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On Multiple Decision (Subset Selection) Procedures*

Shanti S. Gupta
Purdue University

and

S. Panchapakesan
Southern Illinois University

1. Introduction

In many of the experimental situations the experimenter is confronted
with the problem of making decisions regarding k populations, which, for
example, may be categories of wheat, manufactured items coming out of k
factories or candidates who are contenders for an award. The classical
tests of homogeneity which have been applied in these situations do not
supply the information the experimenter really seecks, whether or not the
tests yield significant results. In fact, the experimenter's problems
begin when he obtains a significant result which goes to reject the null
hypothesis that the populations are identical. As a partial answer to the
need for a more realistic formulation overcoming the inadequacy of the tests
of homogeneity, Mosteller (1948) tested homogeneity against slippage alter-
natives. Since then many authors have contributed to the theory of slippage
tests.

The initial efforts in the direction of multiple decision problems were
made by Paulson (1949) who considered the problem of classifying the given i
populations into a "superior' and an “inferior" group. Later he (1952)

investigated the problem of selecting the '"best" of k categories when com-

dy

paring (k-1) experimental categories with a standard or control. Bahadur (1950)

s oo AL

*Research supported in part by the Office of Naval Research Contract
NDQO14-67-A-0226-00014 at Purdue University. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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has made some early contributiors to the theory of ¥ sample problems.
Balhiadur and Robbins (1950) obtained some minimax rules for selecting from
two populations the one with the greater mean. The multiple decision prob-
lems that are now known as the ranking and selection problems have been
formulated mainly in two ways. The first one is known as the indiffeience
zone formulation due to Bechhofer (1954). This formulation, in its simplest
form, selects one of the populations as the best with a guarantee that the
true best population is selected with at least & preassigned probability P*
whenever the best znd the second best populations are "sufficiently'" €ar
zpart. For an exposition of this formulation the reader is referred to the
excellent monograph by Bechhofer, Kiefer and Sobel (1968). The main investi-
gations surveyed in the present paper are under the second formulation due
to Gupta (1956) known as the subset selection formulation. The goal here is
te select a non-empty subset of the given populations so that the selected
subset includes the best population with at least a preassigned probability
P*. It is usually desired that this be accomplished by selecting a subset
as small as possible and without any knowledge of the true values of the
paramete-s.

Suppose that Tlaee,T are k independent populations and ﬂi(i = 1,...,k)
is characterized by the distribution function Fki. where xi is a real valued
(unknown) parameter, which is assumed to be a measure of the quality of -
Let A[l] < X[Z] << A[k] be the ordered values of the A,. The correct
pairing of the ordered and the unordered )'s is not known. The population

associated with x[i] is denoted by ﬂ[i] and the population "[k] (or "[l]) is
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usually defined os the best population. In the case of a tie, we assume

thét one of the populations with Ai = x[k] (or Ao A[l]) is tagged as the
test. The selection of any subset which includes the best population is called
a correct selection (CS) and P(CS|R} denotes the probability of a correct

selection using the rule R. Thus we are interested in defining a rule R

such that
- -1 *
(1.1) P{CS|R} >P , kT <P <1,

regardless of the true paramcter point X = (xl,...,xk) in the parameter space
Q@ = {x}. If the distributions are not indexed by the values of any parameter

A, 2 denotes the space of the k-tuples {Fl""’Fk}’ where Fi is the distribution

function of LI In order that (1.1) be met, we want

(1.2) inf P{CSIR} > P* .
a

The requirement (1.2) is usually referred to as the basic probability require-

ment or the P"-condition.

2. Selection in terms of Location and Scale Parameters.

Many of the early inveétigations relate to ranking and selection of
popuiations in terms of either location or scale parameters. The ranking
of normal means and gamma shape parameters are examples of this type.

Let us first suppose that ni(i = 1,...,k} has the continuous distribution
FA_(x) = F(x-Ai), - o< Ai < = and x5 is an observation from LA In order to
se;ect a subset containing the population associated with A[k]’ we define the

following rule Rl'
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(2.1) Rlz Select LA iff X{ 2 Xpax " d

where Xnax * max(xl,...,xk) and d is a positive constant chosen >0 as to

satisfy the basic probability requirement. It is easy to sec that

. ® k-1
2.2 |4 ] + - ]
(2.2) {cslal} _i 521 F(y d#A[k] x[j]) dF (y)
“l

Clearly, the infimum of P{CSIRI} is attained when xl =, , .= Ak and hence d is given by

. (2.3) [F*"Liysd) dr(y) = P*. ;

Denoting by S the number of populations included in the selected subset,

we can see that

(2.4) E(S) = p, +...+ P, .

! where p. is the probability that the population associated with A[‘] is

included in the subset. In the present case

, ® k
! 2.5 = M F(y+dsA .. A .q) dF(y) .
" e i -£j=1 (redhsy gy O
| i
P It has been shown by Gupta (1965) that sup E(S) 1s attained when xl-...-xk j
ti |
Y 1
b provided that the density fx(x) = f(x-2) has a monotone likelihood ratio
* in x and in that case the supremum is kP*. The procedure R1 has also been
;% . shown to be montone in the sense that p. :_pj for k[i] 3-A[j]'
. As an application of the above results, we consider selecting a subset

containing the population with the largest mean from k independent normal

. . . 2
populations with unknown means Mpres ool and a common known variance ¢°.
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If §i(i = 1,...,n) is the sample mean based on n observations from n., the
rule R, in this case selects m, iff ;i > max y

-d1 where d
n and k.

1¢j<k

By letting d, = do/vn, the constant d is given by
7 k-1 *

(2.6) f $ (u+d)¢ (u)du = P,

-0

1 will depend on

where, unless otherwise stated, ¢ and ¢ denotes here and in the sequel the

cdf and the density of the stsxdard normal distribution.

1f 02
one will naturally use

is unknown,
, the poolod estimate of o2 based on k(n-1) degrees

2
L3

of freedom. In this case we can show that d is given by

k-1

(2.7) (uryd)¢ (u)g, (y)dudy = P7,

4

o 8
§— 8

where gv(y) is the density of xv/w vith v = k(n-1).

Rizvi (1963) considered the yoal: of selecting a non-empty subset from k
normal populations so as te include the one with the largest 0, = l“il' He
uses a rule of the type R1 based on w, = lxi|. For his procedure

(2.8) sup E(S) = 2k | {2 0(u+d)-11%"! do(u), where
Q 0

d is given by (2.6). This bound for E(S), however, exceeds kP*.

Suppose the populations T i =1,...,k, have the continuous distribu-
tions FA (x) = F(x/ki), Ai >0, X4 > 0. 7o select a subset containing the
i
population associated with x[k]’ we define the procedure R2 as follows:

(2.9) R

) mans

. . -1
5 Select L iff xi ¢ Xoux

o Sl

B

where x. is an observation from L and ¢ > 1 is determined so that the basic
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probability requirement is satisfied. It is easily seen that

inf P{CS|R2] is attained when A, =...= A, and the constant ¢ is given by
Q

k-1 .

(2.10) F ol (ey) dE(y) - P

[=A "]

The rule R2 is monotone and if the density fx(x) = %-f(x/x) has a monotone
likelihood ratio in x, then sup E(S) is attained when Al s, .= Ak and is
equal to kp". "

A specific example of interest is the selection from k gamma populations

with densities

AT S r
(2.11) fx (x) = e x “/ T(r) Ai‘ x>0, Ai >0, 1i=1,...,k.
i
In order to select a subset containing the population with x[k]' we use the

rule R, based on n observations from each population, nemely,

-

(2.12) R,: Select m. iff X, > b-! max X, ,
2 i i- . j
12j<k

where b > 1 is determined so as to satisfy the basic probability requirement.
This procedure has been studied by Gupta (1963). The analogous problem of
selecting the gamma population with the smallest xi has been discussed by
Gupta and Sobel (1962a, 1962b). This problem arises in the context of
selecting a subset containing the normal population with the smallest variance
and the rule is an obvious modification of R2 and is based on the estimates

sf (i=1,...,k) of the population variances oz using equal sample size.

T Ak g,

s, S S -
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For the problem of ranking and selection from normal population in
tewms of their means, Seal () 55) considered a class of procedures satis-
fying the basic probability requirement.  Assuming that the populations have
. a common unknown variance, let il""'ik bc the sample means from the popula-
tions, each based on n independent observations. Let ¢ = (cl,....ck_l) be a
vector whose components are arbitrary non-negative numbers such that

S L T L i[l} Loen< i[k] be the ordered sample means. The ’

class C of rules DC defined by Seal is as follows:

DC: Include in the selected subset the population corresponding to i[i] iff

(2.13) i[i] > Cli[l]Q"'Tci-lx[i—l]*cix[i+l]*'"*ck-li[k]'t(P .c)s/vn,

where s2 is the usual pooled estimate of the common variance 02. and t(P',g) ;

satisfying the P"-condition is given by the upper 100(1-P*) percent point of
k-1
the distribution of Y = (‘Zl <4 Z(i)-Zk)/s where z, = 1,...,k are random

observations from N(0,07) ard z(l) . 2(2) <...< 2 are the ordered

(k-1)
Zl,...,zk~1.

oy

The rules of this class possess certain desirable properties. For example,

the rule DC is unbiased, that is, P{rejecting any population not having the

largest mean} > P{rejecting the population with the largest mean}. Also the

PRROS Y

rule has the property of gradation, namely, corresponding to any P', there

3 exists a constant ¥, (depending on the decision rule, the unknown means and :

. 2 . . . > :
the common variance ¢ ) such that P{retaining the population with mean ui} <p" £

PPN N e

N >
according as My < ¥y
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If we nuw assume that ¢ is known, we can take o=l wi<h no loss of
generality and the rule Dc will be (2.13) with s=1. We define a subclass
C' of C by the restrictior—x-cj = 1 for some j = 1,...,k-1. The procedure
R(called R1 carlier in this section) studied by Gupta (1965) is a member
of C' with ck-1=l. It has been shown by Deely and Gupta (1968) that the
rule R has the smallest expected subset size among the rules of the class c'
provided that the paramerric configuration is "[l]ff"5P[k-l]i"="[k]'6(6>o) and

6 is sufficiently large. If we consider a slippage configuration (u,...,u,u+§)},

6>0, Seai {1955) shows that in the classC, the rule D with cl=...=ck_1=1/(k-l)

maximizes (approximatel:r) the probability of including the population with mean

u+é. Deely and Gupta snow that E{S|R} < E{S|D} excent when § is near zero.
Seal (1958) defined a class of rules similar to C fcr the problem of

selection from gamma populations given by (2.11). Let ¢ = (cl,...,ck_l) be

k-1
as before a vector of non-negative components such that ) c; = 1. let
i=1
Xys+--sX be a set of obtservations from the k popularions and x(l]f}[2]§f":f[k]

bs the ordered observations. Then, in order to select a subset containing the

populaticn with the smallest Ai, Seal proposed the class of rules D; defined below.

Dé: Include in the seiected subset the population corresponding to x[i] iff

(2.14) X li{l]*"'*ci-l X(5.11 * cii[i]+...+ Ck-lx[k])’

[i) £°

where b satisfying the basic probability requirement is given by upper
k-1
100(1-P") percent point of the distribution of Y,/ Z c.Y,.,, where Y_,..,Y
k iel L (1) 1 k
are k randorm observations from a gamma population with X=1 and Y(l)ff"fx(k-l)

are the ordered Yl""’Yk-l' Seal (1958) has obtained results similar to has

earlier ones for the class of rules Dc .



3. General Theory of Subset Selection.

In this section we will describe a class of subset selection rules appli- o
cable to populations from a family of stochastically ordered distributions and
therefore in particular to populations characterized by a location or scale

parameter. Many of the specific selection problems discussed in the subse-

i

PRIV R

quent sections fall under this general frame work. We also discuss a decision-

theoretic formulation of the problem.

We assume that T Toseeer ™ have the associated absolutely continuous
distributions F, (i-= 1,...,k), where Ai € A, an interval on the real line.
i

The family {FA}' X e A, is assumed to be stochastically increasing (SI) in

A, i.e., for A <A in A, F, and F,, are distinct and F,(x) 2 F,,(x)

3

u, Rt T R I T e W N TR R

for all x. For selecting a subset containing population associated with X[k]’

LR WAPPIRC NP
il e .

Gupta and Panchapakesan (1970) have discussed a class of procedures Rh de-

fined by a class of real valued functions h = hc ar ¢ >1, d >0, possessing

the following properties: For every x belonging to the support of F,, (i)

hc’d(x) > x, (ii) hl,O(x) = x, (1i1) hc,d(x) is continuous in ¢ and d, and {3

(iv) lim h (x}) = » (¢ fixed) and/or lim h (x) == (d fixed), x # 0. 1If
o C,d C,d

d cre ]

X,,..4,X, 1is a set of observations from = ,...,7 , respectively, the rule
1 k 1 k P

Rh is defined as follows.

dadigi g

R, ¢ Include the populatiocn L iff

(3.1) h(x.,) > max x_ .
Vol e T

ot e enia s ke e

At

Letting X (r) denote the observation from the population with distribution
F = F , we obtain
[r] )‘[l‘]
k-1
z. P{CSIR,} = n F h dF
(2.2) {csiry) = [ N Py () dFp 00
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Because of the stochastic ordering of {Fx}, we can see that

(3.3) inf P(CSIRh} = inf ¥(}; ¢,d,k) ,
Q el

where y(); c,d,t+l) is given by

(3.4) b0 c,d,te1) = [ Fi(h(x)) dF,(x)

In all the specific cases considered earlier in the literature, the general
approach is to show that ¢(*; c,d .k} is monotonic in )X and use this fact
to evaluate inf y(x; c,d,k) and find the velues of the constants such that
the P*-condition is met. One of the main results of Gupta and Panchapakesan
(1970) is the following theorem which leads to a sufficient condition for the

monotonicity of y(X; ¢,d,k).

Theorem 3.1. Let (FA}, X e A, be a family of absolutely continuous distribdu-
tions on the real linez and y(x,A) be a real valued function possessing continu-
ous first partial derivatives ¥y and ¥, w.r.t. x and ), respectively.

Then, EAW(x,A) is non-decreasing in A provided that

(3.5) £,(x) ¥, (x,3) -, (x,0) 27 F.(x) >0 forallx,

where fA(x) is the density corresponding to Fx(x). Further, Exw(x,x) is
strictly increasing in X if (3.5) holds with strict inequality on a set of
positive Lebesgue measure.

The above theorem is a generalization of a result of Lehmann (1959, p. 112)
which states essentially that, if {FX} is an SI family and y¢(x) 1is an in-
creasing function of x, then Exw(x) is non-decreasing in A. As we can

see, this comes out as a special case of Theorem 3.1, by letting y¢(x,X) = g(x)

. —any

‘Lﬁﬂg

i
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for all A and verifying the condition (3.5) to be true.

