thus U is also a comparison function minimizing the Rayleigh
quotient R. The derivation given here shows that when the energy quotient
R is minimized,this eigenfunction can be obtained from a minimizing sequence
of admissible functions which need only satisfy the geomeiric boundary con-
ditions, and have a continuous (m - 1lth, and piccewise continous m'th
derivaiive in [a,b]. The existence of relevant minimizing functions for R
(ang thenc= for R) for the k'th mode can be similarly proven, with the
functions uh(x} now required to he orthogonal, in the sense of i (uh, yi),
to the first (k - 1) eigenfunctions.

It is noted, finally. that in assumptions (44) the condition “o + g0¥ 9,
which is used only in the procf of statement (1) of Section 18, can, if necessary,
often be relaxed, It will suffice to illustrate this with a differential equation
of the form ( p(x} v )” + Ay'" = 0, p(x) > 0. Such an equation pertains,
for example, to the static buckling of 'a column. Clearly, the condition
fo + g°¢0 does not hold here, It is noted, however, from the remainder
of assumptions (44) and from Eqs, (34b, c) and {45a, b) that in general, re-

gardless of fo and g, f gl(x) u'hzdx must be bounded as h — . In the
a Y
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b
present evample, gl(w) = 1; hence f u'}z1 dx must be bounded, Therefore,
from auxiliary theorem (£) of Sectio?x 15 with q = 1, statemert (1) of Sec~
tion 18 remains valid at least for1 < v < m -1, If now (as would usually
be the case in the present illustration) one of the boundary conditions re-
quires that y itself vanish at x = a or b, then statement (1) will hold also
for v = 0, and thus for all 0 < v < m -1, as previously, If, on the other
hand, y is not prescribed to vanish at an end, but is included in the boundary
conditions and appears in ITIIO or -1\-10, then fromthe assumptions _1\-/10?. 0, EOZ 0
and the other assumptions in {14}, inconjunctionwith (45a, b), it maybe readily
inferred that y itself must remain bounded at an end point, so that state-
ment (1) is salid aiso for v = 0, Finally, if the boundary conditions do not
involve y at all, then for self-adjointness, v will not appear in either M o
or ﬁo (for admissible functions), and y itself will hence not be relevant.
The existence proof can then be carried out for v > 1, to show that there
will exist z2n admissible function U'(x) for which R attains its greatest lower

bound (minimum),

21. Unbounded growth of the eigenvaluea, When sufficient condi-

tions such as (44) hold so that the minimizing functions for R or R, appear-
ing in the theorems of Sections 8, 9 and 13 exist, then as seen in Section 9,
there will be an infinite, but discrete, set of eigenvaluves Ak of (1}~(3) which

can be ordered in a non-decreasing sequerre )\1 < A Henceforth

<
2 — LI L
under such conditions, the system (1)-(3) will be called "discrete®, It will
now be shown that for such systems the eigenvalues are unbounded as

k— oo, i.e.

lim = (51)
k— o )‘(

This can be proven by supposing the contrary to hold. Then the
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Kk would have an upper bound,and from auxiliary theorem (e) of Section 15,

lim X.k = A (52a)
k— oo

e
\,

N
where A is a finite number, Let Vi be the corresponding normalized
eigenfunctions, Then, since R (yk) = \e

§ ) =1, lim @ (y

Y= A (52b)
k— oo k

Thus the ykwould satisfy the same conditions, namely admissibility and

Eqs. (45a,b) (with B replaced by A) as the u, functions of Section 18,
Following now the proof (statements (1)-(4)) in that Section, it is then

clear (under assumptions (44))that from the ¥y one could form a subsequence
of functions, that may still be denoted by Vyer which would converge uni-

(v)

formly in [a, b] to an admissible function Y (say); moreover the Yy

would converge uniformly toY(v), 0< v<m-i From this it follows

that yp(‘ v)(x) - yc:v) (x) —~ 0 in [a, b] as p,q — o ; hence, since n X m-],
lim §(y_-y) =0 (52c)
p,q—co 1

Since Eq. (39) holds for | , however,

b (yp- vq) =y (vp) - 2y (vp. vq) + (vq) (52d)

]
Hence, since Ef (yp) =y (yq) = 1 and $ (yp, yq) = 0, it follows from (52d)

that in geneial, for any two orthonormal eigenfunctions yp and yq,

m ~-v )= 2 52e

g (Yp q) (52e)
This contradicts (52c), and hence contradicts the assumption that (51) is

false, Thus (51) is proven. It may be noted that (51) implies that any

repeated eigenvalues can each have only a finite multiplicity.
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V. COMPLETENESS, CLOSEDNESS AND EXPANSION THEOREMS

