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PROBLEM

Obtain design procedures and criteria for reliable Navy communi-
cation in a hostile, adverse, or unstable enviroument, through use of
statistical decision methods and other signal-processing techniques.
Specifically, investigate means for maintaining a constant false-alarm rate in
spite of changes in the environmer:*.

RESULTS
1. Distribution-free methods of signal detection can provide a con-
stant false-alarm rate for communications systems.

2. The specific distribution-free methods described here are easily
implemented and analyzed.

3. Distribution-free methods require only slightly higher signal
levels (approximately 2-dB SNR) thar optimum procedures for which it is
assumed that the probability distribution of the data i1s known.

RECCMMENDATIONS

i. Investigate plans for future communication systems for possible
application of distribution-free procedures in signal detection.

2. Investigate the possibility of implementing distribution-free
procedures through LSI or micro-circuit techniq:.>s.
ADMINISTRATIVE INFORMATION
Work was performed under Z5XX.212.001 (NELC Z222) by the

Decision and Control Technology Division. This report covers work from
May to July 1971, and was approved for publication 2 September 1971.

He

R o
Bt W A AR W e e

cnd ake n

b,

b



tJ

CONTENTS

INTRODUCTION . . . page 3
The advantages of DF detection . .. 3
Scope cfreport. .. 3

THE DETECTION PROBLEM . .. 3
ASSUMPTIONS AND EXAMPLES . ... 6
THE DETECTION PROCEDURES . .. 7

ANALYSIS... 8
False-alarm probabiiity . .. 9
Detection probability . .. 10
Optimization of the RQ procedure . . . 11

OBTAINING THE KNOWN-NOISE SAMPLE . .. 12
Frequency domain. .. 12
Time domain ... 14

RESULTS ... 15
CONCLUSIONS . .. 21
RECOMMENDATIONS . . . 21
REFERENCES ... 22

ILLUSTRATIONS

1 Simplified block diagram of a system utilizing the moving-window
detector . . . page 4

2 Simplified block diagram of a distribution-free detection system .. . §

3 Block diagiam of a superheterodyne receiver. .. 13

4 Obtaining the KNS from k-1 parallel, nonoverlapping, narrowband
bandpass filters . .. 13

5 Simplified block diagram of a method for simultaneously obtaining
the KNS and the rank of X; . .. 15

6 Probability of detection P4(r) as a function of quantization levelr.. . 16

7 Probability of detection as a function of SNR — rank-quantization
procedure . .. 17

8 Probability of detectiun as a function of SNR - rank-quantization
and rank-sum procedures . .. 18

9 Probability of detection as a function of size of KNS ... . 19

10 Value of normalized test statistic as a function of rank value R ... 20

o et e e it




INTRODUCTION

THE ADVANTAGES OF DF DETECTION

Distribution-free (DF) methods of signal detection are indicated
whenever the distributions of the signal data and the no-signal data are unknown
[ref. 1-4]. Even if the distribution of the data is known at some time.
uncontrollable phenomena may cause changes such that at a later time the
distribution will be vastly different. These ch: nges will cause a procedure
based on the ‘known’ distribution to have unknown (possibly unfavorable)
characteristics, whereas most DF procedures will have several important
constant characteristics in spite of changes in the distribution of the underlying
data. Specifically, DF procedures can be obtained such that the false-alarm
rate is a constant, provided only that the distribution of the underlying data
belongs to some generally large class of distributions.

A detection procedure is defined as distribution-free over the class ¥ of
distributions if the probability distribution of the statistic on which detection
is based is the same whenever the distritution F of the no-signal data belongs
to the class §. As will be seen later, the test statistics described here are
obtained from comparisons of data from two sources, one of which may
contain a signal. Therefore, when a signal is present in one of the sources, the
distribution of the test statistic will depend on the distributions of the signal
data (from the source containing signal) and the no-signal data (from the
other source). The collection of data which might contain a signal is called
the ‘possible-signal sample’ (PSS), and the collection of data which is used
for comparison purposes is called the ‘known-noise sample’ (KNS).