As a consequence of Theorem 1.1, the following theorem is obtained regarding

the monotonic behavior of ¢(; c,d,k).

Theorem 3.2. For the procedure Rh defined by (3.1), ¢(»; ¢,d,k) is non-

decreasing in 2 provided that

: (3.6) £, (x) 3¢ F Z(h(x)) - h'(x) £, (h(x)) 55 F (x) 20

’ for all X e A and all x ,

where h'(x) = g; h(x). Further, ¢(X; ¢,d,k) 1is strictly increasing in i if
strict inequality holds in (3.6) on a set of positive Lebesgue measure.
Let Py denote the probability that the population "] is included

in the subset. Then the expected subset size is given by

{3.7) E(S) = s{s]ah} =Pt . *P

where
| X i
; (3.8) =] n F[ ](h(x))} dFp5 (), i= 1,k
3 r#1

Gupta and Panchapakesan (1969b) have shown that, if A[l] s A[Z] = ... = l[m]

A[m+1] < e :-\[k]’ 1 <m <k, E(8) is non-decreasing in A, when

. A[m+l]""’x[k] are kept fixed, provided that,
! (3.9) B F, (0 £ ) SN0 FF ) £ () 20
I "1 2 1 2

for Xl :_Az and all x .

Consequently, the following theorem is obtained.

b~ veiamn s -
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Theorem 3.3. For the procedure Rh defined by (3.1), the sup E(S|Rh} is
Q

attained when kl . 12 = .. = Xk provided that (3.9) holds,

If the condition (3.9) holds, then (3.6) is valid and consequently

¥(2; c,d,k) is non-decreasing in . Thus sup E(S) = k sup ¥(}; ¢,d,k) can
Q A

; be evaluated. Hence, by verifying the condition (3.9) we are simultaneously
3 v assured of the monotonicity of w(XA; c,d,k), the fact which is used for the
% . evaluation of igf P{CSIRh} and sgp B{SIRh}. This connection between the
L . two has been observed by Gupta and Panchapakesen (1970).

It should be pointed out however that condition (3.6) may hold without
(3.9) being true. This is the case, for example, when we consider the selection
from Cauchy distributions in terms of the location parameter using
h(x) = x+¢d, d > 0. If (3.6) is satisfied, we have inf y(}; c,d,k) =
W(Ao; c,d,k). Then we can evaluate the constants bezause of the conditions im-

posed on h(x) provided we assume that FA (x) 1is a distribution function in
0

case A, /£ A,

It can be seen that the above results are readily applicable to the cases
of location and scale parameters discussed in Section 2. In the case of loca-
tion parameters the rule Rl defined earlier uses h(x) = x-d, d > 0, and in

: the scale parameter case the rule R2 uses h(x) = cx, ¢ > 1. In both the

cases it is easy to see that (3.6) is satisfied and (3.9) reduces to the condi-

- tion that the density fx(x) has a monotone likelihood ratio in x.

Another case of importance is that of convex mixtures of distributions.
Here the density fx(x) is of the fom fx(x) = 'Eo w(x,3) gj(x), where
gj(x), ) =0,1,..., is a sequence of density fung:ions and w(),j) are non-
negative weights such that E w(Xx,j) = 1, We assume that the weights are
given by =0




- - T T
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(3.10) wO,1) = s dAS1, A0) 20,0 2 0
and
(3.1 nj*l = (m*tj)aj, j=0,1,...; 4, m>0.

It is easy to see that A()) = ao(l-xl)'m/e, provided that A < 1/£. It

has been shown by Gupta and Panchapakesan (1970) that the condition (3.9) is
satisfied if, for a = 0, 1,...,[1/2]) ([s) denotes the largest integer < s)

and b > 1,

(3.12)  b'%(mela) [g,_(x) 46 (h(x)) - h'(x)g;_ (h(x)) 4G (x)]
+ b2 (meL(i-a)) [g,(x) 86, _(h(x)) - h' (g (h(x)) 86, _ (x)]

> 0

where AGa(x) = Gu+1(x) - Go(x) .

This special case is of interest. If we set m =1, £ = 0, and a = 1,
we get Poisson weights w(A,j) = e-A xj/jl. Selection problems involving non-
central chi-square and non-central F distributions in terms of non-:centrality
parameter fall under this special case and have been considcred esrlier by
Gupta (1966b), Gupta and Studden (1970), and Gupta and Panchapakesan (196%2a).
These specific procedures are discussed in Section 5. Again, if we set £ =1
and a, = 1, we get densities gj(x) with negative binomial weights. The distri-
bution of Rz, where R is the multiple correlation coefficient, in the so-
called unconditional case is an example of this special case of weights. Selec-
tion procedures involving this have been discussed by Gupta and Panchapakesan
(1969a) and are described in Section S. The condition (3.12) with b = 1 gives

the sufficient condition for the monotonicity of ¢(A; c¢,d,k) obtained by Gupta

LR U7 T KR
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and Studden (1970) and Gupta and Panchapakesan (1969a) for proper choices of
weight functions.

Let S' %e the number of non-.best populations included in the selected sub-
set. Then, for the procedure R, defined by (3.1), E(S') = E(S'IRh] is given
by E(S') = Pyt -s * Pyt Panchapakesan (1969) has shown that sgp E(S') is
attained when the distributions are identical provided that (3.9) holds.

It has also been shown that the procedure Ry is monotone, i.e., if
xi < xj then the probability of “j being selected is at least as great as
the probability of e being selected.

In the case of absolutely continuous distributions Fy» where X belongs
to a discrete set of real numbers, Panchapakesan (1970) has obtained the follow-
ing theorem corresponding to Theorem 3.1 and has applied it to the case of

gamma distributions with integer-valued shape parameters and common scale parameter.

Theorem 3.4. Let {FA} be an absolutely continuous distributions where

A€ Ad = {Xl < xz < ...} and ¥(x,\) be a real valued function possessing
continuous partial derivative wx w,r.t. x. Then, for any positive integer t,
Exwt(X.X) is non-decreasing in A provided that, for i = 1,2,... ,

(3.13) 2 {x,A.) fkj(X) - AFAi(X) wx(X,Xj) 20, j=1,1+1,

Where AW(x;xi) = W(X)Xi+1) - W(xlxi)’ AFA.(X) = FX. (x) - FA'(X) .
i i+] i
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Now we present a decision theoretic formulation of the subset selection
problem. We are given k populations Tl where " is described by
the probability space G,O,Pi), where P, belougs to some family €.

L. We assume that there is a partial order relation () defined in #.

. Pi > Pj is equivalent to saying that Pi is better than or equal to Pj; or,
in other words P1 is preferred over Pj. For example, if @ is a one-
parameter family, Pi(x) = P(Oi,x). we may define: P1 > Pj iff ei :-oj'
In many problems > denotes stochastic ordering. Other partial orderings that
have been considered are: star-shaped ordering, convex ordering, tail ordering.

In the above set-up, we assume that there exists a population 'j such
that 13 > v for g1l 1. This popuiation vy will be referred to as the
‘best' population. In case of more than one population satisfying the condition
we will consider one of them to be tagged as the best.

From each population we observe a random element xi. The space of
observations is: Z* = {x=(x ,Xp...,%), X, €%, i =1,2,...,k}. Inmost
applications ZX  will be a real vector space.

k

The decision space ® consists of the 2 subsets d of the set

{1,2,...,k}: to put it formally,
(3.14) 8= (dldc 1,2,...,k}} .

In other words, a decision d corresponds to ths selection of a subset of kK

populations.

A decision d ¢ # is called a correct selection (CS) if j ¢ d which

means that the best population 'j is included in the selected subset d. It
should be pointed out that in many subset selection procedures investigated earlier,

the null set ¢ is excluded from # to guarantee the selection of a non ompty

subset.

R
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A measuradble function ¢ defined on o x # 1s called s selection pro-
cedure provided that for sach x ¢ 2‘, we have,

8(x,d) >0 and
8(x,d) =1 ,
e o

(3.15)

where &(x,d) denotes the probability that the subset d is selected when
X 1is observed. The individual selection probability piQt) for the popu-

lation L is then given by

. 8(x.d) ,
(3.16) P, d§1 @.4)

where the summation is over all d comtaining i. If the selection probabili-
ties pl(y, pz(g_),...,pk(y take on only the values O and 1, then the
selection procedure 6(x,d) 1is completely specified.

In general, we can assume that the selection of a subset d ¢ § results
in a loss. Let us consider the situation where Py - p(ei.g) and assume
the loss L(8,d) = L((6,,6,,...,8,),d) = 1£d L, (8 where L,(6) is the loss
if the ith population is selected. We may assume an additionsl loss L if

a correct selection is not made. The overall risk for the nonrandomized rule

§ is:
k

In many problems it has been assumed that Li(g) =1 and L =0, in
which case, R(8,6) gives the expected size of the selected subset. In
general, our aim is to minimize the risk R(6,6) which will be done under

the usual symmetry condition.
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Our goal is to obtain selection rules ¢ selecting a non-empty subset and
satisfying the P*-condition. In general, we wish rules with large probability
of a correct seiection and a small value of the expected size. The ratio
n (%) = k Pw(Cslﬁ)/Eu(SIG) can, among others, be considered as a measure of
the efficiency of the provedure ¢ at w = (pl""'Pk)' Pi € @. Both
PN(CSIG) and Ew{S|5} depend on ¢ only through the individual selection
probablilities and hence if we restrict our attention to these quantities, we
can define two rules ¢ and 6' as equivalent if they have the same individual
selection probabilities p(x) and p'(x) for all x. Hence, we can use the
following simplified definition, replacing & by R.

A subset selection rule R is a measurable mapping from xk into Ek(k

dimensional Euclidean space), namely,

Ri X+ () (X),p,(0),...,p, (X)), 0 < p,(X) <1,

i=1,2,...k .

1f pi's are 0 or 1, the rule is nonrandomized; in this case, R can also
be defined by the sets Ay = {x e Zﬁlpi(g) =1}, i=1,2,...,k. Ay is the set

of observations for which ™ is selected. R is said to be unbiased iff

mp>m,ie 2, kR 2P forall weQ

w,j = w,

where Pw i " Empi(5) = probability that LA is selected, and is said to be

monotone iff

£, >, =P

j i W, :-Pw,i for 211 1,} and all w ¢ Q .

We shall restrict ourselves to selection rules R which are invariant under

permutation (or symmetric), i.e., rules R for which

I A s wr sl

A
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(p,(8x),...,p, (8X)) = g(py(X),...,py (x)) for all gytk. 8¢eG

where G denotes the group of permutations g of the integexs 1,2,...k.

Studden (1967) has discussed the problem of obtaining optimal procedures.
He has obtained a necessary and sufficient condition that a rule ¢ be best
invariant, that is, 6 is an invariant rule for which R(6,4) 1is minimum.
Assume nk to be those permutations of (91"“’°k) such that the larxgest
parameter value e[k] is in the last compunent and let
¢, (x;8) = (1/(k-1)1) g £(x,88), 1 = 1,...,k where f£(x,8) is the joint

i

density of x(w.r.t. some measure u) and G, = {g|g'1k e i}, The following

theorem has been proved by Studden.
Theorem 3.5. A selection rule & is best invariant iff

k
(3.18) P () = 1 if Ly, (x;9) > izl L (8) ¢, (x;9)

k
= 0 if Ly, (x;8) < 121 L, (8) ¢,(x:9)

for 6 ¢ nk, almost everywhere u. The functions pi(x), igk, are defined

by the invariant conditions on p(x) = (pl(g),...,pk(gj). As a corollary, we
k

obtain the result: An invariant selection procedure minimizes | Li(8) Egpy (x)
i=} -

subject to the condition

(3.19) Po{cs|é) > v(L) for all © € 0

iff the individual selection prcbabilities are determined by (3.18).
The expression given in (3.18) defining the selection probabilities which

minimize R(8,8) is rather complicated when written down in temms of the

A Y

‘G—“-'r&‘ilg T
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original densities. However, for the slippage situation when the underlying
densities are from an exponential family and Li(g) £ 1, the expressions

simplify considerably and in this case the following thaorem has been obtained

by Studden.
k 8x
Theorem 3.6. Let f (x) = N f (x,) where £ (x) = C(6)e and
. 8 je1 0 1 8

6 = 9[1] - 6(2] = ., = e[k—l] = e[k] ~ 8 (4> 0). An invariant rule 6 mini-

mizes Ee{Slé) subject to the condition that PQ{CS|6} > y iff for almost
all X

k-1 Axi Axk
(3.20) PX)=1if J e * <Ce
i=1

k-1 Ax, A
=0if J e ‘>Cexk.
i=1

Studden also considered a simple situation concerning normal populations
where the parameters are permitted to vary. It is assumed that f(x;8) =
B
n f(xi-ei) where f(x) 1is the standard normal density. For fixed A let
i=1

p(x;a) denote the selection probabilities defined by (3.20) where C is
chosen so that PG{CSIP(L.A)} =y for all O = (6,...,0,6+4). Let ¢(a) denote

the class of invariant procedures satisfying

3.21) Pe{Cslé} >y for all 8 e Q(A)

where Q(3) = {6 | 6[1] 5.6[2] RS 5-e[k-1] :'e[k] A

Theorem 3.7. For any 6 with 8{1] = 8[2} = ... = e[k-l] = e[k] - A the
minimum value of EG{SIG} over the class @¢(4) is attained by p(x;8), i.e.,

(3.22) min Ee{Slé} = Ee{S|p(£;A)} .
o(8) = =

[ PR

P
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& Now, consider the sequence of selection probabilities defined for
4 e (9,°) by
' V k:l Axi Axk
g (3.23) pk(iga) =14if } e < C(4a)e
r i=1
: k-1 Axi Axk
| =0if ) e > C(a)e .
. 1=1
For A =0 we let
L, k-1
; (3.24) Py (x;0) = 1 if 1 x,/(k-1) < X, + C(0)
z B 1
? k-1
) =0if ] x/(-1) > +C0),
|+ j=1
while for A = » we define
E . .
(3.29) n (x;») = 1 if max x. < + C(=)
i < 1<j<k-1 ) X
]
3
[ =0 if max x, > + C(=) .
: 1gj<k-1 7 *
F
l The values C(a), a ¢ [0,»] are all chosen so that for a fixed set of values

6[1] < ... 5_e[k], the probability of a correct selection is equal to a given
value y The rules defined in (3.24) and (3.25) have been considered by
f ) sevaral authors., It has be:n observed by Studden that Pk(EJA) has limits
pk(§;0) and p, ix;=) almost everywncre u as A approaches zero and infinity,
respectively.
In addiéion to several desirable properties and criteria for selectior rules
discussed above, another concept was investigated by Nagel (1970). This is con-

‘ cerned with what are colled '"just” selection rules.
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We assume that a partial order relation » is defined on % [y > x or,
equivalently, x <y means that y is better than x]. A selection rule R
defined by its individual selection probabilities Pi(l‘.)’ i=1,...,k, is said

to be just iff
X; <Yy
(3.26) - pi (Y.) ipl(i) .

