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ABSTRACT

Two dynamic methods are compared for integrating the
Reynolds equation as applied to determining the axial dynamics
of a spool bearing. It is shown that very sensitive phase
shifts in the numerical schemes can badly falsify the dynamics
and thus care is needea in interpreting results using classical
methods. Second order temporal accuracy can alleviate these
problems and one such scheme is presented with excellent phase
properties that is just as computationally efficient per time
step as any of the first order accurate schemes.
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Introduction

A large number of papers have appeared in the gas bearing literature

solving the time dependent compressible Reynolds equation by direct numerical

integration. A typical example of modern practice is given in [1]. In some

of our recent work a notable example of the sensitivity of time transient

dynamics to the accuracy of the integration scheme appeared. The most im-

portant result was the failure of the classical implicit scheme to adequately

track the system dynamics except when the time step was very small. It will

be shown that this defect is due to phase shifts in the numerical solution

and that these problems can be adequately cured by using an extrapolated

Crank-Nicolson scheme.

Such phase shifts can have catastrophic effects in the numerical simu-

lation; however, they are dependent on the particular integration scheme

used. The fact that a scheme is inherently O(AT) in itself is a priori

insufficient to categroize the scheme as having poor phase properties. For

example, in the classical work [2] the infinite length journal bearing was

solved using PH as the dependent variable (a natural choice). In some of

our own unpublished work, the calculations of [2] are corroborated; further,

however, both the schemes discussed here are used (solving for PH), and

phase shifts are highly mollified, although the extrapolated Crank-Nicolson

schemes proves itself the superior. In diverse applications such as [1],

careful a posteriori testing is necessary to validate the system behavior

extracted from the numerics.

i1
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The problem of interest was to solve for the axial dynamics of a

spool bearing with spiral groove thrust plates and herringbone groove

journal (See [3], Figures I and 2). With no radial eccentricity, the

geometry is axisymmetric, and thus spatially the problem is one dimensional.

Appendix 1 depicts the equations of interest according to the narrow groove

theory and Appendix 2 derives the equations of motion for the axial

dynamics.

Implicit Scheme and Results

In Appendix 3 the basic spatial discretization for the divergence

form of Reynolds equation is derived. The implicit scheme approximates

the highest spatial derivatives at the advanced time level. All other

terms are evaluated at the current time level. Thus (33) takes the form

n pr1 n n pn1+ n
aj +.5 j -bj +.5 - a -5A +bJ -. 5

.5 ( ASj n + AS g) P_ 1 - p' + .5 ( As C n+ A•S. 1  _) (1)

AT

C 2n - n-- n

+A-- R. C~ n [6H~ _/'OT + 6Hn /i~T] + C Pý - P0 rJ+ r h AT

where superscript n refers to current time level, and n+l the advanced time

level. As discussed in Appendix 3, the last term on the right only appears

at the chamfer and if there is no chamfer Ch = 0.

The equations of motion (28) given in Appendix 2 are integrated by a



standard Euler scheme accurate to O(AT), which is consistent with (1);

thus

-n+1 -n'.,, -n

(2)

-n+1 - n/nc 2
(e e )/AŽT =(-an + F //cV2 2 e

(1) and (2) can be computed independently in parallel to obtain the new

pressure Pn+l and the new eccentricity e-nl The new gap is then

n+1 r-1
H n+ = i +S (3)

and the gas bearing force at the advanced time is obtained by integrating
pn+l

There are many allowable variants of (1); e.g., evaluating b at n+l

instead of n, but these are still O(AT). The choice of (1) as the implicit

variant is dictated by the ellipticity of (20) which implies the tridiagonal

matrix to be inverted to solve (1) is diagonally dominant, -nd therefore

Gau-sian elimination without pivoting is stable, so (1) can be very efficiently

solved (see the discussion in Appendix A of [4]).