SCOPE OF REPORT

Two DF procedures are described in this report, and both are based
on the rank-order statistics of the observed data [ref. 2] . These procedures
are compared with optimum procedures that are based on the assumption
that the probability distributions of the data are known. Implementation of
the procedures is discussed and particular methods ot data storage and
processing are described. Also, methods for obtaining the KNS are described.

THE DETECTION PROBLEM

The detection problem considered here is that of detecting the
presence of a signal at the output of a communication receiver. This includes
receivers that are used for the purpose of intercepting signals solely for the
knowledge of their existence (i.e.. not for their message content), and receivers
that are used for detecting signals from which message content is to be
extracted. Only the detection aspect is considered; extraction of information
is accomplished by further processing. This detection problem occurs, for
example, in a communication system that precedes each message with a
preamble consisting of repeated trunsmissions of a narrowband signal. The
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purpose of the detection proce-ure is to determine when (or whether) the
preamble is received so that the data-processing or recognition stages can be
applied to the message that follows.
Distribution-free detection procedures are applicable to these problems

since 2 constant false-alarm rate is maintained even if the probability distri-
bution of the observed data changes when no signal is present. Procedures
that reguire knowledge of the probability distribution of the data may
produce numerous false alarms, especially during times of Lieavy jamming or
interference. The false alarms may cause a tie-up of equipment, with the
result that the actual message is not received. For example, suppose the
system utilizes a moving-window detector (MWD) in conjunction with a time-
lag recorder (TLR), as indicated in figure 1 [ref. 5]. If the MWD decision is
that a signal is present, an alarm causes the data from the TLR to be read out
and processed. If a false alarm occurs, the TLR is tied-up for the time

necessary to read out its contents, and any message which occurs during this
time is not recorded.

RECEIVER [—g—>{MOVINC WOV 5| ALARM
RECOGNITION,
5|  TIMELAG 5| LOCATION,OR
RECORDER DATAPROC.

STAGES

Figure 1. A system utilizing the moving-window detector.

The detection problem can be stated in statistical terminology as
follows. Let Xs, =1, 2, ..., N, be independent observations of the output X

from a receiver, considered as a random variable with distribution function
H(x). Suppose that when a signal is present at the receiver output, H(x) = G(x),
and when no signal is present, H(x) = F(x), where both G(x) and F(x) are
unknown. (Several assumptions about F(x) anc G(x) are made iater.) ™ the
basis of the observations Xj» =1, 2, ..., N, we are to choose between the

hypothesis H) that H(x) = F(x) and the hypothesis H; that H(x) = G(x). We

also assume that a ‘known-noise sample’ (KNS) y{, -. ., yp is available such

that the distribution of the random variable Y (of which each yjisan
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observation) is F(x). That is, we have M independent observations of a
random variable Y that has the same distribution as X does when no signal is
present. This situation is depicted in figure 2, in which a simplified block
diagram of a distribution-free detec:ion system is shown. Methods for
obtaining the KNS are discussed later.

X
RECEIVER l
DISTRIBUTION-FREE
DETECTOR
DECISIONS
KNOWN-NOISE Y T
SOURCE

Figure 2. A distribution-free detection system.

For the case of an MWD, the hypotheses just stated apply only when
the window is filled with signal data (Hl) or when the window is filled with
no-signal data (Ho). The intermediate situation in which signal data are just
entering or leaving the window is a mixture of Hp and H), and leads to
complicated computations of detection probabilities [ref. S]. For the
remainder of this report we neglect the effect of the MWD; that is, we
consider only the situation in which ali N observations are either possible-
signal data or known-noise data. The probability of detection that is computed
is a lower bound to the true probability of detection for an MWD, since
several opportunitiss for detection are neglected (those in which the window
contains a mixture of signal data and no-signal data). Also, if the results given
here are applied to an MWD, the false-alarm rate is N times larger than that
stated, since the MWD’s decision rate is N times larger than that of a detector
for signals of known arrival times.
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ASSUMPTION® AND EXAMPLES

We have previously assumed that t..~ random variable X (the PSS) and
the random variable Y (the KNS) are such tha. X and Y have the sa.ne distri-
bution when no signal is present. We restate this assumption and make
additional assumptions:

1. The random variables X and Y have continuous distribution func-
tior (x) and F(y). respectively.

2. Observations on X and Y are independent; that is, (xy, .., Xp;

Y1> - - - ¥py) are independent for any 1 and m.
3. When no signal is present, F(x) = G(x).

