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Calculation   of   th«   Minimum   Detectable   Signal   for 
Practical   Spectrum  Analyzers 

This   report   describes   a   procedure   for   calculating   the  performance  of 
spectrum  analysis   equipment,   including   the   losses   due   to   non-ideal 
aspects   of   their   practical   implementations.      The   material   should  be 
of   interest   to   those   engaged   in   random   signal   analysis   or   signal 
processing   system   design   and   evaluation.      The  work   leading   to   this 
report  was   performed   in   the   Electronics   and  Electromagnetics   Division 
of   the   Physics   Research   Department   and   was   performed   under   task 
A370-370A/WFÜ8   121    703   Problem   201.. 

ROBERT ENNIS 
Captain, USN 
Commander 

■Jj'J!£& AO' 

I.    SLAWSKY 
By   direction 

11 



._„._^..™.-^—— -- «—.^^^»B^^^^Ä^^^W 

NOLTR    71-92 

TABLE   OF   CONTENTS 
Page 

INTRODUCTION        1 
IDEAL   MULTI-CHANNEL   FILTER   SYSTEM        2 
IDEAL   SYSTEM   PERFORMANCE         5 

1. Case   Without  Post-Detection   Integration     5 
2. Case   With   Post-Detection   Integration        7 

MODIFIED   PROBABILITY   OF   DETECTION         14 
FINITE   DETECTION   TIME   AND   EXPONENTIAL   POST-DETECTION 

INTEGRATION        19 
PRACTICAL   BANDPASS   FILTER   FUNCTIONS         22 
FILTER   SCALLOPING   EFFECT         26 
EFFECT   OF   FILTER   TRANSIENT   RESPONSE         29 
INPUT   SIGNAL   CUPPING   LOSS         32 
EFFECT   OF   MODIFIED   DETECTOR   CHARACTERISTIC         35 

1. Linear   Detector        38 
2. Logarithmic  Detector       39 
3. Modified  Logarithmic   Detector       39 
4. Binary   Detector       40 
5. Modified  Binary  Detector  40 

AVERAGER   INPUT   SAMPLING   RATE        42 
EXAMPLES        45 

1. Deltic Spectrum Analyser    45 
2. Modified Bandpass Filter Bandwidth    46 
3. Digital FFT Spectrum Analyzer    47 
4. Digital System with Manning Weighting    47 

SUMMARY    50 
REFERENCES    51 
LIST OF SYMBOLS    52 

LIST OF ILLUSTRATIONS 
Fig.                            Title Page 

1 Forms of Narrow Band Spectrum Analysis Systems    4 
2 Power Density Spectra within Narrow Band Analyzer    11 
3 Nomograph for Determining Processor Sensitivity    12 
4 Threshold Detector Level vs. False Alarm Probability  ... 13 
3 Nomograph for Arbitrary P  without Post Detection 

Averaging    17 
6 MDS Change for Arbitrary Probability of Detection    18 
7 Loss Due to Finite Detection Time    21 
8 Frequency Response of Various Bandpass Filters    25 
9 Scalloping Loss vs. Bin Spacing for Various Filters  .... 28 

10 Filter Envelope Transient Response    31 
11 Loss Due to Finite Averager Sampling Rate  44 

iii 



i'    ' ■« i II.IIII,I,«IIH«H min  uumi .IHJW »wwwwpippiiiii   i      . mi  ,   n       wKmf^fWmwmf^m um« a 

NOLTR 71-92 

Table 

LIST OF TABLES 

Title 

1 MDS Correction for Various Bandpass Filter Functions 
2 Loss Due to Input Signal Clipping    
3 MDS Calculations for Example Spectrum Analyzers  .... 

Page 

24 
34 
49 

iV 



'    ■Mil-W"II-  —TP—WB—i mmmmmmmm wmm^ '* 

NOLTR 71-92 

INTRODUCTION 

Spectrum analysis is • commonly used technique for evaluating 
the properties of random time functions.  Systems for performing 
spectral analysis can be divided Into two broad categories.  One 
class divides the spectrum into a number of relatively broad bands 
(such as 1/3 octave filtering) and measures the power in each band to 
provide an overall description of the spectral power distribution. 
The second class uses a large number of analysis bands, where the 
bandwidth of each is a small percentage of its center frequency. 
These systems are generally referred to as narrow-band spectrum 
analyzers and are more often used to locate discrete narrow band 
components of the input which would normally be buried in the overall 
broadband specv.rum. 

If the discrate frequency component is considered to be a 
signal of power S added to a broadband noise background whose power 
density is N power units per Hertz, it is interesting to determine 
the minimum signal power which can be distinguished from the back- 
ground noise.  The ratio S/N at which the signal can be distinguished 
with the desired reliability is referred to as the Minimum Detectable 
Signal or MDS of the spectrum analyzer.  Calculations of this MDS 
for various systems have been made in a number of ways, using a 
large variety of source material.  Often the basic source of tech- 
niques used in these calculations is lost in a long chain of refer- 
ences, with the result that some methods are occasionally misapplied 
in situations for which they were not originally intended. 

The intent of this report is to provide a general approach 
for analyzing spectrum analyzers of the narrow-band type, based on 
fundamental or generally accepted principles, and to make all material 
necessary for MDS prediction available within a single document. The 
approach is based on determining the MDS for an idealized system, 
and then adjusting this performance to account for any portions of 
the actual system which deviate from the idealized behavior.  Thus 
the individual effects of each loss mechanism in the spectrum analyzer 
may be clearly and independently evaluated.  An effort has been made 
to provide just enough mathematical background to justify each result 
without overburdening the reader with complicated derivations. 
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IDEAL   MULTI-CHANNEL   FILTER   SYSTEM 

The   basic   model   used   for  a   narrow-band  spectrum  analyzer   is 
shown   in   Fig.   1(a)   and  consists   of  a   bank  of  narrow-band   filter 
channels   in   parallel,   each   tuned   to   a   different   frequency   in   the 
band   to   be   analyzed.     Each   channel   consists   of   a  narrow  band   filter 
of  bandwidth   B   followed  by   a   square-law   detector   and   an   averager  of 
integration   time   T.     The   filter   in   the   ideal   system   is   assumed   to 
have   flat   response  over   the  passband B   and   zero   response  outside 
this   band.      The   averager   is   assumed   to   compute   the   running  average 
of   the   last   T   seconds   of   its   input,   or   the   function 

ao(t)    -   (1/T)    /       a, (t-x)dx 

The output of this averager is compared on a continuous basis to a 
threshold K to determine whether a narrow band signal is present 
in addition to the broadband noise in the band.  It is assumed that 
some means is available to determine the appropriate value of K. 
This system (with the exception that the square law detector is only 
an approximation to a Bessel function) can be shown to be the optimum 
system for detection of a sine wave in noise. 

Practical spectrum analyzers are seldom built in exactly this 
way, due to the large number of parts involved.  One of the common 
techniques used is shown in Fig. 1(b) and is generally referred to 
as a time-compression or Deltic approach.  The input signal is 
recorded in a circulating memory and played back repeatedly at much 
higher speed so that a single analyzer can perform a number of compu- 
tations on the same piece of input date..  The analyzer consists of 
an oscillator whose frequency can be stepped over the desired range, 
a mixer, and a single narrow band filter and detector.  On successive 
repetitions of the input data the oscillator frequency is stepped so 
that a different part of the input signal band is translated into 
the filter passband.  This is equivalent to feeding the same segment 
of signal sequentially through each of the filter channels of Fig. 1(a) 
If post-detection integration is desired, an averager memory is 
updated each time the spectrum analyzer scans through a given frequency 
cell, and a separate average is maintained for each cell.  As each 
memory word is updated it is compared with the threshold K (which may 
be different for each cell) to form the detection decision. 
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Another   common   technique   as   shown   in  Figure   1(c)    uses   the   fast 
fourier  transform   (FFT)   algorithm   to   form a  complex  spectrum of  a 
block  of   input   data   that  has  been   accumulated  in   an   input buffer. 
This   spectrum  is   than converted   to   magnitude   form  and   used  to   update 
all   cells  of   an   averager  memory.     The   detection  decision   is   also  made 
each   time   the   averager  is   updated.      Both  of  these   systems   are,   to   a 
first   approximation,   equivalent   to   the   multi-channel   system of 
Fig.   1(a)   but  simply  substitute  high-speed serial  processing   for  much 
of   the   complex parallel   equipment.      However,   these   systems   introduce 
a  number of  approximate   techniques   such   as   sampling  and   quantizing 
at several  points,   and  they   use  more   practical   functions   for   imple- 
menting both   the  bandpass   filter  and   the   averaging   integrator   than 
those   assumed   in   the   ideal   system of   Fig.   1(a).     In   this   report  the 
performance of   the   ideal   system  is   analyzed   first,   then   corrections 
are  made   to  account   for  the   individual   compromises   made   in practical 
systems   such   as   the   Oeltic   and   FFT   analyzers. 
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IDEAL   SYSTEM   PERFORMANCE 

The   performance of  this   ideal   system can  be  determined  by 
tracing  a   signal   and   the  broadband   noise   through   each   step   of   the 
processing.      The   inputs   to   the   system  may  be   considered   to   consist of 
a  sinusoidal   signal   of power  S   watts   and  broadband   noise  whose  power 
density   is   N  watts/Hertz   (using   a   single-sided  spectrum   consisting 
of positive   real   frequencies   only) .      Thus   the   total   noise   power   in   a 
band  up   to   a   cutoff   frequency   F     is   NF     watts   if   the   spectrum   is   flat 
over   the  band.      This   input  spectrum  is   shown  in   Fig.   2(a). 