The spool bearing with the geometry given in Appendix 4 was tested

for stability using the implicit scheme (1) and (2). The gap was given an

initial perturbation of approximately 1.13 in./sec. Time was nondimensional-

ized by letting v = 400 Hertz, and the natural frequency of this particular
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bearing is about 6400 Hertz. In Figure 1 the nondimensional eccentricity

versus nondimensional time is shown for three different time steps. The

abscissa is shown in a new nondimensional time T'= T/(2v/288), the ordinate

is the negative of the nondimensional eccentricity, and N* corresponds

very closely to the number of time steps per cycle of natural frequency.

The clear picture that emerges from Figure 1 is the large variation

of bearing response as a function of time step, and even as Figure 2 shows

with N* = 144, the bearing appears to be neutrally stable. It can be

shown that this bearing should be stable, so that the case N* = 144 still

depicts the dynamics incorrectly. Such a posteriori examination of the

data shows the time step must be much smaller yet to obtain correct results.

A slightly deeper investigation explains the apparent instability

shown in Figure 1. Let us consider the bearing response to a forced-gap

oscillation. The equations of motion are uncoupled, and the bearing gap

is forced by

H = 1 + jcos(T) (4)

where c generally is very small (in this case • = .01). The bearing force

is decomposed into a Fourier series over one cycle

F(T) = a 1+ Y Z cos (iT) + b . sin (iT) (5)

Eventually the force F will entrain itself into a periodic function, so

the coefficients {ai} and {bi} will not change from cycle to cycle.

In fact, with 7 small, only a1 and bI are nonzero. By the usual conventions,

dimensionally the in-phase and out-of-phase components of the bearing stiff-
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ness are U = -al/TCo and V = bi/"e'co respectively. Table 1 shows the

results for v= 400 Hertz, for N* taking on the same values as in Figure 1.

The two columns under O(AT) show the in-phase and out-of-phase components

for this implicit scheme. U and V are in units of lb/in.

TABLE 1. U and V for v= 400

O(AT) O(AT 2 )

N* U V UV

18 389,767 -134,424 440,680 -42,782

36 414,829 - 89,517 437,861 -41,074

72 426,269 - 65,556 ......

X 437,709 - 41,595 436,921 -40,504

LINEAR 438,521 - 39,810 438,521 -39,810

The row marked LINEAR shows the results obtained from a small pertur-

bation analysis. The major source of error is the large shifts in V as

a function of N*. It is interesting to note that both U and V are very

linear functions of AT (equivalently I/N*). The row marked X is the result

of extrapolating the N* = 36 and N* = 72 solutions to infinity to yield a

solution of accuracy O(AT 2). It is more descriptive to recast F in the

form

F = Kcos(T-O) (-Tc )

where K = Iu2 + V2)1/2 and 0 = arctan (-V/U). These results are shown in

Table 2 with @ actually given in degrees and not radians.
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TABLE 2. K and € for v = 400 Hertz

O(AT) O(AT 2 )

N* K K

18 412,296 19.03 442,752 5.54

36 424,378 12.18 439,783 5.36

72 431,280 8.74 -- --

X 439,681 5.43 438,794 5.30

LINEAR 440,324 5.18 440,324 5.19

The major source of error can now be seen to be in the phase lag

€, and just a few degrees shift cause large errors in V. The implicit

scheme induces excessive phase lag in the numerical solution. In order

to see why the excessively poor bearing stability properties of Figure 1

arise consider Table 3 which is similar to Table 1, but v = 7000 Hertz.

TABLE 3. U and V for v= 7000 Hertz

O(AT) O(AT 2 )

N* U V U V

18 468,700 -56,042 476,473 30,766

36 472,580 -12,076 474,425 31,519

72 473,508 9,699 -- --

X 474,436 31,474 473,742 31,770

LINEAR 477,575 34,314 477,575 34,314
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The same comments apply here as apply to Table 1. For N* 18 and

36 case V shows a lagging phase rather than the leading phase of the

actual solution. Again it is important to recognize that V can be very

accurately described by V = V + VI/N*, and it is the excessive size of

Vl, a characteristic of this implicit scheme, that degrades the results.
From Table I and Table 3 we are able to infer that this scheme causes a

large shift in the negative direction of V.

