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PROBLEM

Provide analysis and synthesis of Navy design problems. Specifically,
develop a capability at NELC for using mathematicai programming (MP) as an
aid to eugineering design.

RESULTS

1. The overall software capabilities at NELC for numerically solving
various types of MP problems — initiated or developed under tis problem —
are discussed in the report proper. Applications of integer programming are
given in Appendix 1. User’s guides and FORTRAN codes fr solving some
classes of MP problems are given in Appendix 2.

2. Practical guidelines are given for applying MP methods.

RECOMMENDATIONS

1. Maintain < continued effort to keen the mathematical programming
software current. Monitor research literature for new developments in non-
linear programming and integer programming.

2. Conduct ongoing seminars or in-house classes to inform practicing
scientists and engineers of the utility of MP.

3. Review Navy engineering design problems for ncssible application
of MP techniques.
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INTRODUCTION: SCOPE OF REPORT

There are several problems involved in the development of faithful
mathema:ical models of real-world processes. The processes are in general
nonlineir. The modeling equations are frequently incomplete. Conditions
are known only within limits. Often the best approach to these problems is
via mathematical programming (MP). 1-

MP is a distinct discipline — it exists independently of computer pro-
gramming. Prior to the age of the high-speed computer, however, scme of
the original algorithms for the solution of MP problems were too cumbersome
to be of real use. The advent of the modern digital computer has made the
solution of many types of MP problems feasible and has stimulated the search
for better algorithms.

This report is chiefly concerned with solving MP problems — with the
computational stage of MP. It is intended as a guide for the usage and appli-
cation of available MP c_mputer codes.

THE MATHEMATICAL PROGRAMMING PROBLEM defines the
general MP problem.

MATHEMATICAL PROGRAMMING CAPABILITIES AT NELC lists
and evaluates the MP codes operational on the NELC IBM 360/65 computer,
and will be of interest to the user who has an MP problem in final form, ready
to solve. He can choose the appropriate code from the list and obtain the
card deck and user’s guide from the NELC program library, Computer Sciences
Department.

DESIGNING WITH MATHEMATICAL PROGRAMMING AS AN AID
provides guidelines for modifying the MP problem when, in its first form, it
is cumbersome; or when there is not information enough to start computation
(for example, an initial feasible point is lacking); or when the available codes
do not yield ali the needed information (for example, postoptimal analysis).

i. See APPEMNDIX 3: REFERENCES.




THE MATHEMATICAL PROGRAMMING PROBLEM

The basic problem of MP is to develop an algorithm for finding the
miainwm of a scalar-valued function of n real variables that satisfies a set of
auxiliary conditions called constraints. Stated in mathematical terms, the
problem becomes:

Let f(x). . ..,xn)andgl(x],...,xn),...,gm(xl,.. ., X,) be
scalar-valued functions of the n variables X1s ... Xy Then we wish to find
variables which

minimize f(xl, X9y oo Xp)
subject to

gl(xl,xz,...,xn)>0 (1)

gm(xl,xz, cees X)) 20

The above problem is known variously as the ‘general mathematical program-
ming problem,’ the ‘constrained optimization problem,” and the ‘nonlinear pro-
gramming problem.” For the sake of convenience, we call it proble:n (1).

in problem (1), f is called the objective or cost function and the g; are
called the constraints. We also refer to f ard g; as the problem functions.
We denote the vector (xl 13Xy xn) by xT (where T denotes the matrix
transpose) and call the set of all vectors x which satisfy g;(x) 20 foralii=1,
..., m, the constraint set or feasible set. The problem is said to be consistently
posed if the constraint set is nonempty. We note that finding the maximum of
a function f is equivalent to finding the minimum of -f.

Consider the following example (fig. 1)

Minimize  f(xy, X9) = (x;=2)% + (x5-1)?
subject to

2
g1(x), Xp) =Xy -x7 20 2)
gy(X],X9)==X] -X9+ 220

Since t'(xl, x2) is the sum of squares, the minimum occurs at X1 =2, Xp = 1
However, the point (2,1) is not in the constraint set defined by g; and g,.
The obvious (in this example) candidate is the point (1,1), which in this
straightforward problem is the constrained minimum. As m and n get larger,
the problem becomes significantly more difficult to solve.

i W ABW. e A A . a7 bt <
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Figure 1. Constraint set: MP problem.

We now turn to a discussion of computer codes which can solve MP
problems, for different classes of problem functions.

MATHEMATICAL PROGRAMMING CAPABILITIES AT NELC
UNCONSTRAINED PROBLEMS

The unconstrained MP problem is stated as:
Minimize f(x, LOTIIND 9

where f is a scalar-valued function of the n variables (xl s X9 e xn)T =X.
Gradient methods and direct search techniques are the two basic’
approaches to numerically solving the unconstrained rroblem. The gradient
of f at x, denoted by Vf(x), is defined to be the following vector
VE(x) = (3f(x)/axy, . . . , 3(X)/dx)]

Gradient methods use, in some way, the following facts:

1. At the minimum x* of f, we have Vf(x*)=0.

2. If Vi(x) # 0, then -Vf(x) points in the direction of steepest descent.

1 A finer classification would be direct methods, gradient methods, and those methods
involving the matrix of second derivatives. We feel that the first two are the most useful
for applications.
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This analytic information makes the gradient methods fast and enables the
computer codes to compute meaningful error information. To use gradient
methods, we must have the gradient of f avai.able analytically or have a numeri-
cal way to compute it. Direct search methods eliminate this need for the
gradient and rely only on the behavior of the objective function in seeking out
the minimum. Typically, direct methods evaluate the cost function many
more times than gradient methods in minimizing the same test function. In
minimizing the Rosenbrock test function (see Appendix 2), the direct search
routine ZANGWI requires 325 function evaluations, while the gradient
method CONJGT requires only 71 combined function and gradient evalua-
tions, in finding the optimum to within the same accuracy. This is a trade-
off a user must make if he can choose between a gradient method and a dirert
method.

Direct methods do not rest on so firm a mathematical foundation as
gradient methods dv, and most direct methods are proved to converge for
only special functions. However, they have been uscful in practice, since the
objective function in many applications is complicated or its gradient is not
available. 1t is generally simpler to code a problem for a direct method, which
allows for faster implementation on the computer.

We present the following example of posing a two-point boundary
value problem (TPBVP) as an unconstrained MP problem. to illustrate both
an application of MP and the need for good direct search methods. The prob-
lem is to find an n-dimensional vector function y(t) which satisfies

y = h(ty) @<t<b)
with

yi(a) = g, i=1,2,...,j<n)
and

yi(b) = qj d=j+1,...,n)

In general, this problem has no closed-form solution, and in some cases no
sotution at all. However, since it frequently arises in applications, either a
numeiical estimate of the solution is desired or, if no solution exists, a function
which comes close (in some sense) to solving the problem is desired. With this
in mind we pose the following MP pl’oblem.Jr
n )
Minimize f(x}, X, - .., X _j) = Z (¥;(b)-q;,) (3)
i=j+1

1’Rosen6 discusses the same problem and obtains approximate solutions using linear pro-
gramming techniques. His approach requires a great deal of equation manipulation before
the linear programming techniques can be appiied. Unfortunately, no comparison between
the two methods has been made,

et i e+




where the numbers y;(b), i=j+1, . . ., n are numerically computed as follows.
For a given (xl, cey xn_j), solve the following initial-value problem over the
interval [a,b].

y=hty) (@<t<b)
where
y@) =@y, - -- s Gjgs Xs - s xn-j)

the last n-j components of the solution obtained at t=b of this problem are
used in the objective function for yi(b),i=j+1,...,n

In this problem there is no analytic expression for the objective
function f, from which Vf can be derived. Thus, to numerically solve this
unconstrained problem (3), either a direct search method must be used or
Vf must be numerically calculated via a differencing routine. We recommend
the former as reliable and easy to use, and discuss some of the drawbacks of
the latter in DESIGNING WITH MATHEMATICAL PROGRAMMING AS
AN AID, Cradient approximation. Dejka’ discusses a similar TPBVP and
uses a direct search method to solve a related MP problem.

We briefly discuss computer routines available from the NELC pro-
gram library for solving the unconstrained problem. The user’s guides for
these routines provide ample background information ana details for
implementation.

Gradient methods from the library are FP, CONJGT, SOREN, FMFP,
and FMCG. FP and CNJGAT originally were programmed and used by
Winterbauerd to solve a parameter selection problem for a sonar signal equa-
tion, but they are general-purpose, unconstrained, MP codes. FP and C(NJGAT
are based on the methods of Fletcher and Powell9 and Fletcher and Reeves,l 9
respectively. SOREN is a modification of CNJGAT which has converged
faster for some test functions. FMFP and FMCG are available from the [BM
Scientific Subroutine Package:l L
extensively or compared them with the other gradient methods.

ZANGWL, DIRECT, and UNIV AR are direct search codes in the
library. ZANGWL is discussed in Appendix 2, and DIRECT and UNIVAR are
presented in reference 12. These three routines are based on methods presented
in references 13-15, respectively, and were programmed at NELC. ZANGWL
has a matrematical basis for convergence similar to that of CNJGAT, and of
the three direct methods, it is the most efficient in terms of the total number

we have not tested these last two routines

of function evaluations 1equired to minimize a function. In minimizing the
Rosenbrock function, to the same accuracy and from the same initial point,
the number of function evaluations were ZANGWL(325), DIRFCT(705), and
UNIVAR(2303). The extraordinary number of function evaluations clearly
makes UNIVAR unacceptable, but ZANGWL should not be selected over
DIRECT. DIRECT makes intermediate searching moves in a much more

o



. cautious manner than ZANGWL, which makes it better for some applications.
This is discussed in DESIGNING WITH MATHEMATICAL PROGRAMMING
AS AN AID, SUMT and Constraint Transformation.

Before moving onto the constrained problem, we give a word of
caution on all minimization routines. Each method, be it 4 constrained or an
unconstrained code, is capabie of finding only a local minimum and not a
global minimum. We define local and global minima in the next lines. Let
the objective function f(x) be defined on a set G in an n-dimensional vector
space, denoted by E". Then we say that f has a global minimum at x* (in G)
if f(x*) < f(x) for all x in G. Note that we do not exclude GEE", XinGis ..
called a local minimum, if for all x sufficiently close (with respect to some
norm) to X, and also in G, we have f(X) < f(x).

f.ocal minima can occur in the gradient 1i:ethods because the condition
that Vf(x*) = 0 is only necessary and not sufficient for a global minimum. In
direct methods, only local information about thec surface defined by the objec-
tive function is available to the routine. This characteristic makes direct
methods susceptible to stopping at a local minimum. For reasonable certainty
that a global optimum has been reached, it is wise to restart the problem from
different initial points. In many applications, if a local minimum gives a
satisfactory value of the objective function, no further processing is necessary.

Work is continuing in the area of unconstrained minirization algcrithms,
with refinements to the above methods and new methods appearing regularly
in the literature. The most fruitful and accessible sources of articles on the
subject are The Computer Journal, Communications of the Association of
Computing Machinery, SIAM Review, and the SIAM journals on control,
numerica! analysis, and applied mathematics. The above sources, together with
Management Science and Operations Research, contain many articles on the
constrained problem.

[T

CONSTRAINED PROBLEMS

We return to the discussion cf problem (1) for various classes of
problem functions. The following types of mathematical programming prob-
lems are discussed: linear, quadratic, convex, nonlinear and nonconvex, and
integer. The methods for solving these problems make explicit use of the
propet.. » of the problem functions.

When an uncons..ained problem is solved, the codes require only an
initial point for which the objective function is defined. This requirement is
more demanding in the constrained problem. Depending on the type of prob-
lem under consideration, the user can be required to provide an initial feasible
point, as a starting point for the computiation. In many applications an initial
feasible point is known from the engineering knowledge of the problem. How-
ever, if the constraints are numerous or c mplicated, such a point will not be




obvious and a preliminary step must be taken pricr to solving the problem.
A method for obtaining an initial feasible point is treated in DESIGNING WIT}

MATHEMATICAL PROGRAMMING AS AN AID, Initial Points and Scaling,
so we assume that one is at hand in the following discussion.

Each class of constrained MP problem is described, together with
computer programs which can solve it. Since each routine to be discussed has
an associated user’s guide, we confine our remarks to the following points:

1. Is an initial feasible point required?

2. Does the code find a global optimum?

3. Can information be saved for possible restarts or postoptimal
analysis?

4. Is the routine easy to use?

5. What error messages are given if tiie routine fails to converge?

LINEAR PROGRAMMING (LP)

In the standard linear programming problem all the functions in
question are linear and the problem variables are constrained to be non-
negative. We write:

Minimize f(x) = ¢;x + Coxpt ..t epxp

subject to

gi(x)=ap xj+ajoxg+.. .+alnxn<b1

Bm(X) = apX) taypXo + . FapgX, Sby
This LP problem can be written in matrix notation as:
Minimize z = ¢ x
subject to

Ax

Xi&

A

b
0

where the < means that the corresponding components of the vectors are
“less than or equal to.”” If the constraints are consistent, then the simplex
method of linear programming guarantees that a global optimum'r can be
found in a finite number of steps. The simplex method is an iterative proce-
dure and generates “basic feasible solutions™ at each iteration, which decrease
z. To produce these solutions, a ‘*basis inverse” matrix is calculated. The

t An unbounded solution can also be detected in a finite number of steps.
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preceding bricf comments serve only to associate the terms “basic feasible
solution™ and “*basis inverse™ witn the simplex method; references 16 and 17
treat the simplex method.

The most complete code for rumerically solving the LP problem is the
IBM Mathematical Programming System 3 (MPS/360). MPS/360 is based on
a modification of the simplex method and will either solve the LP problem or
indicate that no solution exists. This code Joes not require that the problem
variables be nonnegative, and treats upper and lower bounds on the variables
ac special constraints. Separable programming problems (a special nonlinear
MP problem) can be solved with this routine. MPS/360 is capabtle of solving
problems of up to 4095 constraints and “‘virtually an unlimited number of
columns.”!8 1t is currently stored on disk pack NELCOS at the NELC
Computer Center.

No initial point is required to begin the computation; however, the
option exists to start the problem from a user-supplied basis inverse. MPS/360
has its own control language, which provides a variety of capabilities. The
user is afforded several postoptimal analysis procedures and can access the
current basis inverse for future restarts. This control language is straight-
forward to use and provides some looping and branching capability. A variety
of messages are output to the user in the course of computation. They are
fully expiained i the message manual.!®

The chief drawback of this program is the format of the input data.

It requires each element of the arrays c,b, and A to have a “rew name” and a
“column name” for identification. This has proved cumbersome for scientific
and cngineering work. A FORTRAN program, DATAPREDP, is available to
reduce the data arranged in compact matrix notation to a format acceptable
to MPS/360.

In many applications a lineai programming problem must be solved
repeatedly as part of a larger problem. The READCOMM20 facility of MPS/360
allows the main program to be used in an iterative fashion as a subroutine.
READCOMM enables the user to supplement the standard control language
with FORTRAN procedures; for example, DATA PREP. Rosen® and Griffith
and Stewart2! have examples of using a linear programming code in an itera-
tive way.

Previous large-scale, efficient LP codes were geared to commercial
applications and required a great deal of modification for efficient scientific
and engineering use. The READCOMM facility has made a powerful program
easily available for a wide range of specialized applications.

QUADRATIC PROGRAMMING (QP)

This type of problem is the next order of difficulty. A quadratic
cost function is minimized subject to linear constraints:

R B 55
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Minimize f(xl, X2, -5 Xp)

subject to

appXptapxg ..t Ay <by

(4)
amXp tagoXgt ... tap X, Sbo
where f has one of two forms —
f(xl,xz,...,xn)=ch+xTBx (5)
or
f(x), X9, . .., X)) = IHx ~el 6}

B and H are n-by-n and k-by-n matrices, respeciively, and ¢ and e are n-, and
k-dimensional vectors, respectively. The norm of a vector y, denoted by llyll,
is given by
n 7
wi={ > y2
i=1

At present only the minimum norm problem (equation 6) can be
solved at N..LC. The program which does this is QPHANSON. This routine
was written by R. J. Hanson, of the Jet Propulsion Laboratory, Pasadena, and
uses a numerically stableT version of Rosen’s22 gradient projection algcrithm.
The method guarantees that a global optimum will be found for a consistent
problem. The routine is reported to have worked well on examples from the
areas of curve fitting and approximation of solutions to linear integral
equations.23

The routine is described in reference 23, and an NELC user’s guide is in
preparation. The code is operational, but it is still unpolished in respect to
user-oriented input and output. QPHANSCN does not require an initial
feasible poim nor does it have an option to accept a good approximation of
the optimum. The code treats equality constraints and inequality constraints
separately. It can solve problems of up to 60 constraints (cquality and in-
equality combined) and 30 variables. No experiinents have been done to
determine whether this is a hard and fast upper bound on the prcblem size.

The program suffers from lack of good error and timing messages. 1If
the routine fails to converge, no messages are given as to the possible cause.
Also, no provisions are made to identify inconsistent quadratic programs.
The user is on his own with QPHANSON.

tAn algorithm ¢ is numerically stable if the errors in the input data are approximately
equal to the round-off errors generated by the computations of ¢.

11
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If a QP problem occurs with equation (5) as the cost function, and the
matrix B is positive-definite or positive-semideﬁnite,ﬁ then Hanson23 presents
a method for transforming this QP problem into a minimum-norm QP prob-
lem. This minimum-norm problem is soived with QPHANSON and then an
inverse transformation is made. Presently this must be done by the user.
QPHANSON is currently being modified to make this transformation

automatically.
Codes to solve quadratic programs are not as well polished or as highly

developed as those for LP. Unless the demand increases for good QP routines,
the user will have to write his own code or be content wit the experimental

models.
CONVEX PROGRAMMING

Before turning to the convex programmirg probleim, we make some

preliminary definitions.

CONVEX SET. A set G in E" is said to be convex (fig. 2) if for any
two points X and X9 contained in G we have 7\x1 + (1 -l)xz contained in G,

for all X in (0,1).

CONVEX SETS

NONCONVEX SETS

Figure 2. Examples of convex and nonconvex sets.

”A symmetric matrix B is positive-definite (semidefinite) if for every x # 0 we have
xTBx>0,(>0).

= AR
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CONVEX FUNCTION. A scalar-valued function f defined on a convex
set G in EM is said to be convex if for any two points xyand x5 inG

f(Ax) + (1 -)\)xz) < M‘(xl )+ (1 -)\)f(xz)

for all X in (0,1).

Linear functions, and the quadratic cost function (equation 6) with B
positive-semidefinite, are examples of convex functions. A theorem of interest
states that if the constraint set of an MP problem is defined bv convex functions,
then it, too, is convex. More precisely, ifgl(x), - ,gm(x) are convex func-
tions, then the set of all x for which g1 (x) <0, .. ., g, (x} < 0 holds simul-
taneously is a convex set. The constraint sets of linear and quadratic programs
are convex.

With these facts in hand we state the convex programming problem.

Minimize f(x)
subject to
gi(x)<0 (i=1,...,m)
where the functions t and g; are convex functions of x = (xy, ..., xn)T-

.. great deal of work has been done with convex programming and
the theory24
Each method is valid for specific requirements on the problem functions. In
this section we assume that the gradients of all function: exist and are con-
tinuous. The central problem in solving convex programs is not so much
theoretical difficulty but rather the obtaining of rapid convergence of numeri-
cal schemes. Even though some QP problems are convex, it may be more
efficient to use a routine like QPHANSON to so've them rather than treat
them as convex programs. Another practical difficulty with convex program-
ming is the identification of convex functions. If the function has a complicated

can guarantee convergence for some computational methods.

analytic expression, it can be difficult to classify it as convex. The methods
for solving convex programs will not in general completely hang-up if the data
are not convex, but the significance of s'.ch results should be judged in terms
of the user’s problem formulation.

The first library routine which solves the convex programming prob-
lem is the subroutine CONVEX, which was developed by Hartley and
Hocking25 at Texas A&M. The routine :nakes a linear approximation to the
functions in question and then uses a simplex-like procedure to move to the
optimum. In making the linear approximations, the routine requires a user-
supplied subroutine which computes the gradients of the cost function and
the nonlinear constraints.

CONVEX does not require an initial feasible point; however, the
option does exist to start from a given point. In addition, CONVEX produces

13
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a current feasible point and a basis inverse at the end of each i cration for
possible restaris. The format of the input data is straightforward and suitable
ta scientific and engineering work; however, care should be exercised in the
organization of the data for any upper and lower bounds on the problem
variables. CONVEX requires that the constraint data be input in three
groups — the upper and lower bounds on the variables, the linear inequalities,
and the nonlinear convex constraints. This feature makes it possible to con-
veniently solve quadratic programs with convex cost functions. No compari-
sons between QPHANSON and CONVEX have been made or: solving quadratic
programming problems.

CONVEX suffers from the lack of good error messages and analysis
in the event of an inconsistent problem or any numerical difficulties. No
investigation of the numerical stability of the method or of timing or accuracy
benchmarks for large problems has been reported. A convex problem with
60 corstraints and 60 variables is the largest which can be solved withont
program modifications. Because the linear constraints are treated separately,
it is likely that larger problems can be solvad if the number of nonlinear con-
straints is not too great. Future work should investigate this possibility.

The second routine for solving the convex prograrmyming problem is
Experimental SUMT. This method is theoretically convergent for convex
data, but, since it also has provisions for nonconvex programs, we postpone
discussion of it until the next section.

There is a special subclass of convex programs for which a global
optimum can be found with the linear programming code MPS/360. These
are separable programming problems, which are defined as follows:

n
Minimize z = z fj(xj) )
=1

subject to
n
Zgij(xj)gbi (i=1,...,m)
=1

Note that the objective function and the constraints are sums of
functions of the single variables X;; that is, there are no ‘“‘cross product” terms.
This allows each nonlinear function to be replaced by a polygonal approxima-
tion, and reduces problem (7) to a form which can be solved by MPS/360. The
MPS/360 user’s manual 8 gives the appropriate details and examples of
solving separable programming problems. If the separable tunctions are
convex, then MPS/360 will find a global optimum to the approximation
problem. The use of successive approximations causes the global optima of
the approximation problems tr, converge to the optimum of the original




problem. The method can tolerate some nonconvex functions but may stop
at a local optimum.

This technic re can also be used for separable convex programs too
large for CONVEX. (CONVEX may be more efficient if the problem is not
too large — unfortunately, no experimental evidence is available to aid in
making the selection.)

NONLINEAR, NONCONVEX PROGRAMMING

. This last class of MP problems is composed of all the problems which
are not ne-~essarily linear or necessarily convex. In the statement of problem
(1), no requirements were made on the functions in question other than the
assumptions that the objective function would be defined for all feasible x,
and the g would be defined for all x. This statem :nt of problem (1) is much
too general to be of use. To have any hope of obfaining a solution, we must
put some restrictions on the problem functions. The three computer codes
whicn we discuss require that the gradients of all the functions in problem (1)
exist and be continuous. Although these couditions are stringent from a
mathematical point of view,f they do not provide a base for an MP algorithm.

The following example illustrates one of the difficulties of nonlinear,
nonconvex programming. Since the problem functions are possibly nonconvex,
complicated constraint sets can be generated (fig. 3).

i Figure 3. Disconnected constraint set.

In this example, if the initial feasible point x0 is in one component of the
constraint set and the optimum x* in another component. then the routine
cannot move from xO to x* while keeping intermediate points feasible. Thus.
the most that general MP computer routines guarantee is a local minimum.

. One of the most sophisticated routines at NELC is the Ricochet
Gradient2® method. This is an IBM SHARE routine which requires that the

Fif the constraint set is bounded, then these conditions are sufficient for a global optimum
to problem (1) to exist. This existence theorem gives no method for finding the optimum,
which can be difficult in the general problem.
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gradients of both the objective function and the constraints exist and be con-
tinuous. The method requires an initial feasible point and begins by moving
down the gradient of the objective function until a constraint is reached. The
program ‘‘ricochets” and traverses on the objective function surface across
the feasibility region to the opposite constraint. A triangle is then constructed
with this iraverse line as its base and its apex in the direction of the gradient
of f. The next step is made along the line from the base to the apex. The
method terminates either on a small step size or when no ricochet is possible.

The user must supply codes to calculate the cost function and the
constraints and their gradients. An initial feasible point must also be provided.
The program has no options for restarts or postoptimal analysis; in such cases
the problem is simply rerun — the known best point is used as initial data.

This routine is capable of producing a tremendous amount of output
information. Once the method for controlling this output has been mastered,
the user has access to a variety of information, which can be of great use in
solving a nonlinear problem. The accompanying user’s guide26 provides
detailcd documentation on the code and the underlying method. A supple-
mentai user’s guide (Appendix 2) reports the results of some test examples
and gives a sample deck setup for output control. This program has proved
reliable and, after a bit of experience, casy to use.

A second computer code for the general problem is NELC FESDIR.
This prcgram is not as sophisticated as the Ricochet Gradient routine, but it
can easily be modified for special applications. The user’s guide, complete
with results on test examples, appears in Appendix 2.

The final code available for solving the nonlinear problem is Experi-
mental SUMT, which was written at Research Analysis Ccrporation by
G. P. McCormick, et al.27 SUMTisnota production code and is primarily
used as a research tool in MP. The experimental nature does not lessen its
accuracy, but only its efficiency and speed. The code has modular structure,
which allows for easy user modification and adaptation. The user’s guide is
complete with test examples, although some handwritten corrections and
deletions are not too clear. The user has the option of providing an initial
point himself or allowing the program to find one. The option aiso exists of
having SUMT compute the gradients by a differencing scheme; the code can
also check user-supplied gradients for errors. SUMT provides timing informa-
tion and allows for user-controlled output. However, the output can be con-
fusing, with the values of different variables appearing under the same headings.
The only error message other than incorrectly entered data is a warning during
computation that certain estimates indicated the problcm functions to be
not convex. The theoretical background for SUMT is described in Fiaccc
and McCormick.24

In DESIGNING WITH MATHEMATICAL PROGRAMMING AS AN
AlID, SUMT and Constraint Transformation, we discuss methods for transforming
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a constrained problem into a sequence of unconstrained problems (also called
SUMT). This requires more work on the part of the user but can also give

him more control in solving the problem and perhaps more insight as to what
is happening. In solving the associated unconstrained problems, the user has
the option of selecting a direct search method, thereby eliminating the need
for differentiable or, in some problems, continuous functions. Special-purpose
MP routines can be closely tailored to fit special applications via these
techniques.