X3 > Yy ifti

”~

For nonrandomized rules determined by acceptance regions Al,. "’Ak’ we

can define a just rule equivalently in terms of increasing sets. A subset

Ac;::k is said to be increasing iff x e¢ A and y> x=y e A, We say

AR B e 8

that P is sioch-stically better than Q(P >., Q) iff P(A) > Q(A) for all
increasing sets A € 8. We note that if X is the real line and > stands
for >(or >) then the increasing sets are the intervals [a,») and (a,~)

which induce the usual stochastic ordering on the distribution €uncticns. A

I s e A I

Tule R is sail to be just iff

) implies y € Ai .

X. > VY., 3 i
j7 Y3 ¢

-

As mentioned earlier, frequently we require a selection rule to satisfy

the basic probability requirement. Hence, a central problem in the subset

T

selection theory is to determine inf PN{CSIR}. For many :ules investigated
wef}

in the literature, this infimum is attained in 2, where Q,C Q is the set

0 0

of w where the P are identical. This could reasonably be expected of a

good rule, because in no, no statistical information can be employed to find
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the arbitrarily tagged population. It has been proved by Nagel (1970) that this

property holds for a just selection rule i.e.,

(3.27) inf PLS|R)} = inf pm(csla}, if R is just .

wel u6ﬂ0

It is also a reasonable requirement that Pw(cis} be constant over
QO because in stating the P*-condition, we express that we are content if
Pu(CSlR} is at least P* and we are not interested in exceeding P*, at
least not in ﬂo where it can he achieved only by increasing the expected
number of populations in the selected subset.

The following leema can be applied to construct just subset selection rules

with constant probability of a correct selection in Qo.

Lemma 3.1. Let xl, xz,...,xk be independent and identically distributed
random variables with jcint distribution Pe' Let T(xl’ xz,...,xk) be a
sufficient statistic for 6.

(i) If E(G(Xl,...,xk)lT) = P* for all T then E 5 =P* for 2ll 6.

(ii) If T is complete w.r.t. {P,(x)}, then Ee(s(xl,...,xk)lr) = p*
is also necessary for Eea = P* for all .

Gupta and Nagel {1971) have investigated the problem of constructing just

rules in the cases of some discrete distributions such as binomial, Poisson and

negative binomial distributions, which are discussed ir the next section. They
have also discussed the problem of deriving rules with constant P{CS|R} in

2 using the likelihood ratio criterion. They consider densities

f(xi,ei), i=1,...,k, where f(x,8) is given by

0T (x)
(3.28) f(x,0) = ¢(8) e h(x) .

-.-L-.f,g,:__,—;%l i
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Under the slippage configuration, they derive the rule

R: Select LAY iff Ti :-T[kl -c

where ¢ = c(k, P*, 6, 8) is determined from the P*-condition. This rule is

just and the constant ¢ is given by

(3.29) I G:'l (t + ) dG,(t) = P*

-0

where Ge is the cdf of T. For the normal distributions with 6 as the location
parameter, is independent of 6. In general, ¢ depends on 8 and, if 6 is

not known, an estimator of 6 may be used. Since ZTi is a sufficient statistic

for 0, this yields a selection rule of the form

(3.30) Select " iff Ti Z.T[k] - c(ETi,P*) .

By Lemma 3.1, this rule has constant probability of a correct selection in QO’

if c(zTi,P*) is determined to satisfy

(3.31) Pwo{Ti 2Ty - c(zTy,P*) [T} = p*

for all tTi, Wy eﬂo. However, it is now known whether (3.30) is a just rule.

LR e,
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4. Selection from Discrete Populations

In this section we discuss the results of investigations of procedures
for selection from k independent discrete populations. Though selection of
the multinomial cell with the largest (smallest) probability where the obser-
vations are on integer valued random variables falls under this category, we
discuss it in the next section along with problems concerning multivariate
normal populations. The case where only the ranks of the observations are
considered is discussed in the section on distribution-free procedures. Our
present discussion will be mainly concerned with selection from binomial,
Poisson and negative binomial populations.

Binomial Case:

We have k independent binomial populations ni(izl,...,k) with unknown
probabilities of success on a single trial Ol,...,Ok respectively, where
086 < 1, i=1,...,k. The following procedure R based on samples of size n
from each population has been proposed by Gupta and Sobel (1960).

R: Select the population LAY iff
(4.1) X, z_max(xl,...,xk)-d

where X, is the observed number of successes in n observations from LN and
d=d(n,k,P*) is the smallest non-negative integer that will satisfy the P*-condi-
tion. ‘
It is known that P{CS|R} is minimized when 8,=...=8, . Thus, the integer d
is the smallest non-negative integer for which

n

n- a+d n. i n-i k-1
(4.2) inf  § Me*a-e)" T hela-e)I) s e
0<0<l o ° j=0 °

BN R L S
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The above procedure and another procedure for the case of samples of

unequal sizes along with the normal approximations for both these cases

have been discussed earlier in the literature and have been briefly

summarized by Gupta (1966a). It has been shown by Gupta and Sobel that

for k=2, the infimum in (4.2) is attained for 0=1/2, and that, for a fixed

k, the value 9, at which the infimum takes place tends to 1/2 as n+=.

However, in general, the value of  for which the infimum takes place is

not known. When 0,=...=8, =8, P{CS|R} can be written as a polynomial of

degree nk in 0. Let

nk .
(4.3) P{CS|R} = q (8 = ] ci(k,n,d)o1 .
2 ? i=0

The minimum of Qk n d(0) is attained for some 00, 0 <@

49, -
de'e=0,

0 < 1 for which

0. Nagel (1966) has evaluated the coefficients ci(k,n,d) numerically

for k=2(1)7, n=2(1)7 and d=0(1)n-1. It is found that the first derivative is

of the form :

(4.4) 4. (00-01% 1)

where T(0) is a polynomial in 0.

it o ot

The computations showed that Q(8) may have

several minima in {0,1). A table of Q values is given for a few selected

values of k and n.

b AL AR 5

Gupta and Nagel (1971) have constructed a rule R0 for the above binomial

problem which overcomes the difficulty of finding the infimum of the probability

of a correct selection. Their goal is to

=Sy i 2

construct a just rule such that
pw(cis) = P* for all w e @

0’ where Qo={g;93(9,...,0)}. It is clear that
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this goal cannot be achieved with a nonrandomiz;d rule, because when
w=(0,...,0) or w=(1,...,1) the observations will be x=(0,...,0) or x=(n,...,n)
with probability 1, requiring the use of individusl selection probabilities

p; (x)=P*.

The joint density for w € Q, is
k k
: nk ) n
(4.5) £ (xpxps o) = (1-9) exp[(% x;) log v Ill ("1)

k
We see that T = ] X. is a sufficient statistic for 9. Since we are
i=1
interested in symmetric rules R it is sufficient to know one of the individual

selection probabilities, say, Py From Lemma 3.1 it follows that
(4.6) E(pk(le) =P* for T=0,1,...,kn.

The requirement that R be just leads to

<
A

x., i=1,2.,,,.k-1
-1

4.7 = B (X Xge X)) S P (Y YY)

Yk Z %

Figure 1 shows the partial ordering induced by (4.7) among the observation
vectors for the case k=3, n=2. The indiviaual selection probability
P3(x1'x2’x3) defines a just rule if its values are nondecreasing in the
direction of the arrows. Because of symmetry only one of the two permu-
tations (x

l,)(2,x3) and (xz,xl,xs) is plotted. The numbers underneath the

observation vectors denote the corresponding T values.

o

s

.
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Figure 1. Partial Ordering for Binomial

Observations k=3, n=2.

The conditions (4.6) and (4.7) do not determine a rule uniquely.
Gupta and Nagel have proposed the following rule RO:

1 if X > ¢

T
(4.8) Py (X) = o if x = o
0 if Xy < ep

where p = o(T,P* k) and cp = cT(P*,k) are determined to satisfy
(4.9) E(pk(£)|T) = P(X, > chr) + pP{X, = ch e P* .

The conditional distribution of Xk given T is hypergeometric:

@ (k-Dny
(4.10) PX, = i[T} = —1-—-?:—‘— :
)
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Let ZT have the same distribution as xk given T. Then (4.9) becomes
(4.11) P{ZT > cT} + pP(ZT = cT} = p»

and the constant <r is smallest integer determined from the inequalities

4.12) P(ZT > cT} < P
and
(4.13) P{ZT > CT) > p*

From (4.11), we have

p* - P{ZT > cT}

(4.14) o e

It has been established by Gupta and Nagel (1971) that the above rule
RO is just. They have also tabulated the values of r and p for k=2,3,5;
n=5,10 and P*=.75, .90, .95, .99, in each case T going from 0 to nk.

Since T takes on the values 0,1,...,kn these tables become very
extensive for large values of k and n. Therefore it is desirable to find
approximations for c,

r and p. The normal approximation for the hypergeometric

distribution gives good results when n is large and T i1c not extreme (close

are p = % and g2=1kn-T 2'1)
{(kn-1)k

respectively. Using the fact that asymptotically ZT is N(u,oz), we obtain

to 0 or kn). The expectation and variance of I,

approximate value ET given by &T = [%-* w-a o'l(P')] where ¢°! is the
inverse of the standard normal cdf and [x] is the integral part of x. For
p we get the approximate value ; = ET + 0.5 - (p - o@-l(P')). The exact and

approximate values of q and p have been compared by Gupta and Nagel for

TN e Astnna, % &
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k=2,3,5,10; n=5,10,20; and some selected values of T and P*. The results
show no change in the values of r and ET and only small deviations in the
values of p and p.

The nonrandomized version Ra of RO' namely, R'

0 Select n, iff x. > ¢
i i -

T b
is conservative in the sense of meeting the basic probability requirement.

' Ky .
However, RO may not be just and it selects large subsets if the Oi's are

close to zero or one. A comparison of RO and R is difficult because

inf PN{CS|R] is not known in the case of R. Since it takes place near
Q

veis bl e

9 = %3 the P*-value for R0 has been chosen by Gupta and Nagel to satisfy
Pw(CSIR} = P* with w = %5%,...,%0 which makes the comparison slightly more

favorable for R. Under slippage configuration (0,...,0, 0+8), the numerical
computations show that Ro yields better results for small values of &, while
R 1s better for large §. Hence RO should be applied if small differences in
the success probabilities are expected. This advantage of RO becom:s more
evident in the case of equally spaced configurations, where almost surely
more than half of the populations will be retained in the selccted subset

if the number of observations is increased indefinitely, whereas R will
eventually select only the best one.

Gupta and Nagel (1971) have studied rules similar to R, defined by
(4.8) for the problem of selection from Poisson and negative binomial distri-
butions. The case of Fisher's logarithmic distributions has been discussed
by Nagel (1970).

In connection with selection from discrete populations Nagel (1966)
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n i+d k<1
(4.15) A= ] oa (] a)"
i=0 j=0
under the condition
¢ n
(4.16) ) a, =1,a >0¢fori=20,...,n.
i=0 * 1T
' Setting
. i
(4.17) A = jZO a, 1=0,...m3 Ay =0, i <nj A =a,i>n,
we have
n
(4.18) A= iZO (Ay = Ay 1) ALy -

For d = 0, it has been shown that the minimum of A is given by

1 k-l
(4.19) Am'm (k,n) = F + T—an .
If b, = k-1)/K5" %1 then
1/k-1
-+ = - ./
(4.20) Ao (nel) = b /(A (K,n)) .

A
min

can be handled using the results for d = 0 case.

(k,n) has been tabulated for k=2(1)8 and a=1(1)25. The case of d > 0O
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S. Selection Procedures for Multinomial and Multivariate Normal Distributions.

I. Multinomial Case.

k
distribution with § p. = 1. Let X) 2 Xgsns )X
=1 ! 2

be the respective observa-

tions in the k cells of the distribution with

— ] R

|

|

|

|

l Let PysPys-- 5P be the unknown cell-probabilities in the multinomial
l X; = N. Let the ordered
|

i cell-probabilities be given by p[I] < p[Z] i"'i.P[k]' For selecting a

, subset of the cells containing the cell associated with Plk]’ Gupta and

Nagel (1967) proposed and investigated the following procedure

Rl: Select the cell with observed Xy iff

(5.1) xi 3_max(xl,...,xk) -D

where D is a given non-negative integer. Using this rule the probability of

a correct selection 15 given by

5. P{CS|R,} = F(k,N,D;
(5.2) {C I 1} ( P[I] P[k])
. N! V1 Yk
ot vl Pl Py
1
vi:yk+D

i=1,2,...,k N
Then the following lemma can be established.
Lemma 5.1, (i) If the sum p[i] . p[j], 1 <i<j <k, 1s kept constant,
P{CS|R1} decreases as we pass from the configuration (p[l]""’p[i]""’

p[j]""’p[k]) to (p[I]""’p[i] - e,...,p[j] + e,...,p[k]) where

O e lPhy
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(ii) If the sum p[i]'* p[k],-l < i < k, is kept constant, P{CS|R1}
decreases as we pass from the configuration oo sPrigseces to
(p[l}""’p[i] + e,..R,p[k] ~ €) where 0 < g'f-P[k]'

By using this lemma, the following theorem is obtained.

Theorem 5.1. Let p be the smallest integer such that p[u] > 0 and let v

be the largest integer such that p[v] < p[k]. Then,rfor a configuration
. minimizing P(CS{RI), p > v. In particular, if ur= k-1, then u > v.

As a consequence of the avo.> theorem, we have

(5.3) inf P{CSIRI} = min (; win F(k,N,D; (0,...,0,s,p,.--,p))
. Q r=2,...,k TP <

where s = 1 - (r-1)p and Q is the space of all configurations of Pys-- Py -
For the purposes of computations it is not necessary to consider the
cases where r < k, when the problem is alrcady solved for all smaller values
of k for the same N and D. In other words, we need consider only vectors cf
the type (s,p,...,p), s =1 - (k-1)p. On the basis of numerical evaluations

of F(k,N,D; (s,p,...,p)) done for D = 0(1)4, k = 2(1)10 and N=2(1)15, it was

found that the minimum over p tock place either for p = %—or for p = F%T
except in the case of k = 3, N = 6 and D = 4 for which the minimum was attained
in the interior of the interval (% , ;%T).

Consider the configuraticn (p,...,p,Ap), A > 1. For any D, the expected

subset size is given by

(5.4) E(S) = Z Nt
Py !