For one degreq of freedom systems the solution of the characteristic

polynomial is given by

2MV = U(v)

(7)
V(v)= 0.

If U and V are obtained numerically as a function of N*, then U = U(9,N*)

and V = V(v, N*). In the above example, V(v,N*) is approximately in-

variant with N* and always U(v, N*) >0. V(v,N*) shows large shifts in

the negative direction as N* goes to 0. The zero crossing occurs at

larger values of v(V hasmonotone increasing behavior as a function of v

for this bearing away from v= 0). Since U is approximately invariant
with N*, by (7) m, the critical mass,must get small with N*. Thus, the
bearing has a small apparent critical mass, which explains the instability

apparent in Figure 1 (which worsens with smaller N*).

Second Order Scheme and Comparisons

It will now be shown how an extrapolated Crank-Nicolson scheme cures

the preceding defects with no essential penalty in computing time. The

efficiency of this scheme was shown in [4]. Define
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pn-+.5 =.pn . sn-1 8

The extrapolated Crank-Nicolson scheme is

n+.5 Pn.5 (pnn-5I n-

aj ., [.s('' + n)] n _. [.5(P5+ pl)] + bj..5
Ja.5T .5 ASJ-I J" -P5 C (9)

.pn+1-p n

c 2v n+.5 s + 5  n+1 P

oAr h M rJ+ J- + b AT

Again the last term on the right appears only at the chamfer. In any

coefficient evaluated at n + .5, P is obtained from (8). Hn+5 for these
r

coefficients is determined as shown below. Note that (8) cannot be used

at the initial value of time or whenever there is a discontinuity in the

equations of motion as a function of time. Whenever this occurs (1) is

used with AT changed to .5AT. Since (9) is a linear system for pn+l,

it is no more time consuming to solve than (1).
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The equations of motion cannot be integrated in the same fashion

as in (2). A modified Euler integration is used to maintain an O(AT2

accuracy. This is a two step integration with the first step given by

(2) with AT replaced by .5AT.

-n+.5 -n -n(e el)/.5AT = C2

(10)

n -. 5 -)/.5T 'n 2

( -2 C2 e+ Fn/m)/c

To integrate to the full step it is necessary to obtain the gas bearing

force F at T + .5AT. This is accomplished by integrating pn+.5 given
by (8). The second step in the integration is

(_+1 -n -n+.5"( C 61)/AT = e 2

(11)

-- ;n n - + D.5  o 2
(e2 - 2 YAT e - M/

which is centered about n + .5. Now analogous to (3),

Hz++1

The same calculation shown in Figure 1 for N*=18 is depicted in

Figure 3. If N* is repeatedly doubled there is negligible shift in the

results. Further contrast in the quality can be seen in the tables.

Under the heading O(AT 2) are listed the results for this scheme. The row

marked X is a quadratic extrapolation yielding an O(AT3) error. The
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N* = 18 solution is better than any of the implicit cases shown, and

from Table 2 it can be seen there is negligible phase shift. Table 3

indicates both U and V are accurate at the higher frequencies, and

thus from Tables l and 3 there is no shift in V as illustrated for the

implicit scheme. This explains the very good results depcited in

Figure 3.

It is interesting to note in the tables the slight systematic

differences between the extrapolated solutions and the small perturbation

analysis. The perturbation results were obtained from another program

in which the difference approximations were derived in a slightly

different fashion. Consistent use of the same difference approximations

would yield identical results.

Discussion and Conclusions

The proven convenience of dynamic simulation programsto validate

bearfng designs makes these programs valuable tools. We have illustrated

one of the difficulties that require careful consideration in interpreting

stability results, for example, in complicated dynamic simulations. Very

fortunately simple a posteriori comparisons can elucidate whether numerical

difficulties exist (although not necessarily cure them).

