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ABSTRACT

This paper is concerned with the responses of inelastic rectang-
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ular plates to impulsive loadings. The effects of strain hardening and

strain rate sensitivity of the material are taken into consideration in this

207,
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analysis. A variational principle in dynamics of inelastic bodies subject

to finite deformatipn is used to determine the deformation process of the %
plate, A sandwich plate idealization is emplofed. The accuracy of the ;

:
numerical solution is evaluated by comparing it with the existing analyti- ?
cal and experimental results., The results indicate that this method is ;

adequate for detérmining the dynamic behavior of inelastic rectangular

plates at relatively large deformations. )
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INTRODUCTION

The.general problem of inelastic deformations in structures subjected
to dynamic loading has received wide interest in recent years. There is
. need to correctly estimate the damage inflicted as a result of blast lcadings,
earthquakes, etc., on structures. These impulsive forces cause damage
1o the structures in the form of large permanent deformations w'.ich usually
involve the eficcts of both geometric and material constitutive non-linearities.
in most of the previous studies, the concepts of limit analysis and
rigid-plastic idealization have been applied to obtain closed form solutions
for permanent plastic deformations of beams, plates, etc. [1-8]. However,

the rigid-plastic idealization is applicable only to problems in which the

elastic energy of a structure is negligible compared with the plastic energy

O T LA DR 58 R RN 20 A R i 0 e, 3 BN R Y e bt e A S S A

absorbed by the structure. Prager and Hopkins [1] were among the first

G

to investigate the load carrying capaciiies of a circular plate made of per- .

a0

fectly plastic material which obeys the yield condition of T'resca and the

associated flow rule, They assume small displacements and neglect mem-
l;rane forces, The impulse is in-the form of a uniformly distributed load
which is applied suddenly and removed after a certain time interval. How-
ever, later studies {2] have indicated that membrane forces do dominate
over the bending moments during the final stages of deformation. In their
experimental work Griffith and Vanzent [3] have shown that the load
carrying capacities of circular membranes are increased for large intin-
sity loads of short duration,

Wang and Hopkins [4] have also neglected membrane fonrces i therr

analysis of circular plates. Pezyna's |5] investigation reveals that the

pulse shape has very little effect on the final deformation patlern of a

plate. Boyd [6] has used a numerical technique to solve the resulting

Preceding page blank
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differential equation of dynamic deformation of a circular membrane. Boyd's

analysis was based on the deformation theory of plasticity. He therefore,
neglects the effects of any possible unloading of the material during the
deformation process. The permanent central deflections obtained by Boyd

in
[6] and Witmer et. al [7] are found to be,close agreement. This seems to

indicate that the rigid plastic assumption is adequate when membranec siresses

are included in the anaiytical model.

In all the earlier investigations reviewed above only the effects of
either bending moments or membrane forces were considered. Recenily
Jones [8] has examined the combined effects of membrane forces and
bending moments on the behavior of circular plates loaded dynamically and
for the case of large displacements. However, a simplified yield condilion
involving no-interaction between force and moment was employed by Jones.
Florence [2] has investigated experimentally the behavior of simply sup-
ported circular pl-tes subjected to uniformly distributed impulses. liis
results give ample evidence of the fact that membrane forces play = very
important roie in large deformation of circular plates,

As the rigid-plastic idealization is not appropriate for strain hardening
materials, a more realistic method of analysis is required. In this spirit
Witmer et al [ 9-11 ] have extensively studied the axisymmetric responses
of beams, rings, circular plates and shells subjected to time dependent
loads, Their finite difference method cf solving the dynamic equations
account for elastic, perfectly plastic, strain hardening and strain rate
behavior of the material. However, because of the small time intervaj that
must be used, considerable computing time is required ¢ven on a fast
digital computer in solving a problem. Cox and Morland |[12] have dis-

cussed the effect of a uniformly distributed rectangular pressurc pulse
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on a simply supported square plate. Their analysis neglected elastic strain,
work hardening and strain rate effects. To simplify the mathematical anal-
ysis, a modified Tresca's yield criterion was used by them. Recently

Jones et al [13] experimentally investigated the effect of uniformly distri-
buted velocities on fully clamped rectangular plates.

It is well known that variational principles have been widely used for
solving static problems of infinitesimal and finite plasticity [14-17]. A par-
allel minimum principle in dynamic plasticity has been developed by
Tamuzh [18] for rigid-plastic bodies involving infinitesimal deformation.

It was noted by Lee and Ni [19] that the principle is based on a concept of
Gibbs and Appell [20], in classical mechanics, in employing finite variations
in accelerations in formulating 2 minimum principle. Lece and Ni [19} bave
advanced the concept to establish an absolute minimum prindiple in dynamics
of elastic-plastic continua subject to finite deformations. The minimum
principle has the advantage of circumventing some of the difficulties in
treating the loading and unloading material response. This minimum
principle is employed to solve the titled problem.

The present study is concerned with the analysis of the dynamic response
of a rectangular plate subjected to impulsive loading. The impulse is
applied instantaneously at zero time and then decreases linearly with time.
The response depends on the non-conservative, strain rate sensitivily and
strain hardening properties of the material. A numecrical procedurce bascd
on the minimum principle is developed to determine the maximuni and the
permanent displacements of a rectangular plate. The minimum principle,
which is derived from the basic equation of molion, is written in terms
of Piola-Kirchhoff's stresses, accelerations and Lagrangian strains.

Kantorovich's method [21] is used to determine the time dependent
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deformation profiie of the plate. In conserving computing time, a sand-

wich plate idealization is em>loyed in the numerical procedure.