~
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where Bv = number of vi's 2 Viax - D The probability cf selecting a

Taoles have been provided

non-best population is given by ES) :TELE§251.

by Gupta and Nagel (1967) for the values of P{CS}&l}, expected proportion

of cells selected and the probatility ¢f seleciing a non-best population

corresponding to the configuration fp,...,p,Ap}, A > 1 for k = 2(1)10,

N = 2(1)15, A = 1(2)5 and Y = ({{i1)2. Ancther table gives the minimum D

such that inf P{CSIRI},i P* for k = 2(1)10, N = 2(1)15 and P* = .75, .90.
0

For selecting a subset containing p[l]’ Gupta and Nagel investigated

the rule R2 which selects thz cell with observation X iff
(5.5) X :_mln(xl,...,xk) + C

where C is a given nun-negative integer. In this case the probability of a

correct selection is given by

(5.6) P{CSlRZ} = G(k,N,C; p[ll,...,p[k])

N1 Y1 v
u;eN VT ! Py Pk

vj 2 vy, j=1,...,k
The following lemma ha: been proved.

Lemma 5.2, (i) If the sum p[i] + p[j], 1 <1i<j <k, is kept constant,

P{CS]Rz} decreases as we pass from the configuration

(p{l]""’p[i]""’p[j]""’p[k]) to (p[ll""’p[i]'c""’p[j]*e""’p[k])
where 0 < g < Piij:
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(ii) If the sum Pray * Prip’ 1 < j <k, is kept constant, P{CS|R2}

decreases as we pass from th fi ti sreesPrsyscees t
p e configuration (p[ll p[J] p[k]) o

(p[l]¢c,...,p[j}-e,...,p[k]) where 0 < ¢ f_p[j].

As a consequence of Lemma S.2 the following theorem is obtained.

Theorem 5.2. P(CS]Rz} is minimized at a configuration (P[l]""'p[k])
given by (p,...,p,q), vhere q =1 - (k-1)p, 0 < p < %n
Numerical evaluation of G(k,N,C;p,...,p,q) for k = 2(1)10, N = 2(1)15
and C = 0(1)4 show that the overall minimum is given by the configuration
(%3...,%0. For the configuration (p/A,p,...,p), A > 1, tables are available
for the expected proportion, P{CS|R2} and the probability of selecting any
fixed cell with probability p for k = 2(1)10, N = 2(1)15, A = 1(2)5 and ¢ = 0(1)2.
As we have seen above, Gupta and Nagel procedures are based cn a fixed sample
size. For the problem of selecting the cell with p[k], Panchapakesan (1971)
proposed a procedure R3 which is based on inverse sampling. Observations are

taken one at a time until the count in any cell reaches a given number M. Let

Xps Xgsee Xy be the cell-counts at termination. Then R3 is defined as follows:

R3: Select the cell with count x, iff

(5.7) x; >M-D

where D is a non-negative integer. For the rule R3 the probability of a
correct selection is given by
k-1

(5.8) P{CS|R;} =1 - ] L

a=1 @

where

e
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M(v, +...+y )! v v
1 k-1 1 k
(5.9) La ® 2 vilooov ! p[lj T p[k]’
1 k
the summation being over the set of values of VpseeeaYy such that

vucM,O :-Vk < M-D-1 and 0 :-VB <M-1,8=1,...,k-1; 8 # a. This multiple

sum can be expressed in an integral form and we get

(5.10) P(CS|Rg} = 1 - LLLMMD) o
[rm1ry ©

where M' = M-D,

k-2
M-1, M'-1
(.H1 Yi ) Yk
(5.11) T = [ ... s dy,...dy
a k-1)MsM* k-1
3l 35 (1+y1+..,+yk_l)
o, %

and $; = p[i], i=1,...,k.
It Las been established by Panchapakesan that the statement of Lemma 5.1

holds in the casc of R and hence that

3’

(5.12) inf P{CS}Rs} = min (, min ;| F(k,M,D; (0,...,0,5,p,...,p))
Q r=2,...,k;ip <;.—1-

where 2 is the space of all configurations of the cell-probabilities, r is the
number of positive cell-probabilities in the configuration
0,...,0,5,p,.-.»p), 0 < s <p, and F(k,M,D; (0,...,0,s,p,...,p)) is the
probability of a correct selection for this configuration. Subject to the
condition that s + (r-1)p=1, it has been shown that, for every fixed r,
P{CS|R,} increases in p and hence

(5.13) inf P{CS|R3) = min F_(k,M,D)
r
1 r=2,...,k
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where Fr(k,M,D) denotes the probability of a correct selection for the

configuration (0....,0,1

that Fr(k,M,D) is monotonically decreasing in r.

(5.14) inf P{CS|R3} = F, (k,M,D).
Q

For R3, the number of observations (n) is a random variable.
and asymptotic expressions for E(n) corresponding to the configuration
°l =,..= ¢k = % are written down using earlier available results.
results have been obtained for the special case k=2.

For selecting the cell associated with p[k]. Nagel (1970) constructed a
symmetric rule based on N observations, which yields a minimum of PCS when
the cell-probabilities are equal and which maximized PCS for the configura-
tion (0,...,0,0+8) where § > 0 and k6 + § = 1.

rule which selects the cell with observation Xy with probability P; where

1 if x. > d
i
(5.15) p; = p if xg = d
0 if x. < d
i
where d > 0 is determined from
IN N N N-i
(5.16) G L) G- < pr
i=d+1

and

N .
(5.17) " L G =N s e

T %). It has been recently shown (unpublished)

Exact

Specific

His rule R, is a randomized

36
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It follows from above that

N .

P - T ) aenM?

(5.18) b = i=d+1 -

(k-1)""
II. Multivariate Normal Case.

R Selection problems for multivariate normal populations have been

investigated when the populations are ranked in terms of (i) generalized
variance (ii) distance function and (iii) multiple correlation coefficient. :

In the following discussion of these investigations, we assume that Tiseees™y

are independent p-variate normal populations, where LA has mean vector LA

and covariance matrix Zi(i =1,2,...,k). Let Xi.0 3

1
1 0
of size n of vector observations from LA and Si = — 2

»2,...,N, be a sample

- - 1
-1 (e X3) (Xg4m X))

(a) Selection in terms of Generalized Variance, |£|. In this case Vi and

I, are unknown. For selecting a subset containing the population associated

with the smallest |£i|, Gnanadesikan and Gupta (1970) studied the following

o o Mllanade OF kb e,

rule R, based on the sample covariance matrices Si’ i=1,..,n

R: Select the population LI iff

I T

1

(5.19) Is;1 <2 I8lgin 1

where |S| . = min(|S,|,...,|S, |) and 0 < ¢ < 1. It has been established that 3

. min 1 k - 5
g

(5.20) inf P(CS|RY = PIY, < 2Y.5 § =2,...,k) , H

Q - H

"

where Yi(i i,...,k) are k independent random variables, each being the

g

product of p independent factors, the rth factor being distributed as a

el

chi-square variable with (n-r) degrees of freedom.

A T

i
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The exact distribution of Yi is unknown except when p=2. In the

case of p=2, we get inf P{CSIR} = P{Z1 :_-l~ Zj; j =2,...,k} , where
Q Ve

Zi’ i =1,...,k, are k independent random variables each having a chi-

square distribution with 2(n-2) degrees of freedom. If, further k=2, then
cl/2 is the 100(1-P*) percentage point of an F variable with (2n-4, 2n-4)
degrees of freedom.
When p > 2, one can use Hoel's approximation for the distribution
of Yi in (5.20) or use the approximation of log x2 by the normal distribution.
Some study of these approximations were made by Gnanadesikan and Gupta.
Further, the performance of the procedure R was studied in terms of
risk functions using three different loss functions. If the ordered
generalized variances are denoted by ‘xl[l] :_Itl[zl <. :_lzllk], the

different loss functions that were considered for the loss incurred by

including the population whose generalized variance is Ei, are:

) L) = fzl/dzly - e

(ii) LZ(Xi) (Rank of the population “i)/ﬁlgil), where the ranks increase

along with the generalized variance, and,
(iii) L3(Zi) = % , where S is the number of populations included in the subset.

The computations of the risk functions associated with the above loss functions,for p=2,
k=205, |t} lel gy - 4272 uhen a = 1.2(.2)2.0(.5)3.0, n = 3(1)7 and
P* = .75, indicate that E(Lz) and E(LS) are sensitive to changes in the values

of the parameters and are decreasing functions of a and n. In the case of

E(Ll)’ it increases in the range of values of a considered when n=3 and, for

o

.

[T

]
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other values of n, it increases up to a certain point and then decreases as

a increases. This lack of monotonicity in the behavior of E(Ll)‘ as the

'best' population moves further away from the other populations, and the
difficulty of its interpretation render E(L,) less suitable than L, and
LS' Comparing L2 and LS' due to the eas¢ of interpretation, L3 would be
more appropriate as the criterion of performance of the procedure R. Finally,
the procedure R is shown to be monotone.

Suppose we consider a partition of the p variables into two sets of
q, and Q, components, respectively, where q, *+q, =p. The corresponding
partition of ti is denoted bty

(i) (i)
In 12

zi = i= l,...,k.

1) ;)
21 L22

Here we assume that zi, 251). é;) are all positive definite. We are

interested in selecting a subset containing the population associated with

the smallest lzil/lz(1)| s |2(1) Z(l) 2(1)- (1)| = 0., say. In other

words, if we consider for each population the conditional distribution of

the q, set when the qQ, set is fixed, then our criterion of vranking is the
conditional generalized variance. If the observations are taken on the
variables of the q, set, holding the variables of the q, set fixed, then

the problem reduces to selection in terms of the generalizesd variance for

the conditional normal distributions with dimensionality q,, & problem solved
by Gnanadesikan and Gupta (1970). Let us consider the unconditional case in

which all the p variables are random and observations are taken on all of them

Ay ,%qf%
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and use o, as the criterion for ranking. Then consider the partition of the

sample covariance matrix Si denoted by
1) @)
it S
S, = .
i
(1) (i)
S0 S22

. . -1 L.
D s s 750 | Gupta and Panchapakesan (1969a)

studied the following rule R*' for selecting the population with smallest o -

We compute s; = Is

R': Select LA iff

lt-

(5.21) s <

i + m1n(sl,...,sk)

[ ¢]

where 0 < ¢' = c'(k,P*,n,ql,qz) < 1 is chosen to satisfy the P*-condition.

It is shown that

(5.22) inf P(CS|RY = f3 [1 - G(e'x)]* Ha6x)
Q

where G(x) is the cdf of a random variable which is the product of q,
independent x2 variables with degrees of freedom n-qlol, n-q1-2,...,n-q1-q2,

respectively.

(b) Selection in terms of distance function.

Suppose the mean vectors u; are unknown and Zi = L(known) for all i.

' -
Let A, =, I 1 u;, the Mahalanobis distance function of the population «,
. vo-1 s P
from the origin. Let yij = xij L xij’ j = 1,...,n; 1 l,...,k. Then

[k THERINY

£AT
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n
Yy * I yij has the non-central x2 distribution with np degrees of freedom
i=1

t

and non-centrality parameter xi = nAi. We are interested in selecting a

subset containing the population with the largest Ai. Gupta (19665) proposed

and studied the following rule R.

R: Select the population L iff
(5.23) yize max(yl,...,yk)

where 0 < ¢ = c(k,n,p,P*) < 1 is determined to satisfy the P*-condition.
The probability of a correct selection is given by

k-1
(5.24) Plcsir} =[S m F, (O, ),
0 a1 My © M k]

where A'[l] :_A'lz] 5,..:_x*[k] are the ordered A' values and Fx,(x)

denotes the distribution function of a non-central x“ variable with np
degrees of freedom and non-centrality parameter A'. Since {FA'} is stochas-

tically increasing in A', .
. X . o k-1 .x
(5.25) inf P(CS|R} = inf [ F.T° (D) dF,,(x) .
Q A'>0

Gupta showed that, for k=2, the integral on the right hand side of (5.25)
is non-decreasing in A' and hence the infimum takes place when A'=0., Thus,

the constant ¢ satisfies the condition E

(5.26) [ 6, d6 (x) = p*
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where Gm(x) is the central x2 distribution with np degrees of freedom.

For selecting the population associated with A'[I]' a similar procedure

was studied, namely,

R': Select L iff
(5.27) Yy <b min(yl,....yk) ,

where b = b(k,n,p,P*) > 1 is determined so as to satisfy the P*-condition,
In this case, ws obtain

(5.28) inf P(CS|R} = inf [3 [1-F,, €91 MaF,,(x) .
Q A'>0

The integral is shown to be monotonically increasing in A' for k = 2,

For the procedures R and R' defined above Gupta and Studden (1970)
established the monotonicity of the integrals appearing in (5.25) and (5.28)
w.r.t. X' in the general case k > 2. They proved the following theorem for

that purpcse.

Theorem S.3. Let gj(x), j = 0,1.2... be a sequence of density functions on

the interval [0,«) and define

(5.29) £, = ]
j=0

For a fixed integer k > 2 and ¢ > 1, let

(5.30) 10) = f5 B (ex) aF, ()
and

® o Xak-1 .
(5.31) IO = [y [1-F, ()77 dF, (x)
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Let A denote the condition that, for each 2 > 0
L ]
(5.32) 1,2.0 m [{Gi*l(cx) - Gi(cx) }gz_i(x)

- ¢ gyex) {6 ja1 (X - Gl-i(x)}} >0.

Then, the functions I(}) ind J(2) are non-decreasing in A provided that the
the condition A holds. Further, both the functions are strictly increasing
in A if the condition A holds with strict inequality for some integer %.

As pointed out earlier, the condition (5.32) can be obtained from the
condition (3.9). In fact, Gupta and Studden verify in the cases of non-central
chi-square and non-central F distributions a condition which is stronger than
(5.32). Thi« stronger condition states that the sum of the terms in the left
hand side of (5.32) corresponding to i and 2-i, i = 0,...,[2/2), is positive
and this is same as the condition (3.12) for proper choices of h(x) and the
weight functions.

To be precise, Gupta and Studdern considered the case where Ei are all
not necessarily equal but known. With a slight modification, namely,

TS |

yij = xij L, xij’ we have essentially Gupta's procedures 2 and R'. They

also studied procedures when Z.'s are different but all unknown. In this
-1
Q

case, let z, = i; S, ii' Then, for the selection of the population with

the largest and smallest distance functions, the procedures studied are,

respectively,

R,: Select n, iff
1 i

(5.33) cz; > max(zl....,zk)

and

'
L4
T
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Ri: Select n, iff
i

(5.34) 2, 2 b min(zl,...,zk)

where ¢ = c(k,p,n,P*) > ! and b = b(k,p,n,P*) > 1 are determined so that
P*-condition is satisfied. It is known that z, is essentially distributed

as a non-central F variable, whose density is of t orm (5.29). Hence

Theorem 5.3 applies in this case. It is shown that sufficient condition

A is satisfied. Thus we obtain the equations to det{iline the constants c

and d, namely,

o k-1 .