4. When a signal is present, X is stochastically larger than Y. That is,
the distribution function G{x) of X is such that G(x) < F(x) for all
X, with strict inequality for some x.

Assumption 1 guarantees that ties (two different observations equal)
occur with probability zero, and is made for convenience in analyzing the
tests. In an actual application, data will most likely be processed by digital
equipment, and the occurrence of ties is a possibility that must be acounted
for. The assumption of independence is made for analytical convenience
(that is, so that the tests can be analyzed), and the effect of having this
assumption violated is usually not clear. However, in most detection appli-
cations independence can reasonably be assumed, especially if the receiver
input is passed through a narrowband filter of bandwidth B and the receiver
output is sampled at instants separated by intervals larger than 1/B.

Assumption 3 requires that the KNS have the same statisticai proper-
ties the PSS does when no signa! is present. Later we describe some reasonable
methods for obtaining the KNS. In general, the method for obtaining the
KNS depends on the type of signal which is to be detected.

Assumption 4 states, roughly, that signal-plus-noise observations tend
to be larger than observations of noise only. This assumption is reasonable
when the data are obtained from an envelope detector (square-law or linear),
and in many other cases, including the case of an additive signal in noise (not
necessarily Gaussian). Examples of distributions satisfying assumption 4
which are considered here are:

A. Both F(x) and G(x) are Rayleign; that is, F(x) =1 - exp[-x2/2]
and G(x) = 1 - exp[-x2/2(1+5)]. When S = 0, F(x) = G(x).

B. F(x)is Rayleigh and G(x) is Rice; that is, F(x) = 1 - exp[-x2/2]
and g(x) = dG(x)/dx = xexp[(-x2 + 32)/2] IO (ax), where Io( ) is the modified
Bessel function of the firsi kind, order zero. When a = 0, F(x) = G(x).

C. G(x)=1-[1-F(x)]4%, 0<u<1, where F(x) is any absolutely
continuous distribution function. Whenu =1, F(x) = G(x).

D. F(x) is normal with zero mean and unit variance, and G(x) is
normal with mean u > 0 and unit variance. When & =0, F(x) = G(x).

e e e e e o g~ e L= N o -
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Note that example A is a special case of example C, with u = 1/(148S).
Therefore, results are obtained for the general case, example C. Also note
that if a random variable U has one of the Rayleigh distributions of example
A, the transformed random variable W=U2/ 2 has one of the distributions
F(w)=1 - exp[-w] and G(w) = 1 - expl-w/(1+S)] . This is again a special )
case of example C, with u = 1/(1+S). Thus, results obtained for example C : 3
apply to both linear and square-law detection of a (Swerling case 2) ; 3
fluctuating signal in white Gaussian noise. Examples B through D include
three of the situations most frequently encountered in signal detection
problems: envelope detection of a narrowband signal in white Gaussian . ?
noise, envelope detection of a fluctuating narrowband signal in white Gaussian
noise, and coherent signal detection.

The presentation of these examples does not imply that the DF
procedures described here are applicable only to them. In fact, if it is known
that any of the examples describes the true situation, then the optimum
Neyman-Pearson test, based on the known distributions, should be used. As
will be seen later, for the DF procedures described here, calculation of the
probability of detection requires that both F(x) and G(x) be known (i.e..
assumed known). Such calculations will be made only for the examples
given, but should be indicative of test performance for other distributions.
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THE DETECTION PROCEDURES

The detection procedures described here are based on ranks. Obser-
vations xj, ..., XN of the random variable X (the PSS) are made, and for

each Xjs k-1 observations of the random varible Y (the KNS) are also made.
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The rank R; of x; with respect to SHR A TURERS " I is determined* and
the statistic
N
W= z B(R;) (1)
i=1

is compared with a threshold T. (The function B is discussed below.) If
W =T, a signal is claimed present. The threshold T is chosen to provide the
desired false-alarm probability.

