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On Multiple Decision (Subset Selection) Procedures*

Shanti S. Gupta

Purdue University

and

S. Panchapakesaii
Southern Illinois University

I. Introduction

In many of the experimental situations the experimenter is confronted

with the problem of making decisions regarding k populations, which, for

example, may be categories of wheat, manufactured items coming out of k

factories or candidates who are contenders for an award. The classical

tests of homogeneity which have been applied in these situations do not

supply the information the experimenter really seeks, whether or not the

tests yield significant results. In fact, the experimenter's problems

begin when he obtains a significant result which goes to reject the null

hypothesis that the populations are identical. As a partial answer to the

need for a more realistic formulation overcoming the inadequacy of the tests

of homogeneity, Mosteller (1948) tested homogeneity against slippage alter-

natives. Since then many authors have contributed to the theory of slippage

tests.

The initial efforts in the direction of multiple decision problems were

made by Paulson (1949) who considered the problem of classifying the given

populations into a "superior" and an "inferior" group. Later he (1952)

investigated the problem of selecting the "best" of k categories when com-

paring (k-1) experimental categories with a standard or control. Bahadur (1950)

*Research supported in part by the Office of Naval Research Contract

N00014-67-A-0226-00014 at Purdue University. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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has made some early contributions to the theory of k sample problems.

Bahadur and Robbins (1950) obtained some minimax rules for selecting from

two populations the one with the greater mean. The multiple decision prob-

lems that are now known as the ranking and selection problems have been

formulated mainly in two ways. The first one is known as the indiffeience

zone formulation due to Bechhofer (1954). This formulation, in its simplest

form, selects one of the populations as the best with a guarantee that the

true best population is selected with at least a preassigned probability P*

whenever the best and the second best populations are "sufficiently" far

apart. For an exposition of this formulation the reader is referred to the

excellent monograph by Bechhofer, Kiefer and Sobel (1968). The main investi-

gations surveyed in the present paper are under the second formulation due

to Gupta (19S6) known as the subset selection formulation. The goal here is

te select a non-empty subset of the given populations so that the selected

subset includes the best population with at least a preassigned probability

P*. It is usually desired that this be accomplished by selecting a subset

as small as possible and without any knowledge of the true values of the

paramete-s.

Suppose that ,. .. ,Trk are k independent populations and mi(i .

is characterized by the distribution function F, where Xi is a real valued

(unknown) parameter, which is assumed to be a measure of the quality of ff"

Let A < '< <- be the ordered values of the X.. The correct
[1] '[2] '[tk] I

pairing of the ordered and the unordered X's is not known. The population

associated with A [i is denoted by r and the population w[k] (or w[1] is
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usually defi.ned as the best population. In the case of a tie, we assume

thst one of the populations with Xi z X[k] (or X = .Xi]) is tagged as the

best. The selection of any subset which includes the best population is called

a correct selection (CS) and P(CSIR} denotes the probability of a correct

selection using the rule R. Thus we are interested in defining a rule R

such that

(1.1) P{CSIR) >P* , k"1 P < 1

regardless of the true parameter point X (X1 .... Ik ) in the parameter space

P= {. If the distributions are not indexed by the values of any parameter

X, il denotes the space of the k-tuples {F1 ,... ,Fk1, where Fi is the distribution

function of ri.. In order that (1.1) be met, we want

(1.2) inf P(CSIR) P*

The requirement (1.2) is usually referred to as the basic probability require-

ment or the P'-condition.

2. Selection in terms of Location and Scale Parameters.

Many of the early investigations relate to rankixig and selection of

popuiations in terms of either location or scale parameters. The ranking j
of normal means and gamma shape parameters are examples of this type.

Let us first suppose that 1iT(i a 1,...,k) has the continuous distribution

F (x) = F(x-Xi), - X. < - and x. is an observation from v. In order to

select a subset containing the population associated with [k)' we define the

following rule RI."

'I
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(2.1) Ri: Select vi iff xi > Xmax - d

wheremax = max(x 1 .... ,xk) and d is a positive constant chosen bo as to

satisfy the basic probability requirement. It is easy to seo that

O k-i
(2.2) P(CSIRI} =-f Hl F(y+dX k]-'[j] ) dF(y)

-00 jul

Clearly, the infimum of P{CS!R 1 ) is attained when X I A. k and hence d is given by

(2.3) 7F kl(y+d) dF(y) w P*.

Denoting by S the number of populations included in the selected subset,

we can see that

(2.4) E(S) P1 +'''+ Pk '

where pi is the probability that the population associated with X is

included in the subset. In the present case

(2.S) p, f H F(ykd4X dF(y)-0 = = n ~~÷[i] -X[j]) Fy
4 -w j=l

jji
It ha5 been shown by Gupta (1965) that sup E(S) is attained when X ..... Xk

provided that the density f,(x) = f(x-X) has a monotone likelihood ratio

in x and in that case the supremum is kP*. The procedure R1 has also been

shown to be montone in the sense that p, > p, for X >

As an application of the above results, we consider selecting a subset

containing the population with the largest mean from k independent normal
*2

populations with unknown means Pl. ... 0A and a common known variance a 2

kI



If y(i .... n) is the sample mean based on n observations from ri, the

rule R in this case selects wi iff Yi > max j -dA where d will depend onl-- lJ k J

n and k. By letting d = du//n-, the constan_ d is given by

(2.6) fk-l (u+d)ý(u)du - P*

where, unless otherwise stated, 0 and f denotes here and in the sequel the

cdf and the density of the staidard normal distribution. If o2 is unknown,

one will naturally use s2, the poolud estimate of a2 based on k(n-l) degrees

of freedom. In this case we can show that d is given by

(2.7) f k-l(uo+yd)(u)gv(y)dudy P*,
0 -a

where g V(y) is the density of X with v - k(n-l).

Rizvi (1963) considered the eoal of selecting a non-empty subset from k

normal populations so as to include the one with the largest Q0 I i . He

uses a rule of the type R1 based on wi = lxii. For his procedure

(2.8) sup E(S) = 2k f [2 *(u+d)-l]k-l do(u), where
1 0

d is given by (2.6). This bound for E(S), however, exceeds kP*.

Suppose the populations wi, i - 1,.... ,k, have the continuous distribu-

tions F (x) a F(x/X0), Xi > 0, xi > 0. To select a subset containing the

population associated with A[k]' we define the procedure R2 as follows:

(2.9) R : Select w iff xi >c x
2 i r i max

where x. is an observation from w. and c > 1 is determined so that the basic

1 11



probability requirement is satisfied. It is easily seen that

inf P{CSIR is attained when A " A * k and the constant c is given by
Q2

(2.10) F Fk'l(cy) dF(y) P*

0

The rule R is monotone and if the density f (x) - 1-f(xA) has a monotone
2X X

likelihood ratio in x, then sup E(S) is attained when A I 6-M X k and is

equal to kP

A specific example of interest is the selection from k gamma populations

with densities

"x // rr r-x

In order to select a subset containing the population with X[k], we use the

rule R2 based on n observations from each population, namely,

(2.12) R2 : Select ri iff xi > b- max x,

where b > I is determined so as to satisfy the basic probability requirement.

This procedure has been studied by Gupta (1963). The analogous problem of

selecting the gamma population with the smallest X. has been discussed by
Gupta and Sobel (1962a, 1962b). This problem arises in the context of

selecting a subset containing the normal population with the smallest variance

and the rule is an obvious modification of R and is based on the estimates

s(. (i.l.. ,k) of the population variances a2 using equal sample size.
1 • using

Im

""'4 ••' .. k -
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For the problem of ranking and selection from normal population in

terms of their means, Seal (I SS) considered a class of procedures satis-

fying the basic probability requirement. Assuming that the populations have

a common unknown ,ariance, let x ,...,Xk be the sample means from the popula-

tions, each based on n independent observations. Let c a (C1 ,...,ck-l) be a

vector whose comronents are arbitrary non-negative numbers such that

cI 1... _ 1. Let x < < be the ordered sample means. The

class C of rules D defined by Seal is as follows:

D : Include in the selected subset the population corresponding to x iff

(2.13) xx[i] I clx[l] . .. CixlX[ _l]_CiX[i~l]*...*Ck-iX[k] -t(P _'o)s/ ,

2 2where s is the usual pooled estimate of the common variance a , and t(P*,c)

satisfying the P*-condition is given by the upper 1OO(1-P*) percent point of
k-l

the distribution of Y (j j ci z W-z )/s where z. = 1,...,k are random

2 i=- 1)) kr h reeobservations from N(,o a) and z z <.< Z are the ordered

Zl,-. ., Zk..

The rules of this class possess certain desirable properties. For example,

the rule D is unbiased, that is, Phrejecting any population not having the

largest mean) > Pfrejecting the population with the largest mean). Also the

rule has the property of gradation, namely, corresponding to any P%, there

exists a constant P0 (depending on the decision rule, the unknown means and

2 >the common variance oa) such that P(retaining the population with mean P ' P
ac n a4

according as •i<•"•
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If we riuv assume that a is known, we can take o=1 wi'-h no loss of

generality and the rule D will be (2.13) with s=l. We define a subclass
C

C' Df C by the restriction c. = 1 for some j ý 1,... ,k-1. The procedureJ

R(called R 'earlier in this section) studied by Gupta (1965) is a member

of C' with ck 1. it has been shown by Deely and Gupta (1968) that the

rule R has the smallest expected subset size among the rules of the class C'

provided that the parametric configuration is -.<_(kl]Zi=u[k]-6(6>0) and

6 is sufficiently large. If we consider a slippage configuration (i,..

6>0, Sea! (1955) shows tr.t 4n the class C, the rule 6 with c =...=ckll/(k-l)

maximizes (approximate!y) Vie probability of including the population with mean

i.+6. Deely and Gupta s|,ow that E(SIRI < E(SID) except when 6 is near zero.

Seal (1958) defined a class of rules similar to C for the problem of

selection from gamma populat 4 ons given by (2.11). Let c= (c 1 .... Ck.1 ) be
k-l

as before a vector of non-negative components such that • ci = 1. Let
i= 1

x1 .... 2xk be a set of observations from the k populations and x []<x[2]<...<X[k]

be the ordered observations. Then, in order to select a subset containing the

population with the smallest Xi. Seal proposed the class of rules D defined below.
c

D': Include in the selected subset the population corresponding to x(i] iff

(2.14) x~i X b l []+ .. +C. + Cix +... )C
- x-1[i] k-l [k]

where,b satisfying the basic probability requ irement is given by upper

I-

100(1-P*) percent point of the distribution of Y k/t Cc.Y (iwhere YI'., ¥k

are k random observations from a gamma population with X=i and Y (1)-..¥ _ <Y

are the ordered Yl,..., k-l. Seal (1958) has obtained results similar to his

earlier ones for the class of rules Dc
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3. General Theory of Subset Selection.

In this section we will describe a class of subset selection rules appli-

cable to populations from a family of stochastically ordered distributions and

therefore in particular to populations characterized by a location or scale

parameter. Many of the specific selection problems discussed in the subse-

quent sections fall under this general frame work. We also discuss a decision- j
theoretic formulation of the problem.

We assume that T11 Ir2"... Pk have the associated absolutely continuous 4

distributions Fx.(i = 1,...,k), where X. c A, an interval on the real line.
i 11

The family {F } X E A, is assumed to be stochastically increasing (SI) in

., i.e., for A < X' in A, F• and F are distinct and F (x) L Fx,(x)

for all x. For selecting a subset containing population associated with X(k]'

Gupta and Panchapakesan (1970) have discussed a class of procedures Rý, de..

fined by a class of real valued functions h E h 1 I, d > 0, possessing
c,d' c -

the following properties: For every x belonging to the support of F,, (i)

hcd(x) Lx, (ii) hI 0 (x) = x, (iii) hcdP) is continuous in c and d, and

(iv) lim h (x) (c fixed) and/or lim h (x) = (d fixed), x 0 0. If
c,d c,d

x, .... xk is a set of observations from n1 .... Tk' respectively, the rule $
Rh is defined as follows. j

Rh :Include the population Ii iff

(3.1) h(x)_ > max x .

Letting xCr) denote the observation from the population with distribution

F F , we obtain

k-l
(3.2) PiCSIRh} = R F (r] Chix))} dF (k](x)r~l Frl [k
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Because of the stochastic ordering of {F,), we can see that

(3.3) inf P(CSI%} * inf W; c,d,k)
XAh

where t(X; c,d,t+l) is given by

(3.4) i(X; c,d,t+l) -f F(hix)) dF W

In all the specific cases considered earlier in the literature, the general

approach is to show that *(X; c,d~k) is monotonic in X and use this fact

to evaluate inf J(X; c,d,k) and find the velues of the constants such that

the P*-condition is met. One of the main results of Gupta and Panchapakesan

(1970) is the following theorem which leads to a sufficient condition for the

monotonicity of *(A; c,d,k).

Theorem 3.1. Let (F • E A, be a family of absolutely continuous distribu-

tions on the real line and *(x,X) be a real valued function possessing continu-

ous first partial derivatives * and 'ad w.r.t. x and X, respectively.

Then, E I(x,X) is non-decreasing in X provided that

(3.5) f•(x) W (x,X) - 4x(x,x) - F (x) > 0 for all x

where f (x) is the density corresponding to F (x). Further, E *(x,A) is

strictly increasing in A if (3.5) holds with strict inequality on a set of

positive Lebesgue measure.

The above theorem is a generalization of a result of Lehmann (1959, p. 112)

which states essentially that, if {F x} is an SI family and ý(x) is an in-

creasing function of x, then E x J(x) is non-decreasing in A. As we can

see, this comes out as a special case of Theorem 3.1, by letting *(x,A) - #(x)

/4
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for all X and verifying the condition (3.5) to be true.

As a consequence of Theorem 1.1, the following theorem is obtained regarding

the monotonic behavior of •pQ ; c,d,k).

Theorem 3.2. For the procedure Rh defined by (3.1), *(C; c,dk) is non-

decreasing in A provided that

F(x) hItx

(3.6) f (x) *Fxjh~x)) = (x) fx(h(x)) j- F xx >_0

for all A E A and all x

dwhere h'(x) -- h(x). Further, *(C; c,d,k) is strictly increasing in X if

strict inequality holds in (3.6) on a set of positive Lebesgue measure.