(5.35) fo Foon-p (6%) dFp | o(x) =P

and

(5.36) 12 1-Fxlp1*t ar (x) = P* .
0 p,n-p p,n-p

Alam and Rizvi (1966) have also considered the problem of selection in
terns of distance function. For I, unknown, their procedure is same as that
of Gupta and Studden (which was originally studied in a technical report

issued in 1965) but the monotonicity of the integral involved is established

rather directly and not by obtaining a sufficient condition applicable to a
class of distributions including non-central chi-square and non-central F
distributions. Further, in the case of Zi known, Alam and Rizvi use the
procedure R1 defined by (5. 33 with 2i in the place of Si; in other words,
using the statistics z, = i; 1;1 ii' This is diffcrent from the procedure of

Gupta (1966b) and Gupta and Studden (1970), who have observed the undesirability

of using ii 2;1 ii in the sense that the constant evaluated subject to the

P*-condition is indeperdent of n.
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c) Selection in teru - " multiple corralation coefficient.

Let CH 2 91‘2‘.‘p te the multiple correlation coerficient between the
tirst variable and the rest in the population mi. Let 0 i-p[l] <0< p[k] <1
be the ordered values of the R Gupta and Panchapakesan (1969a) investigated
the problem of selecting a .ubset containing the popuiztion associated with

p[k] (or p[l])' Denote the sample multiple correlation coefficients by

- gfi)
Ry =Ri2..p-

Two cases arise:
(i The case in which xiZ""’xip are fixed, called the conditional case;
(i1) The case i.. which xiZ""’xip are random, called the unconditional case.

The following rule R has been investigated by Gupta and Panchapakesan for

the selection of p., 4.
°ik)

f: Select n ift
(5.37) R*? > ¢ max (Riz,...,Riz)

where R;z = Ri/(l-Ri), i=1,...,k, and 0 < ¢ = ¢(k,P*,p,n) < 1 is chosen
subject to the P*-condition. In the formal statement of R we do not make the

distinction between the conditional and unconditional cases.

Letting li = pz, i=1,...,k, the distribution of R{z is given by
.7 I *M+')Xj q+m
(5.38) u, (x) = 'EO F(q+m)j' (1-2) f2(qoj),2m(x)

in the unconditional case and by

o om,
. e {(m2)
639 0= IS Gy, m™)

in the conditional case, where

Lo

s~ Sl DTl
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(5.40) q= (p-13/2 , m = (n-p)/¢

and fr s(x) denotes the density of the F-distribution with r and s degrees
of freedom. It is easy to show that uA(x) has a monotone likelihood ratio
in x and hence the distribution of R"'2 is stochastically increasing in A,

Thus we obtain
(5.41) inf P(cs|R} = inf 7 U /o) du, ()
Q A

where U, (x) is the cdf ccrresponding to uA(x).
In the conditional case, the condition A of Theorem 5.3 is satisfied
and hence the infimum takes place for X = 0. For the unconditional case the

same result is shown by proving the following theorca.

Theorem 5.4. Let gj(x), j=0,1,2,... be a sequence of density functions on
the interval [0,=) and define

T(a+))

li 1-0% g.(x), x>0, 0<r<1
j=0 I'q) Sk j ’ - - )

(5.42) £, (x) =

For a fixed integer k > 2 and 0 < ¢ < 1, let I(A) and J(A) be defined as in

(5.30) and (5.31). Let B denote the condition that, for each integer £ > 0

2 (@) (@), .
(5.43) I oy (@6, (xle) - 6, (xlerg, s (0
Lo T i

-c'l(q+2-i)gi(x|c){G () - G _.(x)}]) 20

L-i¢l

where (a)_ = q(q+1)...(q+s-1) and Gj(x) is the cdf corresponding to gi(x).
Then, I(2) and J(A) are uon-decreasing in ) if condition B hcl¢s and the
two functions arc strictly increasing in A if strict inequality holds in condition

B for some integer £.
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ft can be easily verified that the condition B is satisfied in the

unconditional case. Thus, in either case, we get

® k-1

(5.44) i?f P(CS|R} = [ F (x/c) dF x) ,
0

2q,2m 2q,2m

whewve F2q,2m(x) is the cdf corresponding to f2q,2m(x)' Since the distri-

2

bution of R*" when X = 0 1is the same in both conditional and unconditional

cases, the constant c¢ used in the procedure is the same and is given by

® k-1 b
(5.45) g Faq.2m (/) dF50 5000 = P* .
When q and m are integers, i.e., p and n are odd, we can use

series expansion for qu 2In(x) and obtain formulae for computing ¢ for

specified values of q,m and P*, The final result is:

(5.46) P* = _.__I‘_(S:E)___
r(q)rm)(1-c)®
qk-1 (k-1) (n-1)

x I 7 D%
a=0 j=0

a+j

D)2 -1, 55 K(e,m,q,4,5)

a

where a(r,j) and K(c,m,q,a,j) are given by the following recurrence relations:

(5.47) 2(1,j) =

q(q*1)...(q*j-1), 1 <j <m-1.

and for r > 1

S

i e ot et e b B AN A
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"
1 j=a0
(5.48) a(r,j) = < min(m-1,j)
' 2 a(l,s)a(r-1,j-s) , 1 <j<rml).
s=max{j-(r-1) (m-1),0)
N
(5.49) K(c,m,q,a,j)
P
T'(m+ a+ j)T(q - a - j . . .
el R Ly m+a+j,a-a-3), a>a+]
m+q-1 2
I b entihel g, Q=]
£=1
T S
m+a+j-1 2 .
™ +a+ 3 - 1) (-l)l {1 - %3
=0 2 b-o-3*aq
Lfa+j-q
m+ o+ jo-1 a+j-q+l .
L PN q )V log ¢, qQ<a+)
where Ix(a,b) is the incomplete beta function.
For selecting the population associated with p[l]’ the rule proposed is R'
. W2 2
which selects s iff d R, — min R, where 0 <d = d(k, P*, q,m) <1 1is i
1<j<k }
chosen so as to sat fy the basic probability requirement. The constant d is
given by
(5.50) jm [i - F (xd)]k‘1 dF (x) = P*
0 2q,2m 2q,2n :

. ) . . 7 .
Since 1 qu’zm(xd) FZm,Zq(l/Xd)’ for a given set of ¢,m,k and P*, the
constant dJ of the procedure ®' is the same as the constant ¢ of the procedure
R with q and m interchanged. It can be shown that the proczdures R and R'

have the monotoni<ity property,
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Govindarajulu and Gore (1971) have discussed selection from bivariate normal
populations in terms of their product-moment correlation coefficient. If i
denotes the correlatizn coefficient in the population ni(i =1,...,k), then
te select a subset containing the population with p[k], Govindarajulu and Gore
have investigated the following two rules R 1 and R o based on the sample

ler
product oment correlation coefficients ry and the transforms i =73 log If?l
. i

(i =1,...,k), respectively, R, selects LY iff

(5.51) "r,> max 1, - h
1<j<k J

and Rz selects LA iff

(5.52) $; > max sj - h
1<j<k
where h > 0 is chosen so as to satisfy the P*-condition. It has been shown

that, for large n, h satisfies
(5.53) P(Ui <h Mm/2,i=1,...,k-1) = p* ,

where the Ui have a multivariate normal distribution with E(Ui) =0,

V(Ui) =1, E(Ui Uj) =1/2, i # j. If we are interested in ranking Ioil, then
the procedure suggested is to select w, iff |r,| > max Irjl - h, where large
sample solution of h is given by (5.53). It is to be noted that ranking in
terms of |pi| is really a special case of ranking in terms of multiple correla-

tion coefficient investigated by Gupta and Panchapakesan (1969a).




6. Distribution-Free Procedures.

In this section we discuss a non-parametric procedure for selection in
terms of quantiles of a given order based on order statistics and some pro-

cedures based on ranks and paired comparisons.

(a) Sclection in terms of quantiles.

Suppose LA (i=1,...,k) is a continuous population with distribution
fuaction Fi whose form is not known. It is assumed xa(Fi) is the unique
a-quantile of the distribution F.. Let F[i] denote the distribution with the
its smallest a-quantile. The problem of selecting a subset containing the
population with the largest a-quantile has been studied by Rizvi and Sobel
(1967). Their formulation of the problem requires the P*-condition to be met
for the set Ql of all k-tuples (Fl""’Fk) for which F[k] is stochastically
larger than any other population.

For ¢ <a <1, we take n sufficiently large so that 1 < (n+l)a < n and
define a positive integer r by the inequalities r < (n+l)a < r+l. Then the
procedure R1 = R1(c) proposed by Rizvi and Sobel is defined in terms of a
positive integer c(1 < c < r-1) and the order statistics Yj,‘ where Y’,i

denctes the jth order statistic from the population F.1 based on n independent

observations.

RI: Select Fi iff

6.1) Y .> max Y

r,i T 1<j<k r-c,j

where ¢ is the smallest integer with 1 < ¢ < r-1 for which inf P(CSlRl} > I,

Q
1
For any a and k, it may happen that a value of ¢ < r-1 does not exist
k-1 . X
for some pairs (n,P*). However, if P* <P, = (:) )) (-n?! (k;l)/(“(;+l)), then
i=0

a vaiue of ¢ < r-1 exists and is unique., The value of ¢ has to satisfy
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s
é 6. (u) d6_(u) > P

(6.2)

where Gr(u) = Iu(r, n-r+l) 1is the standard incompirete beta function.

It has also been shown that E{SlRl} is maximized in Ql when the popu-
lations are identical., Further, we let PA denote the configuration with
e[k] - e[i] = A(i=1,...,k-1) under the assumption that F[i](x) = F(x—e[i]).
Let n,(e) be the approximate sample size (obtained by using asymptotic theory

of quantiles) required to satisfy

(6.3) E(S|R,, PYclee.

Similarly nz(e) denotes the sample size required to satisfy (6.3) when we

use the procedure R2 based on sample means §i(i=1,...,k), which selects the
population corresponding to ;i iff x, > lg;fk X. - & where 6 > 0 is chosen
to satisfy the P*-condition. Then the asymptotic relative efficiency of R1

relative to R2 is defined by

(6.4) ARE(R,,R,) = 1im [n,(e)}/n, ()] .
1’72 2 1
e>0
For a = %- and no—mal shift alternatives with o =1, ARE(RI,RZ) = 2/n. Again,
for « = % and two~-sided exponential shift alternatives with continuous symme-

tric densities about the median value Bi, ARE(RI,RZ] = 2.

Desu and Sobel (1971) have discussed non-parametric procedures for quantile
selection under a modified goal of selecting a fixed-size subset which is described
elsewhere in this paper. Barlow and Gupta (1969} investigated the quantile selec-
tion in certain restricted class of distributions and this is also discussed

elsewhere.
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(b) Paired comparisons procedures.

In the paired comparison approach, we compare all the k(k-1)/2
possible pairs of the populations Tyoeeen™y and we have n replications of

each comparison. For i, j=1,...,k; ifj and y =1,...,n, let

6.5) X, . =
0 if v, + w,
j i
where LI "5 means that L is preferred to "j'

It is assumed that the ties are not possible. Let

. ... = = ¢.. d P{X.. = ¢,. =1~ ¢.. .
(6.6) P{XIJY 1} ¢IJ an {XIJY = 0} ¢]1 1 ¢1J

The score a, of the population =, is defined by

n n
(6.7) a, = ) a._= ]}

vhere a; denotes the (partial) score of v, in the yth replication. It

k k
is easy to see that ] a; = k(k-1)/2 and L a; = nk(k-1)/2.
i=1 i=1

It is assumed that the preference probabilities ¢ij satisfy a linear model.

To be specific, let 6, be the true "merit" of " when judged on some
characteristic. Let yi(i=1,...,k) be the observed merit of ", on which the
comparisons are based. Suppose that L “j if y; > yj and “j L other-
wise, Then the preference probabilities ¢ij are sajd to satisfy a linear medel

if ¢ij = P{yj - yj >0} for all i and j can be expressed as H(ei-ej),

where H(x) 1is a distribution function on the real line with H(-x) = 1 - H(x).

A et A e B,

b
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Under the above linear model, Trawinski and David (1963) proposed the follow-
ing rule R based on the score a; for selecting a subset containing the popu-

lation with the largest ei.

R: Select n. iff a, > max a; - v,
1<k I

where v = v{(k,n,P*) is a non-negative integer to be chosen so as to satisfy

the P*-condition. Under the linear model, it has been shown that the least

favorable configuration is given by ¢ij = 1/2 for all i and j(i#j) and

is denoted by C(1/2). Thus v is the smallest integer for which
(6.8) P(CS|R;: C(1/2)} > P+ .

Trawinski (1969) obtains an approximation for E{S|R} in terms of (k-1)
variate normal distributions and transforms these into more numerically tractable
integrals. His approximation is obtained under a slippage configuratiow which

is specified by

(6.9) ¢ij

]
[
~
[ 8]
lag)
o
L]
e
-
s
|
[
-
-
=

'

[y
-

-
.
el
-

i ©
. R 1 1 1/2
and is valid whenever ¢ < 5+ 5-{k/(k¢1)} .

(c) Procedures based on ranks.

Let xij' j = 1”"’"1’ be independent observations from pepulation

LN (i =1,...,k) vwhose associated distribution function is Fx (x}. The
i

functior.al forms of FA is not known but it is assumed that (FA} is a

stochastically increasing family. All the observatiuns are pooled and Rij

denotes the rank of Xij in the combined scmple of N = ny oLy
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observations. Let Z(1) <2(2) < ... < Z(N) denote an ordered sample of size N

from a continuous distribution G such that - = < u(r) = EG(Z(r)) < @
(r=1,...,N), With each of thL.. ob-arvations xij associate the numbor a(R.1 3
and define
n.
-1t .
(6.10) H =n; 121 a(Rij), i=1,...,k.

Using the quantities Hi’ Gupta and McDonald (1970) defined the following three
classes of procedures for selecting a subset containing the pcpulation with
the largest ei:
RI(G): Select i iff Hi + d > max (Hi""’Hk)’ d>0
{6.11) R2(G): Select LA iff cHi > max (Hl,...,Hk), c>1

Rs(G): 3elect " iff Hi >D ,~® <D<,

All the three classes of rules are equivalent if R = 2. The following
theorem is established regarding the infimum of the probability of a correct

selection.

