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NOMENCLATURE 

The definitions of the following Symbols.'are used throughout the 

report except where otherwise stated.    Some symbols defined in the 

text of the report are not included. 

a Velocity of wave propagation in a liquid-filled pifje.' 

A     Cross sectional area of pipe. 

b     Thickness of pipe wall. 

B     Constant used in determining the frictional resistance 
to flow. 

B.(JCJ) . .  .    System function for the ith pipe at point  x. . 

B^(jw) . .  .    System function for the ith pipe at x. = i. . 

c Velocity of wave propagation in an infinite medium. 

c     Complex Fourier coefficient. 

C  Coefficient of capacitance. 

D  Inside diameter of pipe. 

e  Base of natural logarithms = 2. 718* • • . 

E  Modulus of elasticity of pipe material. 

E , (x., jw).    Transfer function relating pressure at point x.   to 
"     1 pressure at point  k . 

E , (x., ja).    Transfer function relating pressure at point x.   to flow 
q     1 ' rate at point  k . 

f Jüarcy-Weisbach friction factor. 
jCyclic frequency. 

f,     Fundamental frequency. 

f     Cut-off frequency. 
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f         Discrete frequency. 

ressure F.(X.,JCJ). Transfer function relating power at point x.  top 
pK   l at point  k . ^ .      1 

F ^(x., jw). Transfer function relating power at point x.   to flow rate 
qK   1 at point  k . 1 

G;(J«) 

W) • 
h(T). 

j 

JQ and J. 

k    . 

K   . 

K 
Pi 

K 
qi 

Kki 

i   . 

Transfer function relating pressiy6 at point x.   to flow 
rate at terminus. 

Transfer function relating pressure at point   i.   to flow 
rate at terminus. 

Spectral density as defined by American Stand§ind;. : — 

System weighting lunetion. 

Transfer function relating flow rate at point x.   to flow 
rate at terminus. 

Transfer function relating flow rate at point  i.   to flow 
rate at terminus. 

iRefers to ith segment of pipe. 
General subscript. 

Bessel functions of the first kind. 

General subscript. 

Bulk modulus of a liquid. 

Gain function relating pressure at point   x. to flow rate 
at point x. = 0 . - 

Gain function relating flow rate at point  x.   to flow rate 
at point   x. = 0 . 

Gain function relating flow rate at point   i.   to flow rate 
at point x. •= 0 . ' 

] 

Gain function relating pressure at point   x.   to flow rate 
at terminus. 

Gain function relating flow rate at point   x.   to flow rate 
at terminus. 

Length. 

Length of ith pipe segment. 

iv 
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«Aw   • 

m 

M.CF) 

n 

P 

Pt 

PiO) 

QCx^jw) 

a(X,s). 

r 

R 

Coefficient of inertia.. 

One-sided Laplace transform. 

Two-sided Laplace transform. 

r- 
Number of pipe.«; in series. . 

. «Number of pipes in parallel. 
General subscript. 

System function for the ith pipe at point  x. 

System function for the ith pipe at  x. = i. . 

^- ^ . . 
Exponent of q  for mean flow. 

:   <Refers to source en(^. 
General subscript. 

Pressure variation as a function 01' distance and time. 

Mean pressure as a function of distance. 

0 

Instantaneous pressure as a function of distance and 
time = p + p . 

Pressure variation at point x.   transformed with respect 
to time with   s - j« . 1 

Transformed pressure variation at x. = 0  with  s = jw . 

Pressure variation transformed with respect to time and 
di stance. 

Volume flow rate variation as a function of distance and 
time. 

Constant mean volume flow rate. 

Insl'jntaneous volume flow rate as a function of distance 
and time " q + q . 

Volume flow rate variation at point x.   transformed with 
respect to time with   s = j« . 

Transformed flow rate variation at x. = 0  with  s = jw . 

Flow rate variation transformed with respect to time 
and distance. 

Refers to terminus. 

Coefficient of resistance. 



■WWW    ■     ,..-1 ^..la^— mtm,» l^i* i. imtfn'Mim ■ ■   .Wi^^ra rMTi*       !     ^-*--^ !     in    **«■ ■ ii \**m  t**. 

8  Laplace transform with respect to time operator. 

t  Time. 

T JLimit of a period. 
  ipenotes truncation. 

T.(jü)) .  .  . System function for the ith pipe at point  x. . 

T.'(ja)) .  .  . System function for the ith pipe "at   x. - i. . 

u.  Instantaneous fluid velocity as a function of distance and 
time. 

W  ..... . Power. ..    *.»•*■'•* 
• ; 

W(x.,ju)).  . Transformed power-at point  x.   with   s - jw . 

^own"  ■  •  • Average power. 

x   ..... Axial distance. 

x.  Axial distance measured from the terminating end of the 
ith segment. 

x(t)   .... Function of time. 

X(s) .... Laplace transform of x(t) . 

Y .(x., jw). Transfer function relating flow rate at point  x.   to 
P pressure at point, k . 

z  Characteristic value. 

Z{x., jo) .  . Ratio of transformed pressure to flow rate at point x. . 

ZJCF) • •  . Ratio of transformed pressure to flow rate at  x. = 0 . 

Z  Characteristic impedance. 

Z .   .... Characteristic impedance of the ith segment. 

Z  Ratio of transformed pressure to flow rate at terminus. 

Z , (x., j«). Transfer function relating pressure at point  x.   to flow 
" rate at point  k . '       1 

or  Attenuation constant. 

a,  Attenuation constant of the ith segment. 

vi 



• 

* • 

ß 

A 

r 
r 
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0vv(T) 'XX 

0xy(T) 

^pq(T) 

#xy(» 

w 
c 

w 

•.     *       • 

n 

Phase constant. 

Phase constant of the ith segment. 

Propagation coefficient. 

Propagation coefficient of the ith segment. 

Reflection coefficient. ^' 

Reflection coefficient of the ith segment. 

Phase angle of reflection coefficient. 

Laplace transform with respect to distance operator. 

Mass density. 

. ^« i -^ 

(Dummy time variable. 
'   |Displacement in ti^ne. 

Phase angle of the ratio of pressure to flow at a point  k 

.    Autocorrelation function of x(t) . 

.    Cross-correlation function of x(t)  and  y(t) . 

.    Sound power. 

Spectral density of  x(t) . 

Cross-spectral density of x(t)  and  y(t) 

Power spectral density. 

Radial frequency. 

Fundamental frequency. 

Cut-off frequency. 

Discrete frequency. 

vii 
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CHAPTER I 

INTRODUCTION 

1. 1.   Objectives. 

Thia-report presents the results of a mathematical analysis' of 

pressure, flow rate, and acoustic^power levels at various points in an 

idealized piping system which is subjected to statistical inputs.    Suc- 

cessful adaptation and use of the results will aid in the prevention of 

excessive liquidborne noise in shipboard piping systems. 