KINEMATICS

Because the deformed configuration due to large deflections differs
considerably from the initial configuration, the necessiiy of specifying
whether the stresses and strains are measured with respect to the original
configuration or with respect to the deformed configuration arises. If the
original state of the material is homogeneous and stress free, itis con-
venient to express the dynamic equations in terms of the original state. The

strain tensor, E__ referred to the initial configuration, is called Lagrangian

1J
strain tensor and is often referred to as the strain tensor in Lagrangian
coordinates. Analogously, the strain tensor, eij referred to the deformed

configuration is known as Almansi's strain tensor, In the following, we

shall choose the Lagrangian descriptions of siress and strain.

i

Consider both the original and the deformed configurations of a body. "
Let two systems of coordinates XI (I=1,2,3) and xi(i =1,2,3) be chosen to
describe the initial and the delormed configurations respectively. If we usc
the same rectangular cartesian coordinate system to describe both the
original and the deformed configurations, then the Lagrangian strain {ensor

EHmay be defined in terms of the displacements, UI = xi-X[ , such that

(U U, .+ U

1
- 7 WYyt Vg1t Y, Vi, o) (1)
Here, a partial differentiation of a variable with respect to XKis designated
as (), K.

Now consider a rectangular plate of length 2a, breadth 2b, and thick-

Y
ness h. Let the components of the displacement vector U of any particle

SRR
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originally located at (X, Y, Z) along the three mutually perpendicular direc-
tions, ke u, v, and w in the direction normal to the piate respectively. It
is assumed that the plate is, thin, the magnitudes of the deflections are of
the same order as the plate thickness, h., Also, itis assumed that the dis-

placements vary linearly through the thickness, and is independent of the
z
distance, from the middle surface. Hence, the displacement components at

any point may be expressed in terms of the displacements and their deriva-

tives of the middle surface as

= U .- Zw
' X (2)

_\;z V -~ 2Zw
'y

=]

in which u and v are the dispiacements along the directions x and y
respectively of any point on the middle surface of the plate. Then, the

second time derivatives of the strain components are

. - . .2 .2 v 2
Exse u ot (u,xu,x-b u etV ot v,xv,x+ w,xw’x% w'x)
o = 22 o= .2 - = .2

=v +(u +u VvV 4+v v 4w W +w )
YY ,Y IY )y ’Y )~ )y lv 3 I e
. G LI L - = (3)
E ==(u +4v 4u _u +2u_u _ +u _u
XY 2,y ,x ,x .,y »X LY X LY

12V .V +V.V +V TV 12w w _tW w tw wy)
X LY ) X 'Y P X LY 1 X Y » X WY X,

Here a dot above any term indicates partial differentiation with respest
to time. The strain-accelerations given by Eq. (3) will be emploved in

the following minimum principle.
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Consider a body of a continuum occupying in its natural state a region

“Here, the subsc ripts n,y,2z 're referred to X, Y, 4 « wurd. oos
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Vo and bounded by a piecewise smooth surface A, The body is subjected

to ime dependent body force FM’ {per unit mass) and Lagrangian surface
traction {(per unit initial area) TM over that part of the initial surface area
Ap. Attimet, let {Uxi be the displacement vector of a particle of the
body which has an initial position of {XK] in a reciangular Cartesian co-
ordinate system. The displacements are prescribed over a part of the

boundary surface, Ay The deformation of the body may be described in
terms of the Lagrangian strain tensor, EKL’ defined by cquation (1).

Furthermore the Lagrangian strains EKL may be expressed as the sum of

two parts: elastic strain, E;ZL’ and plastic sirain EI‘;L‘ It is postulated

that the vonstitulive relationships, in terms of Piola-Kirchholf stress ten-
sor, SI:’L’ may be strain velocity dependent but are not influenced by

strain accelerations. In other words, it is assumed that

_ [ - o ..
kL * Sk Bune Funw Bane ) 4

where 2 is the temperature and i:‘;AN is the velocity rate of plastic

straining., The Picla-Kirchhoif stresses satisfy the boundary conditions

U

(5 ) NK = TM on A’I‘ (5}

Ser, Byt Unm, L

where NK is the outward init normal to A and éML is the Kranecker sym-

bol. 2
D UM

It has been shown [19] that the true acceleration ficld, ﬁMz >
Dt

of the body, which has known or predetermined displacemert and velocity
fields at time f, is distinguished from all kinematically admissible ones

by having the mimmum value of the fvllowing functional
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= = 1
J = ‘[V Skr Bxn 4 Vo ¥ Zdr po M 4V,
o
(n)
- jATM Uy dA - Jv b, Fpy Upg a4V

T o
where Py is the initial mass density, The minimum principle is valid for
continuous as well as sectionally discontinuous acceleration fields.
Ordinarily, it is sufficient to use the first variation with respect to the

acceleration, éacc J = 0, to establish governing equations or to snlve a

problem by a direct method of variational calculus.
CONSTITUTIVE EQUATIONS

The stress-sirain relationships derived here are for those materials
which are isotropic, inelastic and work hardening, Furthermore it s
assumed that the material behaves isothermally. It is known that {for the
mechanical behavior of the material in the inclastic range, the state of
stress or strain may be represented by a point in a nine dimensional stress
or strain space respectively. A system of loading is considered as a path
in this stress space and the corresponding deformation history as a path in
the strain space.

A basic assumption is made that there exists a scalar function, called
a yield function or loading function F, which depends on the states of stress
and strain and the history of loading. The equation F' 0 represeats .
closed surface i1n the nine dimensional stress space. Inelastic deformation

can ocenr only when F 9. The condition F «: 0 indicates that no permanent

deformationss possible and the condition F>0Q has no given physical meuanings.

It 15 relatively easy to determine the yield stress for a materiai subjected

to an axial tensile load. Therefore, 1t 15 desirable to express mathematrcally
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a general stress-strain relationship in terms of uniaxial mechanical pro-
perties.

In a simple tensile test, work hardening means that the stress is a
monotonically increasing function of increasing strain, For a general state
of stress, Drucker's definition of work hardening implies that energy cannot
be extracted from the material in the process of applying and removing a
system of forces acting on a body. The following conditions are a conse-
quence of Drucker's hypothesis: a) The yield surface is convex , and b)
the plastic strain increment vector is normal to the loading surface.

Using these conditions, Lee and Murphy [14] have obtained a relation-
ship between Lagrangian strain increments and Piola-Kirchhoff's stress

increments as

R =g RE 3F ¢ -

E 13 ° G BSU BSKLSKL' for F=0 and dF>0 (7
and

E'i;r =0 for F<0 or dF=s0 (8)
where F = J2 - Kz.