Let pi denote the probability that the population [i is included

in the subset. Then the expected subset size is given by

(3.7) ECS) - E{SIRh) - pl + + Pk

where k I.
(3.8) pi = ( { 1 F[r](h(x))} dF [i]x), i 1,... ,k

r=l i |
r~ i

Gupta and Panchapakesan (1969b) have shown that, if A[1] f '[2] = " '" A [m] j
<-A < 1< m < k, E(S) is non-decreasing in X, when

A [m+l] ..... [k] are kept fixed, provided that,

(3.9) (h(x)) (x) - h'(x) xL F (x))f _ 0

1 2 a 1 1 2

for 1A 1 < 2  and all x.

Consequently, the following theorem is obtained.I
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f Theorem 3.3. For the procedure Rh defined by (3.1), the sup E(SIRh) is

attained when A A •k provided that (3.9) holds.

If the condition (3.9) holds, then (3.6) is valid and consequently

*b(A; c,d,k) is non-decreasing in X. Thus sup E(S) a k sup *(X; c,d,k) can

be evaluated. Hence, by verifying the condition (3.9) we are simultaneously

assured of the monotonicity of *(A; c,d,k), the fact which is used for the

evaluation of inf P(CSIRhl and sup E(SjRh). This connection between the

L , two has been observed by Gupta and Panchapakesan (1970).

It should be pointed out however that condition (3.6) may hold without

(3.9) being true. This is the case, for example, when we consider the selection

from Cauchy distributions in terms of the location parameter using

h(x) * x+d, d 0 0. If (3.6) is satisfied, we have inf 4P(X; c,d,k)

g(x0; c,dk). Then we can evaluate the constants because of the conditions im-

posed on h(x) provided we assume that F~ (x) is a distribution function in

case X0 j A.

It can be seen that the above results are readily applicable to the cases

of location and scale parameters discussed in Section 2. In the case of loca-

tion parameters the rule R defined earlier uses h(x) x-d, d > 0, and in

the scale parameter case the rule R2 uses h(x) = cx, c > 1. In both the

cases it is easy to see that (3.6) is satisfied and (3.9) reduces to the condi-

tion that the density f (x) has a monotone likelihood ratio in x.

Another case of importance is that of convex mixtures of distributions.

Here the density fX(x) is of the form f X(x) = j w(X,J) gj(x), where

gj(x), j - 0,1,..., is a sequence of density functi3ns and w(X,j) are nonr

negative weights such that I w(,N,j) - 1. We assume that the weights are
j-0

given by
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(3.10) w(X,J) u aj ,/A(A),,1, A(A) >_0. X > 0

and

(3.11) aj (m+t÷)a, 0,1,...; L, tm >0

It is easy to see that A(X) - a0 (l-AX) /Z, provided that A < i/t. It

has been shown by Gupta and Panchapakesan (1970) that the condition (3.9) is

satisfied if, for a = 0, 1,... [i/2] ([s] denotes the largest integer < s)

and b > 1,

(3.12) bia(m+a) [gi-c(x) AGa(h(x)) -h'(x)gi c, (h(x)) AGaCx)

+ b•Ci(mti-ca)) [ga(z) AGi(h(x)) - h'(x)ga(h(x)) AG W(x)]

> 0

where LG Cx) -G= +Cx) -G gCx)

This special case is of interest. If we set m 1, t a 0, and a 0 = 1 .

we get Poisson weights w(X,j) a e- XJ/jI. Selection problems involving non-

central chi-square and non-central F distributions in terms of non-centrality

parameter fall under this 3pecial case and hAve been considcred earlier by

Gupta (1966b), Gupta and Studden (1970), and Gupta and Panchapakesan (1969a).

These specific procedures are discussed in Section S. Again, if we set t = I

and a 0 - 1, we get densities gj(x) with negative binomial weights. The distri-

2jbution of R2, where R is the multiple correlation coefficient, in the so-

called unconditional case is an example of this special case of weights. Selec-

tion procedures involving this have been discussed by Gupta and Panchapakesan

(1969a) and are described in Section 5. The condition (3.12) with b - 1 gives

the sufficient condition for the monotonicity of *(A; c,d,k) obtained by Gupta
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and Studden (1970) and Gupta and Panchapakesan (1969a) for proper choices of

K weight functions.

Let S' 'ýe the number of non-best populations included in the selected sub-

set. Then, for the procedure Rh defined by (3.1), E(S') -E(S'IRh) is given

by E(S') a p1 + "'. + Pk-l" Panchapakesan (1969) has shown that sup E(S') is

attained when the distributions are identical provided that (3.9) holds.

It has also been shown that the procedure Rh is monotone, i.e., if

xi < Xj then the probability of w being selected is at least as great as

the probability of n1 being selected.

In the case of absolutely continuous distributions FV, where X belongs

to a discrete set of real numbers, Panchapakesan (1970) has obtained the follow-

ing theorem corresponding to Theorem 3.1 and has applied it to the case of

gamma distributions with integer-valued shape parameters and common scale parameter.

Theorem 3.4. Let (F } be an absolutely continuous distributions where

A€ Ed A I < X2 < ... and *(x,X) be a real valued function possessing

continuous partial derivative *x w.r.t. x. Then, for any positive integer t,

E A* t(x,X) is non-decreasing in X providerd that, for i n 1,2,...

(3.13) A(x,:Xi f.(x) W - AF A.W.( (x:X >0, i, i + 1,

where (x, =(x,X i * (x, i, AF. (x) =F. (x) F .(x)

i •+ i+ X

i+1 |



Now we present a decision theoretic formulation of the subset selection

problem. We are given k populations wI .... 61k where wi is described by

the probability space (%D$,Pi), where P• belogs to some family P.

We assume that there is a partial order relation (>) defined in P.

PL Pj is equivalent to saying that P1  is better than or equal to Pj; or,

in other words P is preferred over P For example, if P9 is a one-

parameter family, Pi(x) -P(e 1 ,x), we may define: P1 > Pj iff 0e t 0eY

In many problems )" denotes stochastic ordering. Other partial orderings that

have been considered are: star-shaped ordering, convex ordering, tail ordering.

In the above set-up, we assume that there exists a population v such

that wj >' i for all i. This popiLation w, will be referred to as the

'best' population. In case of more than one population satisfying the condition

we will consider one of then to be tagged as the best.

From each population we observe a random element Xi. The space of

observations is: Xk = {(x(Xlx 2 ,...,xk), xi c , i u 1,2,...,k). In most

applications Zk will be a real vector space.

The decision space a consists of the 2k subsets d of the set

(1,2,...,k): to put it formally,

(3.14) 8 * (djd (l,2,...,k)1 .

In other words, a decision d corresponds to the selection of a subset of k

populations.

A decision d c A is called a correct selection (CS) if j d which

means that the best population is included in the selected subset d. It

should be pointed out that in many subset selection procedures investigated earlier,

the null set * is excluded from A to guarantee the selection of a non empty

subset.
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A mesurable function 6 defined on Z x is called a selection pro-

cedure provided that for each x c Znk, we have,

f 86(,d) _ 0 mad

6(x,d) 1I
d1.

whore 6(xd) denotes the probability that the subset d is selected when

x is observed. The individual selection probability pW(•) for the popa-

lation I is then given by

(3.16) Pi8W() dd)

where the sumation is over all d containing t. If the selection probabili-

ties P(D, p2(.) ... ,pk(D take on only the values 0 and 1. then the

selection procedure 6(x,d) is completely specified.

In general, we can assume that the selection of a subset d c S results

in a loss. Let us consider the situation where P. - p(Oi,!-) and assume

the loss L(,d) a L((el,6 2 ,...,ek).d) - i Li ) where Li(!) is the loss

if the ith population is selected. We may assume an additional loss L if

a correct selection is not made. The overall risk for the nonrandmoized rule

* 6 is:

k
(3.17) R(8,6) I Li(p) SOP(•) * L[• p-,(CS1•}].

i-l --

In many problems it has been assumed that Li (0) - 1 and L - 0, in

which case, R(6,6) gives the expected size of the selected subset. In

general, our aim is to minimize the risk R(e,6) which will be done under

the usual syunetry condition.

S....• • .•..I
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Our goal is to obtain selection rules 6 selecting a non-empty subset and

satisfying the P*-condition. In general, we wish rules with large probability

of a correct selection and a small value of the expected size. The ratio

nW(6) k Pw(CS16)/Eu{SI6) can, among others, be considered as a measure of

the efficiency of the procedure 6 at w m (Pi ..... Pk0' Pi c -. Both

PW CSj6) and E (SI6) depend on 6 only through the individual selection

probabilities and hence if we restrict our attention to these quantities, we

can define two rules 6 and 6' as equivalent if they have the same individual

selection probabilities p(x) and p'(x) for all x. Hence, we can use the

following simplified definition, replacing 6 by R.

k. kA subset selection rule R is a measurable mapping from Z into E (k

dimensional Euclidean space), namely,

R: x÷ (Pl(_),p2(X),..... pk()), 0 <px) _ 1 ,

i * 1,2,.... ,k.

If pi's are 0 or 1, the rule is nonrandomized; in this case, R can also

be defined by the sets A, a (x C kjpi(?) - 1}, i - 1,2,... ,k. Ai is the set

of observations for which ri is selected. R is said to be unbiased iff I
Tr i 1,2,...,k mp j i P,i for all w c 11

where P •i EE pA(x) = probability that wi is selected, and is said to be

monotone iff

> .0 P for ill iJ end all w c Q

We shall restrict ourselves to selection rules R which are invariant under

permutation (or symmetric), i.e., rules R for which
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(pl(gx) .....pk(gx)) - g(pl(x),...,pk(ý)) for all xKk ScG

where G denotes the group of permutations g of the integers 1,2,...k.

Studden (1967) has discussed the problem of obtaining optimal procedures.

He has obtained a necessary and sufficient condition that a rule 6 be best

invariant, that is, 6 is an invariant rule for which R(6,6) is minimum.

Assume Ok to be those permutations of (el,....,ek) such that the largest

parameter value 6[k] is in the last component and let

*i(x;O) - (1/(k-1)1) I f(x,g_), i a 1,...,k where f(x,e) is the joint
Gi

density of x(w.r.t. some measure pi) and Gi - (gIg 1k D i. The following

theorem has been proved by Studden.

Theorem 3.5. A selection rule 6 is best invariant iff

Ik
(3.18) Pk(x) I if L$k((x;e_) > I Li(O) *iCX;e)

iul

k
- i jf Lk(x;AO) < I Li(0) *i(x;e)

in 1

for e E k'k almost everywhere u. The functions pi(x), ijk, are defined

by the invariant conditions on p(x) a (Pl(X),...,Pk(x)). As a corollary, weS~k
obtain the result: An invariant selection procedure minimizes • Li(_) Iepi(X)

subject to the condition

(3.19) P6 {CSI6) > y(L) for all O n

iff the individual selection prcbabilities are determined by (3.18).

The expression given in (3.18) defining the selection probabilities which

minimize R(0,6) is rather complicated when written down in terms of the

I
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original densities. However, for the slippage sAituation when the underlying

densities are from an exponential family and Li(2_) = 1, the expressions

simplify considerably and in this case the following theorem has been obtained

by Studden.

k
Theorem 3.6. Let f (Q) a R f8 (xi) where f (X) a C(O)eex and

e8-- [1] a '[2] e[kl] -n (A > 0). An invariant rule 6 mini-

mizes Eo{SI6) subject to the condition that P{(CSI6) > Y iff for almost

all x

k-I Ax.- Axk
(3.20) Pk(x) a 1 if 1 < Co

iml

k-l Ax.. Axk
= 0 If I e > Ce

j-l

Studden also considered a simple situation concerning normal populations

where the parameters are permitted to vary. It is assumed that f(x;@) -
k
n f(xi-ei) where f(x) is the standard normal density. For fixed A let
i.1
p(x;a) denote the selection probabilities defined by (3.20) where C is

chosen so that P({CSlp(x,A)} = y for all 6 (8,.....,6,e+A). Let *(A) denote

the class of invariant procedures satisfying

(3.21) P6{CSi6) > y for all 6 c O(A)

where Q(A) = {6 I e(l] _6[2] < . < k-l] <0[k] - .

Theorem 3.7. For any e with Orl 8 .r ." - l k -A the

minimum value of E {S161 over the class o(A) is attained by p(x;A), i.e.,

(3.22) min E (S16) .- E 6 Slp(x;A).
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Now, consider the sequence of selection probabilities defined for

S• •.(0,-) by

k - l A x . A x 'k
(3.23) "i,(x;,A. I if e 1< C(AX)e

k-i Ax. AXk

I k.

--0 if e > C(A)e

For A - 0 we let

k--1
(3.24) Pk (X;O) I if j x j/(k-1) < x k + C(O)

k-1
0if I x (k-1) > xk + C(j~ j

while for , c e we enedefine

(3.25) Pk(x;-) = 1 if -max x

IJk-I i<x I ~o

=0if max xe >( e

Sk-A 1 xIi (3.24)j _ 1i Xk + C(O)

The values C(A), c [0,-] arc- all chosen so that fur a fixed set of values

011 <_...<_ ejý, the probability of a correct selection is equal to a given

value f The rules defined in (3.24) and (3.25) have been considered by

several authnis. It has been observed by Studden that p+(x;A) has limits

Pk (x;O) and Pk 0] a almost everywhere lh j as A approaches zero and infinity,

respectively.