When   this   input  signal   and   noise   are  passed   through   the   narrow 
band  filter,   only   those  components   in   the  passband   remain   and  yield 
the  spectrum  shown   in   Fig.   2(b).      This   consists   of   the   full   signal 
power  S   and   a   noise   power  of  NB   watts. 

The   square   law   detector  has   an  output whose   average   value   is, 
by  definition,   the   mean  square   value   (or power)   of   the   signal   and 
noise   inputs  or   S   +  NB.     Superimposed on   this   average   value   are 
fluctuations   due   to   the   random  nature   of   the  noise   inputs.      The 
power  density   spectrum of   these   fluctuations  is   discussed  in   Appen- 
dix  A of   reference   1,   and   components   are   shown   to  occur   in   the   low 
frequency   region   up   to   twice   the   filter   bandwidth  B   and   in   a   region 
of  width   about   4B   near   twice   the   filter   center   frequency,   as   shown 
in  Fig.   2(c).     By   the  definition  of   a   narrow-band  spectrum  analyzer, 
the   center   frequency   is  high   compared   to   the  bandwidth,   so   these 
components   are  widely  separated. 

Two  distinct  cases  must be   considered   for   the   integrator, 
depending on   its   integration   time  T.      If  T   is  large   compared   to  1/F 
(the  inverse   of   the   center   frequency),   but small   compared   to   1/B 
(the  inverse   of   the   filter bandwidth),   the  only   function  of   the   filter 
is  to  remove   the   double-frequency   fluctuations  at   the   detector output 
(the  dotted  portion  of Fig.   2(c))   without   changing   the   low-frequency 
component of   the   fluctuations.     In   these   cases   there   is   said   to  be 
no  post-detection   averaging.     If   T   is   large   compared   to   1/B   then   the 
system  is   said   to   include  post-detection   averaging,   and   somewhat 
different   techniques   are   required   for   computing   the  performance. 
These   two  cases   are   described  separately  below. 

Case Without  Post-Detection   Integration 

When  no   post-integration  averaging   is   used   (but   the   double- 
frequency   components   are  removed)    the   statistics  of   the   output   have 
been  shown   to   obey   a   modified   chi-square   distribution   with   two 
degrees  of   freedom  and  a  variance   of 
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2 2    2 a     -   N   B     +   2SNB    (no   post-detection   integration). 

Selection   of   the   threshold   K   in   the   final   detector   depends  on   the 
desired   false   alarm  probability   a.     Since   by   definition   a   false   alarm 
occurs   only  when  no   signal   is   present,   the   statistics   used   to   select 
K  are   those   for   the   case   where   S   equals   zero.      The   distribution   is 
then   chi-square   and  depends   only  on   the   single   parameter  NB.      A 
diroensionless  parameter   d   can   now  be   defined   such   that   the   desired 
false   alarm  probability   a   is   obtained when   the   threshold  K  is   set   as 

K   -    (d+l)NB. 

The   two-degree-of-freedom   chi-square   distribution   has   a  par- 
ticularly   simple   form   and   allows   d   to  be   expressed   in   terms   of    a    as 

d  ■   -1   -   In a   . 

It is now interesting to ask what value of signal power S 
would be required so that the average input to the threshold detector 
would oe just equal to the threshold x.  Since the average is simply 
S+NB, we have 

S+NB - K - (d+l)NB 

or 

(S/N) - dB . 

Thus   we   have   an  expression   for   the   input   signal   to   noise   ratio 
(expressed   as   signal   power   divided  by   noise  power   per  Hertz)    required 
to,   on   the   average,   just   equal   the   required   detection   threshold. 
This   is   not   necessarily   the   point  of   50%   detection   probability   since 
the   mean   of  the  modified  chi-square  distribution   is   not exactly   equal 
to   its   median.     However,   it   is   sufficiently   close   for   all   values   of   a 
smaller   than   about   .1   to   allow   us   to   interpret   this   as   the   approximate 
signal   to   noise   ratio   giving   50%   detection   probability  or   the   Minimum 
Detectable   Signal    (MOS).      It   is   generally   convenient   to  work   in 
decibel   notation   for   MDS   calculations,   so   the   previous   equation   can 
be   rewritten  by   taking   10   times   the   log   of   each   side   to   give 

(S/N)db   -   10   log   B   +   10   log   d (    (1) 

(no   post-detection   integration) 
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This   simple   expression   for   the   NOS   is   the   result  of   recognizing   that 
the   threshold depends  on   the   no-signal  case   alone   and  of selecting 
a  detection  probability  PJ   of  approximately   50% a 

Case   With   Post-Detection   Integration 

When po 
be treated as 
fluctuations 
appreciably e 
filter, the c 
greatly simpl 
approach a ga 
shown that th 
the ideal nar 
variance  beco 

st-detection   integration  is   used,   the   integrator   can 
a low-pass   filter  operating on   the   low-frequsney 

to  reduce   their  variance.     If  the   integration   tine   T 
xceeds   the   inverse   bandwidth   (1/B)   of   the   narrow-band 
alculations   involved   in   finding   the  output  variance   are 
ified and   the   fluctuation«   at   the   integrator output 
ussian  amplitude  distribution.     In   reference  1   it  is 
e   integration   reduces   the   variance   by  a   factor BT   for 
row-band   filter   function  assumed,   so   that   the output 
mes 

2 2 
a      -   N   B/T   +   2SN/T 

We   again wish   to  select a   threshold  K   for   the   final   detector  to   give 
the  desired   false  alarm probability  a  in  the  no-signal   case.     Again 
a parameter   d  may be  defined   such   that  the  desired  a   is  obtained  when 

NB   •»■   da     -   NB   +   d   N NB(l + d//BT) 

where   d  is   the  number of  standard  deviations  between   the  mean output 
of   the   detector  and  the   decision   threshold.     This   is   consistent 
with   the  definition of d   used   in   the  case  without post-detection 
integration.      The  relation  between   a     and d may   be  obtained   from 
tables   of   the   chi-sguare  distribution with  2BT  degrees   of   freedom, 
since   the  averager  is  essentially   summing BT samples   with   two 
degrees   of   freedom each. 

As   BT   increases   the   chi-square   distribution   rapidly  approaches 
the   gaussian  which has   its   mean   and  median at   the   same   point.     Thus 
the   signal   required  for  50%   P     may  be   found by   setting   the   average 
output  S+NB   equal   to  K   to  give 

S+NB   ■   K   -   NB   +   dN/B/T 

or 

(S/N) - d/B/T 

Writing this in decibel form gives the expression 

(S/N) db 
5   log B   -   5   log   T  +   10   log  d 

(with post-detection   integration) 

7 

(2) 



^« ^mu.-i IT»"'
,I,IP

.
1 

"PWPWWIBWIl 
>—., ..,■!      *-•••' ■ i. ! - 

NOLTR   71-92 

Comparing  equations   (1)   and   (2),   we   se«   that  both  have   a   portion 
which   is   independent  of  d   (and   thus   independent of  a)   and  one   depend- 
ing  only   on   d   and'thus   on   the   false   alarm  probability.      If  we   define 
the   first  portion   as   the   basic  processor   sensitivity   or  basic   NDS   of 
the   system,   we   have 

Basic   MDS   -   10   log   B (without  post-detection   integration) 

or 

Basic   MDS   -   5   log  3-5   log   T      (with   post-detection   integration) 

Figure   3   is  provided   as   a   nomograph   to   simplify  computing   this   basic 
NDS   figure.     This   is   done   for  systems   with  post-detection   integration 
by  placing  a   straight   edge  between   the   time   T  along   the   first  scale 
to   the   left  and   the   bandwidth  B   along   the   third  scale.      The   MDS 
in   decibels   relative   to   the  noise   in   a  one  Hertz  band  may   then  be 
read  at  the   point   the   straight  edge   crosses   the   second   scale.      The 
nomograph   also   allows   reading   the   time-bandwidth  product  BT   from 
the   scale   at   the   far   right.     This  quantity   is  of  use   in   later   steps. 
Example  A on   the   nomograph  represents   a   system with   a   0.1   Hertz 
filter  bandwidth   and   an   integration   time   of  180  seconds   (3  minutes). 
The   indicated   MDS   for   this   system  is   -16.3   db,   and   the   BT   product   is 
about  18. 