1.2.   Method of Attack. 

After careful review of existing literature and technical reports, 

an analysis was begun to determine the feasibility of predicting the 

response v.f piping systems to liquidborne noise.   The analysis was 

analytical in nature and used the results of previous scientific inves- 

tigations.   At various points in the analysis certain assumptions are 

made on the basis of engineering judgment.   These points are clearly 

stated and discussed in this report. 

It is shown that the pressure, flow rate, and power at any point 

in a complex piping system can be found in terms of the same quantities 

at some more convenient location in the piping system.   A digital com- 

puter is needed for the complex systems.    The results are expressible 

in terms of continuous spectrums (i.e.  spectral densities) or in terms 

of discrete fpectrums and bandwidths as are obtained from wave analyzers. 



1.3.   Content of This Report. 
• 

This report contains background information about the physical 

system with the idealizing assumptions and the resulting equations 

which describe the response.   Further, background information on 

mathematical statistics is included to clarify terminology.   The mathe- 

matical symbols and terminology used is that acceptable as "American 

(1)* Standards"1 '    when applicable. 

The analysis follows in which the physical system.is analyzed 

using the mathematical techniques* The results will be discussed else- 

where in this report. 

*Numbers in parentheses refer to references in the Bibliography. 
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CHAPTER II 

BACKGROUND MATERIAL 

Mathematical Tools 

2.1.   Transform Methods. .-    .•.'-'--' 

The transform methods needed are the Fourier and the Two- 

Sided Laplace which become identical when  s = jw .   Thus, 

X(s)   =. lim     /       e'stx(t)dt   , (2.1) 

and 

• r c+joo 
x^   =  2¥T   I X(s)estds (2.2) J «/c-joo 

are the definitions to be used in this analysis. 

2.2.   Fouriei Series. 

When a function x(t)  is periodic in time   2T , the Fourier series 

representation is 

oo 

x(t)   =  ao +    A.     (an cos nwjt  + b   sin nwjt) (2.3) 
n=l 

where 

w,    =  5   • (2.4) '1        T   • 

The Fourier coefficients are defined as 
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a, 1 
2T 

n 

k0 

i JVT 
•'to-': 

x(t)dt   , 

x(t) cos nwjt dt  , (2.5) 

and 

n x(t) sin nwjt dt 
',.* 4nft» 

By further manipulation * ' the equations (2. 3) and (2. 5) can be placed 

in "exponential form" as follows: 

00 
jnw.t 

*> ■ 2   «.. .> (2.6) 
n=-oo 

where 

n i^ n Jbn) 
fV1, 

•'U-T 

1      I    0 -jnw.t 
or    / x(t) e dt 

x0 T 
(2.7) 

or (6) 

:n   =  5TJL  
xT^t^ (2.8) 

and 

C0 = ao • (2.9) 

The function xT(t) is defined as 

xT(t)   -   x(t) .   t0-T<t<t0+T   , 

xT(t)  ■   0 at all other points. 

The Laplace operation in Equation (2.8) is the "one-sided* 

Laplace operation. 

I (2.10) 

'""--'-• ■— ^~ .»PJ^J..» . T-    i ^pp M.i   ~~--. '"'  ""*''■ «wi»!!!!«!     i \. \ mwjmm« « ■   'j M I»>»^IIHI 



2.3.   Transfer Functions. 

A system represented by a linear differential equation 

L  [y(t)]    =   x(t) * (2.11) 

can be transformed and written as 

y(s)  =  H(s) X(s)   . (2. 12) 

The solution of (2. 12) is 

y(t) ■ £ [Y(S)]       =      / h(T)x(t-T) 
J -co 

dr   . (2. 13) 
0 

Thus, if the%input x(t) is known, the output y(t) is found by an inte- 

gral operation on the input using the proper weighting system function 

h(T) . 

The function H(s) is the transfer function and in some cases may 

be an impedence. 

2.4.   Output Responses. 

When  x(t) is a prescribed input, the various output responses 

are obtained. 

(a) Impulse response;   x(t)   -   6(t) 

y(t)  =  h(t) 

Y(s)  ■ H(8) j 

(b) Step response;   x(t)   - u(t) 

y(t) =     /      h(T) dT 
^0 

Y(s)   - iH(s) 

I (2. 14) 

(2. 15) 

■^w^^p>W|ii.u..i ■ i.   -   ■  ilj|»yj^r»»yt ■ i i ^^p>lu<^■ 11       'J.w;. ij^'i.i"     '  I' »mi—»,! »^w—«■■w—^rw     it mimmmm^m 



(c) Frequency response;   x(t)   =   sin wt 

y(l)   =    /    h(T) sin «{t - T) 
•'0 

dr 

u 
Y(s)   =  -j 

s   +« 
5 H(s) 

(2. 16) 

where by common acceptance 

H(jfa))   =   frequency response. (2. 17) 

It is assumed that the effect on   y(t)  due to the poles of H(s). has 

decayed as a transient and that only  s ^ ± jw  will be effective. 

2.5.    Statistical Concepts and Correlation. 

The correlation between two continuous processes or motions 

i8(3.4.5,6) 

T 
.... 1      / 

^12 ((T) = lim   Jj,    /      xM) x2(t + T) dt = x.Ct) x2(t + T) 
18) 

in which the process is stationary and ergodic.    The above operation 

shown is denoted by x^t) XgCt + T)  and is called the "time" average. 

The time average is the scan of x-(t) by another function  XnCt)   by 

shifting an amount   r and averaging over a sufficiently large period 

2T .   0i2(T)   is the cross-correlation between  x^t)   and  x^ft) . 

When  x. s   x« , Equation (2. 18) yields the autocorrelation 

function 

T 
+ T) dt   . ^(T)   =   toy, j        K^Xjft (2. 19) 

The mean square value is when  T = 0 , or 

  T 
9. 1        / 

01 ̂ (0). x^t)2 =^ä J^h^)] dt (2.20) 



The autocorrelation i£ an even function in  T . 

Correlation functions are useful in any general approach to 

analysis of aperiodic processes and are instrumental in the frequency 

description of a random process. 

2. 6.   Spectra and Spectral Densities. 

The spectrum of a function is a plot of the Fourier coefficients 

c     versus the frequency w        For periodic functions the spectrum is 

a series of discrete points at specific frequencies, and for appjiodic 

functions the spectrum becomes a continuous plot as the period be- 
fS 4 ft) comes infinite1 *   •   '.   This latter statement is equivalent to saying 

that the increment of frequency approaches zero. 

The spectrum mostly used is that    historically associated with 

power calculations.   Power calculation results are expressed as the 

product of two functions as in Equations (2.18) and (2. 19) in which the 

average value is obtained.    The spectrum of the power is expressed as 

a function of the square of the Fourier coefficients. 

A random vibration can be considered to be the sum of a large 

number of harmonic vibrations of appropriate amplitude and phase. 

The total power is the sum of the power of each component of the 

vibration.    This power is distributed as a function of the frequency; 

. therefore, the amount of power associated with each frequency is of 

interest and is called the power spectral density.   The accepted 

mathematical definition of power spectral density for an ergodic pro- 

cess  x(t) ( ' is 

G(f)  ■  lim   i 
T-oo * / 

T 

T 
x(t) est dt (2.21) 

'■■■' i   mmfm*        .-"■m". n 'HUMJ.I1. H  M< '     ■" ■pnnnf i mm m 
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where 

s   =   2Trj{, w>0  in (2.21). and  f  = JJ-   . 

