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Calculation of the Minimum Detectable Signal for
Practical Spectrum Analyzers

This report describes a procedure for calculating the performance of
spectrum analysis equipment, including the losses due to non-ideal
aspects of their practical implementations, The material should be
of interest to those engaged in random signal analysis or signal
processing system design and evaluation. The work leading to this
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INTRODUCTION

Spectrum analysis is a commonly used technique for evaluating
the properties of random time functions. Systems for performing
spectral analysis can be divided into two broad categories. One
class divides the spectrum into a number of relatively broad bands
(such as 1/3 octave filtering) and measures the power in each band to
provide an overall description of the spectral power distribution,
The second class uses a large number of analysis bands, where the
bandwidth of each is a small percentage of its center frequency.
These systems are generally referred to as narrow-band spectrum
analyzers and are more often used to locate discrete narrow band
components of the input which would normally be buried in the overall
broadband specurum,

If the discrete frequency component is considered to be a
signal of power S added to a broadband noise background whose power
density is N power units per Hertz, it is interesting to determine
the minimum signal power which can be distinguished from the back-
ground noise, The ratio S/N at which the signal can be distinguished
with the desired reliability is referred to as the Minimum Detectable
Signal or MDS of the spectrum analyzer. Calculations of this MDS
for various systems have been made in a number of ways, using a
large variety of source material, Often the basic source of tech-
niques used in these calculations is lost in a long chain of refer-
ences, with the result that some methods are occasionally misapplied
in situations for which they were not originally intended.

The intent of this report is to provide a general approach
for analyzing spectrum analyzers of the narrow-band type, based on
fundamental or generally accepted principles, and to make all material
necessary for MDS prediction available within a single document, The
approach is based on determining the MDS for an idealized system,
and then adjusting this performance to account for any portions of
the actual system which deviate from the idealized behavior. Thus
the individual effects of each loss mechanism in the spectrum analyzer
may be c¢learly and independently evaluated, An effort has been made
to provide just enough mathematical background to justify each result
without overburdening the reader with complicated derivations,
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IDEAL MULTI-CHANNEL FILTER SYSTEM

The basic model used for a narrow-band spectrum analyzer is
shown in Fig. l(a) and consists of a bank of narrow-band filter
channels in parallel, each tuned to a different frequency in the
band to be analyzed. Each channel consists of a narrow band filter
of bandwidth B followed by a square~law detector and an averager of
integration time T. The filter in the ideal system is assumed to
have flat response over tre passband B and zero response outside
this band, The averager is assumed to compute the running average
of the last T seconds of its input, or the function

1
ao(t) = (1/T) jg ai(t-x)dx .

The output of this averager is compared on a continuous basis to a
threshold K to determine whether a narrow band signal is present

in addition to the broadband noise in the band. It is assumed that
some means is available to determine the appropriate value of K.

This system (with the exception that the square law detector is only
an approximation to a Bessel function) can be shown to be the optimum
system for detection of a sine wave in noise,

Practical spectrum analyzers are seldom built in exactly this
way, due to the large number of parts involved, One of the common
techniques used is shown in Fig. 1(b) and is generally referred to
as a time-compression or Deltic approach. The input signal is
recorded in a circulating memory and played back repeatedly at much
higher speed so that a single analyzer can perform a number of compu-
tations on the same piece of input data. The analyzer consists of
an oscillator whose frequency can be stepped over the desired range,

a mixer, and a single narrow band filter and detector. On successive
repetitions of the input data the oscillator frequency is stepped so
that a different part of the input signal band is translated into

the filter passband, This is equivalent to feeding the same segment

of signal sequentially through each of the filter channels of Fig. l(a).
If post-detection integration is desired, an averager memory is

updated each time the spectrum analyzer scans through a given frequency
cell, and a separate average is maintained for each cell, As each
memory word is updated it is compared with the threshold K (which may
be different for each cell) to form the detection decision,
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Another common technique as shown in Figure 1l(c) uses the fast
fourier transform (FFT) algorithm to form a complex spactrum of a
block of input data that has been accumulated in an input buffer,
This spectrum is then converted to magnitude form and used to update
all cells of an averager memory. The detection decision is also made
each time the averager is updated, Both of these systems are, to a
first approximation, equivalent to the multi-channel system of
Fig. 1(a) but simply substitute high-speed serial processing for much
of the complex parallel equipment, However, these systems introduce
a number of approximate techniques such as sampling and quantizing
at several points, and they use more practical functions for imple-
menting both the bandpass filter and the averaging integrator than
those assumed in the ideal system of Fig, 1(a)., 1In this report the
performance of the ideal system is analyzed first, then corrections
are made to account for the individual compromises made in practical
systems such as the Deltic and FFT analyzers,
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IDEAL SYSTEM PERFORMANCE

The performance of this ideal system can be determined by
tracing a signal and the broadband noise through each step of the
processing. The inputs to the system may be considered to consist of
a sinusoidal signal of power S watts and broadband noise whose power
density is N watts/Hertz (using a single-sided spectrum consisting
of positive real fregquencies only). Thus the total noise power in a
band up to a cutoff frequency F_ is NF_ watts if the spectrum is flat
over the band., This input spectrum is®shown in Fig. 2(a).

When this input signal and noise are passed through the narrow
band filter, only those components in the passband remain and yield
the spectrum shown in Fig. 2(b). This consists of the full signal
power S and a noise power of NB watts.

The square law detector has an output whose average value is,
by definition, the mean square value (or power) of the signal and
noise inputs or S + NB, Superimposed on this average value are
fluctuations due to the random nature of the nroise inputs, The
power density spectrum of these fluctuations is discussed in Appen-
dix A of reference 1, and components are shown to occur in the low
frequency region up to twice the filter bandwidth B and in a region
of width about 4B near twice the filter center frequency, as shown
in Pig. 2(c). By the definition of a narrow-band spectrum analyzer,
the center frequency is high compared to the bandwidth, so these
components are widely separated,

Two distinct cases must be considered for the integrator,
depending on its integration time T, If T is large compared to 1/F
(the inverse of the center frequency), but small compared to 1/B
(the inverse of the filter bandwidth), the only function of the filter
is to remove the double-frequency fluctuations at the detectcr output
(the dotted portion of Fig. 2(c¢)) without changing the low-frequency
comuponent of the fluctuations, In these cases there is sajid to be
no post~detection averaging., If T is large compared to 1/B then the
system is said to include post-detection averaging, and somewhat
different techniques are required for computing the performance.
These two cases are described separately below,

Case Without Post-~Detection Integration

When no post-integration averaging is used (but the double-
frequency components are removed) the statistics of the output have
been shown to obey a modified chi-square distribution with two
degrees of freedom and a variance of

5
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02 = N282 + 2SNB (no post-detection integration).

Selection of the threshold K in the final detector depends on the
desired false alarm probability a., Since by definition a false alarm
occurs only when no signal is present, the statistics used to select
K are those for the case where S equals zero. The distribution is
then chi-square and depends only on the single parameter NB., A
dimensionlesg parameter d can now be definad such that the dcsired
false alarm probability a is obtained when the threshold K is set as

K = (d+1)NB,.

The two-degree-of-freedom chi-square distribution has a par-
ticularly simple form and allows d to be expresspd in terms of a as

d = =] « lna .

It is now interesting to ask what value of signal power S
would be required so that the average input to the threshold detector
would be just egual to the threshold K, Since the average is simply
S+NB, we have

S+NB = K = (d+1)NB
or

(S/N) = dB ,

Thus we have an expression for the input signal to noise ratio ;
(expressed as signal power divided by noise power per Hertz) required
to, on the average, just equal the required detection thresholad.

This is not necessarily the point of 508 detection probability since
the mean of the modified chi-square distribution is not exactly equal
to its median., However, it is sufficiently close for all values of a
smaller than about ,1 to allow us to interpret this as the approximate
signal to noise ratio giving 50% detection probability or the Minimum
Detectable Signal (MDS). It is generally convenient to work in.
decibel notation for MDS calculations, so the previous equation can
be rewritten by taking 10 times the log of each side to give

f

= B +
(S/N)db 10 l?g 10 log 4 ()

(no post-detection integration)
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This simple expression for the MDS is the result of recognizing that
the threshold depends on the no-signal case alone and of selecting
a detection probability Pd of approximately 50%

Case With Post-Detection Integration

When post-detection integration is used, the integrator can
be treated as a low-pass filter operating on the low-frequency
fluctuations to reduce their variance. If the integration time T
appreciably exceeds the inverse bandwidth (1/B) of the narrow-band
filter, the calculations involved in finding the output variance are
greatly simplified and the fluctuations at the integrator output
approach a gaussian amplitude distribution. 1In reference l it is
shown that the integration reduces the variance by a factor BT for
the ideal narrow-band filter function assumed, so that the output
variance becomes

0% = n28/7T + 25N/T .