It was shown that the classical implicit scheme with an O(AT) truncation

error, because of the size of that truncation error, will manifest slight

phase shifts in the numericai solution which will appear as errors

particularly in the out-of-phase component of the bearing force. This re-

sults in falsification of the stability behavior of the bearing. An extra-

polated Crank-Nicolson scheme with O(AT 2) truncation error cures these

difficulties and has excellent phase properties.
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What was not considered was the determination of optimal O(AT)

schemes which minimize particularly phase errors. Thus, the possibility

is not ruled out that variants of an implicit scheme will have much
better phase properties, however, it is unlikely that such schemes can
match the excellent accuracy of the linear O(AT 2) scheme demonstrated

here.

Changing bearing parameters is not expected to make significant

changes in the results. When A was reduced by a factor of five by changing

Pa' the same very poor out-of-phase characteristics depicted in Table 1

resulted.

In general, if testing of a classical scheme indicates numerical

difficulties (albeit numerical stability or truncation error effects),

then a simple alteration to an extrapolated Crank-Nicolson scheme can

cure both problems without essential penalty in computation time.
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APPENDIX 1. Equations and Boundary Conditions

The purpose of this appendix is to display the particular one dimensional

parabolic equation being solved along with the appropriate boundary conditions.

We are interested in the pressure profile in a spool bearing with no radial

eccentricity where the thrust plates are spiral grooved and the journal bearing

herringbone grooved.

It has been shown [ 5] that according to the narrow groove theory the one

dimensional Reynolds equation in generalized coordinates for all spiral groove

geometries in nondimensional form is

"- -A -A-(RK PH) 0 (13)
ýYS_ 2 a

where the mass flux is

3 bP 2"TS PH r KR-+ cos P (14)

with

r ° 2

Pa CO
A8 A 2'°I ct (1 - a) sin

K r + I -

KI - Ea(l - f) sin 2 (F -T ) +3 1) / 2( -3) r3 + o]

K 4 =r [3 - /]I(1 - :)F3 + 0e] (15)

T vt

S s/r

P =P/Pa

H h /cr r o
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The function R(S) is the normalized bearing radius at S; if r is the

radius of the journal bearing, then R(S) -r /r for all S located along the

journal.

All other parameters are conventional spiral groove quantities and are

defined in the nomenclature and in [ 5 ].

Let us now consider the boundary conditions. At the ambient edges of the

thrust plates P - 1. A chamfer region may exist between the thrust plates and

the journal bearing. Two possible boundary i-onditions are allowed at the chamfer -

it may be vented to some arbitrary pressure P0 which need not be P = 1, or if

unvented then it can be shown [ 5 , p. 28] that

T S1 in -Y S1 out- 6p a__ (P,ý).- (16)

2 3 pt

where VcM chamfer volume. If the chamfer cross section is shaped as an

isosceles triangle with height ch and base 2Ch, then the approximate chamfer volume

is 2TTrJc , however a better approximation is

Vc= 2 nrJch(ch + h ) (17)

where ht= thrust plate gap &t the chamfer. (17) includes the chamfer volume

contribution from the thrust plate gap which is only important when axial time

dependent effects are being considered. Using (17), (16) may now be rewritten

TS in -iSJout oA 2" Rjh [ •Hr +(
+ W1 W P

where Eh = ch/co and R M r /ro. If Ch = 0, then (18) is still valid as the interface

boundary condition.

