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ABSTRACT

This paper is concerned with the responses of inelastic rectang-

ular plates to impulsive loadings. The effects of strain hardening and

strain rate sensitivity of the material are taken into consideration iii this

analysis. A variational principle in dynamics of inelastic bodies subject

to finite deformation is used to determine the deformation process of the

plate. A. sandwich plate idealization is employed. The accuracy of the

numerical solution is evaluated by comparing it with the existing analyti-

cal and experimental results. The results indicate that this method is

adequate for determining the-dynamic behavior of inelastic xectangular

plates at relatively large deformations.

A. j
tI
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INTRODUCTION

The.general problem of inelastic deformations in structures subjected

to dynamic loading has received wide interest in recent years. There is

need to correctly estimate the damage inflicted as a result of blast loadings,

earthquakes, etc. , on structures. These impulsive forces czuse damage

1to the structures in the form of large permanent deformations w'.ich usually

involve the effects of both geometric and material constitutive non-linearities.

In most of the previous studies, the concepts of limit analysis and

rigid-plastic idealization have been applied to obtain closed form solutions

for permanent plastic deformations of beams, plates, etc. [1-8]. However,

the rigid-plastic idealization is applicablc only to problems in which the

elastic energy of a structure is negligible compared with the plastic energy

absorbed by the structure. Prager and Hopkins [1] were among the first

to investigate the load carrying capacities of a circular plate made of per-

fectly plastic material which obeys the yield condition of Tr. sca and the

associated flow rule. They assume small displacements and neglect mem-

brane forces. The impulse is in-the form of a uniformly di stributed load

which is applied suddenly and removed after a certain time interval. How-

ever, later studies [Z] have indicated- that membrane forces do dominate

over the bending moments during the final stages of deformation. In their

experimental work Griffith and Vanzent [3] have shown that the load

carrying capacities of circular membranes are increased for large int, n-

sity loads of short duration,

Wang and Hopkins [41 have also neglected meml)ran, lr( (.s in dhi).1r

analysis of circular plates. Pezyna's 15] investigation reveals that tL(

pulse shape has very little effect on the final deformation pattern of a

plate. Boyd [6] has used a numerical technique to solve the resulting

Preceding page blank
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differential equation of dynamic deformation of a circular membrane. Boyd's

analysis was based on the deformation theory of plasticity. Ile therefore,

neglects the effects of any possible unloading of the material during the

deformation process. The permanent central deflections obtained by Boyd
in

[6] and Witmer et. al [7] are found to be.close agreement. This seems to

indicate that the rigid plastic assumption is adequate when membrane stresses

are included in the analytical model.

In all the earlier investigations reviewed above only the effects of

either bending moments or membrane forces were considered. Recently

Jones [8] has examined the combined effects of membrane forces and-

bending moments on the behavior of circular plates loaded dfnamically and

for the case of large displacements. However, a simplified yield condition

involving- no-interaction between force and moment was employed by Jones.

Florence [2] has investigated experimentally the behavior of simply sup-

ported circular plztes subjected to uniformly distributed impulses. Ills

results give ample evidence of the fact that membrane forces play b. very

important role in large deformation of circular plates.

As the rigid-plastic idealization is not appropriate for strain hardening

materials, a more realistic method of analysis is required. In this spirit

Witmer et al [ 9-11 ] have extensively studied the axisymmetric responses

of beams, rings, circular plates and shells subjected to time dependent

loads. Their finite difference method of solving the dynamic equations

account for elastic, perfectly plastic, strain hardening and strain rate

behavior of the material. However, because of the small time interval that I

must be used, considerable computing time is required even on a fast

digital cemputer in solving a problem. Cox and Morland 112] have dis-

cussed the effect of a uniformly distributed rectangular pressure pulse
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on a simply supported square plate. Their analysis neglected elastic strain,

work hardening and strain rate effects. To simplify the mathematical anal-

ysis, a modified Tresca's yield criterion was used by them. Recently

Jones et al [13] experimentally investigated the effect of uniformly distri-

buted velocities on fully clamped rectangular plates.

it is well known that variational principles have been widely used for

solving static problems of infinitesimal and finite plasticity [14-17]. A par-

allel minimum principle in dynamic plasticity has been developed by

4t Tamuzh [18] for rigid-plastic bodies involving infinitesimal deformation.