We again wish to select a threshold K for the final detector to give
the desired false alarm probability a in the no-signal case. Again
a parameter d may be defined such that the desired a is obtained when

K = NB + do = NB + d N vB/T = NB(1+d/vYBT)

where 4 is the number of standard deviations between the mean cutput
of the detector and the decision threshold. This is consistent

with the definition of d used in the case without post-detection
integration. The relation between a and d may be obtained from
tables of the chi-square distribution with 2BT degrees of freedonm,
since the averager is essentially summing BT samples with two
degrees of freedom each,

As BT increases the chi-square distribution rapidly approaches
the gaussian which has its mean and median at the same point. Thus

the signal required for 50% P, may be found by setting the average
output S+NB equal to K to give

S+NB = K = NB + AN/B/T
or
(S/N) = a/B/T
Writing this in decibel form gives the expression
(S/N)db = 5 log B ~- 5109 T+ 10 log 4 (2)
(with post-detection integration)

7
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Comparing ecuations (1) and (2), we see that both have a portion
which is independent of d (and thus independent of a) and one depend-
ing only on 4 and "thus on the false alarm probability, If we define
the first portion as the basic processcxr sensitivity or basic MDS of
the system, we have

Basic MDS = 10 log B (without post-detection integration)
or

Basic MDS = 5 log B - 5 log T (with post-detection integration)

Figure 3 is provided as a nomograph to simplify computing this basic
MDS figure, This is done for systems with post-detection integration
by placing a straight edge between the time T along the first scale
to the left and the bandwidth B along the third scale. The MDS

in decibels relative to the noise in a one Hertz band may then be
read at the point the straight edge crosses the second scale. The
nomograph also allows reading the time-bandwidth product BT from

the scale at the far right. This quantity is of use in later steps.
Example A on the nomograph represents a system with a 0,1 Hertz
filter bandwidth and an integration time of 180 seconds (3 minutes),.
The indicated MDS for this system is -16.3 db, and the BT product is
about 18,

The nomograph may also be used for systems without post-detection
integration by placing one end of the straight edge at the point
markad 1 on the BT scale at the right and extending it through the
proper bandwidth on the B scale. The intersection with the MDS
scale gives the basic MDS for this system, Example B on the nomo-
graph shows this process for a system with B = 0,1 Hz and no post-
detection integration, The MDS in this case is = 10 db.

If no further adjustment is made to the system MDS figure, this
basic MDS calculation provides a 508 detection probability with a
false alarm probability of about 168, This is generally too high
for practical use, so the second portion involving d must be deter-
mined. Figure 4 provides a means of finding 4@ for a given false
alarm probability if the approximate BT product for the system is
known. The left hand scale of Fig., 4 gives the factor 4, while the
right hand scale is marked in terms of D = 10 log @4 and thus gives
the MDS correction directly. The solid curves in Fig. 4 pe®ovide the
value of 4d or D as a function of false alarm probability for four
values of BT product and should be used for determining threshold
values, The BT = 1 curve is for systems without post-detection
averaging and is simply a plot of -1 =-lna. The BT = 10 and BT = 50
curves represent moderate amounts of post~detection averaging and are
obtained from the chi-square distribution with 20 and 100 degrees of
freedom respectively. The BT = ®» curve is for systems with very
large BT products and is based on the gaussian distribution. Inter=-
polation between these curves should be used for other BT products.
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While the approximation that the mean and the median of the out-
put distribution are coincident gives a good value for the MDS with
508 probability of detection for systems with post-detection averagirg,
direct use of the BT = 1 curve for MDS in systems without post-
detection averaging gives detection probabilities generally in the
408 to 45% range due to the skewed distribution. Thus for this case
the dotted curve is provided to give the correct MDS value for 50%
detection probability.

As an example of the use of this figure, Ssuppose the system
discussed in example A for Fig. 3 is to have an allowed false alarm
probabiiity of 104, Reading from Fig. 4 for a BT product of 18
gives a value o about 4,7 for 4 or about 6,7 db for D. The threshold
K should thus be set 4.7 standard deviations above the mean output
of the averager or

K = NB (1L + 4,7/v/18) = 2,11 NB .,

The corrected MDS for the system is

Basic MDS -16,3 db

AHDS(FAP) __6.7 dab

Corrected MDS - 9,6 db (with post-detection integration)
where AMDS(FAP) represents the change in MDS resulting from the

selected false alarm probability.

For the system without post-detection integration used as
example B in Fig., 3, a 10-4 false alarm probability requires a
d of about 8,1 as read from the 30lid B = 1 curve., The threshold
is thus set at

K= (8,1 + 1) NB = 9,1 NB .
The dotted curve should be used in this case to obtain an accurate

MDS correction for 508 P_, and it gives a value of 9.4 adb for D.
Thus the corrected MDS ig

Basic MDS -10.0 adb
AHDS(FAP) 9.4 db
Corrected MDS - 0.6 db (without post-detection integraticn)
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MDS at 50% detection probability for an idealijized system with per-
fectly rectangular filter bandpass characteristica, an integrator
with a rectangular impulse response of duration T, and no sampling

Or quantizing anywhere in the system, All of these are physically
impractical to implement. The remaining sections deal with individual
variations from this ideal System and represent their effect as a
variation in the predicted MDS. Thus a final MDsS prediction for a
Practical system can be obtained by Calculating the idealized MDS

as above and adding all corrections for system implementation,

e et

10
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MODIFIED PROBABILITY OF DETECTION

The simple expression derived for the basic MDS of the spectrum
analyzer in the previous section is based on a 50% probability of
detection, primarily in order to give a simple form. If some other
probability of detection is required, a correction is necessary in
the computed MDS level, For systems without post-integration the
basic form of the amplitude probability function at the detector
output changes when signal is applied, and numerical integration is
necessary to evaluate the probability of detection, This has been
done by numerous writers, and Fig. 5 is adapted from reference 2 to
allow direct determination of D for arbitrary P_. The dashed line
shows an application of this nomograph, extending through the 50% P
and 109 false alarm probability points to intersect the D curve at
+9.4 db. This confirms the value of D obtained in the previous example
from Fig. 4, The dotted curve shows the effect of increasing the
required P, to 95% and maintaining the same false alarm probability.
This intersects the D curve at 12,3 db, so the required MDS for the
.1 Hz resolution system used in the previous example is now raised to

Basic MDS -10.0 db
AHDS(FAP & Pd) +12.3 db
Corrected MDS + 2,3 db (without post-detection integration)

Note that the MDS adjustment for false alarm probability and detection
probability are made together in this case. Note also that the
threshold level K depends only on the false alarm probability and is
not changed by the new Pd.

The nomograph of Fig, 5 does not apply for systems using post-
detection integration, and other techniques must be used to account
for detection probabilities different from 508, As has been shown,
the threshold detector on the output of the integrator has a decision
threshold of K = NB + d NYB/T where d is determined by the false alarm
probability. In order to obtain a detection probability different
from 50%, the expected output S+NB of the integrator must exceed K by
an amount d'c_ , where d' is a factor determined by the desired P_ and
0 is the output standard deviation in the presence of the necesgar]
igput signal. The factor d' is positive if P, exceeds 50% and nega=-
tive if a P below 50% is permitted., The standard deviation of the
averager ougput is given by VYN2B/T + 2SN/T when the signal S is
present, so these requirements combine to give

S#NB = K + d'o_ = NB + N/B/T + 4d° /NZB/T + 2SN/T
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This may be simplified and written in the form

S/N = @ VB/T (1 + (d*'/d) Y1 + (2/B) (S/N))

The first portion of this expression is just the MDS for 50% detection
probability, so the term in square brackets may be interpreted as a
correction factor showing the amount by which the input S/N must be
raised to provide the desired P_,. Unfortunately, this term itself
depends on S/N, 80 it is not digectly useiul as a correction term.

The entire equation above can, however, be rearranged and
squared to form a quadratic equation in S/N. Solving this equation
gives a form

S/N = d/B/T 1 + er + p /1 + 2r + pzr2 )

where

p = d'/d and r = 4//BT .