In addition to several desirable propei-ties and criteria for selectioi' rules

discussed above, another concept was investigated by Nagel (1970). This is con-

cerned with what are cilled 'just" selection rules.
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We assume that a partial order relation > is defined on Z [Iy_ x or,

equivalently, xI < y means that y is better than x). A selection rule R

defined by its individual selection probabilities p.(x), i = 1,...,k, is said

to be just iff

x i -< Yi

(3.26) "Pi (Y) > pi (x)

xj > yA j, Ji

For nonrandom'zed rules determined by acceptance regions A1, ,Ak we

can define a just rule equivalently in terns of increasing sets. A subset

Ac is said to be increasing iff x e A and y> x * y E A. We say

that P is svochi.stically better than Q(P > Q) iff P(A) > Q(A) for all
st

increasing sets A c S. We note that if Z is the real line and > stands
I,

for >Lor >) then the increasing sets are the intervals [a,-) and (a,-)

which induce the usual stochastic ordering on the distribution functicns. A

rule R is sail to be just iff

E_ Ai

x -< Yi implies Y E A.1x 1 1
I.I

x.y., j •i

As mentioned earlier, frequently we require a selection rule to satisfy "

the basic probability requi..rement. Hence, a central problem in the subset

selection "theory is to determine inf P {CSIR}. For many xales investigated !

in the literature, this infimum is attained in •0where o0•- is the set

of w whe~re the Pl are identical. This could reasonably be expected of a -

good rule, because in %0' no statistical information can be employed to find..

A
X > Yis.j
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the arbitrarily tagged population. It has been proved by Nagel (1970) that this

property holds for a just selection rule i.e.,

(3.27) inf P CSIR )- inf P (CSIR), if R is just
WcfQ W6%0

It is also a reasonable requirement that PW{CSIR} be constant over

Q because in stating the P*-condition, we express that we are content if

SPW (CSIR} is at least P* and we are not interested in exceeding P*, at

least not in n where it can he achieved only by incre,%sing the expected

numbe' of populations in the selected subset.

The following lea= can be applied to construct just subset selection rules

with constant probability of a correct selection in fl0'

Lema 3.1. Let X1, X2 ,. .. ,X be independent and identically distributed

random variables with joint distribution P8. Let T(XP, X2 ,. .. ,X) be a

sufficient statistic for e.

(i) If E(6(X1 ... ,Xk)IT) = P* for all T then E8 6 = P* for all 6.

(ii) If T is complete w.r.t. {Pe(x)), then Ee(5(X 1 ... ,Xk)IT) = P*

is also necessary for E 6 = P* for all 8.

Gupta and Nagel (1971) have investigated the problem of constructing just

rules in the cases of some discrete distributions such as binomial, Poisson and

negative binomial distributions, which are discussed in the next section. They

have also discussed the problem of deriving rules with constant P{CSIR) in

Q0 using the likelihood ratio criterion. They consider densities

f(xiei ), i = 1,...,k, where f(x,O) is given by

eT(x)
(3.28) f(x,e) = c(O) e h(x)
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Under the slippage configuration, they derive the rule

R: Select wi iff T. > T [k - c

where c = c(k, P*, 0, 6) is determined from the P*-condition. This rule is

just and the constant c is given by

* (3.29)k-1(3.29) G (t c) dGe(t) P*

where Ge is the cdf of T. For the normal distributions with 6 as the location
6I

parameter, is independent of e. In general, c depends on e and, if 6 is

not known, an estimator of 0 may be used. Since ET. is a sufficient statistic

for 6, this yields a selection rule of the form

(3.30) Select i., iff T. > T c(ETiTP*)* "
1 -(k] 1'~i

By Lemma 3.1, this rule has constant probability of a correct selection in flop

if c(ETiP*) is determined to satisfy

(3.31) PW0(Ti >T[k] - c(zTi,P)IET i =P*

for all ETi., W EiO However, it is now known whether (3.30) is a just rule.

0 0'
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4. Selection from Discrete Populations

in this section we discuss the results of investigations of procedures

for selection from k independent discrete ropulations. Though selection of

the multinomial cell with the largest (smallest) probability where the obser-

vations are on integer valued random variables falls under this category, we

discuss it in the next section along with problems concerning multivariate

normal populations. The case where only the ranks of the observations are

considered is discussed in the section on distribution-free procedures. Our

present discussion will be mainly concerned with selection from binomial,

Poisson and negative binomial populations.

Binomial Case:

We have k independent binomial populations wi(i=l,...,k) with unknown
1

probabilities of success on a !;ingle trial 01,..., respectively, where

0 < 0 < 1, izl,... ,k. The following procedure R based on samples of size n

from each population has been proposed by Gupta and Sobel (1960).

R: Select the population n . iff

(4.1) x. >max(xl,...,xk)-d

where x. is the observed number of successes in n observations from v . and1 1

d=d(n,k,P*) is the smallest non-negative integer that will satisfy the P*-condi-

tion.

It is known that P(CSIR} is minimized when 9l .... =0k* Thus, the integer d

is the smallest non-negative integer for which

nr n T a + d.] k -1

(4.2) inf (
0<9<1 a== J=O

-. .... ...... a, .0,.
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The above procedure and another procedure for the case of samples of

unequal sizes along with the normal approximations for both these cases

have been discussed earlier in the literature and have been briefly

summarized by Gupta (1966a). It has been shown by Gupta and Sobel that

for k=2, the infimum in (4.2) is attained for 0=1/2, and that, for a fixed

k, the value 00 at which the infimum takes place tends to 1/2 as n-.

However, in general, the value of 0 for which the infimum takes place is

not known. When 0=. .... 0kV0 , P{CSIR} can be written as a polynomial of

degree nk in 0. Let

nk

(4.3) P(CSIR} = Qk,n,d() ci(k,n,d)i
i=0

The minimum of Qk, ,d(0) is attained for some 0g, 0 < go < I for which

Ql= =0. Nagel (1966) has evaluated the coefficients c (kn,d) numerically
dQ 9=0 1

for k=2(1)7, n=2(1)7 and d=0(1)n-l. It is found that the first derivative is

of the form

(4.4) dO =[(1-o)1-T(o)

where T(Q) is a polynomial in 0. The computations showed that Q(Q) may have

several minima in (0,I). A table of Q values is given for a few selected

values of k and n.

Gupta and Nagel (1971) have constructed a rule R0 for the above binomial
0A

problem which overcomes the difficulty of finding the infimum of the probability

of a correct selection. Their goal is to construct a just rule such that

P {CSIR) = P* for all w E %f0 where %0={w:w=(0,.... ,Q)). It is clear thatwI
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this goal cannot be achieved with a nonrandomized rule, because when

w=(O ,0) or w=(I,... ,l) the observations will be x_(O,...,0) or x=(n,...,n)

with probability 1, requiring the use of individual selection probabilities

Pi (x)=P*.

The joint density for w_ Efl0 is

(4.5) f -(x V'x2 ... xk) = (leQ)nkexp[(1 x.) log !_k x

k
We see that T = X. is a sufficient statistic for 0. Since we are

i=l

interested in symmetric rules R it is sufficient to know one of the individual

selection probabilities, say, Pk From Lemma 3.1 it follows that

(4.6) E(pk(X) IT) = P* for T = 0,1,...,kn.

The requirement that R be just leads to

Yi <x' i l, 2. . -

P(4.7) 2 k Pk(Xl,X 2 .. ,k < pk(lY2..yk).

* lYk >Xk

Figure 1 shows the partial ordering induced by (4.7) among the observation

vectors for the case k=3, n=2. The indivioual selection probability

P 3 (X1 ,x 2,x 3 ) defines a just rule if its values are nondecreasing in the

direction of the arrows. Because of symmetry only one of the two permu-

tations (x 1 ,x 2 ,x 3 ) and (x 2 ,x 1 ,x 3 ) is plotted. The numbers underneath the

observation vectors denote the corresponding T values.
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(0 o0o) (O 121) (.(0 2 2)., 1 142)

(0 1 0131) 72 2)

(0 220) (1 120) (l21)72)

(1 2 30) 24 ~ ~ 2 S1)

Figure 1. Partial Ordering for Binomial

Observations k$3, n=2.

The conditions (4.6) and (4.7) do not determine a rule uniquely.

Gupta and Nagel have proposed the following rule R

0I1 if xk > cT

(4.8) PkWX if xk= cT.

0 if xk < CT

where p = p(T,P*,k) and c,, = c (P*,k) are determined to satisfy

(4.9) E (Pk(X) IT) = P(Xk > CTIT) + PP{Xk = cTIT} -P*

The conditional distribution of Xk given T is hypergeometric:
(n (k-l)n•

(4.10) P{Xk ijT} = (n) (( T-i
k~kn ~T



28

Let ZT have the same distribution as Xk given T. Then (4.9) becomes

(4.11) P{ZT > CT} I pP* Z c P*
T TT T

and the constant c is smallest integer determined from the inequalities

(4.12) P(ZT > CT} < p*

and

(4.13) P{ZT > cT- > P*

From (4.11), we have

p* - P{ZT > cT)

(4.14) p P(ZTCTI

It has been established by Gupta and Nagel (1971) that the above rule

R0 is just. They have also tabulated the values of cT and p for k=2,3,S;

n=5,10 and P*=.75, .90, .95, .99, in each case T going from 0 to nk.

Since T takes on the values 0,1,... ,kn these tables become very

extensive for large values of k and n. Therefore it is desirable to find

approximations for cT and p. The normal approximation for the hypergeometric

distribution gives good results when n is large and T is not extreme (close

T a 2 T(kn-T) (k-1)to 0 or kn). The expectation and variance of ZT are 2and = 2
(kn-l)k

respectively. Using the fact that asymptotically ZT is NU,o 2), we obtain

approximate value cT given by cT = [C + 1 - a (P*)] where 4 1 is the

inverse of the standard normal cdf and [x] is the integral part of x. For
~ -1

p we get the approximate value p = cT + 0.5 - ( a - o1 (P*)). The exact and

approximate values of cT and p have been compared by Gupta and Nagel for
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k=2,3,5,10; n-5,10,20; and some selected values of T and P*. The results

show no change in the values of cT and ET and only small deviations in the

values of p and p.

The nonrandomized version R of Ro, namely, R Select riff x. >-c

is conservative in the sense of meeting the basic probability requirement.

However, R0 may not be just and it selects large subsets if the O.'s are

close to zero or one. A comparison of R0 and R is difficult because

inf P W{CSIR} is not known in the case of R. Since it takes place near
1• - A9 , the P*-value for R0 has been chosen by Gupta and Nagel to satisfy

P (CSIR} = P* with w which makes the comparison slightly more

favorable for R. Under slippage configuration (0,...,0, 0+6), the numerical

computations show that R0 yields better results for small values of 6, while

R is better for large 6. Hence R should be applied if small differences in
0

the success probabilities are expected. This advantage of R becomes more
0

evident in the case of equally spaced configurations, where almost surely

more than half of the populations will be retained in the selected subset

if the number of observations is increased indefinitely, whereas R will

eventually select only the best one.

Gupta and Nagel (1971) have studied rules similar to R defined by0i
(4.8) for the problem of selection from Poisson and negative binomial distri-

butions. The case of Fisher's logarithmic distributions has been discussed

by Nagel (1970).

In connection with selection from discrete populations Nagel (1966)

considered the problem of minimizing AN
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n i~d
(4.15) A ==0 a(0 a

i0o j0 J

under the condition

n
(4.16) a. 1, a 0 for i - 0,...

i=0 -

Setting

i

(4.17) A. = a., i = 0.... ,n; A. 0, i n; A. A , i > n,1 jO0 1 1

we have

n
(4.18) A= I (A. -A A

i=0 1 i-i i~d

For d = 0, it has been shown that the minimum of A is given by

1 k-i

(4.19) Amin (k,n) + --- an

If bk (k-l)/kk/kl, then

(4.201 Amin(k,n-1) = 1-b k/(A min(k,n))I/k-

Amin (kn) has been tabulated for k=2(1)8 and n=1(I)25. The case of d > 0

can be handled using the results for d = 0 case.
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S. Selection Procedures for Multinomial and Multivariate Normal Distributions.

I. Multinomiel Case.

Let plp 2,.... Pk be the unknown cell-probabilities in the multinomial

k
distribution with ' Pi = 1. Let xl,x 2 P ... ,xk be the respective observa-

i-I k
tions in the k cells of the distribution with x - N. Let the ordered

1
cell-probabilities be given by pt1]1  P[ 2] 1 '. P[k]" For selecting a

subset of the cells containing the cell associated with P[Rk' Gupta and

Nagel (1967) proposed and investigated the following procedure

RI: Select the cell with observed x. iff

(S.1) xi I max(x .... xk) -D

where D is a given non-negative integer. Using this rule zhe probability of

a correct selection is given by

(5.2) P(CSIR}1 F(k,N,D; Pi .... P[k])

NI jI Vk= • v ! .V I P(I]"". Ptk]"
v.-N 1 k

V(iVk +D

i = 1,2,....k

Then the following lemma can be established.

Lemma 5.1. (i) If the sum P[i] ÷ P[j] 1 < i < j < k, is kept constant,

P{CSIR1 } decreases as we pass from the configuration (p[l],... Pli]

P] .'...p[k]) to (P[ 1 1 ... ,Pi] " c.... *P[j] + ,... .p[k]) where

0 < E < pli"i
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(ii) If the sum pj + p[k3I'l < i < k, is kept constant, P{CSIR

decreases as we pass from the configuration (p,,p to

(P1]+ £.....Pk - ) where 0 <

By using this lemma, the following theorem is obtained.

Theorem 5.1. Let P be the smallest integer such that piP] > 0 and let v

be the largest integer such that p[v] < P[k]" Then, for a configuration

minimizing P{CSjRI}, u > v. In particular, if p = k-1, then p > v.

As a consequence of tht •oo.,- theorem, we have

(5.3) inf P{CS:RI ra (n min 1 F(k,N,D;(O,... ,O,s,p, ... ,p))
r1

where s 1 - (r-l)p and Q is the space of all configurations of pl.... Pk-

Foi the purposes of computations it is not necessary to consider the

cases where r < k, when the problem is already solved for all smaller values

of k for the same N and D. In other words, we need consider only vectors of

the type (s,p,...,p), s = 1 - (k-l)p. On the basis of numerical evaluations

of F(k,N,D; (s,p,... ,p)) done for D = 0(1)4, k = 2(1)10 and N-2(l)15, it was

1 1found that the minimum over p took place either for p = K-or for p = k--

except in the case of k m 3, N = 6 and D = 4 for which the minimum was attained

in the interior of the interval ( 1

Consider the configuraticn (p, ... ,p,Ap), A > 1. For any D, the expected

subset size is given by

(S.4) E(S) N! 1  k BZ'r V kT Pl ...Pk vEvi.N Vl*..k

1|
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where B = number of v.'s > v - D. The probability of selecting aVi - max
non-best ~ ~ ~ (S pouaini ie y -P{CS'31

non-best population is given by Tables have been provided

by Gupta and Nagel (1967) for the values of P{CS',R 1 , expected proportion

of cells selected and the probability o*f selecting a non-best population

corresponding to the configuratio:i (Fj, ... ,p,Ap), A > I for k = 2(1)10,

N = 2(1)15, A = 1(2)5 and 1) = ',1i)2. An.ther table gives the minimum D

such that inf P{CSjRI} > P* for k = 2(1)10, N = 2(1)15 and P* = .75, .90.