22, Bessel's Inequality and Parseval's Equation. Let A be a

positive definite linear differential self-adjoint operator, and let
LRTI PYR be a set of comparison orthonormal functions with respect

to A, i,e,, satisfying

@0
Then the series L < oi(x) will be said to converge, in the norm of the
i=1

operator A, to a function f(x) in [a. b] if

b
im Jlt-u [)°% lim [ (f-u)A(f-u)dx=0  (53b)
pP— w P A pP— o a P p
where
o |
u (x) = iazl c; 0, (x) (53c)

The quantity eiz | | £- up | Ii may be regarded as the mean squared

error in [a, b],with the operator A, of the finite series repreSentation,‘
‘21 c, oy ci f(xj. When A = I, the identity operator, lep[ is the "norm"
1:>f (£ - up), and the subscript I (in place of A) is then omitted in the notation
(cf. Section 2). Moreover, one then simply speaks .. ® convergence in
the mean® of up to f' without mention of an operator. For the more general
operator A, the terminology8 Yenergy convergence® may be used to mean
that (53b) is satisfied; ’epl may then be called the " energy norm", or
* A-norm" of (f - up).

A further condition which will be imposed on the operator A here

8
is that it be™ositive-bounded-below®, also called more simply " strictly

positive™, This means that if u is any comparison function, then
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Mally 2 v Ilull (53d)

where y is some fixed positive constant, and where, in accordance with
the notation herein, (see also Section 2), ||u] 'AE (Au, u)l/ 2, Hull 2 (u, u)l/ 2
The following interpretation of (53d) is particularly pertinent here, Con-
sider the eigenvalue problem Ay = \y, with associated boundary conditions;
A is assumed self-adjoint and positive definite, Suppose, in addition, that
the spectrum of eigenvalues is discrete, Then there will be a lowest eigen-
value )\1 > 0, which will be the minimum value of the Rayleigh quotient
R = (Au,u)/ (s u) 2 ]|}/ [all2 Hence [Jul1d /11u] 1?2 &,
whence (51d) holds with y = )\%/ 2. Thus, if A is positive definite, self-
adjoint, and the eigenvalue problem Ay = Ay has a discrete spectrum,
then (53d) will hold, An important consequence of (53d) is that under this
condition, convergence in the norm of A will imply convergenrce in the mean,
This follows readily by noting that if f is a comparison function, then so
is f - u, s hence from (53d), 0 < |]f - upl </t - up' 'A' Therefore
”f—up”A——OimpliesHf—up”—»Oasp——oo. |

If, for all f of a given class, a set cf constants < (depending on f)
exists so that (53b) holds, then the set of functions o is said to be com-
plete, in the norm of A,for such functions. By formally writing
f= Z cj ? operating with A on both sides term by term, multiplying
byq)i, integrating, noting Eqs. (53a) and assum’ng also (q;i Af) = (f, Ag i),

one obtains

b
¢, = [ fAlp)dx® (f, Ag)) (54)
a

The quantities (f, A g i) are called the (generalized) Fourier coefficients
of the function f. Denoting a; = (f, Ag i), it is readily found that for any

set of c.,
i




gy

e“ = (f, Af)-2 ) c o+ ) c
P Ty b boaEl t
6 A o E‘(c 2 (55a)
= (f, - N . - Q. J
iéill s & 1 1

From (552) it follows that the mean squared error will be a minimum
with respect to the ¢ {for given f and ¢i) when ¢; = a. Thus the Fourier
coefficients are the values of the A for wnich elz’ is minimized, More-

over, when c. is given by Eq. (54), (i.e., c, = a), it follows from (55a)

that
SE 2 = (f, Af) - e (55b)
i=1 * P
Since ei > 0 for any p, it foliows that
S 2 o (£, Af) (56)
g1

{56) is known as Besx<1l' s inequality, and shows that in general, if (f, Af)
)

is bounded and the <5 are the Fourier coefficients of f, then Z ciz con-
i=1 ;

verges., Moreover, from (55b) it follows that lim eZ = 0 if and only if
p—~m® p
s 2
Y €5 = (6 AD (57)
i=1