Theorem 6.1, For the procedures RI(G)' RZ(G) and R3(G)’

(6.12) inf P(CS|Ri(G)} = inf P(CS|Ri(G)}, i=1,2,3

Q ﬂl

where @ 1is the space of all configurations of 6 = (91,...,6k) and

. =) : 5
nk = {6 ¢ Q: Ty )lk] Further, for Rs(u) s
(6.13) inf PICS|R5(G)) = inf P(CS|R3(G)} ,

i 9 '
0
where QU = s Ufll = ... = le]}

e NS
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It shculd be noted that a result of the type (6.13) is not true in general
for RI(G} and RZ(G)' The procedures RI(G) (and their randomized analogs)
have been suggested by Bartlett and Govindarajulu (1$68) for continuous distri-
butionsdiffering by a location parameter. The procedures of the type RZ(G)
have been proposed by Blumenthal and Patterson (1969). For all these procedures
a result of the type (6.13) is not true in general. Rizvi snd Woodworth (1970)
have given counterexamples to show that the least favorable configuration is
not always given by the identical distributions case.

In the cases of RI(G) and RZ(G)’ Gupta and McDonald (1970) have obtained

bounds on the probability of a correct selection. It has been shown that

(6.14) inf P{H

n g 2V s igf P(CS|R,(G)} < igf P{H(\y > u)
and
(6.15) igf P{Hm > v'} < igf ?(cslnz(c)} < igf P{H(k) >u'y ,

where H(k) is the statistic Hi associated with the distribution F

{k]

and, u' and v' are given by

(6.16) ut = e Ak, B = n AL+ e(k-1)"1
and
-1 N
(6.17) v' = v (d,k,n) = (nc) I a(m),
r=N-n+1

N
where A= §  a(r).

r=}

For the particular casc where a(r) =, nHi = Ti’ where the Ti are
the rank-sum statistics. In this case¢ we denote Ri(G) by Ri' For this

special case, we obtain

e

sl OSSO R e, b MR




.
H
I
|
|

56
; (6.18) inf PICS|R,} > P{U < nd} ,

&
where U is the Mann-Whitney statistic associated with samples of sized n
and (k-1)n taken from two identically distributed populations. A similar

result is true for R2.

. As regards R3,

subset. A sufficient condition for selection of a non-empty subset is

we observe that R3 may not always select a non-empty

that P* be sufficiently large so that D < A/N. For large n, this sufficient

condition holds if P* > %u The constant D = D(k,n,P*) for th2 rule R3 is

found such that

(6.19) P(U<rP(k - 3) - n( - 2} > P+ .

Asymptotic expressions were cbtained for E(SlRl) and E(S|R3).

Assuming n, = n, for large n, the distribution of T' = (Tl,...,Tk)
Fs

1
is approximately multivariate normal with mean vector Mp = (ul,...,uk)

1

and variance-covariance matrix ZT' Let A be a (k-1) x k matrix given by

1 ¢ o0 0o -1

' 5 1 0 ... 0 -1
(6.20) A = i . . . . .

0 0 o 1 -1

Define W' = AvI, where Av is tiie (k-1) x k matrix obtained from matrix A

by moving column j to column j+1, j = v, v+¢1,...,k-1 and replacing column
L
v by column k. wvet u = A up 2nd zv = AvZTAv' Then we have the following

; theorenm.




Theorem 6.2. If X ‘1s non-singular for v = 1,.,. k; th

\Y]

k d d .
(6.21) E(S|R ) : )1 vai eee | exp [_(!y_gv). I

= - @

1
where K = [(Zv)]k'llzvi] 2 For Rgs

k
(6.22) E{S|R3} : v£1 ®[(u -D)/o ] .

Let ™ and 1©. be two normal populations with mean
respectively and a common unit variance. The asymptotic r

of R, (which is equivalent to R2 and R

1 in the case

3
relative the rule R based on sample means (see Section 2

(6.23) ARE (Ry,R;0) = {[20(271/%6)- 11/26B(s))
where
(6.24) B2(0) = [ o°(x+6) o(x) dx - ¢°(2 /%

-0

We see that I}m ARE (RI,R;G) = 3/% .
840

In the case of two exponential distributions Fe (x)
i
where 6, =1 and 6, =8 >1, asimilar comparison of

by Gupta (1963) for gamma populations yields

(6.25) ARE (R,,R'30) = [(6-1)/4(0+1) B, (6) log
wher=
(6.26) Bee) = 1-2(1+0) + (20417} 4 B(240) "

In this case 1lim ARE (R,,R';0) = 3/4.
ol 2
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en

1

k
(W-u)/2] T dw]

i=1
1#v

s 0and 6(> 0)
elative efficiency
of two populations])

) is given by

)

-x/ei
=1-e x>0),

t
R2 and the rule R

=262 (l+e)'2.
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Sume exiact oy o1 ons ot the provedures Rl’ Rz and twd other procedures

were made it cise ot three independent exponential populations by McDonald

(19698) . Procedures similar to Ry» R, and R; were studied by McDonald (1969b)
. oL - i )

by taking L £ “Lj where Rjj is the rank of xij among

le, XZj""’xkii The results for the probability of a correct selection are

very similar to those discussed above, In another paper McDonald (1971) has

discussed some methods of approximating the constants required to implement the

procedures R1 anc  R..

(d) Selection ir terms of measures of association.

let Fi(w,y) denote the continuous distribution function of
ni(i = 1i,...,k}), a set of k bivariate populations and T denote the rank

correlaticn coefficient for population LI Let (X, .,Yi j), j=1,...,n
3

i,j
and i =1,...,k be n independent observations from each of these populations.
The rank Rij of ij is the rank of its associated X value among
xil""’xin' The sample rank-correlation coefficient is given by
n n
6.27) T, = (M7 I }  sign(R..-R,.,), i=1,....k .
. l z -i . j| l;' 1J| 3 » »

For selecting a subset containing the population with the largest +t, Govindarajulu

and Gore (1971) proposed the following tule R.

R: Select n iff

{6.28) Ti > max T, - h .

Tagik

Using the normality of the Ti and assuming a knowledge of the structure of

xij and Yij (which implies ine same sign for the correlation between any two
X's) they have obtained a lower bound on P{CS|R} which is used to obtain a oy

suitable value of h. In tue absence of any information on the strcture of xij
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and Yij’ an approximate value of h is found by using certain consistent
estimators of the mean and the variance of the asymptotic distribution of T,
For sufficiently small CH the asymptotic efficiency of the procedure R
telative o the procedure Rl defined by (5.51) based on product moment
correlation coefficient is found to be 9/ﬂ2 when the unierlying populations

|

|

! . are bivariate normal. For the p-variate case (p > 2) some suitable measures
| of association have been discussed by Govindarajuiu and Gore.

]




7.  Sequential Procedures

Barron and Gupta (1970) investigated a non-eliminating sequential rule,
for selecting from k independent normal populations with unknown means
el""'ek respectively and a common known variance 02, a subset containing
the population with the largest 6,. The rule is non-eliminating in the
sense that, though the rule selects and rejects populations at vrrious stages,
observations are taken from all the populations until the final decision is
made. The ordered 6, are denoted by 0[1] <0 2 e[k] and it is assumed
that the successive differences between the ordered ei are known. To select
a subset containing the population with elk], the procedure  investigated
by Barron and Gupta is described below.

We take one cbservation from each population denoted by Xy oXgsents Xy

For each population LA define

[ 1 if x, > x - do
i = "max
(7.1) Yil =
0 otherwise ,
where Xnax - max(xl,...,xk) and d 1is given by
= k-1 e
(7.2) } ¢ (x+d) de¢(x) = P* .,

Then we draw a second set of one observation from each population and define

Yiz(i=1""’k) similar to Yi Continuing in this manner, after the mth set

x
of observations are drawn, we have Yim’ i=l,..., k. For each population LA

b4

we define

m
(7.3) S, = ) Y.




6l

We have a pair of saquences of real numbers nny c'((bm}'{cm)) such

that for all m 21,
(i) b _<b
(ii) b <c¢

(iii) 1lim bm = ®

(iv) P( N [bm < 8§,

im < cm]} = 0 for all i=l,..., k.
m=1

The sequential selection procedure is now defined.

# : Tag population =, i=l,...,k, at the first stage m > 1 such that
3 " 1 " kad t L1 B
Sim [4 (am,bm) and mark it "rejected" if Sim < am and "accepted" if
Sim > bm' Continue sampling from all k populations until each has been

tagged; then accept those marked "accepted" and reject those marked ''rejected’.

The following observations are made at the outset. For any

m, P{Yim =1} = p; and P(Y, =0}= l-p, where

@ k

(7.5) p; = j-, [j£l¢(x+d+(e[i]~e[jl)/o)]d°(x). i=1,...,k.
. j#L

Also Y. ., Y..,...,Y, are independent and S, is distributed as a binomial
il i2 im im

random variable with parameters m and p;- Let "(r) denote the population

with mean & . Define
[r]

a; (m)

ai(m'"b,c)

ri(m) z ri(m'"b,c)

P accepting (i) at stage m|J(nb.C)},

P rejecting (i) 8t stage mIJ(nb,c)},

e~ 8

°_§°

ai(nb c) -
’ m=1

a (m and ri(nb,c) = rom -,

Ju—

R T O]
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where .(nb c) is the procedure using the pair of sequences My o When there

T R GRS R——
*i
—— o

is no ambiquity, JAn) is used for JKnb.c).

Definition 7.)l. Let n -((bm}, {cm}) and n'-({b&},{ca}) be two pairs of

é . sequences satisfying (7.4). The sequences {bm} and {bi} are said to be

pairwise ordered iff bm :_bé for all m > 1. This relation is denoted by
i

{bm} < bé}.

Definition 7.2. The pair n is ordered w.r.t. n' (denoted by n<n') iff

e T APl 111" b
-

{bm} < {bé} and {cm} < {cé}.

Definition 7.3. A class of pairs of sequences satisfying (7.4) is said to be

gy ot

ordered if for all r,n'e either n<«<n' or n'<n.
The following two theorems have been established by Barron and Gupta.

-; Theorem 7.3. If n' < 1 then ai(n') < ai(n) and ri(n') <‘ri(n),
i=1,2,...,k. In particular P{CS|s(n')} > P{CS|/(n)}.
Theorem 7.2. The procedure (n) is monotone and unbiased, i.e., aki ak-li e a1
and T, < T, i=1,2,...,k-1.

The rest of the investigation of the procedure o (n) has been accomplished

] by using the following class c1 of pairs of sequences. Let bm= 6m-yl, cm=6m¢yz
where 6 is a rational number in (0,1) and YeYs are positive integers.

i ' For YyeYs fixed, the class C1 is ordered in 6. For this class it is shown

that condition (iv) of (7.4) holds. If we set Rim = Sim -~ &m, for any n ¢ ¢,

the events [6m--11 <5y < 6m+Y2], [Sm3_6m+72] and [Sm < 6m-yl] are equivalent
to [-yl < Rm < 72], [Rm > yz] and [Rm :_-YI] respectively. By taking d§=t/s
where t and s are relatively prime integers with t < s, the problem of
evaluating the various probabilities and expectations is reduced to & problem

concerning a random walk on the line where the state space is all points of the

form (Ns-Mt)/s for all integers M > N > 0. It is now possible to relate it to
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a8 random walk on the space of integers. These probabilities and espectations
are not always easy to compute and hence some approximations and bounds were
obtained. We swrmarize the results below,

Theorem 7.3. For the sequential procedure o(n) where n =({ém-v},{{sm+y))

and 6=t/s>0
0 if p; < t/s

(7.6) lim a, (6,7) =

Y-H'E

8] =

if P; t/s

1 if pi > t/s

where p. is given by (7.5).

Theorem 7.4. Let m, = the smallest m > 1 such that (i) 1s accepted or
rejected and Mi = E{mi e J(n)}. Then, for the sequential procedure (n)
specified in Theorem 7.3,

(7.7) M, = Y/|pi~t/s|

provided v is sufficiently large and p; # t/s,

Numerical evaluations made for &6 = .75, vy = 3(1)10 and p; = .4, .6, .8, .9
indicate that the approximations are good for all the <y values chosen. The
approximation in the case of the probability of selecting the populations using
the procedure improves as Y increases.

There still remains the problem of choosing the two constants & and v .
Theorem 7.3 guarantees that for any choice of 6 ¢ (pk-l' pk)’ there exists a

y = v(§,e) such that for any ¢ > 0,

R

(i) 8 (&) 2

v
—
[
™
-]
3
(=%

<£’

(1) & (6,7 <




R

et B

.

regardless of the configuration of pl':pz e IRy and hence the
configuration of elll h 0(2]: e £ o[k]‘ Thus for a sufficiently small ¢,
the P*-condition can slways be satisfied by choosing an appropriate n ¢ ¢,
If we define S to be the size of the selected subset when the procedure

k
teminates then E(S) = Z ay <1+ (k-1) LARE Then we can replace (7.8) by
i=}

(1) a 78,v) > 1-¢ and
(7.9)

(ii) l1-e < E(S) < 1+(k-1)¢e
regardless of the configuration of the means 81, 62,,,,, Gk‘ The experimenter
has for any 6§ ¢ (pk-l’ pk) a countably infinite number of procedures n which
guarantee (7.9). Given two procedures n, n' € C1 which satisfy (7.9); the
procedure with the smaller expected number of stages is preferable in some sense.

If M= max Mi’ then the experimentor will want to use a minimax rule,
1<i<k

namely, an n which minimizes M over the subclass ¢, =¢ of procedures

satisfying (7.9). The following theorem has been established using approximate

value of M,

Theorem 7.5. For & ¢ (p_;» Py)s

( min Y1(5) for 6* < §
g6t SRy -
(7.10) min M = ¢ o
6 min szf%—-, for § < &
B<b<hw Py~ -
N

where 71(6) is the first positive integer such that 8 > 1-¢, yz(é) is the

first positive integer such that a, , <¢, 6" is the value of & such that




(3

7,(8) «v,(8) and  Te(p +p /2

A lemma shows that the approximate unique value 6&* {s given by

. (108[(1‘Pk_1)/(1'}’k)] £
‘ loglp, (1-p, _,)/py _,(1-pJT Prop * P 11
(7.11) & = ¢

1/2 , 1if Py * Pt 1 .

\

However, there still remains the problem of choosing a specific 6 if
§* 4 §. It has been found empiricaily by Barron (1968) that often 6&* = §,
so that the experimenter will not be "far'" from the minimum for any choice of
6 between & and 6*. Numerical evidence indicates that if § and 6* are
significantly apart, the minimum takes place near ¢&*. It seems an approxi-
mate minimax rule which has certain desirable properties would be (n*)
where n* = ({6* m-y*}, {§* m + y*}).

Some sample size comparisons have been made numerically between the proce-
dure (n*) and the fixed sample-size procedure of Gupta (1965) based on means

of samples of size n from the k population, which is denoted here by R(n)

and defined below.

. . . - do
R(n): Select L iff X 2 Xpax " 7%

where d is given by (7.2).