Applying Equations (2. 3) through (2. 10) to Equation (2.21) with 

w = nwj ,   f = nfj ,   and   fj = yj (2. 22) 

there is obtained J>' 

rT                                      r T 2 

G(f)   =   lim   i 
T-oo 

/     x(t) cos nwjt dt + j    1     x(t) sin nwj t dt 

which becomes 
v 

G(f)   =   lim   i 
T-oo 1 

; 

Tan   ♦  jT^ 
2                  , 

=  lim   j- 
T-oo rl 

2 
cn       .    (2.23) 

Thus, as a function becomes random, the power spectral density will 

be given by Equation (2.23). 

A useful relationship for statistical signals is obtained from the 

equality^ ' 

JT-T /»oo 

x^t) x2(t + T) dt   ■     J      xT1(t) xT2(t + T) dt   .      (2. 24) 

After substitution of the two-sided Laplace integral for  xT2(t + T) 

and the inverse Laplace integral  XT1(s)    in the right side, dividing 

both sides by   2T , taking the time average of both sides, integrating 

the left side, and letting  T  go to infinity. Equation (2. 24) becomes 

£ T\*12W]   
=   $12^   "   lim  "ST   XT1(-S)XT2(S)   . (2.25) L J T—« 

And if x^t) =   x2(i) , - 

SZ TRll<T)l   "   ^11(S)   =   lim   Ä  XT1(-8)XT1(s)   . (2.26) 

The spectral density  $,,(3«)  is found by replacing  s  by jw  in 

•***•   ■*■» ■'    imm— 1   ■»■■-^•» i»^ jn.i  ^^'-*"      -   MVWHpi •'-.-»—-■ "»w»^»«!»"   I     I |ii 
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Equation (2. 26). 

The power spectral density as given by Equation (2. 21) is 

equivalent to 

G(f)  ■  lim   Y XT(s)XT(-s)   =  lim   -[x^s)]" (2.27) 

Where   s   =   2'jrjf .   Corhparison of (2. 26) and'(2. 27) shows that the 

power spectral density is 

G(fj   =   2j11(f). .     (2.28) 
• ..    ., **■  ^ 

/q   ^   g   i7   p   q\ 
Modern control systems textbooks^ '»»''' define the spectral 

density* as ^JJOW) while the American Standards' 'use G(f) . No 

particular difficulty occurs in this if one is consistent, because most 

re'sults will be normalized in the same manner. The factor of 2 is 

accounted for in that $1,^) allows negative f while G(f) does not. 

Thus, both quantities when integrated over the frequency spectrum 

must give the same average power. 

Equation (2. 23) gives the relation between discrete and continu- 

ous signals.    Using Equation (2. 28), 

1       2 2 

Equations (2. 23) and (2. 29) are more symbolic than useful and show 

how the spectral density may be found as a limiting procedure when 

the frequency  f. — 0 . 

2. 7.'   Output Response for Statistical Inputs. 

A system with multiple random inputs is shown in Fig.  1.   The 

* Since any function can be resolved into a spectrum, the historic 
power connotation has been dropped and the term spectral density is 
used for any function.   Thus, force may have a spectral density. 

i^ipwre^—'',*'-~?TyWWi^*1.'       ■   ' '^iwp^pyw**** ' ^^^^"^iCT "*" "^" •*'^' ■ "< ■i^»»^^^*^*"^'•"• ■ "■^■»^mw^» 
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XjCt) HjCs) 

x2(t) H2(s) 

Xgtt) Rsfi) 

X   (t) 
Hn(8) • 

. 

Xn(t) 

'   ..    T^F»*'* 

Fig.  1.   System with Multiple Random Inputs 

inputs are denoted by x.(t) and the respective system transfer func- 

tions by H^s) , i = 1, 2, 3, • • • , n . After truncating the inputs as 

in the previous section, the following equations can be written: 

n 
XT0^   B      Z   Hi(s)XTi(S)': <2-30^ 

i=l 

and 

XT0(-S)   =     2   Hk(-s)XTk(-S)   . (2.31) 

k^l 

Multiplying Equations (2. 30) and (2. 31) and dividing the results 

by  2T , 

n      n 

L Z H-I -2JrXT0(s)XT0(-s)   -^  £   L. H-Cs) Hk(^) XTi(s) X^C-s). 
X"" X     K— X 

(2.32) 

If the time average is taken over the above equation and   T  is allowed 

—■■■ W^   "HI '■PH.W>. 
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to approach infinity, 
■ 

*00WW)   =      2   Z Hi(jW) Hk(";'w) QkilM (2-33) 
i=l  k=l 

where   s   has been replaced by ju . 

Equation (2. 33) can be used to obtain the"spectral density of the 

output in terms of the spectral and cross-spectral densities of the in- 

puts and the system functions.   As an illustrative example, a single 

input system is analyzed. 
; 

Single input: 

1       1 

*00«w)   s      2   2 Hi(JQ) Hk("jw) *ki«ü,) 

i=l   k=l 

1 

■ 2 Hi(Jw) "iH") $liÜw) 
i= 1 

■ JHjH^nü«)   . (2.34) 

2.8.   Spectral Density and Amplitude-Frequency. 

An amplitude-frequency plot of a process as obtained from a 

wave analyzer gives the absolute value of the Fourier coefficients  c 

for a bandwidth  Aw  with center frequency w    . 

From Equation (2. 26), for   T = 0 and  s = jw , 

0^0)   =  x^t)2   »-^jr J    ffnai»)du   . (2.35) 
"00 
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If x.(t)  is represented by the complex Fourier series 

2 
 2 lCrJ 

Then, for the bandwidth  Aw  with center frequency  «   , Equation 

(2. 35) becomes 

,    ,2 r"+^ " c ,      f    n ^^ 

W    --35- n    2 

Carrying out the integration. •,,* u.l-* 

*ll^n>   S   -TT-   * <2-38) 

Thus, Equation (2. 34) of the preceding section can be written 

No ■ lHiü»n>l I'Jj <2-39) 
where   jc jj   is the amplitude of the input  x^t)  for some bandwidth 

Aw  with center frequency  w   ;   (Hj^w )j   is the absolute value of the 

transfer function evaluated at  M ■ ti   j and  jc  j0   is the amplitude of 

the output  XQ(t)  for the bandwidth  A«  with center frequency  w   . 

The Physical System 

2.9.   Introduction. 

The following material contains the derivation of the differential 

equations describing compressible, turbulent flow in a non-rigid cylin- 

der.    The derivation is based on certain idealizing conditions that arc 

pointed out and later discussed.   Using Laplace transform methods, 

the frequency response solutions of the describing equations are ob- 

tained.    The results of this investigation are applied in the next chap- 

ter to determine the response of a complex piping system, such as 
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shown in Fig. 2,10 random inputs. 