The two procedures that are discussed here are obtained from two
specific choices of the function B in (1). These choices are

' By(R) = R; (2a)
| 0if R; <k-r
By(R;) = (2b)
Lif R;> k-

*The rank of x; is defined to be one plus the number of y) .'s that are less than x,.




where ¢ is an integer between 0 and k. The procedure based on (2a) is called
the rank-sum (RS) procedure [ref. 2]. A decision is made that a signal is
present if the sum

N
- 3
W= z R; ©
F1
of the ranks of the X observations exceeds some threshold Tl' The method
for choosing T is described later.
The procedure based on (2b) is called the rank-quantization (RQ)
procedure [ref. 2]. A decision is made that a signal is present :* the sum

N
Wy= ) ByR) @
=1

exceeds some threshold T, which is determined by the desired false-alarm
probability. The false-alarm probability also depends on the parameter r in
(2b), and selection of r is discussed later.

We note here that when Hy is true — that is, when no signal is present —
the probability distribution of R, is independent of the probzbility distribution

F(x) of the data, provided only that F(x) is continuous. This is verified later,
when the probability distribution of R is derived. Thus, the probatility
distributions of W; and W, are also independent of F(x), and both procedures
are distribution-free over the class of all continuous distributions.

There are many DF procedures that could be applied in situations
satisfying assumptions 1-4 [ref. 1]. However, the procedures described here
have the attribute of ease of implementation, and this is not true of many DF
procedures. Also, the RQ and RS procedures are easily analyzed, so that
evaluation of the test performance is not based on asymptotic results or on
Monte Carlo simulation. Thus, while other procedures may have better
(theoretical) performance, it may be impossible or impractical to analyze
them or to implement them for a real-time operation.

ANALYSIS

Suppose the random variable X has a continuous distribution function
G(x) and the random variables Y, .. ., Y} are identically distributed

with continuous distribution function '(x). Suppose further that X, Yl,
o Yk-l are independent. Then, the rank R of X with respect to IX, Yl’

ooy Yk-ll has a probability mass function (pmf) given by

PIR=j] =<Jkll> /. tpooni! (1-Feorkd acco (5)

=12, ..,k
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This follows from the number of combinations for which R =j and the

density associated with each combination [ref. 6, p. 43]. Note that when

F(x) = G(x) (i.e., when HQ is true), the substitution u = F(x) reduces (5) to
P[R=) =1/, 5=1,2, ...,k (6)

for any continuous distribution function F(x). Thus, the pmf’s of the
statistics Wl and W2 are independent of F(x) when Hy is true.

FALSE-ALARM PROBABILITY

To determine the threshold Ty, we must obtain the pmf of W; when Hy

is true. From the discrete uniform distribution given by (6), the pmf of W

is obtained by an N-fold convolution. The threshold T is then determined
such that

Ty

wiiere a is the desired false-alarm probability. (The notations PO[] and (]
are used to denote the probability of the parenthetical event when Hg and H;
are true, respectively.) Since W is discrete, randomization may be required
to obtain specific values of a exactly.*

For the RQ case, the test statistic W, has the binomial distribution

N\ . .
P[W, =j] =(j)p'(1-p)N'1

8)
i=0,1, .., n
where p = P[By(R;) = 1]. From the definition of By(R;),
k-r
PIBy(R)=11=1- PIR;=il )
=1

where P[R; = j] is given by (5). Thus, when Hy is true, P0[Ri =j] = 1/k from
(6), and

Pol3y(Rp) = 1] =1/k (10)

*Randomization is accomplished by finding the threshold T such that Po(W 2T +1) <e
and Py(W > T) >a. Then, if W> T, a signal is claimed present. If W=T, a random
experiment is performed with two possible outcomes A and A’, having probabilities P(A)
and 1-P(A), and if the outcome is A, a signal is claimed present. The probabiity K(A) is

chosen so that Po(‘¥ 2T +1) + P(A)Py(W = T) = a. The random experiment could be the
result of generating a random number.
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From (10) and (8). the false-alarm probability is determined to be

N
a=kN z (?)-i(k-n"ﬂ' an

FTs

Again, randomization may be required for some values of a. The valu= of N
is usually determined from practical considerations and therefore is not
considered a variable in (11). Likewise, the parameter k is not considezed a
variable. Therefore, the false-alarm probability is a function of r and T,, for
fixed N and k. This fact is discussed in OPTIMIZATION OF 'ME RQ
PROCEDURE.