It was noted by Lee and Ni [19] that the principle is based on a concept of

Gibbs and Appel! [20], in classical mechanics, in employing finite variations

in accelerations in formulating a minimum principle. Lee and Ni [ 19] have

advanced the concept to establish an absolute minimum princ.iple in dynai,,,s

of elastic-plastic continua subject to finite deformations. The minimum

principle has the advantage of circumventing some of the difficulties in

Itreating the loading and unloading material response. This minimum

Iprinciple is employed to solve the titled problem.

The present study is concerned with the analysis of the dynamic response

of a rectangular plate subjected to impulsive loading. The impulse is

applied instantaneously at zero time and then decreases linearly with time.

The response depends on the non-conservative, strain rate sensitivity and

strain hardening properties of the material. A numerical procedur, Iasu c

on the minimum principle is developed to determine the maxinuini anid thu

permanent displacements of a rectangular plate. The minimum principle,

which is derived from the basic equation of motion, is written in terms

of Piola-KirchhoffIs stresses, accelerations and Lagrangian strains.

Kantorovich's method [21] is used to determine the time deprndent
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deformation profile of the plate. In conserving computing time, a sand-

wich plate idealization is em ,loyed in the numerical procedure.

KINEMATICS

Because the deformed configuration due to large deflections differs

considerably from the initial configuration, the necessity of specifying

whether the stresses and strains are measured with respect to the original

configuration or with respect to the deformed configuration arises. I! the

original state of the material is homogeneous and stress free, it is con-

venient to express the dynamic equations in terms of the original state. The

strain tensor, E referred to the initial configuration, is called Lagrangian

strain tensor and is often referred to as the strain tensor in Lagrangian

coordinates. Analogously, the strain tensor, e.. referred to the deformed
'j

configuration is known as Almansi's strain tensor. In the following, we

shall choose the Lagrangian descriptions of stress and strain.

Consider both the original and the deformed configurations of a body.

Let two systems of coordinates X, (I = 1, 2, 3) and x.(i = 1, 2, 3) be chosen to

describe the initial and the delormed configurations respectively. If we use

the same rectangular cartesian coordinate system to describe both the

original and the deformed configurations, then the Lagrangian strain tensor

EIimay be defined in terms of the displacements, U = xi , such that

(1

E - (U 1 + U 1 + U 1 ULJ
EIj= I-(O, j+ UJ, I UL, I UL, J) I

Here, a partial differentiation of a variable with respect to XKis designated

as(), K.

Now consider a rectangular plate of length 2a, breadth 2b, and thick-
-4ness h. Let the components of the displacement vector U of any particle
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originally located at (X, Y, Z) along the three mutually perpendicular direc-

tions, be u, v, and w in the direction normal to the plate respectively. It

is assumed that the plate is, thin, the magnitudes of the deflections are of

the same order as the plate thickness, h. Also, it is assumed that the dis-

placements vary linearly through the thickness, and is independent of the
z

distance from the middle surface. Hence, the displacement components at

any point may be expressed in terms of the displacements and their deriva-

tives of the middle surface as

U iU ZW

V =V .ZW
,y

in which u and v are the displacements along the directions x and y

respectively of any point on the middle surface of the plate. Then, the

second time derivatives of the strain componentq are

.2 .2 2
U x(u u + u + v + v v +w + )

YX, X t 2 X 'X ,X ' X . ' X

.•2•.. 2 ._.
Sv + (u +i U +v + v v 4 w +w

YY ,Y ,y ,y ,y ,y ,y ,y ,y ,Y ,y

(3)
= + v + u. , + 2u u +u uXY ' y ,x ,x ,y ,x ,y Ox ,y

+ V+ v v +v v V+2 ,' V W wf y, ,x,y ,x , y ,x ,y ,x ,y,

Here a dot above any term indicates partial differentiation with respe, t

to time. The strain-accelerations given by Eq. (3) will be emploved i,

the following minimum principle.