Eq. {57) is known a3 Parseval's equality, or the completeness relation.
It is seen to be equivalent to the completeness,in tue A-norm,of the set

of functions ¢ i°

The Parseval equation (57) can be generalized by considering any

two comparison functions u(x) and v(x) such that the completeness relation

(57) holds for u and v separately, and also for (u+ v). Then inserting

= (u + v) in (57), and letting a, and bi denote the Fourier coefficients

(defined by (54))of u and v, respectively, Eq. (57) yields

pmrin g

ok i




b
f (u+v) A(u+v)dx
a

1}

I
2
iZﬁ (a.i + bi)

(u, Au) + (v, Av) + 2 (u, Av}

0 @
Observing, from (57), that iﬁ azi = (u, Au) and :,; bzi = (v, Av), it
i= 1=1
follows that
o0
), 2. b = (u, Av) . (58)

i=p ' i

Eq. (58) may be regardcd as the "generalized® Parseval equation,

23. Completeness of the eigenfunctions in the norms of N and

of M. Consider cow the eigenvalue problem (1) - {3), with M and N
self-ad;oint and positive definite, Further conditicns on fp (x) and gv(x),
such as assumptions (44),are assumed which are sufficient for the exist-
ence of the minima of the Rayleigh quotient with reepect to comparison
functions. Then it will ve shown first that, in the norm of the cperator
N, the orthonormalized eigenfunctions yi(x) (satisfying (S7a) with A = ’\I,
cf. Eqs. (8a)) form a complete set for comparison functions f(x), i.e.

© b

Y el = [ £ ax {59)

i=1 a
where, in accordance with (54),

b

¢, = £(x) N(Yi) dx (60)

1
a

To prove Eq, (59), let

P
Tlx) = £ - ), e i) (61a)
1=

where ¢ is given by Eq, (60), Then rp(x) is a comparison function, and

moreover,




Y

b
J r_ Niy)dx=0 i=1...,p) (61b)
a P !

Thus rp is orthogonal to the first p eigenfunctions, Consequently, from

the recursive n.inimum characterization of \

ptl’
° (l‘p)/lIJ (rp) = R(rp) 2 )‘p+1 {61c)
From M(yi) = Ri N(yi), Eq. (61b) implies
b
[ = Mly,)dx =0 (i=1,...,p) (614)
a P 1

Putting f = rp + i N yi(x). and using (8b), {10) and (61d), one readily
i<
finds
b 2
®(f) = fan(f)dx el SN (61e)

1o

Since @ (f) is fixed and bounded, and ®(f)> 0, & (rp) > 0, )\i > 0 it follows
from (6le) that & (r ) is bounded as p—~ ®. But fcom (blc) p(r ) < & A .

(6le) (x, P (616) b (=) < B (A Ly
Since kp—~ 20 as p—~ o, this then implies

Iim Y(r )=0 (62)
p~w P

Eq. (62) is identical to (53b), with A replaced by N, Thus the completeness,
-in the norm of N, of the set yi(_x) for comparison functions f is proven,

Eq. (59) then follows from Parseval' s equality (57) with A = N,

From Eq. (6le), since & (rp) > 0, it follows that

2, € (M 4 63
L cihyT [ M) ax (63)
i= a
@
Inequality (63) shows that Z ci2 )\i is convergent,
i=1

The above proof can be modified by usging the energy quotient R,

and the associated functions & and § in place of R, ® and | (cf, Section 13),
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The completeness relation then becomes

Zl ¢ = V) (64a)
i=

where now

¢ = ¥ (& y) | (64b)

Moreover, (64a,b) now hol? for admissible functiorns f which need only
satisfy the geometric boundary conditions, and have a continuous (m-1,tl,,
and pi:cewise continuous m'th, derivative in [a, b].

The completeness relations derived abcve can e extended to a
wider class of functions f than described there. For this purpose, itis
first noted,as observed in Refs, 4 and 6, that for the special case of
N(y) = go(x) y, the set of comparison fux;xctions, to be denoted by f, for
the problem (1) - (3) is ®dense® ir the space of square-integrable functions

f, that is: given such an f and any € > 0, there exists an { such that

' |f = T-| 'N <€ (658.)