Again the first porxrtion of the expression for S/N is identical to
that for 508 P_., and the portion in the square brackets is a correc-
tion factor accounting for the modified P,, Since this is a purely
multiplicative factor, the correction may be expressed in decibel
form as

2 2.2
AHDS(pd) 10 log (1 + px + p /& + 2r + p“r°)

The parameter p is simply the ratio of the required distances
({measured in units of standard deviation) between the mean detector
output and the threshold in the signal and no-signal cases. The
correction is clearly zero for p = 0 (which is the 50% detection
probability case) and is positive for positive p and negative for
negative p,

The parameter r also has a physical significance. The factor
d may be considered a "signal to noise" ratio at the averager output
to give the desired false alarm probability, and /BT is the factor by
which the detector output noise is reduced by the averager., Thus r
has significance as the detector signal to noise output ratio
required to give the desired performance at the averager output,
This may be large or small compared to unity, depending on the
spectrum analyzer parameters,

Figure 6 shows the MDS change as a function of p and r over the
usual range of these parameters, When r approaches zero (meaning
very large time bandwidth products in the post-detection averager)
the MDS change reduces to 10 log (l+p). However, as seen from
Fig. 6, this MDS change increases rather rapidly as the value of r
is increased,

15
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Determination of the MDS change for a particular detection
probability may be performed by the following steps. First it is
necessary to find the value of d4d' associated with the selected P _,
and this may be done with the aid of rig. 4. For detection proba-
bilities below 10% simply select the point on the "false alarm
probability" scale corresponding tc P, and read the negative of &'
from the "threshold detector ratio®" scale., The curve corresponding
to the approximate time-bandwidth product of the averager should be
used. For examnle, for a 10% probability of Geztrection the value of
d' is about =-1,28. For detection probabilities above 90%, Fig. 4 may
be used by substituting 1=P for the false alarm probability scale
and reading 4' directly from the threshold scale, As an example for
a detection probability of 95% and a time bandwidth product of about
18 (based on the example in the previous section), 4' is about 1.75,
This method of determining d' assumes symmetry of the averager output
distribution function, which is strictly true only in the gaussian
(large BT) case., However, it is a fairly good approximation for
systems with finite BT products as well, Figuie 4 does not cover
values of P_  between 10% and 90%, but a reasonably accurate value can
be determined from the linear approximation

‘'~ =-0. A < 5 .
d 3.2 (Pd 0.5) 1 Pd < ,9

Having obtained the value for d' it is now possible to determine
the parameters p and r for use with Fig. 6. For the system used in
Example A in the previous section the detector threshold ratio 4 was
4,7 and the BT product was 18, Thus p = d'/d is -1.28/4.7 or -.272
L0xr tne 108 detection probability case or 1.75/4,7 = ,372 for a 95%
P.. For both cases r = d//EE is 4.7//T§ = 1,1, Looking at the
intersections of these values of p and r in Fig. 6 we obtain an MDS
correction of about =2,3 db for the 10% P, case and about +2.,6 db for
958 probability of detection. Thus the -8.6 db figure calculated in
example A for a 50% detection probability is lowered to =-11.9 if only
10y detection probability is needed or raised to -7.0 db if a 95% P
i8 required., Note that for systems with post-detection integration
where Fig. 6 is used that the corrections AM S(FAP) and A (P.) are
determined separately, and both must be addeg to the basic processor
sensitivity to obtain the system MDS.
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FINITE DETECTION TIME AND EXPONENTIAL POST-DETECTION INTEGRATION

The idealized post-detection integrator has a rectangular impulse
response function which can only be implemented by carrying a complete
‘time history of all detector outputs over the time T. This is
generally an unreasonably large amount of information for either
digital or analog storage media. A common solution is to approximate
the rectangular intagrator with a first order recursive filter having
a time constant 1 approximately equal to T. This is the equivalent
of a simple RC low-pass filter on the output of the detector, and
it requires only one word of storage per frequency bin to implement
in a digital systenm,

It can be shown (see reference 3) that in the steady state
an exponential integrator with time constant T has a smoothing per-
formance (that is a reduction in the variance at its output)
equivalent to a rectanrgular integration over 2t seconds, Thus in
the steady state the exponential integrator would provide a 1,5 db
improvement in MDS over a rectangular integrator if T and Tt were
made equal, However, the exponential integrator output builds up
according to the function 1 - exp(-t/t) after the signal is applied,
so after any finite interval the signal does not appear at full
strength., Since the integrator output change is proportional to
signal power, the effective loss in signal strength may be written

AMDS‘Td> = =10 logpl-exp(-rd/t)l = N5

where T, is the time after introduction of the signal by which the
dctectign decision must be made, and the 1.5 term represaents the
steady~étc.te improvement due to the exponential integrator. This
function is plotted in Fig., 7 as a function of the detection time T._.
Similarly, the dashed line is the equivalent increase in MDS xequirgd
for the rectangular integrator when the detection decision must be
made in less than the integration time T. This is given by

bups{Tq) = 10 log (T/T,) Tqg X T

Fur the rectangular integrator there is no change in the MDS for any
detection time 'rd above the integration time T,
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Note from Fig. 7 that the rectangular integrator begins to lose
performance rapidly when T_ £ is less than the integration time T,

while the exponential integrator follows a comparatively gentle curve.

The exponential integrator has a performance poorer than that of the
rectangular integrator for detection times between about .7T and
1.25T, and requires allowed detection times greater than about twice
the time constant before the predicted steady-state performance is
dapproached. The loss in MDS relative to the idealized system is

2.5 db when the required detection time 13 equal to the time constant
T

If the required detection time is known at the time the processor
parameters are selected, optimum values for T (for the rectangular
integrator) or ¢ (for the exponential integrator) may be chosen to
minimize the MDS. For the rectangular integrator the optimum choice
1s for T to equal T., forming a matched filter for the signal
envelope. A loss og 1,5 db in MDS occurs for each factor of two
error in matching the integration time to the required detection time,
However, for the exponential integrator the optimum tradeoff between
increased integration time for more noise smoothing or decreased
integration time for faster response may be shown to occur when Tt is
0.8 T.. This optimum, however, is very Lroad, and the resulting
perfogmance varies by less than 0.5 db for a factor of two variation
in either direction from the optimum .
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PRACTICAL BANDPASS FILTER FUNCTIONS

The bandpass filter in the idealized system was assumed to have
perfectly flat response over a band of width B and zero response
outside this band, as shown in Fig, 8(a). Practical filters, of
course, do not have this type of response, and several representative
filter forms are shown in Figs, 8(b) through 8(f). The first two of
these are first-order (simple LC resonance) and third-order Butter-
worth filter forms as commonly used in analog or Deltic type spectrum
analyzers, While the Butterworth form was chosen for the third-order
filter, it i1s representative of other types such as Tchebycheff or
Papoulis with the same number of poles. Each of these filters has a
bandwidth B between its 3 db response points. The next filter has a
gaussian amplitude response function, which is an approximation often
used in multi-pole analog filters. The nominal bandwidth B was
chosen to be the bandwidth to the "1 sigma" points on the response
and is not the 3 db bandwidth for this filter. The final two functions
are typilcal of digital systems (such as FFT machines or other trans-
versal filter correlators) where the sample of input signal being
correlated is of length 1/B. The first is for a correlator which
does not attempt to weight the signal block before correlating,
while the second is the response function for systems using Hanning
weighting of the data. Notice that the 3 db bandwidth is not equal
to B in either case, because of the choice of definiug B by the block
length.

The use of these modified filter functions has two direct results
on the output fluctuations from the spectrum analyzer, First, these
filters do not generally have the same "noise bandwidth" as the ideal
filter, where the noise bandwidth is the integral of the power
response and measures the noise power actually passed through the
filter to the detector, Second, the spectrum of the noise at the
detector output (similar to Fig. 2(c)) is modified, and this influ=
ences the performance of the post-detection integration as described
in reference 1. This second factor is important only in systems
employing post-detection integration.

The effect of an increased noise bandwidth (NBW) is exactly the
same as increasing the input noise power by the same factor and there-~
fore causes a change in the system MDS of

NBW
NBW - plvesRas o
AMDS( BW) 10 log B

22

ok it o tioiiiiioe. athu

s

g



NOLTR 71-92

It is shown in reference 1 that for a general filter response
the variance due to the noise input is reduced by post-integration by
a factor F T rather than simply BT, where F is a function of the
filter rolBonle shape., The value F for thg “noise-induced" component
is used here since this is the term™which directly influences the
false alarm probability. This can be referred back to an equivalent
change in MDS as

AHDS(Fn) = =5 109(Fn/B) .