MINIMUM PRINCIPLE

Consider a body of a continuum occupying in its natural state a region

""I cre. the st it rits , % , z re referred to X, Y, Z . ,.

V
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V and bounded by a piecewise smooth surface A. The body is subjected

to time dependent body force F (per unit mass) an4 Lagrangian surface

traction (per unit initial area) TM over that part of the initial surface area

AT . At time t, let U.1 be tl~e displacement vector of a particle of the

body which has an initial position of (X,, in a rectangular Cartesian co-

ordinate system. The displacements are prescribed over a part of the

boundary surface, AU. The deformation of the body may be described in

terms of the Lagrangian strain tensor, EKL, defined-by equation (1).

Furthermore the Lagrangian strains E may be expressed as the sum of

two parts: elastic strain, EKL and plastic strain EEL. It is postulated

that the ,onstitutive relationships, in terms of Piola-Kirchhoff stress ten-

sor, Sp may be strain velocity dependent but are riot influenced by

strain accelerations. In uther words, it is assumed that

| sKL XKL (NIN' EZM MN 4

where & is the temperature and M is the velocity rate of plastic

straining. The iola-Kirchhoff stresses satisfy the boundary conditions

S 5 + U tLNK Tl on ASKL NbM M, L N K = M  nA T ()

where NK is the outward mit normal to A and ML is the Kronecker sym-

bol.It has been shown [19) that the true acceleration field, 17M

Dt

of the body, which has known or predetermined displacemert and velocity

fields at time t, is distinguished from all kinematically admissible ones

by having the minunum value of the following functional

i

.. . ... . . . . .~ .I
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2
I S d V +  P dV

vKL KL 0 2.) M 0

-j TM dA- PFM UM dV
AT V o  

0

T 0

where p0 is the initial mass density. The minimum principle is valid for

continuous as well as sectionally discontinuous acceleration fields.

Ordinarily, it is sufficient to use the first variation with respect to the

acceleration, 6 J = 0, to establish governing equations or to solve aace

problem by a direct method of variational calculus.

CONSTITUTIVE EQUATIONS

The stress-strain relationships derived here are for those materials

which are isotropic, inelastic and work hardening, Furthernore it is

assumed that the material behaves isothermally. It is known that for the

mechanical behavior of the material in fhe inelastic range, the state Gf

stress or strain may be represented by a point in a nine dimensional stress

or strain space respectively. A system of loading is considered as a path

in this stress space and the corresponding deformation history as a path in

the strain space.

A basic assumption is made that there exists a scalar function, t ailed

a yield function or loading function F, which depends on the states of stress

arid strain and the history of loading. The equation F 0 represents ,

closed surface in the nine dimensional stress space. Inelastic deforhidtnoii

can occur only when F 0. The condition F .. 0 indicates thit no permariteit

deformation is possi ble and the condition F-0 has no given physical meianings.

It is relatively easy to determine the yield stress for a materiai subjet ted

to an axial tensile load. Therefore, it is desirable to express mathemati cally
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a general stress-strain relationship in terms of uniaxial mechanical pro-

perties.

In a simple tensile test, work hardening means that the stress is a

monotonically increasing function of increasing strain. For a general state

of stress, Drucker's definition of work hardening implies that energy cannot

be extracted from the material in the process of applying and removing a

system of forces acting on a body. The following conditions are a conse-

quence of Drucker's hypothesis: a) The yield surface is convex , and b)

the plastic strain increment vector is normal to the loading surface.

Using these conditions, Lee and Murphy [14] have obtained a relation-

ship between Lagrangian strain increments and Piola-Kirchhoff's stress

increments as

]k G aF -' for F=O and dF>O (7)ij SKL SL

and

j~ = 0 for F<O or dF50 (8)

where F = J - K

2
Here G is a scalor proportionality function which depends on the cur-

rent stress, plastic strain and the loading history. For a strain-rate

2
insentive material, K is a constant which is equal to the maximum value of

J that has occurred until the current deformation state. J is the secorid

invariant of the stress deviation tensor S'.. with

J =1s, S'
2 2 KL KL (9)

, 1
KL SKL, -3 SMM I(L

The expressions dF>O, dF- 0 and dFi' ,mply resp ,i.0,10, I11111,11,
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neutral loading and unloading of the material in relationship to the yield

surface, characterized by the loading function. For a given state of stress

on the yield surface, either loading, unloading or neutral loading takes

place according to whether stress increment vector is directed outward,

inward or along a tangent to the loading surface. Available experimental

results indicate that the Mises' yield function or loading function leads to a

good prediction of the initial yielding of an isotropic material. Furthermore,

in the absence of Banschinger's effect and in a case of relatively small strains,

the Mises' function give also a good prediction of the subsequent yielding.