The comparison :as made with o = 1 under slippage configuration
6[1] = ... 4 e[k-l] = g, e[k] =9+ 1, 1T>0, and the equally-spaced configura-
tion 6[1] =0, 6[2] =28+ T,..., e[k] =08 + (k-1)1, * > 0. The follcwing ranges
of the values of k, 1t and P* were considered:

(i) Slippage configuration: k = 2(1)10, 25, 50; +t = 0.05, 0°10(-10)0-60,
1,2; P* = +75, -90.
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(ii) Equally-Spaced Configuracion: k = 2(1°5- 1 = (.05, 0:10(-10)0-60;
P* = .75, -90.
The empirical results indicate that oAn*) is preferable when the means are
close and R(n) is better when any one mean gets significantly larger than
the others.
Guttman (1963) considers a sequentigl procedure for a goal which is different

from the usual one. Suppose that ﬂi(i=l,.. ,k) has the density f6 (x) and
i

the quality of the population is characterized by hi = g(ei) where g is a
known function. Let Ti be an appropriate statistic based on a sample of n
independent observations in the sense that E(T) is g(8) or a monotonic func-

tion of g(8). Consider the rule R which selects I iff
a2 T
(7.12) Ty oy (P*, )

where “ k (P*,T) is a random linear set contyined in the sample space of Ti
and depends on T = (T,,..., T}) and is such tnat igf P{CS|R} = P*.

Since the size of the selected subset is random, a natural question is how
to proveed sequentially so that we could select one population as the best or
reduce the size of the subset selected subject to certain cost considerations
which res*vic*. the number of stages.

Let t denote the stage of the experiment and kt denote the number of
populations retained at the start of'the stage. If M units of capital are

available to spend on the procedure and at each stage a sample of n, independert

observations are taken from each population, let t, be the largest integer for
t

o
which | k nd <M where d is the cost per observation.
i=1
The sequential procedure proposed and investigated by Guttman (1963) is

defined below.
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R': At each stage t, use the‘rule R with P* = P* where
[ 5

P; =1- = adopting the fuilowing stopping rule:

[\ %]

At the end of stage t,

(1) Stop if t=rt.

(2) Stop if t < to and kt+ =1

1
(3) Continue if t < t, and kt+l >1 .
It has been shown that P{CS|R'} > B. Suppose that there is infinite capital.

e say that the rule R' 1is in state y if, at any stage t, we have kt =v .

The states form a Markov chain with non-stationary transition probtabilities

(7.13) P,y ° P{kt+l- a]kt =v}, l<as<y=k <Kk

Y t -

These are dependent on wy ’y (P;,Ij. We note that pYG =0 if y < a and
t

E pYu = 1. The following theorem has been established by Guttman (1963).
a=1

Theorem 7.6. Consider the Markov chain with the above structure. Let

Paa(t) =1 - Gu(t), 0 < Gm(t) <1 for a# 1. Then the Markov chain is absorbed

(- -]
1
at state 1 (i.e., R' terminates at a finite stage) iff 8§ (t) diverges for
t=1
all a# 1.

It might be possible to find a '"reasonable' value of n, in some special

. cases. Suppose that the expected subset size E(S) at stage t can be written
as a functienr of n_, k_, F* and the differences h,.,- h..,, i < j. Since
t e (517 (i} )
kt and P; are known, if we have information about the differences of the h[i]'

ve can set E(S) =1 and solve for n,.

R L
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8. Selection from Restricted Families of Djistributions,

There are situations where we do not know the actual functional forms of

the distributions F., i =1,....k, associated with the populations but have

some information about the class of functions to which they belong defined in

terms of a partini order relation with respect to a known distribution G.
Such families do occur in practical problems. In these cases the evaluation
of the necessary constants for the procedures depends on the knowledge of G
but not on the forms of the Fy themselves and in this restricted sense the
procedures are distribution-free. Barlow and Gupta (1969) have discussed selec-
tion procedures for restricted families of distributions mainly in terms of
their quantiles. We will briefly discuss here these procedures and indicate
certain other relatec problems.

Assume that each Fi has a unique a-quantile, Eui' Let F[i] denote
the cumulative distribution function (cdf) of the population with the ith

smallest a-ouantile. We assume that

(a) F[i](x) 3-F[k](x)’ i=1,,2,...,k and all x,

(8.1)
(b) there exists a continuous distribution G such that

F;., <G foralli=1,...,k,
[i] ~

where h denotes a partial ordering relation on the space of distributions.
To be precise, F:F for all F and F:G,G:H’F:H. Note that F < G
and G : H do not necessarily imply F = G.
Some special cases of partial ordering which are of interest here are:
(i) F $ G iff F(0) = G(0) = 0 and G'IF(x)/x is nondecreasing in
x > 0 on the support of F.

(ii) F < G iff 6 lF(x) is convex on the support of F.
c

IS ek e .
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B -1 .
(1i1) FgG iff F(0) = G(0) = 3 end G 'F(x)/x is increasing (de-

creasing) for x positive (negative) on the support of F,
If G(x) =1 - e'x, x > 0, then (i) defines the class of IFRA distributions
studied by Birnbaum, Esatry and Marshall (1966) while (ii) defines the class of

iFR distributions studied by Barlow, Marshall and Proschan (1963).

It is easy
to see that § ordering implies § ordering. Implications of « ordering
r
! heve tzen studied by Lawrence (1966).

Van Zwet (1964) investigated the con-
vex crdering and s-ordering (not deéfined above).

(a) Quantile sslection rules for distributions -1 ordered w.r.t. G.

The distributions F[i] and G satisfy the assumptions in (8.1).
Let 'I‘j . denote the jth order statistic based on n independent observations
14

from Fi where j < (n+l) o < j+l. Then for selecting the population with the
largest a-quantile, Barlow and Gupta (1969) proposed the rule

R: Select the population LAY iff
(8.2) T. .>c max T .
e P L
where 0 < ¢ = c(k,P*,n,j) <1 is determined so as to satisfy the P*-condition.
i It has been shown by Barlow and Gupta that

. ® k-1

(8.3) inf P{CS|R} = | [Gj(x/c)] d6, (x) ,
Q 0

where & is the space of all the k-tuples (Fl""’Fk) and Gj(x) is the cdf
of the jth order statistic based on n

independent observations from G. Thus
the constant ¢ of the procedure is determined by

(8.4) [ 16;/e)1*! a6 x) = P
0 h)

and is tabulated by Barlow, Gupta and Panchapakesan (1969) in the case of

i
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G(x) =1 - e'x, x > 0 for selected values of n, k, j and P*, For j=1,

the constant c is easily seen to be independent of n.

We discussed earlier in Section 6 & non-parametric procedure R, studied

1
by Rizvi and Sobel (1967) for the quantile :seloction problem. It has been shown
by Barlow and Gupta that the rules R and R1 are asymptotically equally

efficient in the sense defined by (6.4) under the scale slippage configuration.

A selection rule R' proposed by Gupta (1963) for gamma populations based
or the sample means has been referred to in Section 2. Comparing R and R’

under the slippage configuration A[i] = GA[k]’ 0<6§<i, im=1,.,,,k-1,
vwe have

2

2
(8.5) AGR,R'; 8) > 2(1-6)2 3 [-log a] /[r (log §)% aa (1 + §9)] ,

where a = 1 - a. Consequently we obtain
(8.6) AR,R'; 6§t 1) > 0.493 fora = 1/2 .

Barlow and Gupta (1969) also considered selection in teriuis of median when
the distributions Fi(i = 1,...,k) have lighter tails than G which means that

Fi centered at its median, Ai, is § -~ ordered w.r.t. G (G(0)= %9 and

(d/4x) Fi(x + Ai) > (d/dx) G(x) .. In order to select the population with the
x=0 x=0

largest median, the following rule R, was proposed.

R,:

Select n. iff
2 i

(8.7 Tj 3 2 max Tj " D, I < (m+1)/2 < j+1 .
’ 1<r<k ’

It was shown that the constant D > 0 satisfying the P*-conditiocn is determined by

(8.8) { c‘j‘" (t+D) dG, (t) = P*

j

where Gj is as defined in (8.3).
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It is easy to show that, if F has a lighter tail than G, then G'IF(x)-x

is increasing in x, which means that F is tail-ordered w.r.t. G(F g G) accor-
ding to a definition of Doksum (1969). As a matter of fact the rule R, defined

by (8.7) can be used for the larger class of distributions F, which are

tail-ordered w.r.t. G.

(b) Selection w.r.t. the means for IFR distributions.

Let My be the mean of the distribution Fi' i=1,...,k, and

F[i] denote the distribution with the ith largest mean. We assume that

{a) F[i](x) z_F[k](x) for i = 1,...,k-1 and all x;

() Fryy § 6 fordi=1,...k

X

where G(x) =1 - e ", x> 0. We also assume that F;(0) = 0 for all i.

Let i; be the sample mean based on n independent observations from LA and
H,(x) be the cdf of i;. Let H[i] denote the distribution of the sample

mean from F[i]‘ Then

(8.9) H[i](x) :_H[k](x) for i = 1,...,k-1 and all x
and
(8.10) H[i] é G fori=1,...,k.

The statement in (8.9) is an immediate consequence of the assumption (a) above,
while (8.10) follows from (b) and the closure of IFR distributions under convolu-
tions (see Barlow, Marshall and Proschan (1963)). For selecting a subset con-

taining the population F  ,, Barlow and Gupta (1969) proposed the rule R,,
pop (k) op 3

:
namely, ‘3

Ry: Select the population =, iff -
(8.11) X, > ¢’  max x; :
1 1<j<k
R s VU o S S U ey, R aere

U ey s
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where the constant c¢' (0 < c' < 1) satisfying the P*-condition is given by

(8.12) [ 6(x/en1* ! dG(x) = P* .
0

The disadvantage of the rule R3 is that the constant ¢ obtained from (8.12)
is independent of n, However, by restricting the class of distributions to

the gamma family we can obtain a lower bound for P{CSIRS} which depends on n.

(c) Some results relating to partial orderings of distributions.

The two procedures R and Ry defined by (8.2) and (8.7) for the
two types of ordering provides the motivation for an attempt by Panchapakesan
(1969) to unify these two by a general oxder relation which throws more light

on a lemma of Gupta (1966b). We define the gencral ordering here in a slightly

revised form.

Definition 8.1. Let ¥ = {h(x)} be a class of real-valued function on the
real line. Then F is said to be MH-ordered w.r.t. G if F(0) = G(0)
and G F(h(x)) > h(G"'F(x)) for all h ¢ H.

We note that if ¥ = {ax, a > 1} and F(0) = G(0) = 0, then we get
star-ordering. If Ha= (x¢b, b > 0} and £(0) = G(0) = %, then M-ordering
reduces to tail ordering. It has been shown that M-ordering is a partial

ordering and that order statistics preserve the ordering. The following lemma

is the key result we need to bound below the probability of a correct selection.
Lemma 8.1. If F $ G then, for any positive integer t,

t t
(8.13) [ Fm)) dF(x) > [ 6" (h(x)) dG(x)

for all h ¢ M.
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Gupta (1966b) proved the following lemma.

Lemma 8.2. X is a random variable having the distribution function Fx(x).

Let hb(x) be a class of functicns and suppose there exists a distribution

function F(x) such that hb(gx(x)) z_gx(hb(x)) for all X and all x,
where gx(x) is defined by Fx(gx(x)) = F(x)

for all «x.
t>0,

Then for any

(8.14) [ Fiyo)) dF ) 2 [ Fiy () dF).

It is shown that the assumption of Lzmma 8.2 amounts to saying
FA g;F. A general selection problem discussed by Panchapakesan (1969) is as

follows. Let LEERRRTL be k populations and Fi is the distribution
function associated with ..

We assume that there exists one among the k
populations which is stochastically larger than any other.

Let us denote the
distribution of that population by F[k] Thus we have

(8.15) Fi(x) 3_F[k](x) for i =1,...,k and all x,

It is also assumed that there exists a continuous distribution G and a class :
of realvalued functions ¥ = {h(x)} such that

(8.16) Fi(x) %6 fori=1, 2,...,k .

R3

If X = (X0 Xp0e-

.,xin) is the observed sample from r,, then we confine
ourselves to the class of statistics Ti = T(Xi) that preserve both the
ordering relations (8.15) and (8.16).

TR

Let F,. represent the cdf of T(X,)
i
under Fi and GT, the cdf of T(Y) under G, where Y = (Y

11-"'1Y )
is a random sample from G.

n
then for selecting a subset con-

If h(x) > x,
taining the population associated with F[k]’ the following rule R

4 was

;
‘:1_‘
/
3
4
%
a
.
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R LT YT T

proposed.

R .

4 Select iff

"y

(8.17 | h(Ti) z_nsx(Tl,...,Tk) .

T T g s

It has been shown that

(8.18) PicsIR,) = [ GXlh(x) dG () .

B e Loty o L TR
L)

e

If h(x) 1is indexed by the constants ¢ and d (c > 1, d > 0) then we can
find suitable constants ¢ and d if conditions on h(x) given in the very

beginning of Section 3 are satisfied.
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9. Bayes and Empirical Bayes Procedures.

Let y = (yl..... Yk) £ Ek (Euclidean k-space) be an observation
of the random vector Y = (Yl""’ Yk) whose components are independent
. random variables, Yi having the density f(y1|ei). The space of action
is denoted by G and it consists of all non-empty subsets of k-populations

(Yi is the random variable associated with the population LI i=l,...,k).

A selection procedure D is a wmapping from Ek to (G. The loss incurred
when ¢' = (el,..., ek) is the true state of nature and D(y) is the
subset selected is denoted by L(D(y), 8). Let Gi be the a priori

k

distributions of 8y and G = I Gi denotes the a priori distribution on
i=l

the parameter space {i. The Bayes risk of a decision procedure D

w.r.t, the a priori distribution G is defined by

9.1) R0,6) ~ | { i‘ LO().8) £(v]e) dv} d G () ,
Q .

where
K ;
£79) = 1 £l ]e,) - i -
i=1 .
A Bayes procedure w.r.t. G 1is a procedure D* for which the Bayes risk

is minimum. Suppose we consider the loss function in selecting the subset

Sj given by

(8.2) L(Sj,g) L) “jq(e[k]' Oq)
qesj
where %q 2 0 and the summation is over all populations q included in Sj‘

Deely and Gupta (1968) investigated Bayes procedures with the above

formulation.

%
3
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Before stating tho main results of their investigation, we adopt the

following notation for the sequal.