For a system without post-detection integration only the first of
these two corrections is needed, while systems employing a post-
detection integrator require both corrections. Table 1 is extracted
from information derived in reference 1 and shows the noise bandwidth
(NBW) and F_ for each of the filter forms of Fig. 8. Also listed 1is
the correctlon in MDS required for systems both without and with post-
detection integrators. The first uses only the noise bandwidth
correction, while the second includes both the NBW and Fn corrections,

Notice that the correction for the system without integration is
always positive (less sensitive system), since the noise bandwidth
of each filter is always at least as great as that of the ideal filter,
However, when post-detection integration is included the net correction
is sometimes negative, reflecting the fact that the detector output
bandwidth increase (and therefore its ability to be smoothed by the
integrator) is enough to more than offset the increase in total noise
power. Thus, neglecting sampling losses to be discussed later, these
filters actually outperform the "ideal® filter with respect to the
output fluctuation level from the analyzer,

As an example of the use of these corrections, suppose the band-
pass filters in the systems discussed previously were replaced by
single tuned LC filters. 1In the system without post-detection
integration only the change in noise bandwidth is considered, and this
increases the system MDS by 1,96 db from -0.,6 db to about +1.36 db.
However, in the system with post detection integration the combined
corrections for noise bandwidth and detector output bandwidth give
an 0,52 db improvement and thus lower the MDS from =-9,6 db to about
-10.1db. This result will be modified later when account is taken of
lossed due to sampling at the input of the integrator,

As a second example, consider the effect on the MDS of digital
implementations of the example systems when the choice is made between
unweighted or Hanning weighted processing. If no post-detection
integration is used, the unweighted correlator has the same MLS
(-0.6 db) as the ideal system, while the Hanning weighted system is
degraded by 1.76 db to give +1.,16 db as the MDS. 1In the system with
post-detection integration the unweighted correlator gives a potential
improvemenc of 0.88 db for a -10.48 db MDS while the Hanning weightead
system has a correction of +0,17 db to give a =-9.43 db MDS figure,
Again these corrections do not take into account possible sampling
losses at the integrator input.
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FILTER SCALLOPING EFFECT

Another effect of using bandpass filters having non~-ideal shape
characteristics is that the response to a signal input varies as the
signal frequency deviates from the exact center of a filter passband.
The calculations so far assume that the signal is passed without
attenuation by the filter, while in fact, the typical signal is
attenuated slightly by not arriving exactly at the peak of the filter
response, The effect of this loss of signal on the probability of
detection is actually a complicated function depending on many param-
eters of the spectrum analyzer and must include such things as the
increased probability of detection in adjacent analysis bins. How-
ever, there are some simpler measures that can give at least an
estimate of the system performance degradation,

Suppose the various filter types shown in Fig. 8 are used in a
spectrum analyzer where the spacing between adjacent frequency bins
is Bo Hertz. The worst-case attenuation of the signal component
(which translates directly into the increase in input S/N required
to maintain the desired performance for the worst-case choice of
signal fregquency) can be cobtained directly from the filter attenuation
at a fregquency B /2 from its center frequency, because any input
frequency will lie within B /2 of the center of some filter response,
This is plotted as a Eunctign of B for each of the filter functions
by the solid curves in Fig. 9, undois really just an expanded view of
the response curve versus distance from the center frequency.

Using the worst-case filter attenuation is, of course, a
pessimistic estimate of the scalloping loss for random signal fre-
quencies, since most signals would actually suffer less attenuation
through the filter. Thus some sort of measure of the "average" loss
1s required, Exact determination of the amount by which the input
5/N must be increased to maintain the same probability of detection
requires at the very least considering the nonlinear character of the
P. versus S/N curve, and even this does not take into account the
tendency to detect in more than one analyzer bin, However, a reason-
able estimate, which is mathematically tractable, may be obtained by
the following argument,

Our original calculation of the MDS was based on setting the aver-
age value of the integrator output to the threshold K. We can directly
calculate the reduction in the average output due to the signal
c omponent over an ensemble of random frequencies by averaging the
power response of the bandpass filter over *the range within Bo/2 of
the center frequency. This then represents the amount by which the

26

s g




NOLTR 71-92

input signal power must be raised so that the average output of the
strongest frequency bin is returned to the original level. The MDS
correction for this "average" scalloping loss is thus

fc+Bo/2
2
8 yps (8calloping) = - 10 log(l/B ) |H(w 21rfc)| dlw/2m)

fc-Bo/Z

The dotted curves in Fig. 9 show this average scallopine¢ loss as
a function of the filter bin spacing. As an example from Fig. 9(c)
the worst case loss is 3 db and the average loss is about 0.55 dkb
when the bin spacing B_ is just equal to the 3 db bandwidth B, If
the spacing is reduced to 0.8 B (or equivalently if “nhe filter
bandwidth is increased to 1,25 B ) the maximum scalloping loss is
reduced to about 1 db and the average loss to about 0.2 db. As
another example, Figs. 9(e) and 9(f) show the primary reason for
Hanning weighting in digital systems., If the bin spacing is equal
to B (or the inverse of the input data block length) the maximum
loss is reduced from 3.9 db for the unweighted correlator to 1l.4db
for the Hanning weighted system, The average loss is similarly
reduced from about 1.25 db to about 0.5 db when Hanning weighting
is used.
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EFFECT OF FILTER TRANSIENT RESPONSE

In the idealized multichannel spectrum analyzer of Figure la,
sach of the frequency bins had its own narrowband filter permanently
associated with it, Thus only the steady-state response of the
filter to signal and noise inputs was important. However in time
compression type systems, such as that shown in FPigure lb, a single
filter is effectively switched from one frequency analysis bin to
the next on each circulation of the time compressed inpu%t. The time
spent in each analysis bin 18 on the order of the inverse of the
filter bandwidth, so the trans.ent response of the filter becomes
important.

Since the noise in one analysis bin is indistinguishable from
the noise in the next, it may be assumed that the filter noise output
will be the same as in the steady state case. However wvaen the filter
steps through a frequency bin in which a signal is presant, the result
is equivalent to having the signal applied a8 < burst with a rectanju-
lar pulse envelope of a duration equal to the dwell tiwme in the
frequency bin, (Note this assumes that the response of the filter in
adjacent frequency bins is negligible and that the heterodyning
oscillator changes frequency in discrete steps, If the oscillator
sweeps continuously, then the effecti've envelope of the input signal
resembles the frequency zesponse function of the filter and somewhat
different results are obtained,)

The output of the filter is applied to the square law Jjetactor
for measurement of the envelope amplitude, and the detector ouput is
then sampled for inclusion in the averager memory. Ideally the sampling
instant at the detector output sh>ulc coincide with the peak of the
envelope response %20 the burst of input signal, However it is common
practice to sample at the end of the dwell time in each fregquency bin,
just as the applied signesl component would disappear due to the
oscillator switchiag te ¢he next bin, The envelope response at this
instant is just equal to the step response of a low-pass equivalent
of the bandpass filter, evaluated at a time T, equal to the dwell
time in the frequency bin. Since failure of iho filter to build up
to full envelope response during the dwell time is equivalent to
reduction of the ingut signal ampiituds by tha same ratio, the loss
due to this effect is ~-20 log (envelope) where the emvulope response
is normalized to unity in the steady state,

Tha solid curves in Figure 10 show the envelope response of

three of the filter functicns shown in Figure 8, The tine axis
represents the dwell time in the bin and is normalized to the nominal
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bandwidth B of the bandpass filter. The vertical axis represents the
amplitude of the envelope response and is marked in terms of -20 log
(envelope) on the right hand end to allow direct readaing of the

change in MDS ‘resulting from this effect, The single tuned resonant
filter and the third-order Bucterworth filter are the same as those
shown in Figures 8b and 8¢ with B equal to the sSeparation between the
3 db points on the response. The gaussian filter is not strictly a
physically-realizable function. The curve shown in Figure 10 is thus
an approximation, chosen to have the bandwidth shown in Figure 8d and
a 50% point on i.s response curve at a time of ,5/8. The three dotted
curves represent three other filter functions, all of which are third-
order (3 pole-pair) filters with 3 db bandwidths of B Hertz and 18 db/
octave skirt response for frequencies well removed from resonance.

