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NOMENCLATURE

The definitions of the following symbols are used throughout the

report except where otherwise stated. Some symbols defined in the

text of the report are not included.

Velocity of wave prbpagation in a liquid-f.illed,pipe: 57

a .....
A .. .. .. Cross sectional area of pipe.
b ..... Thickness of pipe wall.
B..... Constant used in deterinining the frictional resistance
_to flow.
Bi(jm) . System function for the ith pipe at point' X .
Bi'(jw) System function for the ith pipe at X = li .
C v uu Velocity of wave propagation in an infinite medium.
c, - . Complex Fourier coefficient.
C . Coefficient of capacitan‘ce.
D..... Inside diameter of pipe.
e . . . Base of natural logarithms = 2,718 .
E .. Modulus of elasticity of pipe material.
E_,(x.,jw). Transfer function relating pressure at point x, to
Pk pressure at point k . i
E  (x.,jw). Transfer function relating pressure at point x; to tlow
k™ rate at point k. i
% 6o o0 0o {')arcy-Weisbach friction factor.
Cyclic frequency. :
f g e Fundamental frequency.
fo oo Cut-off frequency. -

iii




GO . .

h(r). .. S
H,(jw) . . .

Hi(jo) .

L . . ...

Discrete frequency.

Transfer function relating power at point X, to pressure
at point k .

Transfer function relating power at point x; to flow rate
at point k .

Transfer function relating pressgy'e at point x; to flow
rate at terminus.

Transfer function relating pressure at point l to flow
rate at terminus.

Spectral density as defined by American Standard:. :
System weighting junetion.

Transfer function relating flow rate at point x; to flow
rate at terminus.

Transfer function relating flow rate at point { i to flow
rate at terminus.

Refers to ith segment of pipe.
General subscript.

T

Bessel functions of the first kind.

I -4

General subscript.
Bulk modulus of a liquid.

Gain function relating pressure at point X, to flow rate
at point X; = 0. 3

Gain function relating flow rate at point X, to flow rate
at point X; = 0.

Gain function relating flow rate at point £ i to flow rate
at point X, ® 0.

Gain function relating pressure at point X, to flow rate
at terminus.

Gain function relating flow rate at point Xy to flow rate
at terminus.

Length.
Length of ith pipe segment.

iv
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Cocfficient of inertia.,
One-sided Laplace transfc;rm.

Two-sided Laplace transform.

Number of pipes in series. .
Number of pipes in parallel.

General subscript. .
° vo

System function for the ith pipe at point X -

System function for the ith pipe at X; = 2 i-
P :’J‘.:.:”

Exponent of q for mean flow.
Refers to source eng.
General subscript.

Pressure variation as a function of distance and time.
Meun pressure as a function of distance.

Inciantaneous pressure as a function of distance and
time =p +p .

Pressure variation at point X, transformed with respect
to time with s = jw

Trunsformed pressure variation at X, = 0 with 5 = jw .

Pressure variation transformed with respect to time and
distance.

Volume flow rate variation as a function of distance and
time.

Constant mean volume flow rate.

Instantaneous volume flow rate as a function of distance
and lime =g +q .

Volurme flow rate variation at point x i transformed with
respect to time with s = jw .

Trunsformed flow rate variation at X = 0 with s = jw.

Flow rate variation transformed with respect to time
and distance.

Refers to terminus.

Coefficient of resistance.
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Laplace transform with respect to tirae operator.
Time.

Limit of a period.
Denotes truncaition.

System function for the ith pipe at point X;
System function for the ith pipe %t X, = li

Instantaneous fluid velocity as a function of disiance and
time.

Power. : Y s adele

Transformed power -at point X with s = jw .,
Average power.

Axial distance.

Axial distance measured from the termmatmg end of the
ith segment.

Function of time.
Laplace transform of x(t) .

Transfer function relating flow rate at point x i to
pressure at point k.

Characteristic value.

Ratio of transformed pressure to flow rate at point Xg -
Ratio of transformed pressure to flow rate at x; = 0.
Characteristic impedance.

Characteristic impedance of the ith segment.

Ratio of transformed pressure to flow rate at terminus.

Transfer function relating pressure at pomt X, to flow
rate at point k.

Attenuation constant.

Attenuation constant of the ith segment.
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B .. ... Phase constant.

Bi ..... Phase constant of the ith s.egment.

Y o .. l;ropagaﬁon coefficient. ‘

t IR Propagatibn coefficient of the ith segment.
r ..... Reflection coefficient. ..;:

I: . . ... Reflection coefficient of the ith segment.

6 ..... Phase angle of reflection coefficient. .
A .. ... Laplace transform with respect to distancé o;'ie‘f'é'fgiif
0o o o a o Mass density. y
v Dummy time vari?.ble.
"' * * * \Displacement in time.
By - v - - Phase angle of the ratio of pressure to flow at a point k.

'3 xx('r) . . . Autocorrelation function of x(t) .

(r) . . . Cross-correlation function of x(t) and y(t).
¢pq('r) . « . Sound power.

@xx(jw) . . Spectral density of x(t).

(I)xy(jw) . . Cross-spectral density of x(t) and y(t) .
$,(w) . . Power spectral density.

®w .. ... Radial frequency.

s,

Wy e o oo Fundamental frequency.
Woowe oo ‘Cut-off frequency.
Woeooe e Discrete frequency.

vii



CHAPTER I
. INTRODUCTION .’

1.1, Objectives.

N

.

'Phi';report presents the re.sults of a mathematical a:na'lysis' of

pressure, flow rate, and acoustic;powe_r levels at various points in an

idealized piping system which is subjected to statistical inputs. Suc-
cessful adaptation and use of the results will aid in the prevention of

excessive liquidborne noise in shipboard piping systems.

1.2. Method of Attack. \

After careful review of existing literature and technical reports,
an analysis was begun to determine the feasibility of predicting the
responee .f piping systems to liquidborne noise. The analysis was
analytical in nature and used the results of previous scicntific inves-
tigations. At various points in the analysis certain assumptions are
made on the basis of engineering judgment. These points are clearly
stated and discussed in this report.

It is shown that the pressure, flow rate, and power at any point
in a complex piping system can be found in terms of the same quantities
at some more convenient location in the piping system. A digital com-
puter is needed for the complex systems. The results are expressible
in terrms of continuous spectrums (i.e. spectral densities) or in terms

of discrete spectrums and bandwidths as are obtained from wave analyzers.