The  nomograph  may   also  be  used   for  systems  without post-detection 
integration by placing  one  end of  the   straight  edge   at  the   point 
marked  1  on   the  BT  scale   at  the   right  and  extending  it  through   the 
proper bandwidth  on   the   B  scale.     The   intersection with   the   MDS 
scale   gives   the   basic   MDS   for  this   system.     Example  B  on   the   nomo- 
graph   shows   this   process   for   a  system  with   B   •   0.1  Hz   and   no   post- 
detection  integration.      The   MDS   in   this   case   is   -  10  db. 

If no   further   adjustment  is   made   to   the   system MDS   figure,   this 
basic  MDS   calculation   provides   a   50%   detection  probability   with   a 
false  alarm probability  of   about  16%.     This   is   generally   too   high 
for  practical   use,   so   the   second  portion   involving d  must be   deter- 
mined.     Figure   4   provides   a  means   of   finding  d   for  a  given   false 
alarm probability   if   the   approximate   BT  product   for  the   system  is 
known.     The   left   hand   scale  of  Fig.   4   gives   the   factor  d,   while   the 
right   hand  scale   is   marked   in   terms  of   D   ■   10   log  d  and   thus   gives 
the   MDS   correction   directly.     The   solid   curves   in  Fig.   4   pvovide   the 
value  of  d  or   0  as   a   function of   false   alarm probability   for   four 
values   of  BT  product   and   should  be   used   for   determining   threshold 
values.     The   BT   ■   1   curve   is   for   systems   without  post-detection 
averaging  and   is   simply   a   plot  of  -1   -Ina.      The   BT  »   10   and   BT   ■   50 
curves   represent  moderate   amounts   of   post-detection  averaging   and   are 
obtained   from   the   chi-square   distribution   with   20   and   100   degrees   of 
freedom   respectively.      The   BT  -  •   curve   is   for   systems   with   very 
large   BT  products   and   is   based  on   the   gaussian   distribution.      Inter- 
polation  between   these   curves   should  be   used   for other  BT  products. 
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Mhile   th«  approximation   that   the   mean   and   the   median of   the   out- 
put  distribution  are   coincident  gives   a   good   value   for   the  MDS   with 
50%   probability  of   detection   for   systems   with   post-detection   averaging, 
direct   use  of  the BT -   1   curve   for MDS   in   systems   without  post- 
detection  averaging  givas   detection probabilities   generally   in   the 
40%   to  45%   range  due   to   the   skewed distribution.      Thus   for   this   case 
the   dotted  curve   is  provided   to   give   the   correct   MDS   value   for   50% 
detection  probability. 

As   an   example  of   the   use  of   this   figure,   suppose   the  system 
discussed   in  example   A   for  Fig.   3   is   to have   an   allowed  false   alarm 
probability  of  10"4,      Reading   from  Fig.   4   for   a  BT  product  of   18 
gives   a   value  oi  about  4.7   for   d  or  about   6.7   db   for   D.     The   threshold 
K   should   thus  be  set  4.7   standard  deviations   above   the  mean  output 
of   the   averager or 

K   -   MB   (1   +   4.7//r8)    -   2.11   NB 

The corrected MDS for the system is 

Basic MDS 

V>S
(FAP) 

Corrected  MDS 

-16.3   db 
6.7   db 

-   9.6   db (with   post-detection   integration) 

where   A        (P*P)   represents   the   change  in  MDS   resulting  from   the 

selected   false  alarm probability. 

For  the   system without post-detection   integration   used  as 
example  B   in  Fig.   3,   a   10~4   false   alarm probability   requires   a 
d  of   about  8.1   as   read   from   the   solid B   -   1   curve.     The   threshold 
is   thus  set  at 

(8.1  +  1)   NB 9.1   NB    . 

The   dotted   curve  should be   used   in   this   case   to  obtain   an  accurate 
MDS   correction   for   50%   P    ,   and   it  gives   a   value   of   9.4   db   for   D. 
Thus   the   corrected  MDS   is 

Basic   MDS 
AMDS(FAP) 

Corrected MDS 

-10.0 db 
9.4 db 

- 0.6 db (without post-detection integration) 
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The   results   obtained   in   this   section   correspond   to   the   predicted 
MDS   at   50%   detection   probability   for   an   idealized  system  with   per- 
fectly   rectangular   filter  bandpass   characteristic»,   an   integrator 
with   a   rectangular   impulse   response   of   duration   T,   and   no   sampling 
or  quantizing   anywhere   in   the  system.      All   of   these   are  physically 
impractical   to   implement.     The   remaining   sections   deal   with   individual 
variations   from   this   ideal   system   and   represent   their   effect   as   a 
variation   in   the   predicted  MDS.      Thus   a   final   MDS  prediction   for   a 
practical   system   can   be   obtained  by   calculating   the   idealized   MDS 
as   above  and   adding   all   corrections   for   system  implementation. 

10 
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MODIFIED   PROBABILITY   OF   DETECTION 

The   simple   expression   derived   for   the  basic   MDS   of  the   spectrum 
analyzer   in   the   previous   section   is  based  on   a   50%   probability  of 
detection,   primarily   in  order   to   give   a   simple   form.      If  some  other 
probability   of   detection   is   required,   a   correction   is   necessary   in 
the   computed   MDS   level.      For   systems   without  post-integration   the 
basic   form  of   the   amplitude   probability   function   at   the   detector 
output   changes   when   signal   is   applied,   and  numerical   integration   is 
necessary   to   evaluate   the   probability  of   detection.      This   has   been 
done  by   numerous   writers,   and  Fig.   5   is   adapted   from reference  2   to 
allow  direct   determination   of   D   for   arbitrary   P   .      The   dashed   line 
shows   an   application  of   this   nomograph,   extending   through   the   50%   P 
and   10"4   false   alarm  probability   points   to  intersect   the   D   curve   at 
+9.4   db.      This   confirms   the   value   of   D  obtained   in   the   previous   example 
from  Fig.   4.      The   dotted  curve   shows   the   effect  of   increasing   the 
required  P.   to   95%   and  maintaining   the   same   false   alarm  probability. 
This   intersects   the   D  curve   at  12.3   db,   so   the   required  MDS   for  the 
.1  Hz  resolution   system  used  in   the   previous   example   is   now   raised   to 

Basic   MDS 
AMDS(FAP    &   V 

Corrected   MDS 

-10.0   db 
+12.3   db 

+   2.3   db (without  post-detection   integration) 

Note   that   the   MDS   adjustment   for   false   alarm probability   and   detection 
probability   are   made   together   in   this   case.      Note   also   that   the 
threshold   level   K  depends  only   on   the   false  alarm  probability   and  is 
not   changed  by   the   new  p   . 

The   nomograph   of  Fig.   5   does   not   apply   for  systems   using  post- 
detection   integration,   and  other   techniques   must  be   used   to   account 
for  detection   probabilities   different   from   50%.     As   has   been   shown, 
the   threshold   detector  on   the   output  of   the   integrator   has   a   decision 
threshold  of   K   «  NB   +   d  N/B/T  where   d   is   determined   by   the   false   alarm 
probability.      In   order   to  obtain   a   detection  probability   different 
from   50%,   the   expected  output  S+NB   of   the   integrator   must   exceed  K  by 
an  amount   d'a   ,   where   d'   is   a   factor   determined  by   the   desired  P     and 
o     is   the   output   standard  deviation   in   the  presence   of   the  necessary 
input  signal.      The   factor  d'   is   positive   if  P     exceeds   50%   and   nega- 
tive   if  a   P     below   50%   is   permitted.      The   standard   deviation   of   the 
averager  output   is   given  by   /N2B/T   +   2SN/T  when   the   signal   S   is 
present,   so   these   requirements   combine   to   give 

S + NB d'o NB + N/B/T + d* /N B/T + 2SN/T 

14 
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This  may  be   simplified  and written   in   the   form 

S/N   -   d   /B/T    [1   +    (d'/d)    /l   +    (2/B)(S/N)J 

The first portion of this expression is just the MDS for 50% detection 
probability, so the term in square brackets may be interpreted as a 
correction factor showing the amount by which the input S/N must be 
raised to provide the desired P .  unfortunately, this term itself 
depends on S/N, so it is not directly useful as a correction term. 

The entire equation above can, however, be rearranged and 
squared to form a quadratic equation in S/N.  Solving this equation 
gives a form 

where 

d'/d and r - d//BT . 