Here G is a scalor proportionality function which depends on the cur-
rent stress, plastic strain and the loading history. For a strain-rate
insentive material, KZ is a constant which is equal to the maximum value of
J., that has occurred until the current deformation state. J_ is the sccond

2 2
invariant of the stress deviation tensor S’ij with

s .
J,258" 8

2 KL 5 KL
(N
1
4 - - —
SkL *SkL.” 3 Smm kL

The expressions dF>»0, dF= 0 and dF<0 .mply respectively, foading,
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neutral loading and unloading of the material in relationship to the yield

surfdace, characterized by the loading function., For a given state of stress

on the yield surface, either loading, unloading or neutral loading takes

gy LS L N 2

place according to whether stress increment vector is directed outward,
inward or along a tangent to the loading surface. Available experimental

results indicate that the Mises' yield function or loading function leads to a

good prediction of the initial yielding of an isotropic material. Furthermore,
in the absence of Banschinger's effect and in a case of relatively small sirains,
the Mises' function give also a good prediction of the subsequent yielding.
Usually, the Mises' function has been expressed in terms of the true siress.
For a case of small strain, the difference between the true an;] Piola-
Kirchoff stress tensors is relatively small. For the thin plate problem,

it is expected the foregoing conditions prevail. Employing the concept of
isotropic hardening and assuming that the scalar function G is a function

of J_ only, G may be determined from the results of a simple tension test.

2
It may be shown that [14]

3 (1 1 .
G—zj;(i:-t—- E) forJ2>0

and (10)

G=0 for 'sto

where Et and E are the tangent and elastic moduli of the material

respectively, Furthermore the general state of stress is related to the

simple tensile stress, S, by the relation

. a2
J2—8/3 (11)

b a3 Ly a W Py

In simple tension, yielding occurs when S reaches the yicld stress Su.

Sk

In the case of a thin ractangular plate, the rate of the sccond invariins
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of the stress deviation tensor may be written in terms of the Picla- Kirchhoff

stresses as

» _ 1 o * '/
¥,3 [Bxx (25xx Syy )+ 8yy (28yy - Syx )
(12)
+ 6 SXY SXY]
The elastic strain rate I'B'KL is given by the Hooke's law,
) - v & NV ¢
Bk * E SkL~ E Smm kL (13)

where v is the Poisson's ratio. Employing Eqs. (7) to (13) and the assump-
tion of plane stress, the stress-strain relationship for the thin plate may
be written as

E

Ci35yy

=C SXX+ CIZS

xx = “11 xy*

SXX+C S S

Exy = O 22 Sxy t C235vy (14)

. »

Egy = C3;5

Cs, Sxy + C33 Syy

2

xx t
where for jz >0 and J2 = K

2
(stx' Syy/
(zs s

21
Cii &t

Neile)

)o. 4 YY>

C,, =25 3

12 G

XY
[ N \
c o, (253~ Syy) (2Syy-Sxx!
--2iq

C,; =C

21 12

_ 14y 2
Cn= F +ZSXY G

(2s
G "

S

YY© XX>

C,, =25

23 XY

Tunded szttt saenmerta a0
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and

: _ 2 s 2
for JZSO and JZ—K or J2>0 and J2<K

c,,=0, C

= .Y
12 E’

1
Ci1 =% 13

C

Ca1 = Cpp

C C

—

c 33° F

Cyy =C

31 137 ~32 7 V23’

In the use of the minimum principle, it is convenient to express stress

rates in terms of strain rates. Thus, the inverted form of cquation (14)

may be given as

xx = F11 Bxx t Fip Exy * Fis Eyy

Uie
0
by

+F,  E

0y Exy t F E (17)

=F, E 23 Byy

21 XX

Syy® F3) Byyt F3p Egy + Fyy Egy

where

Fip= (sz C33 - Cy3 C35 > /D
12 = ‘<C12C33’ 013032)/13

Lo

Fi3= (Clzcz3 - Cy3 sz)/D (18)

F

F

21 12

Fop = (‘Cu Cs3 - ‘313031>/D

A

o

VR AT
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Foy=- (Cuczs‘ €135 )’D

Fg)=Fy3
(18)
Fip=Fa3
Fyg= (Cu Cy2- C12C5; )’D
and
D=¢C (cc cc\:c(cc cc)
= €11 \C22C33- Cp3C3, } - Cy2(C31C33~ Cp3Ca,
(19)

t Cys (Czlcsz' C31‘32?.)

In dynamic plasticity, the mechanical stress-strain properties of some
materials are significantly affected by the rate of -straining. The immediate
effect of straining rate is that the yield stress is effectively increased, In
order to take into account the effects of the strain rate on the yield stress,
the following strain rate formula which relates the yield stress at any

instant of time to the static yield stress will be employed [11].
s¥=s (1+|_A_€/_é_t_|1/2) (20)
o o D

where ST) is the yield stress at any instant of time and So is the static
yield stress. P and D are material constants determined by experi-
ments [10]. ¢ is the "effective! strain rate, and can be expressed in

terms of the generalized strain rates as

1/2
BT SO R . ‘2
e '( 3) \Exx * Exy t Bxx Eyy * Exy) (21)
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DERIVATION OF FUNCTIONAL

For the case of a thin flat plate subjected to an uniformly distributed

RO R A e U Ot S

transverse impulsive load, by neglecting body forces, equation {6) reduces

to the following form

.2 ]
J = f (u v +w)dV [ P waa
A
T
(22}
+ .,fv (Sxx Exxt 25xy Exy * Syy Eyy) 4V,
[

“shere p(t) represents the uniformly distributed transverse load applied to
the plate. It is seen that the minimum principle is expressed entirely in
terms of the current state of stress, strain-acceleration and acceleration

not
of the body. The current state of stress isAonly a function of position but

also depends on the loading history. This makes the analytical integration
of equation (22) very difficult to overcome. This difficulty, an approxi-
mate solution, the Kantororich's method may be employed or the functions
w(x,y,t), u(x,y,t) and v(x,y,t) may be represented by