1




1.3. Content of This Report.

This report contains background information about the physical
system with the idealizing assumptions and the resulting equations
which describe the response. TFurther, batkground information on
mathematical statistics js included to clarify ter:'minology. The mathe-
matical symbols and terminology used is that acceptable as ""American
Standards"(l)* when applicable.

The analysis follows in which the physical sysfcem.is an;lyied

using the mathematical techniques.i- The results will be discussed else-

where in this report.

*Numbers in parentheses refer to references in the Bibliography.
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CHAPTER II

BACKGROUND MATERIAL

Ly

Mathematical Tools

L 4

2.1. Transform Methods. - T e e mte e

The transform methods needed are the Fourier and the Two-

Sided Laplace which become identical when 8 = jw . Thus,

A .
X(s) = lim.f e St x(t) at (2.1)
A-n J-A '
and
4 f ct+joo
1 - 8t
t) = X d 2.2
x(t) = o3 ot () e” " ds ) s (2.2)

are the definitions to be used in this analysis.

2.2. Fourier Series.

When a function x(t) is periodic in time 2T , the Fourier series

representation is

o0
x(t) = ap + z (a.n cos nw,t + bn sin nwlt) (2. 3)
n=1
whe're
s
0)1 = T . (2.4)

The Fourier coefficients are defined as

RS AR
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t*T 1|
1
ao = -E-Tf X(t) dt »
to-T
to+T
1
N X(t) cos nw t dt , . (2.5)
n T 1
to-T o
-
and
| [ to*T |
b = 4 - x(t) sin nw,t dt . J -
0- ‘e e pdxdn

By further manipulation () the eqx’iations (2. 3) and (2. 5) can be placed

in "exponential form' as follows:

) & jnwlt
x(t) = Z c e (2. 6)
n=-co
- where
c, = E(an - an) = o7 - x(t) e dt , (2.7)
0
1 :
c_ = xm(t)] . c (2. 8)
, " TTCC ['T ] §=jnw,
and
Co © 89 - (2. 9)
The function Xp(t) is defined as
Xp(t) = x(t), tO-T5t5t0+T ,
(2.10)

xT(t) = 0 at all other points,

The Laplace operation in Equation (2.8) is the "one-sided"

Laplace operation.

thileaat St o o4 (Ao A e o e (a5 dtev yos atebibie no o ot dad st Lase




2.3. Transfer Functions,

A system represented by a iinear differential equation

L [y(tﬂ = x(t) ) . (2.11) b
can be transformed and written as !
'Y(s) = H(s) X(s) . | 2. 12) g

g -
*-
E YRS

. The solution of (2. 12) is "

.:' vy = £ [ve)] - f

TS ]

©0
h(7) x(t - 7) d7 . (2. 13)
L " ead
R 2, pdrl 2

Thus, if thevinput x(t) is known, the output y(t) is found by an inte-

Pt il B L > L e gy

gral operation on the input using the proper weighting system function

- -t

h(7) .
The function H(s) is the transfer function and in some cases may

be an impedence.

2.4. Output Responses.

When x(t) is a prescribed input, the various output responses
are obtained.
(a) Impulse response; x(t) = &(t)

y(t) = ht) . } ' .
(2. 14)
Y(s) = H(s) | '

u(t)

(b) Step response; x(t)

t S
y(t) = f h(7) dr :
° :

Y(s) = 3 H(s)

(2'. 15)

Mﬁuam



(c) Frequency response; x(t) = sin wt

t <
y(t) = f h(r) sin w(t - T) dr
0
; (2. 16)
Y(s) = —— H(s)
5 tw . J
where by common acceptance v
H(jw) = frequency response. (2.17)

It is assumed that the effect on 'y(t) due to the poles of H(s). has
e .,"’J"‘:'/
decayed as a transient and that only 8 = + ju will be effective.

*

2.5. Statistical Concepts and Correlation.

The correlation between two continuous processes or motions
is(s' 4,5,6)

T i
= 1 =
¢12(-r) = }Ii‘r-?co Vhy -/:T xl(t) xz(t +T)dt = xl(t) xz(t +7) 2. 18)

in which the process is stationary and ergodic. The above operation

shown is denoted by x,(t) x,(t + 7) and is called the "time" average.
The time average is the scan of x,(t) by énoth,er function x,(t) by
shifting an amount T and averaging over a sufﬁciently large period
2T . .¢ 12(7) is the cross-correlation be;‘tween x,(t) and xz(f) .

When x,= x,, Equation (2.18) yields the autocorrelation

function

T
. 1 ’
= 1] x,(t t+7)dt . 2.19
.¢11(7) '];Tow I-T 1()"1( T) ( )

The mean square value is when 7=0, or

. i,-‘ T -
2 1 . 2

o) = t = -]i f t dt . 2.20

41200 = %@ = fm gy | [%0]° e (2.20)




The autocorrelation i an even function in 7.

Correlation functions are useful in any general approach to

-

analysis of aperiodic processes and are instrumental in the frequency

P SR

- >
TS TR oL

description of a random process.

2.6. Spectira and Spectral Densities.

.t
L d

The spectrum of a function is a plot of the Fourier coefficients
c, versus the frequency w - For periodic functions the spectrum is
a series of discrete points at specific frequencies, and for gp’,e;iodic
functions the spectrum becomes a continugus plot as the period be-

(2,4,5) Tnis latter statement is equivalent to saying

comes infinite
that the increment of frequency approaches zero.

The spectrum mostly used is that historically associated with

power calculations. Power calculaticn results are expressed as the
proA‘duct of two functions as in Equations (2. 18) and (2. 19) in which the
average value is obtained. The spectrum of the power is expressed as
a function of the square of the Fourier coeffiéients.