Again the first portion of the expression for S/N is identical to 
that for 50% P , and the portion in the square brackets is a correc- 
tion factor accounting for the modified P .  Since this is a purely 
multiplicative factor, the correction may be expressed in decibel 
form as 

wv 10   log   U   +  p2r  +  p   /l   +   2r  +  p2r2] 

The parameter  p   is   simply  the  ratio   of  the   required  distances 
(measured  in   units  of  standard deviation)   between   the   mean   detector 
output  and   the   threshold in   the   signal   and  no-signal   cases.     The 
correction   is   clearly   zero   for p   «   0   (which  is   the   50%   detection 
probability   case)   and   is positive   for positive p and  negative   for 
negative p. 

The  parameter   r   also  has   a  physical   significance.      The   factor 
d  may be  considered   a   "signal   to  noise"   ratio  at  the   averager output 
to   give   the   desired   false  alarm probability,   and  /BT  is   the   factor by 
which  the  detector output noise   is   reduced  by  the averager.     Thus   r 
has   significance   as   the   detector   signal   to   noise  output  ratio 
required   to   give   the   desired performance   at  the  averager output. 
This  may  be   large  or  small   compared   to   unity,   depending  on   the 
spectrum  analyzer  parameters. 

Figure   6   shows   the  MDS  change   as   a  function of p   and   r over   the 
usual  range  of   these   parameters.     When  r   approaches   zero   (meaning 
very  large   time   bandwidth products   in   the   post-detection   averager) 
the  MDS   change   reduces   to  10  log   (1+p).     However,   as   seen   from 
Fig.   6,   this   MDS   change   increases   rather  rapidly   as   the   value  of   r 
is   increased. 

15 
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Determination of the MDS change for a particular detection 
probability may be performed by the following steps.  First it is 
necessary to find the value of d* associated with the selected P., 
and this may be done with the aid of Fig. 4.  For detection proba- 
bilities below 10% simply select the point on the "false alarm 
probability" scale corresponding to P  and read the negative of d' 
from the "threshold detector ratio" scale.  The curve corresponding 
to the approximate time-bandwidth product of the averager should be 
used.  For example, for a 10% probability of detection the value of 
d' is about -1.28.  For detection probabilities above 90%, Fig. 4 may 
be used by substituting ^'^A     *or  the ^a^se alarm probability scale 
and reading d1 directly from the threshold scale.  As an example for 
a detection probability of 95% and a time bandwidth product of about 
18 (based on the example in the previous section), d' is about 1.75. 
This method of determining d* assumes symmetry of the averager output 
distribution function, which is strictly true only in the gaussian 
(large BT) case.  However, it is a fairly good approximation for 
systems with finite BT products as well.  Figure 4 does not cover 
values of P  between 10% and 90%, but a reasonably accurate value can 
be determined from the linear approximation 

d'»   3.2 (P -0.5) .1 < P  < .9  . 
a d 

Having   obtained   the   value   for   d'   it   is   now  possible   to   determine 
the   parameters  p   and   r   for   use   with   Fig.   6.      For   the   system  used   in 
Example   A   in   the   previous   section   the   detector   threshold   ratio   d  was 
4.7   and   the   BT  product was   18.      Thus   p   ■   d'/d   is   -1.28/4.7  or  -.272 
lor   the   10%   detection  probability   case   or   1.75/4.7   =   .372   for  a   95% 
P   .     For  both   cases   r  »  d/ZlTr     is     4,7//r¥ -   1.1.     Looking  at  the 
intersections   of   these   values   of  p   and   r  in   Fig.   6   we   obtain  an   MDS 
correction   of   about  -2.3   db   for   the   10%   P     case   and   about  +2.6   db   for 
95%   probability  of   detection.      Thus   the  -9.6   db   figure   calculated   in 
example   A   for   a   50%   detection   probability   is   lowered   to   -11.9   if   only 
10%   detection  probability   is   needed  or   raised   to   -7.0   db   if   a  95%   P, 
is   required.     Note   that   for   systems  with  post-detection   integration 
where   Fig.   6   is   used   that   the   corrections   ^^^.(FAP)    and   AU__(P,)    are 
determined   separately,   and  both   must  be   added   to   the   basic  processor 
sensitivity   to  obtain   the   system   MDS. 

16 
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FINITE DETECTION TIME AND EXPONENTIAL POST-DETECTION INTEGRATION 

The idealized post-detection integrator has a rectangular impulse 
response function which can only be implemented by carrying a complete 
time history of all detector outputs over the time T.  This is 
generally an unreasonably large amount of information for either 
digital or analog storage media.  A common solution is to approximate 
the rectangular integrator with a first order recursive filter having 
a time constant T approximately equal to T.  This is the equivalent 
of a simple RC low-pass filter on the output of the detector, and 
it requires only one word of storage per frequency bin to implement 
in a digital system. 

It can be shown (see reference 3) that in the steady state 
an exponential integrator with time constant T has a smoothing per- 
formance (that is a reduction in the variance at its output) 
equivalent to a rectangular integration over 2T seconds.  Thus in 
the steady state the exponential integrator would provide a 1.5 db 
improvement in MDS over a rectangular integrator if T and T were 
made equal.  However, the exponential integrator output builds up 
according to the function 1 - exp(-t/T) after the signal is applied, 
so after any finite interval the signal does not appear at full 
strength.  Since the integrator output change is proportional to 
signal power, the effective loss in signal strength may be written 

Au,«<TJ " -10 logIl-exp(-T./T) ] - 1.5 MDS   a a 

where T  is the time after introduction of the signal by which the 
detection decision must be made, and the 1.5 term represents the 
steady-att'te improvement due to the exponential integrator.  This 
function is plotted in Fig. 7 as a function of the detection time T.. 
Similarly, the dashed line is the equivalent increase in NDS required 
for the rectangular integrator when the detection decision must be 
made in less than the integration time T.  This is given by 

AMDS(Td) - 10 log (T/Td)       
T
d 1 

T 

irur   the   rectangular   integrator   there   is   no   change   in   the   MDS   for   any 
detection   time   T.   above   the   integration   time   T. 

d 

19 
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If   the   required   detection   time   is   known   at   the   time   the   processor 
parameters   are   selected,   optimum  values   for   T   (for   the   rectangular 
integrator)   or   t   (for   the   exponential   integrator)   may   be   chosen   to 
minimize   the   MDS.      For   the   rectangular   integrator   the   optimum   choice 
is    for   T   to   equal   T . ,   forming   a  matched   filter   for   the   signal 
envelope.      A   loss   of   1.5   db   in   MDS   occurs   for   each   factor   of   two 
error   in   matching   the   integration   time   to   the   required   detection   time, 
However,   for   the   exponential   integrator   the   optimum   tradeoff between 
increased  integration   time   for  more   noise   smoothing  or  decreased 
integration   time   for   faster   response   may   be   shown   to  occur  when   T   is 
0.8   T   .     This   optimum,   however,   is   very   broad,   and   the   resulting 
performance   varies   by   less   than   0.5   db   for   a   factor  of   two   variation 
in   either   direction   from   the   optimum   r. 

20 
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PRACTICAL   BANDPASS    FILTER   FUNCTIONS 

The   bandpass    filter   in   the   idealized   system   was   assumed   to   have 
perfectly   flat   response   over   a   band   of   width   B   and   zero   response 
outside   this   band,   as   shown   in   Fig.    8(a).       Practical   filters, of 
course,   do   not   have   this   type   of   response,    and   several   representative 
filter   forms   are   shown   in   Figs.   8(b)    through   8(f).      The   first   two   of 
these   are   first-order    (simple   LC   resonance)    and   third-order   Butter- 
worth   filter   forms   as   commonly   used   in   analog   or   Deltic   type   spectrum 
analyzers.     While   the   Butterworth   form  was   chosen   for   the   third-order 
filter,   it   is   representative  of  other   types   such   as   Tchebycheff   or 
Papoulis   with   the   same   number   of   poles.      Each   of   these   filters   has   a 
oandwidth   B   between   its   3   db   response   points.      The   next   filter   has   a 
qaussian   amplitude   response   function,   which   is   an   approximation   often 
used   in        multi-pole   analog   filters.      The   nominal   bandwidth   B   was 
chosen   to   be   the   bandwidth   to   the   "1   sigma"   points   on   the   response 
and   is   not   the   3   db   bandwidth   for   this   filter.      The   final   two   functions 
are   typical   of   digital   systems    (such   as   FFT   machines   or   other   trans- 
versal   filter   correlators)   where   the   sample   of   input  signal   being 
correlated   is   of   length   1/B.      The   first   is    for   a   correlator  which 
does   not   attempt   to   weight   the   signal   block   before   correlating, 
while   the   second   is   the   response   function   for   systems   using   Manning 
weighting   of   the   data. Notice   that   the   3   db   bandwidth   is   not   equal 
to   B   in   either   case,   because   of   the   choice   of   defining   B   by   the   block 
1ength. 