INTEGER PROGRAMMING

In addition to the standard linear programming problem, there are
several special programs under the heading of integer linear programming
(ILP). The problem statement is similar except for constraints placed on
the variables:

Minimize f(x) = C1Xp tCoxy +. . te Xy

subject to
gi(x)=ap x| tappxy+. . +apx, <b)
Bm(X) = am Xy *agXy .. tagX, <bp, (8)
x; 2 0 and x; is an integer.

There are further distinctions within ILP — pure integer, mixed integer, and
{0,1}. The above problem is a pure integer problem; if X]s ... Xy are required
to be integral and xy 41, . . ., X, are not necessarily integral, then we have a
mixed integer problem; and finally if X; can equal only zero or one, we have a
{0,1} ILP. Integer programming is in its infancy, and some methods, althiough
they theoretically exhibit finite convergence, have not been computationally
successful. The three 1LP routines available at NELC are “Zero-One Integer
Programming with Heuristics,”28 BBMIP,2% and OPTALG. Zero-one and
BBMIP are SHARE routines which have been checked out on the 360/65 but
not tested extensively. BBMIP (a mixed integer routine) has been tried on a
series of test problems30
other codes are machine-dependent, so the comparison is not meaningful.
OPTALG is a bound and scan pure integer programming code which
has solved large problems successfully. It was developed at Stanford by
F.S. Hillier,3] and is currently operational at NELC. The routine requires 336k
of core and a sohition to the associated linear programming problem; that is,
we simply drop the restriction that x; be an integer. This solution, together

and compared with other routines; however, the
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with the LP basis matrix and a guess at an initial feasible solution are then vsed
as data for GPTALG. If the problem is large (a maximum of 61 rows and 61
columns), then this data preparation can be tedious if done by hand. The
procedure has been somewhat automated; the exact details are in the user’s
guide (Appendix 2).

The user should be cautious when attempting to solve an ILP with an
integer programming code, since it is possible for a routine to solve some prob-
lems and not others, even if they are the same dimension and fairfy similar.
Matching the routine to the problem is still an art. Progress is being made in
this area, but it will be some time before methods are available to solve a general
ILP. A selection of engineering applications is vresented in Appendix 1.

The following graph (fig. 4)32 gives an idea of the sizes of mathematical
programming problems that can currently be solved. The abscissa represents
the sum of both the number of constraints and the number of variables; integer
programming methods are still too inconsistent to include.

%

GENERAL ,
!
%.
% Z B
DIFFERENTIABLE /
QUADRATIC ;
[
i
§
LINEAR :
7 !
/
STRUCTURED 7
LINEAR /
7 Z 7 7 7 Z
0 10 100 1000 104 10° 108

CONSTRAINTS PLUS VARIABLES

Figure 4. Magnitudes of currently solvable MP problems.
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DESIGNING WITH MATHEMATICAL PROGRAMMING AS AN AID

The engineer can effect a better design in some areas in less time and
at lower cost with mathematical programming techniques than with classical
methods. The key to success is in the word *‘aid,” for, in using the methods
effectively, the engineer must have command of his own field and understand
some basic principles of MP techniques. It is recognized that typically the
user of MP techniques is concerned with obtaining results quickly without
lengthy excursions into numerical analysis or mathematical programming.
Commercial routines — ECAP,3 3 MATCH,34 etc. — are geared to such a user;
however, blindly accepting the output of such routines can be disa.trous.3>
Also, these off-the-shelf routines are procrustean — they generally do not lend
themselves to modification for a special case. General mathematical programming
computer codes can be modified for particular requirements. For example, if
filter design by MP techniques is a frequent task, then the computer code can
be modified to incorporate the automatic scaling of variables.

In these remaining sections, we discuss how an engineer would proceed
from start to finish in using MP as a design aid. We also discuss some special
topics, such as duality, that do not apply in all iastances, but, if used properly,
can save time and money, both in setup analysis and in obtaining a numerical
solution.

FORMULATING A MATHEMATICAL PROGRAMMING PROBLEM

In many design problem statements there is, instead of a single goal, a
collection of specifications to be satisfied. This gives the engineer several
degrees of freedom in formulating an associated MP problem. He has the option
of merely satisfying all the design specifications (this is equivalent to finding
an initial feasible point) or of singling out one distinguished requirement and
using it as the objective function. For example, in reference 1, a tunable
bandpass filter was to be designed which would satisfy the following (among
other) specifications:

1. At the tuned frequency F, the “insertion loss’ of the filter was to
be less than 2 dB.

2. At 10% on either side of F, the “roll off”” was to be at least 40 dB.

Either of the above options for formulating an MP problem would have been
satisfactory. The latter method was chosen. The insertion loss of the filter
was selected to be minimized and the roll off requirements were treated as
constraints.

To properly formulate an MP problem, the user must explicitly
determine the following:
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1. The objective (performance, tolerance, etc.) that is to be accom-
plished.

2. The mathematical relations that povern the interaction between the
independent design variables.

3. The bounds and limitations on the values of the components that
guarantee a realizable design.

With this information in hand the designer can select which MP approach to
use. However, since care is required in choosing the objective function and
providing a code tor its numerical evaluation, we present some general
examples and guidelines.

The objective function can be defined as a measure of the merit or the
desirability of a solution to a problem, and its magnitude typically represants
cost, profit, performance, quality, etc., or a combination cf these. The case of
the single well defined objective function generally poses no problems; it is
the combination of goals which can lead to difticulties. The following
examples illustrate various treatments of multiple goals.

Suppose that it is desired to minimize both the insertion loss of a net-
work denoted by f 1(x) and the cost of the components denoted by fz(x).
Then one formulation of an objective function f would be

Minimize f(x) = fl (x)+ r*fz(x) 9)

where o is an appropriately chosen scaling factor.
Another possible choice of f would be

Minimize f(x) = -f5(x)/f (x) (10)

Note that no scaling facior is required and the dimensions of the objective
function are

- cost($)/(unit power loss) = cost($)/(unit power gain) (an

The next example illustrates treating secondary design goals as
constraints. Suppose that high reliability (f3(x)) is desired but the primary
goal is a design of minimum costs({ 2( X)3. A constrained formulation would be

Minimize fz(x) (12)
subject to

-f3(x) +a<0

where « is a tolerance on reliability (mean time to failure).

A possible numerical pitfall is combining design goals in a haphazard
manncr. Suppose we have two performance indicators u(x) and u,(x), and
we desive to maximize u) and minimize u, in the same design. Since maxi-
mizing v is equivalent to minimizing -uy, a possible objective function
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would be

Minimize f(x) = w2*u2(x) -W) *uy(x) (13)

‘where the constants W) and w+ are required to make the function dimensionally

correct. These weights are important, since the magnitudes of -u; and u, at
the optimum x* can be quite different. For example, if -u(x*) = 0 and
uy(x*) = 1000, then the effect of u is obliterated by uy.

The above discussion of objective functions is intended to be general.
Aoki30 precents many detailed examples of engineering applications together
with ample background material.

Some care should be taken in the numerical evaluation of the problem
functions and their gradients. Coding the functions offers an opportunity for
considerable analysis and clever prcgramming. This task is done only once,
against the many times that the functions are evaluated during the optimiza-
tion. A seemingly innocent equation or a naive way of combining terms can
lead to poor numerical results. The objective function can be complicated, and
a single ¢ /aluation for a set of parameters can involve:

1. A solution of a system of differential equations
2. Inverting a matrix

3. Table lookups or interpolation

4. All of the above

Gear> ! and Calahan38 discuss similar numerical problems and some useful
techniques in applying MP to engineering design. One of the goals of mathe-
matics as applied to computer-aided design is to free the applications-oriented
user from the standard numerical worries. For example, the routine should be
able to analyze the problem and choose the best method for integrating a
system of norlinear differential ecuations. State-of-the-art techniques do not
meet this goal; thus, it is still up to the user to make the proper selection of
numerical methods.

Duality is a case in which careful analysis can pay off generously. Full
details with examples are presented in the section on duality, but we present
this idea here to point out some analysis and numerical considerations. [n
some applications of linear programming, problems occur which have a much
larger number of constraints than variables. To be specific, we may have 50
constraints and 10 variables. To obtain a solution to the LP problem posed in
tiis way, an LP code would essentially invert a 50-by-50 matrix. This
inversion can ke time-consuming and perhaps inaccurate for such a large
matrix. We show in Duality in MP how to cast this problem as a dual linear
programming problem which would require only a 10-by-10 matrix to be
inverted. Duality is an excellent example of a little analysis saving a great
deal of time and effort.
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Suppose that the design problem is clzarly stated as an MP problem.
In order to solve the resulting problem, it may be necessary to transform it into
an equivalent MP problem. The possible modificaticns can occur in the light
of the following questions: i

;
i
t

. Is the necessary computer code available? |

. Would duality aid in obtaining numerical results? ]

. Is an initial point available? "

. Can the derivatives be easily calculated?

. Would a postoptimal analysis be useful?

. Can significant benefit be gained by scaling the variables or clever
coding techniques?

N n bHh Wt —

It does little good to cast a design problem as an MP problem, if we lack the
numerical means to solve it. Thus, the user should be prepared to transform
his problem into a solvadle form or into a more useful form. In the ensuing
pages we address ourselves to problem modifications which we found useful
in practice.

SUMT AND CONSTRAINT TRANSFORMATION

kb it ot A a2 7R e S g e

The most common mismatch is that of a constrained problem to be
solved and a routine for solving only unconstrained problems. The sequential
unconstrained minimization techniques (SUMT) developed by Fiacco and
McCormick24 transform a constrained MP problem into an equivalent sequence
(in terms of having the same solution) of unconstrained problems. The
transformation takes place with the aid of an unconstrained auxiliary function
which has the following form:

m
$0x, 1) 2100+ plr) Y Glgi(x) (14)

i1
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where ry is a parameter, G(y) is a monotonic function of y that behaves in
some well chosen manner at y = 0, and p(r) is a function of r which depends
on the choice of G. Typical choices require G(y) > 0 fory > 0and G(y)=0
for y <0, or require that G(y) approach = as y approaches 0 through values
less than zero. The first choice of G is usually associated with procedures

1 that are not concerned with constraint satisfaction except at the solution
(exterior methods); and the second choice of G is associated with procedures
which enforce constraint satisfaction throughout the minimization (interior
methods). The basic idea of SUMT is the following. Let x* be a solution to -
problem [ that is, we assume x* minimizes K(x), subject to g;(x) <0 for i=1, i
.. .. m. Then under appropriate cor. “tions24 on the problem functions the
following theorem holds.

tJ
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If J‘xk l k:1 is a sequence of points, each of which minimizes
¢(x, rp) where r is a sequence of points tending to zero, then we have the

limit Xy = x*, or in some cases limit f(xy) = f(x*). So a constrained problem
ko0 k—>oo

is replaced by an equivalent sequence (in the sense of having a common
solution) of unconstrained problems. Common choices for G(y) are -1/y,
(min [y, 0] )l+e’ € > 0, and-log (-y) with p(r) =, 1/r, r respectively. For the
first form of G(y), ¢(x, rk) becomes

m
dx,1) =109+ 1 L1gio0} (15)
i=1

then if
we have a feasible point x° and seek to minimize ¢(x, 1), the term l/—gi(x)
keeps intermediate test points in the constraint set. For, if the routine
attempts to leave the feasible set, it must cross the boundary; this causes
Z 1/-gi(x) to approach + oo, and, since we are minimizing, the routine auto-
matically avoids points which yield large values of ¢(x, r). As r approaches
zero, Xy is approaching x*, and since xy is used as the initial point to find
Xk 41> €ach successive minimization requires fewer iterations. In Lagrange
Multipliers as a Design Aid we give some examples.

Variations of the above icchniques can be applied in many situations
where there is a mismatch between computer code and mathematical
programming probiem. For example, Rosen’s®2 gradient projection method
solves the followiiig problem: i

J Minimize f(x) (16)
Subject to
n
Zauxj<bl i=],2,...,m
=l
Now suppose the MP problem we have on hand has some nonlinear constraints
3 g(x)<0,i=1,..., %, as well as some linear ones. We modify the problem
as follows: 1
2
Minimize £0) - Y 1/gi(x) (17)
i=1
n
subjectto > ay; % <b, i=1,...m
. =

Thus, we take advantage of a good routine which our problem does not
quite fit.
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Another method which allows us to make use of an unconstrained
computer code is a straight constant transformation. Many times in Problem
| the constraints are fairly simple — for example, 4 <x; <b;or ¢; S ax;

+ bi < di — and the objective function is very complicated with a qifficult
gradient to compute. The simple nature of the above constraints alows an
! initial feasible point to be obtained immediately, and the constrainr trans-
‘ formation keeps the intermediate points feasible. This transformation (as
well as SUMT) allows a direct search method to be used for optimizing
{ complicated objective functions. However, as the examples show, there is a
? point of diminishing return in trying to transform all the constraints, since,
' as the constraints become complicated, it can be impossibie to find & well
mannered constraint transformation to do the job.
If we require a < x < b, then the following transformations keep x
within this range:

.
e e, a4 e

b+ta (b-a
1. x=—+ (b-a) siny
2
2. x=a+(b-a) sinzy
ey
3. x=a+ (b-a) —— for y unconstrained.
; ) ey + e-y
For one-sided boundaries — that is,a < x — we have:
4 x=a+eY
5. x=a+|y| :
l’
6. x=at y2 '\

pagror- el

The next types of constraints are linear inequalities — for example,
d <ax + b <c. However, this is equivalent to a boundary inequality; that is,

-b b
0 «x < fora>0.
a a

If we have two linear inequalities in two unknowns, a transformation
is still possible:

as<bpyx| +byyxy<c
i e <byyxy+bygxy <f
thenlet y)=bpx; +byxy
y2 = byx| +b29x)
then Xy =(bjoy) -blzyg)/D
x3 = (byyyy - byyy)/D




where D= b22b] 1- b12b2]

thenlet y; =a+(c-a)sin 2 Z

yp = e+ (f-¢) sin 2 29

Thus, we have made X, Xy functions of the unrestricted viriables z1, 29, and
they still satisfy the inequality constraints.

OTHER EXAMPLES

1. Suppose we require 0 < x| <Xy <3

then consider Xy = y%

=yleyl
X3 = y% + y% + yg
2. This example was presented in Box>?
maximize f = [9 - (x] - 3)2) x3/27\/§—
subject to 0= X1
0<x7<x{/V3
0<x)+V3 (x9) <6

Initial point

x;=1,%9=.5 £=.01336

optimum Xy =3,x90=V3 f=1.0

TRANSFORMATION OF CONSTRAINTS
¥1 =% +V3 x)
y2=%2-x/V3

Then if x5 = x1/4/3 ", we have 0 < X +x; <6o0rx; <3. This then gives
bounds for the variables y and y,.

-X]/\/§<X2-X]/\/§.<0

/3 =-3/V/3 <y, <0. Thus we have
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This implies
xy = 1/2(y -V3y,)
X)=1/2(y/V3 +yy)
Thus, we have the unconstrained problem
maximize f(xl(z], ZZ)’ XZ(ZI’ 22))
where x) = 1/2 vy - \f§y2)

xp=1/2(y1/V3 tyy)

yq = 6sin 221

y2=-\/3_+ V3 sin 222

The necessary FORTRAN code to evaluate this objective function, if we were
using NELC DIRECT to solve the minimization problem, is as follows:

SUBROUTINE FN(Z, N, F)
DIMENSION Z(2)
Y1 =6.0*%(SIN(Z(1))* ¢

A

Y2 = -2.0*SQRT(3)*(1-(SIN(Z(2)))**2)

X1 = .5*(YI-SQRT(3)*Y2

X2 =5*Y1/SQRT(3)+Y2)

F = (9-(X1-3.)**2)*(X2**2)/(27.0*SQRT(3))
RETURN

END

The best transformation to usc depends both on the problem and the
minimization scheme used. For example, transformation $ is not differen-
tiable at y=0: hence, a gradient method would not be valid at this point.
Method 3 would make coding the gradient of the objective function lengthy
and time-consuming to debug. These protlems do not occur if a direct
search method is used.
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GRADIENT APPROXIMATION

Let us now suppose the problem is matched to the routine and further
suppose the computer code is a gradient method. The user must supply a
subroutine or function that will compute thc gradient; that is, he must
provide ‘he following vector:

daf  df f
viTeo= (S 4 &L (18)
dx} dx, dx

Often, the complexity of the ohjective function f(x) or of some of the
constraint function is such that the gradient cannot be computed, or the
time required to derive Uf analytically is excessive. Then, the designer, in
order to use the gradiert methods, can decide to approximate the gradient.
In the process, the function must be evaluated several times in the vicinity of
a point x for each approximation. Thus, a trade-off situation arises, since th:
more accurate estimate will require many function evaluations which may
ultimately be more costly (in computer time) than direct calculation of the
gradient (in manhours). The problem becomes one of selecting the most
accurate approximation for the least number of function evaluations.

We list some of thé standard schemes for approximating the derivative
of a function together with the corresponding error estimates (Hildebrand40).
Let

f]=f(Xl,X2,...,Xi+A, c e Xn) (19)
fO = f(Xl, X2, e Xi’ ey Xn) (20)
fop=fxq, - u%-4, .., xp) 2
33f 5
€e=——(xy, S 1 ...,xn)where|E|<A Q)
ox:
1
eAz
Then 9f)/3x; = (1/24)(-3f_ +4fg - 1)+ —— (23)
, a?
Mg/ax; = (1/2AX(y + 1) - =~ (24)
GA:!
3. 1/0%; = (12AX( - 4fg + 3f)) + = (25)

We note that the best estimate for aflaxi is equation (29), for if |83t/ax?i
< M3 as § varies over £ < A we have the maximum error (€ max | = M3/6.
It is interestir- that the point in question does not appear in the formuia,
even though fj is generally available. This additional inforination does not
improve the estimate. The next question is, how should A be chosen?
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Hildebrand gives an optimal A which is derived analytically via

a3 t‘(x)/ax?. Unfortunately, this expression is generally not available when we
» are attempting to approximate af(x)/axi. Also, this optimal A is a function
[ of the test point x, which changes many times in the course of a minimization.
If this approach is taken, then an educated guess will have to be made for A.
Experiments have indicated that for the most efficient operation, A should be
changed automatically by the code. A method along this line is Stewart’s4]
F modification of Davidon’s#2 minimization routine. .

Steward’s method is dependent on the information generated by the
minimization part of the routine. Using this informztion, he is able to select
a good A, and initially estimate the ith component of the gradient by the
formula (f} - fO)/ A;. Wher this simple scheme begins to fail, the routine
automatically switches to the central difference method for a more accurate
estimate. A, is also suitably modified. His method required 163 function
evaluations to find the minimum of the Rosenbrock function to within five
decimal places. This compares with 325 for the direct search method
(ZANGWL) and 71 for the gradient method (CNJGAT), to minimize to
approximately the same accuracy. Unfortunately, Steward’s method was
coded in a language for the CDC 1604 and has not been modified for the
NELC IBM 360.

The final technique for general numerical differentiation which we
discuss, is a code from the IBM Scientific Subroutine Packagel 1, called
DDCAR. DDCAR uses an extrapolation technique to obtain highly accurate
estimates of the gradient. This method does not need an optimal A to give
good results. Howeve-, we must pay the price of using a larger number of
function evaluations than the central difference method would requirz, for
each estimate of Vf. A code and results of using DDCAR to compute the
gradient in minimizing the Rosenbrock function with the gradient method ;
NELC CNIJGAT are presented in table 1. 1850 function evaluations were 3
required to obtain these resuits. .

The methods presented above are general and can be used for a wide i
class of functions. Somc applications may lend themselves to special methods
for estimating the gradient. For example, Calahan38 discusses methods for
numerically evaluating the gradient in a network optimization scheme. The
3 method is highly specialized for this type of problem. He uses a “caiculus of
‘ variations” approach together with numszrical integration. The section on
gradient calculation is a good example of the success of careful analysis.
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IMPLICIT REAL%8 (A-H,0-Z)

COMMON KOUNT

DIMENSION X(30), H(3Cy30)y G(30)y S(30), SIGMA(30),XX(20)
EXTERNAL FG BOX

X(1)=-1,2000 1
X(2)=-1,0D00 .

. L

KOUNT= 0
NMAX = 30

’ MPRNT = )
N= 2
ISTART = N + 1
EPSLON = 1.0D-10
FESY = 0.0
ITERBD = 80
SBOUND = 1,0D-C9
ICNY = 0
IREST = 0
ITER = 0
NM1l = N - 1
DO 30 1 = 1, NM]
H(I,!) = 100
IPL =1 + 1
DO 30 J = IP1y N
H{Js1) = GC.0

30 H{I.J) = C.0
H(N’N) = 1.0
DO 2C J4=1,20
20 s(J) = 0. |

CALL CNJGAT(FGBOXyNyNMAX X
ISTARTLITE 1 RyFyGyS)
PRINT 99G,KOUNT
929  FURMAT( 1X,'KOUNT!,I5) ;
END ]

+» ITERBN, EPSLON,FEST,MPRNT, i

FUNCTION USERF (X,N)
IMPLICTIT REAL*8 (A-H,0-1})
DIMENSION X{N)
T1=X(2)=-X{1)%X{1)%xX(1)
T2=X{1) -1,0D0G
USERF=100,000C*¥T1%T1 + T2%T2
RETURN 4
END

FUNCTION FUNC(H)

IMPLICIT REAL*8 {A-H,0-1)
COMMON KOUNT/GRAD/ XXy IVAR NN
DIMENSION XTEMP(20) LXX{20)
DO 30 J = 14NN

TF (J «EQ. IVAR) GO TO 29
XTEMP(J) = XX{(J)

29




2 (')

30

10

20

30

GO 10 31

XTEMP (1VAR) = XX(IVAR) + H
CONT INUE

FUNC=USERF (XTEMP4NN)

KOUNT = KOUNT ¢ ]

FETURN

EMND

SUBROUTINE FG ROX( X ¢F o+ Gy
IMPLICIT RFEAL%R (A-H,0-1)
EXTEPNAL FUNC

DIMENSTON X{L1)oGl1) 4 XX(26)
COMMNN/GRAN/ XXy TVAR NN

NN = N

DO 10 J=14N

Xxxtdy = x{J4)

TVAR = 1

F = FUNCI(C)

Do 20 K=1, N

1VAR = K

WZ = L0C1

CALL DUDCAR(C . WZ g1 9FUNC,Y)
G{K} =Y

RETURN

END

N)
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DUALITY IN MP

In linear programming and certain SUMT metl.ods with convex
functions, the possibility of using duality to gain computaticnal efficiency
should be considered.

Duality occurs in many areas — mathematics, engineering, economics
physics, etc. In a mathematical or engineering context it implies that two
concepts or systems have a specific mathematical relationship. We give an
example from circuit theory before proceeding with duality and MP.

Consider the following series RCL network (fig. 5).16

S
~I

d it) |
~ ‘)G alm
P S L

Figure 5. Dual circuits.

The mathematical equation representing (A) is

di 1 [t
L= +Ri+— | idr=e(t 26
dt C fo” e(t) (20)

If we interchange e and i and L and C and replace R by G = 1/R, we have

de ' t
C—+ — =] 7
dt Ge + T /(; edr = i(t) 27

which is the equation which models the parallel network (B). Thus, an
equation of the form

Xt bx + ft dr = y(t)
a— X C xar =
at 0 y

can represent either circuit (A) or circuit (B} depending on the parameters
a, b, ~; that is, it has a dual function, and we say that (A) is the dual of (B).

In linear programming, we have the most straightforward applicaticn
and complete theory of duality. Let x and ¢ be vectors of lengthn,b a
vector of length m, and A an m-by-n matrix, Then the linear programming
problem seeks to find the vector x which produces
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a minimum 2=¢'X

sibject to (28)
Ax<b
x>0.

To this linear programming problem there corresponds an associated problem.

Maximize v=blw
subject to (29)
Alw>c
w20

where w is an m vector. Problem (28) is called the primal problem while
problem (29) is referred to as the dual problem.

In the primal fonnulation we have m constraints and n variables, and
just the opposite in the dual formulatic;: Some facts about these corre-
sponding problems which are pertinent to this section are:

1. The primal problem- has a bounded solution x* if and only if the
dual has a bounded solution w*.

2. w* can be obtained from x* and vice versa.
3. The dual of the dual is the primal.

4. In the case of bounded solutions we have z* = v¥*.

The efficiency of linear programming computer codes decreases as the
number of constraints increases. It is this trait which makes the study of the
duality relationship worthwhile from a computational standpoint. The
following example shows how this loss of efficiency can be lessened by
judicious use of the dual.

Consider the following programming proble-n:

Minimize z = -4x - 3x,
subject to
x; <6
Xy <8
X +xq <7 (30)
3xp+xp <15




-XZ<]
X1>0,

Note that x5 can be negative. To pose this as a stand«rd fLp problem, we
replace the variable x by the difference of two positive variables; that is, we

n

let x5 = x'2 - Xy Now the problem can be written in standard form.

Minimize -4x - 3(x2'-x'2')
subject to
Xl <6
rn

x2-x2<8

xl +X’2 'lx'2'<7

T PPN
3x; + xé = X5S 15

-x'2 + xé’ <1

Xl,Xé,‘X'z'-.}O

Writing the constraints in ruatrix notation, we have

- =
v o o . 6
0 1 -l ! 8
[}
Ax=11 1 -] |*] < 7
n
13 1 - x5 15
l.o -1 IJ L 1 .