A random vibration can be considered to be the sum of a large
number of harmonic vibrations of approupriate amplitude and phase.
The total power is the sum of the power of each component of the
vibration. This power is distributed as a function of the frequency;

. therefore, the amount of power associated with each frequency is of
" interest and is called the power spectral density. The accepted
mathematical definition of power spectral density for en ergodic pro-

cess x(t) (1) is

T 2
G(N) = lm f x(t) eStat| (2.21)
T =0 - '

T
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where
L : e L W
s = 2wif, w> 0 in (2.21), and' f = T -
* Applying Equations (2. 3) through (2. 10) to Equation (2. 21) with
- - ek
. W =nw,, f= nf1 , and fl = o (2. 22)
there is obtained iy
T T 2
. G_(f') = lim FII‘ f x(t) cos nw,t dt +j f x(t) sin nw, tdt
' T -0 -T -T
which becomes . 0 Lo £
- 1 2 1 2
G(f) = lim Ta + §jTb | = lim I c l . (2.23)
T -0 T B » T o0 ?1_ A

Thus, as a function becomes random, the power spectral density will
be given by Equation (2. 23).
A useful relationship for statistical signals is obtained from the

equality(4)

. T-7 (] -
fT X (t) xo(t + 7) dt = f le(t) xTz(t +T)dt . (2.24)
- -8 .

After substitution of the two-sided Laplace integral for x',rz(t +7)

and the inverse Laplace integral XTI(S) in the right side, dividing
. both sides by 2T , taking the time average of both sides, integrating

the left side, and letting T go to infinity, Equation (2. 24) becomes

L r[pron)] = $p) = lim 5 T Fo1 ¥, - (2.29)
And if xl(t) = x,(1), .
1 |
= s) = 1i X (-8) X : 2.26
L T["n(")] 1) Hm 5 Tl( 8) Xm,(s) (2.26)

The spectral density §,,(jw) is found by replacing s by jw in

T P T T T DT gy Y T Trpr—— o < ————re R S Ly Ot |
- - " e 1 B 1ea% 9 o 4 )
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Equation (2. 26). .
The power spectral density as given by Equation (2. 21) is

equivalent to

— : 3
G = lim o X_(s) Xp(-5) = lim ITIXT(s)I (2.27)

T ~00 T =00

where 8 = 2wjf . Corhparison of (2.26) and (2. 27) shows that the

power spectral density is

GO = 2,0 . . . (2.28)

'y pbe o

Modern control systems textbooks.,(a’ 4,6,7,8,9) define -the spectral
densit?'* as §,,(jw) while the American Standards{(}) use G{f) . No
particular difficulty occurs in this if one is consistent, because most
results will be ﬁormalized in the same manner. The factor of 2 is
accounted for in that §,,(f) allows negative f while G(f) does not.
Thus, both quantities when integrated over the frequenc;} épectrum
must give the same average power.

Equation (2. 23) gives the relation between discrete and continu-
ous signals. Using Equation (2. 28),

2

_ 1
D, = }%TooﬂTlcnl = tim w-|e| - (2. 29)

Equations (2. 23) and (2. 29) are more symbolic than useful and show

“how the spectral density may be found as a limiting procedure when

the frequenc'y f, = 0.

2. 7. Output Response for Statistical Inputs.

A system with multiple random inputs is shown in Fig. 1. The

*Since any function can be resolved into a spectrum, the historic
power connotation has been dropped and the term spectral density is
used for any function. Thus, force may have a spectral density.

T

M i e



x2(t) Hz(s)
Xa(t)
x3(t) Hg(s) .
e [ e
) xn(t) 2 Hn(s) *

Fig. 1. System with Multiple Random Inputs

inputs are denoted by xi(t) and the respective system transfer func-
tions by Hi(s) ,1=1,2,3, -+, n. After truncating the inputs as

in the previous section, the following equations can be written:

n .
Xpols) = Z H,(s) Xpy(8) ; (2. 30)
i=1
and
n .
Xopol-5) = Z H, (-8) Xy (-8) - (2. 31)
| k=1 : |
Multiplying Equations (2. 30) and (2. 31) and dividing the results
by 2T ,
n n .
1 h
7T ¥10e) Xpol-8) = 3T L L Hj(8) Hy(-8) Xopy(e) Xy (-8).

(2. 82)

If the time average is taken over the above equation and T is allowed
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to approach infinity,

n n
Bgolie) = Z Z H, (jo) H (-J0) Py (0) (2. 33)
i=1 k=1

where s has been replaced by jw.

Equation (2. 33) can be used to obtain the”"spectral density of the
output in terms of the spectral and cross-spectral densitie: of the in-
puts and the system functions. As an illustrative example, a single

- .
."'le',l

input system is analyzed.

Single input:

1 1
Doolie) = D D Hyjo) Hy(-Jo) Py (o)
. i=1 k=1

1
D H(o) By (-jo) (o)
. i= 1

H, (jw) H, (-jo) §; , ()

LA RO (2. 34)

2.8. Spectral Density and Amplitude-Frequency.

An amplitude-frequency plot of a process as obtained from a
wave analyzer gives the absolute value of the Fourier coefficients Cx
for a bandwidth Aw with center frequency w

From Equation (2.26), for 7=0 and s = ju,

[ ]
$11(0) = x,(t)" = '2%;"[ $,,00) do . (2. 35)
-0
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If x 1('c) is represented by the complex Fourier series,

2
xl(t) R Sl (2. 36)
Then, for the bandwidth’ Aw with center frequency w - Equation
(2. 35) becomes

.
L 4

° Aw: .
| |°n|2' 1 “n*7Z
2 " 7w Aw‘l’n(j"’n) do . (2. 37)
“n"T )
: » - L
Carrying out the integration, . Y
v ]
) L4
™ el
Qll(j“’n) * s (2. 38)

Thus, Equation (2. 34) of the preceding section can be written

a0 = [Hytep)l feql; (2.39)
where Icnl1 is the amplitude of the input xl(t) for some bandwidth
&w with center frequency w_; |H1(jwn)| is the absolute value of the

transfer function evaluated at w =w_; and |°n| 0 is the amplitude of

n*
the output xo(t) for the bandwidth Aw with center frequency w h

The Physical System

2.9. Introduction.

The following material contains the derivation of the differential
equations describing compressible, turbulent flow in a non-rigid c'ylin-
der. The derivation is bésed on certain idealizing conditions that are
pointed out and later discussed. Using Laplace transform methods,
the frequency response solutions of the describing equations are ob-
tained. The results of this investigation are applied in the next chap-}

ter to determine the response of a complex piping system, such as




shown in Fig. 2,to random inputs.

2.10. Derivation of Describing Equations.

Fig. 3 depicts a liquid filled cylinder with non-rigid walls con-

taining compressible, turbulent flow. The necessary idealizing con-

ditions follow and hereafter shall be referred o by number:

1.
2.