The   effect  of   an   increased   noise   bandwidth   (NBW)    is   exactly    the 
same   as   increasing   the    input   noise   power   by   the   same   factor   and    there- 
fore   causes   a   change   in    the   system   MDS   of 

A   _ (NBW)    -   10   log   ~p 
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It   is   shown   in   reference   1   that   for   a   general   filter   response 
the   variance   due   to   the   noise   input   is   reduced   by   post-integration   by 
a   factor  F  T   rather   than   simply  BT,   where   F     is   a   function  of   the 
filter   response   shape.      The   value  F      for   the   "noise-induced"   component 
is   used  here   since   this   is   the   termnwhich   directly   influences   the 
false   alarm  probability.      This   can   be   referred   back   to   an   equivalent 
change   in  MDS   as 

^MDS'V    -   -5   ^(F^B)     . 

For a system without post-detection integration only the first of 
these two corrections is needed, while systems employing a post- 
detection integrator require both corrections.  Table 1 is extracted 
from information derived in reference 1 and shows the noise bandwidth 
(NBW) and F  for each of the filter forms of Fig. 8.  Also listed is 
the correction in MDS required for systems both without and with post- 
detection integrators.  The first uses only the noise bandwidth 
correction, while the second includes both the NBW and F  corrections. n 

Notice   that   the   correction   for   the   system  without   integration   is 
always   positive   (less   sensitive   system),   since   the   noise   bandwidth 
of   each   filter   is   always   at   least  as   great  as   that  of   the   ideal   filter. 
However,   when post-detection   integration   is   included   the   net   correction 
is   sometimes   negative,   reflecting   the   fact   that   the   detector   output 
bandwidth   increase   (and   therefore   its   ability   to   be   smoothed  by   the 
integrator)   is   enough   to   more   than  offset   the   increase   in   total   noise 
power.      Thus,   neglecting   sampling   losses   to   be   discussed   later,   these 
filters   actually  outperform   the   "ideal"   filter  with   respect   to   the 
output   fluctuation   level   from   the   analyzer. 

As   an   example  of   the   use   of   these   corrections,   suppose   the   band- 
pass   filters   in   the   systems   discussed   previously   were   replaced  by 
single   tuned LC   filters.      In   the   system without  post-detection 
integration  only   the   change   in   noise   bandwidth   is   considered,   and   this 
increases   the  system MDS   by   1.96  db   from  -0.6   db   to   about  +1.36   db. 
However,   in   the   system with   post  detection   integration   the   combined 
corrections   for  noise  bandwidth  and   detector  output bandwidth   give 
an   0.52   db   improvement   and   thus   lower   the   MDS   from  -9.6   db   to   about 
-10.1 db.      This   result  will   be   modified  later  when   account   is   taken   of 
lossei   due   to  sampling  at   the   input of  the   integrator. 

As>   a  second  example,   consider  the  effect on   the  MDS   of  digital 
implementations   of   the   example   systems   when   the   choice   is   made   between 
unweighted  or  Henning  weighted  processing.      If   no   post-detection 
integration   is   used,    the   unweighted   correlator   has   the   same   MLS 
(-0.6   db)   as   the   ideal   system,   while   the  Henning  weighted  system   is 
degraded  by   1.76   db   to   give   +1,16   db   as   the   MDS.      In   the   system  with 
post-detection   integration   the   unweighted   correlator  gives   a  potential 
improvement  of   0.88   db   for   a   -10.48   db   MDS   while   the   Henning  weighted 
system  has   a   correction  of   +0.17   db   to   give   a   -9.43   db   MDS   figure. 
Again   these   corrections   do   not   take   into   account   possible   sampling 
losses   at   the   integrator   input. 
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FILTER   SCALLOPING   EFFECT 

Another   effect  of   using bandpass   filters   having  non-ideal   shape 
characteristics   is   that   the   response   to   a   signal input   varies   as   the 

tn^l      fronnAnr-v    rl^viji^Aa     ffrim     «- h A     AvA^t-     r<an *• ay    Q £    £|     filter    PaSSband signal   frequency   deviates   from   the   exact   center  » . , „ , . . ^   i „-. 
The   calculations   so   far   assume   that   the   signal   is   passed  without 
attenuation   by   the   filter,   while   in   fact,   the   typical   signal   is 

ated   slightly   by  not  arriving   exactly   at   the   peak   of   the   filter 
response.      The   effect of   this   loss   of  signal   on   the   probability  of 
attenu< 
ssponse.  xne eirect or tms loss or signal on tne prooaonity or 

detection is actually a complicated function depending on many param- 
eters of the spectrum analyzer and must include such things as the 
increased probability of detection in adjacent analysis bins.  How- 
ever, there are some simpler measures that can give at least an 
estimate of the system performance degradation. 

Suppose the various filter types shown in Fig. 8 are used in a Suppose the various filter types shown in Fig. 8 are used in a 
spectrum analyzer where the spacing between adjacent frequency bins 
is B  Hertz.  The worst-case attenuation of the signal component 
(which translates directly into the increase in input S/M required 

Using the worst-case filter attenuation is, of course, a 
pessimistic estimate of the scalloping loss for random signal fre- 
quencies, since most signals would actually suffer less attenuation 
through the filter.  Thus some sort of measure of the "average" loss 
is required.  Exact determination of the amount by which the input 
ri/N must be increased to maintain the same probability of detection 
requires at the very least considering the nonlinear character of the 
P  versus S/N curve, and even this does not take into account the 
tendency to detect in more than one analyzer bin.  However, a reason- 
able estimate, which is mathematically tractable, may be obtained by 
the following argument. 

Our original calculation of the MDS was based on setting the aver- 
age value of the integrator output to the threshold K.  We can directly 
calculate the reduction in the average output due to the signal 
c omponent over an ensemble of random frequencies by averaging the 
power response of the bandpass filter over the range 
  ... .   . . o 
the center frequency.  This then represents the amount by which the 
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input signal power must be raissd so that the average output of the 
strongest frequency bin is returned to the original level. The MDS 
correction   for   this   "average"   scalloping  loss   is   thus 

AMDS <,calloPin9) -   10   log(l/B   ) o 

f   +B   /2 c  „ o 

7 
f   -B   /2 c     o' 

H(u-2lTf   ) I 
c    ' ■d(ü)/2ir) 

The   dotted   curves 
a   function  of   the   fil 
the  worst   case  loss   i 
when   the  bin  spacing 
the   spacing  is   reduce 
bandwidth   is   increase 
reduced   to   about  1   db 
another  example,   Figs 
Henning weighting   in 
to  B   (or   the   inverse 
loss   is   reduced   from 
for   the  Hanning  weigh 
reduced   from  about   1. 
is   used. 

in   Fig.   9   show   this   average   scallopinc,   loss   as 
ter  bin   spacing.      As   an   example   from   Fxg.   9(c) 
s   3  db  and   the  average   loss   is   about  0.55   db 
B     is   just  equal   to   the   3  db  bandvidth   B.      If 
d   to  0.8 B   for  equivalently   if   tne   filter 
d   to   1.25   B   )    the   maximum  scalloping   loss   is 

and   the   average   loss   to  about  0.2   db.      As 
.   9(e)   and   9(f)   show   the  primary   reason   for 
digital   systems.      If   the bin  spacing  is   equal 
of   the   input data   block   length)    the  maximum 
3.9  db   for   the   unweighted  correlator   to   1.4db 
ted  system.     The   average   loss   is   similarly 
25   db   to   about  0.5   db  when  Hanning  weighting 
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EFFECT  OF   FILTER   TRANSIENT   RESPONSE 

In   the   Idealized multichannel   spectrum  analyzer  of  Figure  la, 
each  of   the   frequency  bins  had  its   own  narrowband   filter permanently 
associated  with   it.     Thus  only   the   steady-state   response   of   the 
filter   to   signal   and  noise   inputs   was   important.     However   in   time 
compression   type   systems,   such   as   that  shown in  Figure   lb,   a  single 
filter   is   effectively  switched   from  one   frequency   analysis   bin   to 
the   next on   each   circulation   of   the   time   compressed   input.      The   time 
spent  in  each   analysis  bin   is   on   the   order of  the   inverse   of   the 
filter  bandwidth,   so   the   transient     response  of   the   filter  becomes 
important. 