DETECTION PROBABILITY

When a signal is present, the pmf of the rank R; of x; is given by (5).
Thus, to find the probability of detection for the RS case, we need only to
perform an N-fold convolution of the discrete distribution of R; and compute

kN
pa= D, PyIW; =il 12
FTh

Calculation of the probability of detection requires specification of both F(x)
and G(x) or of some deterministic functional relation between them, such as
is given in example C

To find the probability of detection for the RQ case, we use (9) and
(%) to obtain

P =P1[ByRp=1] a3)
The probability of detection is then given by
S (
N\ ; ¥y
Pq= z \.>p’,(|-p,)NJ (14)
=Ty )

which depends on botk T, and r.

For examples B and C, equation (5) can be solved in closed form, and
for example D, a solution is obtained by numerical integration. Tne solution
to equation (5) for the Rice case (example B) is given by

k-i\ r® . .
PR = ,-1=<j_;) Js (1221 (e x?2kd

(15a)
_xe-(x2 + aZ)/ZIO(ax)dx

e = e L
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i1 m / m+k-j+1
m=0

which is obtained by using pair 22, section 12.2, page 74 of Roberts and
Kaufman [ref. 7}.

For the case of example C, the solution to equation (5) is [ref. 8]
Py(R; = ki=[ulcd acjtw] i o). i=1, 2 k. (16)

Using (10) and the relation IN'(x+1) = xI"'(x), we can obtain PllR,-=jl
secursively as

PiIR;= H=u/(k -1 +u) a7
PR =i+ 1)1 =Py[R;=jl(k5)/(k-j-1+u),j=1,2, .. k-]

OPTIMIZATION OF THE RQ PROCEDURE

Optimization of the RQ procedure is defined as the selection of the
pair (T, 1) of thresholds which maximize the detection probability p4 while
the false-alarm probability a is held fixed [ref. 9]. (Reczll that to achieve a
specific value of a exactly, randomization may be required.) In the naximi-
zation of py it ’s assumed that N and k are constant; results given later show
the effect of increasing N and k.

The probability of detection py depends on the solution to (5). and
(5) depends on the probability distributions of both the signal and no-signal
data. Optimization thus requires some assumption about the distributions
associated with the data; however, these assumptions in no way affect the fact
that the procedure is distribution-free. The false-alarm probability is held
fixed independently of the probability distribution of the no-signal data.

Optimization is accomplished as follows. Foreachr.r=1.2, .. Kk,
equation (11) is used to determine the threshold T, = T(r) that provides the
false-alarm probability closest to the desired one; randomization is then used
to achieve a exactly. Also, for each r, p;(r) is obtained from (13) by using (9)
and (5 ) for the particular distributions F and G that are assumed. The
resulting py(r) is used in (14), together with the threshold T(r) determined
above, to obtain the probability of detection p4(r). The value of r and the
corresponding threshold T5(r) for which p4(r) is maximum are chosen.
Results given later indicate the variation of p4 with r for various choices of
F and G, and show the importance of applying the optimization procedure.

The optimization procedure just described requires that distributions
F and G be assumed. However, one reason for using distribution-free proce-
dures is to avoid such assumptions. In fact, if the distributions F and G of
the no-signal and signal data are known. then distribution-free procedures are
inappropriate, since the optimum procedure based on the known distributions
can be used. Thus, in a practical application it is necessary to repeat the above
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optimization procedure for several pairs of distributions likely to be
encountered, and select representative values for r and TH(r).