The flow is one-dimensional.
The frictional resistance is a function of some nonlinear

-

operation on the fluid vei‘ocity and system parametefs" ':'Tt
catn be expressed as the ﬂroduct, of a constant and the instan-
taneous flow rate variation.

The energy dissipation is due to heat transfer and is
accountied for by Condition 2.

The rate of change in fluid velocity with respect to length is

negligible as compared to its rate of change with respect to

time.

The instantancous pressure is constant over the cross section.

The rate of change in mass density with respect to length is
negligible as comparedtoits rate of change with respect to
time.

Thé velocity of wave propagation in the liquid cylinder is

constant.

Using Conditions 1, 2, 3, 4, and 6, the fluid dynamical relation-

ships completely describing thesystem are(lo):

Equation of Motion

ap .
%-%-5}+Gu?=0; , | (2. 39)

L
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./m
flow / terminating
end
- // -’
6x X I
. r . . . ;J.-;},'
* Fig. 3. The Physical System
Equation of Continuity
oo
t 9 . .
Pt = 0 (2. 40)
Equation of State
= g2
o, = K'3J | @4

where K' is the bulk modulus of the system, i.e., the fluid and cylin-
der walls combined. A ..

Equations (2.40) and (2. 41) are combined to give

oy o1 Wy
--5;-+-WW-=0. (2.42)

Integrating Equations (2. 39) and (2. 42) over a control volume Abx ,

%, 8q, n \
-5 *t &3t Ba =0, | | (2. 43)
and -
& A %y
'—£+R7T= 0. : (2. 44)

When the volume flow rate is constant at a cross section,

q = q , Equation (2. 43) reduces to the slope of the pressure grade




line, or
P . Bq! = _1..2.5;_ (2 455
oK 2DA
Then,
—2-n 6 .
B-fa . L e (2. 46)
2DA 2

where Ef is the pressure needed to overcome the frictional resistance

of the pipe as determined from elementary fluid mechanics and q is

oo 2o
the mean flow. The value of n is estimated from eXperience or
b
experiment and should range from 1. 65 to 2. 05.
The nonlinear term of Equation (2. 43) is rewritten and expanded

as follows:

a = (3 + qF

-n n
q"( +%—)

- a1+ n(d) + &(22:!_1_)_(__3__)2 s ] L @

The ratio —%.- is small, and the series in Equation (2. 47) is suffi-

ciently approximated by its first two terms. Then, Equation (2. 43)

becomes
apt i)qt pf npf _
-+ K'&_ + —lq q =0 . (2. 48)

Since q, =q+q and p, =p +p, Equations (2.44) and (2. 48)
can be reduced to the describing differential equations for the varia-

tions in flow rate and pressure. They are:

np
-..B.{- Q-}-__quo;
Aw

(2. 49)

and
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-%4.%%2”) , . . (2. 50)

It is noted that the above equations can be combined to form the classi-

cal acoustical wave equation including a dissipation term.

2.11, Idealizing Conditions.

A
L/ d

The idealizing conditions listed in the previous section are dis-
cussed and validated to vai'ying degrees as follows:

1. In any real piping sy"stem, a propagated wave is never one-
dimensional, because the elasticity of the pipe walls allc;\‘;vst";d‘;;i“
motion. But over a certain frequen::y range from 0 to w, radians
per second there exists only one propaéated wave, or one mode of
propagation, which is the axial, or plane wave, mode. This mode is
denoted the (0, 0) mode. The cut-off frequency w . at. which the
first radial mode of propagation occurs [the (0, 1) mode| for non-
dissipative conditions can be determined by the following equations

given by Jacobi(ll):

21 (@) © ;D _—z_zpch 7
and
_ 2c
O)c = —5-201 . (2.52)

vghére 2z is some characteristic value, J 0 and J ; are Bessel
fuﬁctions of the first kind, and Py and py are the mass densitiés of
the fluid and pipe material, respectively. The first real characteristic
value 201 that satisfies Equation (2.51) is substituted into Equation
(2.52) to obtain w_ . For 8" standard steel pipe, f, = 6900 cycles

. per second. For smaller sizes of pipe the value of w_ increases sub-

c
stantially. To the best knowledge of the author, the subject of cut-off

g
s s S o

-

T
P s o e
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frequencies for dissipative conditions is nonexistent in the literature.
The cut-off frequency should be somewhat higher for dissipative condi-
tions than that given by Equations (2.51) and (2. 52). It is concluded
that for a relatively rigid pipe, the one-dimensional condition is valid
for frequencies up to the cut-off frequency. '

2. The perturbati‘on process used in the;erivation of the des-

cribing equation to linearize the frictional dissipation term was proposed

and verified experimentally for low frequencies by Wa_ller(m). Ttler'e

”’)J"- .

seems to bhe-no good reason for disgounting its validity in the frequency
range of one-dimensional propagation.

3. The effect of heat transfer on a propagated wave co{xld be
considered resuiting in a third describing differential equation as done
by Brow::‘la), but it is believed that the rather empirical fricitional
dissipation term used in the describing equations will account for this
effect.

4. The condition that the rate of changé in fluid velocity with
respect to length is negligible has been used for many years in des-
cribing wave propagation in liquid cylinders. Phillips(14) in showing
the acoustic wave equation adequate for describing turbulent flow in
liquid-filled steel pipes has shown this term to be negligible.

5. If the one-dimensional wavé condition is valid, it follows that
the instantaneous pressure is essentially uniform over the cross sec-
tion.

- 6. As in Condition 4, the rate of change in mass density with
respect to length has classically been considered négligible.

7. Strictly speuking, the velocity of wave propagation in a liquid

cylinder with non-rigid walls is not constant with frequency. With

™r
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increasing frequency, the flexural vibrations of the walls tend to im-
pede the propagation causing a decrease .in the wave velocity. Mathe-
matical expressions to determine the velocity of wave propagation as a
function of frequency are given in the paper by Jacobi(ll). For a
relatively rigid pipe, such as a standard steel p.ipe, the velocity of

'
o

wave propagation in the pipe, a , is essentially constant, and

a ._.’\/'%‘ | (2.53)

where(ls) . R
v i
KbE N .
LI .
K KD +bE ° (2. 54)

Rather than calculating the velocity of propagation by Equations (2. 53)
and (2. 54), it can be determined for different pipe sizes and fluids

from nomographs available in many papers and books(ls).

2.12, Solution of the Differential Equations.