The Tchebycheff filter is allcwed one db ripple in the passband (except
that 1% falls to 3 db at ¢ B/2) while the Papoulis design is ripple-
free. Both have steeper skirts near the edge of the passband than

tne Butterworth design, The "equipole"” design consists of three
1dentical sections and has a much less rapid rolloff of response near-
resonance than the other designs., This design is sometimes used as

an approximation to the gaussian filter response.

' Notice that the effect of the transient response is a strong
function of both filter type and bandwidth when the dwell time and
the bandwidth are nearly reciprocal, When T, is equal to 1/B as is
nominally assumed in many spectrum analyzers, the loss among the
physically realizable filters ranges from 0.4 db for the single-tuned
filter. to about 3.5 db for the Techebycheff design. 1In general the
loss increases with increasing steepness of the frequency response
curve near the band edge. As an example of the effect of filter
bandwidth, consider the Butterworth design which has a loss of 1.3 db
when B is chosen as 1/T . If the bandwidth of the “ilter is increased
by 25% so that B = l.ZS?T , the normalized dwell time becomes 1l.25/B.
In this case the overshoot of the Butterworth filter proves helpful
in that the sampled envelope is about 0.1 db larger than the steady
state response, On the other hand if the filter bandwidth is reduced
to O*B/Tb the loss increases to about 3,8 d4b.

Since the losses due to the filter transient response can
become rather large and are strong functions of the parameters of
the spectrum analyzer, care must be taken in applying these results
unles: the sampling method, the ocsillator stepping method, and the
filter functions are exactly as described here, In general the
transient response loss may be reduced substantially if a more elegant
sampling scheme is employed, and this becomes essential when filters
of higner than third order are employed. While this transient re-
sponse effect does not occur in systems using transversal filters
(or correlation technigues) such as FFT systems, it is‘still important
in digital systcms using recursive bandpass filter designs.
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INPUT SIGNAL CLIPPING LOSS

Many spectrum analysis systems, particularly thos. using time
compression techniques, hard clip the input signal waveform and
preserve only the signal polarity in order to reduce storage require-
ments in the processor, While this appears to be a rather severe
operation to perform on the signal it can be shown that, as long as
tne nolse spectrum is reasonably uniform and no discrete signal fre-
quency component in the input spectrum exceeds the total input noise
power, the system degredation due to input clipping is in the vicinity
of one decibel. The loss due to clipping can amount to several decibels,
nowever, in exceptional cases such as highly non-white noise or inter-
ference between several strong discrete components, This section only
covers the case of reasonably white background noise and low input
signal to proadband noise ratios,

Wnen the noise spectrum is essentially white over the input
band, the clipping operation may be modeled as the addition of a new
noise component whose total power is (n/2-1l) times the total power
of the original input noise but whose bandwidth is roughly two or
three times the original noise bandwidth. Because of the increased
bandwidth of the noise introduced by clipping, the increase in noise
power density over the band of interest is smaller than the increase
in total noise. Howevexr the spectral analysis system almost always
employs some sort of discrete input sampling operation and this tends
to fold some of the out-of-band clipping noise back into the proces-
sing band, Thus the actual loss due to clipping depends to some
extent on the input noise spectrum and the frequency at which the
clipped information is sampled by the spectrum analyzer.

Reference 4 shows that, if the input noise to a clipper has
an autocorrelation function ¢..(t), the effect of the clipper is equiva-
lent to adding a new noise component of autocorrelation function

D _
¢ii(0) sin (¢ii(1)/oii(0)1 ¢ii(r)
For any given input spectrum, the spectrum of this new noise can thus
be found. At any given signal frequency in the system passband the
effective signal to noise 1is changed by

AMDS(Clipping) = 10 log((N(m)+NC(w))/N(m)]
where N{w) and N (w) are respectively the noise power densities of the
1nput norse and Ene noise contributed by the clipper. While the
clipping loss can be seen in general to be a function of frequency,
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this dependence is small enough in the white (or nearly white) noise
case considered here to be ignorable, If the system under considera-
tion employs sampling at a rate less than about five times the highest
input frequency, the higher frequency clipper noise components are
folded back into the input spectrum and increase the clipping loss,.

A reasonable assumption here is that the clipping noise is then approxi-
mately evenly digstributed over a band of width equal to half the samp-
ling rate and that this noise adds incoherently to the original input
noise,.

Table 2 lists a number of system configurations including both
low-pass systems in which several octaves of input gignal and noise
are passed through a single clipper, and octave bandpass systems
in which the analog signa&l is firzt filtered to cover only a single
octave before clipping, These systems generally have several parallel
channels designed to cover multiple octaves. As far as the clipping
operation is concerned there is nothing special about dividing the
gspectrum into octaves rather than broader or narrower segments, but
octave filtering is a common choice in many systems because it allows
binary interlacing of processing operations in the spectrum analyzer.
For both the low-pass case and the octave bandpass case, the input
noise is assumed to be approximately white over the system passband
and removed outside the passband, For each of the two cgeneral input
spectra, several typical sampling rates are listed in Table 2,

For both the low-pass and the octave bandpass systems, it may
be seen that attempting to sample at the Nyquist rate (twice the
input signal bandwidth) after clipping causes a loss of 1,96 db,
but that this loss may be reduced significantly by increasing the
input sampling frequency. The loss is reduced to 1,09 db by sampling
at twice the Nyquist rate. Further increases in sampling rate con-
tinue to reduce the lcss, but little additional reduction occurs
beyond about three times the Nyquist rate,
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EFFECT OF MODIFIED DETECTOR CHARACTERISTIC

The basic performance calculation for the spectrum analyzer
was done for a system employing a square law detector at the bandpass
filter output. This was done partly for mathematical convenience
and partly because the square law detector has nearly the optimum
detector characteristic, However many actual spectrum analysis systems
employ other types of detectors. The most common of these is the
linear detector (envelope detector, full-wave detector, or half-wave
detector) hecause of its relative ease of implementaion. Another
common choice is a logarithmic detector because it produces an output
easily interpreted in decibels and because of its "constant-false-
alarm-rate” characteristic (output variance is independent of input
noise power). A third possibility is a detector which performs a
threshoiding cperation and provides only binary information to further
averaging processes.

The effect of these modified detector characteristics on the
minimum detectable signal of the spectrum analyzer depends on the
signal and noise levels at the detector itself and on the amount of
additional averaging done on the detector output. Since the perform-
ance depends_on detailed characteristics of the tails of the distri-
bution function at the averager output, exact mathematical treatment
is quite difficult as may be seen in Reference 5, However reasonable
estimates of the MDS change can be made in the two extreme cases of
no post-detectiol averaging and large time-bandwidth product post-
detection averaging. The first case can be dispensed with by noting
that for any instantaneous output of the square law detector there
is a corresponding deterministic output for any alternate type of
detector., 1If the detector output characteristic is monotonically
increasing with input power, a threshold K' can be defined such that
whenever the square law detector output exceeds a threshold K the
alternate detector output exceeds K', Consequently with proper choice
of K' a system with no post-detection averaging will produce detections
and false alarms at exactly the same times as a corresponding system
using a square-law detector operating on the same input data. Thus
if no post-detection averaging is used, modification of the detector
characteristic produces no change in the MDS required for a given
level of performance,

With large amounts of post-detection averaging, the output
distribution of the averager becomes approximately gaussian regardless
of the amplitude distribvtion of the averager input. Under this
approximation the distribution is completely specified when its mean
and variance are known, and these are fully determined by the mean

35



T

Lok d

NOLTR 71=-92

and variance of the detector output. Further, if a large amount of
post-detection integration is used, then for any reasonable output
signal-to-noise ratio requirement the signal-to-noise ratio required
at the detector output is small, This means that the detector output
variance wi1ll still approximately equal the zero-signal variance and
that tie relationship between the input signal power and the mean
output of the detector can be approximated by truncating its Taylor
expansion at the linear term. Thus if y represents the detector
output whose statistics are a function of the input signal power §,
the detector output statistics are represented by

Jyz SN EN o0 Nl o (variance, at S$=0)
AR dy
y(s) = y(0) + S - {mean, versus S)
ds
$=0
or g 2 cC, = C 2 and y(S) = C, + s C
y 2 I Y 1 3
where C, = y(0) c. = -5(0) and C_, = (dy/ds)
e il Y 2 Y 1 3 Y S=0