Since 
the noise in 
will be the s 
steps through 
is equivalent 
lar pulse env 
frequency bin 
adjacent freq 
oscillator ch 
sweeps contin 
resembles the 
different  res 

the   noise  in one   ana 
the   next,   it  may   be 
ame   as   in   the   steady 

a   frequency   bin   in 
to   having   the   signs 

elope   of  a duration 
.    (Note   this   assumes 
uency   bin»   is   neglig 
anges   frequency   in  d 
uously,   then   the   eff 

frequency   response 
ults   are   obtained.) 

lysis   bin  is   indistinguish 
assumed   that   the   filter   no 
state   case       However  when 

which   a   signal   is   present, 
1   applied  «s   a.  burst   with 
equal   to   the   dwell   time   in 

that   the   response   of   the 
ible   and  that   the   heterody 
iscrete   steps.      If   the   osc 
active   envelope   of   the   inp 
function  of  the   filter   and 

able   from 
i'se  output 

the   filter 
the   result 

a   rectan^u- 
the 

filter  in 
ning 
illator 
ut  signal 

somewhat 

The   output of   the   filter   is   applied   to   the   square   law   Jetector 
for   measurement of   the  envelope   amplitude,   and   the   detector  ouput  is 
then  sampled   for   inclusion   in   the averager memory.      Ideally   the  sampling 
instant  at   the   detector output sh-iul«    coincide  with   the   peak   of   the 
envelope   response   to   the  burst  of   input   signal.     However   it   is   common 
practice   to   sample   at   the  end of   the   dwell   time   in  each   frequency  bin, 
just as   the   applied  signol   component would  disappear  due   to   the 
oscillator  switching   to   the   nt-tt  bin.      The  envelope   response   at  this 
instant  is   just   equal   to   the  step   response of a  low-pass   equivalent 
of   the  bandpass   filter,   evaluated  at   a   time  T.    equal   to   the   dwell 
time  in   the   frequency  bin.     Since   failure  of  the   filter   to   build up 
to  full   envelope   response  during   the   dwell   time   is   equivalent  to 
reduction of   the   inrut signal   amplitude   by   the   same   ratio,   the   loss 
due   to   this   effect  is  -20  log   (envelope)   where   the  eavulope   response 
is   normalized   to   unity   in   the   steady   stale. 

Th«   solid   curves   in   Figure   10   show   the  envelope   response  of 
three  of   the   filter   functions   shown   in   Figure  8.     The   tine   axis 
represents   the   dwell   time   in   the  bin  and   is  normalised   to   the   nominal 
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bandwidth   B   of   the   bandpass   filter.      The   vertical   axis   represents    the 
amplitude   of   the envelope response   and   is   marked   in   terms   of   -20   log 
(envelope)   on   the   right   hand   end   to   allow   direct   reaoing  of   the 
change   in   MDS   resulting   from   this   effect.      The   single   tuned   resonant 
filter   and   the   third-order   Bucterwoith   filter   are   the   same   as   those 
shown   in   Figures   8b   and   8c  with  B   equal   to   the   separation   between   the 
3   db   points   on   the   response.      The   gaussian   filter   is   not  strictly   a 
physically-realizable   function.      The   curve   shown   in   Figure   10   is    thus 
an   approximation,    chosen   to   have   the   bandwidth   shown   in   Figure   Bd   and 
a   50%   point on   i \.s   response   curve   at   a   time   of   .5/3.     The   three   dotted 
carves   represent   three   other   filter   functions,   all   of  which   are   third- 
order    (3   pole-pair)    filters   with   3  db  bandwidths   of  B   Hertz   and   18   db/ 
octave   skirt   response   for   frequencies   well   removed   from  resonance. 
The   Tchebycheff   filter   is   allowed  one   db   ripple   in   the   passband    (except 
that   it   falls   to   3   db   at   ±   B/2)   while   the   Papoulis   design   is   ripple- 
froe.      Both   have   steeper   skirts   near   the   edge   of   the   passband   than 
tne   Butterworth   design.      The   "equipole"   design   consists  of   three 
i dentical sections and  has   a   much   less   rapid   rolloff  of   response   near' 
resonance   than   tne  other   designs.     This   design   is   sometimes   used   as 
an   approximation   to   the   gaussian   filter   response. 

Notice   that   the   effect  of   the   transient   response   is   a   strong 
function   of  both   filter   type   and  bandwidth   when   the   dwell   time   and 
the   bandwidth  are   nearly   reciprocal.     When   T     is   equal   to   1/B   as   is 
nominally   assumed   in   many   spectrum  analyzers,   the   loss   among   the 
physically   realizable   filters   ranges   from   0.4   db   for   the   single-tuned 
filter   to   about   3.5   db   for   the   Techebycheff   design.      In  general   the 
loss   increases  with   increasing   steepness   of   the   frequency   response 
curve   near   the   band   edge.      As   an  example   of   the   effect  of   filter 
bandwidth,   consider   the   Butterworth   design  which   has   a   loss   of   1.3   db 
when   B   is   chosen   as   1/T   .      If   the  bandwidth   of   the    'ilter   is   increased 
oy   25%   so   that  B   -   1.25/T.,    the   normalized   dwell   time  becomes   1.2'j/B. 
In   this   case   the   overshoot  of   the  Butterworth   filter  proves   helpful 
in   that   the   sampled  envelope   is   about   0.1   db   larger   than   the   steady 
state   response.     On   the   other   hand   if   the   filter   bandwidth   is   reduced 
to   0.8/T,     the   loss   increases   to   about   3.8   db. 

b 

Since   the   losses   due   to   the   filter   transient  response   can 
become   rather   large   and   are   strong   functions   of   the   parameters   of 

■ponse   effect  does   not   occur   in   systems   using   transversal   filters 
[or   correlation   techniques)    such   as   FFT   systems,    it   is   still   importan 
in   digital   systems   using   recursive   bandpass   filter   designs. 
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INPUT SIGNAL CLIPPING LOSS 
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e noise spectrum is essentially white over the input 
ng operation may be modeled as the addition of a new 
whose total power is (Tr/2-1) times the total power 
input noise but whose bandwidth is roughly two or 
original noise bandwidth.  Because of the increased 
noise introduced by clipping, the increase in noise 

er the band of interest is smaller than the increase 
However the spectral analysis system almost always 

t of discrete input sampling operation and tnis tends 
the out-of-band clipping noise back into the proces- 
the actual loss due to clipping depends to some 

put noise spectrum and the frequency at which the 
ion is sampled by the spectrum analyzer. 

Reference 4 shows that, if the input noise to a clipper has 
an autocorrelation function $.  . (T) , the effect of the clipper is equiva- 
lent to adding a new noise component of autocorrelation function 

* , (0) 
11 

sin 
-1 

(4>.(T)/*..(0)]-ljl..(T) 
11       11 11 

For   any   given   input   spectrum,   the   spectrum   of   this   new   noise   can   thus 
be    found.      At   any   given   signal   frequency   in   the   system   passband   the 
effective   signal   to   noise   is   changed   by 

Au      (Clipping)    =   10   1 ogl (N (u) +N (w) ) /N ((D) ] 
c 

wnere N(w) and N (w) are respectively the noise power densities of the 
nu tne noise contributed by the clipper.  While the 
can be seen in general to be a function of frequency, 

input noise a 
c iipp ing loss 
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this   dependence   is   small   enough   in   the   white   (or   nearly  white)    noise 
case   considered  here   to  be   ignorable.     If   the   system  under   considers' 
tion  employs  sampling  at  a   rate  less   than   about   five  times   the   highest 
input   frequency,   the   higher   frequency  clipper   noise   components   are 
folded  back  into   the  input   spectrum and   increase   the   clipping  loss. 
A   reasonable  assumption  here   is   that   the   clipping  noise   is   then   approxi- 
mately   evenly distributed over  a band of  width   equal   to  half   the   samp- 
ling   rate  and  that   this   noise   adds  incoherently   to   the original   input 
no ise. 

Table   2  lists   a   number  of  system   configurations   incl 
low-pass   systems   in  which   several  octaves   of   input  signal   an 
are  passed  through  a   single    clipper,   and  octave   bandpass   sy 
in   which   the  analog  signal   is   first  filtered   to   cover only  a 
octave   before   clipping.      These   systems   generally  have   severs 
channels   designed   to   cover   multiple  octaves.      As   far  as   the 
operation   is   concerned   there   is   nothing   special   about  dividi 
spectrum   into  octaves   rather   than  broader or   narrower  segmen 
octave   filtering  is   a   common   choice  in many   systems   because 
binary   interlacing of  processing operations   in   the   spectrum 
For   both   the   low-pass   case   and   the octave  bandpass   case,   the 
noise   is   assumed  to be   approximately white  over   the   system p 
and   removed outside   the  passband.     For  each   of   the   two  genet 
spectra,   several   typical   sampling  rates  are   listed   in  Table 

uding  both 
d   noise 
st'ims 
single 

1   parallel 
clipping 
ng   the 
ts,   but 
it   allows 
analyzer. 

input 
assband 
al   input 
2. 