As mentioned previoucly, the value of N is usually determined from
practical considerations; however, resuits given later show that increasing N
increases the probability of detection. Thus, N should be made as large as
practical. Similarly, the size k-1 of the KNS should be made a3 kurpe as
possible, provided that the optimization procedure just described is used.
Also, care must be (aken to ensure that increasing the size of the KNS does
not invalidate any of the four assumptions made previously. For example,
increasing the size of the KNS by sampling more rapidly may invalidate the
assumptior of independence.

OBTAINING THE KNOWN-NOISE SAMPLE

The KNS can be obtained by sampling in the frequency domain, ia
the time domain, or in combinations of both. The objective to be met in
choosing a method for obtaining the KNS is to ensure that assumptions 1-4
are satisfied. However, it is usually tme that assumptions 1 and 4 are
satisfied, especially in cases in which the receiver output is from an envelope
detector. Thus, ensuring that the observations are independent and identically
distributed random: variables (assumptions 2 and 3), in the absence of signals,
is most important.

We describe two methods for obtaining the KNS. In one method
sampling is in the frequency domain [ref. 10, p. 69], and in the other in the
time domain [ref. 10, p. 118]. The two methods can obviously be combined
to include sampling in both time and frequency. These methods are intended
only to indicate how the KNS can be obtained in practice. More elaborate
methods are likely to be required in many systems.

FREQUENCY DOMAIN

Suppose the signals that are to be detected are replicas S (t),i=1,
-« -» N, of the narrowband signal !

S(t) = Acos21rf0t, 0<t<T,
= (), otherwise

The receiver may be realized as a narrowband bandpass filter of bandwidth

B =~ 1/T, centered at fy, followed hy a square-law rectifier [ref. 11, p. 63-64].
In actual application, the bandgass filtering is usually accomplished in the
intermediate-frequency (i-f) amplifier shown in figure 3, in which a super-
heterodyne receiver is diagrammed. The square-law rectified output from
this filter, sampled at equally spaced intervals of T seconds, is the PSS x,

. XN-
N'I‘he KNS can be obtained by using k-1 parallel, nonoverlapping,
narrowband bandpass filters, each of bandwidth B and centered at f;,j =1,
.. ., k-1, as shown in figure 4. The square-law rectified outputs, sampled at
equally spaced intervals of T seconds, are the KNS Yio i=1, .., k-Li=1,
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ANTENNA
RF MIXER LF SQUARE-LAW
AMPLIFIER AMPUFIER RECTIFIER
] OUTPUT
LOCAL
OSCILLATOR
Figuse 3. A superheterodyne receiver.
RF
AMPLIFIER
._;l FILTER SQUARF-1 AW
| fy RECTIFIER >Vl
L-al FILTER SQUARE.LAW _
f RECTIFIER | > 2
»
[
[
FILTER SQUARE-LAW ,
7 fx-1 RECTIFIER [~ Yk-bi

Figure 4. Obtaining the KNS from k-1 parallel, nonoverlapping, narrowband
bandpass filters.
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- - - N. The filters in figurs 4 can be realized as the i-f amplifiers of k-1
parallel superheterodyne receivers that have a common r-f amplifier, each
with a different bocal osdillator frequency. Thus, with the exception of the
local oscillators, the circuitry for all k receivers (including the one for
obtairing the PSS) would be identical.

The locations of the center frequencies and passbands are indicated in
the figure beiow for k= 5.
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If the duration T of the signal S(t) is long, the bandwidth B is small. Thaus,
for large T the fiequency range By = fy_;-f; should be sufficiently small

that the assumption of identically distributed random variables (assumption
3) is satisfied. Similarly, since the filter passbands are nonoverlapping and
the outputs are sampled at intervals T = 1/B, the assumption of independence
(assumption 2) should be satisfied.

TIME DOMAIN

Suppose that, when sent, the narrowband signals S; i), =1, .. N,
of duration T seconds, are transmitted at equally spaced mtervals of kT

seconds as shown below. Then the KNS can be obtained by sampling in
the time domain.