For selecting a subset containing P[I], Gupta and Nagel investigated

the rule R2 which selects thz cell with observation x. iff
21

(S.S) x. < min(x .... xk) + C

where C is a given nun-negative integer. In this case the probability of a

correct selection is given by

(5.6) P{CSIR 2 ) - G(k,N,C; . P[k)

- l N! V1 ] Vtk

Ev.=N 1 . [

'V >_vl-C, j = 1,....k

The following lemma ha! been proved.

Lemma 5.2. (i) If the sun p1.] + P[1J] 1 < i < j < k, is kept constant,

P{CSIR 2 ) decreases as we pass from the configuration

(pLl] ,...,P[il ... ,p[j ..... p[kl) to (P[l... .P[i]- " .. . P[j]+c.. . P[k]) A l

where 0 < _

I -< _li.

• !-
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(ii) If the sum P[l] p 1j < j < k, is kept constant, P{CSJR 2}

decreases as we pass from the configuration (P[I]..... P[j] ... P[k]) to

(p[ 1 ]+..... IP[j]-c.....P[k]) where 0 < c < p(j].

As a consequence of Lemma 5.2 the following theorem is obtained.

Theorem S.2. P{CSjR 2 } is minimized at a configuration (P[] '.. 'P[k3)

given by (p,...,p,q), where q = I - (k-1)p, 0 < p <.I

Numerical evaluation of G(k,N,C;p,...,pq) for k = 2(1)10, N = 2(1)15

and C = 0(1)4 show that the overall minimum is given by the configuration

(1 ..... 1). For the configuration (p/A,p,...,p), A > 1, tables are available

for the expected proportion, P(CSIR2 } and the probability of selecting any

fixed cell vith probability p for k = 2(1)10, N = 2(1)15, A = 1(2)5 and c = 0(1)2.

As we have seen above, Gupta and Nagel procedures are based on a fixed sample

size. For the problem of selecting the cell tith P[k]' Panchapakesan (1971)

proposed a procedure R3 which is based on inverse sampling. Observations are

taken one at a time until the count in any cell reaches a given number M. Let

xl, x2 ,... 2 xk be the cell-counts at termination. Then R is defined as follows:

R 3: Select the cell with count x. iff

(5.7) x > M - D

where D is a non-negative integer. For the rule R3 the probability of a

correct selection is given by

k-1
(5.8) P{CSR 3 ) = -1 L a

where
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M(V1 +., kl I V I v k

(5.9) L -I ... "V I- I [lj " P k]"
1 k ~ l

the summation being over the set of values of v1..... vk such that

Va=M,O <_vk IM-D-l and 0 c v. < LM-1, B 1,...,k-l; 8 # a. This multiple

stun can be expressed in an integral form and we get

(5.10) P(CSIR3 } = 1 - r((k-.)•M*1) T3 [rCm k r(M,) C '

where M' = M-D, k-2
( YM-1) YkI-1

H-i Mk-1
(5.11) Ta =Ck _ ..- d=1

€I Ok (I+YI+" "+Yk-I)(')÷'d "dk-

a a

and *i P[i]' i = 1,...,k.

It has been established by Panchapakesan that the statement of Lemma 5.1

holds in the case of R3 , and hence that $

(5.12) inf P(CSJR 3 = min (1 min 1 F(k,M,D; (0,... ,O,s,p,...,p))
0l r=2,..... k -<p < -p -

where 9 is the space of all configurations of the cell-probabilities, r is the

number of positive cell-probabilities in the configuration

(0,...,O,s,p,... ,p), 0 < s < p, and F(k,M,D; (0,...,O,s,p, ... ,p)) is the 4

probability of a correct selection for this configuration. Subject to the

condition that s + (r-l)p=l, it has been shown that, for every fixed r, 4
P{CSIR 3} increases in p and hence

(5.13) inf P{C3'R ink F(k,M,D)

r=2,... , r

M=-=
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where F r(k,M,D) denotes the probability of a correct selection for the

configuration (0... . rl.....-r). It has been recently shown (unpublished)

that Fr (k,M,D) is monotonically decreasing in r. Thus

(5.14) inf P{CSjR 3) = Fk(k,M,D).

For R3 , the number of observations (n) is a random variable. Exact

and asymptotic expressions for E(n) corresponding to the configuration
1

€ ""¢k = "are written down using earlier available results. Specific

results have been obtained for the special case k=2.

For selecting the cell associated with P[k]' Nagel (1970) constructed a

symmetric rule based on N observations, which yields a minimum of PCS when

the cell-probabilities are equal and which maximized PCS for the configura-

tion (9,... ,QO+c) where 6 > 0 and kG + 6 = 1. His rule R is a randomized

rule which selects the cell with observation x. with probability pi where

1 ifx. > d

(5.15) pi P if = d

S0 if xi < d,

where d > 0 is determined from
N

(5.16) (1)N i d N N) )N-i < p*
k i=d~l

and

(5.17) N-) (N) (k-i) >d
k i=d
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It follows from above that

N N N-i
(5.18) = - l (k-)

(kl)N-d

II. Multivariate Normal Case.

Selection problems for multivariate normal populations have been

investigated when the populations are ranked in terms of (i) generalized

variance (ii) distance function and (iii) multiple correlation coefficient.

In the following discussion of these investigations, we assume that ri,..., rk

are independent p-variate normal populations, where w. has mean vector Pi.

and covariance matrix Zi(i = l,2,...,k). Let x1., j = 1,2,...,n, be a sample1 n

of size n of vector observations from i. and S. = n-- • (xa- xi.)Cx.- i)'1 1 n-a=l 1 1

(a) Selection in terms of Generalized Variance, 1If. In this case pi and

E. are unknown. For selecting a subset containing the population associated

with the smallest Jiil Gnanadesikan and Gupta (1970) studied the following

rule R, based on the sample covariance matrices S., i = l,..,n.

IIR: Select the population wr. iff

il lslmin(5. 19) Is.i __ , S

where ISimin = min(IS1  ..... ISk ) and 0 < c < 1. It has been established that

(5.20) inf P{CSIR) P 1 Y j y 2,...,k}1 cj

where Yi(i = 1,...,k) are k independent random variables, each being the

product of p independent factors, the rth factor being distributed as a

chi-square variable with (n-r) degrees of freedom.
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The exact distribution of Y. is unknown except when p- 2 . In the

case of p=2, we get inf P(CSIR- P(Z 1  Z j - 2,...,k) , where
tCI-
Zi, i - 1,... ,k, are k independent random variables each having a chi-

square distribution with 2(n-2) degrees of freedom. If, further k=2, then

i c12 is the 100(l-P*) percentage point of an F variable with (2n-4, 2n-4)

degrees of freedom.

When p > 2, one can use Hoel's approximation for the distribution

2
of Y.i in (5.20) or use the approximation of log X by the normal distribution.

Some study of these approximations were made by Gnanadesikan and Gupta.

Further, the performance of the procedure R was studied in terms of

risk functions using three different loss functions. If the ordered

generalized variances are denoted by IW[] E1[2] < ... < IEI[k], the

different loss functions that were considered for the loss incurred by

including the population whose generalized variance is Ei, are:

(i) LI(Li) i I/Ii[ 1 ] -1.0

(ii) L2 (Ei) = (Rank of the population it 2 ,where the ranks increase

along with the generalized variance, and,
S

(iii) L3 (i) = (, where S is the number of populations included in the subset.

The computations of the risk functions associated with the above loss functions,for p= 2 ,

k=2(1)5, IL[ii]/1Z1[1 = ai , when a = 1.2(.2)2.0(.5)3.0, n = 3(1)7 and

P* = .75, indicate that E(L 2 ) and E(L 3) are sensitive to changes in the values

of the parameters and are decreasing functions of a and n. In the case of

E(L, it increases in the range of values of a considered when n=3 and, for

- .~
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other values of n, it increases up to a certain point and then decreases as

a increases. This lack of monotonicity in the behavior of E(LI), as the

'best' population moves further away from the other populations, and the

difficulty of its interpretation render E(L 1 ) less suitable than L2 and

L3 . Comparing L2 and L3 , due to the ease of interpretation, L would be

more appropriate as the criterion of performance of the procedure R. Finally,

the procedure R is shown to be monotone.

Suppose we consider a partition of the p variables into two sets of

q and q2 components, respectively, where ql + q2  p. The corresponding

partition of Ei is denoted by

111

£i = i * I ..... k.

5_i) z(i)/
21 •22

Here we assume that Ei, (i), EM)are all positive definite. We are
111' 22

interested in selecting a subset containing the population associated with

the smallest IZI/WE (01 1 2  )-- 1 E(i)-1 1 I =-- 'i. say. In other

words, if we consider for each population the conditional distribution of

the q2 set when the ql set is fixed, then our criterion of ranking is the

conditional generalized variance. If the observations are taken on the

variables of the q 2 set, holding the variables of the ql set fixed, then

the problem reduces to selection in terms of the generalized variance for

the conditional normal distributions with dimensionality q2, a problem solved

by Gnanadesikan and Gupta (1970). Let us consider the unconditional case in

which all the p variables are random and observations are taken on all of them
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and use a. as the criterion for ranking. Then consider the partition of the

sample covariance matrix Si denoted by

S • II 12)

We compute s Is i (i 'i) -. Gupta and Panchapakesan (1969a)SWecopue i 122 - 21 11 -12

studied the following rule R' for selecting the population with smallest a

R': Select i iff
11

(5.21) s1 <i - min(sl,.... Sk)

where 0 < c' ct(k,P*,n,ql,q 2 ) < I is chosen to satisfy the P*-condition.

It is shown that

(5.22) inf P{CSIRI = [I (1 - G(c'x)] k-dG(x)

where G(x) is the cdf of a random variable which is the product of
2

independent X variables with degrees of freedom n-q 1 -1, n-ql-2...,n-ql-q2

respectively.

(b) Selection in terms of distance function.

Suppose the mean vectors Pi are unknown and Ei . E(known) for all i.
' r-1

Let X. = Z_ •i, the Mahalanobis distance function of the population ori

1 11 ' t-Ifrom the origin. Let ij= Ei x..; j 1" ,.... ,n; i l,* .... ,k. Then

1Jq
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n 2
Yi yij has the non-central X distribution with np degrees of freedom

jl1
and non-centrality parameter Xi . nXi" We are interested in selecting a

subset containing the population with the largest X i" Gupta (1966b) proposed

and studied the following rule R.

R: Select the population w. iff

(S.23) Y, > c max(y,,... yk)

where 0 < c - c(k,n,p,P*) 1 1 is determined to satisfy the P*-condition.

The probability of a correct selection is given by

k-I
(5.24) P{CSIR} = fo [jR1 FX, c )] dFx, (x)

S [j] [k]

where XI < ' "[2] 1-1 Xi[k] are the ordered X' values and F,,x)

denotes the distribution function of a non-central X variable with np

degrees of freedom and non-centrality parameter V'. Since (F,,) is stochas-

tically increasing in X',

(5.25) inf P(CSIR = inf f; FXk-I (-) dFx•x
a A'>0 F

Gupta showed that, for k-2, the integral on the right hand side of (5.25)

is non-decreasing in X' and hence the infimum takes place when X'=0. Thus,

the constant c satisfies the condition

(5.26) o Gm(:) dGm(x) =Pro m -
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where Gm (x) is the central X2 distribution with np degrees of freedom.

For selecting the population associated with X' [I]'a similar procedure

was studied, namely,

R': Select ri iff
1

(5.27) Y, £ b u.in(yl,.. 'yk),

where b b(k,n,p,P*) > 1 is determined so as to satisfy the P*-cor.dition.

In this case, we obtain

L• x k-1t. (5.28) inf P(CSIR} - inf Jf [1-Fx, (•)] dFx,(x)S•1 ),'>0

The integral is shown to be monotonically increasing in V' for k - 2.

V- For the procedures R and R' defined above Gupta and Studden (1970)

established the monotonicity of the integrals appearing ii, (5.25) and (S.28)

w.r.t. V' in the general case k > 2. They proved the following theorem for

that purpose.

t Theorem 5.3. Let gj(x), j - 0,1.2... be a sequence of density functions on

the interval [0,-) and define

(5.29) f (x) e (X), X > 0.
j 30 j! j

For a fixed integer k > 2 and c > 1, let

(.30) I(X) = f Fk- (cx) dFx(x)

and

(S.31) J(X) = fO [1-F c-=)lk-dF (x)

0 A c
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Let A denote the condition that, for each I > 0

(5.32) x 1(-i [(Gi.1(cx) - Gi(cx)}gt-i(x)
i-O

- C gi(cx) (G i+l(X) - G i9 (x))) > 0

Then, the functions I(X) and J(X) are non-decreasing in X provided that the

the condition A holds. Further, both the functions are strictly increasing

in X if the condition A holds with strict inequality for some integer L.