Usually, the Mises' function has been expressed in terms of the true stress.

For a case of small strain, the difference between the true and Piola-

Kirchoff stress tensors is relatively small. For the thin plate problem,

it is expected the foregoing conditions prevail. Employing the concept of

isotropic hardening and assuming that the scalar function G is a function

of J 2 only, G may be determined from the results of a simple tension test.

It may be shown that [14]

G 3 1 1 for J > 0
43J ?+)

and (10)

G =0 for J 0

where E t and E are the tangent and elastic moduli of the material

respectively. Furthermore the general state of stress is related to the

simple tensile stress, S, by the relation

J = $ 2 /3 (11)

In simple tension, yielding occurs when S reaches the yield stress S

In the case of a thin r,!ctangular plate, the rate of the sec ond invariai,
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of the stress deviation tensor may be written in terms of the Piukl,- Kirchhoff

stresses as

23 [Sx k"xx Y Y Y
(12)

+ 6 SXySXy]

The elastic strain rate E'KL is given by the Hooke's law,

~l+V (13)

EKL KL- ESMM% KL

where V is the Poisson's ratio. Employing Eqs. (7) to (13) and the assump-

tion of plane stress, the stress-strain relationship for the thin plate may

be written as

XX C11 S + C 1 2  XY +C13 YY

EXy = 21 Sxx + C22 SXy + C23.yy (14)

YY = C31 SXX + C32 8xg + C33 YY

where for J2 >0 and J2 = K

Cl= S+ Sxx- Syy)2

2Sxx-Syy)

C1 =2 SxyG 3-1

C V + G ZsxSX YY X.013 = -E 9 (15)

13
C1 =I C12

C2 l+V + 2 2 G

(2S yySxx
C2 3 =2SxyG 3

'.
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C31= C23

0 32 = 23 (15)
,2

033= - +G ( 9y sx
33 E 9

and

22for j2 0 and J K or ">0and J<K2

0 1 V11 E 1= 1'Cz3 E -

0210 12, (1 6)
Cl= CIZ CZ =-C C3

31 13, 32 23' 33 E

In the use of the minimum principle, it is convenient to express stress

rates in terms of strain rates. Thus, the inverted form of equation (14)

may be given as

SXX F1 1 EXX +F 1 2 Exy +F 1 3 YY

S Fy F2 X + F kXY + F2 3 YY (17)

SYY F 3 1 EXX + F 3 2 E XY +" F 3 3  yy

where

F (C 2 ID11 (02C 33  0 23 C3 2 )
SIZ -(C12C33- C13C3?.) /D

F1 3 = (CI 23 - 013 
(1

21 F 12

F22 \i±l1 33 C1C3)/
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F~ /D

F2 3 - (C11 C23 C1 0 )/D

F 3 1  F 1 3

(18)

F32 = F3 3  L-
F3 = C z- CzCl )/DF3 3 =(C1122 012021 /

and

I=0I (C22 C33~ 0230C32 ) -01 (C,,lo33- 023031)
(19)

+ c13 (c21c3-c31c2 )

In dynamic plasticity, the mechanical stress-strain properties of some

materials are sigzificantly affected by the rate- of -straining. The immediate

effect of straining rate is that the yield stress is effectively increased. In

order to take into account the effects of the strain rate on the yield stress,

the following strain rate formula which relates the yield stress at any

instant of time to the static yield stress will be employed [11].