'S

—~ T | kT | '

#

If the receiver output (for example, the square-law rectifier output in fig. 3)
is sampled at equally spaced intervals of T seconds, then every kth sample
will be possible-signal data, while the intermediate k-1 observations will be
known-noise data. This presupposes that it is known when to sample to
obtain the PSS. If this knowledge is not available, a moving-window proce-
dure can be applied.

A method for simultaneously obtaining the KNS and the rank R; of
X1 is shown in figure 5. The square-law rectified output from the i-f ampllﬁer
is fed into a tapped delay line, with the delay between taps approximately

= 1/B. The output X(t) from the first delay-line tap is compared in

comparator Cy with Y (t), in comparator C; with Y,(t), etc., and in com-
parator Cy_; with Y} _; (t). The output W (t) from comparatorC is 1if
Xi= Y (t) and O otherwise, as mdncated in the inset to figure 5 The
outputs W (t) are summed to obtain R(t). and R(t) is sampled at times t;s

i=1, ... N., Since R(t) counts the number of Yj (1) that are less than X(t),
the rank R; of Xi = X(t)) is R(t;) + 1.

e
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Figure S.Amethodforsimulhneoudyobhhingthel(NSandthennkoin.

RESULTS

Results are presented that compare the DF procedures with optimum
procedures based on the assumption that the probability distributions of the
data are known (fig. 6-9). For the purpose of presenting these results, we
define a signal-to-noise ratic (SNR) for each of the examples B through D.
For examples B and D, the SNR is defined to be a2/ 2 and uz, respectively,
and for example C, the SNR is defined to be (1-u)/u. For examples B and D
the definition of SNR is

E(X2)- E(Y?)

SNR =
E(Y?)

(18)

where the random variables X and Y have distribution functions G and F.
respectively [ref. 12, 15-3]. The definition of SNR for example C results
from applying (18) io example A and using the relationship u = 1/(1+S).

Figure 6 shows the probability of detection p4 (r) as a function of the
quantization level r defined in equation (2b). These data illustrate the need
for performing the optimization procedure described earlier. The curves
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corresponding to the normal distribution ace relatively flat in the neighbor-
hood of the optimum vaiues of r, indicated by the arrows. This means that
the detection probability is affected only slightly if r is chosen anywhere m
the neighborhood of the optimum value. However, the curves for exampie C
show that if r is chosen only slightly larger than the optimum, the probability
of detection will be decreased substantially. A similar situation (not shown)
is also true for example B, the Rice distribution.

e EXAMPLE C (RAYLEIGH)
-~ === EXAMPLE D (NORMAL)

10°

1SR R SR A

1

LA A i )

Py(r)

14

102

rverrey

10'3 1 1 1 L 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22
4

Figure 6. Probability of detection Py(r) as a function of quantiza-
tion level r. k=25, N=25,a=10"5.

For these curves it is also seen that the optimum value of r is the same,
in each case, for SNR’s differing bv 3 dB. In fact, for example C the value
r = 2 is optimum for -4-dB to 6-dB SNR, and for example D the value r =5 is
optimum for -5-dB to 4-dB SNR. Thus, the optimum value of r is essentially
independent of SNR.

Figure 7 compares the RQ procedure with the optimum test based on

the assumption that the distributions are known. Also, the effect of increasing
the size k-1 of the KNS is shown. The data for the curve labeled ‘optimum’ in

figure 7 were obtained from Robertson [ref. 13, p. 765]; also, these data are
for N = 32. (Robertson [ref. 13] presented data only for N = 2k.) From
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Figure 7. Probability of detection as a function of SNR-rank-quantiza-
tion procedure (equation 2a), N=25,a=10-5,
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Figure 8. Probabihity of detection as a function of SNR-rank-quantization
(equation 2a) and rank-sum (2b) procedures N=25, k=100.




these figures we see that the RQ procedure requires only approximately 2-3
dB more SNR than the optimum procedures while providing the guarantee
that the false-alarm rate is constant.

The curves labeled ‘binary integration’ in figure 7 are for the optimum
test that utilizes binary quantization of the data and assumes the distributions
of the data are known [ref.9]. Each of these curves is an upper bound to the ‘ ]
corresponding RQ curves. The RQ curves approach this upper bound rapidly
as k increases; thus, the RQ procedure performs nearly as well as the optimum
test based on binary quantization.