As pointed out earlier, the condition (5.32) can be obtained from the

condition (3.9). In fact, Gupta and Studden verify in the cases of non-central

chi-square and non-central F distributions a condition which is stronger than

(5.32). Thi: stronger condition states that the sum of the terms in the left

hand side of (5.32) corresponding to i and 1-i, i a 0,...,[1/2], is positive

and this is same as the condition (3.12) for proper choices of h(x) and the

weight functions,

To be precise, Gupta and Studden considered the case where Zi are all

not necessarily equal but known. With a slight modification, namely,

Y1 j = xij E.1 x.., we have essentially Gupta's procedures R and R'. They

also studied procedures when Z1
1 s are different but all unknown. In this

case, let z. = x! S1 x.. Then, for the selection of the population with

the largest and smallest distance functions, the procedures studied are,

respectively,

RI: Select wi iff

(5.33) czi >max(zI,...,z k)

and
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RI: Select ni iff

(S.34) z. < b min(zI,..... k)

where c = c(k,p,n,P*) > 1 and b z b(kp,n.P*) > 1 are determined so that

P*-condition is satisfied. It is known that z. is essentially distributed
1

as a non-central F variable, whose density is of t orm (S.29). Hence

Theorem 5.3 applies in this case. It is shown that- sufficient condition

A is satisfied. Thus we obtain the equations to detine the constants c

and d, namely,

(5.35) f (k-1 cx) dF (X) = P*
p,np pn-p

and

(5.36) o [1-F ,n-p(xlb)] k-l dF (X) = P*

Alam and Rizvi (1966) have also considered the problem of selection in

terms of distance function. For Ei unknown, their procedure is same as that

of Gupta and Studden (which was originally studied in a technical report

issued in 1965) but the monotonicity of the integral involved is established

rather directly and not by obtaining a sufficient condition applicable to a

class of distributions including non-central chi-square and non-central F

distributions. Further, in the case of Ei known, Alam and Rizvi use the

procedure R defined by (5. 33) with Ei in the place of S. ; in other words,

using the statistics z.i x i L i xi" This is different from the procedure of

Gupta (1966b) and Gupta and Studden (1970), who have observed the undesirability
of using i: C.I x. in the sense that the constant evaluated subject to the

P*-condltion is independent of n.
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(c) Selection in tern - multiple correlation coefficient.

Let pi 1), 2 ... p be the multiple correlation coefficient between the

first variable and the rest in the population ni" Let 0 e Pill <' "< Pk] <- 1

be the ordered values of the pi. Guuta and Panchapakesan (1969a) investigated

the problem of selecting a ;.ubset containing the jopulation associated with

P[k] (or p[ 1 ]). Denote the sample multiple correlation coefficients by

R () . Two cases arise:i 1.2...p

(J-' The case in which xi 2 ,... ,Xi are fixed, called the conditional case;

(ii) The case i., which xi 2 ,..... xip are random, called the unconditional case.

The following rule R has been investigated by Gupta and Panchapakesan for

the selection of Pjk]"

R: Select w. iff1

2 2 2 
21(5.37) R.2 c max (R2 ,....,R•2) .

where R?' = R /(I-R.), i = 1,...,k, and 0 < c = c(k,P*,p,n) < 1 is chosen

subject to the P*-condition. In the formal statement of R we do not make the

distinction between the conditional and unconditional cases.

Letting X. = P2, i = 1,...,k, the distribution of R..2 is given by

(5.38) u (X) ~ ' Q (1_)q*m f (x)(5.8) ux~) =Or(q+m)j! (')m 2(q~j),2m~x

j =0

in the unconditional case and by

(5.39) u•Cx) = e ( q W()X0 2(q'j2m

in the conditional case, where

I
'I
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(S.40) q = (p-l)/2 , m = (n-p)/2

and f r,s(x) denotes the density of the F-distribution with r and s degrees

of freedom. It is easy to show that uX(x) has a monotone likelihood ratio

in x and hence the distribution of R*2 is stochastically increasing in X.

Thus we obtain

(5.41) inf P(CSIR} = inf f' U-l(x/c) dU (x)

where U.(x) is the cdf corresponding to uA(x).

In the conditional case, the condition A of Theorem S.3 is satisfied

and hence the infimum takes place for X = 0. For the unconditional case the

same result is shown by proving the following theoi,.rn.

Theorem 5.4. Let g.(x), j=0,1,2,... be a sequence of density functions on

the interval [0,-) and define

- r(g~j). I (l~x)q g.(x), x _ 0 0 < X < 1.

X) - r (q) -"•
S~j=O

For a fixed integer k > 2 .nd 0 < c < 1, let I(X) and J(X) be defined as in

(5.30) and (5.31). Let B denote the condition that, for each integer E > 0

(5.43) [ i'(£-j.) [(q+i){Gil(xIc) - G (xlc}gt-i(x)
i=O0

-c (q+i-i)g (xlc){G .i(X) 1  G.(x)}. > 0

where (q), - q(q+l)...(q4s-l) and G (x) is the cdf correspoiiding to g.jx).

Then, I(A) and J(X) are non-decreasing in X if condition B holds and the

two functions are strictly increasing in X if strict inequality holds in condition

B for some integer .

*1
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It can be easily verified that the condition B is satisfied in the

unconditional case. Thus, in either case, we get

Sk-1(S.44-) inf P{CSIR} Fk (x/c) d x

F 2q,2m 2q,2m

whev-e F (x) is the cdf corresponding to f 2 q2(X). Since the distri-
2q,2m q2.)

bution of R*2 when X = 0 is the same in both conditional and unconditional

cases, the constant c used in the procedure is the same and is given by

(5.45) f F 1  (x/) dF2 q, 2 m(X) = Pk
0 2q,2m (x/c) k-I

When q and m are integers, i.e., p and n are odd, we can use

series expansion for F2 q,2m(x) and obtain formulae for computing c for

specified values of q,m and P*. The final result is:

(5.46) P* = rq) A

r(q) r(m) (l-c)m

qk-l (k-1)(m-1)

C&j0 j=O

where a~r,j) And K(c,m,q,a,j) are given by the following recurrence relations:

1 j = 0

(5.47) a(l.,j)=

q(q+l) ... (q+j -1) , I < j < M-I

and for r > I
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1 j--0

(5.48) a(rj) = min(m-l,j)

a(l,s)a(r-l,j-s) , 1 < j r(m-1)

s=max (j- (r-l) (M-i) ,0)

(5.49) K(c,m,q,a,j)

r~m + rl + j)r(q -Lj ( a +- j) q oS~~~~~r(m + q) ll-c~m+a+j )

m+q-l

(m + q -l) 9,lI-j log c , q =a + j

t=o

m+cL+j -1

Jt{1-ac-'j+q}

£Pa+j -q

+ (m + a + j -l) j-q+l log c , q < a + j
ac+j -q

where Ix(a,b) is the incomplete beta function.

For selecting the population associated with p [Il' the rule proposed is R,
*2 < *.2

which selects •. iff d R. - min R. where 0 < d = d(k, P*, q,m) < 1 is1 1 1lj~k J

chosen so as to sat fy the basic probability requirement. The constant d is

given by
CO

(S.SO) f [i - F (xd)]k dF P*
0 2q,2m 2q,2m

Since 1 - F2 q, 2 m(Xd) = F2 m, 2q(I/xd), for a given set of 1,m,k and P*, the

constant d of the procedure R' is the same as the constant c of the procedure

R with q and ni interchanged. It can be shown that the proc2dures R and R'

have the monotow-.-ity property.



49

Govindarajulu and Gore (1971) have discussed selection from bivariate normal

populations in terms of their product-moment correlation coefficient. If Pi

denotes the correlation coefficient in the population n ii - 1,...,k), then

to select a subset containing the population with Pjk] Govindarajulu and Gore

have investigated the following two rules R and R 2 based on the sample11 leri
product oment correlation coefficients ri and the transforms si = log l-r.

1

(i = 1,...,k), respectively. R1 selects wi iff

(S.51) ri > max r. - h
-l<_k <

and R2 selects .i iff

(S.S2) s.i > max sj - h1 <k

where h > 0 is chosen so as to satisfy the P*-condition. It has been shown

that, for large n, h satisfies

(5.$3) P (Ui <_h 4•72, i 1,i....,k-1) =P-

where the Ui have a multivariate normal distribution with E(Ui) = 0,
V(Ui) = 1, E(Ui U.) = 1/2, i A j. If we are interested in ranking Ipoi, then

the procedure suggested is to select wi iff Iril > max Ir.1 - h, where large

sample solution of h is given by (5.53). It is to be noted that ranking in

terms of 1pil is really a special case of ranking in terms of multiple correla-

tion coefficient investigated by Gupta and Panchapakesan (1969a).
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6. Distribution-Free Procedures.

In this section we discuss a non-parametric procedure for selection in

terms of quantiles of a given order based on order statistics and some pro-

cedures based on ranks and paired comparisons.

(a) SAection in terms of quantiles.

Suppose rTi (i=l,... ,k) is a continuous population with distribution

function Fi whose form is not known. It is assumed x CL(Fi) is the unique

ci-quantile of the distribution F1. Let F i] denote the distribution with the

its smallest a-quantile. The problem of selecting a subset containing the

population with the largest ai-quantile has been studied by Rizvi and Sobel

S(1967). Their formulation of the problem requires the P*-condition to be met

for the set QI of all k-tuples (F1, .... Fk) for which F(k] is stochastically

larger than any other population.

For 0 < a < 1, we take n sufficiently large so that 1 < (nil)a < n and

define a positive integer r by the inequalities r < (n+l)a < r+l. Then the

procedure R1 = R1 (c) proposed by Rizvi and Sobel is defined in terms of a

positive integer c(l < c < r-l) and the order statistics Yji where Y ji

denctes the jth order statistic from the population Pi based on n independent

observations.

RI: Select Fi iff

(6.1) Y > max Y

where c is the smallest integer with 1 < c < r-l for which inf P(CSIRI} > P*.

For any a and k, it may happen that a value of c < r-l does not exist
k-1 k-l'+l)

for some pairs (n,P*). However, if P* < P1u (n) I (-1)i (k)/(n r) then

a vaiue of c < r-1 exists and is unique. The value of c has to satisfy
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(6.2) fC k(u) dG (u) >P-
0

where Gr (u) I u(r, n-r+l) is the standard incompiete beta function.

It has also been shown that E(SIR 11 is maximized in a 1 when the popu-

lations are identical. Further, we let PA denote the configuration with

e -[k)(i=l .. ,k-1) under the assumption that F [i](x) = F(x-e

Let n,(e) be the approximate sample size (obtained by using asymptotic theory

of quantiles) required to satisfy

(6.3) E{SIRI, PA) < 1 + .

Similarly n2 (e) denotes the sample size required to satisfy (6.3) when we

use the procedure R2 based on sample means xi(i=l,...,k), which selects the

population corresponding to x. iff x. > max x. - S where 6 > 0 is chosen
1 . l.ýjk I

to satisfy the P*-condition. Then the asymptotic relative efficiency of R

relative to R2 is defined by

(6.4) ARE(R 1 ,R2 ) = lim [n 2 (c)/n 1 (0)]
C-O1

For a = 1 and no-mal shift alternatives with o 1, ARE(RIR 2) = 2/w. Again,

for a = . and two-sided exponential shift alternatives with continuous symme-2

tric densities about the median value ei, ARE(RIR 2 ) = 2.

Desu and Sobel (1971) have discussed non-parametric procedures for quantile

selection under a modified goal of selecting a fixed-size subset which is described

elsewhere in this paper. Barlow and Gupta (1969) investigated the quantile selec-

tion in certain restricted class of distributions and this is also discussed

elsewhere.

I
m m mI
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(b) Paired comparisons procedures.

L In the paired comparison approach, we compare all the k(k-l)/2

possible pairs of the populations and we have n replications of

each comparison. For i, j=l,. .. ,k; i0j and y 1 I,...,n, let

I f . -* it.

(6.5) x..

0 ifn.-*i

where wi. 4 IT' means that w . is preferred to v. ,

It is assumed that the ties are not possible. Let

(6.6) P{Xi 1 =}= .ij and P{Xij =01 . 1i-ij
ijY ijy ji ii

The score a. of the population 7i is defined by

n n
(6.7) a. = I I X y.

Y- v-l =I joi

where aiy denotes the (partial) score of 7i in the yth replication. It
Sk k

is easy to see that a., = k(k-l)/2 and [ a. - nk(k-l)/2.
i=l 1~

It is assumed that the preference probabilities *.. satisfy a linear model.

To be specific, let 6i be the true "merit" of it. when judged on some

characteristic. Let yi(i=l,...,k) be the observed merit of vi on which the

comparisons are based. Suppose that wi it. if yi > y4 and rt W i other-

wise. 1Ten the preference probabilities ij are said to satisfy a linear model

if .ij = P{yi " yj >0) for all i and j can be expressed as H(O i-e ,

where H(x) is a distribution function on the real line with H(-x) - 1 - H(x).

I
I
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Under the above linear model, Trawinski and David (1963) proposed the follow-

ing rule R based on the score ai for selecting a subset containing the popu-

1
lation with the largest 0 1

R: Select ir iff a. > max a. - v
1 <-

where v = v(k,n,P*) is a non-negative integer to be chosen so as to satisfy

the P*-condition. Under the linear model, it has been shown that the least

favorable configuration is given by .ij = 1/2 for all i and j(i~j) and

is denoted by C(1/2). Thus v is the smallest integer for which

(6.8) P(CSIR 1 : C(1/2)} > P*

Trawinski (1969) obtains an approximation for E{SIRI in terms of (k-l)

variate normal distributions and transforms these into more numerically tractable

integrals. His approximation is obtained under a slippage configuratfon. which

is specified by

(6.9) .ij = 1/2 for i, j = 1,... ,k-l; 4#ij

ki = for i = 1,....k-1

and is valid whenever 0 < 1 + {k!(k+l) 1

(c) Procedures based on ranks.

Let Xij., j = 1,... ,ni, be independent observations from population

i (i v 1,..., k) whose associated distribution function is F (x). The
1i

functional forms of FX is not known but it is assumed that {F ) is a

stochastically increasing family. All the observations are pooled and R..
13

denotes the rank of Xij in the combined szmple of N = n ... + nk
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observations. Let Z(!) < Z(2) < ... < Z(N) denote an ordered sample of size N

from a continuous distribution G such that - < u(r) - EG(Z(r)) <

(r = 1,... ,N). With each of th." ob'-rvations X j associate the numbor a(R1 1 )

and define

n.

(6.10) HI ni - a(R.j), i l"1i

Using the quantities Hi., Gupta and McDonald (1970) defined the following three

classes of procedures for selecting a subset containing the population with

the largest 6.

R 1 (G): Select r i iff Hi + d > max (Ni....Hk), d >_0

(6.11) : Select 7 iff cH HI...,H0 > 1

S(G):, 3elect w. iff i. > D 00 < D <

All the three classes of rules are equivalent if R = 2. The fo)lowing

theorem is established regarding the infimum of the probability of a correct

selection.