M,N

w {x,¥, t)r;,i;l:l dmn(t) Xm (x) Yn(y)

M, N
ulxy, t)= 2 e (e (x)Y (y) (23)

» =
M,N

vigy,th =D £ ()X (x) ¥ (y)
m, n=1

with
m=1,2,3... M
n=123... N
Here Xm(x) Yn(Y)’ qpm(x), and \i’n(y) are chosen coordinate functions, each

of which satisfies prescribed geometric boundary condtions and any other
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%
§
3
3

special characteristic of the solution such as a condition of symmetry.
The coefficienis dmn(t), e mn(t) and fmn(t) are unknown functions of time,
t to be determined by the minimization of the functional J with respect
to .émnm’ 'émn(t), and 'fmn(t). In general, to obtain an exact solution,
an infinite number of coordinate functions are needed. However, in
practice only a finite number of these coordinate functions can be con-
sidered. This number depends not only on the magnitude of the computa-

tion involved, but on the desired accuracy of the solution.

IMPULSIVE LOADING OF AN INELASTIC
FLAT PLATE WITH EDGE CONSTRAINTS

For verification the foregoing approach is applied to the analysis of
the dynamic response of an inelastic rectangular plate subjected to im-
pulsive loading. If I is the applied impulse per unit area of the plate,
it can be approximated by a simple triangular time history starting at
pressure p and reaching zero at a time t such that the area under

pressure-time curve is equal to this applied impulse. In other words

p(xy,t)=0 t<0

p (x,y,t) = po—(-;—-@— t<t (24)
) p(x,y,t) =0 5T
. where p(x,y,t) is the pressure at any time t. The tangential accelera-

tion components u and v of a point away from the middle surface are
expressed in terms of the middle surface components 4 and ¥ by

differentiating equation (2) twice with respect to time they are

i =40 - g w
» X (25)

vaV-2wW
Y
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Furthermore the spatial coordinate functions in equations (23) are
assumed tc be continuous and differentiable., By differentiating equation
{2) twice with respect to time and once with respect to space coordinates

one obtains

u =4u -z W

(26)

vV _ =V _-2zW
s X X » XY
v =% -zW

24 ' ¥ ' 7Y

Using equations (3), (25) and (26), we can express J given by equation
(22) in terms of displacements and their time derivatives as

p
_ ° {1 - »w 2 . ..Z}
J—JV—Z L(u zw,x) + (V- zW dV0
o

a
1

p(thw dA

i
oJ
Ag

+
S
<
o]
‘gsm )
="
»
-+
ch
b
el
b
+
. fed
b

v
» X » X 4 X »X L, X s X (27)

’ ’ ’ ’ s X, 1 X LY
+2W W _+W W+ w )+S. (v

»X LY 21X Yy » X LY Yy Yy
P TR R T S

g, v St E
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The volume integral J may be expressed as a function of acceleration
coefficients by substituting equations (23) and (25) into the equation (27).
The variation of J with respect to 'di implies the variation of J with

respect to the acceleration coefficients :1, € and f, The variation of J

| with respect to each coefficient results in an expression which when
. equated to zero, results in the following three sets of quasi-linear algcebraic
equations.
Ty N e fs d X Y)(-zX, _Y)
J L} L% ¥ mn®mYn ™ % “mrm, x n (-2 i,x 7j
3 \' m n

o

b -z d -
+ (fmn van % dmn Xm Yn,y) (-2 Xi Yj,y)

“ . i
s + d X Y X Y. ' 'dv m 1! 2,3,...
: mn Tm T TS o n=1,2,3,...

1i-1,2,3,...m
:‘ —\[A p(t) Xiﬁj dAo j = 2, 3,. R
' °
3 s rooav =0 (28)
I dy ijl o
(! o
| 1D n (it )
: ‘I Ll L Po & n®m Y02 dmnxm,xYn) @ Yj dv

V. mn

o
+J’ L., dV_=0 (29)
Vo ij2 o

f[“ {(f X y -zd X Y )Xy tlav
, L/./ Fo "'mn “m'n mn m n,y “i'j /1% 0

4 v 1., v =0 (30)
. 1

Bt Sr b (B e

L PRy e

Prvr o a b




THEMIS-UND~-71-5 - 18 -

where z
L) = Sxx{-zx,xx{ (1+3

+X. (-2 Y + W Y.)}

y X Jo¥ »X s % %

241 v 4

+ Sxyi 1’ij,y(.‘ + u’x + v’ y)

-zX., _Y.u -zX Y. v _+w X, ;

z i,xx ",y 1 3,vy » X sV 1, X ) g

j’ YY b

(1+% )-2Y, o _X _+Y wx}7

'y By Ly Thex T gy Ny B S (31) i

:

1132-t‘5xx{c9i,ij(l+u, )}

é:‘

1 ( - ;

+ Sxqu}in,Y(l+u,x)+Cp,XYJu,YJ A

: .

+ . Y. (32 :

yy Ly @ Yy )

i

H

Iij3 - [sxx (v,x X1,x¢3) %

_ - ‘ 3
+Sxy{¢jxi’x(1+v,y)+vxxi . 4

;

[ - Y7

+ S Xy, (T+v ) 33 :

yy L% Y,y vy S (33) 3

,i

The solutions of the quasi-linear algebraic equations are obtained by E
employing a finite difference scheme together with numerical step-by-step 3
f

method, The plate is idealized into a number of load carrying layers 2
V{

separated by a core material. The stress variation through each layer f
is assumed to be negligible. The oriy function of the core is to maintain 2

SAS YR

AALANCE RTINS TR TR, LR ST RN
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an equal separation of the layers. There is an even number of layers and
they are of equal thickness. The spacing between the discrete layers may be
obtained by assuming both the idealized model and the actual plate exhibit

equal elastic bending stiffnesses. Thus

2
- _ 3h A
b"'ZG"' k=4

where k denotes the number of layers and 2b is the distance between the
two extreme layers. The volume integrals in Eqs. (28)-(30) are reduced to
surface integrals by integrating them first with respect to the z coordinate,
The integration along the z coordinate may be performed by multiplying
the integrand by a factor h/k and summing the integrand over the number of
layers considered.