For  both   the   low-pass   and  the  octave   bandpass   systems,   it  may 
be   seen   that attempting   to   sample  at  the   Nyquist  rate   (twice   the 
input   signal  bandwidth)   after   clipping  causes   a   loss   of  1.96   db, 
but   that   this   loss  may  be   reduced significantly   by   increasing   the 
input  sampling  frequency.      The   loss  is   reduced   to   1.09  db by  sampling 
at   twice   the   Nyquist   rate.     Further  increases   in   sampling  rate   con- 
tinue   to   reduce  the   loss,   but   little  additional   reduction occurs 
beyond   about  three   times   the   Nyquist rate. 
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EFFECT   OF   MODIFIED   DETECTOR   CHARACTERISTIC 

Th«  basic  performanc«   calculation   for   th«   spectrua  analyxer 
was   don«   for  a  system  employing  a  square   law   detector  at  the   bandpass 
filter  output.     This   was   done  partly   for   mathematical   convenience 
and  partly  because   the   square   law   detector   has   nearly   the   optimum 
detector   characteristic.      However  many   actual   spectrum  analysis   systems 
employ   other   types   of   detectors.     The   most   common  of   these   is   the 
linear   detector   (envelope   detector,   full-wave   detector,   or   half-wave 
detector)   because   of   its   relative   ease   of   implementaion.      Another 
common   choice   is   a   logarithmic detector  because   it produces   an   output 
easily   interpreted   in   decibels   and  because   of   its   "constant-false- 
alarm-rate"   characteristic   (output variance   is   independent of   input 
noise   power).     A   third  possibility   is   a   detector   which  performs   a 
thresholding operation   and  provides  only   binary   information   to   further 
averaging  processes. 

The  effect  of   these   modified detector   characteristics   on   the 
minimum  detectable   signal   of   the   spectrum   analyser  depends   on   the 
signal   and  noise   levels   at   the   detector   itself   and on   the  amount  of 
additional   averaging  done   on   the   detector   output.     Since   the  perform- 
ance   dependA*on  detailed   characteristics   of   the   tails  of   the   distri- 
bution   function   at   the   averager output,   exact   mathematical   treatment 
is  quite   difficult  as   may   be   seen  in  Reference   5.     However  reasonable 
estimates  of   the  NDS   change   can  be made   in   the   two  extreme   cases   of 
no  poet-detectioi.  averaging   and  large   time-bandwidth  product post- 
detection   averaging.      The   first  case   can   be   dispensed with  by   noting 
that   for   any  instantaneous   output of   the   square   law  detector   there 
is   a   corresponding  deterministic  output   for  any   alternate   type  of 
detector.     If  the   detector   output characteristic   is monotonically 
increasing with  input power,   a  threshold  K'   can   be  defined   such   that 
whenever   the  square   law  detector output  exceeds   a   threshold K   the 
alternate   detector   output   exceeds   K*.      Consequently  with  proper   choice 
of   K*   a   system with   no   post-detection   averaging  will   produce   detections 
and   false   alarms   at   exactly   the   same   times   as   a   corresponding   system 
using   a   square-law   detector   operating  on   the   same   input  data.      Thus 
if  no   post-detection   averaging   is   used,   modification  of   the   detector 
characteristic  produces   no   change   in   the   MDS   required   for   a   given 
level   of   performance. 

With   large   amounts   of  post-detection   averaging,   the  output 
distribution  of   the   averager   becomes   approximately   gaussian   regardless 
of   the   amplitude   distribvtion  of   the   averager   input.      Under   this 
approximation   the   distribution   is   completely   specified when   its   mean 
and   variance   are   known,   and   these   are   fully   determined  by   the   mean 

35 



^iiji ■iiii.wi»w»^y^^^ll^w 
Pi" ipii.if"»inpi|| oil •-i"i"V " ""■I ■■ 

mp^pwi inn" . i i,    i 

NOLTR   71-92 

and 
post. 
sign 
at t 
van 
tna t 
ou tp 
expa 
ou tp 
the 

variance 
-detect! 
al-to-no 
he detec 
ance wi1 

tne rel 
ut of th 
nsion at 
u t whose 
de tec tor 

of    the   detecto 
on   integration 
ise   ratio   requi 
tor   output   is   s 
1   still   approxi 
ationship  betwe 
e   detector   can 

the   linear   ter 
statistics   are 
output   statist 

r   output.      Further,    if   a   large   amount   of 
is   used,    then   for   any   reasonable   output 
rement   the   signal-to-noise   ratio   required 
mall.      This   means   that   the   detector   output 
mately   equal   the   zero-signal   variance   and 
en   the   input  signal   power   and   the   mean 
be   approximated   by   truncating   its   Taylor 
m.      Thus   if   y   represents    the   detector 

a   function   of   the   input   signal   power   S, 
ics   are   represented   by 

y2   (o: y(0) 2 (variance,   at   S=»0) 

y(3)     =    y(0)    +   S 11 
dS 

S = 0 
(mean,   versus   S) 

or 3 =0,-0,       and   y(S)    =0.    +   S   C., 
y ^ 1 1 3 

where      C y(0) y   (0) and        C (dy/dS) 
S»0 

Now the probability density function of the envelope of the 
signal plus noise output of the narrow band filter may be shown to 
ue   (see   reference   6) 

p(x) = (x/NB) exp (■ (X +2S)/2NB] I {x/2S/NB) 0><' 
o 

where S is the signal power. NB is the noise power, x is the envelope 
amplitude, and I  is the modified Bessel function of zero order.  Now 
suppose tne detector characteristic is such that 2 given envelope 
amplitude x produces an output y = fix) .  Now the expected value of 
any function of x may be obtained by multiplying that function by 
p(x) and integrating with respect to x.  Thus the two moments ot y 
which are required may be found as 

and 

C  = y(0) - f 

c2 = ^(0, .[    « 

x f(x) exp(-x /2NB)dx/NB 

f2(x) exp(-x /2NB) dx/NB 

where use has been made of the fact that I (0) « 1. o 
constant C.. may be found as follows 

The remaining 
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C3-   dy/dS 

-   d/dS      «xpf-S/ Lxp(-S/NB)      f     X   f(x)    exp(-x2/2NB)    I    (x/2S/NB)    dx/NBJ 
S-0 

Differantiating   the  product  form and   carrying   tha  darivitiva   undar   the 
Integral   aign   gives 

C3   -)exp(-S/NB}     |(-1/NB)     /       X   f(x)    exp(-X2/2NB)    I       (x/Ts'/NB)    dx/NB 

+ /     x  f(x)   exp(-x2/2NB)   d/dS    jl   (x/2?/NB)|    dx/NB  J 

2 Now   the  series   expansion of  I   (z)   is   of   the   form 1   +   z  /4   +   ..., 
so   the   I     function   appearing  in   the   above   expression  may  be   expanded 
as 

2 2    2 1   +   X   S/2K   B* 

2 2   2 so   that its   derivitive  with   respect   to   S   as   S"0   is  x  /2N   B   .      Inserting 
this   in  the   above   expression  and evaluating   the   remainder  of   the 
expression   for  S-0   gives 

C-   -    (-I/IT»)   /       x   f(x)   exp(-x2/2NB)    dx/NB 

Jo 
+ (1/21 x     f(x)   exp(-x2/2NB)   dx/NB 

-   (1/2N2B2)   /       X3   f(x)    exp(-x2/2NB)    dx/NB   -   C./NB 
J0 

In  order  to  «set a  given performance   criterion  at   the   averager 
output,   the applied  signal power S  nuat  be  sufficient  to  shift   the 
mean  output by  some   number of standard  deviationa.     The   signal   povar 
required  to  do   this   is   proportional   to   the   ratio of   the   detector 
standard  deviation   to   the   slope  C.  or   to   the   function 

/ C2-Cl   /C3 

For the square law detector f{x!"X  and we may make use of the integral 
relation 

A  - /  x2n+1 exp(-x2/2NB) dx/NB - 2° n! (NB)" n   Jn 
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2 , .._2.2„. 2 to   give   C   -2(NB),   C^=8(NB)     ,    and   C   -(1/2N   B   )8{NB)       -   2NB/NB-2. 
Plugging   these   values   into   the   expression   for   the   required  power 
causes   all    constants   to   cancel,    leaving  only   the   factor   NB.      Thus 
for   an   arbitrary   detector   function   f(x)    the   power   required   for   a 
given   system   performance,   relative   to   that   required   with   a   squar 
law   detector,   may  be   expressed   as   an   increase   in  decibels   equal 

e 
to 

A (detector)    =   10   log 
MDS 

l/V^2 /C3NB] 

where   C   ,   C   ,   and  C^   are   evaluated   for   the   detector   function   in 
question. 