Theor¢.1,1 For the procedures R (G), R2 (G) and R (G),

P(CS~.(G1 2 n {C 1 ~'

(6.12) inf P{CSIRi(G)) = inf P{CSIRi(G)I, i a 1,2,3

where ýI is the space of all configurations of 0 - (611 .... ek) and

Ilk - {6 F • : Further, for R3(G)

(6.13) inf P(S1R3((;)} 3 inf P(CSIR 3 (G),
: a0

where Q .; ii = . k

1



It shculd be noted that a result of the type (6.13) is not true in general

for R (G) and R2 (G). The procedures RI(G) (and their randomized analogs)

have been suggested by Bartlett and Govindarajulu (1968) for continuous distri-

butionsdiffering by a location parameter. The procedures of the type R2 (C,)

have been proposed by Blumenthal and Patterson (1969). For all these procedures

a result of the type (6.13) is not true in general. Rizvi and Woodworth (1970)

have given counterexamples to show that the least favorable configuration is

not always given by the identical distributions case.

In the cases of RI(G) and R2 (G), Gupta and McDonald (1970) have obtained

bounds on the probability of a correct selection. It has been shown that

(6.14) inf P{H(k) >v} < inf PCSIR1 (G)) <inf P{H(k) >U)

and

(6.15) inf P _H v < inf P(CSIR2 (G)} A<inf P(H(k) > L)

where H is the statistic Hi associated with the distribution Fk

and, ul and v' are given by

(6.16) u, = i. (d,k,ij = n- A[l + c(k-l)- ]

and

N

(6.17) V v (dk,n) - (nc) 1  I a(r)
r-N-n+l

N
where A • a(r).

r=1

For the particular case where a(r) = r, nil. = Ti, where the Ti are

the rank-sum statistics. In this case we denote R.(G) by Ri. For this

special case, we obtain

ijI
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(6.18) inf P(CSIRl} > P(U < nd) S

where U is the Mann-Whitney statistic associated with samples of sized n

and (k-l)n taken from two identically distributed populations. A similar

result is true for R2.

As regards R3 , we observe that R3 may not always select a non-empty

subset. A sufficient condition for selection of a non-empty subset is

that P* be sufficiently large so that D < A/N. For large n, this sufficient
1

condition holds if P* > 1. The constant D = D(k,n,P*) for ths3 rule R3 is

found such that

(6.19) P{U < 2(k - I) _ n(D - 1)} >p,

Asymptotic expressions were obtained for E(SIRI) and E(SIR 3 ).

Assuming n. = n, for large n, the distribution of T' = (T 1i ... Tk)
k

is approximately multivariate normal with mean vector PT= l, ,

and variance-covariance matrix IT. Let A be a (k-l) x k matrix given by

1 0 0 ... 0 -1

0 1 0 ... 0 -1
(6.20) A= .

0 0 0 ... 1 -1

Define W) = A T, where A is tite (k-l) x k matrix obtained from matrix A

by moving column j to column j+l, j = v, v+1,... ,k-1 and replacing column

v by column k. Let A_ = _ and zv fAvTAr" Then we have the following

theorem.

V--
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Theorem 6.2. If is non-singular for v - 1,...,k; then

k d d -1 k
(6.21) E{SIRI) ý K f ... f exp [-(WV-u)' V (W'-u_ )/2] n dWi'v=I .. . . -- i=l '

I=1

lo

where K = [(27)] k-lii For R3,

k
(6.22) E(SIR3 } I l[(p-D)/a 1

v1l

Let m and n- be two normal populations with means 0 and 0C> 0)

respectively and a common unit variance. The asymptotic relative efficiency

of R1 (which is equivalent to R2 and R3 in the case of two populations)

relative the rule R based on sample means (see Section 2 ) is given by

(6.23) ARE (RI,R;B) = {[2¢(2- /28)- 11/26B(6)}2

where

(6.24) B2 () = I 2 (x+e) *(x) dx - 2(2"1/23)

We see that Im ARE (R 1 ,R;0) 3/r
eO0

-x/0i
In the case of two exponential distributions F.(x) 1 - e (x > 0),

1 1

where a1 = I and e2 > > 1, a similar compa-rison of R2 and the rule R

by Gupta (1963) for gamma populations yields

(6.25) ARE (R 2 ,R';0) = [(0-1)/4(8+1) B1 (0) log 612

where

21 1 -1 2 -2(6.26) b2(1) = 1-2(1+9) + (26+1)- + 6(2+e)- 2e (1+6)

In this case lim ARE (R 2 ,RI;0) = 3/4.
a81
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Suome tV .A I J i W thi Icrt. RO l dnd two other proceduros

were maide i tt I, . i,,, A tb kC ind|peii .dlet exponential populations by McDonald

(1969a0. Procedttrcs i(Pilar to R1, R, and R3 were studied by McDonald (1969b)

by takig r . where R. is the rank of X. among

XIj, X2 j3 ... Xkj The results for the probability of a correct selection are

very similar to those discussed above. In another paper McDonald (1971) has

discussed some methods of dpproximating the constants required to implement the

procedures R1 anc R,.

(d) Selection ir, terms of measures of association.

let F. (xv) denote the continuous distribution function of

i = lr...,k), a set of k bivariate populations and T. denote the rank

correlation coefficienlt for population u'ir Let (X.i ,Yi. ), j = 1,..

and i = 1,...,k be n independent observations from each of these populations.

The rank Rij of Y¥j is the rank of its associated X value among

XiP .... Ixin* The sample rank-correlation coefficient is given by

-1

(6.27) T. = n sign(Ri -R,) i = 1,...I .

For selecting a subset containing the population with the largest T, Govindarajulu

aad Gore (1971) proposed the following rule R.

R: Select n. iff

(6.28) T. > niax T. h1-lj,_k 1

Using the normality of the T'i and assuming a knowledge of the structure of

X.. and Y (which implies Lhe same sign for the correlation between any two

X's) they have obtained a lower bound on P{CSIR) which is used to obtain a

suitable value of h. In tine absence of any information on the strnicture of X..

IJ
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and Yi'an approximate value of h is found by using certain consistent

estimators of the mean and the variance of the asymptotic distribution of Ti.

For sufficiently small pi the asymptotic efficiency of the procedure R

relative Zo the procedure PI defined by (S.S) based on product moment

2correlation coefficient is found to be 9/r2 when the unlerlying populations

are bivariate normal. For the p-variate case (p > 2) some suitable measures

of association have been discussed by Govindarajulu and Gore.
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7. Sequential Procedures

Barron and Gup!a (1970) investigated a non-eliminating sequential rule,

for selecting from k independent normal populations with unknown means

2
ol .... ak respectively and a common known variance o , a subset containing

the population with the largest 6.. The rule is non-eliminating in the

sense that, though the rule selects and rejects populations at v rious stages.

observations are taken from all the populations until the final decision is

made. The ordered ei are denoted by 6,13 < ... < a0k] and it is assumed

that the successive differences between the ordered 6. are known. To select1

a subset containing the population with 6 [k]' the procedure W investigated

by Barron and Gupta is described below.

We take one observation from each population denoted by xx 23 .... ,.

For each population iT. define

1 if X. > x - do
1i-max

0 otherwise ,

where X = max (x .... OXk ) and d is given by

(7.2) P ¢k-I (x+d) do(x) = P*

Then we draw a second set of one observation from each population and define

Yi2(i=l,...,k) similar to Y Continuing in this manner, after the mth set

of observations are drawn, we have Y. i=l,..., k. For each population ni,

we define

m
(7.3) Si = Y-'

j=l
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We have a pair of sequences of real niubers n-%:,cI((bm 1, {Cm)) such

that for all m > 1,

(i) b m -<bMl m - m+l

(ii) b < c

(iii) lim b

(iv) P{ fn [b < Sir < C] = 0 for all i=l, ... k.
MI=l

The sequential selection procedure is now defined.

CP : Tag population wi' i=l,...,k, at the first stage m > 1 such that

Sr ! (a ,b m) and mark it "rejected" if Sir i am and "accepted" if

S m. > b M. Continue sampling from all k populations until each has been

tagged; then accept those marked "accepted" and reject those marked "rejected".

The following observations are made at the outset. For any

m, P = } = Pi and P{Yim = 0} = 1-pi where

k
(7.5) pi, [ R O(x+d+(e i]-[j] )/o)]dC(x), i=l....,k.

-W j=l
isi

Also Yill Yi2 1.... ,Yim are independent and Sim is distributed as a binomial

random variable with parameters m and pi Let L denote the population

with mean [r]' Define

ai(m) a• .a(m, c P accepting n(i) at stage m1.P(b,c)),

ri(m) r(in(mb,c) = P rejecting n(G) at stage mnbd(%,,)),

ai(N,) C ai(m) and r. (nb,c) = i(M)
m=l rM--I
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where (nb,c) is the procedure using the pair of sequences n,*. When there

is no ambiquity, An) is used for d(% )

Definit...on 7.1. Let n u({b 1, {c }) and n'((bm'},(cm') be two pairs of
m m

sequences satisfying (7.4). The sequences (b } and {b'} are said to be

pairwise ordered iff bm- b' for all m > 1. This relation is denoted by

(bn

Definition 7.2. The pair r) is ordered w.r.t. n' (denoted by n -< n') iff

(b) C {b') and {cm , {c'm.

m m m

Definition 7.3. A class of pairs of sequences satisfying (7.4) is said to be

ordered if for all T,,n'E either n < n' or n' < n

The following two theorems have been established by Barron and Gupta.

Theorem 7.3. If n' -c n then ai(n') < a.(n) and r(n0') <. r N.

i=l,2,...,k. In particular P(CSI.P(n')} > P{CS1d(Xn)}.

Theorem 7.2. The procedure P(n) is monotone and unbiased, i.e., k> ak_l> . a

and rk < ri, i=l,2,....k-l.

The rest of the investigation of the procedure d(n) has been accomplished

by using the following class C1 of pairs of sequences. Let bm= Sm-y1, cm=sm+y 2

where 6 is a rational number in (0,1) and ylY 2 are positive integers.

For YY2 fixed, the class C 1 is ordered in S. For this class it is shown

that condition (iv) of (7.4) holds. If we set Rim = S.ir - 6m, for any n c Ci,

the events [Sm-y 1 < S~ < 6+y 2 , [Sm 6m+Y 2 ] and [Sm 6m-yl] are equivalent

to [-Y R < 2 ] [Rn > y2 ] and [Rm < -y] respectively. By taking 6=t/sto [- m 2 Rm > -- m

where t and s are relatively prime integers with t < s, the problem of

evaluating the various probabilities and expectations is reduced to a problem

concerning a random walk on the line where the state space is all points of the

form (Ns-Ht)/s for all integers H > N > 0. It is now possible to relate it to
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a random walk oit the space of integers. These probabilities and expectations

are not always easy to compute and hence some approximations and bounds were

obtained. We sum.arize the results below.

Theorem 7.3. For the sequential procedure W(n) where n =({6m-y),i(6m+y))

and 6-t/s>O

[0 if Pi < t/s

(7.6) lim a (6,Y) i if Pi a t/s

1 if Pi > t/s

where pi is given by (7.5).

Theorem 7.4. Let mi = the smallest m > 1 such that r (i) is accepted or

rejected and M.i = E{m i c P(n)). Then, for the sequential procedure P(n)

specified in Theorem 7.3,

(7.7) M.i Y/Ipi-t/sl

provided v is sufficiently large and pi J t/s.

Numerical evaluations made for 6 = .75, y = 3(1)10 and P, = .4, .6, .8, .9

indicate that the approximations are good for all the y values chosen. The

approximation in the case of the probability of selecting the populations using

the procedure improves as y increases.

There still remains the problem of choosing the two constants 6 and y

Theorem 7.3 guarantees that for any choice of 6 c (Pk-l' Pk)' there exists a

y = y(6,c) such that for any c > 0,
7

(i) ak (6,y) > 1-c and

(7 I,,
(ii) ak_l(6,y) < r,
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regardless of the configuration of Pl' 2 -P2 Pk ad hemce the

configuration of Ol_ [1' ... "' f[k], Thus for a sufficiently small c.

the P'-condition can always be satisfied by choosing an appropriate n r C1 .

If we define S to be the size of the selected subset when the procedure

k
terminates then E(S) I • ai < 1 + (k-i) ak_l. Then we can replace (7.8) by

i-i

r(i) asj68 -) . 1-c and
(7.9)

(ii) 1-E < E(S) < 1÷(k-1)c

regardless of the configuration of the means 610 82 ... , 8k. The experimenter

has for any 6 c (Pkl' P a countably infinite number of procedures n which

guarantee (7.9). Given two procedures n, n' c C which satisfy (7.9), the

procedure with the smaller expected number of stages is preferable in some sense.

If M - max Mi. then the experimentor will want to use a minimax rule,
1<i<k

namely, an n which minimizes M over the subclass C2 c CI of procedures

satisfying (7.9). The following theorem has been established using approximate

value of M.

Theorem 7.5. For 6 E (Pk-l' Pk)'

min for 6-<
6*<6<W "Pk-I

(7.10) min M U
6 Y2 (6)

min. - a, for "< P
W5<6<6v Pk

where yi(6) is the first positive integer such that ak > Y-c, y 2 (6) is the

first positive integer such that akl < c, 8c is the value of 6 such that
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A lIea shows that the approximate unique value 8 is given by

'log [ (l-Pk_ )/(1'Pk) ]

log[pk(lkPk-l)/Pkl(.Pk)k k 1

(7.11) 6*-

1/2 ,i1/2 ,' if Pk-1 + Pk"1

However, there still remains the problem of choosing a specific 6 if

6" • 6. It has been found empirically by Barron (1968) that often 6* 6,

so that the experimenter will not be "far" from the minimum for any choice of

6 between T and 6*. Numerical evidence indicates that if 6 and 6" are

significantly apart, the minimum takes place near 6". It seems an approxi-

mate minimax rule which has certain desirable properties would be P(n*)

where * ((6* m-y*), ({6* m +

Some sample size comparisons have been made numerically between the proce-

dure d(n*) and the fixed sample-size procedure of Gupta (1965) based on means

of samples of size n from the k population, which is denoted here by R(n)

and defined below.

ad

R(n): Select ri iff do

where d is given by (7.2).