S*=s S I c/At 1 /  (0)S 0 o (I + 0

where S is the yield stress at any instant of time and S is the static
00 z

yield stress. P and D are material constants determined by experi-

ments [10). E i6 the "effective" strain rate, and can be expressed in

terms of the generalized strain rates as

4 2 *2 +2 1l2 (21)
3 XX +EX + XX yy + XY)

5,
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DERIVATION OF FUNCTIONAL

For the case of a thin flat plate subjected to an uniformly distributed

transverse impulsive load, by neglecting body forces, equation (6) reduces

to the following form

zzz
2 .. 2J. f 0 v + w dV - p (t) C d AT

V T

0 T

0

--vhere p(t) represents the uniformly distributed transverse load applied to

the plate. It is seen that the minimum principle is expressed entirely in

terms of the current state of stress, strain-acceleration and acceleration
not

of the body. The current state of stress isAonly a function of position but

also depends on the loading history. This makes the analytical integration

of equation (Z2) very difficult to overcome. This difficulty, an approxi-

mate solution, the Kantororich's method may be employed or the functions

w (x, y, t), u(x, y, t) and v (x, y, t) may be represented by

M,N
w(x, y, t) d (t) Xm (x) Yn(y)m, n= 1 dmn m n

M,N
u (x,y,t)= Z e (t) mn (x) Yn(y )  (23)

m, n=1 mn

M,N
(xyt) = mn (t) m(x )  (y)m, n= 1

with

m= 1,2,3... M

n = 1,2,3,... N

Here Xm(X) Yn(y), rpm(x), and %n(y) are chosen coordinate functions, each

of which satisfies prescribed geometric boundary condtions and any other
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special characteristic of the solution such as a condition of symmetry.

The coefficients d (t), e (t) and f (t) are unknown functions of time,
inn mn mn

t to be determined by the minimization of the functional J with respect

to d mn(t), mn(t), and Y rn(t). In general, to obtain an exact solution,

an infinite number of coordinate functions are needed. However, in

practice only a finite number of these coordinate functions can be con-

sidered. This number depends not only on the magnitude of the computa-

tion involved, but on the desired accuracy of the solution.

IMPULSIVE LOADING OF AN INELASTIC
FLAT PLATE WITH EDGE CONSTRAINTS

For verification the foregoing approach is applied to the analysis of

the dynamic response of an inelastic rectangular plate subjected to ir-

pulsive loading. If I is the applied impulse per unit area of the plate,

it can be approximated by a simple triangular time history starting at

pressure p 0 and reaching zero at a time t such that the area under

pressure-time curve is equal to this applied impulse. In other words

p (x,y,t) 0 t <0

p (x,y,t) = Po t tgt (24)

p (x,y,t) = 0 t>t

where p(x,y, t) is the pressure at any time t. The tangential accelera-

tion components u and v of a point away from the middle surface are

expressed in terms of the middle surface components U and " by

differentiating equation (2) twice with respect to time they are

u - Ul- z w
x (25)

V V - z

y.
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Furthermore the spatial coordinate functions in equations (23) are

assumed to be continuous and differentiable. By differentiating equation

(2) twice with respect to time and once with respect to space coordinates

one obtains

U =V -zVX ,X ,XX

,y P y ,xy_ (26)

,X ,x ,xy

v V -z",y ,9 Y ,YY

Using equations (3), (25) and (26), we can express J given by equation

) -in terms of displacements and their time derivatives as

-f- L -f U Z, +V - o' )d

1 0

p (t) O dA Tj "A T
AT

0 0

• 2 . 2
+v +v v +w W +w

S ,xx ,X ,X ,x (27)

+2S (Uy+ v + u u + 2u ux )y X

+ u u + 2v v + v v +v v
,x ,y ,x ,y ,x ,y x ,y

+ 2 V 4 + w +w )+ S (v

,x ,y ,x ,y ,x ,y yy y
2 z

+u +u u +v +v v +w "
,y ,Y ,y ,y ,y ,y ,Y ,Y

.2
),dV

y 0



THEMIS-UND-71-5 - 17-

The volume integral J may be expressed as a function of acceleration

coefficients by substituting equations (23) and (25) into the equation (27).