€3 )

In selving this LP problem, we add another positive variable xs;, called a slack
variable, to each row, to make each inequality an equality. The problem then

becomes:

rMPS/360 accepts unrestricted variables and automatically makes this transformation.

35




Minimize -4x - 3x'2 + 3x:2' +0xsy +...+0xsg

subject to

- M e
1 0010000]]xy 6
01-101000 x'2' 8
I 1-100100]]xsy] = 7 32) ?
3 1-100010[]xsy 15
LO-]IOOOOI_ X$3 [ 1]

XS4

L.XSS-u

Note that each slack variable appears in the cost row with zero for a
coefficicnt.

The simplex method of LP performs an iterative process on five
selected columns of this augmented matrix to obtain a basis inverse matrix.
This matrix is then used to obtain the solution. It is this inversion process
3 which causes the efficiency of LP codes to decrease as m increases. We now
u cast problem (31) in its dual formulation, which will reduce the number of
TOWS,

Maximize v = 6w1 + 8w2 + 7W3 + 15w4 +wg

subject to
w1 S
. ’ 1 0 1 3 0 W2 -4 o
| ATw=fo 1 1 1 1] |w3| = |3 (33)
0 -1 -1 -t 1 lw, 3
LS ]

Now from each row we subtract a positive variable ws; and write the :
constraint matrix as: ;

s —qu‘
! W,
1 01 30 -10 0]]ws 4
01 1 1-1 0-1 0ffwg| = {-3
0 -1 <1 -1 1 00 -1]]ws 3 :
WS[
WSZ
WS3
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We now have a formulation similar to problem (33); however, to
solve this problem, it is necessary to “‘invert” only a 3-by-3 matrix. Even
though the number of variables is the same, the smaller number of constraints
makes this formulation more efficient. If we were to solve the dual formu-
lation using MPS/360, since the dual of the dual is the primal, the solution
to problem (31) would appear under the DUAL ACTIVITY heading.

There is another form of the primal-dual relationship which has both
formulational and computational advantages; it is the unsymmetric form.

The primal problem can also be stated as: find a column vector x*

which
minimizes z = ¢ Ix
subject to
Ax=Db 34)
x=20

The original LP problem (28) can be put in this form by adding slack variables
to transform the inequality constraints into equality constraints. Then the
unsymmetric dual to (34) is

Maximize v = bTw
subject to (35)
ATw <c

We notice in (35) that there is no restriction on the sign of w. This is most
useful in using linear programming as an analysis tool, and to condense the
problem size. The three previous properties for the symmetric form of the
dual also hold for the unsymmetric form.

We return to problem (30) to give a simple exaraple of the usefulness
of this unsymmetric form. The problem is written as

Maximize v = 4w1 + 3w2

subject to
(1 0] [ 6]
0 1 8
ATw= | P[] < |7 (36)
31 |w 15
0 -l 1
-1 0 | 0]

37




38

Note that w, is unrestricted in sign and that the last row of AT keeps w)
nonnegative. This is the unsymmetric dual formu'ation of problem (30).
Since w+ is unrestricted in sign, to solve this problem via a standard LP code,
we should have to replace w by w'2 - wé’ , <s before. But if we consider the
associated primal problem, this requirement disappears; i.e.,

Minimize 6x) + 8x2 +7x3+ 15x4 + Xs

subject to
X
X2
101 30-1] |x 4

Ax = = 37

x[0111-10] Xq [3] @7)
Xs
X
6

To solve this primal problem we must invert only a 2-by-2 matrix
rather than a 5-by-5 as in the dual case. When we solve this program using
MPS/360, the cptimal w will appear as a DUAL ACTIVITY.

This method accomplishes two things:

1. There is no increase in the number of variables.

2. If m is much larger than n, then the primal has fewer constraints
and will generally be faster to solve.

Of course, the form we decide to use will depend on the relative sizes
of m and n.
We present another example43 which will illustrate both the use of

the unsymmetric dual and the utility of LP in the area of applied mathematics;

viz., lirear boundary value problems. Consider the following problem. Find
a solution, y, to Lfv] = r(x) over [a, b], where

n
Liyi =) f00y0 =ty + [y D+ L+t 00y®  38)
=0
with boundary conditions Vj[y] = l‘j,j =1,2,...,n
-1 (39)

where Vily] = > (@ y®@ + 8, yKo)).
=0

=

o~

and y(i) is the ith derivative of y(x) with respect to x.

.




Some boundary value problems do not have a clos*d form solution or even a
solution in the limit; however, we should still like some information and in
most instances an approximate solution is sufficient. The approximation is
made in the min-max sense;i.e., if f* is the theoretical solution to, say, a
differential equation over an interval [a, b], then an approximation f is
sought to

minimize maximum | f (x) - f*(x)| (40)
x €la, b)

This formulation lends itself to an application of mathematical programming.
We approximate the solution by a sum of functions over the interval [a, b}.
To do this, we partition [a, b] as follows:

a<xy<x3...<Xxp <b,m> pand seek parametersa,, .. ., ay

which minimize

may | Ly*(x;)) - r(x;) | 41
I<i<m
where
P
VRO = yox)+ ) ai(x) (42)
=1

yo(x) satisfies Vr(yo) = Fr’ r=1,...,n
and yj(x) satisfy Vr(yj) =0.j=1,...,p

Substituting equation (42) into equation (41), and introducing an additional

variable ¢, we wish to find ap, .8, € which minimizes € subject to
Y
LYo+ > apyjixp) - r0x;) | <e
=1

fori=1,2,...m

For LP to be applied, the constraints must be linear; thus, we have
Minimize €
(al, a, ... ap, €)

subject to

P
€< ally)] + Liygl -xx) <ej=1,2....m.
=1

39




: or, rewriting as two single inequalities,

ot

- ) aiLly(xp) - Llyo(xp) +r(xj) <e 43)
i1
p
z alL(yl(x])) + L(YO(XJ)) - T(Xj) <e€ (44)
i=1

Collecting all the parameters on the left side of the inequality yields

- z 3iL(y;(x;)) - € = Ly 5(x))) - (X))
i=1
p
D L) - €2 10) - Lygxy)

=1

forj=1,2,...m
where
a=x) <x2...<xm=bisapartitionof[a,b].

Form the p-by-m matrix:

Lly (1 ... Lly(x ]

| Llyp(xpl - . - Llyp(xpm)]]

the 2m vector

T = |Ltygxq) - 10y, -« Ly o) = Kk, 16 ) = LTG0 ), -

(X p) - LY (X))
the (p + 1) vectors

ozT= (al,...,ap, €)

bl=@...0,-1

g
(3]




and the matrix

Since there is no restriction on the sign of the parameters a; (i=1, . . ., p), we
cast the programming problem in the dual formulation;i.e.,

Maximize - = &l * b 45)
(al 3 32, D) aps E)T
subject to - - -
. 1) [a] Llyo(xp)) -rlxy)
G . 212
- O [ ECRCONER/CAN
| . = pr(xp) - Liyo(xq))
el : ap :
al Le (Xm) - Ly (X))
! ] L .
or more succinctly as
Maximize alb
subject to (dual)
ATa <c

then, since the dua! of the dual is the primal, we have

Minimize ¢ Tx
subject to (primal)
Ax=Db
x=0 where x is a 2m vector.

This primal problem is then solved numerically and the optimal a vector
appears as the DUAL ACTIVITY vector.

tNote inequalities (43) and (44) keep € > 0.

4]
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In summary, tne basic advantages are as follows: We wish para-
meters aj, .. ., ap, which give the best estimate in a min-max sense of the
solution to the linear boundary value problem. The parameters are
unrestricted in sign and the number of points m in the interval of solution
is large. To cast this problem as a primal linear programming problem would
have required 2p + 1 variables, since the a; are unrestricted, and 2m constraints.
By first writing the approximation problem as a dual linear programming
problem (45), we need only p + 1 variables; then transforming to the primal
reduces the number of constraints from 2m to p + 1. We give two examples
which use the above method. Example 1:43 A homogeneous equation
with inhomogeneous boundary conditions

L(y)= xy" - {x+l)y' -2(x-1)y=0;y(G)=1,y(1)=00n [0, 1]
p
y¥*(x) =y (x) + z ajy;(x)
=1
with
Yo(¥) = 1-%; y5(x) = (1 x)
ji=1,2,...,p
then

Lly,) = 2x2-3x +3

Liy;) = 2d*2 + G-3dt! - G2 433 + -2
x; = (i-1)(0.05}. i=1,2,...,21
ferp=3,a; =3.0374706
ay = -0.78655970

a3 =0.88391133

€ = 0.03747406, and the maximum error occurred at x = 0.

Example 2:43 Inhomogeneous case with homogeneous boundary conditions
Llyl = y” +(1+x3)y =-1, y(D=y(-1)= 0 on -1, 1]
yj-(x) =1-x3

Lly;l = x20*D - 52 - 921t 4 x2 4




Let

z=x2, Liy;i = 2.4 - 2i(2; - Dl +2+1

z; = (i-1)(0.05) i=1,2,..,21
forp=3, 2 =0.9675, ay=... ) ag= -0.0285
€=10.0029

The preceding paragraphs have pointed out some of the numerical
advantages of duality. Duality concepts also have application in nonlinear
programming; however, so far these have been limited to SUMT methods
involving convex functions. In this case, the duality theory provides a lower
bound on the value of the unconstrained problem to test for convergence; see
reference 24. Its use in nonlinear problems is not widespread.

LAGRANGE MULTIPLIERS AS A DESIGN AID

Another influence on choice of routine or method to solve an MP
problem is postoptimal analysis.

When a counstrained optimization problem is solved via sequential
unconstrained minimization techniques (SUMT), additional information is
available to the designer foi a sensitivity analysis; i.e., postoptimal analysis.
Suppose x* is the solution to the following MP problem.

Minimize f(x)

subject to (46)
h(x)<b;, i=1,2,..,m
The engineer wishcs information as to how f(x*) will change if b is

changed a little; i.e., if the design requirements are changed, how wil the
performance be affected? The interesting result is:

*
HOTOD _ (47)

ab; i

where )\i is a generalization of the classic Lagrange multiplier for finding the

extrema with side conditions. The prcof of (47) is contained in reference 44.

We recall from advanced calculus that an extrema problem with side
conditions was: find the minimum (maximum) of p(xy. X5, ..., X)) subiect
toqu(x), .. o Xp)= ... = qp(xy, .5 Xp) = 0. To solve this problem we

43
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44

formed the Lagrangian L(xp, ... xp, ?\}, e )\m) =p(x)+ 2 Aq;(x)

i=1
then solved the (n+m) system of equations:
aL(x, N) .
e = i=1, ...,n
aXi
qi(x)=0 i=1, ...,m
for (x|. ..., x,) with the A;’s being introduced to help find the x;- The

45

Kuhn-Tucker theorem™~ allows us to define a meaningful and useful

Lagrangian for inequality constraints,

We discuss the Kuhn-Tucker theorem to allow a generalization of
l.agrange maltiplier, and then discuss SUMT methods to itlustrate »btaining
ihe A;’s numerically.

Rewriting the constraints to problem (46) as g;(x) = hj(x) - b; <0,
we obtain probiem (1):

Minimize f(x)
subject tu (48)
g(x)<0 i=1, ..,m.

Then the Kuhn-Tucker theorem says essentially the following:
Lt x* be a solution to the above nroblem and assume the boundary
ci the constraini set has no “cusps;” then the following conditions hold.

1. There exist multioliers A; 2 0,i=1, . . ., m such that

A gi(x*)=0.i=1,2, .. ,m

n
2. 'x*)+z \Vg(x =0
i=1

The fellowing example illust: ates the Kuhn-Tu ker condition:
L _ -y 2 e 142
Minimize f(: {, x9) = x; ARRECORNY
subject to

gl(Xl,)'z)z-X2+Xf<0

gz(xl.xz)=~-2+xl +X2<0

oty et RIS i e ot
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The global solution to the above is (x 1"‘, x*3)=(1, 1). The gradients
at the optimum are

2 1 -2
Ve = » VB2 = and Vf=
1 1 0

and the multipliers are Ay =\ = 2/3. Finally we can write:
-Vf=+2/3 gg; +2/3 vey.

Geometrically we have the following (fig. 6):

.
| ~

~$2/3 ‘792
~

i
v

-

r

Vg, 1.1

1 2

-
o

Figure 6. Xahn-Tucker conditions.
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Now that we have seen a need for knowing the Lagrange multipliers
and have seen the geometrical interpretation, we turn to SUMT and the
numerical calculation of the multipliers. The constrained optimization
problem is transformed into an unconstrained one through the use of an

auxiliary function, 6(x). 8(x) does one of two things, 8(x) >0 as x = 0 or
44

0(x) = 0 for x feasible and 0(x) positivc for x ‘nfeasible. The three forms
of 0(x) we discuss are:

m
Barrier: B(x) = -5 1/g;(x) (49)
i=1
m
Penalty: P(x)= 2 (Max (gj(x), 0) 1€ (50}
i=1
m
Logarithmic: L(x)=—z iog(-g;(x)) (1)

i=]

SUMT works as follows: Using 8(x) = B(x), P(x) or L(x), we
transform the constrained problem into a seguence of unconstrained problems,
as'in SUMT and Constraint Transformation.

Minimize D(x, rk) =f(x) + p(rk)()(x) (52)

for Ik > 0. Then if x* is the optimum for the constrained problem (48) and

x(ry) = X, the optimum for problem (52), it can be shown that limi* Xy = x*;
k—o0

ie., (rk->0). Thus, we replace the constrained problem by a sequence of
unconstrained problems.

Ir the barrier and logarithmic cases as gi(x) > 0 — i.e., x attempis to
leave the constraint set — g;(x), must approach 0, and this causes B(x) and
L(x) to increase rapidly. Since the routine wishes to minimize D(x, r), and
we have an initial feasible point, intermediate x’s are chosen feasible.

In the penalty function approach the test points are allowed to leave

the constraint set; however, when they do so, a positive amount is added to
the objective function. Again, since we seek to minimize D(x, r), points are
selected within the ccustrain® set. When 2(:,) or L(x) is used, we have an
interior point method; and when P(x) is used, we have an exterior point
method. With each type of 8(x) a slightly different technique is used to
recover the A;.
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Barrier Method:

Form the function
D(x, r) = f(x) + rB(x)

m

=f(x)+r Z -1/g;(x) (33)
i=1

forr>0. Let r) be a monotonic decreasing sequence converging to zero. If
Xk minimizes D(x, rk), then

0=V D(Xk, I'k) Vf(xk)+rkz 2 Vgl(Xk) (54)
i=1 & (xg)

Letting
A== (55)
g (x)
then the Lagrangian becomes

i

Lixge, N = fxg) + . A ({_gl(xk)} f(xk)+rkz

i=1

(5¢)
g: (Xk)
The multipliers can be computed by equation (53).

. k Tk
We note if gi(x*) > 0, then )‘i =

approaches 0 as k = oo, since
g5 (x)
l'k - 0

r

If gi(x*) =0, then by the Kuhn-Tucker theorem A;=0: thus the limit
g; (Xk)
must be taken strictly as a quotient.
Logarithmic Penalty: Form C(x, r) = f(x) -r z log(-g;(x)) (57
i=1

then at the optimum, Xy for C(x, ) we have,

m
. -1
0= Vx\,(xk, rk) = Vf(Xk) + Ty z N Vgi(xk) (58)
i=1

i(Xg)
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Now, in a similar argument, let
(k) _
A i = rk/-gi(xk) (59)

Since (-gi(x*) > 0 in the feasible set, we have )\(:()> 0. Thus, we can form

the Lagrangian as before and equation (59) generates the multipliers.
We next give an example to illustrate this.
Lootsma3?

it g b i S

solves the following problem

2
Minimize f(x) = x‘? -6x‘l'+ llxl +x3

subject to

-
gl(x)=+x%+x§-x§<0 160)
g:(x)=-x%-xg-x§—4<0

g3(x) = +x3 - 5<0
g4(x)=-x) <0
g5(x)=-x7<0
gg(x) =-x3<0

The optimum is x* = (0,VZ,V/2) with g (x*) = g5(x*) = g4(x*) = 0. The
theoretical multipliers are

A=Ay =V2/8,-0.1767766
)\4= ll‘)\3=7\5=)\6=0

Forr = 10“6. the numerical multipliers are

l‘k ] "6
x“l‘)= 10 = 0.176664
21(x¢) 566046 1070
T; 10-6
k). X . = 0.15030
= 820%) 665324 1070
r -6
o _k 10 = 10.8687

4 -ga(x) 92007 1078

xy =(9.2077 1078, 1.4121,1.41422)
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The final example is the Penalty Function method.

Let

C(x, r) = f(x) +;l- P(x),

where

m
P(x) = z (max. (g(x), 0))1 € €>0.
=1

Then at the optimum,
VXC(xk, rk) = 0 which implies Vf(x) + ;]- YP(x)=0 61)
where VP(x) = + Z(1+¢€) [max. (g;(x), 0)1€ vg;(x)
If we let )\(k)- S———— max. [gl(x) 0]j €
Tk
then 7\(:() > 0, since we have an exterior point method.

Thus, (61) becomes Vf(x) + inVgi(x) =0,

and, letting xj denote the optimum forry, w nave

A=tim A% =jim

koo koo

€ (max. [gi(xy), 0] )e\
Tk

In this way we can obtain the A;’s.

In solving the Lootsma problem by the penalty method withe = 1, we
obtained the following results for ry = .1* 1074

xy = (1443*10°16 1.4142, .. 14141, )
g1(x;) = .8797110%10°5; g5(x,) = 0.8797477*1070

| 4(x,) = 0.388414%10-14

1+ 879711*1076
Mk 1.0 *107°
87974779%1070
“‘) %) nax. (g, 0))€ = " = 0.1759495580
Tk 1.0 *107
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0.388414*10-14
1073

1+
&)= (TQ (max. (g4, 0))€ = 23 ; =0.7768*107 1 # 11
k

The last four constraints of problem (60) were transformed by the following
equation: and not included as penalties:

Xl=

=
e

i

2
Y2
x3 = 5 sin? (y(3)).

k)

4 cannot be obtained by the above

'When these transformations are used, )\(
formula.

INITIAL POINT AND SCALING

Two finul topics in solution strategy depend a great de-l on the
specific problem: initial point and scaling of variables. If the constraints
are numerous and complicated, then finding an initial feasible point can be
an additional piroblem in itself.

Zoutcndijk47 gives a “‘simple” trick for a transformation which
replaces the original problem by an equivalent problem for which an initial
feasible point can readily be found. Suppose we are given:

Minimize f(x)

subject to
gi(x)<0 i=1,2, ...,m

2ind no initial point x° can be found by inspection o1 engineering knowledge
such that gi(x") <QCfori=1,2....,m We now form the following problem:

Minimize f(x) + £
subject to gi(x)-pE <0
p; >0 i=1,2 ...m
where g is a large number, ¢ an additional variable, and p; = | if gi(x°) >0
and p; = 0if g;(x°) < 0. If § > max.{g;(x°) for all i such that g;(x*) > 0p»

then the point (x°, §) is feasible for the modified problem. In reference 17
Zoutendijk proves that, for p sufficiently large, the modified problem will
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have the same solution as the original. Note that in the attempt to minimize
f(x) + u, & is driven to zero, but to satisfy the constraints x must be
simultaneously chosen feasible (for the original problem). This is the part of
mathematical programming in which the user’s previous engineering and
design experience pays off, since the better the initial point, the faster the

routine will converge.

Proper scaling of variables is still an art. Most computer routines ior
solving mathematical programming problems are designed to follow steep
curved valleys and sharp ridges in locating an optimum. For a one-shot
problem, scaling the variables is not worth the time; however, if a code is to
be written to solve a large class of similar problems, then scaling 1nay be
worthwhile in long-term savings of machine time. We give an example,

48 which transforms a poorly shaped objective function into a “‘nice”
bowl-shaped function which can quickly be minimized. Unfortunately,
scaling is somewhat limited to unconstrained problems;in a constrained
problem attempting to make the objective function easy to minimize, the

Pierre

scaling might destroy any useful properties the constraints enjoy.
Example:

If f(x] , x2) = x% + 10x1x2 + 100x§, then f has a narrow valley and

a minimum at x; = x5 = 0. To transfc:m f into a more desirable shape, we 3
eliminate the cross product 10x x5 by letting x; =z - abz, and x4 = bz,.
Then f becomes {

f= zf +(-2ab + 10b) 2y 2, + (-10ab? + aZb2 + 100b2)z§ .

Letting a = 5 makes (-2ab + 10b) = 0 and b = (1/75)}/2 solves -50b2 + 100b2

+ 25b2 =1; thus, f= z% + zg, which is easily minimized by almost any
routinic.

It is highly recommended, when the variables are bounded or the
range of the variable is known, that the variable be normalized. For example,
if the variable x; lies in the range: 4

then an appropriate normalization is given by:

where
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Normalization is particularly useful in direct search algorithms for which we
must arbitrarily choose a step size search increment, A. It can readily be

IR Bt o i e

1% of 1.0 (0.01), which allows each variable to be changed proportionally,
or any other realistic choice depending on our knowledge of the problem.

In summary, scaling an objective function is generally not practical,
and we must rely on the properties of the aigorithms to find the optimum;
however, normalization is recommended wherever possible.

SUMMARY

Mathematical programming is a broad subject with many varied applica-
tions. Not all top’ s in MP cre applicable to engineering design. We have tried
to delineate those areas wh.:h are useful and the corresponding capabilities at
NELC. The computer codes described have proved reliable on a wide range of
problems; however, MP is an expanding area, and the new algorithms constantly
being developed could render some of these codes obsolete. The applications-
oriented user should not accept this list as complete or give up if his particular
problem does not match an available routine. Perhaps a literature search will
yield the appropriate method. The high-speed digital computer has provided
an impetus to develop algorithms to solve MP problems which previously were
too large to be handled. It is recommended that a continued effort be main-
tained to keep NELC up to date i the area of solving MP problems numericaily.
Logically, this should be a function of either a Center-wide computer users’
group or of Computer Sciences Department, Other installations maintain a
hibrary of computer codes readily availuble to users; NELC should do the same.

In the applications area, mathematicai programming has been a proved
design tool. In reference 1, it was shown to be applicable to typical NELC
problems. The second part of this repert discussed some topics which were
uscful in obtaining actual solutions to design-relawed MP problems. The tech-
niques have been used with routines available at NELC  We have tried to show
that MP can be an aid to the design engineer and not his replacement. In fact
to use MP effectively requires that the engineer be skillful in his field and be
able to generate an accurate mathematical model of his design probiem. We
turtiier recommend that a short course or continuing seminar be offered to
NELC personne! to familiarize them with MP techniques. Such a course was
given in-house in the tall of 1968 and was well received.,




APPENDIX 1: APPLICATIONS OF INTEGER PROGRAMMING
TO ENGINEERING DESIGN

n this appendix we report on the results of a literature search to
detern ine feasibility of using integer programming (IP) as a practical design
aid in an ongoing NELC task — BAMS (Benchmarks for Applications of Micro-
electronics to Systems). The results were disappointing. Meaningful applica-
tions «re still in the experimental stage, with results limited to relatively small
test problems. The main hindrance to successful applications is not formula-
tional difficulties, but the lack of reliable computer codes for solving the
resulting IP prohiems. General-purpose IP codes are severely limited in the
size problem tliey ca. solve (a maximum of 60 constraints and 60 variab.es at
NELC), and they are sonietimes unreliable. The majority of the applications
of IP have been in the business world, and many algorithms for solving special
[P problems have been developed; e.g., aircraft crew scheduling and warehouse
placement. These methods rely on the special structure of the [P problem
under consideration and have worked well. If the design engineer is lucky,
his [P problem may fit one of these special methods (it is still an art to match
the computer code to the posed IP problem); otherwise he must rely on the
general IP codes. Here, application is ahead of theory.

We give a briet example which illustrates the computational difficulties
of IP, a review of the state of the art of IP as related to BAMS, and finaily a
detailed example in which IP is used to solve a backboard winng problem.

Most of the IP work has been done in the linear case;i.e.,

Minimize f(x)= CyXp tCpxgt. . texy

subject to gl(x)“—‘a“xl +tapyXypt.. taX, le

i) =ap Xy tagaXg . tag X, b
? .
x; = 0 and x; an integer

Thus, the integer lincar orogramming (ILP) problem is just the LP problem
with the additional constraint that the solution be integral. Gomory49 has
developed an algorithi, which theoretically solves the above problem in a
finite number of sieps N: however, N can be a large number and hence
impractical for some problems. Since this area of mathematics is so useful,
many methods (some heuristic in nature) for solving special ILP problems
have been reported which work well. One method', which appears obvious,
is to solve the associated LP problem, then round to the nearest (in some
sense) integer-valued vector and use that for the solution. Many times this
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will work fine, if it is not too critical to have the optimum. If it is necessary
to have the optimum and know that it is the optimum, then other method-
must be used. The tollowing example points out scme difficulties which
can arise.

Minimize z = f(xl, x2) =-X] - 4x2
subject to  0<x} <4.55
0sxy<40
Sxy+ X9 55.2 xq, X integers

The constraint set (denoted by +) looks as follows (fig. 7):

> (1.3, 4.55)
4 +
SN

-+ + 4+ T xp =y - 2l4
-+ 4+ + T
ir+ + + 4+

S B 1

] 2 3 4 5

Figure 7. Integer constraint set.

When the associated LP problem is sulved (by inspcetion). we eobtain (1.3,
4.55). Rounding to the nearest vecior with integer components yields (1,5),
but (1,5) is not feasible. 1f we take the closest feasible point to (1.3, 4.55) in
the Euclidean norm sense, then we have (1,4) for a solution, which yields

z = f(1,4) = -17. Howsver, another feasible point (2,4) yieldsz=(2,4) " 18
and this point is the solution. As the number of variables and constraints
increases, it becomes difficult to find a feasible point to the [LP near the

LP optimum.