The comparison :•as made with o - 1 under slippage configuration

611] .... ÷1[k-l 81, 
6 [k] * o + T, T > 0, and the equally-spaced configura-

tion [ = e, 8a * 8 ..... 8[k] * e * (k-l)T, T 0 0. The following ranges
,(1] [2] 'k

of the values of k, T and P* were considered:

(i) Slippage configuration: k z 2(1)10, 25, 50; T - 0.05, 0'10(.10)0.60,

1,2; P* = .75, .90.
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(ii) Equally-Spaced Configuracion: k 2(1"5- -t 0.05, 0-10(.10)0-60;

P*= .75, -90.

The empirical results indicate tnat An*) is preferable when the means dre

close and R(n) is better when any one mean gets significantly larger than

the others.

Guttman (1963) considers a sequential procedure for a goal which is different

from the usual one. Suppose that i ,k) has the density f0.(x) and
1

the quality of the population is characterized by hi g(e.) where g is a

known function. Let T. be an appropriate statistic based on a sample of n1

independent observations in the sense that E(T) is g(B) or a monotonic fmnc-

tion of g(e). Consider the rule R which selects fi iff

(7.12) E nk (P*,

where wn,k (P*,T) is a random linear set contoined in the sample space of T.

and depends on T = (T 1 , ... Tk) and is such that inf P{CSIR} - P*.

Since the size of the selected subset is random, a natural question is how

t3 proceed sequentially so that we could select one population as the best or

reduce the size of the subset selected subject to certain cost considerations

which res-Lic-". tne number of stages.

Let t denote the stage of the experiment and k denote the number of

populations retained at the start of the stage. if M units of capital are

available to spend on the procedure and at each stage a sample of nt independent

observations are taken from each population, let t be the largest integer for

t
0

which • kt ntd < M where d is the cost per observation.
i=l

The sequent&.iI proc-edure proposed and investigated by Guttman (1963) is

defined below.
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R': At each stage t, use the rule R with P* P* where

P= 1 -I adopting the -following stopping rule:

At the end of stage t,

(1) Stop if t = t 0

(2) Stop if t < t and kt-1 ý 1

(3) Continue if t < to and kt÷1 > 1

It has been shown that P{CSIR'} > B. Suppose that there is infinite capital.

Ile say that the rule R' is in state y if, at any stage t, we have k y .

The states form a Markov chain with non-stationary transition probabilities

(7.13) P = P{k+l= ctlkt Y), I < a < y k k

These are dependent on w, (P*,T). We note that p 0 if a < a and

pya 1. The following theorem has been established by Guttman (1963).
a=l I

Theorem 7.6. Consider the Markov chain with the above structure. Let

p t (t)t), 0 < 6a(t) < I for a ý 1. Then the Markov chain is absorbed

at state I (i.e., R' terminates at a finite stage) iff 6 (t) diverges for
t=l

all a l l.

It might be possible to find a "reasonable" value of nt in some special

cases. Suppose that the expected subset size E(S) at stage t can be written

as a function of nt, kt PF* and the differences h h i]) i < j. Since

k and Pt* are known, if we have information about the differences of the hi1jp

ie can set E(S) = I and solve for nt. tI
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8. Selection from Restricted Families of Distributions.

There are situations where we do not know the actual functional forms of

the distributions F., i = 1,..., k, associated with the populations but have

some information about the class of functions to which they belorng defined in

ter-.ms of a partihi order relation with respect to a known distribution G.

Such families do occur in practical problems. In these cases the evaluation

of the necessary constants for the procedures depends on the knowledge of G

but not on the forms of the F. themselves and in this restricted sense the

procedures are distribution-free. Barlow and Gupta (1969) have discussed selec-

tion procedures for restricted families of distributions mainly in terms of

their quantiles. We will briefly discuss here these procedures and indicate

certain other related problems.

Assume that each F. has a unique a-quantile, Fi Let F denote
1 i* (ii

the cumulative distribution function (cdf) of the population with the ith

smallest a-auantile. We assume that

(a) F (x) > F (x), i = 1,2,...,k and all x,

fii [k]

(8.1)

(b) there exists a continuous distribution G such that

F C<G for all i = 1,...,k,

where < denotes a partial ordering relation on the space of distributions.

To be precise, F < F for all F and F < G, G < H * F C H. Note that F < G

9nd G < H do not necessarily imply F E G.

Some special cases of partial ordering which are of interest here are:

(i) F I G iff F(O) = G(O) = 0 and GI F(x)/x is nondecreasing in

x > 0 on the support of F.

(ii) F < G iff G-IF(x) is convex on the support of F.
C

-,, 4
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(iii) F-< G iff F(O) - G(O) - and G F(x)/x is increasing (de-r

creasing) for x positive (negative) on the support of F.

If G(x) = - e , x > 0, then (i) defines the class of IFRA distributions

studied by Birnbaum, Esary and Marshall (1966) while (ii) defines the class of

FR distributions studied by Barlow, Marshall and Proschan (1963). It is easy

to see that < ordering implies I ordering. Implications of < ordering
C r

have b3en studied by Lawrence (1966). Van Zwet (1964) investigated the con-

vex crdering and s-ordering (not defined above).

(a) Quantile selection rules for distributions I ordered w.r.t. G.

The distributions F i] and G satisfy the assumptions in (8.1).

Let T. . denote the jth order statistic based on n independent observations

from Fi where j < (ndl) a < j41. Then for selecting the population with the

largest a-quantile, Barlow and Gupta (1969) proposed the rule

R: Select the population wi iff

(8.2) T.>c max Tj
l<r<k ,r

where 0 < c = c(k,P*,n,j) < 1 is determined so as to satisfy the P*-condition.

It has been shown by Barlow and Gupta that

(8.3) inf P(CSIR) = f [G.(x/c)]k-l dG (x)

0

where fl is the space of all the k-tuples (Fl....,Fk) and G.(x) is the idf
j

of the jth order statistic based on n independent observations from G. Thus

the constant c of the procedure is determined by

(8.4) f [G1 (x/0)]k- dG (x) a P*

and is tabulated by Barlow, Gupta and Panchapakesan (1969) in the case of

-----------..- -~-"-~-- ----
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G(x) 1 - e'X, x > 0 for selected values of n, k, J and P*. For j ,

the constant c is easily seen to be independent of n.

jWe discussed earlier in Section 6 a non-parametric procedure RI studied

by Rizvi and Sobel (1967) for the quantile seloctIon problem. It has been shown

by Barlow and Gupta that the rules R and RI are asymptotically equally

efficient in the sense defined by (6.4) under the scale slippage configuration.

A selection rule RI proposed by Gupta (1963) for gamma populations based
"a on the sample means has been referred to in Section 2. Comparing R and R'

under the slippage configuration X[i] 6X[k]' 0 < <, i = 1, ... k-l,

we have

22 2 2"(8.5) A(R,R'; 6) > 2(1-6) a [-log a] /[r (log 6)2 Q (1 62)]

where I" * 1 - a. Consequently we obtain

(8.6) A(R,R'; 6 t 1) >_ 0.493 for a = 1/2

Barlow and Gupta (1969) also considered selection in terns of medima when

the distributions Fi(i - 1....k) have lighter tails than G which means that

F. centered at its median, Ai, is A - ordered w.r.t. G (G(O)= - and

(d/dx) F i(x + A i)Ix00 I -- (d/dx) G(x)j x'." In order to select the population with the

largest median, the following rule R2 was proposed.

R 2: Select r.f iff

(8.7) Tj i > max T. - D, j I (n~l)/2 < j+l

j• -- l<r<k j,r

It was shown that the constant D > 0 satisfying the P*-condition is determined by

(8.8) 1 Gý- (t+D) dGj(t) P-

where G. is as defined in (8.3).J
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It is easy to show that, if F has a lighter tail than G, then G IF(x)-x

is increasing in x, which means that F is tail-ordered w.r.t. G(F f G) accor-

ding to a definition of Doksum (1969). As a matter of fact the rule R2  defined

by (8.7) can be used for the larger class of distributions F, which are

tail-ordered w.r.t. G.

(b) Selection w.r.t. the means for IFR distributions.

Let pi be the mean of the distribution Fi, i a 1,...,k, and

F[i] denote the distribution with the ith largest mean. We assume that

(a) F[ ](x) >F[k](x) for i a 1,...,k-1 and all x;

(b) F[i] 41G for 1-1,...,k

where G(x) a I - e", x >0. We also assume that FiCO) = 0 for all i.

Let xi, be the sample mean based on n independent observations from T. and

Hi (x) be the cdf of !i" Let H~i] denote the distribution of the sample

mean from F[i]. Then

(8.9) H [i (x) > H[k](x) for i - l,...,k-1 and all x

and

(8.10) H[i] I G for i a 1,...,k

The statement in (8.9) is an immediate consequence of the assumption (a) above,

while (8.10) follows from (b) and the closure of IFR distributions under convolu-

tions (see Barlow, Marshall and Proschan (1963)). For selecting a subset con-

taining the population F[k], Barlow and Gupta (1969) proposed the rule R3 ,

namely,

R3: Select the population ri iff

(8.11) xi > c' max x
l~jk
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z where the constant c' (0 , c' < 1) satisfying the P'-condition is given by

(8.12) f [G(x/c)]1 dG(x) - *i

S~0

The disadvantage of the rule R3 is that the constant c obtained from (8.12)

is independent of n. However, by restricting the class of distributions to

the gamma family we can obtain a lower bound for P(CSIR 3} which depends on n.

(c) Some results relating to partial orderings of distributions.

The two procedures R and R defined by (8.2) and (8.7) fir the

two types of ordering provides the motivation for an attempt by Panchapakesan

(1969) to unify these two by a general order relation which throws more light

on a lemma of Gupta (1966b). We define the general ordering here in a slightly

revised form.

Definition 8.1. Let N = {h(x)) be a class of real-valued function on the

real line. Then F is said to be X-ordered w.r.t. G if F(O) = G(O)

and G 1F(h(x)) > h(G- F(x)) for all h c X.

We note that if X - fax, a > 1) and F(0) = G(O) 0 O, then we get
• 1

star-ordering. If X a {x-b, b > 0) and f(O) G(O) = •-, then 31-ordering

reduces to tail ordering. It has been shown that N-ordering is a partial

ordering and that order statistics preserve the ordering. The following lemma

is the key result we need to bound below the probability of a correct selection.

Lemma 8.1. If F I G, then, for any positive integer t,

(8.13) f Ft(h(x)) dF(x) > f Gt(h(x)) dG(x)

for all h E X.

z
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Gupta (1966b) proved the following lemma.

Lemma 8.2. X is a random variable having the distribution function F (x).

Let hb(x) be a ilass of functions and suppose there exists a distribution

function F(x) such that hb(gX(x)) > gX(hb(x)) for all X and all x,

where g,(x) is defined by F,(g,(x)) a F(x) for all x. Then for any

t > 0,

(8.14) f Ft(h,,(x)) dF(x) >_f Ft(hb(x)) dF(x).

It is shown that the assumption of Lamma 8.2 amounts to saying

F X F. A general selection problem discussed by Panchapakesan (1969) is as

follows. Let k1 .... ,k be k populations and Fi is the distribution

function associated with wi" We assume that there exists one among the k

populations which is stochastically larger than any other. Let us denote the

distribution of that population by F[k]. Thus we have

(8.15) Fi(x) > F[k](x) for i 1,...,k and all x.

It is also assumed that there exists a continuous distribution G and a class

of realvalued functions {h(hCx)) such that

(8.16) Fi(x) G G for i = 1, 2,...,k

If X. = (X.i, X i2 .. ,X in) is the observed sample from wi, then we confine

ourselves to the class of statistics Ti =T(Xi) that preserve both the

ordering relations (8.15) and (8.16). Let FT. represent the cdf of T(X_)1

under F1  and GTr the cdf of T(Y) under G, where Y a (YI.P.0. Y)

is a random sample from G. If h(x) > x, then for selecting a subset con-

taining the population associated with F~kh, the following rule R was

[ ] t_ _-4-

A11

S - I
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proposed.

R Select w iff

[ (8. 17) h(Tl)> max(Tl, ... ,Tk

Lk

S. It has been shown that

S(8.18) P(CSIR 4" C (h(x)) dGT(x)

If h(x) is indexed by the constants c and d (c > 1, d > 0) then we can

find suitable constants c and d if conditions on h(x) given in the very

beginning of Section 3 are satisfied.

IL
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9. Bayes anid Empirical Bayes Procedures.

Let y a (y1 , Ek (Euclidean k-space) be an observation

of the random vector Y a (YIP..., Yk) whose components are independent

random variables, Yi having the density f(Yilei). The space of action

is denoted by G and it consists of all non-empty subsets of k-populations

(Yi is the random variable associated with the population iv'. i-1,...,k).

A seOec;tion procedure D is a mapping from Ek to (. The loss incurred

when (.' Ce1 ,..., ek) is the true state of nature and D(y) is the

subset selected is denoted by L(D(y), 1). Let Gi be the a priori

k
distributions of ei and G n G i denotes the a priori distribution on

i-l

the parameter space f. The Bayes risk of a decision procedure D

w.r.t. the a priori distribution G is defined by

(9.1) R(D.G) f f {J L(D(y).2_) f(yIO) dy} d G (.)

nEk.
where

kf(YIP) H f(yilei)•
inl

A Bayes procedure w.r.t. G is a procedure D* for which the Bayes risk

is minimu.m. Suppose we consider the loss function in selecting the subset

S. given by3

(9.2) L(S3,"I) -q (O[k)- eq)

where 0jq > 0 and the summation is over all populations q included in S..-

Deely and Gupta (1968) investigated Bayes procedures with the above ii
formulation. -
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Before stating the main results of their investigation, we adopt the

following notation for the sequal.