2.10.    Derivation of Describing Equations. 

Fig. 3 depicts a liquid filled cylinder with non-rigid walls con- 

taining compressible, turbulent flow. The necessary idealizing con- 

ditions follow and hereafter shall be referred 4ib by number: 

1. The flow is one-dimensional. 

2. The frictional resistance is a function of some nonlinear 

operation on the fluid velocity and system parametef^!   It 
* i 

can be expressed as the product of a constant and the instan- 

taneous flow rate variation. 

3. The energy dissipation is due to heat transfer and is 

accounted for by Condition 2. 

4. The rate of change in fluid velocity with respect to length is 

negligible as compared to its rate of change with respect to 

time. 

5. The instantaneous pressure is constant over the cross section. 

8.   The rate of change in mass density with respect to length is 

negligible as compared to its rate of change with respect to 

time. 

7.   The velocity of wave propagation in the liquid cylinder is 

constant. 

Using Conditions 1, 2, 3, 4, and 6, the fluid dynamical relation- 

ships completely describing the system are'    ': 

Equation of Motion 
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Fig. 3.    The Physical System 

Equation of Continuity 

. p_i + |£  =  o 
''^T       8t 

Equation of State 

8pt   =   K- St 

(2.40) 

(2.41) 
t        "   P 

where K1 is the bulk modulus of the system, i. e., the fluid and cylin- 

der walls combined. 

Equations (2. 40) and (2. 41) are combined to give 

du. l    dp 

-■&r + irir0 0 • (2-42> 

Integrating Equations (2. 39) and (2. 42) over a control volume  A6x , 

*!   .   «_n **4 "§r +  Bq 0   , (2.43) 

and 

^t    .   A ^t  .   0 (2.44) 

When the volume flow rate is constant at a cross section, 

q.   =  q ,  Equation (2. 43) reduces to the slope of the pressure grade 
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line, or 

Then, 

. — 2-n       p- 
B   - ^-5- -   -1— ^ (2.46) 

2DA^       iq11 

where   p.  is the pressure needed to overcome the frictional resistance 

of the pipe as determined from elementary fluid mechanics and  q  is 

the mean flow.   The value of  n  is estimated from experience or 

experiment and should range from 1. 65 to 2. 05. 

The nonlinear term of Equation (2. 43) is rewritten and expanded 

as follows: 

q"   =   (q  +  q)" 

.   qn(l   +^)n 

^  qn[l   +  n(-^)   +Si^rii(-|.)
2   +   •]     .      (2.47) 

The ratio -*- is small, and the series in Equation (2. 47) is suffi- 

ciently approximated by its first two terms.   Then, Equation (2. 43) 

becomes 

8pt        o   ^t        pf       nPf 
■■Rr + 4--0r + :r + -££« ■ 0 • t2-48> 

'q 

Since   qt = q + q  and  p. = p + p , Equations (2. 44) and (2. 48) 

can be reduced to the describing differential equations for the varia- 

tions in flow rate and pressure.    They are: 

'q 

and 

■n»w«ii'   » i"^—-'•^wjiniw>^'"!»'s'w.i|Wjiti,j..t.,  ii     i. mnnjfPBBy ■  "   iiipyyi^iiMimi       WIHJ» w,w«i 
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-|| + £$ = 0- .      . «2-50> 
It is noted that the above equations can be combined to form the classi- 

cal acoustical wave equation including a dissipation term. 

2. 11.   Idealizing Conditions. 

The idealizing conditions listed in the previous section are dis- 

cussed and validated to varying degrees as follows: 

1.   In any real piping system, a propagated wave is never one- 
..   ... ,*-** '"* 

dimensional» because the elasticity of the pipe walls allows radial 

motion.   But over a certain frequency range from   0 to w    radians 

per second there exists only one propagated wave, or one mode of 

propagation, which is the axial, or plane wave, mode.   This mode is 

denoted the   (0,0)  mode.   The cut-off frequency w    at which the 

first radial mode of propagation occurs  [the (0, 1) model  for non- 

dissipative conditions can he determined by the following equations 

given by Jacobi'    ': 

^-"^"I^5?- (-s' p,Dc z 

and 

wc  = T7201 (2-52) 

where   z  is some characteristic value,   3n  and J,   are Bessel 

functions of the first kind, and  p.   and   p»   are the mass densities of 

the fluid and pipe material, respectively.    The first real characteristic 

value   ZQ1  that satisfies Equation (2. 51) is substituted into Equation 

(2. 52) to obtain «   .   For 8M standard steel pipe,   f   = 6900  cycles 

per second.   For smaller sizes of pipe the value of w    increases sub- 

stantially.   To the best knowledge of the author, the subject of cut-off 

WBHW—W—imii      ■—WtW^P^P^"—T1 "       m^pqiw^'—»"•'■■m^WP—wi»^-—    '■ .J.WVW'W >Wi .'.;    ' ■'■'apH"'V.'   ■'        .    ■■  ■!■ .    , i   i      i.    ■ i   mmm*~— 
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frequencies for dissipative condition« is nonexistent in the literature. 

The cut-off frequency should be somewhat higher for dissipative condi- 

tions than that given by Equations (2. 51) and (2. 52).   It is concluded 

that for a relatively rigid pipe, the one-dimensional condition is valid 

for frequencies up to the cut-off frequency. 

2.   The perturbation process used in the derivation of the des- 

cribing equation to linearize the frictional dissipation term was proposed 

and verified experimentally for low frequencies by Waller^    \   There 

seems to be» no good reason for discounting its validity in the frequency 

range of one-dimensional propagation. 

3. The effect of heat transfer on a propagated wave could be 

considered resulting in a third describing differential equation as done 

MS) by BroAMi1    ', but it is believed that the rather empirical fricitional 

dissipation term used in the describing equations will account for this 

effect. 

4. The condition that the rate of change in fluid velocity with 

respect to length is negligible has been used for many years in des- 

cribing weve propagation in liquid cylinders.   Phillips^    ' in showing 

the acoustic wave equation adequate for describing turbulent flow in 

liquid-filled steel pipes has shown this term to be negligible. 

5. If the one-dimensional wave condition is valid, it follows that 

the instantaneous pressure is essentially uniform over the cross sec- 

tion. 

6. As in Condition 4, the rate of change in mass density with 

respect to length has classically been considered negligible. 

7. Strictly speaking, the velocity of wave propagation in a liquid 

cylinder with non-rigid walls is not constant with frequency.   With 

.^ ^^(^.^»-f.-  -    "«< "■ ~-  i|!liWl M    ..   ■■! i|.»«"M"m t,|Llll     II       tl'JlJBM.. 'I1*' .«       '■    11^^.11   I   r-. 
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increasing frequency, the flexural vibrations of the .vails tend to im- 

pede the propagation causing a decrease in the wave velocity.   Mathe- 

matical expressions to determine the velocity of wave propagation as a 

function of frequency are given in the paper by Jacobi^    ',    For a 

relatively rigid pipe, such as a standard steel pipe, the velocity of 

wave propagation in the pipe,   a ,   is essentially constant, and 

"/S/K' 
(2.53) 

where«15) '  "    '^^ 
I 

K'   "  Kirnb    • (2-54) 

Rather than calculating the velocity of propagation by Equations (2. 53) 

and (2. 54), it can be determined for different pipe sizes and fluids 

from nomographs available in many papers and books^    '. 