The field of digital systems design has made the most engineering use
of IP, but ugain designers have had only limited success. Logic designers have
used ILP as a theoretical tool and have solved smail problems numericaily,
Murogu“’l perhaps has the most recent application (see references 52 and 53
also). He discusses designing optimal networks of the “feedforward”™ type
by IP and defines a generalized pate called a threshold gate. His IP formula-

tion allows a wide choice of objective functions, depending on the application,
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as well as the inclusion of any design constraints, If R is the number of gates
in the design, then his associated ILP problem has R2 variables. Fc- R of any
typical size in a logic design problem, the resulting ILP probiem would be
intractable. Presently, work in this area is of academic interest only. Also,
with the abundance of off-the-shelf MSI and LSI components, littie design
is done at the gate level (except vy those manufacturing the aforementioned
items). Thus, the exira effort to formulate the logic design problem as an
ILP does not appear to be cost-effective.

The next pertinent application area is that of actual component and
circuit layout, Kodres>4 develops the theory for solving the circuit layout
problem, which he defines as follovs:

“The circuit iayout problem is viewed as a sequence of four
subproblems.

1. The determination of standard replaceable modules.

2. The partitioning of circuits into groups subject to input-output
restrictions.

3. The selection of replaceable modules.
4. The circuit placement and the interconnection problem.”

Kodres uses graph theory, combinatorics, and integer programming to tormu-

late the problem. The actual casting of parts 3 and 4 as an IP problem is

partially in terms of some graph theoretical concepts and requires more back-

ground than we can present here. This paper points the way for future work

in this area; again, the ideas are {ar zhead of practical methods for implement- i A
ing them. Breuer in reference 55 poses part 4 as a single ILP problem, in ‘
straightforward terms, which we outline in the following paragraphs. Other

applications are in coding theoryv and satellite communications network design;

see references 56 - 58,

RREUER’S PLACEMENT AND INTERCONNECTION IP FORMULATION

The backboard wiring problem consists of three subproblems: the
placement problem, the connection problem, and the routing and installation
oroblem; each is dependent on the other two. We discuss the first two and
pcse them as a single [LP problem which, when solved, will simultaneously
*oive both problems.

¢ . ACEMENT PROBLEM

Given B objects, connect each object to a subset of the remaining
(B-1) objects. The objects are constrained to .ie on grid points which repre-
sent the backboard of z computer, or any digital system hookup. The object
is to place all the modules so that the hcokup wire is of minimal length.
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CONNECTION PROBLEM

Given S fixed objects which are to be made electrically common,
connect the objects so that the total interconnection lengti is minimal.

INTEGER PROGRAMMING FORMULATION

Given B ob)=cfs to be placed at the intersections of the rectangular
grid (fig. 8).

y AXIS v -

x AXIS

Figure 8. Back plane grid.

Let Xp 1= 0,1, ..., n-1 be the x coordinate of the ith object

yj» 1=0.1,..., m-1 be the y coordinate of the ith object

and B<mn.
The interconnection distance between the ith and jth object is defined
to be

dij=|“i"‘j|+k|yi‘yj|~

We note that no two objects can occupy the same spot at the same time.
Also given is a list of the desired connections. We wish to uniquely position
the set of B objects at the intersections and determine which objects should
be directly connected together, in a manner such that total interconnection
distance of those objects, directly connected, is minimal. The hard parts are
making sure no two objects occupy the same spot and getting a linear

relation for d;j.




o g e e

The constraint that no two objects lie at the same point requires
that if x; = X;j» theny; # Yj fori #j,orify;= ¥js then x; # X fori #j.

We list the required constraints for the placement problem and then
explain how they meet the conditions of the problem,

xi—xj<n6ij (A1)
xj- X+ 1<n(l -8 (A2)
xi-xj<aij<xi—xj+n(l - 51]) (A5)
Xj—XiQjS<Xj—xi+n5ij (AT

foralli>j,j=1,2,...,B-1

From inequalities (A1) and (A2) we find that if x; > Xj» then 5ij =1
and 5ij =0,if x; » X;j. Inequalities (A4) - (A7) give a representation for
Ix; - xj| as follows. Since (A4) and (AS5) yield 0 <°‘ij = Xj = X <n-i,
if x; > X and ;= 0 otherwise. In a similar fashion 0 <°‘ji =X~ X,
if X; > X5 thus, we have 0 + aj; = lxi - xil.

Now let n and § play analogous roles for y; then Bj + 8;; = ly; - y;1.
Thus, dij can be stated in terms of these auxiliary variables as

Some additional constraints guarantee realizabilicy.

aij+“'ji+k(ﬁij+3ji)>l (A8)
x;<n-! i=12,...,B (A9)
yi<m-1i=1,2,....B (A10)

Inequality (A8) guarantees that two objects do not occupy the same grid inter-
section. All x; and y; are nonnegative integers. Note that the above inequalities
do not depend on how the objects ate connected, but only guarantec that
snecific necessary conditions will be satisficd. Inequalities (A1) through (A10)
represent the constraints for the placement problem. We now turn to the
problem of optimally interconnecting the B objects.

Assume that there are C independent circuits where the jth circuit can
be connected in Pj different acceptable ways. Let fij(d) be an expression for
the total length of wire in the ith way of connecting the jth circuit. For
example, if the sixth circuit consists of three objects (1, 2, 3) and the first
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may have only one connection to it, then
fle=dyy +day and fyg=d3y+d3y

The two final constraints which relate to the connection problem are:

V> £5(d) + (- 1DQ (Al1)

and

7

7ij=l forj=1...C (A12)

%

._
1}
—

Equation (A12) implies that each circuit is connect=d and Yij isOorl.
In (A11) Q = max. fij(d) fr i=1,2,... ,Pj;j =1,2,...,C. Then the
resulting ovjective function is

C

min. Z = VJ

T

The objective function and inequalities (A1) - (A11) form the ILP repre-
senting the combined placement and connection problem. Although the
formulation seenus straightforward, the resulting ILP problem can be large,
even for small valuss of B. Breuer gives the following relations between the
number of variables I, the number of constraints W, and B for the placement
problem: i.e., constraints (A1) - (A10).

I(B) =(B/2)(19B-15)
W(B) = B(3B-1)

Thus, for B=5 (which couid be manually positioned quickly and most likely
optimally), we have I(5) = 200, W(5) = 70; for B = 10 (stiil not too large),
[(10) = 875, W(10) = 299. These ILP problems are very large and are heyond
the capabilities of today’s methods.

It seems that, unless newer formulational techniques are developed
which lead to smaller [P problems, or the computational capabilities solving
IP increase rapidly, this approach wil remain a theoretical tool with no

practical applicatiors. The following quote (Glovcr59

, p. 1) sums up the
current state of affairs in integer programming: “*Since its inception integer
Lincar programming has. paradoxically, been a source of both promise and
disappointment. Promise because there are manitold and compelling
opportunities for its application; disappointment because it has made only
the most dubious progress in spite of these opportunities.”
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APPENDIX 2: USER INFORMATION
H1 — H2 OPT ALG

CATALOG IDENTIFICATION:
Hi — H2 OPTALG

PROGRAMMER:
F. S. Hillier, Stanford University, adapted for NELC by D. Klamer,

Decision and Control Technology Division.

PURPCSE:

An algorithm for solving the rure integer linear programming problem.

n
Maximize Xg = 2 cjxj
=

subject to
n
j=1
(ii) xj>0 ¢g=1,2,....n)
(i) X 1s an integer G=1.,...,n)

RESTRICTIONS AND LIMITATIONS:

The dimensions of the constraint matrix A(1,LJ)= aj; have to be less than
or equal to 61 X 61;i.e., m< 6] and n < 61.

LANGUAGE:

FORTRAN IV
COMPUTER CONFIGURATION:

Go step REGION = 336k
1BM 360/65

METHOD:

An initial noninteger solution must be obtained tfrom the related linear
programming problem (i.c., X; is not necessarily L integer) as well as the
resulting basis inverse. To accomplish this, we have chosen the linear program-
ming routine MPS,/360.18 Data are taken directly from MPS/360 and i put
directly into Hillier's progrum,?’l without user intervention. in one multstep
computer run.

The advantage of using this modified version of Hillier's program is
the time saved from obtaining the basis inverse and optimal solution: the time




60

spent for punching these input cards is also savcd. The data needed are exactly
the same as the first three card groups of Hillier’s program. These are:

Card group 1
Card group 2

“ard group 3

Any alphanumeric characters to identify the prob-
lem in 20A4 Format

m, n, KL in 315 Format where A(L,J) is of size mxm
and KL =1

the s rays A, b, cin 15 F5.0 Format. A(1,J) is the
constraint matrix, B(I) is the right-hand side, and
C(J) is the objective function. The A is read in one
row at a time.

YILLIER'S PROGRAM

MPS/360

FORTRAN DECK 2

FORTRAN DECK 1
DATA

FORTRAN DECK 2

MPS/360

-

DATA

FORTRAN DECK 1

Setup data for MPS/360.

Constraint matrix, right-hand side, and objective
function.

Using READCOM from MPS/360 obtains basis inverse,
JPM(1), optimal solution, and starting integer solution.
Stores information on disk.

Computes basis inverse and opiimal noninteger solution.

HILLIER’S PROGRAM Computes the optimal integer solution.




FORTRAN DECK !

This deck sets up the data for MPS/3650, sinze che format for MPS/360
is long and cumbersome. The constraint matrix A(I.J) is normalized, as is the
right-hand side B(I); this is done onv row at a time. The subroutine XPUMCH
places the data into a disk file in proper forinat for MPS/360, from which
MPS/360 reads the data. A printout is piven of the data that are placed on
disk. (Mote: This data set is placed into a disk file called FTO1F0OL. The
data are in normalized form, and, since MPS/360 is designed to find the mini-
muin, the cigns of the cost coefficients (objective function) are changed.)

The constraint matrix A(I,J), the right-hand side B(l), and the cost coefficients
C{J) are also stored on the disk file called FTO2F001.

FORTRAN DECK 2 (DATAHILL)

This deck is a temporary update that is concatenated onto MPS/360,
'inder the name DATARILL. It uses READ(‘OMM,20 which is a subroutine
designad to augment MPS/360 with procedures written in FORTRAN lar.guage.
DATAHILL retrieves from MPS/360 tte basis inverse, the order of the basic
variables, the optimal noninteger solution, and a starting feasible soluiion to
the integer linear programming problem. These data are then added to the
data from the first FORTRAN deck on the disk file FTO2F001.

The starting feasible solution is a lower bound on the value of the
objective function. To obtain this feasible solution, we have chosen to do the
following: If the cost coefficient is positive, round the corresponding variable
of the optimal noninteger soluticn dewn to the next largest integer. If the
cost coefficient is negative, round up to the next smallest integer. (Note:
The cost coeiticients are placed into the disk file called FTO3FO00I in the
first FORTRAN deck and are read by DATAHILL: the constraint matrix and
right-hand side are also passed.) This rounded solution is checked tor feasibil-
ity. If the solution is feasible, then proceed to the next step. It the solution
is not feasible. then wry a rounding procedure to satisty the constraint violated.
(User may set the maximum number of iterations or changes in the solution.)
In order for Hillier’s program to be executed, a teasible integer solution must
be found; if such a solution is not found. then Hillier's program is skipped and
all the data are punched out on cards. Tnis information includes the name,
constraint matrix A(L, D), right-hand side B(I), cost coetlicients CJ), the basis
inverse, the order o the basic variables. and the optimal noninteger solution.
The user may then supply his own starting integer solution and run the prob-
fem directly from LLOAD, using the punched data produced in the last step.
{See Part 1)

If a teasible integer solution is obtained and the user wishes to have

the above data also, then cither of two methods may be use 1o First. there
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are comment cards 1n the program to punch out each of the groups of data.
All that is required 'is to remove the “C” from the cards in the program cor-
responding to which groups are to be punched out. The second method
requires two changes in the JCL cards. See the JCL listing at the beginning
of the program.

MPS/360

MPS/3€0 is an IBM supplied application program, “Mathematical
Programming System/360.” MPS/360 obtains an optimal soluticn (non-
integer) trom the related linear programming problem and finds the inverse
of the basis.

HILLIER'S PROGRAM

Hillier’s program resides on LLOAD (a partitioned data set on NELC’s
360/65 disk storage) under the name OPTALG.

DATA \: l FORTRAN

DECK #1
JIFTO3F001 /FTO1FQO1 //FTO2F001 I
COST DATA FOR DATA FOR
COEFFICIENTS MPS/360 HILLIER'S I

P

HILLIER'S
e PROGRAM

MPS/360 l

//FTOZF001 OPTIMAL
DATA FOR SOLUTION
HILLIER'S

FORTRAN
DECK =Y
IDATAHILL)

\/‘




H1-H2 OPTALG — Part Il

This section covers the necessary input for Hillier’s piogram when run
without the adapted program to generate the data. The following is the neces-

sary input:

Card input 1

Card group 2

Card group 3

Card Group 4

Card Group 5

Card Group 6

Any alphanumeric characters to identify the problem
in 20A4 Format;e.g., “Thompson Number 8”

m, n, KL in 315 Format (m< 61, n < 61) wherem
is the number of rows of the constraint matrix A(1,))
and n is the number of columns

1 if the basis inverse is in
KL = { normalized form
0 otherwise

This group of cards contains the arrays A, b, ¢: the
Format is 15F5.0. A(I,J)is the constraint matrix,
B(I) is the right-hand side, and C(J) is the row matrix
of the cost coefficients (or objective function). The
A array is read in one row at a time. (For example,
if m=2, m=16, the cards would be:

al’j(j=l,2 ..., 15)1n the first 75 columns;

a 16 n thie first 5 columns:

az’j(j=1,2, ..., 15)in the first 75 columns:

2216 in the first 5 columns;

by, by in the first 10 columns:

cj(j=i,2, ..., 15)in the first 75 columns;

¢| g in the first 5 columns.)

This group of cards contains the basis inverse in
6F13.5 Format. 'The rows are read in sequentially.
In the example listing,

BBH BBI.3 BBI‘3 e BBH,
BBI"] BBl 8 BB’Z‘I PR BB:\4
BBZ.S BB: 6 BB, 4 . BB3~:
JOMG), 1=1.2 ..., in 1514 Format, where JPMQ) s

the index of the ith basic variable (including slack
variables) from the simplex code.

The optinial solution to the related linear programming
problem, x(j). in 6F13.5 Format.
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Card Group 7 A starting optimal solition to the Integer Linear
Frogrammir. problem. XF(j), in 6F12.5 Format.

See the sample probler following. The correspondence of cards with
the above card groups is as follows:

Card Group _ Card in Sample Problem

1

2
3-12
13-23

24
25-26
7 27-28

(Note: The first three card groups are the same as the three card groups for
the adapted version of Hillier’s program.)

N W R W =




SAMPLE PROBLEM

//PRELIM JOB 105536946202044,F +D+5¢541000) yDKLAMER,

// MSGLEVEL=1,CLASS=L

/ MESSAGE oca

//51 EXEC FORTGCLG, TIME=]1,REGION.GO=64K

//FORT ,SYSIN DD *
OOUBLE FRECISION [A(61})4BUFFER(61)
DIMENSION A(6),61), BL6Ll), C(61), NAME{20), SUM(61’

574 FORMAT{ 20A4)
READIS,ST4)(NAME(1),1=1,20)

975 FORMAT( 1H ,5X,20A4)
WRITE(2,57T4)(NAME(I),I=1,20)
WRITE(G6,5TS)YI(NAME(T) ,I=1,20)

201 FORMAT(315)
READ(5,201) MyN,KL
WRITE( 2,201 )M,N,XL

200 FORMAT( 15F5.0Q)
WRITE(6,503)
DO 183 I=1,M
READ (542001L){ TA(J),J=1,N)
WRITE(2,2001)( 1AL )} ,J=1,N)
WRITE(3,2001)(TA(J),J=1,N)
CALL CORE(BUFFER,488)
WRITE{8,2002)  IA(J)J=1,N)
CALL CORE(BUFFER,488)
READ(842003) (ALlI,4J)9J=1,N)}
WRITE(6,500) (A([,J)4J=1,4N)

183 CONTINUE
WRITE(6,504)
READ (5,2001) 1A(J) yJ=14M)
WRITE(2,200L){IA(J)J=1,M)
WRITE(3,20Cli{IA(J)J=1,M)
CALL CORE(BU: FER,488)
WRITE(8420C2)(IA(J)J=1,M)
CALL CORE(BUFFER,488)
READ(842003) (B(J)d=1,M}
WRITE(6,50G)(B(J)yd=1,M)
WRITE(6,505)
READ (5420CLl)L1A(J)4J=1,N)
WRITE(2420013¢ [A(J),J=1,N)
WRITE(3,20C1 ) TA(J),J=1,N)
CALL CORE(BUFFER,488)
WRITE(B8,2002)(IA(J),J=1,N)
CALL CORE{BUFFER,438)
READ(8,20G3) (C(J),J=1,N)
WRITE(6,500)(C(J)yJ=1,N)

2001 FORMAT(15A¢%)

2002 FORMAT(6]1AS)

2303 FORMAT(61FS,.0)

520 FORMAT( IH ,15F8,.2)

501 FORMAT(1H ,15F8,.4)

555 FORMAT{1H ,10F12.%)

567 FORMAT(IH ,15F8R.4)
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5073
504
535
506
507

2222

1111

4444
3333

555¢

7177

508

FORMAT(28H

FORMAT( 24H

FORMAT{27H

FORMAT(43H

FORMAT( 39H

K=0

DO 1111 1=)
K=K+]

SUM{K)=C )
DI 2222 J4=1
SUM(K )=SUM(
CONTINUE
SM{K)=SQRT
CONT INUE

NO 3333 [=1
DO 4444 J=1
AlLL,J)=ALI,
CONTINUE
CONT INUE
WRITE( 6,506
DO 5555 I=1
WRITE( 64567
00 77177 1I=1
BOI)=B(I)/S
WRITE(6,507
WRITE(6,501

FORMAT('1l THE FOLLOWING DATA HAS BEEN STCRED CN DISK

WRITE (€&,45C
CALL XPUNCH
s7ae
END

SUBRUUTINE
DIMENSION &
WRITE (1,11
PRINT 110

CONSTRAINT MATRIX A{l,J) IS)

RIGHT HAND SIDE 8(I) [S)

COST COEFFICIENTS C{J} ARE)

THE NORMALIZED CONSTRAINT MATRIX A{l,J)
THE NURMALIZED RIGHT HAND SIDE B(I) IS)

' M

' N
KY®A(],4J) %2

{ SUM(K))

+M
N
JY/7SUM(T)

)

M

AT yd)yJd=14N)
'M

umMir)

)

MBI eI=1sM)

8)
{A,8,CsM,yN)

XPUNCH (A48 4C yMyN)
{6ie61l)y B(61), Cl6]1}
1)

WRITE (1y113)

PRINT 11¢

WRITE (1,115)

PRINT 114
DO 1 XRUw =
KRCW1o =

1y M
KRJOW + 10

WRITE (1,107) KROW19D

PRINT 1C64K
CONT INUF
WRITE (1,1C
PRINT 128
M1

M 15 J
K

|

ROWLQ
<)

M+ ]
1,N
11
C

Is)

‘)




5 CONT INUE

Kl = K

K2 = Ketl

L = J+1d

I = I +1

IF (K2 .GE, M1 + 1C) GO TO 11
WRITE (19100) LyK1yA(I4J)sK2A(1¢1,J)
PRINT 100,4LsK1,A0T,J)sK2yALI+1,4J)

K = K2
I = I +1
GO 1O 5
11 I[F (K «EQ. M1 +10) GO TO 12
(AN = = C{J)

WRITE (1,4101) LyK1,A(1,J0),CL)
PRINT 10l,LeK1lsA(1,J),C(J)
G0 10 10
12 CuJ) = - Ct4H
WRITE (1,102) L,C(J)
PRINT 112,L1L,C(J)
10 CONT INUE
WRITE (1,105)
PRINT 104
DO 20 I = 1,M
IR = [T + 10
WRITE (1,1C03) IR,B(I)
PRINT 103, IR,B(I)}
20 CONTINUE
WRITE (1,117)
PRINT 116
100 FORMATU(4X g *C 412y TXy*REZI2,,TXF12.593X,'R",I2,7X,F12.5)
101 FORMATI4X o "C Vg2 7X RO ,T2,7TXsF1l2.543X,°C?y9X4F12.5)
102 FORMAT( 44X 'C P12+, 7Xy%0'39%X,F12.5)
103 FORMAT( 44Xy *CONSTY X9 'R ,I2:,TXyFl2.5)
104 FORMAT ( * RHS* )
105 FORMAT ( *RHS?' )
106 FORMAT( * t R',[2)

107 FORMAT ( ' L RY,I2!

108 FORMAT ( * COLUMNS?')

109 FORMAT ( 'COLUMNS®*

110 FORMAT (' NAME OPT8ASY)
111 FORMAT { *NAME OPTBAS')
11?2 FORMAT (* ROWS')

113 FORMAT { *ROWS*")

114 FORMAT(* N 0")
115 FORMAT( * N O")
116 FORMAT (* ENDATA')
117 FORMAT { *ENDATAY)
RETURN
END
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//GOLFTCLFOCL DD UNIT=SYSDA,SPACE=(TRK,(20,10) ,RLSE},
// DISP=(,PASS),

// DCB8=(RECFM=FBS,LRECL=8C,8LXSIZE=880;

J/7GOFTO2FCOL N UNIT=SYSDA,SPACE=(TRK,(20,10)),

/7 DISP=(,PASS),

/7 VCB={(RECFM=FB,LRECL=8C,BLKSIZE=880)

//7GQFTCIFO0L DD UNIT=SYSDA, SPACE={TRK,(2041C) (RLSE),
// DISP=(,PASS),

// DCB=(KECFY=FBS,LRECL=80,BLKSIZE=8R0)

//GOLSYSIN DD %

$3085%
$
$ DATA
$
$35558

//STEPONE EXEC FORTOGOCL
//FORT (SYSLIN DD DISP=(NEW,PASS)
/7FORT JSYSIN DD *

INTEGER DIFF,FILE

INTEGER*2 COMP(61),C,R

DIMENSION BASE(61,61)yNROW(6L) ¢yNCOLM(6L) 4 JPNM{SL) 4 IRINIEL),

1 BUFFER(61),CCL6L1),XF(61)

DIMENSION A(€l,€1),8{(61),

1 IOXIL61)y IOXF(6L),IDX2061) 3 XFMIN(O])

REAL#8 NAME,XLIST(3C), 0OUT1(62),0UT2(272]11,0UT:61)

DATA BASE/?272i%0.,0/

LK = 0

FILE=4

TO UBTAIN THE NUMBER (F ROWS AND COLUMNS CF THE
CONSTRAINT MATRIX{INCLUDING THE OJSJECTIVE FUNCTION)

OCOO

CALL ARRAY{FILE,INDIC ,NAME)
CALL VvECTOR(FILE, INDIC XLIST)
MRCWS =IFIX{SNGL{XLISTtQ9)1)
NCOLMN=TFIX{SNGL(XLIST(10)))
MRUWS1 = MROWS- 1

MN1=MROWS1 * NCOLMN
MN=NCOLMN®=MROWS

TO DBTAIN THE HASIS

OO0

CALL ARRAY(FILE,INDIC,NAME)
DU 10 J=1,MN
CALL VECTOR(FILE,INDIC,XLIST)
IF(J.GT.MRUWS) GUTO 12
Outltd)y = xLISTLL)
12 IF(MOD{J.MROWS J-1) 'L ,115,11




11 LK =LK + 1

OUT2(LK) = XLIST(2)
115 [FCINDIC-1) 20,2Cy10
10 CONTINUE
20 CONY INUE

TO OBTAIN THE OPTIMAC SOLUTION

CL OO

CALL ARRAY(FILE,INDIC,NAME)
CALL VECTOR(FILE,INDIC,XLIST)
CALL ARRAY(FILE,INDIC ,NAME)
CALL VECTOR(FILE,INDIC,XLIST)
CALL ARRAY{FILE,INDICNAME)
00 201 J=14NCOLMN
CALL VECTOR(FILE,INDIC,XLIST)
OUT(J)=XLIST(3)
[F(INDIC-1) 200,200,201

201 CONT INUE

! C TO PRIMT QUT THE OPTIMAL SOLUTICN

101  FORMAT(6F13.5)

, 102 FORMAT(1X,&F13,5)

f 103 FORMAT(' THE OPTIMAL NONINTEGER SOLUTION [S *//)
WRITE(6,103)

WRITE(6,102) (OUT(J) =1 ,NCOLMN)

TO DETERMINE WHICH VARIABLES ARF ACTIVE

OO

CALL CORE(BUFFER,240)
WRITE(8,104) (OUTL(J) J=2,MRCHYS)
104 FORMAT(61A4)

CALL CORE(BUFFER,2:.C)

READ (8 ,1C5) (COMP(J)IR0OW(J) yJ=1 +MRCWSL1)
105 FORMAT(61( 1A1,12,1X))
; DATA R/*R /,C/7°C '/

NUROW = 0

NOCOLM G

00 500 J=1,MROWS]

IF(COMP{J) .EQ.R)} NOROW NOROW + 1
500 IF(COMP(J).EQ.C) NOCOLM NOCOLM + 1
[F({NOROW.EQ. O ) AND.(NOCOLM.EQ. O i) GCTQ 100
IF(NOROW.EQ. Q0 ) GOTO 600
IFINOCOLM,.EQ. Q) GOTO 65C

ey, e

C

C T COMPUTE THE JTH BASIC VARIABLE FOR OPTALG USING MPS/360
INFORMAT I

C

BU 56 J=1,NOROW
56 NROW(J) = IROW(J)
I =0
NTOT = NOROW + NOCOLM

VP S
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70

57

C
C
C
600
601

602

OO0

OO0

50

>
(%4
—

AOCOOOO

150

30

22

46

47

Ni = NUROW + 1

DO 57 J=N1,NTOT

I = I+ 1

NCOLM(TI) = IROW(J)
GOTO 150

BASLS INVERSE IS BASIS

IF

00 601 J=1,NOCOLM

JPM(J) = J

WRITE(6,106)

DO 6G2 I=14yMROWS1

WRITE(6y101) (OQUT2(1+1J-1)%*MRONSL) ».!=1,NCOLFN)
MRITE(2,101) ((OUT2{I1+1J—1)*MROWSL) 4 J=14NCOLMN)},I=1,MRCHS])

YOU WANT THE BASIS INVERSE PUNCHED OUT

(THERE ARE THREE (3) CARDS FOR THE BASIS INVERSE)

REMOVE THE 'C' FROM THE FOLLOWING CARD.