Figure 8 compares the RQ and RS procedures with the optimum test.

The ‘optimum’ curve for figure 8A was obtained from Robertson [ref. 12]. ' ‘
For the data in figure 8A we see that the RS procedure requires only about

1/2 dB less SNR than the RQ procedure. Also, the RS procedure requires

only about 1 dB more SNR than the optimum. (The optimum curve shown 3
is for N = 32; the curve for N = 25, with which comparisons should be made, ]
falls to the right of it.)

For the data in figure 8B we observe the apparent anomaly that the
RQ procedure performs better (requires less SNR for a given p) than the RS

procedure. ‘This anomaly is discussed later, and the reason for the better
performance of the RQ procedure is given.

The data of figure 9 show the effect on the probability of detection of
increasing the size of the KNS. Detection probability increases rapidly as k
increases from 2 to about 20 and then levels out. Also shown are the proba-
bilities of detection for optimum binary integration [ref. 9] ; these probabilities
are upper bounds to the p j-versus-k curves.

1.0 BINARY INTEGRATION ’
09 !
SNR=2dB !
08} f
BINARY
071 INTEGRATION §
- j
0.6 SNR=1dB i
Figure 9. Probability of detection as a $
Pqg 05t function of size of KNS — rank- 3
quantization procedure (equation 2a). i
04 - Example B (Rice); N=50, =107 I
i
03 ri
02
0.1 i
g
Z
0.6 | 1 1 | %
0 5 10 15 20 25
k .
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Tre apparently anomalous result in figure 8B, in which the RQ proce-
dure is shown to perform better than the RS procedure, can be explained as
follows. The optimum test based on ranks calculates the statistic

= PylR;=1;]

=i
where r; is the value of the random variable R.l The statistic L is the sum of
N independent and identically distributed (I1ID) random variables

Py(R;=5)

~——————each of which can take one of the k values
PolR;=r;]
Z=log|kP|[R=jl|,i=1,2, ...,k. If we normalize the random variable Z
so that its minimum possible value is 0 and its maximiim possible value is 1,
we obtain a new random variable Z' with values between O and 1. I¥it is
assumed that F(x) and G(x) are related as in example C (with some fixed value
of u), the poscible values for Z' are as shown in figure 10 (izbeled ‘optimura’).

Zi=log

1.0

08}

0.7

06

05

VALUE OF NORMALIZED TEST STATISTIC

OPTIMUM
“——EXAMPLE C—
(RAYLEIGH)

1 1 1 1 I i
0 10 20 30 40 50 60 70 80 90 100

RANK VALUE R

Figure 10. Value of normalized test statistic as a function of rank
value R.
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By a similar normalization, ihe RS statistic W; in equation (3) can be trans-
formed into the sum of N II1D random variables having the values between 0
and 1 indicated by the diagonal line in figure 10. The vaiue of the random
variable BZ(Ri) that is summed in equation (4) (RQ) is shown in figure i0 as
the solid-line step function. Notice that the RQ step functicn more nearly
approximates the optimum curve than the RS diagonal line; thus, the RQ
procedure performs better than the RS procedure for this case. Altemnatively,
similar curves are shown in figure 10 for the RQ and optimum rank test for the
normal distribution (example D). We notice that the diagonal line for the RS
procedure is a good approximation to the optimum. This is corroborated by
the data of figure 8C, which show that the RQ procedure is almost as good as
the optimum test (not based on ranks).

CONCLUSIONS

Two distribution-free procedures have been analyzed, and each can be
applied in signal detection problems with little loss in signal detectability
compared with optimum procedures that require knowledge of the probability
distribution of the observed data. The procedures are easily implemented and
analyzed and should be applicable in many existing and future Navy commu-
nications systems.

RECO MENDATIONS

1. Investigate plans for future communication systems for possible
application of distribution-free procedures in signal detection.

2. Investigate the possibility of implementing distribution-free proce-
dures through LSi or micro-circuit techniques.
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