The describing differential Equations (2. 49) and (2. 50) for the

variations in pressure and volume flow rate are:

80 t) oo 89 (x,t) ét + Rq(x,t) = 0 ; (2. 55)

ox
and
-2t c.?P_%»_i)_ =0 (2. 56)
where
L = % ; ,‘ (2.57)
R = oPf 2. 58)
Lq
and
. A _ 1 .
C = g - I__,:Z . (2.59)
T T T P TIIIY T  SarRe T e [ T T e
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Equations (2. 55) and (2. 56) can be solved by Laplace transform

methods for solutions in the frequency domain.
Transforming Equations (2. 55) and (2. 56} with the Laplace inte-

gral
% ' .
F(s) = f £(t) e 5t at , -
0
-9_131;_}{&). + (R+8L)Q(x,8) = 0 , (2. 60)
° oo ~'v:‘J.‘.E;".
and . .
' (2. 61)

0

-E-Q-(,;‘—xﬂ + sCP (x,s)

where p(x,0) and q(x, 0) are zero. Transforming the above equa-

tions with the Laplace integral

o0
Fo) = f f(x) e ™ dx ,
0

-abos) + R+sL)Q (A, 5) = - P(0,8) , (2. 62)

and
(2.63)

-2Q(,8) + sCP (8) = - Q(O0,8)
Solving Equations (2. 62) and (2. 63) simultaneously for ﬁ(h, 8)

and Q(A,s) ,

Bous) = 2l elgt—y) + Pl olgo—y) . (264
- v -

and
(2. 65)

Qo,s) = Bl o+ Q(r.s)(;g—"y—y
. I :

where
v? = sC (R +sL) , o (2. 66)

" and

AR R ok A bez o F 20 R hag anbaniial e———, 4 ‘
el SO e siis
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2 _ R+sL
Zc —c - . (2.67)

Evaluating Equations (2. 64) and (2. 65) with the inversion integral

€+joo
f(x) = 21?3 f foyeMa |
€-joo

. P(x,8) = P(r,s)cosh yx + Zc Q(r, s) sinh Ax , (2.68)
and
Q(x,s8) = Q(r,s) cosh 'yx. + ﬂELS—)- sinh yx .-. . 'J(i:'69)
v N C

]

The frequency response of the system is obtained by replac-:ing 8 by
jw in Equations (2. 66) through (2. 69).

The propggation coefficient, v (jw), can be expréssed in the
form a + jB by finding the roots of Equation (2.66). The attenuation

constant, a, is given by

1
2
@ = [%( NRZ + w212 - mL)] o (2.70)

The phase constant, B, is given by

1
B = [Qg(,JR2+m§L2 + mL)] ? : . (2.1

The characteristic impedance, Zc(jm) , can also be expressed

in complex form by finding the roots of Equation (2. 67). It is given by
1 .
Z, = 5 (B-ja) . (2.72)

By the same investigations as for y(jw) and Z_(jw), it can be

shown tinat

Y(-jw) = @ - jB , (2.73)
and ]
Zo(-3) = (B + je) . (2.74)

*

N2z S e e cots o bty TRy T TP OPTVPY Charaies o iart ol st




CHAPTER IlI
TRANSFER FUNCTION ANALYSIS

3.1. Msiathematizal Statement of the Problem.

The system which is symbolically depicted in Fig. 2 engompasses
most any situation expected in shiphoard piping system.s T.ﬁé';c;i,;e
source at n is a pump (or valve) which discharges into a complex
system with typical changes in size as indicated by A , with looped
lines (B to C), with stub lines (D), and & termination at r .

The fundamentzl problem is to specify the allowable noise levels
of pressﬁre, flow, and powxer at n or at some interme&iate point
which will not exceed allowable levels at the terminus r for a multi-
tude of piping configurations n to r . It ig expected that in the over-
all analysis it will be advantageous to express the noise levels in terms
of known leveis of pressure and flow at.either end n or r. This
requires deterrination of transfer relztionships for the various cases.

The transformed pressare, flow, and power at a point Xy in the

pipe i are defined as follows:

Py, 58) = Ejlx, s) Pu(s) | (3.1)
and

Px;,8) = Zgy (%, 8) Q(3) ; (3.2)

Qe 8) = B, lxi,6) Qule) (3.3
and
| Qxye) = Yol 3) Pyle) 5 (3.4)

22

L % mmten i aa

Ry




23

W(xi, 8)

2
Pk(s)l . (3. 5)

Fpk(x i8)
and : .
' 2
Wix;,8) = F0x.8) |Que) (3.6)
where k can be either the source n or the terminus r .

From the discussion preceding Equation ('2;.. 38) it is evident that
the transfer functions E, Y, Z, and F are necded to relate the
various spectra. Thus, the priméry objective of this chapter is t?
determine thegse transfer functions a:v'.nd to place them in. the t;é’s’tli"r(;z:;n
for analysis. )

Before proceeding to a discussion of transfer functions, the

method of determination of power will be indicated.

The sound power at any point x is found(7) as

T
1
$pq(7) = lUm oy f Tp(x.t) a(x, t+7) dt (3.7)
where the average power
1 00
W&Ve = ¢pq(0) = -2-?] f ¢pq(jw) d(jw) . (3.8)
=00

The power associated with any given frequency is found by obser-

vation of the spectrum of tiie power either in the form of a continuous

plot,
. 1 : -
$, o) = Um zp QXx, j) P(x,-jw) , (3.9)
T~
~or in terms of the discrete Fourier coefficients,
leulg '
: 7 |c . .
O (o) = [ “4p°wer):| - (3. 10)
w''n Aw Aw=0

-
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From the preceding discussion, it is evident that once P(x,s)

and Q(x, s) are known the power is obtained directly.

.