Now the probability density function of the envelope of the
signal plus noise output of the narrow band filter may be shown to
pe (see reference 6)

p{x) = (x/NB) exp [-(x2+25)/2NB] Io(x/3§/NB) 0><m

where S is the signal power, NB 18 the noise power, x is the envelope
amplitude, and Io is the modified Bessel function of zero order, Now
suppose the detector characteristic is such that 2 given envelope
amplitude x produces an output y = f({(x). Now the expected valyc of
any function of x may be obtaired by multiplying that function Ly
p(x) and integrating with respect to x. Thus the two moments ot y
which are required may be found as

-4

c,6 = y (0) -f x £(x) exp(=x>/2NB)dx/NB
0
) ol 2 2
and C2 =y (0) = x £ (x) exp(-x /2NB) dx/NB
v}

where use has been made of the fact that IO(O) =~ 1. The remaining

constant C., may be found as follows

3
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Cy= dy/ds

/)

= d/ds [oxp(-s/na) x f£(x) exp(-x2/2NB) xo(xfz?/nu) dx/NBJ
S=0

Differentiating the product form and carrying the derivitive under the
integral sign gives

C3 -zcxp(-S/NB) [(-I/NB) f x f(x) exp(-x2/2NB) Io (xY2S/NB) dx/NB
0

+/‘ x £(x) exp(-x2/2NB) d/ds [Io(x/E/ms)] dx/NB]}
0 S=0

Now the series expansion of I (z) is of the form 1 + 22/4 & e
80 the Io function appearing in the above expression may be expanded
as

1 + x2s/2n%s?

89 that its derivitive with respect to S as S=0 is xz/znznz. Inserting
this in the above expression and evaluating the remainder of the
expression for S=0 gives

C3 = (-1/”)[ x f(x) exp(-xz/ZNB) dx/NB
0

+(1/2N252)f x> £(x) exp(~x2/2NB) dx/NB
. .

- (1/2u252)f x3 £(x) exp(-x2/2NB) 4x/NB - c,/nB
0

In crdcr to meet a given performance criterion at the averager
output, the applied signal power S must be sufficient to shift the
mean output by some number of standard deviations, The signal powar
required to do this is proportional to the ratio of the detector
standard deviation to the slope C. or to the function

3
/c.-c.?/c
2 1l 3 ¢

For the square law detector f(x:--x2 and we may make use of the integral
relation

A= f x?2*L oxp(-x2/28B) dx/NB = 2 ni (np)"
0
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to give C,=2(NB), C =8(NB)2, and C -(1/2N282)8(NB)2 - 2NB/NB=2,
Plugging %hese values into the expression for the required power
causes all constants to cancel, leaving only the factor NB. Thus
for an arbitrary detector function f(x) the power required for a
given system performance, relative to that required with a square
law detector, may be expressed as an increase in decibels equal to

2 |
A (detector) = 10 log /é -C /C_NB
MDS 2 1 3

and C, are evaluated for the detector function in

where C., Cz, 3

question,

It must be remembered that this result applies only for systems

in which a large amouant of post-detection integration is used, so
that both the small-signal approximation to the change in detector
output mean and the gaussian approximation to the averager output
distribution are valid. Attempts to extend this "mean and variance"
approach to systems with small BT products without taking into
account the detailed statistics at the averager output can produce
misleading results,.

The following subsections discuss this result as applied to
several commonly used forms of detector function,

Linear Detector

The linear detector may be any one of the class of detectors
whose output varies linearly with the envelope amplitude or sucu
that f(x)=x. The MDS change for this type of detector can be evalu-
ated using integrals of tne form

%

2n B
Bn =-/ x" exp(=x /2NB} dx/NB = le3eee(2n=-]1) /ﬂ/ZEE (NB)n
0

This leads to C1 = Bl = /Y1NB/2, C2 = Al = 2(NB), and

P

~3 2

for the MDS change gives

A (detector) 10 log Y2NB-noNB/2 /NBYn/8NB

MDS

10 log v (2=-w/2)/(n/8) = .193 db
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Thus the conclusion is that a degredation of about .2 db is experienced
in the input sensitivity of a spectrum analyzer if the square law
detector is replaced by a linear detector.

This result is in agreement with other anlytical methods and
particularly that of reference 5 for large time-bandwidth products
in the post-detection averager. Howrver for one example shown in
reference 5, where the performance of a linear and a square law
detector were compared as a function of BT product, this limit was
approached only for time-bandwidth products in excess of about 100,
In fact for BT products below about 70 the linear detector actually
outperformed the square law detector by as much as 0,11 db. This is
explained by the fact that the true optimum detector, which folliows
a &n I (x) function, is better approximated by & linear detector for
large gignal-to-noisa ratios at the detector input than it is by the
square law detector, On the octher hand the square law detector
forms a better approximation when only a low detector signal-‘-~-noise
ratio is required, as the case for large integrator BT products. Thus
for systems with integrator BT products less than about 100 it is
more accurate to assume no degredation for a linear detector and to
apply a degredation of about 0.2 db only for systems with BT products
in excess of 100.

Logarithmic Detector

When the detector function is y = 2n(x), the detector is refer-
red to as a logarithmic detector. This type of detector has two
interesting properties. First, the mean output is proportional to
the log of the input power and thus may be interpreted in decibels.
Second, regardless of the input noise power level, it may be shown
that the output variance around the mean value is a constant, For
this reason logarithmic detectors are often used in systems where the
"constant false alarm rate" property is desired over a large range
of input power levels,

The performance of the logarithmic detector may be evaluated
by substituting ¢n(x) for f(x) in the integral relations for C., C2
and C, and evaluating numerically. This calculation indicates’a
losg ¢f 1,08 db for the logarithmic detector for large integrator
time bandwidth products. The theory described here does not suggest
the minimum BT product for which this result is valid, but somne
experimental results suggest degredation on the order of one decibel
for BT products as low as ten.

Modified Logarithmic Detector

One of the primary reasons for the degredation in the logarith-
mic detector is the large fluctuation of fn(x) for very small x. To
avoid this the log detector is often approximated by a linear function
x for x less than YNB and by VNB [1+&n(x//NB)] for x greater than
YNB. This reduces the fluctuations for small x but destroys the
"constant false alarm rate" property since the detector shape function
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1s now tailored to a specific value of NB. Again the values of C, ,
C. and C., may be computed by numerical integration, The indicate
dégredation in MDS relative to a square law detector is 0.58 db for
tn*s modified characteristic, or about half that experienced with

the true logarithmic detector.

Binarv Detector

The binary detector is one in which an inital thresholding
operation is performed before integration, so that only logical "0"
and "1" inputs must be handled by the integrator,. Since thresholding
operations take place botn before und after the post-detection integra-
tor, tnis scheme 1is sometimes refe:.ed to as double-threshold detection.
Systems 1n which the detector output is printed as intensity modulation
of a sweep on a paper or CRT display and which then rely on visual
integration of many such sweeps for tne post-detection integration
cften result in a form of binary detection, This occurs whenever the
aynamic range of thne display medium is inadegyuate to handle the large
fluctuations of the detector output and yet provide discernable changes
1n its average intensity for weak signal inputs,

As was the case with the modified logarithmic detector, the
pinary detector characteristic must be scaled to the expected detecctor
power input NB, If the detector output is zero for x less than a
threshold k'/NB and unity above this value, the degredation due to
the binary detector depends on the value of k' selectcd, For large
BT products in the post-detection integrator, a broad minimum occurs
in the computed loss for a k' of 1.8 where the false alarm probability
at the first detector output is about 20% and the loss due to binary
detection 1s about 0.94 db. The loss increases to 1,02 db for a k'
of 2.0 where the false alarm probability at the first detector output
15 13.0% and to 1.08 db for a k' of 1.5 where the first detector has
a false alarm probability of 32%., Beyoand this range the loss increases
rather rapidly, reeching 1,74 db at a k' of 2,5 where the initial FAP
1s 4.3% and reaching 2,07 db at a k' 0of 1.0 where the initial detector
rhas a FAP of 6ls,

Since the binomial distriliution resulting in the averager with
a binary detector is amenable to analysis, this system has been
studied for small BT products and is discussed in reference 7. While
tne optimum choice of k' varies somew-at with BT product, the loss
due to binary detection remains prett’ st2vble at about one decibel
even for BT products less than ten, Tnus this forms a reasonable
estimate for the MDS change due to binary detection, or in many cases
to “1sual post-detection integration.