WRITE(7,101) ((OUT2(1#(J-1)*MROWSL) »J=1,NCOLFN),I=1,MRCHWS 1)

GOTO 202

BASIS INVERSE IS IDENTITY MATRIX

IF

DO 651 J=1,NOROW

JPM({J) = MROWSL + J

BASE(Jsd) =1.0

WRITE(6y109)

WRITE(69101) ((BASE(I;J)yJ=14MROWSL) 4I=1,MROWSL)
WRITE(2,101) ((BASE(T1,J)sJ=14MROWS]) ,1=1,MROWSL)

YOU WANT THE BASIS INVERSE PUNCHED QUT
(THERE ARE THREE (3) CARDS FOR THE BASIS INVERSE)
REMOVE THE *C* FROM THE FOLLOWING CARD.
WRITE(7,101) ((BASE(I,J),4J=1,MRONWSY) ,1=1,MROWS])

GOTO 202

CONTINUE

L=1

Kt=1

NORM1 = NOKOW - 1
IFINROW(1)-11) 100,30,22
JPM({1) = NROW(1) +# NCOLMN - 10
L = Ll

G070 47

DIFF = NROW(1) - 11

DO 46 K=1,DIFF

JPM{L) = NCOLM(KL) - 10

KL = KL+l

L = L+1

CONTINUE

JPM(L) = NROWRUL) ¢+ NCOLMN - 10
L=1L1L+¢+1

CONTINUE

DO S0 I=1,NORMI1




NOOOOOO O

DIFF = NROW(T+1) - (NROW(I)+1)
IF (DIFF) 10Cy 35,40

JPM(L) = NROW{I+1) +# NCOLMN - 10
L =1L¢+1

GOTO 50

DO 45 K=1,DIFF

JPMIL) = NCOLMIKL) - 10

KL = KL+1

L = L+l

CONT INUE

JPM(L) = NROW(I+1) + NCOLMN - 10
L =L+1

CONTINUE

DIFF = 10 « NTOT - NROW{NOROW)
IFIDIFF) 100,55,6C

JPMINTOT) = NROWINOROW} + NCOLMN - 10
GOTO 65

DO 65 K=1,DIFF

JPM{L) = NCOLM(KL) - 10

KL = KL+1
L = L+1
CONT INUE

TO OBTAIN THE BASIS INVERSE

J1 =0

J2 = 1

DO 300 JK=1,4NTOY

IF(JPMUJUK) .GT.NCOLMN) BASE(J2,JK) = 1.0
[F(JPM(JK) LE.NCOLMN) GOTO 310
J2 = J2 + 1

GOTO 300

00 311 J=1,MROWS!

Jl =J1 ¢+ 1

BASE(J,JK) = OUT2(J1)

CONTINUE

THE FOLLOWING IS FOR QUTPUT.

WRITE(6,105)
WRITE(6,101) ((BASE(T,J),J=1,MROWSL) ,I=1,MROWS1)
WRITE(2,101) ((BASE(I,J)yJ=1,MRONSL) «1=1,MROWS])

IFf YOU WANT THE BASIS INVERSE PUNCHED 0QUT
( THERE ARE THREE (3} CARDS FOR THE BASIS INVERSE)
REMOVE THE 'C* FROM THE FOLLCWING CARD.
WRITE(T7,101) ((BASE(TI,J)4J=1,MROWSL) 41=1,MROWS1)

CONT INUE

WRITE(6,107)

WRITE(6,108) (JPMUIK), JK=1,NTQOT)
WRITE(2,108) (JPMULJK), JK=1,NTOT)
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IF YOU WANT THE ORDGER OF THE ITH BASIC VARIABLE, JPM{I),

FUNCHED OUT

e NN

OO0

110

111

100

100

102

aRalel

102
102
c
C
C

10z

REMUVE THE *C' FROM THE FOLLQWING CARD,
WRITE(7,108) (JPM(JK}, JK=1,NT0OT)

WRITE(2,101) (OQUT( J) yJ=1,NCOLMN)

IF YOU WANT THE QPTIMZ. -~ IAINTEGER SOLUTICN PUNCHED CUT
REMOVE THE 'C' FROM THE FOLLCWING CARD.
WRITE{7,101) (OQUT(JY 4J=14NCOLMN)

IF YOU WANT TO SUPPLY YOUR OWN FEASIBLE [NTEGER SOLUTION
REMOVE THE *C* FROM THE FOLLOWING CARD,
GOTOo 151

TO OBTAIN THE STARTVTING INTEGER SOLUTIQON TG THE ILP

DO 110 I=1,MROWS1
READ( 3,111) (A(T,J)sJ=1,NCOLMN)
CONT INUE
READ( 3,4111) (B{I),I=1,MROWS])
READ{3,111)(CC(J)yJ=1,NCOLMN)
FORMAT{15F5.C)
DO 1000 1=1,NCOLMN
XFCI) = SNGL(OUT(I))
IF(CC(J)) 1001,1000,1000

1 IF (XFUL)LEQ.AINT{XF(I})) GOTO 1000
XFULY = XF(I) + 1,

0 CONTINUE
DO 1020 I=1yNCULMN

0 XF(I) AINTUXF(I))
ITESTY 0

it

SET THE MAXIMUM NUMBER OF I TERATIONS.

1 IF(10 -ITEST) 11C0,1C22,1022
2 ITEST = ITEST + 1

CHECK YO SEE IF THE POINT IS FEASIBLE,

D0 1030 I=1,MROWS:

SUM = 0,0

DO 1025 J=14NCULMN

SUM = SUM + All.J) *= XF(J)
5 CONTINUE

[F(B(I)-SUM) 1026,1030,1030

1026 ITER = 1

C
C
C

IF POINT IS NOT FEASIBLE, WRITE THE CONSTRAINY VICLATED AND
THE POINT THAT VIOLATED THE CONSTRAINT,




C
WRITE(591027) [4B(1)ySUMaC(XF(TJ)4IJ=1,NCCLMN)

1027 FORMAT( 10X,10H B(I12,21H) SUM /
1 15Xy 21242 // 14H THE POINT IS /4(15F8.2/)7/77/7/)
GOTO 1035
1030 CONTINUE
GOTC 1120
1035 L =0
N1 =0

c

C FIND ALL OF THEC NONZERO VALUES OF THE VARIABLES.

c IDX1 STURES ALL OF THE ZERQO VALUED VARIABLES. !
C IDXF STORES ALL OF THE NON77 RO VALUED VARIABLES.

C

D0 1040 J=1,NCOLMN 1
IFL XF(J) ) 1036,1037,1038
1036 XF(J) = 0.0
1037 L = L+l
IDX1(LY = J
GOTO 1040
1038 N1 = N1 +
XFMININL)
. IDXF(NL1) = J
1040 CONTINUE
IF(L.LT.1) GOTO 1042

—

XF{J)

C
C TACK ON TO THE END OF THE INDES OF THE NUNZERO VARIABLES THE

C INDEX OF THE ZERO VARIABLES. )
C :

DO 1041 [=1,L
1041 IDXFIN1+1) = [DXL(I)

C

C [IF THERE IS AT LEAST ONE NONZERC VARIBALE,

c THEN ARRANGE THE NONZERO VARIABLES FROM

C MINIMUM TO MAXIMUM VALUE.

c IDX2 IS THE INDEX OF THE REARRANGED VARIABLES.
c
1

042 IF(N1.GT.0) GOTO 1045
DO 1044 I=1,L
1044 XFMIN(I)=0.0
GOTD 1046
1045 CALL SORTI(XFMIN,[DX2s1,N1)
1046 IF(N1.EQG.NCOLMN)IGOTO 1048
N1P1 = N1 + 1
DO 1047 I=N1P1,NCOLMN
047 10Xx2(1) = IDXF(I)

ROUNDING PROCEDURE.
TAKE THE SMALLEST NONZERQO VARIABLE,
IF THE CORRESPONDING CONSTRAINT COEFFICIENTS IS
POSITIVE —-- ROUND DOWN
NEGATIVE -~ ROUND uP,

AOOOO0OON m




1048

1049
1050

1051

1055

056

OO0 O—
—
n

1057
C
C SE

ITE

1060
1100

1105

1126

C
c IF
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NO 1060 KL=1,NCO* MN

Iv = [DXFUIDX2(KL})

LCK = 0

IF( ACITER,IV) ) 1050,1060,1051
XFCIV) = XF(IV) + 1.0

GOTO 1055

XFOIV) = XF(IV) - 1.0
IF(XFOIV).LT.0.0) XF(IV) = 0.0
SUM = 0.0

DO 1056 I=1,NCOLMN

SUM = SUM + A(ITER,I} * XF(I)
CONTINUE

IF THIS DOES NOT STAISFY THE CONSTRAINT,
THEN TAKE THE NEXT SMALLEST VARIABLE
AND REPEAT THE PROCEOURE.

THE CONSTRAINT IS SATISFIED, THEN USE THIS PCINT TO
CHECK ALL OF THE OTHER CONSTRAINTS.

IFt BUITER) - SuUM) 1057,1021,1021
LCK = LCK #+ 1

T THE MAXIMUM NUMBER OF CHANGES FOR ONE VARIABLE FCR ONE

RAT ION.
CHANGE THIS IF THERE 1S AN OSCILATION BACK AND FCRTH BETWEEN
TWO POINTS.

IF(LCK,LT.1) GOT] 1Q4¢
CONTINUE

GOTO 1021

CONTINUE

WRITE(6,1105) ITEST

FORMAT(47TH NO FEASIBLE STARTING INTEGER SOLUTICGN HAS BEEN
1 26H FOUND AT THIS POINT AFTER I5,6H TRYS,)

GOTO 1150

CONTINUE

08J = 0.0

DO 1122 I=1.NCOLMN

0OBJ = 0BJY + XF(I)*CC(I)

WRITE(E,1225) (XF(T),1=1,NCOLMN)

FORMAT(53H A FEASIBLE STARTING INTEGER SOLUTICON HAS BEEN

FOUND. /
14(15F8.7/))

WRITE(641126) 0OBY
FORMAT { 40H THE VALUE OF THE OBJECTIVE FUNCTION IS

/ Fl2.4 )
WRITE(2,101) (XF{J)yJ=1,NCOLMN)

YOU WANT THE OPTIMAL *FEASIBLE® INTEGER SOLUTION PUNCHED OUT




C
C
C

100
106
107
108

109
1150

1151
151

200

20

REMOVE THE *'C* FROM THF FOLLCWING CARD,
WRITE(T7,101) (XF(J},J=1,NCOLMN)

GOTO 151

WRITE(64106)

FORMAT( * AN ERRUR HAS QCCURED?*)
FORMAT(* JPM(I) IN THE ORDER THEY SHOULD QCCUR AND 1S THE

INDEX OF 1 THE ITH BASIC VARIABLE®)

FORMAT(1514)

FORMAT(////* THE BASIS IMVERSE IS '//)
CONTINUE

I =10

WRITE(10,1151) I

FORMAT(I5)

CONTINUE

I =0

WRITE(10,1)51) 1

RETURN

END

SUBROUTINE SORTI(A,ID,I1,44)
DIMENSION A(1),1U(30),IL(30),ID(1)
INTEGER T1,T2

M=1

I=11

J=dJ

DO 1 IS=1I,4

IDCIS)=IS

IF(I «GE. J) GOTO 10
K=1

IJ=tJ+1)/2

=AC1)

T1=10¢1J)

IF(A{I) .LE. T) GOTO 20
AfTJ)=ACT)

IDLiJ)=1ID(I)

ALT)=T

Io(r)=rt1

T=A(1J)

Ti=ID(1J)

L=J

IF{A(J) .GE. T) GOTO 4cC
AlIJ)=A(J)

ID{IJ)=1IDCY)

A(J) =T7

IDLJ)=T1

T=A(1J)

Tl=I0(1J)

IF(A(I) JLE. T) GOTO 40
A{TJ)=A(])

I0(13)=10(1)

A(')=T

IoLI)=T1
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30

40

50

60

70

80

30

100

T=A(1J)
Ti=10(01J)
GNTO 40
A(L)=A(K)
ID(L )= ID(K)
A(K)=TT
IDIK =72
L=L-1
IF(A(L) GT. T) GOTO 40
TT=A{(L)
T2=1D0(L)
K=K +1
IF(A(K) (LT. T) GUTO 5C
IF(K JLE. L) 6GOTO 30
IFtL-1 LE. J-K) GOTO 60
IL(A)=1
IuiM}=L
I=K
M=M+1
GOTO 80
IL{M)=K
IUIM )=y
J=L
M=M+1
GOTO 8¢
M=M-1
IF(M .EQ. 0) RETURN
I=TL(M)
J=TU(M)
[F(J-1 +GE. 11) 5070 10
IF(I .EQ. II) GOYO 5
I=1-1
=i+l
IF(l .eEQ. J! GOTO 70
T=A(I+1)
Ti=1D(1+1)
IF(ALTI) o LE. T) GOTO 90
K=1
ID(K)=10(1)
A(K+1)=A(K)
[D(K+1})=1D(K)
K=K-1
IF(T .LT. A(K)) GOTO 10
A(K+1)=T7
[D(K+1)=T1
GOTO 90
END

//LKEDSYSLIB DD DSN=LLOAD,DISP=(SHR,KEEP)

/7

//LKED.SYSLMOD DD USN=&MCCAL DI SP=(NEW,PASS) ;UNIT=SYSDA,

DD DSN=SYS1.,FORTLIB,DISP=SHR




’/ SPACE=(CYLy(1y1410))+DCB={DSORG=PORECFM=U,BLKSIZE=3625)
//LKEDSYSIN DD *

INSERY READCOMM

ENTRY MAIN

NAME CATAHILL(R)

//CPC EXEC PGM=COMPILER '
;;gzga#éB DD DISP=(SHR,KEEP),DSNAME=LLCAD
Hl DD UNIT=SYSDA.DISP=(NEH,DELFTE),SPACE*(TRK
2 = = 11,1))
/;SCRATCHZ DD UNIT=>YSDA,DISP=(NEW,DELETE!,SPACE=(TRK:(1:1))
/ SCRAT§H3 DD UNIT=SYSDAgDISP=(NEH,DELETE)'SPACE=(TRK,(1.1))
//SCRATCH4 DO UNIT=SYSDA,DISP=(NEW'DELETE)cSPACE=(TRK,(1,l))

//SYSPRINT DD SYSOUT=A +0241)) ,01SP=(NEW, PASS )

//SYSPUNCH DD SYSOUT 3

//SYSIN bb =%
PROGRAM ( *NG1*)
INITIALZ
MOVE(XDATA,'0PTBASY)
MOVE( XPBNAME, *"MYFiLE *)
MOVE( X0BJ,*0")
MOVE(XRHS, *CONST?)
ASSIGN ¢ 'COMMFMT !, *FTO4F 001"y *CGMM?)
PREPOUT( *COMMFMTY )
CONVERT( ' SUMMARY?)
Bcoaur
SETUP( 1)
PR IMAL
SOLUTION
TRANCOL ( *ENTIRE*, *INVERSE )
TRANCOL{ "ENTIRE ')
TRANCOL (*FILE'y*"COMMFMT! e NTIREY)
SOLUTION( *FILE*, *COMMFEMT )
DATAHILL
EXIT
PEND

/1 EXEC EXEC PGM=EXECUTORCOND=(CyNECPC) yREGION=220K,T [ME=3
//STEPLIB DO DISP=(SHR,KEEP) ,0SNAME=LLCAD

' DD OSN=ELMCCAL,O0ISP=(0LDPASS) UNIT=SY504

//SCRATCHL DO UNIT=SYSUA,DISP=(NEW,DELETE) ,SPACE=(CYL,{1,1))
//STRATCHZ DD UNIT=SYSDA,NDTSP=(NEW,DELETE) ,SPACE=ICYL,{1,1))
J/PROBFILE VD UNIT=SYSDA,SPACE={CYLs{1,1)),0ISP={NEW,DELETE)
//7ETA1 DD UNIT=SYSDA,SPACE={CYL (L y1)),DiSP=(NEW,DELETE)
//MATRIX1 DD UNIT=SYSDA,SPACE=(CY0Ls(141)) DISP=(NEW,DELETE)
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7/7SYSMLCP DD UNIT=SYSDA,DSNAME=%,CPC. SYSMLCP,DISP=(OLODELETE)
/Z/SYSPRINT DD SySOUT=A
STEXEC.FTO2FOCY DD DSN=%,51,G0.F TO2F Q01 DI SP={NOD,FASS)
J/7EXEC.FTO3F00L DD DSN=%,51,G0.F TO3F 001 4,01 SP=(CLD+DELETE)
//EXECL.FTO6FQ01 DD SYSOUT=A
//ﬁXEC.FTO?FOOl DD SYSOUT=RB
JTEXEC.FTO4FO0L DD UNIT=SYSDA,SPACE=(CYL,{1,1)?
//7SYSPUNCH DD SYSOUT=B
//7EXECLFTLIOFO00L ND UNIT=SYSDA,SPACE=(TRK,{1,1) 4yRLSE),
/7 DISP=(,4,PASS}Y,
// DCB={RECFM=FHS,LRECL=80,BLKSIZE=880)
/7/SYSIN DD DSN=%,5S1.G0.F TOLFOO01,DI SP={0OLD,DELETE)
//7CHKF EXEC FORTGLLGREGION,GO=42K,TIME=1
//7FORT ,SYSLIN LD DISP=(NEW,PASS)
//FORY ,SYSIN DD

READ(10,10C) 1
130 FORMAT(15)

IF(1) 2C,20,10
10 STGP 10
20 CONT INUE

STOP

END
//GO.FTLI0F001 DD DSN=* ,EXEC.FVT10FO00L ,CISP=(0OLD,DELETE)

//TW0 EXEC PGM=0OPTALG,COND=(2yLT,CHKF.GO) yREGION=(,336K),TINE=2
//STEPLIB DD DSN=LLOAD,DISP=SHR

//FTC6FCOL DD SYSOUT=A

//FTJS5F00) DD DSN=%,51.60,FT02FQ001,0DISP=(CLD,DELETE)

//SFAIL EXEC FORTGCLG,COND.FORT=(04EQyCHKF.GO),
I/ CONDJAKED=({O0+EQyCHKF.GO) 9{4,LT,FORT)),
/7 COND.GO=({J+EQsCHKF GO} gt 4oL T,FORT) o (4,LT,LKED)),
// REGION.GO=42K,TIME=1
J7HORT (SYSLIN O DISP={NE W,PASS)
//FORT ,SYSIN DO »
REAL X{8C)
5 READ(Sy1G,END=100) X
10 FORMAT{ 80A1)}
WRITE(T7,10) X
GOT0 5
100 sToP
END
//G3.FTOSF0O01 DU DSN=%,S1.,60.FTC2F 001+t [>P=(0LD,DELETE)

it o i
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NELC ZANGWL

CATALOG IDENTIFICATION:
E4 NELC ZANGWL

PROGRAMMERS:
D. C. McCALL, Decision and Control Technology Division, and
C. M. BECKER, Applications Software Division

PURPOSE:

To compute the minimum of a function f(x, . . ., x), of n real variables

RESTRICTIONS AND LIMITATIONS:
A maximum of 20 variables can be handled.

LANGUAGE.

FORTRAN IV

COMPUTER CONFIGURATION:
IBM 360/65
Core storage: 15086 bytes
ENTRY POINTS:
ZANGWL

SUBPROGRAMS AND WHERE REFERENCED: ?

User-supplied programs

FUNC called by ZANGWL, (POWELL)
Programmer-supplied programs
ZGITER cailed by ZANGWL
POWELL called by ZANGWL

USAGE:

CALL ZANGWL (XI, N, EACCUR, QSTEP, ISTCP, LPRINT, 1X,
LPUNCH, XOPT, FF)

For a description of parameters see the listing.

INPUT FORMAT:

All input is through the parameter list except when user-supplied s._.ch
directions are desired. Then ZANGWL expects N vectors of length N input on
cards in 4(F15.10, 5X) Format, where N = n is the number of variables. H

OUTPUT:

The output depends on the print and punch option. See the listing.
ERROR MESSAGES:

None
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PROGRAM DESCRIPTION:

ZANGWL — acts as a driver and convergence monitor for ZGITER. If
the vector x = (X{,X9,. .., Xy) on returning from ZGITER is to within ’
EACCUR of the value on entering, ZANGWL returns.

ZGITER - keeps track of the directions to be searched and normalizes
each newly generated direction.

POWELL — finds the minimum of the objective function along a direc-
tion supplied by ZGITER using quadratic interpolation.

MATHEMATICAI METHOD:

ZANGWL is based on a methed proposed by W. I. Zangwill in the
Computer Journal, Vol. 10, 1967, pp. 293-296.13 The method is outlined as
follows: Let f(xl,xz, ceeaXp) be the function to be minimized, and Cp

r=1,...,n be the unit coordinate directions. Assume that an initial point
pg and n normalized directions Erl r=1,2,...,nare given.

e e 0 e . (o] o,1 1 _
To initialize, calculate J\n to minimize f(pn+)\n5n), then set Potl ™

Pg + kﬁ Erll’ t = 1 and go to iteration k with k = 1.

Iteration k: pkﬂ

nTl.,Elr(,r= 1,...,nandt are given.

Step (i): Find a to minimize f(p‘r(\;ll +ac;). Update t by

t+1if1<t<n

t =
i if t=n
Ifa+#0,let pl,; = plr(];]l +acp. Ifa =0, repeat step (i). Should step (i)

be repeated n times in succession, stop; the point pﬁ:_ll is optimal.

Step (ii): Forr=1, ..., n calculate )\{f to minimize f(plr(_l + )\]: E}f)

and define pK = pK | +AF €K, Let g5, | = 0% - oK oipk - k11

Determine )\ﬁﬂ to minimize f(pﬁ + )\EH fﬁ;ll

k _ k k k
P+l “Ppt )\n+l€n+l'

) and set

Dcfinef‘:+]=£:;l,r=l,...,n

Go to iteration k with k+1 replacing k.l3
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NUMERICAL EXAMPLES — GENERAL TEST FUNCTIONS

In this section we list the functions for which ZANGWL computed the
minimum, and summarize the results. These test functions are selected because
the surfaces they define have steep curving valleys or have many known optima.
The results are tabulated for each function. This table lists the various initial
points, the computed optimum, the minimum value of the objective function,
the number of function evaluations, and the elapsed CPU in seconds’ time on
the IBM 360/65.

In comparison with minimization routines (FP and CNJGAT) at NEL(‘,l 2
the computing times are a bit stower and many function evaluations are needed,
but with the speed of the 360/65 this is relatively insignificant compared with the

number of man-hours spent in deriving the analytic expression for the gradient.

1. Rosenbrock’s60 function: f(xy,x4)=100(x4 - x%)2 +(xy - 1)2.

This function has a steep valley along the parabola x, = x% with a minimum
at (1,1).

2. Cube:]5 f(xl,xz) = 100(x2 - x:l;)2 +(xp - 1)2. Cube 1s similar to
Rosenbrock’s function except the steep valley follows the curve x4 = x? and
has a minimum (1,1).

3. Helical:() f(xl.xz,x3) =100 (x3- 100)2 +(r - 1)2 + x% where

X| = rcos2mt,xy=rsin2xf,and r = \/x]2 + x%. This function has a steep helicol

valley with a minimum at (1,0,0).

-1
4. THREE:®! f(x| x5.x3) = —sin (14mXX 3)

1 +(Xl —Xz)?’

X1 +X “
172 -
-Xp —< >--2> . THREE has minima at x| = x5 =x3= +vi4ntl,n=0
x 27 A
2
integral with a minimum value of -3. This function tends to change quickly
from the point (0,1,2) and then flattens out until it reaches an optimuni. The
optimum depends on the starting point x.

5. FOUR:? f(x],X5.X3.X4) = (x| + 10%2)” + 5(x3 = x4)7 + (x5 - 2x3)*
+10(x| - x4)*. FOUR has its minimun, at (0,0,0,0).

6. (‘HEBYQ(UAD):()3 This relatively new function allows testing a
routine on & function with an arbitrary number of variables; i.e., CHEBYQ
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(Xpseees Xp), where n is a parameter preset by tuz user. Forn=1,2,...,79
the minimum value of CHEBYQ is zero; however, for other n the minimization

is still valid.
Briefly, CHEBYQ does the following: Let x = (xl, ..., X.) be avector

(abscissac) whose coordinates are in the range 0 < X S 1. Then, choosing the
shifted chebyshev polynomial T;, we define:

-1 1 n
4,(x)= /0 T,(z)dz - - z Ti("j)
=1

n
Then the function f(x) = z (Ai(i))z has the property that if X is the vector

i=1
of abscissae, then f = 0; otherwise, f > 0. Although contrived, CHEBYQ is a
good example of a complicated objective function that can occur. The

FORTRAN 1V listing of CHEBYQ follows.




SR T T ST

10

19

29

SUBRNUTINE CHFRYQ(F,X,N)
IMPLICIT REAL*R(A-H,0-7)
LOGICAL TEVEN

DIMENSION Y(20),TI(2C),TIMIN(2C),X(1)
DFLTA = C.0NCO

LERN= 0.,000°

GNE = 1.0000

TWO = 2.0000

DO 10 J=1,N

Y(J) = TWORX(J)=-ONE
DELTA= DELTA  +¥Y(J)
TICSY = v(J)

TIMIMOJ) = ONF

F = DFLTA * DFLTA
IEVEN = (FALSF.