The surface integrations are carried out as follows. Let (M-1) and
(N-1) be the number of segments along the x and y axes respectively. M
and N then represent the number of stations along the two coordinate axes.

The coordinates (x,y) of any station (p, q) are given by

p-1

x=M-1 a p=1,2,...M

y=& b q=1,2,...N (35)

where a and b represent the semi-lateral or lateral dimensions of the
plate, depending upon whether the origin of the coordinate system is at the
center or at the corner of the rectangular plate. If f(x,y) denotes the ~’

integrand in a surface integral, the integration is performed by using the

following expression

e T

YT USSR

{ [FNEEE YRy
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[, fooa ahy s ey (AL D FE N L00 D
T g=N-1
e
+ LM, +2) {1(1,9) + (M, q)}
q=2
p:M-l p=M-1 q*f\"-l
o _— - |
+ 21 {fp, 1)+ fip, N) +4L . fip,q |} (36
p=2 p=2  q=2

By the solutions of the quasi-linear algebraic equations, the atcelerations
and hence the displacement rates are determined. The sirain and stress
increments can be caiculated. The new displacements, stresses and
strains are then computed. A time-displacement history 18 maintain«d
throughout the motion of the plate until it comes to rest and then the per-
manent displacements of the plate are recorded.

In this analysis the detailed computations are carried out for the {ul-
lowing two cases:

a) All edges of the plate are simply supported,
b) All edges of the plate are fixed,.

The boundary conditions for the first case are satisfied by the following
chosen coordinate functions (the center of the plate is taken as the origin

of the coordinate system).

m(2m-1)x

szcos———Za—-—-— m=1,2,3...

Y =cosn(2n'l) n=1,2,3...

n 2b

an= Sin !Ta\ﬂx m = 1,2,30o

¥ = sin ¥ n=1,2,3... (37)
n b
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it is to be noted that the functions X , ¥ , X
m n’ T m

- 21 -

! Yn, * %n and ’yn

1 X y

have certain properties. Substitution of Egs. (37) into Eqs. (28), (29) and

{30) yields the coefficients

4ab

P{1) 5

~“(2n-1)2m-1)ab

m+n

(-1) J' Iij d Vo

v
0

] ] - I~k=k

M

2 7

”'o[ / L% T6a

k-1

- I
vo

2

ij, 4V

vy _ab
i‘»}o 4

Snd -

-
H

ij h,

where the syrabol
Ik=1

the load carrying layvers located at z.

2

2 2 m 2 ab
(2m-1)° b + 2° = (20-1) al}i-—é—- h‘l

izl, s ey m (38)

indicates the summation with respect to each of

For the case uf the clamped plate with one of the plate corners taken as

the origin of the cvordinate system, the edge conditions are satisfied by the

coordinate functions

X -1+~ cos 2rmx
m 2a
Yn 1 cOs 5D
. M
G ® ST

nn

th © SR

m=1,2,...

n-1,2,...
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The function Xm and Yn are not orthogonal. However, the functions

Xm,x’ Yn, v’ ®m and ‘i’n are orthogonal. Now Eqs. (28), (29) and (30) by

utilizing Eqgs. (39) may be reduced to the following expressions

Ik=k 2 2
N T2 I 2 2" 2! 2
Y d — . ) rm—
L ZQOLZ iz in a m YnJ+z dm_]b n Xim)
m n k=1
+ h dmn Xmi Ynj] - 4p(t) ab
+ ) Ii' dv =0
dy _]1 o
o
< I
/pohema Yn.+; I] dVO=0
- J "V .]2
n 0
and
Y i=1 m
v o f b X. +J I _ rrete (40)
L 70 mj im v is dVo-O =1, o
m o]
where
2a
, = X X, dx
mi1 m i
o
2b
¥, jo Y, Y, dy (41)

The acceleration coefficients dij’ 'éij’ and [ij are obtained by solving

the three sets of (mxn) simultaneous cquations (40).

RESULTS AND DISCUSSION
Extensive numerical resulis have been obtained for a thin flat square
plate (a = 12in., h= 1/8 and 3/8 in.) made of 61S-T6 aluminum alloy. The

stress strain relationship may be approximated by the bilincar
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representation with E = 10 x 106 psi, So = 40, 000 psi, and Etx 10 x 104 psi.
The initial mass density is p, = 253 x 10'61b/sec2/in4.

In the analysis of inelastic simply supported beams, Balmer and
Witmer [11 ] showed that the maximum differences between the responscs
for 2 layered and 4 layered beams was about 8%. In the case of a clamped
beam, the differences were slightly larger. However, in this analysis
practically identical inclastic responses were obtained for 2 and 4 layered
plates. Moreover, without loss of occuracy, it is assumed that the in-plane
displacements are infinitesimal.

For the selection of the mesh size, a number of trial runs indicated
that 12 and 10 stations adequately represent the half span of a simply sup-
ported and a clamped square plate respectively.* The value of At has been
chosen on the basis of numerical experiments and is taken to be equal to
25 microseconds. The input impulse considered here for 1/8" and 3/8"
thick plates are 0,083 and 0. 190 psi-sec. respectively. Experimentally
these respective impulses were obtained due to a blast caused by dctonation
of 8. 35 and 36 lbs charges of pentolite located centrally 7.7 and 9.7 feet
from the face of the square plate, The observed peak pressures were 283
and 615 psi. These impulses are approxirnated by simply triangular time
histories starting at the peak pressures and reaching zero at a time such
that the associated impulses are equal to the values cited earlier.