3.2. Transfer Function Determination.

To determine the overall tranafer functions it is first necessary
to work with a specific pipe in which the ﬁindar;;éntal parameters R,
L, and C are constant with respect to that pipe. The relationships
between the boundary conditions and pressure and flow at any point in
the subsystem i, as shown in Fig. 4, are given by Equa,tion,s,:(3¢..iil-)

and (3. 12)(18),

\
v

P(xi,s) = Pi(s) cosh 7% + zciQi(s) sinh Vi%y o . (3.11)

and
N Pi(s)
Q(xi,s) = Qi(s) cosh 7% + —Z—-i- sinh VX - (3. 12)
= )
Py, (8) | P(x;, ) | X, : IPi(s)
Qi+1(s) Q(xio 8) IQi(B) =%
flow
. |
! ’ |
i+l i
xisli | xi=0

Fig. 4. Notation Sketch for the Pipe i

aliadaasi ou g asr aiol Lae ALl s o)
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The calculations proceed fromn some known termination by suc-

cessive application of Equations (3. 11) and (3. 12) with the notation

P,(0,8) = P,(s) E
for x; = 0
Q;(0,8) = Q(s)
: > (3.13)
Pildy,8) = Pypy(0,8) = Py,e) ) |
for X; = “i'
Qi(‘lios) E Qi+1(oos) = Pi+1(5) J
Further, : . ',4.,9..-.
P(xi,s) i
Gb-‘io_s)— e Z(xi,.s) i . (3. 14)
from 'thch
P;(0,8)

QT 2,(0,5) = Z(s) . (3.15)

Anc;ther term which will be useful in transfer function determination

is the reflection coefficient

zZ - Z 0 )
L ci,,l | i
ri - e - ri Mt O (3.16)

A further consideration is that the frequency response is all that is
needed for spectral analysis; therefore, in all that is to follow
8 = jw . (3.17)
For the section i, the transfez.-' relations are:

Pl jo) = Qo) [Z; cosh vz + 2 sinhvx] , (3.18)

and )
Z

Qex,, j0) = Q(jw) [cosh v,x, + Tii-sinh 7ixJ . (3.19)

In an alternate form(lg’ 20) R
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P(x,je) = Qi) Z, e —~ . (3.20)
(o] 1 - E

and

Qe o) =+ Qe Lt < . (3.21)
. 1]y |

Proper application of E«uations (3. 15), (3. 18), and (8. 19) yields
one method of caiculating transfer functions. This will be tq;‘;'nnd% o
Method A. A second methed uses li‘quations (3. 15), (3.20), and (3. 21).
This is Method B. Both methodé have merit, and either would be suf- .

ficient provided adequate computer facilities are available.

3.3. Method A - Transfer Function Analysis(”).

This method uses Equations (3. 15), (3. 18), and (3. 19) succes-
sively in a complex system. The system is shown in Fig. 5, in which

a typical section is shown in Fig. 4.

—m | ‘L‘l .ﬁ_l -
‘ 1
flow I —lr_l terminating
- g
#m #'n 1 | #2 #1 end
R ) | i l |
L ‘m % Im-l [ ‘2 I_ ‘1 J
I i 1 { - |
n m m-1 3 2 r

Fig. 5. A Series Piping System




The following no'stion is employed:

?i(jw) A cosh VX 3

. (3. 22)
1 = .
Bi(jw) cosh 'yili o
N - . "
Ti(Jw) = zci sinh 7% ¢
. " (3.23)
'T{(Jw) = Zci sinh 'Yili : |
. Ay ) w— 2
Mi(]w) = '2:_; sinh 7{%; )
. , T 43:24)
: 1
Mi'(gw) = —Z—isinh 'Yili ; 3

where i refers. to the pipe number, i =1, 2, 3, *** , m . Then,

from Equations (3. 18) and (3. 19),

P(x;,J0) = By(jo) Py(iu) + Ty(jw) Q(w) , (3. 25)
and '
Qlx;, o) = By(o) Qo) + M,(jw) Py(jo) - (3. 26)
Since
P (jo) = By ()P (o) + Tf (o) Y ()  (3.27)"
and | (

Quliw) = By () Q. () + M} ()P _;(jw) , - (3.28)
successive substitution for- Pk(jw) and Qk(jw) , k=1, i-1, «++, 2,
in Equations (3. 25) and (3. 26) will yield P(xi,jw) and Q(xi, jw) in the
form .

P(x;,0) = G(jo) Q.(v) ,

(3. 29)

o Gl
P(xiaJ“) - —'Zr— Pr(J“’) ’




28

Qlxg, o) = Hj(jw) Q) ,

(3. 30)
G
S Q(x;, jw) = —z_ P (jw)
o The transfer functions Gi(jw) and Hi(jw) ,1=2,8, ', m,
are given by e
' TG = T
G =BG, + TyH,
* and > (3. 31)
= ) ° 0o J,,’JJ’-‘;".’
Hp = ByHj, * MG, . -
where )
G! = B! ! + T! . H! 7
i-1 i-17i-2 i-1 7i-2 °?
and 4 (3. 32)
Jog =Bl B + MG,
etc. The transfer functions for i = 1 at some point x, are
B1 =
. Gl < 7 + Tl .
. r
and r (3. 33)
M, A
r -
. For X, = 11 , -
Bl
- 1
. G'l = Tr + T'l ’ T .
and > (3. 34)
Mi
Hy=B*z - ' s

Then, using tne

the transfer functions

TR Y LTI, TR PR ST €, Y N IR ST S T T e

results of Equations (3. 34) in Equations (3. 31),

for i =2 at some poin,t' Xy are




B :l Mi]
G = B = + T B' +
2 2 L_Z‘r 1 20
and > (3. 35)
M} B,
= ] a
H, = B,| B} + zZ + M, 2—
. For Xg. = 2, ,
[ s gy [ s ]
. G, = + T T! ' 4
) dlz, Pyt TR Btz . :
L e
and ~ : ) (3. 36)
M By
1 = ' [ ) 1 _1 [ u
Hy = B} |B} + Z. + M) Z + Ty | . ¥
-3

This theory can be extended to any number of series components, but
the transfer function expressions become increasingly complicated =8

the number of components increzses.

The analysis of a complex piping systiem using Method A would

proceed back from some termination with successive calculation of

Lok 5T

ive S aa s e ptdae
P 2 e i ot 24
e L LI S WPt 1 - S T R T

the transfer functions at all points and frequencies of interest includ- -

ing the juncticns. Thus, Equations (3. 31) would be used in the calcu-

lation of the transfer functions rather than expressions such as

SO

Equations (3. 35). Beczuse of this, Method A provides an easy way of
computing the many transfer functions needed to completely analyze a
se.ries piping system. For any preliminary analysis, such as deter-
mining meximums and minimums, or for an insight into the overall
perfc;rmance of the system, Method A gives undesirable results.

These things are more easily obtained from the results of Method B.

iy
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3.4. Method B - Transfer Function Analysis.