For more general N(y) as defined by Eq. (3) one may consider the Dirichlet
foim (cf. Eq. (28)), obtained by integrations by parts, of | lf -7 !N =

f (f-T)N(f-f)dx = $(f-TF). This will indicate that the denseness
praoperty (65a) «f the set of comparison functions f will hold if f is now a
functionn whose N-norm exists, and which satisfies enough of the boundary
conditions (2) so that the boundary terms in the Dirichlet form of U (f - )
can be made zero or as small as desired, The derivatives involved here
are of order (2n-1) and less, and examination of y (f - ) will indicate that
the above requirement vn the boundary terms can be satisfied by prescrib-

ing 2n or fewer boundary conditions for f, By the use of Eq., (65a) for such

functions f, it can be shown, following the type of proof in Refs, 4 or 6,
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that the eigenfunctions of (1) - (3) will be complete in the norm of N for
this more general class of functions, This implies that Eq. (59} will hold
for such f; moreover, Eq. (58) will alsc hold, with A = N, anduand v
any twoe functions of this class f,

With the us2 of the observations in the preceding paragraph, it can
ncw be shown that the orthonormalized eigenfunctions Y; of {1) - (3) will
be a complei. set, in the norm of M, for comparison functions u. This
can be proven by applying the generalized P;rseval Eq. (58) with A = N,

u = any given comparison function, and v a function sucn-that
N(v) = M(u) (65b)

and satisfyirg sufficient boundary conditions {as explained in the preceding
paragraph) so that a comparison function f will always exist such that
(65a) will hold with f = v, and so that N will be self~-adjoint for such func-

ticns v, Then, in Eq. (58),

a, = fab u N(yi) dx £ e (65¢)
b b b
bi = fa v N(yi) dx = fa ¥; N(v) dx = fa A M(u) dx
b b
= fa u Mly;) dx = fa uX, Nly,) dx = \, ¢, (65d)

Eq. (58), in conjunction with Eqs. (65b) - (65d), then yields

® b
¢S N\, = [ uMu)dx (66)
i; t ja

1

Eq. (66) is the same as Eq, (63), with the inequality sign now replaced

by an squality, Eq. (66) signifies the completeness of the eigenfunctions,
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s . . *
in the norm of M, for comparison functions u .,

24, Closedness thecrems. An interesting and instructive alter-

native method of proving the completeness of the eigenfunctions, both in
the norm of N ard of M, will now be shown, For this purpose, the concept
of closedness of a set of orthonormal funciions Dy will be introduced,
This, as will be seen, is intimately related to completeness**. A set

of orthonormal functions 0 (x) will be called closed with respect to func-
tions f of a given class if, under a given positive definite operator A
(assumed also to bg linear and self-adjoint), there is no normalized function
f which is orthogonal to every 0 in the set, One might expect intuitively
that closedness and completeness of a set are equivalent, This, indeed,

is the case for functions f for which (f, Af) exists {in the generalized,
Lebesgue sense), To prove that completeness implies closedness is com-

paratively siraple. For, suppose a set is complete, but not closed. Then

there would exist a normalized function f such that c; = (f, Ag i) = 0 for alli,

P
Hence lim [|f- ) c. o || =1lf]] = (4 Af) =1, which contradicts
p —~ =1 't A A

the supposition that the set o i is complete, The converse, namely that
closedness implies completeness, can be proven by using the well-known

Fischer-Riesz theorem of functional analys. - This theorem states that

* Actually, as seen in this derivation, it is sufficient that u satisfy
enough of the boundary conditions in (2) so that (65a) will hold, and
b b
¢ -
so that Js Yy M(u) dx = fa u M(yi) dx,

*% In fact, the definitions of " completeness™" and "closedness" of a set
cf functions are sometime s interchanged in the literature,

e s i e
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every Cauchy sequence *, fn’ of furictions f for which the A-norm (f, Af)
exists, converges in the norm of A to such a function. A proof of this
theorem may be found, e,g., in Refs, 7 and 17 for A = I, the ideantity
operator, The extension in the form stated above, to a general positive
definite, self-adjoint opei'a.tor A, satisfying also (53d), is proven by
I\Ai)f‘.w.lin8 (pp. 100-109). With this theorem, the statement that ciosedness
implies completeness can be proven as follows., Suppose the set of ortho-
normal functions ¢ i is not complete., Then by (56) there will be a function

f(x) for which
oo

(f, Af) -.;1 c‘; S0 (67a)

1

where c, is given by (54), Consider now the sequence of functions

gpzf' Z C.(p.; Then ||g_ - g HZ = i cz.——()asp, q— ©, since
© =1 * ! P "9 4 ipy !