With a little algebra it can be shown that

(RK PHr) R K ! + P r
BT r r ( Po r bT b(19)

so the form of (13) of interest is

aT s 2v (K • Hr)
- A - A 2vHr §' + P L = 0. (20)as W I+ W 2 WaT BT I
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APPENDIX 2. Equations of Motion

In this appendix we obtain the equations of motion for the axial

dynamics of a spool bearing. Consider an inertial frame located at the

center of the journal's initialposition. Let xt be the displacement of the

stator and let it have mass M. Let x be the displacement of the rotor and
W

presume it has mass m. Let F be the gas film force and f the external force,

then

Md2xt/dt2 , f - F (21)

md2x /dt2 - F (22)

combining (21) and (22) gives

d2(xt x )/dt2 f f/M - F(m + M)/mM (23)

Under the assumption M >>», m/(m + M) m/M, s0 (23) becomes

md 2(xt - x )/dt2 , mf/M - F (24)

using the convention that c0 is the nominal thrust plate clearance, it is

convenient to redefine

xt - x W c - e (25)

w 0

where e is defined as the displacement of the rotor relative to the stator

(which is the dimensional axial eccentricity) with the convention that e is

positive in the direction of increasing S which generally would be the direction

of the positive spin axis. By definition the positive direction of S along the

journal points to the positive thrust plate, so h = c 0e, where h is ther±+ or+

± thrust plate gap.

Let fIM - ae, the external acceleration, then (24) and (25) give

-md2e/dt - mae - F (26)
e

Let e e/cC0 ; in nondimensicnal form (26) is

2- 2 _2
d e/dt2 (-a + F/m)/c v , (27)eo

rnd it is further convenient to put (27) in system form

de I/dT - 2

2 (28)
d&2 /dT - (-ae + F/m)/c V



16.

where a. e/c and e 2 (de/dt)/cv.1" o 2 V

Different methods are used to integrate (28) depending on the truncation

error of the scheme used to integrate the Reynolds equation.
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APPENDIX 3. Spatial Difference Approximations

The spatial difference approximations to (20) are obtained by conventional

divergence (or integral) methods. An arbitrary mesh is used with discontinuities

in any bearing parameter only being allowed to occur at a mesh point. Mesh points

in the direction of increasing S are enumerated by the index J. Define

&6j = Sj + 1 -Sij, and define the fundamental interval 1(J) to be

i(J) - .5CSj_, Sj + .5 ASj] (29)

which has length .5(S J_1 + %Sj). Integrate (2Q) over L(3) to obtain

HAR (30)

i(j)

Since YS, J+ = TS,J- except at the chamfer, by (18) (30) becomes

S,J + .5 "•S,J -. 5 W- A + +W 2  W + b )T )dS

c (31)

-A- Rh (p Xr + a P)r o w 1 + w 2  h BT h T

where the second term on the right appears only at thechamfer.

Define

a . [PH3rK R]ri1

2A6K4R coso P] I

g =R (32)

c = A -l'- [RP bHr/bT]
W 1 +--- 2  r

T ba P - (pp i + b - uP e to (s

The basic approximation to be used to (31) is
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aJ + .5jY -bJ + .5 -a. . 5 A4J .- b . .5

n+l n

= .5 (asj gj+ + Sj_l gj_) J- &T + J-) (33)

_ n+1 p jd

R4 Ch R [bH /BT + 6H _/6T3 +C -
r w1 2h h (pi r,i+ r,_- h LT "

where superscript n refers to the n-th time step. Subscript J refers to the

J-th spatial mesh point. All quantities defined at the spatial half step

that cannot be analytically directly determined are obtained by linear

interpolation, e.g. PJ+.5 =--5(Pj + Pj+I). Quantities such as gj+ and gj_

are respectively the right and left limits at the J-th mesh point of g. The

replacement of r1i /bT by 8HrJ+/6T + 6HrJ- /T is valid since one term or the

other is 0 at the chamfer.

Sj u • j.Odom
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APPENDIX 4. Geometry of Spool Bearing

The pertinent parameters for the spool bearing examples given
are summarized in Table 4.