DO 20 T=2,4N

[EVFEN = NUTLIFVEN
NDELTA = ZERN

DO 19 J=1,4N

TIPLUS = TWOAY(I)XTI(I)-TIMIN(J)
DELTA = NDELTA + TIPLUS
TIMIN(J)= TT1(J)

TICH) = TIPLNS

A = ZERD

IFCTRVENT A= =0ONE/(I=][-0MF)
DELTA = OLLTA/N-A

= F+ DELTAXUELTA

RETURN

£MD
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ZANGWL - ROSIE

optimum at (1.0, 1.0)

QSTEP=0.1; EACCUR = 1.0D-C4

Number of

Initial Point | Computed Optimum | Objective Function | Evaluations | Time (sec)
1 -1.2 0.10000000D01 0.16961904D-22 325 0.26
2 15 0.10000000L01

1 -1.2 0.10000000D01 0.16961905D-22 328 0.20
2 -1.0 0.10000000D01

1 1.2 0.10000000D01 0.84351733D-24 206 0.11
2 -1.0 0.10000000D01

QSTEP = 0.01; EACCUR = 1.0D-04

1 -1.2 0.99999991 D00 0.77935877D-14 366 0.19
2 1.0 0.99999992D00

1 -1.2 0.99999991 DOO 0.77935878D-14 370 0.19
2 -1.0 0.99999992D00

1 1.2 0.10¢20000D01 0.23682822D-14 152 0.12
2 -1.0 0.10000000D01




ZANGWL - CUBE

optimum at (1.0, 1.0)
QSTEP=0.1; EACCUR = 1.0D-04

Number of

Initial Point | Computed Optimum | Objective Function | Evaluations | Time (sec)
1 -1.2 0.99999999D00 0.31134541D-21 402 0.28
2 10 0.99999999D00

1 -1.2 0.99999999D00 0.31134835D-21 399 0.23
2 -10 0.99999999D00

1 1.2 0.99999999D00 0.78369023D-21 179 0.17
2 -10 0.99999999D00

QSTEP = 0.01; EACCUR = 1.0D-04

1 -1.2 0.10000000D01 0.37920987D-25 473 0.25
2 10 0.100060000D01

1 -1.2 0.10000000D01 0.37920987D-25 470 0.25
2 -10 0.10000000D01

1 1.2 0.10000000DG1 0.27144901D-25 216 0.12
2 1.0 0.10000000D01
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ZANGWL - THREE

optimaatX; =X, =x3=1 4n+1, n integral

QSTEP=0.1; EACCUR = 1.0D-04

Number of

Initial Point | Computed Optimum | Objective Function | Evaluations | Time (sec)
1 0.0 0.10000000D01 -0.30000000D01 288 0.38
2 1.0 0.99999999D00

320 0.99999999D00

1 0.0 -0.10000000D01 -0.30000000D01 298 0.30
2-1.0 -0.10000000D01

320 -0.99999999D00

1 CO 0.4G012498D02 -0.30000000D01 5710 4.88
2 1.0 0.40012498D02

3-20 0.40012498D02

STEP = 0.01; EACCUR = 1.0D-04

1 00 0.10000000D01 -0.30000000D01 257 0.28
2 1.0 0.10000000DO01

320 0.99999999D00

1 0.0 -0.10000000D01 -0.3(:000000D01 257 0.35
2-1.0 -0.10000000D01

3-20 -0.99999999 D00




ZANGWL - HELICAL

optimuin at (1.0, 0.0, 0.0)
QSTEP =0.1; EACCUR = 1.0D-04

Number of

Initizl Point | Computed Optimum | Objective Function | Evaluations | Time (sec)
1 -1.0 0.10000000D01 0.29631116D-30 462 0.56
2 00 -0.34372772D-15

3 00 -0.81379053D-15

1 1.0 0.10000000D01 1 0.77927466D-32 366 0.38
2 10 -0.55742421D-16

3 10 -0.90526145D-16

1 1.5 0.10000000D01 0.18577895D-33 351 038
2 0 0.86066593D-17

3 05 0.16356615D-16

QSTEP=0.01; EACCUR = 1.0D-04

1 -1.0 0.10000000D01 0.14457809D-31 622 0.59
2 00 ~0.54445252D-21

3 00 0.11963532D-16

1 10 0.10000000D01 0.60518735D-34 375 042
2 10 -0.50124625D-17

3 10 -0.77793682D-17

1 15 0.10000000D01 0.10674562D-34 337 0.33
2 05 0.37411888D-20

3 -05 -0.31920217D-18
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ZANGWL - FOUR

optimim at (0.0, 0.0)

QSTEP = 0.1; EACCUR = 1.0D-(4

Num®er of

Initial Point | Computed Optimum | Objective Function | Evaluations | Time (sec)
1 30 -0.13754371D-5 0.68469142D-23 1350 0.95
2 -10 0.13754371D-6

3 00 -0.57715785D-6

4 10 -0.577157861-6

1 -3.0 -0.71682591D-6 0.36195490D-18 1169 0.73
2 -10 0.71682590D-7

3 20 0.10589514D4

4 10 0.10589913D4

1 30 0.58159117D-5 0.79920637D-20 1568 0.97
2 10 -0.58159117D-6

3 20 0.44312920D-5

4 -10 0.44312921D-5

QSTEP=0.01; EACCUR = 1.0D-04

1 3.0 0.46374739D-6 0.35002584D-20 781 0.57
2 -1.0 -0.46374741D-7

3 00 -0.32170026D-5

4 10 -0.32170025D-5

1 3.0 -0.40710970D-7 0.79074373D 24 1503 0.9s
2 -1.0 0.40710966D-8

3 20 0.401415930-6

4 10 0.401415%1D-6

1 3.0 0.29354616D-6 0.36784227D-23 1224 0.76
2 10 -0.29354616D-7

3 -20 -0.45198631D-6

4 -10 -0.45198633D-6

SR e



ZANGWL - CHEBYQUAD
QSTEP =0.01; EACCUR = 1.0D-04

Number of
Initial Point | Computed Optimum | Objective Function | Evaluations | Time (sec)

n=6

1 0.142 0.66876591D-1

2 0.285 0.28874067D00

3 0428 0.36668229D00 0.32039347D-17 704 1.81

4 0.571 0.63331770D00

5 0.714 0.71125932D00

6 0.857 0.93312341D00 q
n=8§

0.111 0.43152760D-1

0.222 ©.19309084 D00
0.333 0.26632870D00
0.444 0.50000000D00 0.35168737D-02 2077 7.59
0.555 0.49999999D00
0.666 0.73367129D0C0
0.777 0.80690916D00

00 ~J O\ W H W) e

0.888 0.95684724D00 1

0.090 0.59619901D-1
0.181 0.16670828D00 !
0.272 0.23917065D00 i
0.363 0.39888429D00
0454 0.39888429D00 0.65039548D-02 2603 14.30
0.545 0.60111570D00
0.636 0.60111570D00
0.727 0.76082934 D00
0.818 0.83329171D00
G.909 0.94038009D00

[==JANoRN. B e NV N NS
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SURRGUTING 7ANGHL

PR DGSE
TO FIND T SINTMYM DJF A REAL VALUED FUNCTION OF N-VARIABLES
WHOIST VALUJES ARE UNCONSTRAINED.

USAGE
CALL /8™l (XTI yNyEACCHURyQSTEP o I STCPyLPRINT, IXy LPUNCH,,XOPT, FF)

DESCRIPTTIHN OF PARAMFTZRS

X1 - THE INITIAL GUESS CF THE NPTIMUM
| ~ THE NUMBFEP OF VARTABLES
EACCYR= THE INITTAY ACCURACY DESTIRED, FOR BEST RESULTS SET

LESS THAN (OSTEP*%5,

QSTEP - THF INITIAL STEP SIZE FUR THE UONE DIMENSIGCNAL SEARCH
RGUYINE PNWELL. QSTEP EQUAL o1 WORKS WELL.
TSTOP = O5TeP QEOLUCTICH CODE

NG OREDHCTION
1 AFTER FINDING AN MINIMUM T WITHIN FACCUR, NSTEP IS
SET T EACCHRZCACCUR=FACCURX%2 AND THE ROUTIMNE DGES ONE
FiIvAL MINIMIZATION T WITHIN EACCUR,

{ PRINT- PKTINT CANE
3 DO NGTHING
1 FACH N-DIMFENSIONAL TTYERATION ONLY
2 FTNAL RESULTS ONLY
3 RNTH 142
4 3 OLYS THL POINT ON EMTERING AND LEAVING POWELL.

R - CHOICF NF 1'SER SUPPLIZD DIRECTIUONS. IF.EQ.C4,CO-CRDINATE
NDIRECTIUNS ARF YSFD.

LOUNCH~ A PUNCH CPTION, IF DIFFERENT FROM Oy ZANGWL WILL PUNCH
AUTPUYT £N8 THE “INIMUM POINT.

XIPT ~ A LIST 0OF LENGTH N C/INTAINING THE MINIMUM,

FE - FF = FUNC {XOPT4N)

NJTE ALL BARAMAETFRS ARE DNUBLE PRECISION.

SURPOUTINES AND FUNCTIUN SUBPRUGRAMS REQUIRED
HSERK MJI5T SHP2LY THE FUNCTION SUBPROGRAM FUNC (XyN)

ME TH(D

THIS PZUTINE IS BASEN ON A METHOD PRNAPISED BY Wel ZANGAILL,
COMPUTER JOMWR .y VAOLL1D, 1967, P293-296,

L B B R B B B BN R B IR B AN I B R B BN BB BN BN BN BN BECEE Y BN B N 2B BN B BN U BE BN AR IR B BN BE B BN IR BN BN RN BRI BE BN B NN IR IN

SUARHUTING ZANGNUINEW  NyEFACCUR,QSTEP I STOP,LPRINTy X, LPUNCH,XOPT,

1 FF)

IMPLICTIT nEALER (A=-k,13-7)

OTHMENSTON NEACH), 2LD(020), XT023921)y N(20)y PT(20), XINFW{20)
DIMENSTUN R(20), XJ(20421), XOCPT(L)

INTEGER T, "13IFN, CHAUNT

REAL®R LAGHDA yNEWZMINFN

COMMON/TAN S JEPSTEN Qe IPOWELyOBJIFNSLIST,COUNT

Eaa




OO0 000G 0O0

N
(9]

30

40

5
6

73

0

DSTEP

EACCUK

LIST = LPRINT

IBMCRD= |.PUNCH

ORJFN=0

IPOWEL=?

EPSILN=1.0D-15

[P=STOP FLAG TFRMINATING SIMULTANENUS REDUCTION OF BOTH ¢ AND E

K=NUJMBER (JF CUPRENT TTFRATION

OBJFN=CURREMT QUANTTITY OF 0OBJECTIVE FUNCTIUN EVALUATIONS

OLOLIC)=IC-TH COMPONENT OF ENTER POINT FNR IGITER

NEWCIC)=IC-TH COMPCNENT OF INITIAL POINT AND POINT CCMPUTED IN
IGITER

REICY=0LC(IC)Y AT STARPT OF ZGITFR

XT(IC, IN)=T1C-TH COMPONENT (OF ID-TH NORMALTZED NONCOORD INATE
DIRECTION

XJCIC, ID3=X1(IC,ID)} AT START GF ZGITFR

XINEW(IC)=IC~TH COMPONENT CF (N+1)-ST ('EXTRAY)
NORMALTIZZD NONCONOKDINATE OIRECTION

PTCIC)=1C-TH COMPONFNT 0OF MINIMUM POINT DF N-OIMENSTONAL
MINIMIZATION

D(ICYI=1C-TH COMPONEZNT OF NOKMALIZED NONCOORDINATE RIRECTION OF
ONF DIMENSIOGNAL MINIMIZATION

ALPHA=MINIMUM STEP LEMGTH FIOR N-DIYENSIONAL MINIMIZATION

LAARDA=MINIMUM STEP LENGTH FNR OME DIMENSTONAL MINIMIZATION

MINFMN=0BJECTIVE FUNCTINN MINITMUM VALUE

IGFN=CURREZMNT 2GITE# TYTERATION C3JECTIVE FUNCTICN VALUE

STEN=ORJECTIVE FUNCTTON VALUE AT INITIAL POINT

JUMP=F IRST ZGI1TER ITERATION FLAG

ORJ=NBJFN AT START (tF ZGITER

PTDIF=MAVTINYY NEw AMD OLD PCINT COMPONENT DTFFERENCE

o i

IP
Q
C

CONTINYE

IfF (1P.GT.C) GG T 2%

[F (IP.ATLC) G TG 22
STEM=FUNC (HZ W M)

FF=STFN

OBJFN=O3JFN+1

GO TN 40

STEN=FUNC(PT,N)

OBRJFN=0BJFN+]

[F (LIST.E0.7) 60 Tooan

PR‘NT "Q:' N, (""'

PrINT 487, LTIST,IsMCFO,TX

IF (1P.EQDY) GV T &0

PraMT 430, (TCPTLICY,IC=1,N)
GO TN 62

PRINT 407, (IC,NFUTD),1C=1,4N)
PRIMT 673, STEN

IF (1P, EQ.7) A0 TO 77

GO TOo3Y

CONTINYE

9]




50 I[F (IP.GT.0) GO TO 130
IF (IX.EQ.0) 6O T 90

E USER SUPPLIES INITIAL NONCONRDINATE DIRECTIONS
‘ READ 340, ((XI(ICoIN),IC=14N)1N=1,4N)
GO TN 130
g CAMPUTE INITIAL NUNCOGRDINATE DIRECTIUNS
g“ LO 120 ID=1,N

DN 110 1C=1,N
IF (IC.EN.IN) GO TN 140
XT(1C,1D0)=0.,0NCNH

Gt} 0 110
100 XIU1€,1ID)=1,0NN0
119 CONTINUE
120 CONT INUE

MINIMIZE IN ONC DIMENSTON USTNG IMTITIALIZATION DATA

OOV O

130 DN 140 IC=1,MN
140 DCIC)=XT(TIC,N)
IF (1P,EQ.N} GO YO 16C
IF (LIST.EQ.C) GO TO 145
PRINT 580, (IC,2T(ICY,IC=14N)
145 CALL POWELL (N,OLDyD4LAMBRA,FE)
00 150 IC=14N
190 OLD(IC)=0LDCIC) +LAMBDAXD(IC)
IF (LIST.LQ.0) 60O TN 155
PRINT 590, (IC,0LD(IC),IC=1,N)
155 CONTINUFE
60 TN 13¢C
160 IF (LIST.N.?) GO TN 165
PRINT 560, (IC,NEW{IC),IC=1,4N)
165 CALL PUOWELL (M NEW,NyLAMBDA,FF)

C COMPUTE FIRST POINT

DO 179 IC=1,N
170 GLDCIC)=NCWLIC) L AMBDARD(CIC)
IF (LIST.eN.") GU TN 175
PRINT 600, (IC,DLD(TC)yIC=1,N)
175 CONT IMNUE

C
C INITTALIZE FOF FIRST TTERATIIR
C

K=1

T=1

JUMP=]

13C  IF (X, E2.0) GO TGo1o7
JUMP=JUMP+ ]




197
200

2106
220

230

24G

25C

2an

DO 20C TJd=1,N
KCEJY=0LD(T )

nro22

0 IK=1]

o N

DO 21C IL=1,N
XICIL p TKD)I=XT (11, TK)
CONTTMNUE

nrg=n

BJFN

TF (LIST.NFL3) A0 TN 230

PEINT

CALL

IGFN=

540
7GITLE

FF

COMPARFE Njlw

ACHIEV

£D

K

(MaOLD e XT o To ALPHAZPTyXINEW, JUMPL,NOYES FF)

AMD CLNY POINTS FOR N=DIMENSTIOMAL MINEMHM

PTOTE=DABS(PT(1)-0LD(1}))

N TJd=2,N

3S APTOII)=OLDTI))
IF (ONLJLELPTNTF)Y GO TN 25C

no 2?25
ON=DA

PTDIF
COMTT

=N

NUE

[F (PTDIF.GELTY ) T 2kC

If (K
ORJFEN
K=K-1

ilEe2)
=0RJ

GooTn 260

IF (LISTLENGO) 60 T 27C
IF (LISTLENG2) GO TH 271

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRIMT

430,
45G,
550,
431,
450,
510,
520,
46C,
4.0,

(TC,REICY,IC=14N)

(10, T XJUTIC TN IC=14N},T0=1,N)
K

(TC0LD(TCY IC=14N)

[CTCy INGXTCIC-TD) TR =14N),IN=1,4N)
(IC, XINCW(ICY1C=14N)

Ky ZCGFN

(IC,PTLICHY. IC=1,N)

Ky(ORJFN

[F (PINIFLTLF) GU T 280

TEST

Fu- =

NIMEMSTURMAL MINTMUM ACHIFVED

IF (COUNT.LTNY G0 TO 320
M=DTMENSIANAL MINTAUM ACHIEVED

CONTT

Ivia

[t (IsMCROLLELT) GO Ty 2490

PUNC
PUNCH
PUNCH
PiitiCH
e (7
PUMCH
CONTY

61C,
37C,
343,
410,

T, 1X

WeN)yF
(PTCIC),1C=1,4N)
LIST, 3o, KLLOCK

YelweM) 60T TH 270

30’\:1

NE

COXTLIL TN IC=1,N) ,I0=1N)



3nc

310

C
32n

3130
335

340
350
360
37C
3940

400
4L10
"20

43¢
431
440

45%

467
43(

51C
520

521
S4(
550
560
580
S9¢
600
519
620

94

MINFN= FF

IF (LIST.LFLY) GO TN 3¢
PRIMT 350, MINFN

PUIMY 360, (ICPTLTIC),IC=1,4N)
PPINT 4640, NNJFN,K

TEST FUR FINTSH AND RESTARTY IF NOT
IFIP . GEJISTOP) (1) T 330

Q=F

F=E2f

K=K+1

JUMP=JUMP+ ]

IP=1P+]

IPOWEL=TPUWFL®IPNWEL

GO TN 10

REITFRPATE WNTTL REGUIRED ACCURACY ACHIEVED
K=K +1

JUMP=J1IMP ¢

Gl TO 194

DO 3365 J=1,MN

XOPT(JI)=0LNDC))

PRIMNT 62C

RETURN

FORMAT (4(F15,1045X))

FORMAT (140, 33H08JFCTIVE FUNCTION MINIMUM VALUE=,E18.11)

FOPMAT (LHC, 21HN, MINIMUM POINT/{13,3X;E18,11))

FOURMAT (1223X,F15.1043%X,F15,1C)

FCRMAT (1til « 1RHNC, CF DIM OR VAR=41245X,16'10ONE DIM START
W=4E18,11 ]")XyQHACCUD’\CY'—"ElRQIl'

FORMAT (110, 21HNND, INITIAL POINT/Z(I3,3X,FE18.11))

FORMAT (215}

FORMAT (1HC,21WTTFRPATTIONS 1 THROUGH ,19,10H REQUIRED ,
I19,31H OBJEC 1TIVE FUNCTION FVALUATIONS)

FORMAT (281 ENTER ZGITEK WITH THE PUINT/4H NN/ {13,3X,F18.11))

FORMAT (261 LEAVE ZGTITER AT THE POINT,/4H NUG/(I3,3X4FE18,11))

FORMAT (1HC»32HACHIEVING THIS MINIMUM REQUIRED 419;36H
NBJECTIVE &£ JTUNCTIGN EVALUATINANS AND o19,11H ITERATIONS)

FORMAT (1HC.31H NN, X1 NO. DIRECTIUON/(2X,13,5X,
13,4X,E18 1,11))
FORMAT (1HGC,17HNC. NEW POINT/(I13,3X,E18.11))

FORMAT (JHCLTTHPRINT CODE=,13,5Xy11HPYNCH CNONE=, 13,5X, 12HT IMING
COIDE=,13,5X,RHX] FLAG=,13)

FOCRMAT (1HC,26HNO, XT(N+1) /(13,3X4E18.11%)

FORMAT 1HO, LCHTTERATIUN 4, 19,37H CHANGES OBJFCTIVE FUNCTION VALUE
110 ,F1R.11)

FORMAT (IHC,42HNAGECTIVE FUNCTYIIN VALUF AT INITIAL PCINT=.F18,11)
FORMAT (1HO23HENTEF ZGITER ITERATION ,19)

FORMAT (111G 23HL FAVE ZGITER ITERATION ,19)

FORMAT (1HC, 327HNDO, INTTIALIZATION ENTER POWELL/(I3,3X,E1R,11))
FORMAT (1HC, 1 7HNO,  ENTER POWCLL/{T3433X,F1R,11))

FORMAT (11D, 1THEND,  LEAVE POWCLL/Z(I3,3X,ELR.11))

FORMAT (1n7y 328N, INITTALIZATION LEAVE POWELL/(13,3X,F18.11))
FORMATY (2117)

FORMAT (1H1)

END

v
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SUBPNUTINE ZGITER (NNDV NPT yDIRGNCyDIST, Gy EXTPA,JSW, IS 4 FF)
IMPLICIY RFAL%X8 (A-H,0-7)

DIMENSTON DPT(27), DIR(20,21)s CL20), G(2%), N(2C), MNEW(27), EXTRA
1(20)

FEAL®8 LyNCwW

IMTEGER NRJFN, COUNT

COMMON/ ZANG/EPSTLN 03By TPUWEL,yOBJFN,LIST,COUNT

UNCONSTRAINED NOV=DTMENSTONAL MINTMIZATION WITHOUT YSING DERIVATIV
HSING GIVEN POINT DPT AND GIVFEN DIRECTION DIR

NPV=NUANTITY OF YARTABLFS IN (OBJECTIVE FUNCTION

MC=MUMBER OF CURRENT CNORUVINATE DIRECTION

BPTLIC)=IC-TH CAOMPNONENT OF OLD PNINT

NEWLIC)=TIC-TH COMPONFNT OF NEW PUOINT

DIFCIC, TOY=10C=-T1H COMPONENT OF TO-=-Td NANCONRDTINATE NORMALTZFD DIREC

FXTRA(IC)=TC=TH COMPONENT GOF (N#1)=-ST (*EXTRAY)
MIRMALTZED NONCOORDINATE OIRECTION

DIST=MINTAUE STEP LENGTH ALUNG COORKDINATE DIRECTION NG

CIC)=IC-TH CUMPANFENT OF CURRENT NURMALTIZED COURDINATE OIRECTION

GUICHI=IC-TH COMPANENT (OF MINIMUM POINT IN NOV-MINIMI7ATTCN

L=MINIMUM STECP LENGTH IN OUNE DIMCNSIOMAL MINIMIZATINN ALNONG
NONCNORDIMATE OIRECTTION H

H{TCY=TC-TH CAMPONCNT UF CURPENT NONCOOURDYHATE DIRFCTION TN ONE
NDIMENSIONAL “INIMUZATION

CRUNT=CURKRENT TOVAL CF CONPOINATE DIRECTIONS USER WITANUT CUMPUTIN
CEXTRAY NGNCONKNDTMATE DIRECTION

JSW=FTRST ZGITEP ITERFATIUN FLAG

PART (INC

CUUNT = 0O

IF K=1 ANOD IX (IN ZANGWTILL) =C, GO TO PART TW(
[F (JSW.GT.1) 6~i) T 2z2e

NC=NL+1

D0 10 JK=1yNDV

NEWLJIKDI=DPT(JK)

GG T 11¢C

COMPUTE CURRENT CONRDINATE DIRECT IUN

no 49 JC=1,HH0Y

[F (JCLEQLNCY) (0 N 36
CHICY=2,.,0000

GO T 40

CtJycr=1.2n07

CONTINUE

MINTMIZE TN ONE DIMENMSTIN ALONG CURRENT COORODINATE DIRECTIUN

IF (L1ST.NF,4) G0N Ti] 45
PRINT 250, (JC,0PT(JIC), JC=1,NDV)

CALL POWELL (NDV,DPT,C,DIST,FF)

TLST FOR ALL CONKUINATE NIPECTIONS USEDN
IF (NCWNEJNIVY 6D T6 G
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1230

155
Lot
170

Lan

lLon

2

NC=1

G TN 50

MNC=NC+]

TEST FOl MINIMUM STEP LENGTH ALIONG C(NC)

IF ENABRS (DISTYLOHLLFPSILNY GO T1) o0
IF CCOUNT,GENDYY GO T 76
CUUNT=CUUNT +]

GO T 29

MIMTIMUM STEE LIMGTH ALONG CUINC) FOUND
DI AL JK=T14NDV

GIJKY=DPTLIK)

FETHRN

UPDATE CUARINT DPAINT

D 1rn JC=1,MnY

NEW(IC)=0PT(JO) eDISTAC(JC)

IF (LISTNFL4) GO TO 110

PRIMT 260, (JC HFW{I0)JC=14NDV)

P4RT TW)

MINTMIZE IN NONE DIMENSION USING CURRENT POINT ANC CHPRENT
NONCOURDINATE DI ECTINNS

noo18c J0=1,NDV

DG 120 JC=14NDV

HEJCY=nIR(JC,JIM)

TEST FOR 76E-D DIRFCTINN

[7=C

N 130 J=1,yNTY

I (DASS (M) Y. LE.1.0D-15) GO T4 131
I7=1

CONTIMUL

IF (TZ.,EQ.0)Y &0 T0 187

IF(LIST M4} 6 TO 155

PRINT 280, (TJ,NEwWwlTJd),1J=1,MDV)
CALL POWELL {NDV,,MFW,HyL,FF)

B0 173 KJ=1,NMDV
NEW(KJ)I=NEA(KSY+L*H(K )

[F (LISTNEL4) 5D T 180

PRINMNT 240, (JTNTACIT)yJI=1,NDV)
CONTINUL

CPVMPUTE YFXTRA' NONCOORDINATE DIReCTICN

DENTYM=], 2077

G190 JG=1,"1Dbyv

DENNOM=OLNOMEDARS (NEW(JC)I-DBTJC))

ph 270 JC=1,0V

DIRCIC NIV AL =HEWJCY=0PT (JC) Y /DENUM
EXTRA(JC)I=DTR (A0 ,NDV+ 1)