El <y is convergent, Hence gp is a Cauchy sequence, and by the Fischer-
i=

Riesz theorem must therefore conveige, in the norm of A, to a function
g(x) whose A-norm exists, This function will be orthogonal to all of the
® ;o For, (g, A q’i) = (g - gp’ Ag i) + (gp, A cpi) for any p, But for

P2 (g Agygd=ci-c;=0.." (g Ag;)=(2-8g

i i , Aq)i) for all

p

p> i. Moreover, given any € > 0, there will be a P such that for p > P,

(g - gp, Ao i) <e. Since (g, A g i) is independent of p, it then follows

that (g, A (pi) = 0, It will now be shown, further, that Hg”z > 0, For,
A

ing that g = + wheze =g - it is seen that
noting that g np gp, np g gp’

2 2 2 |
HgHA— anllA t2n, Ag+ ngHA (67b)

*i.e., a sequence in which |[f_ - f ”Z—~0as P, Q- ,
S Y
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This holds for all p; but for sufficiently large p the firat three terms will

be arbitrarily small in absolute value, while H{,,pl |2 = (i, Af) il 2
AW . i~
1=

In view of (67a), it therefore follovs that for sufficiently large p, the

right side of (67b) will be positive, Hence ||g] Ii >0, Thus gisa
normalizable function which is orthogonal to all the ¢ i Hence the ¢ i
cannot be closed, if they are not complete,

Suppose now that the system (1) - (3) is self-adjoint, with M pesitive
semidefinite and N positive definite, and that the system has a discrete
spectrum, Then it will be shown that the eigenfunctions of the problem 1
1) = (3) are closed, under the operator N, for comparison functions f, To
prove this it is noted that )\p is the minimum value of R(u) with respect to

comparison functions u for which {(u) = 1 and
(u, Nyl) =0, (u, Ny2)= 0, ..., (u, Nyp-l) =0 (67¢)

Thus, )‘p >\ coe 2 )\1. Suppose the set of eigenfunctions y; were

p-12 ,
not closed, Then there would exist normalized comparison functions u
which satisfy (67c) for all the Vi i=12,.... For such functions u, i

R(u) must exist, i, e, be finite, Moreover, since R(u) > 0, R(u) must

have a greatest lower bound, say A, But then X must be at least as

large as each of the )‘i’ i=12,... . This, however, is impossible,
since )\i — o0 as i— oo, Hence the system of y; must be closed. Note
that this proof does not use any completeness theorems, and may hence be
considered as an alternative proof of completeness,

In a similar fashion, it can be shown that the system of eigenfunc-
tions A is closed not only under the operator N, but also under M, when
M is positive-definite, To prove this, it is first recalled that the y; are

orthogonal with the cperator M, i,e., (y; M(yj) )= 0, i §j(Eq. 8b),
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It is then noted that the eigenvalue xp can be characterized as follows;

\ p is the minimum value of @ (u) with respect to comparison functions u
for which ¢ (u) = 1 and (u, M(yi) )=0,i=12,...,, p~1, This can be
shown in a manner quite similar to that already shown in Section 9 for the
corresponding theorem involving N (instead of M): In the equation im-
mediately before Eq. (27), the ¢ (bu, yi) are replaced by & (éu, y‘.‘),
izl ..., k=1 The proof then proceeds as in that section, with the
observation that N(yi) = (I/Xi) M(Yi)’ and with the result that Ky ® (yi) =
2[1- (Kk/)\f')] Q(uk, yi). But now @(uk, yi) = 0, Hence, since ¢(yi)>0,
Ky = 0 and the proof then continues exactly as in Section 9, With this
characterization of the eigenvalues, the proof that the eigenfunctions are
closed, under the operator M, is then the same as that in the preceding
paragraph, Froﬁ this one may now infer that the eigenfunctinns Yi’ or-l
thonormalized with the operator M, form a complete set for comparison

functions f, Note thatif ¢ (Yi) = 1, then

Y,(x) = v, 0 1 Y2 (68a)

Moreover, in the series Z c{ Yi(x) to represent f now, the values of the

c'i according to Eq. (54), in conjunction with Eq, (60) for Ci’ will be

b b
c;= faf(x) M(Y,) dx = fa f(x) X, N(Y,) ax
h -1/2 /2
= f fix) Ny Nly) Ny dx =\ LA (68b)
a