..This method makes use of Equations (3. 15), (3.20), and (3. 21$
which .are applied to one pipe to obtain the results in a form where the
maxima and minima are more easily identified. It may also reduce
the computation time and make the analysis mczf,e amenabl_e.

Taking the absolute values of Equations (3.20) and (3. 21),

IP( ')I IQ(j )”z | a;x 1+A + 2A cosxﬁi
X:pJw) = w e
i i cl 1+ Iri|2 | 2|ri|cos,ai.é,

L J

3
.

and
9 1
o jw)l i IQ(jw)I eax 1+A5-2A, cosy, 2 e
I T v v =
where
: -2
- G (. 39)
Gi is defined in Equation (3. 16), and ‘
Y o= - 2Bx; + 6, ' (3. 40)
For Xy = lk » Equations (3. 37) and (3. 38) become
1+A' +2Akcosq[1k 2
(jw) Q (jw) {Z
|k+1 l Ik ” °k| 1+|m2-2m cosO.k
(3.41)
. and
1

1 +A|'(2 - 2A1°cos Y} |2

l 0
Q41 (iw) Q, (jw) e (3. 42)
' k+1J"’| l kJml 1+|ik|2-2[r:|cose

where Al'( and ;//l'{ are defined by Equations (3. 39) and (3. 40) with

i =k and xk=lk.

1
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Then,
Pl jol| = Ky |Q) |, (3. 43)
Qex;, jolf = Ky |G|, (3. 44)
Prarlio] = Ky lQuio) o | (3.45)
and ) 2
Qerl) = Ky | Qo) (3. 46)
where Kpi , in , K]')k , and K"lk are defined by Equa'_ci?fls ,(3: 37)’

(3. 38), (3.41), and (3. 42), respecti“»;ely. Successive substitution of
Equation (3.46) for Q(jv) , k =4, i-1, -+, 1, in Equations (3.43)
and (3. 44) yields

1
[P0 = [Qutiw)]| Ky Kl = Q)| Ky (3.47)
k=i-1 )
and
1
et o] = loal Ky [I xye = |ouue) By ow

k=i-1
where Kpi and 'in are identical to lGi(jw)I and IHi(j“’)l .
respectively.
To calculate the wrious rk's » the point impedances,
Pk(j“’)

28 = | g )

must be determined. Equations such as (3.41) and (3. 42) give the

J
. 2" , (3. 49)

absolute value of Zk . Equations such as (3.20) and (3. 21) give the

phase angle as




. 32

_ v tan! k-1 B0V
Pk ° Pe(k-1) T+AT_;cos ¥y _;
1~ Ag-g BinY

- tan” o T (3. 50)

where ¢, (k-1) is the phose angle of Z clk-1) * ,Reducing Equation
- .

(3. 50),
. 2A! . sin !
-1 k-1 k-1
G © ¢c(k-1) + tan 5 (3.51)
.1 - A . .,
k-l .. ’."4,,7.,',

Calculitions start at the termﬁnus r with the necessary values
known. The relationchips derived in this section are used to compute
the K functions for any point in the system. With these, the desired

spectrums can be determined. NOT 2
EPROD
Ucig,
3
3.5. Piping Systems with Parallel Components.

In Fig. 6 a piping system is shown containing pipes in parallel.
The parallel ccinponents are not necessarily dimensionally or mater-
ially identical. The system to the right and left of the parallel pipes

consists of either a single pipe or a series of pipes.

-
m' #m . m
' 1
"~ ry ]
‘-__‘ 2,. #2 . 2 | l r— . ‘_
flow 4i11 4i-1 2 terminating
‘ ____r ‘ end
1!, #1 .1
1,
1 )
n i+1 i r

Fig. 6. Piping System with Parallel Components
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From Sectiocn 3. 3, #,
P,(jw) = G!_ (i) Q.(jw) %4’00 (3. 52) F
0% ._
and l£ ]
Q;(jw) = H{_,(jw) Q.(jw) . (3. 53)

To analyze the complete system, P, , (jw) and «Qi +1(iw) must be

found in terms of & fransfer function and Qr(jw) -

-

The foliowing notstion is employed:

Bi(e) * coshly 5 o ","(3'."'54) j
T(jw) = Z, sinh 7,2, ;4 : (3. 55) :i
and L;
M! (ju) = _Zz—k sinh 7y, £, (3. 56) |

where k refers to the parallel pipe number, k =1, 2, ***, m . The

L BT Oy - e~ g o T Loy Gl
PR e VA L Ny S WU I A LEL S W Y S0 SO A SO N
e . - ——i

relationships ;
Pi(jw) = Py(jw) = Pio) = -+ = P_(ju), (3.57)
Qo) = Qo) + Quliw) + **+ + Q_(jw), (3. 58)
Pglie) = Pio) = Py = o = Ppie), - (359 |
and
: Qo) = Quiio) + Quie) + -+ + Q () (3. 60) :

)

are valid where the subscripts 1, 2, -+, m and 1', 2', --., m'
refer to the points shown in Fig. 6. Using Equations (3.57) and (3. 59),
P, () = Bj(j) Py(jo) + Tj(jo)Q(w) ; |

P T
obindomtlai dow bt & L

Y W ;_L"'.', by

s

P (@) = Byjw) P (j) + Th(jw) Qgliw) ;
r (3.61)

b £y
Sl

Pi,q(0) = Bl () Py(ie) + T! (o) Q. ()

L aniiibanner a2 2o Ondtiig SAGa 1 ey can B A T Bl o, o TR TR SIRIe | k. SN e s o o e




Also,

Q,(jw) = B"Jw)Ql(J») + Mj (Jw)P (jw) ;

sz(j"") = (J“’) QA(J“’) 1+ M (J“’)P (jw) ;

Q_ (i) = B () Q (i) + M (i) Fj(w) .

?
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(3. 62)

Equations (3.58), (3.60), (3.61), and (3. 62) can be manipulated as

follows to form 1n + 1 independeni equations.
(3.52) and (3:33) for xll Pi(jw)'s ar}d Qi(jw)': .

subtract eacn equation from the first equation,

and substitute Equation (3. 60). The results ere:

T1Q(iw) - TLQy(w) = G{ (B,

T{Q (i) - TjQyti) = GI_ By -

TiQ,(w) - TIQ, () =

T}Q, ()

Q:'.+1(jw) - BIQ,(i%) - ByQy(jw) -

- B}) Q (%)

B]) Q.(w)

G{.,(B] - B)) Q.(jv) :

B5Q3(j“") -

“BIQ(i) -+ -+ - BLQ () = Gl (M}
+M'2 L :M:'3 doe e o Ml'{ R

Q, (o) + Qliw) + Qglw) +

+Q__{jw) = HI_,Q.(w) .