2. 12.    Solution of the Differential Equations. 

The describing differential Equations (2. 49) and (2. 50) for the 

variations in pressure and volume flow rate are: 

-»L|ai   +  L^M^lI   +  RqCM)   =   o   ; (2.55) 

and 

where 

and 

- gSLfaJ]    +  C*fr (jM)    =o (2.56) 

L   =  ^  ; (2.57) 

R   =  üf£  I (2-58) 

C    =    A   r:   -i^   . (2.59) 
La 

-   , i aiHUMi. - ■•.-,»;w^i-   jjimijiiii -w->-->'     i  i ijawaiiiimi i ■   nimwipimii u.      i iy^|pi)ui m   n |   i  .ipm   i » 
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Equations (2. 55) and (2. 56) can be solved by Laplace transform 

methods for solutions in the frequency domain. 

Transforming Equations (2. 55) and (2. 56) with the Laplace inte- 

gral 

F(8)  =       /    f(t)e"etdt . 
J0 

- 8P(^S)    +  (R + sL)Q(x,s)   =   0   , ^   (2.60) 

and v 

-iS^4£l   +  sCP(x,s)   =  0 (2.61) 

where  p(x, 0)  and  q(x, 0)  are zero.   Transforming the above equa- 

tions with the Laplace integral 

00 

(x) ejXx dx , 

-xf»(X,s)   +   (R + sL)4(X,s)   =   -P(0,s)  , (2.62) 

and 

-X^s)   +   sC^(X,8)   ^   -Q(0.ß)   . (2.63) 

Solving Equations (2. 62) and (2. 63) simultaneously for  ^(X, s) 

and Q(X, s)   , 

fyx,s)   =   Z Q^sK 2
y   2) + P(r,s)(  2 

X   2)  , (2.64) 
X   - Y X   - 7 

and 

6(X,8)   =  5fe_sl ( ^   T  2)   + Q(r,s)( 2 
X   g) (2.65) 

c        X   - 7 X   - 7 

where 

and 

72   =   sC (R +sL)   , (2.66) 

m .ii i ■    -—   n       »»i i» ii   - ■ .«-..-.^ »»•...——. -. »m mimimm •   ■ —■grr-'-^i»»1 ' ' - ?•   '   'iwfy fv,   " »t»-——    ■■»mi IU   »  itttmmimtt. . .nwmmiimm 
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*o2  = ^   • (2") 

Evaluating Equations (2. 64) and (2. 65) with the inversion integral 

c+joo 

«W " J5J   / 
A Xt 
F(X) eAt dX   , 

e-joo 

P(x,s)   =   P(r, s)cosh7X   + Z   Q(r, s) sinh Xx   , (2.68) 

and 

Q(x>s)   =   Q(r<s)cosh7X   + P^S^   sinh 7x   . •    - '-'(^«Q) 

Tlie frequency response of the system is obtained by replacing s  by 

jw  in Equations (2. 66) through (2. 69). 

The propagation coefficient,   Y(jw) , can be expressed in the 

form   » + 3/3 by finding the roots of E4nation (2. 66).    The attenuation 

constant,   a , is given by 
  1 

a =   [^(AA^+A2 -a)L)l (2.70) 

The phase constant,   /3 , is given by 
1 

jS  =   [^(A/R
2
+U)

2
L

2
   + «L)l . (2.71) 

The chtiracteristic impedance,   Z (jw) , can also be expi^essed 

in complex form by finding the roots of Equation (2. 67).   It is given by 

Zc   * ^tf" J«)   ' (2-72) 

By the same investigations as for  Y(jw)  and   Z (jw) , it can be 

shown that 

7(-j«)  °   <*  -   jß  . (2.73) 

and 

i mn.m.mi.     ■-~»--«r».~^^^^jyniip»»a "^^ip^BMiiü    I      IJWI"^— ^»UmjI'HIH ■■  —-WWH »■ I       —• —■ ■ . i  IIH<|W> in    i]   i    .. 



CHAPTER III 

TRANSFER FUNCTION ANALYSIS 

3. 1.   Mjrthgaaatlcaj Statement of the Problem. 

The system which is ftymbolically depicted in Fig.  2 encompasses 

most any situation expected in shipboard piping systems.    The noise 

source at  n  is a pump (or valve) which discharges into a complex 

system with typical changes in size as indicated by A , with looped 

lines (B to C), with stub lines (D), and a termination at  r . 

The fundamental problem is to specify the allowable noise levels 

of pressure, flow, and power at  n   or at some intermediate point 

which will not exceed allowable levels at the terminus   r   for a multi- 

tude of piping configurations  n  to   r .   It is expected that in the over- 

all analydis it will be advantageous to express the noise levels in terms 

of known levels of pressure and flow at either end  n  or   r .   This 

requires determina'ion of transfer relationships for the various cases. 

The transformed pressure, flow, and power at a point x.   in the 

pipe   i  are defined as folio*'£: 

P^s)  «   Epk(xi,ö)Pfc(S)   , (3.1) 

and 

and 

Pfr-.s)  -   ZqjJV^Cys) ; (3.2) 

Q(x..s)   -   E(.k(xiJs)Qk(s) , i              (3.3) 

Q(V*) " Ypk(Vs)Pk(fi,, '• (3-4) 

22 

..,,„..  .„ .   , »^y .. - —~.i«»Wr.Ti- "  '- —■■ ■ ;B,W ■—•—unw."! .■." ' I." .'wmiwui.'w'.  •>• v>'mGmim0i***>**m*mmmm***'.*''i'-v'iv 



-.«» iMtea^fcii—ü-   m,t*%*mtmm   jmmmim*t,~ 

23 

Wfe^s)   =   Fpk(x..s) |Pk(3)f     ,. (3.5) 

and 
2 

WCxj.s)   -   F^Cx-.s)    Qk(s)      ; (3.6) 

where  k  can be either the source  n  or the terminus   r . 

From the discussion preceding Equation (2. 38) it is evident that 

the transfer functions   E , Y . Z , and   F  are needed to relate the 

various spectra.   Thus, the primary objective of this chapter is to 

determine thpse transfer functions and to place them in the best form 

for analysis. 

Before proceeding to a discussion of transfer functions, the 

method of determination of power will be indicated. 

The sound power at any point x  is found^  as 

rT 
0    (T)   =  lim  -^r      I      p(x,t)q(x, t+T)dt (3.7) 

T-oo J _T 

where the average power 

/« 

$pq(j") d(ju>)   . (3.8) 

The power associated with any given frequency is found by obser- 

vation of the spectrum of the power either in the form of a continuous 

plot, 

Jw(ja))   -   lim   yp  Q(x,jcJ)P(x.-j«)    , (3.9) 
T-MO 

or in terms of the discrete Fourier coefficients, 
2 

$  (j" )   - Cn (power) 
J Aw-0 
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From the preced;ng discussion, it is evident that once  P(x, s) 

and  Q(x, s)  are known the power is obtained directly. 