Sj denotes the singleton consisting of 'j* jm1,..., k. The remaining
k

. 2°-k-1 subsets containing two or more populations will be denoted by Sj.
J=kel,..., Zk-l with no explicit ordering. Further let
. Vs = [ L0 E]9) 46, Ie1,2,..., 21
f
9.3 = 8. 1-6.) £(y|8) dG(8), q=1,...,
(9.3) % £ (8xy0g) fU19) d6(®), qu1,..., k

“[l]' min a

I:g:y

_,..
B

Decly and Gupta hawestablished the following result,

EE Theorem 9.1. Lat the loss function be given by (9.2) in which .jq- a>0
for j=1,...,k. If J a, >a forevery j =1,2,..., 2°-1, then
. qes jq - .
i b}
H the Bayes procedure w.r.t. G for selecting a subset containing the
E population with e[k] is given by D* » D*(y) = Sj where j 1is any positive
t integer 1,2,..., k such that
N
(9.4) YG(S ,Y) = nin V(Si,y)
) J 1<i<k
¢
T This result is applied to the normal means problem with G, as
(i) normal with mean Ai and variance Bf and (i1) uniform on (Ai-di,
Ai+ di)‘ In the first case, the Bayes procedure is:
Select LA for which
|
]
! Eamatel o P
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ne? X+ ) nB2 X, ¢+ A
i i1 jij
(9.5) ——x—— = max 7
lonB; 1<j<k 10nﬂj

where xi's are sample means based on n observation.

Some other cases like selection for binomial and Poisson populations
where the parameters, respectively, have beta and gamma a priori
distributions have been discussed by Deely (1965) who has also investigated

empirical Bayes procedures for the selection problem which we presently
discuss.

In the empirical Bayes approach, only the sxistence of an a priori

distribution G on the parameter space is assuwed and not a particular

G. Thus the Bayes procedure is not available.

Suppose independent

i * 9 *
cbservations (Ei, gl), (x5, -q)' . (5n’ gn) on a random variable X

are available with gd‘s all being drawn from the same distribution

G. (The * indicates that '"r'" observations from each population have

been taken for i = 1,..., n}. The "prior observations" contain information

agbout G and thus if a decision procedure Dn based upon Zi" .

could be found such that R(Dn,G) converges to R(DG.G) (i.e. the Bayes

risk of D, converges to the Bayes risk of the Bayes procedure g which

we would use if we knew G at the start) for eny G in some family G,

then the procedure Dn is asymptocically optimal to DG and is called

an empirical Bayes procedure w,r.t. the unknown G. The main theorem of

Deely (1965) proves that under certain regularity conditions the Bayes

procedure w.r.t, an estimate Gn of G is also empirical Bayes w.r.t. G.

In order to apply this theorem, a suitable estimate G, is required.

A completely satisfactory answer to this problem is not available.

sl vl b iy ML e
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Suppose we make an additiona}® sssumption that G belongs tv a
parametric family G wit: parameter )\ = (Al,.... Ak). Suppost now
an estimate Anj of Aj depending on the prior observations from the

. jth population can be found such that an based on the observations

conveiges to Gj with probatility one. Then it is shown that

k k

¢ G = I G, converges to G = N G, with probability one. Further,
. n,h . j,n .
: j-1 j=1
G* n is also a member of G. Thus, if the Bayes procedure w.r.t. any
G in G is available, then in particular G" is available and thus

»
an empirical Bayes procedure w.r.t. G ‘is obtained. Empirical Bayes
procedures have been obtained for seve::i :=pecial cases of f(x|ei) and

G, namely, (i) normal-normal, (ii) normal-uniform (iii) binomial-beta,
{iv) Poisson-gamia. To illustrate the type cf results obtained, we
consider the case of normal-normal.

Let 7. (i=1,..., k) have the normal density f(x|ei) with unknown
mean ei and known variance oi and let ei be distributed normally

with unknown hut finite mean Ai 2nd known variance Bz. Let

X*, X*,..., x* be jindependent prior observations and x* the present
-]’ =2 -n -—

4 observation. Then the empirical Bayes procedure under the linear
. loss function in (9.2) with ajq = l,DG (ff) select the population LA
¥,Nn
: for which
9.6) Z. = max Z.
gk
where
3
rs? X.+ 02 X,
(8.7 7, =z e d )
3j 2 2
g, + T8
) )




IR = R srotedua g - 27T 0ET

79

;j denotes the sample mean from "j based on present observation

and X, is the over-all mean of the prior observations from "j' ﬂ

3

Similar procedures have been obtained for the case where G is

i

subject to certain very general conditions. We briefly describe one

bakn

of the results below for the sake of illustration.
Suppose f(x|ej) be a normal density with mean ej and variance

c?. Let o, be distrituted according to G, such that [ 6 d Gj(e) <e,

i 3 Y
i=1,...,k. Let ﬁ, 55,...,
and x* be the present observations. We denote the mean of the present

J_t“; be independent prior observations

observations from " by ;j and the means of the prior observations from

"j by xaj, a=1,..., n. Let Hnj(fj) denote (n'rl)'1 times the total

number of ;a"r which are < ?1 including the present observation ;j‘

-

Define
o & G 5 -y G K
9. .(x.) = R j=1,...,
nj"j 2n-1/5
and
- -1/5 - -1/5

_ h .(x.+n ) - h .{(x.-n )

9.9) gnj("j) =12 - 73 nj - J .
2n

Then the empirical Bayes procedure under linear loss function (9.2)

(with a, = 1) for selecting the best population is the procedure which

&
i
e
%
b3
]
;F_
3
3
%
*
X
{
3
§
§
:
[ 3
é
3
‘f;
!
»
B

Jq
2 -
_ o© .(x.)
selects the population =, {j = 1,..., k) for which xj+ ;j—i-]—:l— is F
J h (X)) e
J] =
o2

maximum. The main result used in these cases is a result due to

Robbins (1964).
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10. Modified Formulations and Goals

In the preceding sections we discussed the general theoxry of subset
selection problems under the usual fomulation and described several cases
of specific distributions and ranking criteria used. There are, however, a
few other cases which were not mentioned earlier. Barr and Rizvi (1966)
considered the problem of selecting a subset containing the population with
the largest €@ from a set of k populations having uniform distributions
over (0, ei), i=l,..., k. Guttman (1961) investigated selection problems
using the coverage probability as the criterion of ranking. If L

(i=1,..., k) is described by the sample space (x,G,P, ) where Pe is a
i

i

probability measure belonging to the class {P,}, 6 ¢ @, the populations

are ranked according to bi = [ dPe , where the set A ¢ G . Guttman has
A i

discussed specific procedures for normal and exponential distributions with
A = (-=»,a) where a is known and specified in advance.
Several authors have considered formulations and goals different from
the usual ones. In the remaining part of this section we will briefly describe

these modifications.

(a) A generalization of subset selection goal.

Suppose that there exists a binary relation < which orders the popula-
tions Treeeos M from worst to best, The ordered populations are denoted by
"(l) < "(2) <... < "(k)' This gives a unique t-subset comprising the t
best populations, namely, {“(k-t+1)’ T (kete2)? 0" "(k)} for any t(l <t <Kk).
The experimenter's goal is to select a subcollection of the collection of all
subsets of size s from the k populations such that at least one such se-

lected subset contains at least ¢ of the t best populations. A correct

selection is a realization of the experimenter's goal. For a given probability

T ey s
s LS VI
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P*, a rule Rs is proposed satisfying the condition that P(CSIRS) > P+
no matter what the unknown configuration of the populations Tpseers Mo
Of course in a meaningful problem, we have constraints on the values of
t,s and c, namely, 1 <t <k, 1 <s <k, nax[l,s+g+1-k] < ¢ < min(s,t].
Let xij’ j= },..., n,, bé independent random variables denoting ob-

servations from population LY i=1,..., k. Let T‘- T(xil,xiz,..., xini)‘

i=1,..., k, be independent statistics with absolutely continuous distribu-

tions GT z Gi' i=1,..., k, suitably chosen such that LA < "j » Ti T.,

5
1 <i, j <k, Let t be an observed value of Ti' i=1,..., k. Then the
rule Rs propesed and studied by Gupta and Deverman (1969) is the following.
Rs: Consider all possible s-subsets (subsets of size s} of "1""' T

Include in the collection of s-subsets the s-subset {ni » Ty seens T } having
1 2 s

seres T } and complementary set of cbservations

the observations A = {ti » Yy
1 2 s

= {t,
1s+1

tik) LEE AT (), T[k_s](Ac)] 2 -d*, where Ty (A) is
the ith smallest element in any finite set of real numbers, d(x,y) is a general- ?
ized difference such that (i) d(x,y) = 0 exay, (ii) for fixed y = Yo d(x.yo)
is increasing in x and (iii) for fixed x = Xq d(xo,y) is decreasing in vy,
and the constant d* > 0 is chosen so that the P* probability condition is

satisfied. For the procedure R _, 1i* has been shown that the infimum of P(CS|RS)

occurs when all the populations are identical w.r.t. the binary relation with

which they are ordered.

Gupta and Deverman have also discussed the normal means problem in

particular.

. u,'p;‘wm':,; gl e 7
. S

(b) Selecting a subset better than a standard ;i
Under this formulation we have (k+l) populations L (i=0,1,...,k+1) i;'
with the associated distribution functions F, . The parameters 6,,..., 8, f%'
i k =
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are unknown and the parameter 00 of the standard population may or may not
be known. The goal is to select a subset containing all the populations LY

Any rule R defined for the purpose is

for which ei > 80 {or ei :_eo).
required to satisfy the P*-condition.

The cases of location and scale parameters have been discussed by Gupta
(1965). Earlier Gupta and Sobel (1958) have considered the normal aeans
problem where the procedure based on ssmple means X, (i=0,..., k) selects
iff x

" i 3_?6 - A//. (It is assumed that all populations have unit

i
variance).

Puri and Puri (1968, 1969) have investigated rules based on ranks for
the location and scale parameter cases and have studied the efficiency of
these procedures compared to the normal theory procedures. The results and
techniques of these investigations are similar to those of Lehmann (1963).

Nonparametric selection procedures for selecting populations better than
a standard when the comparison is in terms of a-quantile have been discussed
by Rizvi, Sobel and Woodworth (1968). The corresponding subset selection
problem under the usual formulation has been investigated by Rizvi and Sobel
(1967) and has been discussed in Chapter 6.

In comparing a population with a standard Lehmann (1961) considered a
population to be good if it is sufficiently better than the standard. To be
precise, let " (i=1,..., k) be a population whose quality is characterized
by a real-valued parameter ei and a population is said to be positive (or

good) if ei > 6, + & and negative (or bad) if ei < eo, where A is a

0

given positive constant and €, is either a given number or a parameter tThat

0
may be estimated. A negative population if included in the selected subset is

called a false positive,while a good population not included in the subset is
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called a false negative. Roughly speaking, the aim of a selection procedure

is to seek out the positive populations while holding false positives in the

_1- selected subset to a minimum.

. Let 5(8,4) and R(6,6) denote the expected number of true positives
27 and false positives, respectively, using the procedure 6. Then the problem

is to determine a procedure for which  sup R(8,3) is minimum subject to ?
‘ 0ef :

. the condition that inf 5$(8,8) > vy where Q denotes the whole parameter §
. 8 e QY .

space and Q' denotes the set of parameter-points for which at least one of

the populations is positive.

Under certain conditions, Lehmann (1961) shows that & yule minimax in

the above sense selects w, when T, > c,, where T, is a suitable statistic 3
whose distribution depends only on N and where 4 is a suitable constant,
He has also discussed the applications of these to distributions with monotone
likelihood ratio in the case where 99 is known and to normal distributions
where observations on eo are included in the experiment.

Krishnaiah and Rizvi (1966) have considered the problem of selecting multi-

variate normal populations better than a control on the basis of the linear

combinations of the elements of the mean vezcors of the populations. Different

4 definitions of positive and negative populations have been used and in each case
. a selection procedure & is proposed such that inf P(w,§) > P* or
. inf S(w,§) > p* where P(w,8) denotes the probab:lity of including all positive
. p:pulations, S(w,8) denotos the expected proportion of true positives and P*

and p* are given constants. As an illustration of the type of results obtained

P

by Krishnaish and Rizvi, consider the set of populations Myseens M and the

control population L where LA (i=0,1,..., k) is the p-variate normal

. « s at = v =
distribution NP(Hi,ti). Let emc a' .y, (c=1,..., r; i=1,..., k), where
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8y,..., 8, are specified vectors. The population L is said to be positive
if eic > °0c + Ac, c-},..., r, &nd negative if °1c < GOC, c=l,..., T,

where Ac are given positive conscants. For the case of known ti(i-o.l,....k).

the rule ¢ proposed selects =x, 1iff

i

10.1) & - %)/t 5o ngt 23a 1?5 4, oo, 1

where Z; is the sample mean vector from L based on n observations.
Krishnaiah (1967) investigated similar procedures when the compsrison of

the multivariate normal populations with the control population is based on

linear combinations of elements of the covariance matrices, determinants of the

covariance matrices and the lergest (smallest) characteristic roots.
Desu (1970) considered the selection problem where the populations are

not compared with a standard but rather with the best among them. If

d(ei' ej) is a distance measure between ei and ej and if enax' max(el,...,ek),

population n, is said to be superior (or good) if d(eII , ei) :_6{ and inferior

i

(or bad) if d(e ., 8;) > 83, where &7, §5 are specified constants such that

0 < 61 < 65. For the location and scale parameter cases which have been considered,

d(ei, ej) is taken to be Gi— 0

ax

and 61/6 respectively. The proposed proce-

J 3

dure R selects L iff d(Ymax’ Yi) :.d(ca, c) where Yi is a real-valued
statistic based on a random sample of size n from LY whose distribution has
ei as a scale (or location) parameter and the constant ¢ is to be chosen such
that the P*-condition is satisfied. The correct selection here is the selection

of a subset which contains no inferior population.

(c) A fixed subset size approach to the selection problem.

Mahamunulu (1967) considered a selection problem under the indifference-
zone approach with the modified goal of selecting a subset of size s which

contains at least c¢ of the t best populations where max(1l,s+t+1l-k)<c<min(s,t).

[asl V8
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Closely related to Mahamunulu's problem of determining the common sample size

W i sy |

required for a given subset size s, is the problem investigatod by Desu and

Sobel (1968). Their goal is to select the smallest possible {ired subset %
size s that will contain the t best of k populations {t <s <k), based §
on any given sample size fro- each population. The basic probability require- §
ment is met under the usual indifference-zone set-up. The aim in the modifica- 2
tion is to avoid the possible inclusion of all the populations in the selected ;
subset. The smallest fixed subset size s is determined as a function of the ;
]

3

common sample size n and the specified constants but not of the observations.

Nonparametric procedures for selecting fixed-size subsets when the popula-
tions are ranked in temms of a-quantiles have been discussed by Desu and
Sobel (1971). The random subset size procedure for the case of t = 1 has been
earlier studied by Rizvi and Sobel (1967) and has been described in Chapter 6.
Sobel (1969) investigated the problem of selecting fron. k populations a

subset containing at least one of the t-best populations for given t and
the problem is

k(1 £t <k) under an indifference-zone set-up. For t » 1,
related to the problem of Desu and Sobel (1968). The procedures proposed by

Sobel select a subset which is either of fixed size or of random size depending

on the values of the constants specified.
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