T! Q (w) = G (B! - B})Q.(jv) ;.

+ MLIQ (w); !

+ Qk(.]w) o

Substltute Equa‘ionq

‘., pr e

In Equations (3.61)
Add Equations (3. 62)

(3. 63)

J

L - AL e re . i e a4

.
b, i a5

v ——

"
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In matrix form,

FB T|1 -Tl2 0 e o 0 oo o 0-.1 Qi"‘l(jw) Gi'-'l(Bé-B'l)
oy om0 o flay 1B
Qz(j(o)) 4
0 Ty 0 0 - -Tf - 0 }|Qq(jw) Gj.(Bg-By)
=R (o poniis 3
. _ ; i
0T 0 0 - 0 oo -TtllQ () Gi-1Bm~B1) :
: 2
1-B} -Bj -B} --- -B} --- -Bl}| . - | Gi-1 le'c
0 1 1 1 oo 1 u.. 1me(jw)_J H_, 1

(3.64)

Equation (3. 64) iss solved for Q]. +1(ju) and any one of the Qk(ju) 8.

Substitution of Qk(jw) and Equaticn (3. 52) inio the kth equation of
Equaticns (3.61) wiil give Pi +1(jw) . The recults in the desired form
are:

#0, ) .

Pi'*‘l(jw) = Gi(w) QI(..“’) : (3. 65)

4’5p
Rp 000/
8¢
€

Qup() = Hi(w) Q(j) . (3. 66)
For m=2,

2 .2
H}_|(T}BY + T)B!) + G}_ L[P'l - B + (M} + My)(T} + Té)l
T} + T} '

H}(jo) =
(3. 67)

and




G! (B! -BL) - TYH! . F
Gljw) = BtG! , + Tt |—i 1 27, "2i-1. (3. 68) 2
i 1 7i~1 1 T + T |
1 2
If the parallel ccinponents are dimengionaliy and materially identical,
. 1 _
" Gi(w) = B G, + 5 T\ H ; 4, (3. 69)
. '?Co
A
. and . ‘ Op
. ' 00/0
. H{(jw) = B} H{ ; + mMj Qi_l (3 (3.70)
for any number of pipes. . . ";“5;,‘.
The tranzfer functions for par'.a.llel pipes will have to be deter-
mined 28 just shown for both Mettiods A end B,
3.6. Summsary of Methods.
The re:ults of the taree previous sections provide adequate
means by which ile transfer functions of Equations (3. I) through
(3. 6) can be determined. TFor & sieries piping system, tie results of
Mecthods A 2nd B are related to these iransfer functions as follows: ;
For pres:sure, Met}'\wd Me%’Od _ E
b g [P G Ry " o
pr("i'-“"l PG T Z ey [’Z;ff«?ﬁ 6
Pix;, )| |G| K
. 3 % i = 1 =] _-E .
: E n(x;0 )] e Tl e B ; (8.72)
pn
2 il o eI G ] - R 3. 173
I qr %50 30 o] " lGi(J“’)I = Ky ; (3.73)
and - '
P(x., jw) G, (j») K
. Z (x50 = |m— -——-11.‘:-21 : 3.74
I qn(xl"’m)I Q) H (G R . ( )
. qn




and

and

For flow,

ool

Yl 30| =

|[Eqr®s 3] =

A

|Eqn(xio J“’)I

For power,

Qs o) |Hylo) |
P T 12,69
Q0| HGe) |
[P.GaY | ~ |G G|
!Q(xi:j“‘) ]
lqgor| - [Ht) | =
Q0| | Hy(jw)
Q) | T H )
B p g 39| [ Y0y, )|
Bl 32| | Yo ;. j0)
Z (83 30)| | By ey, o]

|Fentx )] = | Z s 30| | gy ol

K. -
B ; (3. 76)
;Kpn
in ; (3. 77)
.o ,“:J,-,Sv."‘
K .
2 (3.78)
an
; (3. 79)
s (3. 80)
E (3.81)
(3.82)
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CH/°TER IV

+  RESUME r /"[”4’00
v,

4.1. B=ackground Maierial,

The background materi2l contained in Chapter II .cg_mp.r:@g‘g{;- 3
much of the literature survey under;tzken before the analysis began.
Continuous e%alua tion of exiqtmg literature as concerned with the
analysie i3 in progress, but tLe results of Chapter Il are considered

reasonably valid and sufficient to begin the analysis.

4.2. Analysis,

The resuiis of Crepter II indizate that the analyzis of a piping
system with statistical inputs will best proceed from a "transfer
function" type of inventigation. In Chapter III, expressions for deter-
mining the transfer functions of geries and pzrallel systems are ob-
tained by manipulaticn of the gystem descriting eguaticns. The trans-
fer funztions given by Equztions (3. 71) through (3. 82) are used in a
relaiionship wush as Eguzatien (2. 39) to relate preszure, flow rate,
or power-at t;ome point in 2 series systemn to pressure, flow rate,
or power at znciter pecint. The meth:od of analysis for parallel com-
ponents givee tranafer funcztions which are easily employed in the
overall analysis.

The znalysis of & piping system will require electronic compu-
tation. For a complete investigation, theee éomputations will be

extersive, and Method A will protzbly be more approprizte due to its
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relative simplicity znd pcesihile shorter éomputing time. Method B
provides relaticnehips that will z2liow the‘maximum or minimum
respohse of a.system to be more cléarly defined before numerical
investigation. It also puts the transfer functions in a form that

séparates the effect on the response of eacn component.

- NOT Reppn .
4.3, Future Effort. EPRODUCIBLE

The analyéis of a piping system by Methed A using a digital
computer is nm.v in ily latter stage;:. The same systern will. e:'lSo:be
completely ;ﬁalyzed by Method B. \

Preliminary investigations into the possibility of predictiﬁg
upper and lower bounds of systein response from the results of
Method B have given favorable results. It is foreseen that an analysis

such as this may make 2 complete analysis unnecessary. The results

of this type of investigation will e compared with 2 complete solution

" for validation.
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