240
140
15n

c
280
R LYs

Il e EaRe el aleNeNeleNeleNe Nl Wi W ie

o

p T

MINIMIZE IN (M DIMENSION ALONG 'EXTRAY NONCOORD INATE DIRFCTION
pe 219 JC=1,M0V

HIJCY=DIR{JC NNV +1)

IF (LIST.NF.4) G T 215

PRINT 253, (JCoNFWUJIL)»JC=1,NDV)

CALL POWLLL (NDYSNEW,HeLyFF)

nno2720 JC=1,NNDV

DPTLICI=NEG(JO Y+ J0)

IF (LIST.NF.4) R0 TN 225

PRINT 267, (JC,NPTIC)y C=1,4RNDV)

COMPUTE MONGONRDINATE DIRECTIONS FOR NEXT JTERATINN
DO 2an JD=1,N0V

NN 230 JC=1,NDV

DIRPCIC,INMI=DIP(JC,ID+1)

CONTIMYE

DO YhY JK=1 NPV
GUIV I=NEXR(I)
FETURN

FORMAT (LHO,17HND,  POWFLL ENTER/(13,3X,018,11 1)
FRREMAT (IHP, L7HND,  POWELL LEAVE/Z(I3,3X,T1R. 1))
ENDY

SUBPAUTINE PAWFLL (NyPO.S, STED,FF)

IMPETICTIT RFALKQ (A='4,0=7)

DIMENSTON S(27), ©0(225, 7(20), Fl4), VI(4)

IMTECER N8 JFN, COYNT
CUNHQN/ZANC/FFQILN.C,F,IPﬂwEL,ﬂ%JFN,LIGT,CHUMT

UNCOMSTRATMED ONE NTMENSTONAL MINIMIZAYIOY W!THAUT USTNG DERIVAT IV

FORCFINDING BFLIOW REASONARLE Q VALJE, SFE CALAHAN,D. A, , COMPYTER
ATOED NETWORK DESIGN,, MCARAW-HILL, 1968,

PC=TINITIAL POIMNT VECTOR

S=EGIVEN DIKFCTINON YRECTOR

GIVEN PDyST FIND STEP THAT MINIMIZES OBJLCTIVE FUNCTION PO+STEPXS

GIVEM PGySe  FIND STEP THAT MINIMIZES OYJECTIVFE FUNCT [ON({PC+STL px

N=QUANTTITY NF VARTARLFS TN OBJECTIVE FUNCTION

O=TNITTAL STEP LENGTH ALUNG S

R=GEOMETRIC SEPIFES OATIG #0R FINDING REASIINARLE STFD LENGTH IN
CHAPUTINA SET OF INTTIAL THKEF POINTS

CEP=6GEOMETRIC SFEIFS COEFFICIENT FUR FINDING ABOVE REASON'OLF STEP

E=REGUIRED ACCUPACY OF MINIMUM POINT (FACH COMPONENT)

V=APRAY CF CURFENT POINT VALUECS

F=APPAY OF CUKRENT POTNT OBJECTIVE FUNCTION VALUES

U8 FN=NYANTITY OF ORJ_Tive FUNCTINON FVALUATIINS

NUM=DUANTITY O JUADRATIC INTCRPOLATIUONS

NHM=0

COMPUTE THPEE STARTING VALUES AND THEIR OHJFGCTIIVE FUNCTION VALUFS
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10

20

30

)

30
90
100

110

98

UG 1N T=14N
Z(y=pn(l)

FA=FF

DG 20 I=1,N
2(I)=PO(1)+N%S(T)
FQ=FUNC(Z4N)
URJIFMN=0RJFN+1

IF (FQ.LTLFA) GU T3 8N
DN 30 I=1,N
Z201)y=Pn(1)=-Q%S(1)
FNQ=FUNC{Z«N)
CHJIFN=QDJIFN+]

[F (FMQ.GELFAY GU TN 4N
B=-0N

FR=FNQO

[SW=N"

GO TN 60

vil)==9
v(2)y=0,0Dn20
v(3)=1

FE1Y=FNQ

F(2)=FA

F(3)=FQ

GO 1O 120

B=0

FR=F0

ISW=1

CF=1.C0N0D
SUM=1,0N00
CF=CF*R
SUM=SUM+CF

IF (ISW.,EN.1) 6N TN &Q

C=-N%SUM
G 90
C=0%SUM

DO 100 [=1,N
2D)=PO(T)+CxSLT)
FC=FUNC(Z M)
CRJFMN=ORJFN+]

IF (FCWGTLFB) A~ TO 11C
A=R

FA=F1

B=C

FBR=FC

GO T T0

Vil)=A

vV(2)=8

vi3yv=C

F(li=FA

F{z)=FR

F{3)=FC



(@]

(o I

136

C

140
156

C
160

170
180

190

N YOO OO

COMPUTE 2ERQO OF FIRSY DERIVATIVE OF APPROXIMATING QUADRATIC THROUG
THREE CHUERENT POINTS AND YTS OBJFCTIVE FUNCTIUN VALUE

Wi=v{2)-v(3)

wW2=Vv(2)+v(3)

W3=v(2)-v(1)

Wa=vV{3)+v(l)

W5=VI1)=-V(2)

WH=VI1)+V(2)
WT=2%{W1%F{1)+WAXF (2) ¢ WE%F () )

VA= (WL HW2XF (1 Y oW AR WARF [ 2) ¢ WERWAXE (3) ) /WT
DN 132 [=14N

ZCIY=POCT)+V(4)XS5(T)

Fl4a)=FUNCI(7,N)

ORJFN=0RJFMN+]

IF (V4 NELNV(2)) GO TH 140

GC TO 160

TEST THRFFE CURPENT POINTS FOR CLOSENESS TQ ZFR1D OF FIRST DERIVATIV
IJl=1

Y1=DARS (V(1J1)=-Vi4})

IF (Y1-E.GELCLODOC ng TO 170

LERQO OF FIRPST NEPTIVATIVE 1S MINIMUM DISTANCE ALGNG S
STEP=V(4)

FF=t(4)

[F (F(4)LT.F(2)) GO T 240

STFEP=V(2)

FF=F(2)

GO T 240

IF (1Jy1-2) 180,150,200

1J1=2

6N TN 15¢C

1J1=3

60 7O 150

SHR INK CLOSEN INTERVAL CONTAINING MINIMUM BY DISCAFDING BOTE POINT
NUYTSIDE DF INTERVAL AND ITS OHBJECTIVE FUNCTION VALUE ANC
RELABELLING REMAINING POINTS AND THEIR QOBJFCTIVE FUNMCTION VALUE

IF (Y{4)-V(2).GT.C.rDOCY GO TO 22¢C
I[F (F(4)-F(2).6T7.C.0CD0OC) GO TL 219

F(3)=F(2)
vIi3)=v(2)
FI2)=F(4)
Vi2)=via)
IF (NUMGELIPOWFL) €GN YO 16C
NUM=KNUM+ |
GO TO 120
FL1)=F(&)
Vill=via)
IF (NUMJGELTPOWFL) 0 TO 160
NUM=NUM+ ]
G0 TG 120




CAE T T

100

~J
[N
>

24

i
>
[W5]

IF (Fta)=F(2V .1 T.0u0Y GO TR 230

F(3)=F{4&)
V3)=V(4)

[F (NUM.GE.IPOWEL)

NUM=NUM+ L
G0 TO 120
FOlL)=FL2)
VIil=v{?2)
F(?2)=F(4)
V(2)=V(4)

[F (NUM.GE.IPOWEL)

NUM=N{Me ]
GO TO 120
CONTINULE
RETIRN
M

GN T 160

67 10 160




NELC FESDIR

CATALOG IDENTIFICATION:

E4 FESDIR
PROGRAMMER:
Gail Grotke, Decision and Control Technology Division
PURPOSE:
To minimize a function f(xl,xz, cees Xp) of n variables whose values

are constrained

RESTRICTIONS AND LIMITATIONS:

The function and constraints, and their first partial derivatives, must be
continuous.

LANGUAGE:
FORTRAN IV

COMPUTER CONFIGURATIONS:
IBM 360/65

ENTRY POINTS:

FESDIR
SUBPROGRAMS AND WHERE REFERENCED:

Programmer-Supplied Programs

FUNC called by FESDIR, and POWEL, and BNDY
POWEL called by FESDIR
BNDY called by POWEL

Library Subprograms

SQRT called by FESDIR
ABS called by FESDIR, POWEL, and BNDY

DEFINITION OF VARIABLES

X0 Initial feasible point

X Working point and final minimum

S Direction vector

GF Gradient of the function

C The constraints

GC Gradients of the constraints

DELG Normalized gradient of the violated constraint

DELF Normalized gradient of the function

NUM Nunber of iterations through Powel

N Number of variables

IC Number of constraints

STEP Vilue returned from Powel that gives the minimum in
the S direction

IFLAG Number of violated constraints

101
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FBOUND Criterion by which it is determined whether function
values arz converging

GBOUND Criterion by which it is determined whether direction
vector is converging

CODE Code that determines what will be printed

INPUT FORMAT:
A driver and a function subprogram are needed.
The driver calls FESDIR (F, XO, N, FBCUND, GBOUND).
‘The parameters N, IC, FBOUND, GBOUND, CODE and the feasible
point XO for FESDIR ana the parameters E, IPOWEL, and OBJFN
for POWEL must be set in the driver. These three parameters for
POWEL are in the common block labeled ZANG. IC and CODE are
in common with FFSDIR.

The function FUNC has a parameter list: (K, X, C, GF, GC).
If k = 1 when FUNC is called, only the value of the objective function
is returned.
it k = 2, the cons*raints are evalu2ted and returned in C.
If k = 3, the grau.ents of the constraint and the gradient of the
function are returned in GC and GF, respectively.
If k = 4, only the gradient of the function is returned.

OUTPUT FORMAT.
Prints out according to the Print Code CODE

3121110} Value of CODE

Function value, ovoint, and ccnstraint at each step in POWEL

¥ Function value returned from POWEL, step size, and minimum point

SIS

Gradient and normalized gradierts of vio'ated constraints and
function, and their sum

viVlv] Initial and final —points.. minimum, number of iterations through
POWEL, and number of function evaluations

ERROR MESSAGES:

None
PROGRAM DESCRIPTION:
Main Program
The driver sets the values of the naraineters and calls FESDIK.

Subroutines and Functions
FESDIR - f{inds the mirimum of the function within tive constraint

set.

POWEL - is a one-¢imensional quadratic search.

FUNC - evaluates the objective function, the constraints, and the
gradients of each.

BNDY .- checks to see if a point ciiosen by the quadratic search is

within the constraint set ind records the number of con-
straints that are violated.

-
. . ket o s M




DRI 1 0 AP X RN .

MATHEMATICAL METHOD:

Given an objective function f(xl Xy ooy X ) and a set of constraints
gi(x] X9y vy Xp) < 0, FESDIR finds x such that f(x) is minimum and each
constraint g;(x) is satisfied; that is, less than zero. To accomplish this, FESDIR
uses a method of feasible directions given in the article “Nonlinear Programming
with the Aid of a Multiple-Gradient Summation Technique” by Klingman and

Himmelblau.64 Klingman and Himmeiblau suggest using a new direction given
by (NSD), riew successful direction, defined as

k¢ (Grad C.(x) ¢
(NSD) = z { j ' Grad F{x) ’
= |Grad Cj(x)l |Grad F(x)|

where KC is the number of constraints violated and Grad is the gradient or
first partial derivative. So (NSD) is the sum of the normalized gradients of the
violated constraints and the normalized gradient of the function.

FESDIR uses this idea in choosing 1 new direction. Starting with a feasible
point — that is, a point, X, that satisfies all the constraints — and with a direction,
S, FESDIR uses a one-dimensional quadratic search, POWEL, to find a value
STEP such that the minimum feasible point along the direction S is given by
Xmin =X + STEP * S. If any constraints were violated in finding the minimum,

a new direction is determined by the negative of the sum of the normalized

gradients of violated constraints and the normalized gradient of the function.
Otherwise, the direction is the negative of the normalized gradient of function.
The point ard direction are then used to find a new minimum point and a new
direction. This process is continued untij it satisfies the convergence criterion;
that is, until the function values converge or the direction vector converges.

1. The Two-Variable Problem

Minimize f(x),%5) = (x1=2)% + (xy-1)?
subject to g1 =X +X9-2<0
=y2_ .2
g = xl - Xz <0
Minimum f(a.hH=1

2. The Circie Problem
-1

Minimize I‘(xl.x,) =
2 > 5
(x)=1)-+ x5

Subjcct to gl =_xiz_x%+4<0
) 9
g2=-16+x_“/+x;<0

Minimum f(-2,0)=-1.0
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The Three-Variable Problem

Minimize f(xl,xz, x3)=x:1;-6x%+ lel +X3

subject to 3 =x%+x§-x§<0
gz—-x%-xg-x§+4<0
g3=-x; <0
B4= X9 <0
gs=-x3<0
gg=x3-5<0

Minimum £(0,v2,V2)= V2

The Colville Problem65
The Two-Variable Problem

Initial Point  Computed Optimum  Objective Function

-1.0 0.99999982 1.0000003
2.0 0.99999969
The Circle Problem
2.0 -0.199589 E01 -0.988216
2.8 0.141888 E0O

The Three-Variable Problem

. 0.378964 E00 0.17968266 E-08 1.5673426

0.16£076 EO1 0.15673425 EOI
0.234720 EO1

The Colville Problem

0.78619999 E02 0.78012675 E02 -0.30631831 EQS
0.33439999 E02 0.33144035 EO2
0.31070000 EO2 0.30144462 E02
0.44180000 E02  0.4499999%6 E02
0.35319999 E02 0.36546304 EO2

Number of
Iterations

32

191

30

29

-




100

200

300

400

SAMPLE PROBLEM AND PROGRAM LISTING

FEASIBLE DIRECTIONS

DIMENSION X(5), XO(5)

INTEGER OBJFN,CODE
COMMON/ZANG/ E4TPOWEL,0BJFN
COMMON/CON/IC,KQoCODELICON(16)
KQ=6

CODE=1

N=2

IC=2

X0(1)=-1.0

X0(21=2.0

FBOUND
GBOUND
E=1,0E-6
IPOWEL=5
NDBJFN=0

1.0E-12
1.0E-12

oo

CALL FESDIR (F4XOyXyNsFBOUNDyGBOUND)

sTOP
END

FUNCTION FUNC (KyXsCyGF,GC)

DIMENSION C(16),GF(5)4GC(16,5},X(5)

FUNC = 1.0
TA=X{1})-2.0
TB=X(2)-1.0

60 70 (100,200,5300,40C), K
CONTINUE
FUNC=TAXTA+TB%TH
RETURN

CONTINUE
Cl)=x{1)+X(2)-2.0
Ce2y=X{11xX{1)1-X(2)
RETURN

CONTINUE

GC{1l,y1)=1.0
GC(1ly2)=1.0
GCt2,1)=2.0%Xx{1)
GC(2,42)=-1.0
CONTINUE
GF(1)=2.0%(X(1})-2.0)
GF(2)1=2.0%{X(2)-1.0)
RETURN

END
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SUBROUTINE FESDIR (FyXO¢XeNyFBOUND,BBOUND)

REFERENCE. 'NONLINEAR PROGRAMMING WITH THE AID OF A MULTIPLE-
GRADYENT SUMMATION TECHNIQUE®' BY W.R. KLINGMAN AND D.M. HIMMELBLAU
IN THE JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, VOL.II,
NO. 4 {(NCTOBER, 1964), PP, 400-415.

DEFINITION OF THE VARIABLES,

e A 5 R i B i %

XQ INITIAL FEASIBLE POINT ’
X WORKING POINT AND FINAL MINIMUM

S DIRECTION VFCTOR

GF GRADIEMT QF THE [-UNCTION

C THF CONSTRAINTS

GC GRADIENTS NF THE CONSTRAINTS

DELG NORMALIZED GRADIENT OF THE VIOLATED CONSTRAINT
DELF NORMALIZED GRADIENT OF THE FUNCTION

NUM NUMBER OF TTERATIONS THROUGH POWEL
N NUMBER OF VARIABLES
IC NUMBER OF CONSTRAINTS

STEP VALUE RETURNED FROM POWEL THAT GIVES THE MINIMUM IN THE
S DIRECTION

IFLAG NUMBER OF VIOLATED CONSTRAINTS

FBOUND CRITERION TU SEE IF FUNCTION VALUES ARE CONVERGING

GBOUMD CRITERION TO SEE IF DIRECTION VECTOR IS CONVERGING

CODE CODE THAT ODETERMINES WHAT WILL BE PRINTED

sNeNeFeNelaNaEeEslaNelaNaNgiaEeloNelaNelNaNalaNe N Nel

DIMENSION S(5),GF(5),CU16)4GCLL1645) 4X0{5)3X(5) 4GSUM(5),4P(5)
DIMENSION DELG(5),DELF(5)

INTEGER OBJFN,CODE

COMMON/ZANG/ F, IPOWEL,0OBJFN o
COMMON/CON/1C,KQ,CODE,ICON(16) b
NUM=0 '

C START WITH FEASIBLE PCINT
DO 10 J=14N

10 X{J)¥=X01J)

15 VAL = FUNC (4¢X,CyGF,GC)
F = FUNC (14X,CyGF,GC)

c SET DIRECTICN TO THE NORMALIZED GRADIENT OF F
SuUM=0,
DO 20 J=1,4N
FSQD=GF(J) *GF( J)
20 SUM=SUM+FSQD
DO 21 J=1,N

21 SUJV=-GF(J)/7SQRT(SUM)

c

c COMPUTE MINIMUM ALONG THE S DIRECTION
25 NUM=NUM+1

CALL POWEL (NyXySySTEP,F,IFLAG)
DO 26 J=14N
26 X{J¥=X{J)+STEP*S(J)
IFf (CODEJNE«O) WRITE(KQyS50C) NUMyF,STEP(J X (J)J=14N)

106

b, e vt v




30

40

50

70

80

85

90

100

P —

IF (NUM.EQ.1) GO TO 28

CHECK FUR CONVERGENCE
IF { ABS(F-FSAVE),LY.FBOUND) GO TO 110
FSAVE=F
IF (IFLAG.EN.C} GO TO 15
VAL = FUNC (3yXsCyGF,GC)

COMPUTE SUM OF NORMALTIZED GRAUIENTS OF VIOLATED CONSTRAINTS
DO 30 J=1,N
GSUM(J)=0.0
DO 6C 1I=1,IC
IF (ICON(I).EQ.1) GO TO 60
SUM=0.0
DO 40 J=1,N
GSQN=GC(1,J)%GC(1,J)
SUM=SUM+GSQN
DO 50 J=1,N
DELG(J)= GC(I4Jd)/ SQRT(SUM)
[F ((GC(T9J)elTeOe)eANDL(DELG(JI)eGT40,)) DELG(J)==DELG(J)
GSUM(J)= GSUM{J)+DELG(Y)
IF (CODE.LE.1Y GO 7O 60
WRITE (KQ,540) 1
WRITE (KQy550) (GC{T,J)4DEIG(J)sI=14N)
CONTINUE

COMPUTE THE NORMALIZED GRADIEMT OF F
SUM=0.0
D0 7C  J=1,N
FSQD=GF{J)GF(J)
SUM=SUM+FSQD
ASDELF= SQRT(SuUM)
DO 80 J=1,N
DELF(J)= GF(JI/ABDELF

S IS THE NEW DIRECTION
S(J)= -DELF(J) ~-GSUM(J)
CONTINUE
IF (CODE.LF.1) GO TO 85
WRITE (KQ,560)

WRITE (KQyS570) (GF(J)4DELF(J)4SCI)yJ=14Nj
SUM=0,0

DO 90 J=1,N

SSQD=S(J)=S(J)

SUM=SUM+SSQD

DEL S=SQRT( SUM)

CHECK FOR CONVERGENCE
IF(DELS.LT.GROUND ) GO TO 11C
DO 100 J=1,N

S NORMALIZED
S(J)=S(J)/DEFLS
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110

120

500

510
52¢C
530

54C
550
560
570

[ ]

20

25

30

32
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G0 10 25

WRITE (KQy510)

DN 120 J=14N

WRITE (KQ,520) JsoXO(J)9JdyX(J)

WRITE (KQ,530) F,NUM,0BJFN

RETURN

FORMAT (1HO,164,21H RETURNED FROM POWELL /s 1TH FUNCTION VALUE =,
1E15.8y/48H STEP = 4F15.84/4(3H X{y1243H) =,E15.8))

FORMAT (1HO, 13HINITIAL POINT,15X,11HFINAL POINT,//)

FORMAT (4H XO(,1243H) =, E15.895X92HX(91244H) = 4E1584/)

FORMAT (54H THE MINIMUM FUNCTION VALUE WITHIN THE CONSTRAINTS IS ,
1E15.8,7/,40H THE NUMBER NF ITERATIONS OF POWELL IS =164/,

139H THE NUMBER OF FUNCTION EVALUATIONS IS ,16)

FORMAT (11H CONSTRAINT,124/49H GRADIENT, 17X, 1OHNORMALIZED)
FORMAT (1X4E15.8,10Xy£1548)

FORMAT (9H FUNCTIONs/¢9H GRADIENT 417Xy LOHNORMALIZED 16X, 3HSUM)
FORMAT (1X,E15.8410X,E15.8,10X,E15.8)

END

(NiPO’S’STEP:FF!lFLAG)

SUBROUTINE POWEL
PO(20),y Z{20), Fl4), V(4),

DIMENSION S(20),
INTEGER OBJFN
CNMMON/ ZANG/
STEP=0.C
NUM=0

R=1.5

A=0.0

Q=.1

GO 0 5
Q=Q*.1

R=1.

DO 8 I=1,N
PO(LY=PO(I)+STEPAS(T)
CONTINUE

FA=FF

D0 20 I=1,N
Z(11=PO(1)+Q*S(I)

CALL BNDY (CO, IFLAGZ 4N}
If (1FLAG.GE.1) GO TO 25
FQ = FUNC (I'Z'OQGF'GC’
OBJFN=UBJFN+1

IF (FQ.LT.FA) 6O TO 5C
CONTINUF

[FLAGI-iFLAG

PO 30 I=14N
Z(1)=P0(1)=0%S{1)

CALL BNDY (CO TFLAG,Z4N)

co(30)

F, IPOWEL,0OBJFN

1F (IFLAG.EQ.0) GO 10 32
1F (STEP.EQ.0,) GO TO 4

KETURN

FNQ = FUNC (142+0+GF,GC)

OBJFN=0BJFN+1
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33

35

40

50

60

70

80
90

100

1n1

102

110

IF(FNQ.GE.FA.AND.IFLAGI.EQ.O)
IF (FNQ.LT.FA) GO 70 35
IF (STEP.EQ.0.) GO TO 4
D0 33 I=1,N

2(1) = POLT) + Q*S(I)
CALL BNDY (CO,IFLAG,Z¢N)
RETURN

B=-0

FR=FNQ

ISW=0

GO TO 6C

STEP=-Q

FF=FNQ

RETURN

B=Q

FR=FO

ISW=1

CF=1.0

StiM=1,0

CF=CF*R

SUM=SUM+CF

IF (1SW.EQ.1) GO TO 80
C=-Q*SUM

GO TN 992

C=Q%SIM

DD 100 I=1,4N

Z(1)1=PO(1)+C*S(])

CALL BNDY (CO,IFLAG,Z,N)
IF (IFLAG.EQ.C) GO TO 102
STEP=B

FF=FB

RETURN

CONT INUE

FC = FUNC (1424D,6GF,6C)
ORJFN=0BJFN+1

IF (FC.GT.FR) GO TN 110
A=B

FA=FR

B=C

FR=FC

GO TO 70

STEP=A

FF=FA

IF (STEP.EQ.C.C) GO TO &
RETURN

END

SURROUTINE HBNDY (C+IFLAGsXyN)
DIMENSION C(16),X(5)

INTEGER CNDE
COMMON/CON/IC,KQyCODELICON(16)
IFLAG=0

GO TO 40
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VAL = FUNC (24 XsCyGF,GL)

F = fUNC (1vX9C'GF9nC’

IF (CODEWLNFEG3) 50 T g

WRITE (KQ,50) F

WRITE (KQyAI) (KyX{K)yK=14N)
WRITSE (KQe7C) (LoClLIyL=1,1C)
DN 4 J=1,1C

IF ( ABS(C(JIN) WL TL1.0E-15) C(J)=C,
IF (CLJ)eLELGeD ) 6 TN 3N
ICON(J)=~1

TFLAG=TFLAG*]

IF (CODCNELG3)Y GO TN 40
WPITE (KQeC) J

GO T 40

ICONCS) =1

CONTINUE

FORMAT 44 F =,F15.°)

FOFMAT (34 X{,7243H) =,E15.8)
FORMAT (211 C,12,015.8)

FORMAT (11H CONSTRAINT, 12,124 IS VIOLATEN)
RETUPN

END

L 3
vy
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RICOCHET GRADIENT (28 SUBROUTINES AND DRIVER)

PROGRAMMER:

J. Greenstadt and R. T. Mertz, IBM/Adapted for Use at NELC by
D. C. McCall, Decision and Control Technology Division

PURPOSE:
To find the point (x1, X9, - .., Xp) at which the objective function
f(xy, X2, « o Xp) takes on its maximum value, subject to the constrainis

gk(xl,xz, ey xn)>0

RESTRICTIONS AND LIMITATIONS:

The program handles up to 50 constraints and 50 variables. The first
partial derivatives of the function and all constraiuts must be obtainable.

LANGUAGE:
FORTRAN IV

COMPUTER CONFIGURATIONS:
IBM 360/65

ENTRY POINTS:
Main
SUBPROGRAMS AND WHERE REFI [\ENCED:

Programmer-supplied Programs
PROB called by OBFUNC, OBGRAD, CONSTR, CSTRNM

Library Subprograms
ABS
SQRT

DEFINITION OF VARIABLES:

The manual gives a complete definition of the variables and gives a
summary for each subroutine.
INPUT FORMAT:

A subroutine PROB and a set of data cards are needed.