Hence the scries Z c; Yi(x) becocmes Zci yi(x), as in the case of the
operator N, and the completeness of the functions Yi(x) in the M-norm
signifies that ¢ (rp)—- 0 as p— o, where rp is still defined by Z"q. (6la).
Eq. (6le) then yields the M-norm completencss relation {66), This may
be corsidered as an alternative proof of Eq. (66) to that given in Section

23,
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25, FEwxpansion theorems., FEqs. (59) and (66) are the chief results

obtained in this Chapter, and, as will be seen in a second report, play
an important role in the theory of energy methods, It is noted, for ex-
ample, that Eq, (66) leads to the #same r=2sult that wou'd be obtained if

o)
one first formally writes f(x) = Z < yi(x), operates termwise with M

(which involves 2m differentiatit;xlé) on both sides, multiplies both sides
by f and then integrates termwise over [a,b]. Eq. (66) justifies mathe-
matically the final result of such an operation, at least for any cemparison
function f, It should be observed, however, that in spite of the validity

of the final results of such an operation, it has not yet been established
here that the equation £(x) = }: < yi(x) itself actually holds uniformly

for all x in [a, b]. Such a st;ement would be an " expansion theoreia",
Expansion theoréms are developed in Refs, 4 and 12 for Sturm -Liovville
(second-order) equations, and in Refs, 1, 6 and 18 for more general svs-
tems of the type (1) - (3).

As will be seen in a subsequent report, it is actually the complete-
ness relations of the type (59) and (66) which will suffice for the further
developments to be given there of the theory of energy methods. The
following remarks on expansion theorems may nevertheless be made here,
Considering first A = I, the identity operator, in the definition (53b) of
comp'.teteness,mit is noted that convergence in the mean signifies that
lim  [f(x) - Z c oy (x)] will be zero "almost everywhere" (in the
p— i=1
Lebesgue sense) in [, b], i.e,, the limit will be zero at all x in [a, b]

with the possible exception of a set of poiuts {of ® zero measure®) which

T T U P

oA e
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*
wculd not ceniribute tc the irtegral in (53b)

Fg)r A = 1, sufficient conditions for the uniform convergence of
5_1 ¢, = ; (x) to f{x) in [a, b] would be: fixj continucus, all« ;(x) continuous,
i= ‘o0

and ¢; = ; (x) uniformiy convergent in fa, b).

izl

Consider now the self-adjoint system (1) - (3) with M and N positive
definite such that the eigenvaiue spectrum is discrete, and such that the

system

M (u) = \u (69)

with the same boundary conditions will alsc have a discrete positive soect-
rum. Thken M will be a strictly positiv- operator, i.e., M satisfies {53d)
(with A = M, y = \1 > 0, the lowest eigenvalue of (69)). . rom the com-
pleteness, in the norm cf M, of the eigenh nctions ¥; cf (1) - (3) for com-
parison functions f(x), ecstablished in Sections 23 and 24, it then follows
that the Y; will also be comglete in the sense of ordinary convergence in
the mean (i. e. {53b) will hold w(ill):h A=1 T yi). Conseaqnently, the
foilowing statemant holds: If El <5 yi(x) is uniformly convergent in

{a, B], where the y; are the ort;;)normalized eigenfg)nctions of (1} - (3) with
the operator N, and the c; are given by (60), then:i_‘1 <

uniformly to f(x) for all x in {a_b}. It is shown in Rei. 1 {pp. 144-145) that
@
{v

i yi(x) will converge

actually L . v; ; (x), ¢ < v< m -1, converges uniformly (and absolutely)

izl o o
in [a, b]. Consequently, the series ) < yi(x) will converge uniformly to

i

T As a simple exa:nple, with a sequence (insteed of 2 series), le_}
f(x) = 0 in [0, 1}, and censider the sequence f {x) = (1 + px)- 1j2
in[0,1], p=1,2,... . Then Hf-x’p”z = 1o .fpl!Z .

-l - 2
i (1+px) ! dx = (1/p)log {1+ p). Hence as p—- on, j{o - fpl < — 0.
"0

Thus the sequence f_{x) converges in the mean to f(x) = 0. The se-
quence {_(x) itself, however, is readily seen tc converpge to zerc at
all x in (%, 1] except at x = 0, where f_ =1 for all p {and h.ence

f — 1). Note that the sequence fp(x} du2s not converge uniformly

ig (0,1] to zero,

PrAToTIR -
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f(x) for all x ia [a, b], ard the seriee may, in fact, be differentiated term-

wise {(m - 1) times,
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