Modified Binary Detector

One possible modification to tue “i”%EZ detector is a detector
whose output 1s zero up to the thresh - ':i k' *NB and proportional to
X - k'vNB for all values of x above (%’s tl.reshold. This essentially
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corresponds to certain “clean display” techniques in visual integration
systems and can reduce computational load in electronic post-detection
integration systems. As an example of the performance of this system,
using the modified characteristic with a k" of 1.8 reduces the detector
loss to 0.53 db as compared to the true binary detector with a loss

of 0,94 db.
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AVERAGER INPUT SAMPLING RATE

The calculation of processing gain due to smoothing in the
averager or integrator assumed that the output of the detector was
a continuous signal and constantly available to the averager input.
However, 1n either time compression systems or digital FFT analyzers
the same detector is essentially shared among many processing channels,
and thus the averager input becomes a sampled time func:tion, In time
compression systems the sampling rate is equal to the number of
times the oscillator sweeps through each frequency bin per second.
There 1s no particular constraint on the relationship between this
and the filter bandwidth, time compressor memory length, or bin
spacing, but the sweep rate is generally chosen to be roughly equal
to the nominal filter bandwidth. The product of the sweep rate and
the time compressor memory length is often termed the redundar-. of
the processor, since it represents the number of times a sing.
sample of input signal is used to form the dutput in a given fre-
guency bin, :

In fast-fourier transform systems, several of the processing
parameters are inherently related by the FFT algorithm. Normally
only one transform 1s don: on each block of input data, so that the
nominal filter bandwidth, the inverse of the block length, and the
sampling rate into the post-detection integrator are all equal.
However it is possible to overlap input data blocks so that each input
sample typically appears in more than one transform, and thus increase
the sampling rate at the integrator input,

The output spectrum from the square law detector was shown in
Fig. 2(c) for the ideal bandpass filter and extended up to 2B Hz.
For other filter bandpass functions this spectrum does not have a
sharp cutoff and thus extends over all frequencies. Consequently,
any finite sampling rate at this point results in some information
loss and therefore a loss in system performance, This question is
explored in detail in reference 1 for each of the filter functions .
shown in Fig. 8, For any finite actual sampling rate at the
integrauwor input a sampling efficiency is defined which relates the
actual output variance of the integrator to that which would be
obtained without sampling. Reference 1 distinguishes between a
component due orly to the input noise, which represents the total
fluctuations in the no-signal case, and a second component which .
apvears only when signal is present., Since our MDS computations for
50% probability of detection do not require knowledge of the variance
with signal, we need only consider the noice~induced component.
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From reference 1 it may be seen that any reduction of this
sampling efficiency E below unity is equivalent to a similar
reduction in the integration time T. Thus the effect of the
sampling efficiency on the system MDS is of the form

AMDS(sampllng) = - 5 log Bn

Figure 11 shows these MDS corrections for various filter functions,
as converted from the results in reference 1. The loss due to
sampling is determined as a function of the integrator sampling
rate relative to the nominal bandwidth B of the bandpass filter,
Note this is not necessarily the same as the system redundancy,
since the filter need not be matched to the memory length in time
compression systems,

As an example, consider a time compression system using a 3rd
order Butterworth filter with an 0.1 Hz bandwidth, and which sweeps
through all analysis bins once per ten seconds. The sampling rate
of the integrator is thus equal to B and the sampling loss may be
read from Fig. 11 as 0.5 db. 1If the sweep rate of the system were
increased by 25% (to one sweep per 8 seconds), this loss would be
reduced to about 0.2 db. On the other hand, if the filter bandwidth
were increased 25% without changing the system sweep rate, the
sampling rate is then only 0,8 B and the loss due to sampling

increases to about 1,0 db.

As a second example consider an FFT system without overlapped
transforms so that the sampling rate is equal to the nominal band-~
width B, If no weighting of the signal data block is done, the loss
due to sampling is 0,88 db., Note this exactly cancels the gain shown
in Table 1 for this filter function, since the samples are completely
uncorrelated at this sampling rate., If Hanning weighting is applied
to the data blocks to be transformed, the loss is 1,59 db, which
again is just the gain shown in Table 1 for the F_ contribution to
the MDS in systems with post-detection integratiog. It may be
further seen from Fig, 11 that, whether or not Hanning weighting
is used, the loss due to sampling is reduced to about 0.25 db when
the sampling rate is twice the nominal filter bandwidth. This may
be implemented in an FFT system by computing a new transform each
time half of the input data buffer is updated, rather than waiting
for a complete block of new input data before transforming,
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EXAMPLES

In this section the minimum detectable signal is computed for
four typical spectrum analyzers., The first two are Deltic type time
compression systems, differing only in the choice of the bandpass
filter bandwidth. The second two are Fast Fourier Transform systems,
and they differ from each other only in that one employs Hanning weight-
ing of the data and the other does not., In all four systems the
spacing of analysis frequencies is 0.1 Hz and each frequency output
is generated once every ten seconds for inclusion in the post-detec-
tion integrators. These integrators in each case are exponential
averagers with a thgse minute time constant, and the output threshold
is set to give a 10 false alarm probability in each frequency bin.

A 50% probability of detection is required at an observation time
five minutes after a signal is applied. The Deltic systems employ
hard ciipping of the signal input with a sampling rate equal to three
times the highest frequency and use a linear detector, while the FFT
systems use multibit signal representation and square law detectors,
It is emphasized that Deltic systems do not necessarily employ
clipping or linear detectors nor do FFT systems necessarily have
multibit signal sampling or square law detectors, These associations
are used here for purposes of the examples only. The MDS ca'culations
for these four systems are summarized in Table 3 and are discussed
for each system below.

Deltic Spectrum Analyzer

The first step in determining the system MDS is to determine
the basic processor sensitivity from Figure 3, using the nominal filter
bandwidth of 0.1 Hz and the integration time of three minutes (180
seconds), This gives a processor sensitivity of -16.3 db and shows
the BT product of the post-detection integrator to be 18, The first
correg&ion to this basic sensitivity is for the false alarm probability
of 10 , Using Figure 4 and interpolating for the approximate BT
product gives a A {(FAP) of about 6.7 db, Since the desired detection
P . DS . : ) .
probability 1s 50&, no correction is required here and A (P.) is zero.
Adding these two corrections to the basic processor senaggﬁvi%y gives
an ideal MDS of =-9.6 db for the system,

The first variation from this idealized syatem takes into
account the exponential integrator and the allowed observation time.
This detection time is 1,67 times the integrator time constant, and
Figure 7 shows the resulting MDS is lowered by 0.6 db relative to
that for a three-minute rectangular averager. The naext correction
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1s for the filter noise bandwidth and the output bandwidth of the
detector fluctuations due to the shape function of the bandpass
filter, which is assumed to be a 3rd order Butterworth for this
example. Table 1 shows this correction to be -0.3 db. The average
scalloping loss for this filter function may be read from Figure

9(c) as 0.55 db, since tnhne nominal filter bandwidth and the frequency
spacing are equal. The loss due to the filter transient response

is seen from Fiqgure 10 to ke 1.3 db, assuming that the Deltic storage
time is the inverse of the filter bandwidth or ten s=conds.

The loss due to the input signal clipping is estimated from
Taple 2 as 1.4 db, since the spectrum analyzer is assumed to operate
on a low-pass input spectrum and the sampling frequency is three
times the input cutoff frequency., The MDS correction for the
linear detector is taken to be zero because the BT product of the
averager is well below the point where the linear detector becomes
worse than the square law detector, Finally from Figure 11 the
averager input sampling loss is evaluated to be 0.5 db because the
U.l per second rate of averager updates is equa. to the nominal band-
width of the Butterworth filter,

The adjusted MDS calculated by adding all these corrections
to the iileal system MDS is -6.75 db, or some 2.85 db higher than that
of the idealized system, In scanning through the losses it may be
observed that much of the loss comes from filter scalloping effects
and transient response, both of which may be improved by increasing
the filter bandwidth slightly. This is the motivation for the second
system,

Modified Bandpass Filter Bandwidth

This system is identical to the previous one except that the
vandpass filter bandwidth has been increased to 0,125 Hz in an effort
to reduce sampling and transient response losses, Since the nominal
value of B has been changed (even though the frequency bin spacing
is still 0.1 Hz), a new basic processor sensitivity of -15.8 db is
found from Figure 3, The averager BT product is also increased to
22.5, but no significant change occurs in the A (FAP) of 6.7 db.