In Figures 1 and 2, the respective response time history for simply
supported and clamped square plates are presented. In Figurel
the responses of a simply supported circular plate by two other analyscs
[6,7 and the permanent experimental central deflection | 7 ] arc also

shown. Becausc Boyd's analysis [6 ] did not include linear unloading,

* Trail runs also indicated that a nine term series in equation {23) was
adequate to represent the acceleration of motion.
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the deformation process was assumed to stop when maximum strains
occurred in the material, [n Figure 1, the horizontal line drawn from the
maximum displacement indicates this effect. The maximum displacements
reported by Boyd and the present analysis are in close agreement but differ
from thosc obtained by Witmer [7]. The permanent displacements predicted
by this analysis are in much closer agreement with the experimental results
[ 7] than those of the other twe analyses. Both Boyd and Witmer assumed
perfectly plastic material in their investigations.
From Figures 1 and 2, it is observed that the plate reaches an equi-
librium pos.tion soon after it passes through its maximum displacement,
By that time the elastic energy has been completely recovered. The mean
vibration amplitude following the maximum displacement are entirely in-
elastic. The plate now oscillates about its new equilibrium point until 1¢
finally comes to rest, The responses of the center of a simply supported
and a built-in plate are almost identical.
Figures 3 and 4, present the deflection pattern for the two different
edge conditions considered here, Initially it 1s seen that the deformation
profile is in the form of a trapezoid with rounded corners. This confirms the
initial trapizoidal profile which is generally assumed for displacements
in the limit analysis of plates. Any further motion of the plate changes the
deformation profile to a parabolic shape. As the plate approaches its
permanent deformed shape, the deformation profile seems to follow the dome
shape.
Deflection contours for different time intervals arce shown i Fipurcos
5 through 7. Contours marked (a) to (¢) are for the simply supported plate
and those marked (d) to (f) are for the built-in plate. These contours arc

far apart in the beginnming of the motion but they become closer as the motion
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procceds, The circular shape of these contours indicates the similar be-
havior of a square plate of side 2a and a circular plate of diameter 2a,

In Figures 8 and 9, the membrane {roces for the simply supported
plate along the semi-span for t - 250 microseconds and lor t - 750
micreseconds are plotted, It 15 seen that the membrane forces are neghpitde
at the heginning of the motion and buecome rather effective as the motion
prosevds, That is, imtially the bending modes dominate over the membrane
forces and these roles are gradually reversed as the plate vome to rest,

fntable 1, the pormanent deflecitons of a 37 % 5. 1707 plate for varions
apphed mmupulses ure compared with those determined expertmentally by
Junes [13!, The resalts of the present an sy sis ure lower thar those by
Junes,  The same difference 15 obsorved o the plots of the poermeaens nt ds -
flecisons 1n Figures 10 and (2. This difference may be attriboted 1o saraess
factors. However, 1t is believed that the major tactor may be that the
experimental set-up mught not preciscly provide the fixed and lampoed o dgc
boundary conditions atilazed 1+ the present analysis, It as alse fu be pnted
that both the theorevical and exprrunental results todicate that the gyofide
of the permanent defiection of ¢ square plate suhy ected to unifurro inpnls v

wressure has the shape of a truncated pyramid,
CONCLI'DING REMAREKS

A mumerical procedure based on su shsulute mummean provephy -
been aeveloped for investiyating the dy: anmis regponscs o snelantie o o
pular plates at hrmte deformation, The soipousm proneepsle - o od 0 e
concep’ of limte variahon in acoclerations wheeb crponn conto cr Pl
difficulites in treating the stress- Stran redatiopsbips s nondorit o Gwn

other prinaples involveing virtual displas ements are seloo e s,
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The present approach is a general vne sirce it takes into account the
effect of strain hardening behavior and the strain rate sensitivity of the
material,  Whicli bas also the advantage of employing the Kantorovich!s
method 1o that « comparatively Jarpe time increment may be used without
faceiing americal onstabibtics o the antegration process. The accuracy

of the present nuwoertical resnlis has Lheon verdied by comparision with the

existing avslytical, numercical ond exvnornental rosults obtained for plates

under mnpuisive §oadiny s,

L3t

0

s

iy
ok

32

20

BRI R A

Y T
Ao S0y

7

Ty

{85

g . .
AR F e iate ot S i KD 5, st o

PR

SE AR

CRTETD




THEMIS-1ND-71-4 - 27 -

REFERENCES

1. Prager, W., and Hopkins, H.G., '"On the Dynamics of Plastic Circular
4 Plates, " ZAMP (Journal of Applied Mathematics and Physics!, Vol. 5,
No. 4, 1954, pp. 317-329,

3 2. Florence, A, L., "Circular Plate Under a Uniformly Distributed Im-
pulse, ' International Journal of Sulids and Structures, Vol. 2, 1966,
pp. 37-47.

3. Gritfith, J., and Vanzent, M., "Large Dciormation of Circular Mem-
branes Under Static and Dynamic Loading, " First International Con-
gress on Experimental Mechanics, New York, 19ol, pp. 99-106.

4. Wang, A.J., and Hopkins, 1. G., ""On the Plastic Deformation of
Built 1n Circular Plates under Impulsive Load," Journal of Mechanics
and Physics of Solids, Vol. 3, No. 1, 1954, pp. 22-37.

5. Pezyna, P., "Dynamic Load Carrying Capacity of a Circular Plate,"
Arch. Mech, Stos., Vol. 10, No. 5. 1938, pp. 0©35-447,

v, Boyd, D. E., "Dynamic Deformation of Cireular Membranes, !
Journal of the Engineering Mechanics Division, Proceedings of the
American Soctely of Civil Engineering, Vol. 92. No., EM3, June 1960,
pp. 1-1b.

7. Witiner, E. A., Balmer, H.A., Leech, J.W,, and Fian, T.H.Il.,
"Large Dynamic Deformations of Beams, Rings, Plates and Shells, "

3§ American Institute of Aerunautics and Astronautics Journal, Vol. 1,
3 1963, pp. 1848-1850,

¥ 8. Jones, N., "Impulsive Loading of 2 Simply Supported Circular Plastic
..i Plate, "Journal of Apphied Mechanics, NMarch 1968, pp. 59-65.

9 9. Leech, J.W., Witmer, E.A., and Pian, T.1L I, "Numerical Cal-

e culaiton [echmaue for Large Elastic-Plastic Transient Deformations
. of Thin Shells," American Institute of Aeronautics and Astronautics

Journal, Vol. 6, No. 12, 1968, pp. 2352-2359.