3.2.   Transfer Function Determination. 

To determine the overall transfer functions it is first necessary 

to work with a specific pipe in which the fundamental parameters  R , 

L , and  C  are constant with respect to that pipe.   The relationships 

between the boundary conditions and pressure and flow at any point in 

the subsystem  i , as shown in Fig! 4, are given by Equation^v(3, 11-) 

and (3. 12) (18) 

PCx^s)  - P.(s) cosh y.Xj  + Z^Q^s) sinh 7^   , (3.11) 

and 

Pi(s) 
Q(x.,s) = Q^s) cosh YJXJ  + -^— sinh 7^ 

ci 

■ • 

(3. 12) 

P,+,(.) 

Qi+1(s) 

flow 

i+1 

Vi 

P(xi,s) 

Q(xi, s) 

P^s) 

Q^s) 

x.-O 

Fig. 4.   Notation Sketch for the Pipe  i 

,«.*,*-—TT»*r.- imm mf ■■ii>,n^i-r»»^r ifjiwi    jmrmmrmmmm'*^*imi**B4£**>**Mmmm™iilui '-^ ^.i'.^ 
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■ 

The calculations proceed from some known termination by suc- 

cessive application of Equations (3. 11) and (3. 12) with the notation 

>   for  Xj = 0 
Q^s)   =   Q^s) 

Pi(*i'B)   =   Pi+l(0's)   =  Pi+l(8) 

Qi^8)   '   Qi+1(0,s)   =   Pi+1(s) 
for x. = i. 

(3.13) 

Further, 

P(x>,s) 
(3. 14) 

from which 

Pi^s) 

zsju^T a  Zi(0'8) = Zi(s) * (3.15) 

Another term which will be useful in transfer function determination 

is the reflection coefficient 

A further conoideration is ttiat the frequency response is all that is 

needed for spectral analysis; therefore, in all that is to follow 

r . 5: !ci - in (3.16) 

s   =   jw   . 

For the section  i , the transfer relations are: 

P^Jw)   =   Q^jw) [Zj cosh 7^  +   Zci sinh Y^jl 

and 

QCXj, jw)   =   QjCJw) [cosh YJXJ   + ■*£- sinh 7^J    . 

In an alternate form^    *     ' , 

"ci 

(3.17) 

(3. 18) 

(3. 19) 

w f r-^**n 
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(3. 20) 

and 

QCXj, j")   :i   Q^jw) e 
YJXJ -n -ITA 

1 n (3.21) 

Proper application of Equations (3. 15),  (3. 18), and (3. 19) yields 

one method of calculating transfer functions.    This will be tqnpjBd ,* 

Method A.   A second method uses Equations (3. 15),  (3. 20), and (3. 21). 

This is Method B.   Both methods have merit, and either would be suf- 

ficient provided adequate computer facilities are available. 

3. 3.    Method A - Transfer Function Analysis^    '. 

This method uses Equations (3.15), (3. 18), and (3. 19) succes- 

sively in a complex system.    The system is shown in Fig. 5, in which 

a typical section is shown in Fig. 4. 

m 

flow 
#m 

vm-l 

#m- 
I 

• 
i 

m i 
'm-l 

m m-1        3 

#2 

'2 'l 

JI ,        terminating 
111       end 

Fig. 5.   A Series Piping System 
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The following notation i« employed: 

BJCJO)) - cosh Y.XJ   ; 

BJ(jü)) = cosh Yji.   ; 

T-Qw) = Z^sinhy.x.   ; 

. Ti^w) = Zci sinh Yiii   ; 

Mi(j«) ■ •£— sinh VjX.   ; 

I zci     _     i 1     , 

] 
(3.22) 

(3.23) 

..U3;24) 

m .   Then, where   i  refers to the pipe number, i = 1, 2, 3, 

from Equations (3. 18) and (3. 19) , 

P(xiJw)   =   BjO) PjO)   +   T.CJu,) Q.(jW)   , (3.25) 

and 

QO^Ju)   ■   B^jo») Q.(ju))   +   M.(jW) ?.(>,)   . (3.26) 

Since 

Pk(»   ■   B^j^Pj^^ao,)  ♦jTJ.lö»)Qk.1öwj (3.27) 

and 

Qk(»   ■   B^1(ju,)Qk„1(ja))   +   M^jÜ^P^^ja»)   ,        (3.28) 

successive substitution for  Pk(jw)  and  Qk(jw) , k = i, i-1, • • •, 2 , 

in Equations (3. 25) and (3. 26) will yield Pfx.Ju)  and  Q(x.,jü))  in the 

form 

.      P(xiJa))   =   G.(ju)) Qr(jW)   , 

P(xi,jw)   .  _^_Pr(jw) 
r 

(3.29) 

IM mr* ■■ www 
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Q^iJ")   ■   H^ju.) Qr(ja))   , 
(3. 30) 

i 

The transfer functions   G.(jw)  and H-(jw) , i = 2, 3,  • • •, m , 

are given by 

and 

where 

and 

Gi " *iGl-i + TiHi-i - 

Hi • BiHi-i + MiGi-i 

O'        =   B'      O'        +   T*       H' Ul-1       ^i-l ^-2   +   rl-l "1-2 

ni-l   "  Bi.lHi-2   +  Ml.lGi-2 

(3.31) 

^.,> Jtm-3-^ 

(3.32) 

etc.   The transfer functions for  i = 1  at some point x.   are 

B 1 0, • *£ + T. . 

and 

Hl  = Bl + ^7   • 

(3.33) 

For   x. = i, , 

B 1 Gl   =   ^  +  T;   , 1 

and 
M 

H|  «  B-   + ^   . 

(3.34) 

Then, using the results of Equations (3. 34) in Equations (3. 31), 

the transfer functions for  i = 2  at some point  x2   are 

■>*** 'l^WWJP     ■ ..If'JP.i        • "PW.II I   II ■IMII «urn 
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G2   "   B2 

B! 
+   T' +  T, 

and 

Ml 
1        ZrJ 

 i  +  T1 

_Zr Ü 
H2   = B2 

Bl + 
M^ 

+ r.2 
Bl 

LZr           ] 

For Ji2 = i2 , 
*■«► 

G'2   ■ 

Bi + 1     r   "i Tl  + TJ   Bl + -zr J        .      L.              r. 

and                v 

B2 
Bl 

— 

+ 
MJ 

i 

+  M- 
B 

~  +  T 
J'r 

(3.35) 

Ü 
(3.36) 

This theory can be extended to any number of series components, but 

the transfer function expressions become increasingly complicated Qs 

the number of components increcses. 