The variation of J with respect to ii. implies the variation of J with
1

respect to the acceleration coefficients d, * and f. The variation of J

with respect to each coefficient results in an expression which when

equated to zero, results in the following three sets of quasi-linear algebraic

equations.

f P o {(emn $mYn - z mnXm, xYn) z Xix Y)
V m n

0

z X Y y(z X.Yy
mn Xmln zdmn in no, y j,Y

+d X Y X Y JdV l,2, 3,...
mn m n 0o n- 1,2,3,...

i - 1,2,3,...m
-J p(t) X.Y. dAA 1 0 o =2,3, q......n

0

+ l dV =0 (28)

K I Po (emncpmYn mn m,xY o}
V mn

i dV 0 (29)
V o0

S[?2P o {('mn XmVI n z dmn XmYn, )Xi)jj dVoV in n
0

+ I j dV 0 (30)V 0
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where

Iijl [S -z X. Y (I +

-, },x
+ X. (-zY. v + w Y.

1, X j,y ,x ,

+ S -Z X. Y. (2 + + v

-z X. Y.u z X.Y. v +w X. Y.
1,xx j ,y 1 j, yy ,X , 1,x j

,x 1 j,y yy 1 j,yy

(! v y)-z Y., u X. + Y. w X. -

s y ,y 1,X 3,y ,y 1 1)

+ Sy Y (I + U)+ Y

+Syy ( c, Pi  y) (32)yY Yj, Y 3Z

ij3 Sxx x , x i)

+Sx X (1 + + X.
xy , x y x I j'yy

+S { Xi (1 +Vy)+x-y

yy . j, y , -_ (33)

The solutions of the quasi-linear algebraic equations are obtained by

employing a finite difference scheme together with numerical step-by- step

method. The plate is idealized into a number of load carrying layers

separated by a core material. The stress variation through each layer

is assumed to be negligible. The oniy function of the core is to maintain
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an equal separation of the layers. There is an even number of layers and

they are of equal thickness. The spacing between the discrete layers may be

obtained.!y assuming both the idealized model and the actual plate exhibit

equal elastic bending stiffnesses. Thus

- 3h 2

k-4
_ 2

h h- k= Z (34)

where k denotes the number of layers and 2b is the distance between the

two extreme layers. The volume integrals in Eqs. (28)-(30) are reduced to

surface integrals by integrating them first with respect to the z coordinate.

The integration along the z coordinate may be performed by multiplying

the integrand by a factor h/k and summing the integrand over the number of

layers considered.

The surface integrations are carried out as follows. Let (M-l) and

(N-I) be the number of segments along the x and y axes respectively. M

and N then represent the number of stations along the two coordinate axes.

The coordinates (x, y) of any station (p, q) are given by

xM P ' I  a p= 1,,. MM-1 "

y =q-i1 b q= 1,2... N (35)
N-I

where a and b represent the semi-lateral or lateral dimensions of the

plate, depending upon whether the origin of the coordinate system is at tl,e

center or at the corner of the rectangular plate. If f(x,y) denotes the

integrand in a surface integral, the integration is performed by using the

following expression
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f~p, ) dAab
A f(P q) dAT = -I-)(N -I) Rf(l, 1) + F (1, N) + f (M, 1)

Tii q--N- I

+ f (M,N) 2 {f(l,q) + f (M,q) I

q=2

p=M-l p=M-1 q= N-1

+ 2 {f(p, 1)+ f(p,N) + 4 f (p,q) 13(.1

p=2 p=2 q-2

By the solutions of the quasi-linear algebraic equations, the a4 elrvratiois

and hence the displacement rates are determined. The strain and stress

increments can be caiculated. The new displacements, stresses and

strains are then computed. A time-displacement history is maintdini d

throughout the motion of the plate until it comes to rest and then tht, pcr

manent displacements of the plate are recorded.

In this analysis the detailed computations are carried out for the lul-

lowing two cases:

a) All edges of the plate are simply supported.

b) All edges of the plate are fixed.

The boundary conditions for the first case are satisfied by the following

chosen coordinate functions (the center of the plate is taken as the origin

of the coordinate system).