10. Leech, J.W., "Fimte-Difference Calculation Method for Large
Elastic-Plastic Dynamically-Induced Deformations of General Thin
Shells, " Air Force Flhight Dynamics Lab, AFFDL-TR-66-171,
December 1966,

11, Ba'mer, H.A., and Witmer, E. A., "Theoretical anad Lixperimentail Cor-

relation of Largc Dynamic and Permanent Deformations of Impulsively
3 Loaded Simiple btructures,” Technical Documentary Report No. FDL-

. TDR-64-108, Air Force Fhight Dynamics Laboratory, Wright-Patterson
1 Air Force Base, Ohio, 196§,

12, Cox, A.D., and Morland, 1..W., "Dynamic Plastic Deformations of
Simply Supported Square Plates,’ Journal of Mech, Phys, Sojidg,
Vol, T, 1954, pp. 229241,




. . L
Rpthens Xy VA

X

3
4
f/
3

3

1
=
&

b

N
¥
3

¥
;
3

THEMIS-UND- /1-b - LD -

13,

14,

15,

16.

17.

18.

19.

20.

21.

22,

Jones, N., Uran, T.O., and Tekin, S.A., 'The Dynamic Plastic
Behavior of Fully Clamped Rect- :gular Plates,’ Int. I. Solids
Structures, 1970, Vol. 6, pp. 147 %.1512.

Lee, L. H.N., and Murphy, 1. M., “Inelastic Axisymmetric Buckling
of Ring Stiffened Cylindrical Shells Under External Pressure,"
Technical Report, Themis-UND-69-2, University of Notre Dame, 1969,

Drucker, D. C., "Variational Principles in the Mathematical Theory
of Plasticity, ' Proc. Symposia in Appl. Math., Vol. VII. Calculus
of Variations and Its Applications, McGraw- il Book Co., 1958,
pp. 7-22.

Sanders, J. L., McComb, H.G., and Schliechte, F R., "A Variational
Theorem for Crcep with Applications to Plates and Columns, NACA,

Report 1342, 1957,

Roth, R.S., "Plastic Buckling of Thin Shallow Spherical Shells, ™
Proceedings of the Fourth U. S, National Congress of Appiicd Mcchanics,

ASME, 1962, pp. 1059-1065.

Tamuzh, V.P,, 'On A Minimum Prin.iple in Dynamics of Rigid-Plastic
Bodies, " PMM Vol. 26, No. 4, 1667, pp. 715-722.

Lee, L.H.N., and C. M. Ni., "A Minimum Prindiple 1n Dynamics of
Elastic-Plastic Continua at Finite Deformation,’ A haper submitted to
the International Symposium on Foundations of Plasticity, Warsaw,
Poland, September, 1972,

Pars, L. A., "A Treatise on Analytical Dynamics,' Heineman, London,
1965, p. 200.

Kantorovich, L. V. and Krylov, V.I.. "Approximate Mcthods of thgher
Analysis, ' Interscience Publisher, New York, 1958 p. 240,

Sureshwara, B., "Impulsive Loading of Rectangular Plates with
Finite Plastic Deformations, ' dissertation submitted to the Graduate
School, University of Notre Dame. Notire Daine, Indiana, in August,
1971, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.




- 29 -

THEMIS-UND-71-5

1 4N 89%1 ° 9/1-s € AN €
e L1 1L80° 9/1-s € AR (4
1o 9¢~” 9%l ” 9/1-¢ € XA 1
[g] Lzo00y,

sauof jussald (o9s ~15d)

(vom (unm osnduuy (ut)q (ur)e (uniy ‘ON 7IS

FLVId 9L-1909 NI-LTINd 40 SINFWIADVILSIA TVILNED ININVINIIL

1 TdVL




' ;awwéxﬁ.ﬁrﬁvgéﬁﬂﬂ53393%&&)«%&«%&59{,..ﬁe.¢4 Anne

00sv

AT NTE R AACIER AR N ¥ e i
W IR ¢ AL G B INSTRI S ST A e e Syen A A T O
A DR A G U

-

*9je|d po3roddng L1dwiig & 103
S3Ins?aY Jejudwitradxy Yyjtm sssuodsayg jeorporosyy, jo uostaedwos 1 ‘St g

SGNOJ3ISOYIIW NI INWIL
000t 000¢ 0002 000!

AR TN G Wi O D O N v

o T PO

~ 30 -

| i | [ _

SISATVNVY LN3IS34d
ar0g ———

IWLIM —-—
TVLIN3IWIH3dXS *

\\ o

IN3W3OV1dSIC TYYHLINGD

("NI)

—0¢

B ils'lllltll\l.ﬂﬂ\l\!lh“lafllllnlllllfll’lﬁllumr\\\
\\\\ I/ :
\ 4/ k
- | 03S-1Sd €800 = 3ISTINdWI N \
s S/
= N\
e
=
it
%) ] | ] | |
1
=
m
=
£
2 e S A S R Y e S TR e L " - o ot et e e+ s v e s e
- - o T A RN N TR A s - e T e B e e
T L e i il T N T R R Y
KA we SRR adi ] L st o s

R ) W P ey

ALk
ST RO TR

G ke G

R R T IR

A
1%
+
“




IR PR R TR

*a3e1d srenbg paduwreln) ® jo sjuowsdeldsiqg je1yus) 7 814

SANOJ3SOHOIN NI 3WIL
000¢ 006¢ 0002 000Gl 000l 006

~ ! ! | _

O

m

=

—

2

>

L

o

t — -0l »

5 N

! &

m

=2

m

=2

—

23S -1Sd €80°0 = 3ISININI —~

- —Hoez
wy
% H
o

& | _ | _
P
<
[92]
]
<
73]
=]
=
y - - SEEEAT T I SRS e ‘...,;.»..ﬁ...:.u..,.f..;‘.1a.ﬂ. G e % TR S P 2 ) , LTS a » ¥ .ouﬁmﬁ