. : , . MDS
Again A (P,) is zero, sc the ideal system MDS ?s -9.1 db or about
0.5 dp Wworse than that of the previous system.
The corrections for observation time (T,), filter shape

function, clipping, and detector function are unchanged from the
previous system since tney do not depend on the filter bandwidth,
However the average scalloping loss 1is reduced to 0.2 db, since
the frequency bin spacing is now only 0.8 times the filter nominal
bandwidth,. The transient response effect may be seen from Figure
10 to be a =0.1 db correction, since the dwell time in each
frequency bin is 1increased to 1,25/B due to the increase in 3,
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Figure 11 however shows that the averager input sampling loss increases
to 1.0 db because the averager sampling rate is now only 0.8 B,

While some of the changea due to the increased filter ocandwidth
tend vo improve performance while others tend to degrade it, the
adjusted MDS after all corrections are made is -7.5 db. This is
3/4 db better than the system whose filter bandwidth was matched to
the frequency bin spacing and Deltic storage time. The list of MDS
corrections shows that further improvement in performance would
come primarily by eliminating the input clipping signal operation
or by increasing the averager input sampling rate. The former re-
quires unore storage in the time compressor memories, while the latter
requires increasing the time compression ratio (Deltic shift fre-
guency) in order to allow more rapid scanning through the signal
spectrum.

Digital FFT Spectrum Analyzer

This system is assumed to accumulate ten-second samples of
the input signal and to transform each such sample to form a spectrum
with 0.1 Hz frequency spacing., The basic processor sensitivity and
the corrections for false alarm probability and detection probability
are found in the same way as for the initial Deltic system, to give
an ideal system MDS of -9.,6 db. Again the five minute allowed
observation time on the output of the three minute exponential
integrator provides an MDS decrease of about 0,6 db, The correction
for the equivalent filter shape function is found from Table 1 to
be -0.88 db for the digital correlator which the FFT system resembles.
The average scalloping loss for the unweighted correlator is found
from Figure 9(e) to be 1.25 db, since the output frequency spacing
is egual to the nominal filter bandwidth of 0.1 Hz. The averager
input sampling loss is 0.88 db since output transforms are only
produced at a rate equal to the nominal bandwidth, No corrections
are necessary for filter transient response in correlator type
systems, there is no clipping loss, and no correction is required
for the square law detector.

The adjusted MDS obtained by adding all corrections to the
ideal system MDS is -8.95 db, or just about “alf a decibel worse
than the idealized system, The outstanding loss term is the scal-~
loping loss, which averages 1,25 db and in the worst case amounts
to 3.9 db., The fourth system represents an attempt to reduce this
scalloping loss,

Digital System with Hanning Weighting

This system is identical to the previous FFT system except
that Hanning weighting is employed, either on the signal sample
before transforming or on the output spectral estimates, to broaden
the equivalent filter shape function., The motivation for this is
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similar to that for the second Deltic system, Since the nominal
bandwidth is still 0.1 Hz, there is no change in the basic processor
sensitivity or ANDS(FAP)' Similarly the correction for observation
time is unchanged, Table 1 shows that the correction for noise
bandwidth and detector fluctuation bandwidth is 0,17 db with Hanning
welgnting, and Figure 9(f) shows that the average scalloping loss

is reduced to 0.5 db., Figure 1l shows that because of the increased
fluctuation bandwidth with Hanning weighting the averager input
sampling luss is increased to 1.59 db.

When all corrections are added to the ideal system MDS, the
resultant adjusted MDS is -7.94 db. This is almost exactly one
decibel worse than for the system without Hanning weighting, so the
conclusion is that Hanning weighting cuases a net degredation even
thougn it substantially reduces the scalloping loss. The reasons
for this are the increased noise bandwidth of the equivalent filter
with Hanning weighting and the inadequacy of the averager input
sampi.ng rate. Whiie the increase in noise bandwidth is inherent
in Hanning weighting, the averager input sampling loss can be reduced
dramatically by computing transforms twice as often with each trans-
form operation reusing half the data from the previous transform, !
The averager input sampling rate is thus twice the nominal filter
bandwidth, and Figure 11 shows that the 1loss is reduced to about
0.25 db. This would give an adjusted MDS of -9.28 db, which is
within 1/3 decibel of the ideal system MDS.

PP CINES LN TS
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Table 3. MDS Calculations for Example Spectrum Analyzers
System 1 System 2 System 3 System 4
Deltic Deltic FFT FFT with
with ,1 Hz with ,125 with no Hanning
Filter Hz Filter weighting Weignting
Basic Processor
Sensitivity -16.3 db -15.8 db -16.3 db ~-l6.3 db
!
7 a1l .7 Ral/ !
AMDS(FAP) 6 6 6 6 |
AMDS(Pd) 0. 0. 0. 0.
Ideal System MDS - 9.6 db - 9.6 db - 9.6 db - 9.6 db
AMDS(Td) - 0.6 - 0.6 - 0.6 - 0.6
w 4 L) - L ] - L] L
AMDS(NB and Fn) 0.3 0.3 0.88 0.17
AMDS(scalloplng) 0.55 0.2 1,25 0.5
AMDS(ttansxent) 1.3 - 0.1 --- -———
.AMDs(cllpang) 1.4 1.4 -—— -——
,AMDs(detector) 0. 0. Rt =f=i=
= I : i
AMDS(ALL sampling) 0.5 1,0 0.88 1.59 i
Adjusted MDS - 6,75 db - 7.5 db - 8.95 db - 7.94 db

49



NOLTR 71-92

SUMMARY

The procedures outlined in this report are intended to allow
prediction of the minimum detectable signal for a large class of
spectrum analysis systems with a minimum of complex mathematics,
While no claim is made that all possible sources of performance
degredation have Yeen considered, those discussed here are generally
the predominant loss mechanisms. The intent of the organization of
the procedure 13 to make the individual iosses apparent so that the
reasons for deviations from ideal performance in a given system are
made clear. It is recognized that many of these loss mechanisms
are not truly independent, so that second order corrections are in
principle necessary whenever several loss mechanisms (for example
logarithmic detection and undersampled post~detection averager input)
are simultaneously present. However these interactions are generally
small compared to the first order loss corrections, and it is felt
that the steps described here should allow prediction of MDS to
witnin about 0.5 db in the majority of spectrum analyzers of the
types discussed.
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LIST OF SYMBOLS

Symbol Meaning

a Falge alarm probability

ai(t) Input: to averager

ao(t) Ohtput of-aver?ger

An © Value of definige integral

B Nominal bandwidth of bandpass filter

Bn Valuye ofldefinite integral

Bo Spacing between adjacent frequency bins
Cl First ordgr of dctector output

C2 Second order o} detector outbut

cy Derivitive of detecéor output i

d Decision threshold ratio for FAP

d' Decision threshold ratio for Pd

D 0 l;g(d)

En ‘ Sampling Efficiency at Averager Input
f}x) Detector amplitude response function

Fc Qentet Frequency of bandpass filter

Fn Fluctuation banéwidth of detector output
Fo Cutoff frequency of input noise spectrum
FAP | False Alarm Probability

H(w) ‘ Bandpass filter response function
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2

37

38
26
36
36

36

14

43

' 36

23
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Symbols

K
© MDS

AMDS(FAP)
Sups (Fa’
B ypg (TA)
, 8y ps (NBW)
AMDS(Fn)

Ay

AM
AM
N

NBW

p(xL

Meaning

NOLTR 71-92

Modified Bessel function

Decision threshold at averager output

Threshold ratio for binary detector

Decision threshold with modified detector

Minimum Detectable Signal

MDS

MDS

MDsS

MDS

MDS

AMDS(scanqﬁnm MDS
Dg(ttansient)HDS
AMDs(clipping) MDS
Ds(detector) MDS

Ds(samplxng) MDS

Change
Change
Change
Change
Change
Change
Change
change
Change

Change

for

for

for

for

for

due

due

due

due

due

given FAP
given Pd
allowed Td

filter NBW

filter Fn

to filﬁer scalloping

to filter transient response
io clipping

to detector characteristic

to averager input sampling

Noise power density (single sided)

Noise bandwidth of bandpass filter

Ratio d'/d

Probability density of envelope amplitude

Probability of detection

Ratio d/vBT

Input signal power

Variarnce of averager output

Variance of detector output

Integration time of averager
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Defined
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40

35

14
19
22
23
27
29
32
38

43

22

15

36

15

36




W g

NOLTR 71-92

Meaning

Dwell time in single frequency bin
Allowed time for detection
Exponential averager time constant
Envelope amplitude of detector input

Detector output amplitude
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