X osn(Zm- 1)x n 12,3.X = cosflZl ) m = ,2,3..
nm Za

r(Zn- l)y
= Con= 1,2,3...

cp = sin - m = 1, 2, 3..
, = s a

n sin -- y n= 1, 2, 3 ... (37)
n b

A;

I
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It is to be noted that the functions X Y, x Y ye 1 p and'Yn

m n M, x nl, y In f

have certain properties. Substitution of Eqs. (37) into Eqs. (28), (29) and

(30) yields the coefficients

2 4ab ( 1 )r+n- I. d V
2 (Zn- 112m- 1)ab V

a 0
dl IR=k 2

2- 2 2T 2z'-b (2n-I1) 2 at b
Lc{ Z j-~j (2m-1) b + z -(.a4-- h

1k: 1

V dVo

L'J h ab

f. ii= :,.., 7 (38)

Ij h, ab

U IF

lk~sk

where the symbol indicates the summation with respect to each of1k=

the load carrying layers located at z.

For the case uf the clamped plate with one of the plate corners taken as

the origin of the Loordinate system, the edge conditions are satisfied by the

coordinate functions

2rmx
X I - cos a m= 1,2,...

m 2a

Y I Cos Z-y n- 1, 2,...n - s 2b . .

:sin MT2a m z 1,2,...

sinry n 1, 2,... (39)
n2b
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The function X and Y are not orthogonal. However, the functionsm n

X Yn,y m and '' are orthogonal. Now Eqs. (28), (29) and (30) by

utilizing Eqs. (39) may be reduced to the following expressions

Ik=k 2
o {Zc TT m2 Y. + d -n X

in -a nj mj b n J
m n Ik=l

+ h dmn Xi Ynjj - p (t) ab

+ I.. dV =0j i 0V I0

in aY .+ I . dV 0  0

n 0

and
L " mj13j1.. bX ', i =I],.., m (40)f . b X. + f . dV (40

L_.O mi1 im V 'j13 oV 0 0 ..

m 0

where
Za

X. ! X X. dx
mi j m i

0

2b
Ynj Y Y dy (41)

The acceleration coefficients dij, e6ij andfi are obtained by solving
ii 13

the three sets of (mxn) simultaneous equations (40).

RESULTS AND DISCUSSION

Extensive numerical results have been obtained for a thin flat square

plate (a = 12in. , h= 1/8 and 3/8 in. ) made of 61S-T6 aluminum alloy. he

stress strain relationship may be approximated by the bilinear
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representation with E = 10 x 106 psi, S = 40, 000 psi, and Et= 10 x 104 psi.

The initial mass density is p = 253 x 10lb/sec /in

In the analysis of inelastic simply supported beams, Balmer and

Witmer [i1 ] showed that the maximum differences between the responses

for 2 layered and 4 layered beams was about 8%. In the case of a clamped

beam, the differences were slightly larger. However, in this analysis

practically identical inelastic responses were 'obtained for 2 and 4 layered

plates. Moreover, without loss of occuracy, it is assumed that the in-plane

displacements are infinitesimal.

For the selection of the mesh size, a number of trial runs indicated

that 12 and 10 stations adequately represent the half span of a simply sup-

ported and a clamped square plate respectively." The value of Lt has been

chosen on the basis of numerical experiments and is taken to be equal to

25 microseconds. The input impulse considered here for 1/8" and 3/8"

thick plates are 0. 083 and 0. 190 psi-sec. respectively. Experimentally

these respective impulses were obtained due to a blast caused by detonation

of 8. 35 and 36 lbs charges of pentolite located centrally 7. 7 and 9. 7 feet

from the face of the square plate. The observed peak pressures were 283

and 615 psi. These impulses are approximated by simply triangular time

histories starting at the peak pressures and reaching zero at a time such

that the associated impulses are equal to the values cited earlier.

In Figures I and 2, the respective response time history for simply

supported and clamped square plates are presented. In Figure 1

the responses of a simply supported circular plate by two other analyses

[6,1 and the permanent experimental central deflection 1 7 ] are also

shown. Because Boyd's analysis [6 ] did not include linear unloading,

Trail runs also indicated that a nine term series in equation '23) was
adequate to represent the acceleration of motion.
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the deformation process was assumed to stop when maximum str-Ains

occurred in the material. In Figure 1, the horizontal line drawn from the

maximum displacement indicates this effect. The maximum displacements

reported by Boyd and the present analysis are in close agreement but differ

from those obtained by Witmer [7 ]. The permanent displacements predicted

by this analysis are in much closer agreement with the experimental results

[ 7] than those of the other two analyses. Both Boyd and Witmer assumed

perfectly plastic material in their investigations.