The subroutine defines the objective function, constraints, and
gradients. The form used is

SUBROTITINE PROB (NUMX, X, KK, INDX, VAR. GRAD, N, NC,
)
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The necessary dimensioning is
DIMENSION X(50), GRAD(50), NC(200), C(200)

DEFINITION OF THE VARIABLES:

NUMX Serial number of X (unused by PROB)
X The coordinates of the point
KK=0 Gives a value of the objective function
1 Gives a value of the KKth corstraint

INDX =0 Gives a function value

1 Gives a gradient value
VAR Returns the objective or constraint function

vaiue

GRAD Returns the N-gradients
N Number of variables
NC Can be used to read in integer data (up to 200)
C Can be used to read in real data (up to 200)

See sample subroutine.




SAMPLE SUBROUTINE

1734 58 78 Q|ﬂTl’T7“"“1HIIMI;‘“‘“.‘?HA,.‘ el 30313 T 8) ":‘17_:_ Ry e R AR AL PE S ET LI LT YA LA 7l1‘7'\747570.7?_?-"-:
— PR | e . i D Y
SUGITOLITI | Pkb% (NHMX'éngrIN“XrVAR GRY irHNCrC)
*IC HLO (POt e 30
*iC ALTHGHAL _anD pUiELRLAlY TEST FX£) -mr
COQPQQ‘Q.‘Q.'..luto u'.D.l.0!*.’.0!"0.10....!"0 20 000000 Cs et anttoqRrtotobere
¢ | —
DIMEhSION x(s@)'unnn(bux.ucazoowvdkenO) 7
c ' i L
c.l.l.“.l'Ol'n'.ll1n.l.l.'lln‘l.'.00'0.(..'......4!!00'0..."J-.'.Il.'i.l.‘....l’:
C ROUTI*O B |
100 IF GIDX) 210¢ 110+ 120 |
c il i il | ,
C LVALUL ] | I i f i
110 VAL30. | ! [ ' :
111 IF(KKY 200010007 112 i i i
*1112 IF(}{K—&) llboll()s__,,' 200 These :.ast agree with the no. of constraints,
113 JUOL=KK :
*illy 6u 10 (1gule IJOZJ 1 JGC1 one label fdr each constiraint. !
c | .
C___ CGRADIENTI | A
1120 0o 361 JEiegd This must agree with the no. >f varipbles.
121 GRAD(JI) =D, N ,

:These must dpree with the no. of constraints,

#1124 lF(%K—g) 125040200 210
125 \Jbo K i
*120 []v) 0 ("f‘l!)r""’l‘)v\,GOZ

!
i

|
]
123 IF(KK) 23uf2000¢ 124 ]
T
|

,one label er each set oL constraint' gradients.

C ‘ ! ‘ ]

. ! i l |

200 VAIVAL ! | t : !
210 RETYR. I ] R i
c.toooot;iuoo-.o.nol‘nonc..oonu“oc.ooooooo‘.oooc|.0.Jn-oooocnol’o.c..lcloloc.ooco.ov
¢ | ‘ : | |
c CALCULATIO! -‘VALu"S L L : |
C i o |
*1000  VALS J. /((x(1)+;.)t(x(1)+1.)w(?)s,<(2') | Mbjective function
6O fO 260 ) i H
*11001  varz xu)i((LIJr!(?)*y(O)-u. 'L i |
LY 1O 20n | ; i f Constraintﬂ
*11002 VALS lﬁ.-x(l)tX(l)-X(z)‘X(?) ; | !

60 jo 209 | ; ; 5 1
C....".gohoogtgionqlcC'lllnnlnl.l.t!o!lQIOU‘.o'.I.0l...gq."I.!....l.l'.‘l.l.l.'
C ! H ! ! ) i [

C CALCULATION = 'GRADIENTS : ! | L
C ! |
*12000 JUEROA= (XTI +1 )+ (k41 )tzxz).x(**l . ;

GRANUNI Z=2 = (R LT+ U /G707 0Enn fradiznt of objective f}"nction

GRAD(2I=Z<2 ,«X{D2) /10 e TF N v i

oo Tu 2 ; : : j

*12010 foratihy= oL ex ] \\ . ,

JI(I\LL(/)-— ‘_.4\’\?) ) . . |

G0 IO 21n ‘ { ‘ ‘ Cradients of constraint

12020 JonAg Ui ==2 ({1 ] i
- SeAL ) zZ—g 202 4)

(V) TU 216

\ttt.ooc.J-c-..-.cnc.-.-.-1v"o-.--oo.on.--on.»o..---c----c-.oo'.-cac..'oqsvvl--
‘TC — 2 —

1
i) |

LIS T B I N N O N I N A O R I S R P SR, FEFRTE f P . - R PEF I TR AT I Utitaryiy o

PN} ———— —— a—

* Indicates cards that are changed from nrogram to pcosram.

113




e T

T T R T T

114

(AN ;)

The user-supplied data tollow the required data. The user’s data are
divided into seven classes; preceding each clasi is a header card with the
class number in the first column. All other data cards must be blank in the
first coiumn and are read only through column 72.

The seven classes are:

Description of the prcblem

Setting for the output cont:iol switches (See OUTPUT FORMAT)

Integer parameters used in the algorithm subroutines

Real parameters used in the algorithm subroutines, including the feasible
starting point

Classes 2 and 3 usually use the same paraineters from probicm to problem
except for the starting point.

The starting point begins in the 47th entry under Class 3, and is read in
with an E14.8, 3E15.8 tormat.

Size of the problem. The number of variables 1 columns 2-5; the number
of constraints in « >lumns 6-1C.

Integer Parameters for the PROB subroutine — I4, 1515 format

Real Parameters for the PROB subroutine — E14.8, 3E1°.8 format

The readi.i in of data is terminated by two cards with a 9 in column 1. f
titc program is to be run more than once witha different data, one card with
49 in columnn 1 is placed between the data for the different problems and
two 9-cards are us.d to terminate the program.




SAMPLE DAT/. DECK

V2 30 88 7R 020210092021 ,7:02478 292705280 132230 30 N637 M 1740 01 421084 44047 ARV S0 S18 83545958 STAA TN B O2AINAGS6A 67 CNBIID TIIRTIITATSTO 1T 8 rer

I
MLO CONSTRATHED TEST EXAMPUC FROM KLINGMAN AMNY HIMMELRLAL PAPFR
. )
1 1 1 11 1 1 11 1 1
- 21 | 11 11
31 ! 11 1
41 111 1 Conditipn cedes
51 11 for prihtout
61 1 11 11 control
T3 b 11 11
21 11 : 11
, 91 '
§ 101
2
4 20 6 20 24 20 5 6 2 20 Integer| paramaters
E 3
1.£~15 1.E~4 SeE-Y 1.E-3 Real pakameters
1.C=4 uJ 1eE~0 1.€=3
i.E=23 1.6~ 1.E-4 1.6-4
«994 l!E"i 1.E-3 10["3
S5.F~3 1elE=2 S«E-4§ } 1F=]
1.E=2 ud 1.E-4 i 1.£-3
0. 1'E- 4. 10"‘_"3
100, 1»ki"‘TT 1eE=-y4
- 1. 2.E=2
2.0 =248 1 Initial|point
1
2 P L Program| sise
e
/%
Bee pages '’ -16 for furkhe. information. ' |
I ]
‘ ]
|
|
- ] |
J f‘ ! l |
‘ : | : T :
| ! 5 | | ;
| 1 | ; z f
\ - 7 B -
| A
[§T1{ N vEda g ‘.Ocnlvu\r).r“!* Letellvia YRR 1‘7‘.41,-“1 4 ' ce LA PEPTEEY :“‘jﬁ# [ -
11303 ——
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OUTPUT FORMAT:

The output for the program is controlled by control switches set
under the first class of data. Following the header card ae 10 cards numbered
consecutively from 1-10 in columns 4 and 5. The switch controls are in
columns 6 through 72. A “1” punch indicates the value will be printed; a
blank indicates the value will be omitted. In the description of each subroutine
in the manua! the code for printing the values is given. For example, to print
the fina! function value from the subroutine MONITR, we use the ccde 1, 44,
F (on page 38). A “l’ in column 44 of the first card will cause F to be
printed. This code appears with the printout to help with the identification
of the values.

A good choice for the minimal amount of printout (just the final
result) is 1’sin columns 11, 16, 17, 35, 38, 44, 45, 48, 51, 54 on the first
card; ihe other cards are blank in columns 6-72.

The maximum printout occurs when all 19 cards are blank in columns
6 through 72. For debugging purposes the values desired may be chosen from
the manual.

MATHEMATICAL METHOD AND REFERENCE:

See the manual Contributed Program Library #360D-15.3001 ‘Non-
Linear Optimization-Ricochet Gradient Method.”06

TEST EXAMPLES:

The following problems were tested with this program:

Problem 1.

Minimize f=(xy- 2)%+ (xp - 12

Problem 2. (Circle)
1

Max:imize F = 3 3
(xp+ D x5

bl 2
subjectto gy =x7T+x3-4240
l 1 2

B

g =16-x7-x520

to to

—

fmax, = 10

Ret. Kilingman and Himmelblau®?




Problem 3.

Maximize f=y+sinx

subject to 0<xx<x1
o<y<l
x2 + y2 <1

fax, = 1.366

Ref. problems 3 through 6 were from Krolak and Cooper as found in the
Klingman and Himmelblau paper.64

Problem 4.
Maximize =y -x )4 +{1-x)
subject to 02<x<20
02<yx<20
x2 + y2 <
fnax, = 0-8
Problem §.
Maximize f=-x2+x—y2+y+4

subject to 02<xx<20

02<y<20

x2 + y2 <4

fhax. = 45
Problem 6. ) (y3 P
Movimize f=expl-(x-1)* -—~—U—l—32~—>
subject to 02<x<20

0.2<y<?20

X: + y2 <4

fmax. = 1.0
Problem 7. (Lootsma)
Minimize f=x’:-6xf+ LIxy +x3

it7
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. 22,02
subject to X~ x2+x3>0 x; =20
2 2 2
xl X5 + X3~ 420 X9 =0
-x3 t 520 X3 =20
fimin =V2
Ref. Lootsma, F. A.46
Problem 8.
NPT R
Minimize 2. i + Z z Cij lyJ 2
j=1 i=li=
5
subject to z 3jj = b;, wherei=1, .., 10
=l
fm' =-32.349
\ ] 1 2 3 4 5 bi
i
2 0 -2 0 0. 2 -2
3 -3.5 0 2 0 0 -2.5
4 0 =2 0 -4 -1 -4
5 0 -9 -2 1 -2.8 -4
6 2 0 -4 0 0 -1
7 -1 -1 -1 -1 -1 -40
8 -1 -2 -3 -2 -1 -60
9 1 2 3 4 5 5
10 1 1 1 1 i 1
Cjj 1 30 -20 -10 32 -10
2 -20 39 -6 -31 32
3 -19 -6 10 -6 -10
4 32 -31 -6 39 -20
5 -10 32 -10 -20 30
dj 4 8 10 6 2
¢ -15 27 -36 -18 -12

Ref. Colille, A, R.OS
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1. Problem 1

Initial Point

x; -1.0
xy 2.0
x; -1.0
xy 0.0
x; 20
Xy 2.0
2. Circle
x; 200
X, -2.8
x; 3.0
x5 0.0
x; 5.0
xy 5.0
x; 00
xy 3.0
x; 10
%y 1.0

Computed
Optimum

0.99999994
0.99999988
0.99999994
0.99999988
0.99999994

0.99999988

-2.0
0.00076647
2.0
0.0

-1.9999857

-0.00756613

-1.99999914
0.0060059

-2.0

-0.000674

RESULTS OF TESTED EXAMPLES:

Objective
Function

-1.000

-1.00

-1.000

1.000

0111111

0.999971

0.999982

1.000

Number of
Iterations

47

36

265

304

196

119




120

3. Krolak and Cooper #1

Initial Point
xp 0.0
x» 09
x; -03
xy -03
x; 00
Xy -2.0
x; 1.0
Xy -2.0
x; 1O
x5 1.0

Computed
Optimum

0.629556

0.776955

0.63038069
0.77628624
0.63037407
0.77629149
0.62933254
0.77713621
0.63037902
0.77628750

4. Krolak and Cooper #2

xp =5
Xy =5
X 2.0
xy 00
x; 10
x4 1.0

0.19999999
0.19999999
0.19999999
0.19999999
0.19999999
0.19999999

Objective

Function

1.3657408

1.3657379

1.3657379

1.3657408

1.3657379

0.80000001

0.80000001

0.80039001

Number of
Iterations

33

29

30

53

30

25

29




5. Krolak and Cooper #3

Initial Point

X
X2
X1
X2
X1
X2
X1
X2
X1

X9

P

0.0
0.9
-0.3
-0.3
0.0
-2.0
1.0
0.0
1.0
1.0

Computed
Optimum

0.50000012
0.50000018
0.50000030
0.50000030
0.50000006
0.50000006
0.50000000
0.49999994
0.50000006
0.50000006

6. Krolak and Cooper #4

x;p -05

%y -05

x; 20

xy 00

x; 1O

xy 1.0

7. Lootsma

x; 0.37896395

x> 1.6807594
2.3471994

X3

0.99974561
0.70710695
1.7002337
0.70710659
1.0000000
0.70711035

0.0
1.4142141
1.4142141

Objective
Function

4.5000

4.5000

4.5000

4.5000

4.5000

0.99999994

0.99999994

1.000000

1.4142141

Number of
Iterations

36

36

38

37
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8. Colville 1

Initial Point
X2 0.0

X5

1.0

Computed
Optimum

0.30000037
0.33695012
0.40000027
0.43677974
0.21579641

Objective
Function

-32.343491

Number of
Iterations

337

H




APPENDIX 3: REFERENCES

. Dejka, W. J. and McCall, D. C., “A Study in the Design of a Practical

Tunable Bandpass Filter Using Mathematical Programming,” p. 267-
270 in IEEE Systems Science and Cybernetics Conference, Pittsburgh,
1970, Systems For the Seventies; Proceedings [Held] October 14-16,
1970, at Pittsburgh, Pennsylvania, Institute of Electrical and Electronic
Engineers, 1970

. Lasdon, L. S. and Waren, A. D., ““Mathematical Programming For Optimal

Design,” Electro-Technology, v. 80, p. 53-70, November 1967

. Calahan, D. A., Computer-Aided Network Design, McGraw-Hill, 1968

. ““Special Issue on Computer-Aided Design,” Institute of Electrical and

Electronics Engineers. Proceedings, v. 55, No. 11, November 1967

. Joint Conference on Mathematical and Computer Aids to Design, Anaheim,

California, 1969, Digest Record, Institute of Electrical and Electronics
Engineers, 1969 (IEEE Catalogue No. 69C63-C)

. Rosen, J. B. and Meyer, R, “Solution of Nonlinear Two-Point Bounding

Value Problems by Linear Programming,” p. 71-84 in Conference on
the Mathematical Theory of Control, Uriversity of Southern
California, 1967, Mathematical Theory of Control: Proceedings of a
Conference Held at the University of Scuthern California, Los Angeles,
January 30 — February 1, 1967, Acadcmic Press, 1967

. Naval Electronics Laboratory Center Technical Document 82, Direct-Search

Methods For the Solution of the Two-Point Boundary Value Problem
[TPBVP], by W. J. Dejka, 30 January 1970

. Naval Electronics Laboratory Center lechnical Note 1417,* Computer

Programs to Find the Minimwn of a Nonlinear Function of Several

y_a_riables, by P. S. Winterbauer, | August 1968

. Fletcher, R. and Powell, M. J. D, **A Rapidly Convergent Doscent Method

For Minimization,” Computer Journal, v. 6, p. 163-165, 1963

*NELC technical notes are informal documents intznded chiefly for use within the Center.

123




B s (S

v - ——

124

10.

19.

Fletcher, R. and Reeves, €. M., “Function Minimization by Conjugate
Gradients,” Computer Journal, v. 7, p. 149-154, 1964

. IBM Application Program H2-0205-3, System/360 Scientific Subroutine

Package (3604-CM-03X) Version [11: Programmer’s Manual, 1968

Naval Electronics Laboratory Center Technical Note 1628, Two Direct
Search Methods of Matliematical Programming, by D. C. McCall and
C. T. Ogata, 26 January 1970

. Zangwill, W. 1., **Minimizing a Function Without Calculating Derivatives,”

Computer Journal, v. 10, p. .93-296, 1967

. Hooke, R. and Jeeves, T. A., * *Direct Search’ Sclution of Numerical and

Statistical Problems,” Association For Computing Machinzery. Journal,
v. 8, p. 212-229, 1961

. Leon. A., "*A Comparison Among Eight Known Optimization Procedures.”

p. 23-46 in Symposium on Recent Advances in Optimization Techniques,
Carnegie Institute of Technology, 1965, Edited by T. P. Vogl, Wiley, 1966

. Hadley, G., Linear Programming, Addison-Wesley, 1962

. Zoutendijk, G., Methods of Feasible Directions, Elsevier Publishing Company,

19690

. IBM Application Program H20-0476-1, Mathematical Programming System/

360 (360A-CO-14X) Version 2, Linear and Separable Programming —
User’s Manual. 30 Apnl 1969

IBM Application Program H2C-0603-0, Mathematical Programming System,
360 (360A-CO-14X) Message Manual, March 1969

. IBM Application Program H20-0372-1, Mathematical Prpg_r_z}nlnlig§yitqrp[

360 ¢360A-CO-14X) Read Communications Format [READCOMM ] :
Program Reference Manual, December 1968

. Grittith, R, E_and Stewart, R AL A Nonlinear Programming Technique For

the Optimization of Continuous Processing Systems,” Management Science,
v. 7. p. 379-392 July 1961




R

23.

26.

tJ
O

3l

. Rosen, J. B., “The Gradient Projection Method For Nonlinear Programming:

Part |, Linear Coastraints,” Society For Industrial and Applied Mathema-
tics. Journal,v. 8, p. 181-217, March 1960

California Institute of Technology. Jet Propulsion Laboratory Technical
Memorandum 240, Computing Quadratic Programniing Problems:

Linear Inequality Constraints, by R. J. Hanson, 9 February 1970

. Fiacco, A. V. and McCormick, G. P, Nonlincar Programming: Sequential

Unconstrained Minimization Techriques, Wiley, 1968

. Hartley, H. O. and Hocking, R. R., “Convex Programming by Tangential

Approximation,” Management Science, v. 9, p. 600-612, July 1963

IBM. Contributed Program Library 360D-15.3.001, No..-Lincar Optimiza-
tion — Ricochet Gradient Method, by J. Greenstadt and R. T. Mertz,

October 1967

. Research Analysis Corporatir\bn, A User’s Manual For Experimental SUMT:

The Computer Program Implementing the Sequential Unconstrained

Minimization Technique For Nonlincar Programming. by G. P. McCormick
and others, March 1970

. IBM. Program Information Department Program 360D-15.2.011. Zero-One

Integer Linear Programming With Heuristics, by B. D. Holcomb, 1968

IBM. Program Information Department Program 3600-15.2.005, Branch

and Bound Mixed Integer Programming BBMIP. by R. Shareshian,

April 1967

. Pace Company, Comparison of Integer Programming Algorithms, by

W. J. Mears and G. S. Dawkias, 1-3 May 1968 (Paper presented at the
Joint National Meeting ot the Gperations Research Society of America

and the Institute of Management Sciences, San Fraacisco)

Stantord University. Operations Research Depurtment Technical Report 1L
Bound-and-Scan Algorithm For Pure Integer Linear Programming With
General Variables, by FU S, Hillier, 20 May {969

125




126

32.

33.

34.

36.

37.

38.

39.

40

41.

Wolfe, P., “Review of Nonlinear Programming,” p. Xi-xv in ’_)_p_ti__nﬂzation,
edited by R. Fletcher, Academic Press, 1969

IBM Application Program H20-0147-0, 1620 Electronic Circuit Analysis
Program [ECAP! (1620-EE-02X); Application Description, n.d.

Lee. H. B. and others, “Program Refines Circuit From Rough Design Data,”
Electronics, v. 43, p. 58-65, 23 November 1970

. University of California, Los Angeles. Department of Engineering,

A Critical Evaluation of the Numerical Significance of Gencral
Circuit Analysis Programs ir. Relation to the Transient Problem,
by D. E. Meyerhoff and L. P. McNamee, n.d.

Aoki, M., Introduction to Optimization Techniques Fundamentals and
Apnlications of Nonlinear Programming, Macmillan, 1971

Gear, C. W., “The Automatic Integration of Large Sysiems of Ordinary
Differential Equations,” p. 27-29 in Joint Conference on Mathemati-
cal and Computer Aids to Design, Anaheim, California, 1969, Digest
Record, Institute of Electrical and Electronics Engineers, 1969
(IEEE Catalogue No. 69C63-C)

Cal Mhan, D. A., “Numerical Considerations in the Iransient Analysis and
the Optimal Design of Nonlinear Citcuits,” p. 129-145 in Joint Confer-
ence on Mathematical and Computer Aids to Design, Anaheim,
California, 1269, Pﬁst_lze_cgcl Irstitute of Electrical and Electronics
Engineers, 1969 (IEEE Catalogue No. 69C63-C}

Box, M. J., “A Comparison of Several Current Optimization Methods and
the Use of Transformations in Constrained Problems,”” Computer

Journal, v. 9, p. 67-77, 1966

Hildebrand, F. B., Introduction to ! “ymerical Analysis, McGraw-Hill, 1956

Stewart, G. W., I, A Modification of Davidon’s Minimization Method

to Accept Difference Approximations of Derivatives,” Association

For Computing Machinery. Journal, v. 14, p. 72-83, January 1967

I




s st i

42.

43.

44.

45.

46.

47.

48.

49,

50.

51.

AEC Research Development Report ANL-5990, Revision 2, Variayl_e
Metric Method For Minimization, by W. C. Davidon, February 1966

Rabinowitz, P., *‘Applications of Linear Programming to Numerical
Analysis,” S I A M Review (Society For Indusirial and Applied
Mathematics), v. 10, p. 128-159, April 1968

Zangwill, W. 1., Nonlinear Programming: A Unified Approach, Prentice
Hall, 1969

Kuhn, H. W. and Turker, A. W., “Norlinear Programming,” p. 481-492
in Berkeley Symposium on Mathematical Statistics and Probability,
Preceedings. Second, University of California, 1950, University of
California Press, 1951

Lootsma, F. A., “Logarithmic Programming: A Method of Solving
Noalinear Programming Problems,” Philips Research Reports, v. 22,
p- 329-344, June 1967

Zoutendijk, G., “Nonlinear Programming: A Numerical Su:vey,”
S I A M Journal on Control (Society For Industrial and Appliea
Mathematics), v. 4, p. 124-210, February 1966

Pierre, D. A., Optimization Theory With Applications, Wiley, 1969

Gomeory, R. E., “Outline of an Algor:ithm For Integer Solutions to
Linear Programs,” American Mathematical Society. Bulletin,
v. 64, p. 275-278, September 1958

Stanford University. Operations Research Department Technical
Repert 10, Efficient Heuristic Procedures For Integer Linear
Programming With an Interior, by F. S. Hillier, 28 February 1969

[llinois. University. Computer Science Department Report 264,
Logical Design of an Optimal Nctwork by Integer Linear Pro-

gramming, Part 1, by S. Muroga, 18 July 1968

. Pyne, L. B. and McCluskey, E. J., **An Essay on Prime Implicant Tables,”

Society For Industrial and Applicd Mathematics. Journal, v. 9,
p. 604-631, December 196!

127




128

53.

54.

55.

56.

58.

59.

60.

61.

Breuer, M. A., “Logic Synthesis,” p. 146-164 in Joint Conference on
Mathematical and Computer Aids to Design, Anaheim, California,
1969, Digest Record, snstitute of Electrical and Electronics

Engineers, 1969 (IEEE Catalogue No. 69C63-C)

Kodres, U. R., “Log:c Circuit Layout,” p. 165-191 in Joint Confarence
on Mathematical and Computer Aids to Design, Anaheim, California,
1969, Digest Record, Institute of Electrical and Electronics Engineers,

1959 (IEEE Catalogue No. 69C63-C)

Breuer, M. A., “The Application of Integer Programming in Design Auto-

McCluskey, E. J., “Error Correcting Codes: A Linear Programming
Approach,” Bell System Technical Journal, v. 38, p. 1485-1512,
November 1959

. Karp, R. M., *Minimum-Redundsncy Coding For the Discrete Noiscless

Channel,” Institute of Radio £ngii.eers. Transactions: Information
Theory, v. IT-7, p. 27-38, January 1561

Saaty, T. L. and Suzuki, G., “A Nonlinear Programming Model in
Optimum Communication Satellite Use,” S 1 A M Review (Society
For Industrial and Applied Mathematics), v. 7, p. 403408, July 1° .5

Carnegie Institute of Technology ONR Research Memorandum 116,
A Study of the All-Integer Integer Programming Algorithm, by
F. Glover, September 1963

Rosenbrock, H. H., “An Automatic Method For Finding the Greatest or
Least Value of a [Function,” Computer Journal, v. 3, p. 175-184, 1960

Powell, M. J. D,, “An Efficient Method of Finding the Minimum of a
Function of Several Variables Without Calculating Derivatives,”
Computer Journal, v. 7, p. 155, 1964

. Powell, M. J. D, “*An Iterative Method for Finding Stationary Values of

a Fuuction of Several Variables,” Computer Journal, v. 5, p. 147, 1962




63. Fletcher, R., “Function Minimization Without Evaluating Derivatives — a
Review,” Computer Journal, v. 8, p. 33, 1965

64. Klingman, W. R. and Himmelblau, D. M., ‘“‘Nonlinear Programming With the

Computing Machinery. Journal, v. 11, p. 400-415, October 1964

65. IBM Data Precessing Division Technical Report No. 320-2949, A Comparative

Study on Nonlinear Programming Ccdes, New York Scientific Center, by
A. R. Colville, June 1968

66. Contributed Program Library #360D-15.3001, Non-Linear Optimization —
Ricochet Gradient method

REVERSE SIDE BLANK

129