The analysis of a complex piping system using Method A would 

proceed back from some termination with successive calculation of 

the transfer functions at all points and frequencies of interest includ- 

ing the junctions.   Thus, Equations (3. 31) would be used in the calcu- 

lation of the transfer functions rather than expressions such as 

Equations (3. 35).   Because of this. Method A provides an easy way of 

computing the many transfer functions needed to completely analyze a 

series piping system.    For any preliminary analysis, such as deter- 

mining maximums and minimums, or for an insight into the overall 

performance of the system. Method A gives undesirable results. 

These things are more easily obtained from the results of Method B. 

Wm   w    ■■   II>H>IHWJ^B» '.•«I tmmwijy;!1    ■' .   ,li.m^...l.  li    yi    <'<mmmmmKum'i > •• ■ »u. > I»«I i-T—v uiiWBl    -■">- II    J.H.W.) 
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3.4.   Method B - Transfer Function Analysis. 

This method makes use of Equations (3. 15),  (3. 20), and (3. 21) 

which are applied to one pipe to obtain the results in a form where the 

maxima and minima are more easily identified.   It may also reduce 

the computation time and make the analysis more amenable. 

Taking the absolute values of Equations (3.20) and (3. 21), 

r 2 "1 1 or,.x,. I 1 + A.  + 2A. cos ^. -j 

jp^.H • KHIV«   inirn 

and 

1 (3.37) 

{1 + A^ - 2 A. cos ip. 

1 ^ni2 - CiH »i. 
.T QCXi.j«)! = IQJüü»)! e1W] jjltf -nrrrz \   (3-38) 

where 

H ■ ini -Vi (3.39) 

6.   is defined in Equation (3.16), and 

^   =   - 2i3ixi  +   0.   . (3.40) 

For  xk = i^ , Equations (3. 37) and (3. 38) become 

a i     ( 1 + A'     + 2A,' cos 0' 
i 

"k 

and 

Vk 
jWH ^ |Qküw1e      ' 

(3.41) 

^ 1 
1 + A'^ - 2A' cos 0'       ^ 

2—nri—    r (3'42) 
l+llk     - 2| | ,.1 cos 0, 

where   A'   and  ^'   are defined by Equations (3. 39) and (3. 40) with 

i = k  and Xu = ^u • 
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Then, 

IPCX.,»! - Kpi IQ-CHI 

|Qe«fH ■ Kqi 1^(^)1 

|pk+i(H ■ Kik I Qk«")| 

(3.43) 

(3.44) 

(3.45) 

and 

K-fiH a KiklQk«w)l (3-46) 
where   K . , K . , K1. , and K'     are defined by Equations (3": 37^, 

(3.38), (3. 41'), and (3.42), respectively.    Successive substitution of 

Equation (3.46) for    Qjfjw)   , k = i, i-1,  • • •,  1 , in Equations (3.43) 

and (3. 44) yields 

1 

I 
k=i-l 

i 

IPC^H   -   |Qr(J")|   V    ][    K'k   =   |Qr(ja,)|  Kpi (3.47) 

and 

i 

lOOtj.H   -   |Qr(3-)|   Kqi    ]|     K'k   =  |Qr(ju))|   Kqi        (3.48) 
k=i-l 

where  K.   and R .   are identical to JG.(jw)|   and |H.(jco)j 
Pi 

respectively. 

To calculate the \&rious l.'s , the point impedances. 

Zk(j<-)   " 
Pk(ju>) J0, 

(3.49) 

must be determined.   Equations such as (3. 41) and (3. 42) give the 

absolute value of  Z,   .   Equations such as (3. 20) and (3. 21) give the 

phase angle as 

mmmm '"■'       ji-i»«—I.I i n IU.UI.I 4.;HJ|.i n. "    ■... .'.i ■i'IJUg.1'-" ""** mi. i i«iy     i   n i-uumj^fi ^fi^mfmnm'   <   ■mi»»   i 
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-1      Ak-lsin^k-l 
^k   =   ^c{k-l) + tan      l+A^, cos^' kk-l k-1 

tan -1   -Ak-l8in^k-l 
l-A^cos^ 

where  0c/k_i\   -'! &« phase angle of Z .,,. .   Reducing Equation 

(3. 50). 

1   2Ak-lsin^-l 

(3.50) 

^k   '   ^(k-1)  + tan 

.1 - A k-1 

(3.51) 
m 

Calculations start at the terminus r with the necessary values 

known. The relationships derived in this section are used to compute 

the K functions for any point in the system. With these, the desired 

spectrums can be determined. .,,. 

3. 5.   Piping Systems with Parallel Components. 

In Fig. 6 a piping system is shown containing pipes in parallel. 

The parallel ccinponents are not necessarily dimensionally or mater- 

ially identical.   The system to the right and left of the parallel pipes 

consists of either a single pipe or a series of pipes. 

^OlBu 

^ 

terminating 
end 

Fig. 6.    Piping System with Parallel Components 

I     rrnw mi      i mu—i—HI" in iimtKL 
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and 

From Section 3. 3, 

PjCM   ■   G!..1(jW)Qr(jW) 

QiU")   -   H|_l(ju))Qr((iu) 

»Oi 
** 

*0. 
fy 

(3.52) 

*'* 
^ 

(3.53) 

To analyze the complete system,   P.+1(j<*))  and 'Q.+1(jw)  must be 

found in terms of a transfer function and  Q (jw) . 

The following notation IB employed: 

B^(jw)  "  co«h ykik  ; '   '   - 

TJO«)  -   Zck sinh 7kik   ; ^ 

and 

Mk«w) " z^ sinh y^k 

where   k  refers to the parallel pipe number, k = 1, 2, 

relationships 

P^) = PJCF) ■ PiO«) ■ •••   ■ Pm(Jw). 

Qju") ■ Q^F) + Q2(JW) + '••   + Qmaw). 

Pi+1(jw)   "  Piiü»)   ■   P2i(Jw) =   P    i(j") 

and 

- '(^.54) 

(3.55) 

(3.56) 

m .   The 

(3.57) 

(3.58) 

.      (3.59) 

(3.60) Qi+1(j") = Qv{p) + Q2.a«) + •"  + Qm.(Jw) 

are valid where the sabscriptc;   1, 2, • • •, m  and   V,  2', • • •, m' 

refer to the points shown in Fig. 6.   Using Equations (3. 57) and (3. 59), 

Pi+1(j")   ■   B^P^ju)   +  T« (ju,) Q^ju,)   ; 

Pi+1(j")   -'   B'(jo)) P.a«)   +  Tjjüu) Q2(jW)   ; 

(3.61) 

Pi+1(j")   - Bm^)Pi^)  +  T»^^^ 

w~'.'i!«.i.'m»li!'.i'    i1"    . f^wiNii "■■—* " "   <ßm*'*<   i i i.i  ii—w» j. i     i      i..yj|fiiipi! imi' 
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Also, 

« 

(3.62) 

Equations (3.58),  (3. 60), (3. 61), and (3. 62) can be manipulated as 

follows to form   rn + 1   independent equations.    Substitute Equations 

(3. 52) and (3:53) for all  P.^'s   and  Q.(ju)'s .   In Equations (3.61) 

subtract each equation from the first equation.   Add Equations (3. 62) 

and substitute Equation (3. 60).   The results are: 

T'jQjtf»)   -   TJQjO»)  -   G^^BJ -B;)Qr(ja))  ; 

TJQjO)   -   T^Qkl»   -   G;_1(B^B')Qr(ia))   ; 

T^j«)   -   T'nQrn(j-;)   «   ^^(B^-BpQj,^)   ;.     >(3.63) 

Q,+1(jW)   -  B'.QjC:-)   -   B^Q2(jW)   -   B^Qgi»  -    ••• 

-BWi^       "   B^m^'   B   G1-1«M1 
+ MJ  + MJ M'_    ; +   M^)Qr(ju,); 

QiCN + Q2^ü)) + Q3^ + '--   + Qk(jw) + "" 

+ Qm0-)   M  H^jQ^joi) . 