From Figures 1 and 2, it is observed that the plate reaches an equi-

librium pos.tion soon after it passes through its maximum displacement.

By that time the elastic energy has been completely recovered. The mean

vibration amplitude following the maximum displacement are entirely in-

elastic. The plate now oscillates about its new equilibrium point until it

finally comes to rest. The responses of the center of a simply supporttd

and a built-in plate are almost identical.

Figures 3 and 4, present the deflection pattern for the two different

edge conditions considered here. Initially it is seen that the deformation

profile is in the form of a trapezoid with rounded corners. This confirms tle

initial trapizoidal profile which is generally assumned for displacements

in the limit analysis of plates. Any further motion of the plate changes tle

deformation profile to a parabolic shape. As the plate approaches its

permanent deformed shape, the deformation profile seems to follow tli' rone

shape.

Deflection contours for different time intervals are shov.-, , ,

5 through 7. Contours marked (a) to (c) are for the simply supported plat

and those marked (d) to (f) are for the built-in plate. These contours are

far apart in the beginning of the motion but they become closer as the motion

'4..
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procceds. The circolar shape of these contours indicates the similar be-

havior of a square plate of side 2a and a ci-rcular plate of diameter Za.

In Figures 8 azid '), the membrane froces for the simply supported

plate along the semi-span for f -- 250 microseconds and lor t - 750

microseconds are plotted. It is seen that the membrane forces are regligie

at the beginning of the motion and become rather effective as the motion

pro, et-ds. That ia. initially the bending modes dominate over the nintbranu

forces and these roles are gradually reversed as the plate come to rest.

In table 1, the p:rmranent ,lefetlions "l a 3" x5- 1/#, plate for varils

apphed impulses art. , ornpared with thostv dt-ternsined .xperimentally by

Jones [13,. The r,-stilts of the present an dysis Art lower thatt thust by

Junes. lit- same difference is ob:,t rvd ii, tw plots tif the pu.rmttt nr fit -

flections in Fignrest 10 and 12. Ih, s difference may be aftribt~trd 1,, )r

factors. Howev r, it zs believed that the major lartor n-iay hc that ihe.

experimental set- up might not preciscly prwtridv the fixt-d and - lampt-d ,. t

boundary onditioi t aized i I the prevsnt analysis. It is Als, h hint-ti

that both the theroretical and expf-rimental rt suits itdi',_t-t, t.th. pitstt-

of the permanent deflection ol t square plate su'i,,vcted to inifuoriti ioA s v.

,)ressure has the shape of a truniAted pyramid.

CONCLPDING REMAR KS

A wuinierical protedtrc based on ,o , hsol v r-inirnoe pr), taph ,

been ,teveloped for mrvestiating the dyv axmn responsts ,I _-1., ' , c, v.,

gular plates at firit, deformation. Iie iiiro mrum print ijit - 4,, * ,, h,

c,_ncep' of linite variation in ;at., tleratism wha + , r, ,;t " a , * 1,t

difficulties in I rtatin , tht, struts- .f ri r,,l it in h ,4 I t I) Is r,,t -f,

other principles involvitn virtsial displ., i r", otyt or o 1,I, it, M.
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The present approach is a general one sirce it takes into account the

effect of strain hardening behavior and the strain rate sensitivity of the

material. Which has also the advaiitage of employing the Kanturovich's

etlihod in that , t oparati ve large time n( rement may be used without

ii, vi g mnerical ,r, tahilties in 0, int,gratit,h process. I he accuracy

of 11,t: or' cn nt ,,U ,r t. r. , s ba , .t n verifi. l by 'omparision with Ibe

.'-ishrxp aii~iyi, a], wirncci( iJ -z( ,->)t riittid r, ln o b'~~r plates

.

II
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