TABLE 4. SPOOL BEARING PARAMETERS

Parameter Thrust Journal

.5 .5

8 (degrees) 166 30

6 (in.) 136(10)"6 136(10)-6

hr (in.) 90(10)- 6  90(lO)-6

7 .65 .40

r0 (in.) .52 -

ri (in.) .23 -

L (in.) - 1.8

r. (in.) - .23
w2 (RPM) 0 24,000
w2 (RPM) 24,000 0

Other quantities are pa = 29.4 lb./in. 2 , Uz 3.02 (10 9 lb. sec/in.2

and m = 49 gm.

I

i ii 1
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NOMENCLATURE

Upper Case English

Ch = Ch/C0, nondimensional chamfer height

F = gas film force in axial direction (lb.)

H nondimensaional bearing gap for plain journal bearing

Hr = h r/C , nondimensional bearing gap

H = H at positive or negative thrust plater• r

J subscript indicating J-th spatial mesh point

J±= subscript indicating right or left limit at J-th
mesh point

K = (U2 + V2 ) 2, total bearing stiffness (lb./in.)

K1  = Whipple coefficient [See (15)]

K4

K

L = length of journal bearing (in.)

M = mass of stator (lb. sec. 2/in.)

P = P/Pa' nondimensional pressure

R = r/ro, nondimensional radial distance from axis

of symmetry.
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S = s/r 0 , nondimensional meridianal coordinate

T vt, nondimensional time

T = T/(2w/288), abscissa of figures

U= in-phase bearing stiffness

V= out-of-phase bearing stiffness

Vo0  constant term of V = V + V1/N*

V1  coefficient of linear term of V = V0 + V /N*

Y = ratio of grooved region to total bearing extent
in the meridianal direction

Lower Case English

a coefficient for difference approximation [See (32)]

ae f/M, external acceleration (in./sec.2

ai Fourier series coefficient [See (5)]

a - coefficient of cos(T) term [See (5)]

b = coefficient for difference approximation (See (32)]

b= Fourier series coefficient [See (5)]

b= coefficient of sin(T) term [See (5)]
!

I
A
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c - coefficient for difference approximation [See (32)]

co nominal clearance used to nondimensionalize quantities
(in.)

ch chamfer height (in.)

f external force on bearing (lb.)

g - coefficient for difference approximation [See (32)]

hr bearing clearance (in.)

h r h at positive or negative thrust plater± r

i(J) mesh interval from midpoint to midpoint [See (29)]

m rotor mass (lb. sec. 2/in.)

n superscript designating time [e.g., Pn = P(nAT)]

p pressure (lb./in.2

Pa ambient pressure (lb./in. )

r radial distance from axis of symmetry (in.).

r outer radius of thrust plate (in.)

ri inner radius of thrust plate (in.)

r. journal radius (in.)

s - meridianal coordinate (in.)

t = time (sec.)
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xt displacement of stator (in.)

x= displacement of rotor (in.)

U•pper Case Greek

r= (hr + 6)/hr, groove depth ratio

= forward difference with respect to S, e.g.,
AjP = (P Jl - P )/ASj

asJ = mesh spacing at J-th mesh point, AS, = SJ+1 Sj

AT = nondimensional time step

A = compressibility number [See (15)]

A8  = Whipple coefficient [See (15)]

vS nondimensional mass flux [See (14)]

1 yl. nondimensional mass flux flowing into chamfer

'Slout = nondimensional mass flux flowing out of chamfer

Lower Class Greek

= ratio of groove width to sum of groove and ridge
width

a = spiral groove angle

6 = groove depth (in.)
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=- dimensional axial eccentricity (in.) [See (25)]

S- /c0 , nondimensional eccentricity

-I C/c0 , nondimensional eccentricity (Same as e)

£2 (de/dt)/c v, nondimensional eccentricity velocity

2
viscosity (lb.sec./in.

v = frequency (radians/sec.)

S= arctan (-V/U), phase angle (radians)

= smooth surface rotational speed (radians/sec.)

w2 grooved surface rotational speed (radians/sec.)

Other

subscript used to denote positive and negative thrust
plate or when used as J± indicates right or left limit
at J-th mesh point
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