-«i....»...pn..ii,.   T- —-—•JW»»- '<■■»— 
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In matrix form. 

0    TJ  -TJ     0 

0    TJ      0   -T^ 

0    T'       0     0 
■Tk 

• • 

0    T'       0      0 

1  -BJ  -BJ -B- 

Olli 

0 " Qi^a-l 

0 Q^i») 

• Qgü") - 

0 QsO«) 

1 
• 

-TJn Qk(j") 

^m • 

1 ^0») 

Qr(j") 

GJ.^BJ-B') 

OJ.jCBJ-Bi) 

Gi-l(Bk-B,l> 

'.   "»'I-* 

OI-jPJn-Bil 

Gi-1 

H!-i 

k 

J 
(3.64) 

Equation (3. 64) id polved for  Qj+1(j«)  and any one of the   Qk(jw) s. 

Substitution of Q. (Ju)  and Equation (3. 52) into the   kth  equation of 

Equations (3. 61) will give   P.+1(j'->) .   The results in the desired form 

are: 

Pi-flö»)  "   G;(ia.)Qr(»  ; 
*()? 

*t 
*** °o. 

(3.65) 

^ 
'6j 

(3.66) 

and «if 

Q1+1(»   -  HK»Qr(j«)   . 

For  m = 2 , 

. Hi-1^T1B2 + T2Bi) + G^l [Bl2 - B22 + (Mi ! M2KTi ! T2i] HJ(jtt) - 

and 

T'    -1-   Tl 
(3.67) 

^ ' '•'***'     iwniiiii i  i    ww^np^wm—»»w^^imipi i i i ]  nmmmmmr**" ' tmmmmmßm mm MPi mtn-mmrr 
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G|(jW)   =   BJ G!^  +   TJ 
T-   +  T- J     * 

68) 

If the parallel compoaenta are dI?.iriensionally and materially identical. 

ajtl-) ■ BJO;.! * iTi^.,   % 

and 
♦A 

(3. 69) 

V 
^ Ä V (3.70) H'O)   -  BiHJ^   +   mM' G!^ 

for any number of pipes. 

The trftnßfer functionc for parallel pipes will have to be deter- 

mined as jujst shown for both Methods A and B. 

3. 6.    Summary of Methods. 

The rewults of the three previous sections provide adequate 

means by which the transltr functions of Equ.itions (3. I) through 

(3. 6) can be determined.   For a w.^riea piping system, the results of 

Methods A and B are related to theae transfer functions as follows: 

and 

r pre53;3ure, 
l^ethod 

A 
Method 

B 

Vv^ - 
P(x..ja)) 

H 

G'iiP) V Prü») zcM |ZrÜ") 

Vx.,j.)    ■ 
P(VJW) G^) - V 
PnM Ön(ju>) V 

Vxi'H ri 
p^.j») 

-    G.(jy) 
= Kpi Qr(j"j   j 

\ZqrMi'M 
Pfy.J«) 
%W 

GJP) 
^m . ^ 

R 

(3.7n 

(3.72) 

(3. 73) 

(3. 74) 

qn 

<»"f.1-i."'«■    ■      ■  >T',"<1^"'' '     iL! ^wtf^^t»^ «'^■^^'^"^^^■^^^^^l^'yy^WP^qB^^l!^■p■y^ 
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For flow, 

Ypr(Vj<1>} 

.     |Q{v>») 

QCxj.W 
= 

HjO) 

P'r(» Är(j") 

nv 

An 
!«{"!.>■) 

W»l ' ji^y- "K0»)|-  \i 
and 

E
qn<xi->'   r 

For power. 

Q^i. H 1 

■ 
Hi««) 

N^O») 

and 

Fp^x.J^I  -    Epr
(xi'HIYpr(Xi'H      ! 

Fqr(Xi'jw)l   '  IVXiJW,liEqr(XiJW)l      ; 

#0} 
*** 

'*(>. 
'** C'*i 

.-       ^# 

(3.75) 

(3.76) 

(3.77) 

tJtrl.Jr 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

uuwwyu"'       i.iffj|g|igRi|un   ^ii.ju M.iiiiiii. .i    111.u!!■..„„ ,   „.,„,1 
■■"'■ **L.' -v •- 11.1iMm.mm.: 
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CRAPTBR IV 

RESUME 
*0T 

tit *Oo m U 
4.1. Background Material. 

The background material conlained in Chapter II .comprisegi 

much of the literature survey undertaken before the analysis began. 

Continuous evaluation of existing literature as concerned with the 

analysis is in progress, tut the results of Chapter II are considered 

reasonably valid and sufficient to begin the analysis. 

4.2. Analysis. 

The resuit?; of Chapter II indicate that the analysis of a piping 

system with statiiJlical inputs will best proceed from a "transfer 

function" type of invelitigation.   In Chapter III, expressions for deter- 

mining the transfer functions of series and parallel systems are ob- 

tained by miinipulaticn of the system descriMng esuaticnj.   The trans- 

fer functions given by Equations (3. 71) through (3. 82) are used in a 

relationship such ai3 Equation (2. 39) to relate pressure, flow rate, 

or power-at come pcinc in a series system to pressure, flow rate, 

or power at anciLv.er poir.t.   The method of analysis for parallel com- 

ponents gives transfer functions which are easily employed in the 

overall analysis. 

The anfilysis of a piping system will require electronic compu- 

tation.    For a complete investigation, these computations will be 

extensive, and Method A will probably be more appropriate due to its 

38 
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. 

relative sirapliuity tad pCM&le shorter computing time.    Method B 

provides relationships that will allow the maximum or minimum 

response of a system to be more clearly defined before numerical 

investigation.   It also put« the transfer functions in a form that 

separates the effect on the response of each component. 

NOT 

4. 3.   Future Effort. ^^OUClBiE; 

The analysis of a piping system by Method A using a digital 

computer is now in ity latter stages.   The same system will-aWo be 

completely analyzed by Method B. ' 

Preliminary investigationy into the possibility of predicting 

upper and lower bounds of system response from the results of 

Method B have given favorable results.   It is foreseen that an analysis 

such as this may make a complete analysis unnecessary.    The results 

of this type of investigation will be compared with a complete solution 

for validation. 
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