PO N iy rreess L e
e N Y VN

TEL aa e e (o oae gevm s

e T v, e

~ e, R L2 I

ARRIN TNV BT S e e g ey SN T e et s v e

TITVS NCLARE AN e L

T

"ojeld axenbg pajroddng Aidwig e jo suomdayjeq uedg aippiy ¢ ‘Sig

('NI) QN3 03180ddNS ATdWIS WOY4 JONVLSIC
¢l 8 v
| _

so9s 77 0Gz2 = |} I\

- 32 -

$08s 77 00OG = } "\

NOILO3143d

— s99s 11 gz} = | < ' — 01

-
2
/ =
s29s 77 0001 = }
wn
S
A 5025 770Gy = |
W_ | — Gl
195
=
7|
jo o]
&
{ |
L]
SRR I s s T g e B S g -
. - ki o _t.zum‘ i o Z " |
> . il 4o oy REAREE T o on gt e R R PO g . ey




THEMTS-UND-71-5

T A I I

NOILO3143a

(NI

‘23eld @aenbg paduwe(n € jo suoyoajyeg uedg SIPPIN ¥ St g
('N1) ON3 34AVTO WOYd4 3ONYLSIA
:N n :w :,v
_ _
s09s 77062 = hv\ﬁ
—vlln
I s23s 77 00G =
| soss 7 0g2i=}
]
Cs29s 77 000! = §
. $295 71 0GJ = |
1 |




TN TROIARI T Y NPT T S A N STy s
R T L IR TERI G TR IR P ey 1 ramr D A A M s bt 16 R
e NRFERST O L AT A S N R BAFP T
& vernar i

B R Ny S YAST LSBTy
v - Lans

- .

SRR I SR S S Ay s ST S

R P S R PR

‘aje]d @xenbg ® 10 sanojuon uoidayieg § °Sig

3LVd 3HL 40 ¥3UIN3D IHL WOHL G34NSVIN SIONVLSIC

(4) SANOD3SOMOIN OSL = A (D) SANODISOHIIW 006 =} m

€0 l..m

- 34 -

90
80

THEMIS-UND-71-5

- e
BAREIERIEER FOND 8 1 e L ga e f a3 2o Y AT etk e PR IS Y oy % 0
) B e e L T s i s o s - oo T R T
a L e e PR PPN rny pgerary " 2m " .,
" . W A et SESERRARE o oois chopivdd S st i~ >, . o
i S DO PV S e




ENJE TR TTTY . oy o
& CEX R PRy kMO IR LA I T v g™ 3
R N} R T

*93elg 9xenbg ® jJOo Sinojuo UOINA[IPG 9 °‘Srg
31V7id 3HL 40 ¥31IN3D 3HL WOYd4 d34NSVIW SAONVLSIA

(p) SGNOJ3SOUDIN 006 = | A (0) SANOD3ISGYIIN 006! = |}

A
i »
] T wel | _ _._N_
| - .8 -
»
H
B :¢ B
b Y - - X e -
m wl 0 2!
=
=
[95)
m 4
<% )
ja ot
[

A Gt g Xpooasiia,

ke S NN o A PRI e ko e s?ﬁeh_




- 36 ~

THEMIS-UND-71-5

LA bk g%ﬂﬁéﬁﬂ%,dﬁ%ﬁmm@a% RTRE

*ojeld daenbg ® jo sanojuop uomdayyea . ‘Sig

34V1d 3HL 40 H3LN3D 3HL WOM4 G3YNSV3IW S3ONVLSIC

(4) SANOD3ISOHOIW OO0GH

}

A

wol

(8) SANOD3SOHIIN

06l =}

Lunnd

ucl

Beadn




BB St

- 37 -

THEMIS-UND-71~5

RN LRI e et X b G i ¢ 470 b Mo e L
LR ST i 4t i i Kl 2 taver

<l

A N AR TR A e

‘3R g 2xenbg pajroddng Ajdwig ® jo sodio g suriquua uedg 91pptIN 8§ °StJg
("NI) 31v7d 3HL 40 ¥3LN3D 3HL WOYd 3ONVLSId .
8 9 ) ¢

e E LR A

m n _

——ES

SANOD3SOHIIN 062 = |}

5-01 ¥ S30404 3INVHENIW

1
©
O
(NI/87)

5 7 A . 2 ) i < e 43 2 ~, ey $ 3 - ae b 2z e
B e R R b b 2 Pt ) e e e 2 ot s i 2

Cyr s 4y by st o s b Dt G e

80

o A B by e
S TS TR RN SRR 2 T T

nt e ittt

Saiabaiioe 4 aba




RORI T RIERITE LD PR 17 e

*ajeld oaenbg pa3xoddng A1duaig B J0 8010 J duBIGUIBW uedg 21ppPTIN

(NI} 3L4V1d 3HL 40 ¥3LN3D 3H1 WOHd 30NVLSId
el 6 S €

6 "9tda

o — i ! . |

. Ay

V\\\mﬂ\

:

S - AN

SANOD3SOUIIN 06L = |

|
N
o

—90

—8°0

THEMISSIND-7)-5

R S S R R R e AT

B N O T < A

S s A ek . .
kel s Lnah e S Sag PRI

Dol b NI e g o oo
3 a AR L St AR X S L 2 s 4

AN e BT VA G SR g ST s

aiede. 2

(NI/7G7) ,_OF X $30H04 INVHEW3W

e fos e s o X e‘_

jthad




- 29 -

THEMIS-UND~ 71~

‘o3e1d 91 1909 WNUIUMIY Jo 9]5joid juourwed ueds S1PPIN 01 "8t

G2 Q¢

{*ut) HIONIT IHL ONOTV HILN3D WOHd FONVLSId
: G o'l S0

SISATVYNVY LN3S34d

| i I

SINOP — e eme SN

'O

20

€0

A

S0

‘NOIL231430

(rut)




a3eld 9J, 1909 WRUIUN]Y jO 31Joad JUdUBULISg uedg 21PPIIN 11 “Std

G

('ui) HLAIM 3HL ONOTV H3LN3D WCY4 3ONVLSIO

ol

g0

0

- 40 -

SANO =
SISKIVNY LNIS3dd

|

*

o

—v0

G0

PHEMEO-1ND-T71-"%

NO110371430

(u)