S. denotes the singleton consisting of w Jl,..., k. The remaining

kk
2k- k-I subsets containing two or more populations w•ill be denoted by Sit

J-k+l,..., 2 -1 with no explicit ordering. Further let

Y(Sjpy) u I L(S3.!) f(yIj) dG(e.), J-1,2...., 2k-I

(9.3)a (kl-q) f(y 1) dG(e), qkl, ... k(9.3) a q []

min a
a l= l' k q

Decly and Gupta haxestablished the following result.

Theorem 9.1. Lot the loss function be given by (9.2) in which ajq" a > 0

for j - I,..., k. If I a oq >a for every j - 1,2,..., 2k -1, then
qESj

the Bayes procedure w.r.t. G for selecting a subset containing the

population with 0[k] is given by D* w D'(y) - S. where j is any positive

integer 1,2,..., k such that

(9.4) IG (Sjy) mlin Y(SI,y)G l<i<k

This result is applied to the normal means problem with G, as
2

(i) normal with mean X and variance i and (ii) umiform on (A -di,

X + di). In the first case, the Bayes procedure is:

Select W. for whichII

-i*

t "
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n8. A i xj+ i
,. max

where xl's are sample means based on n observation.

Some other cases like selection for binomial and Poisson populations

where the parameters, respectively, have beta and g&mma a priori

distributions have been discussed by Deely (196S) who has also in-,estigated

empirical Bayes procedures for the selection problem which we presently

discuss.

In the empirical Bayes approach, only the 3xistence of an a priori

distribution G on the parameter space is assumed and not a particular

G. Thus the Bayes procedure is not available. Suppose independent

observations (x, 0), (x*, 2),..., (x*, • ) on a random variable X
-1' -1 - -2 0 -n1 -n1

are available with 6. 's all being draiwn from the same distribution-- 1

G. (The * indicates that "r" observations fram each population have

been taken for i = 1,..a , n). The "prior observations" contain information

about G and thus if a decision procedure D based upon X
n a

could be found such that R(Dn G) converges to R(DG,G) (i.e. the Bayes

risk of Dn converges to the Bayes risk of the Bayes procedure DG which

we would use if we knew G at the start) for any G in some family G,

then the procedure Dn is asymptotically optimal to DG and is called

an empirical Bayes procedure w.r.t. the unknown G. The main theorem of

Deely (1965) proves that under certain regularity conditions the Bayes

procedure w.r.t. an estimate G of G is also empirical Bayes w.r.t. G.
n

In order to apply this theorem, a suitable estimate Gn is required.

A completely satisfactory answer to this problem is not available.

iT
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Suppose we make an additional sssumption that G belongs to a

parametric family G with parameter 'N - (Xv.,.., Xk). Suppos6 now

an estimate X. of X. depending on the prior observations from the

jth population can be found such that G based on the observations

"conveiges to G. with probatilit) one. Then it is shown that
3

k k
GC'n i - j'n converges to G = H Gk with probability one. Further,

j-l 1

G is also a member uf G. Thus, if the Bayes procedure w.r.t. any
i n

G in G is available, then in particular G is available and thus
7T n

an empirical Bayes procedure w.r.t. G is obtained. FUpirical Rayes

procedures have been obtained for seve. i. 'pecial cases of f(xIO1) and

G, namely, (i) normal-normal, (ii) normal-uniform (iii) binomial-beta,

(;v) Poisson-ganwia. To illustrate the type of results obtained, we

consider the case of normal-normal.

Let Ti (i=l.... k) have the normal density f(xe i) with unknown

mean 8. aid known variance oa. and let e. be distributed normally

2
with unknown tut finite mean X. and knmon variance 8.. ,et

x•, x_,... x* be independent prior observations and x* the present

observation. Then the empirical Bayes proced!ure under the linear

loss function in (9.2) with aj. = 1,DG (x*) select the population n.

for which

(9.6) Z.= max Z.

where

2S 7.+ 02 --

(9.7) Z .2 3 + 2 j
a + r8.
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x. denotes the sample mean from wj based on present observation

and x' is the over-all mean of the prior observations from wr.

Similar procedures have been obtained for the case where G is

subject to certain very general conditions. We briefly describe one

of the results below for the sake of illustration.

Suppose f(xl~e) be a normal density with mean e and variance4 ~2

02. Let e be distributed according to Gj such that f 6 d G. (0) <

j 1,...,k. Let x*, ,. x be independent prior observations

and x_ be the present observations. We denote the mean of the present

observations from Yr by x. and the means of the prior observations from

ir by x, a 1,..., n. Let H (7.) denote (n+l)" times the total

number of •a•' which are < x including the present observation x..

Define

.x n- H (x-n H - /-nl
(9.8) h nj(x) " 2n_1 , j - 1,..., k

gnj .1 21/5

g
2nd

Then the empirical Bayes procedure under linear loss function (9.2)

(with a. * 1) for selecting the best population is the procedure which

selects the population r. (j 1,..., k) for which X U is
21j r hnh J(7.)

n) 2

maximum. The main result used in these cases is a result due to

Robbins (1964).

|4
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10. Modified Formulations and Goals

In the preceding sections we discussed the general theory of subset

selection problems under the usual formulation and described several cases

of specific distributions and ranking criteria used. There are, however, a

few other cases which were not mentioned earlier. Barr and Rizvi (1966)

considered the problem of selecting a subset containing the population with

the largest 6 from a set of k populations having uniform distributions

over (0, e i=l,..., k. Guttman (1961) investigated selection problems

using the coverage probability as the criterion of ranking. If

(i=,..., k) is described by the sample space (X,G,P 0 ) where P0  is a

probability measure belonging to the class (P e c 0, the populations

are ranked according to bi I A dP0 i , where the set A c G . Guttman has

discussed specific procedures for normal and exponential distributions with

A - (--,a) where a is known and specified in advance.

Several authors have considered formulations and goals different from

the usual ones. In the remaining part of this section we will briefly describe

these modifications.

(a) A generalization of subset selection goal.

Suppose that there exists a binary relation < which orders the popula-

tions , " Wk from worst to best. The ordered populations are denoted by

S( 1)< "'" -2 '(k)- This gives a unique t-subset comprising the t

best populations, namely, (W (k-t+l)T' (k-t+2)"" V(k)) for any t(l < t < k).

The experimenter's goal is to select a subcollection of the collection of all

subsets of size s from the k populations such that at least one such se-

lected subset contains at least c of the t best populations. A correct

selection is a realization of the experimenter's goal. For a given probability

I
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P*, a rule R is proposed satisfying the condition that P(CSIR5s > P*

no matter what the unknown configuration of the populations wI,.... I * k'

Of course in a meaningful problem, we have constraints on the values of

t,s and c, namely, 1 < t c k, 1 < s < k, max[l,s+t+l-k] < c < min[s,t].

Let Xij, j n I,..., ni be independent random variables denoting ob-

servations from population wir i I,..., k. Let Tia T(Xil,Xi2 ... , Xin)
4 1

i a I,..., k, be independent statistics with absolutely continuous distribu-

tions GT Gi, i = 1,..., k, suitably chosen such that i • ij ,T. < T
S-i ~. 1 i J

I < i, j < k. Let t. be an observed value of Ti, i - 1,..., k. Then the
1

rule Rs proposed and studied by Gupta and Deverman (1969) is the following.

Rs: Consider all possible s-subsets (subsets of size s) of nI"".. ik

Include in the collection of s-subsets the s-subset (will W 2.".. n i having
1 2

the observations A itil, ti ,..., t i) and complementary set of observations
1s

AC t t iff d[T[(A), T s(Ac)] > -d*, where T .](A) is
s~l --k

the ith smallest element in any finite set of real numbers, d(x,y) is a general-

ized difference such that (i) d(x,y) a 0 exay, (ii) for fixed y - yO, d(xyO)

is increasing in x and (iii) for fixed x = x0 , d(xo,y) is decreasing in y,

and the constant d* > 0 is chosen so that the P* probability condition is

satisfied. For the procedure R 1 , it has been shown that the infimum of P(CSIRs)

occurs when all the populations are identical w.r.t. the binary relation with

which they are ordered.

Gupta and Deverman have also discussed the normal means problem in

particular.

(b) Selecting a subset better than a standard

Under this formulation we have (k+l) populations in (i=0,1,...,k+l)

with the associated distribution fumctions Fei The parameters OP ... , e0.

1.4"D -



82

are unknown and the parmeter 00 of the standard population may or may not

- be known. The goal is to select a subset containing all the populations w i

for which e6 >_80 (or 01 ._ 00). Any rule R defined for the purpose is

required to satisfy the P*-condition.

The cases of location and scale parameters have been discussed by Gupta

(1965). Earlier Gupta and Sobel (1958) have considered the normal Aeans
F

problem where the procedure based on sample means xi (i-O,..., k) selects

iff x> x0 - A/hW. (It is assumed that all populations have unit

variance).

Puri and Purn (1968, 1969) have investigated rules based on ranks for

the location and scale parameter cases and have studied the efficiency of

these procedures compared to the normal theory procedures. The results and

techniques of these investigations are similar to those of Lehmann (1963).

Nonparametric selection procedures for selecting populations better than

a standard when the comparison is in terms of a-quantile have been discussed

by Rizvi, Sobel and Woodworth (1968). The corresponding subset selection

problem under the usual formulation has been investigated by Rizvi and Sobel

(1967) and has been discussed in Chapter 6.

In comparing a population with a standard Lehmann (1961) considered a

population to be good if it is sufficiently better than the standard. To be

precise, let w! (i-i,..., k) be a population whose quality is characterized

by a real-valued parameter 0. and a population is said to be positive (or

good) if 8i > 00 + a and negative (or bad) if ei <- 60, where A is a

given positive constant and 00 is either a given number or a parameter '.hat

may be estimated. A negative population if included in the selected subset is

called a false positivewhile a good population not i.ncluded in the subset is



- zzz-- zI zzzzzz,,zzzJzz, ....zzz, . . . ..

83

called a false negative. Roughly speaking, the aim of a selection procedure

* •is to seek out the positive populations while holding false positives in the

selected subset to a minimum.

Let S(6,6) and R(e,6) denote the expected number of true positives

and false positives, respectively, using the procedure 6. Then the problem

* is to determine a procedure for which sup R(S,A) is minimum subject to
d c a

the condition that inf S(0,6) > y where a denotes the whole parameter
*C8 '

space and fl' denotes the set of parameter-points for which at least one of

the populations is positive.

Lkider certain conditions, Lehmann (1961) shows that a rule minimax in

the above sense selects w when Ti >Ca, where Ti is a suitable statistic

whose distribution depends only on e. and where ci is a suitable constant.

He has also discussed the applications of these to distributions with monotone

likelihood ratio in the case where 0 is known and to normal distributions0i
where observations on 0 are included in the experiment.

0
Krishnaiah and Rizvi (1966) have considered the problem of selecting multi-

variate normal populations better than a control on the basis of the linear

combinations of the elements of the mean vrcors of the populations. Different

£ definitions of positive and negative populations have been used and in each case

a selection procedure 6 is proposed such that inf P(w,6) > P* or
WI

* inf S(w,6) > p* where P(w,6) denotes the probability of including all positive

populations, S(w,6) denotes the expected proportion of true positives and P*

and p* are given constants. As an illustration of the type of results obtained

by Krishnaiah and Riazvi, consider the set of populations w. wk and the

control population wo, where wi (i-O,1,..., k) is the p-variate normal

distribution N (•C•,). Let 0e* a' v., (cml,..., r; i1,..., k), where
p-i 1 mc i__
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a_,...a, are specified vectors. The population wi is said to be positive

if ic>- O0c + cl,..., r, and negative if 0ic _< 60 c, c-l,..., r,

where A are given positive conscants. For the case of known E1(i=0,1,''"k),

the rule 6 proposed selects w i iff

(10.1) a' -(1 E * l %,)"' d, cal,..., r,
C~ -i =0F'( £i n

where I-, is the sample mean vector from wi based on ni observations.

Krishnaiah (1967) investigated similar procedures when the comparison of

the multivariate normal populations with the control population is based on

linear combinations of elements of the covariance matrices, determinants of the

covariance matrices and the largest (smallest) characteristic roots.

Desu (1970) considered the selection problem where the populations are

not compared with a standard but rather with the best among them. If

d(ei, e0) is a distance measure between 6 and e and if emaxa max(el,...,ek),

population vi is said to be superior (or good) if d(Ca, ei)6• and inferior
~~~~max'adifro

(or bad) if d(ema, ei) 0 8, where 6*, 6• are specified constants such that

0 < 6* < 6*. For the location and scale parameter cases which have been considered,

d(ei, 6.) is taken to be e.- 0 and 8 /B respectively. The proposed proce-

dure R selects i iff d(Ya, Y¥) < d(6*, c) where Y. is a real-valued

statistic based on a random sample of size n from it. whose distribution has

0 . as a scale (or location) parameter and the constant c is to be chosen such

that the P*-condition is satisfied. The correct selection here is the selection

of a subset which contains no inferior population.

(c) A fixed subset size approach to the selection problem.

Mahamunulu (1967) considered a selection problem under the indifference-

zone approach with the modified goal of selecting a subset of size s which

contains at least c of the t best populations where max(l,s+t+l-k)c<cmin(s,t).
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Closely related to Mahainaulu's problem of determining the common sample size

required for a given subset size s, is the problem investigatod by Desu and

Sobel (1968). Their goal is to select the smallest possible fired subset

size s that will contain the t best of k populations (t < s < k), based

on any given sample size from each population. The basic probability require-

ment is met under the usual indifference-zone set-up. The aim in the modifica-

tion is to avoid the possible inclusion of all the populations in the selected

subset. The smallest fixed subset size s is determined as a function of the

common sample size n and the specified constants but not of the observations.

Nonparametric procedures for selecting fixed-size subsets when the popula-

tions are ranked in terms of a-quantiles have been -.iscussed by Desu and

Sobel (1971). The random subset size procedure for the case of t - 1 has been

earlier studied by Rizvi and Sobel (1967) and has been described in Chapter 6.

Sobel (1969) investigated the problem of selecting from k populations a

subset containing at least one of the t-best populations for given t and

k(l <. t < k) under an indifference-zone set-up. For t u 1, the problem is

related to the problem of Desu and Sobel (1968). The procedures proposed by

Sobel select a subset which is either of fixed size or of random size depending

on the values of the constants specified.
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