It   must   be   remembered   that   this   result   applies   only   for   systems 
in  which   a   large   amount  of  post-detection   integration   is   used,   so 
that   both   the   small-signal   approximation   to   the   change   in   detector 
output   mean   and   the   gaussian   approximation   to   the   averager  output 
distribution   are   valid.      Attempts   to   extend   this   "mean   and   variance" 
approach   to   systems   with   small   BT   products   without   taking   into 
account   the   detailed  statistics   at   the   averager   output   can   produce 
misleading   results. 

The   following  subsections   discuss   this   result   as   applied   to 
several   commonly   used   forms   of   detector   function. 

Linear   Detector 

The   linear   detector   may   be   any one  of   the   class   of   detectors 
whose   output   varies   linearly   with   the envelope   amplitude   or  such 
that   f(x)=x.      The   MDS   change   for   this type  of   detector   can   be  evalu- 
ated   using   integrals   of   tne   form 

B     -  /      x'"   exp(-x   /2NÜ)    dx/NB   «   l»3...(2n-l)    •TI/2NB   (NB)n 

"      •'0 

This   leads    to   C     *  B.    ■   /ffNB/2 ,   c     »   A     =   2 (NB) ,    and 

C      «    (i/2N^B   )    B   -B   /NB   -   /TT/8NB.      Plugging   these   into   the   expression 

for   the   MDS   change   gives 

A (detector)    =   10   log   /2NB-ITNB/2   /NB/TT/BNB 

MDS 

=   10   log   /(2-n/2)/(Ti/b)    =   .193   db 
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Thus   the   conclusion   is   that  «  degredation   of   about   .2   db   is   experienced 
in   the   input  sensitivity  of  a   spectrum  analyzer  if   the   square   law 
detector   is   replaced  by   a  linear   detector. 

This   result  is   in  agreeaent with  other  anlytical   methods   and 
particularly   that of   reference   5   for   large   time-bandwidth   products 
in   the  post-detection   averager.     However   for one  example   shown   in 
reference   5,   where   the   performance   of  a   linear  and  a   square   law 
detector  were   compared   as   a   function   of  BT  product,   this   limit  was 
approached only   for   time-bandwidth  products   in excess   of   about   100. 
In   fact  for  BT products  below  about   70   the   linear  detector  actually 
outperformed   the   square   law  detector   by   as   much  as   0.11   db.     This   is 
explained by   the   fact   that the   true  optimum  detector,   which   follows 
a   in   I   (x)    function,    is   better  approximated  by  A  linear   detector   for 
large   Signal-to-noist«   ratios   at   the   detector   input   than   it   is   by   the 
square  law  detector.      On   the  ocher   hand   the   square   law   detector 
forms   a  better   approximation  when  only   a   low  detector   signal-'-^-noise 
ratio  is   required,   as   the   case   for   large   integrator  BT  products.     Thus 
for  systems  with   integrator BT products   less   than  about  100   it   is 
more   accurate   to   assume   no  degredation   for   a   linear   detector  and   to 
apply   a  degredation  of   about 0.2   db   only   for   systems   with   BT  products 
in   excess  of   100. 

Logarithmic   Detector 

When   the   detector   function   is   y   ■   £n(x),   the  detector   is   refer- 
red   to  as   a  logarithmic   detector.      This   type  of detector  has   two 
interesting properties.     First,   the  mean output is  proportional   to 
the   log of  the   input power  and   thus   may be   interpreted   in   decibels. 
Second,   regardless   of   the   input noise  power   level,   it may  be   shown 
that  the  output   variance  around  the   mean  value   is   a  constant.     For 
this  reason  logarithmic   detectors   are   often   used  in  systems   where   the 
"constant   false   alarm  rate"  property   is   desired over  a   large   range 
of   input power   levels. 

The performance   of   the  logarithmic  detector may  be   evaluated 
by   substituting   in(x)    for   f(x)   in   the   integral   relations   for   C,,   C- 
and C-   and  evaluating  numerically.      This   calculation   indicates   a 
loss  of  1.08   db   for   the   logarithmic   detector   for  large   integrator 
time  bandwidth  products.     The   theory  described here   does   not  suggest 
the  minimum BT  product   for which   this   result  is   valid,   but   some 
experimental   results   suggest degredation  on   the  order  of  one   decibel 
for  BT products   as   low   as   ten. 

Modified Logarithmic  Detector 

One  of   the   primary   reasons   for   the   degredation   in   the   logarith- 
mic  detector   is   the   large   fluctuation   of   £n(x)    for   very   small   x.      To 
avoid   this   the   log   detector   is  often   approximated  by  a   linear   function 
x   for  x less   than   /NB   and  by   /NB   [l + £n (X/VNB) ]   for  x  greater   than 
/NB.      This  reduces   the   fluctuations   for   small   x  but  destroys   the 
"constant   false   alarm  rate"  property   since   the  detector   shape   function 
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is   now   tailored   to   a   specific   value   of  NB.      Again   the   values   of   C., 
C      and   C      may   be   computed   by   numeracal   integration.      The   indicated 
degredation   in   MDS   relative    to   a   square   law   detector   is   0.58   db   for 
th-^s   modified   characteristic,   or   about  half   that   experienced  with 
the   true   logarithmic   detector. 

Binary   Detector 

The   binary   detector   is   one   in   which   an   inital   thresholcing 
operation   is   performed   before   integration,   so   that   only   logical    "0" 
and   "1"   inputs   must  be   handled   by   the   integrator.      Since   thresholding 
operations    take   place   botn   before   .ivd   after   the   post-detection   integra- 
tor,    tnis   scheme   is   sometimes   refei.ed   to   as   double-threshold   detection. 
Systems    in   which   the   detector   output   is   printed   as   intensity   modulation 
of   a   sweep   on   a   paper   or   CRT   display   and  which   then   rely   on   visual 
integration   of  many   such   sweeps   for   the   post-detection   integration 
often   result   in   a   form  of   binary   detection.      This   occurs   whenever   the 
aynamic   range   of   the   display   medium   is   inade^aate   to   handle   the   large 
fluctuations   of   the   detector   output   and   yet  provide   discernable   changes 
in   its   average   intensity   for   weak   signal   inputs. 

As   was   the   case   with   the   modified   logarithmic   detector,    the 
oinary   detector   characteristic   must  be   scaled   to   the   expected   detector 
power   input   NB.      If   the   detector   output   is   zero   for   x   less   than   a 
threshold   k'/ÜB   and   unity   above   this   value,   the   degredation   due   to 
the   binary   detector   depends   on   the   value   of   k'   selected.      For   large 
BT   products   in   the   post-detection   integrator,   a   broad   minimum  occurs 
in   the   computed   loss   for   a   k'   of   1.8  where   the   false   alarm  probability 
at   the   first   detector   output   is   about   20%   and   the   loss   due   to   binary 
detection   is   about  0.94   db.      The   loss   increases   to   1.02   db   for   ,i   k" 
of   2.0   where   the   false   alarm  probability   at   the   first   detector   output 
is   13.J%   and   to   1.08   db   for   a   k'   of   1.5  where   the   first  detector   has 
a   false   alarm  probability   of   32%.      Beyond   this   range   the   loss   increases 
rather   rapidly,   reechin:;   1.74   db   at   a  k'   of   2.5   where   the   initial   FAP 
is   4.3%   and   reaching   2,07   db   at   a  k*   of   1.0   where   the   initial   detector 
has   a   FAP   of   61%. 

Since   the   binomial   distrihution   resulting   in   the   averager   with 
a   binary   detector   is   amenable   to   analysis,   this   system  has   been 
studied   for   small   BT  products   and   is   discussed   in   reference   7.      While 
tue   optimum   choice   of  k'    varies   somev.-   at  with  BT   product,   the   loss 
due   to   binary   detection   remains   pretty   stable   at   about   one   decibel 
even   for   BT   products   less   than   ten.      Tnub   this   forms   a   reasonable 
estimate    for   the   MDS   change   due   to   binary   detection,   or   in   many   cases 
to   ' isaal   post-detection   integration. 

Modified   Binary   Detector 

One   possible   modification   to   the   oin ary   detector   is   a  detector 
whose   output   is   zero   up   to   the    thresh   ii   K'^NB   and   proportional   to 
x   -   k'i'NB   for   all   values   of   x   abo^e   i'i',s   threshold.      This   essentially 
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corresponds   to   certsin   "clean   display"   techniques   in   visual   integratio 
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AVERAGER INPUT SAMPLING RATE 

The calculation of processing gain due to smoothing in the 
averager Or integrator assumed that the output of the detector was 
a continuous signal and constantly available to the averager input. 
However, m either time compression systems or digital FFT analyzers 
the same detector is essentially shared among many processing channels, 
and thus the averager input becomes a sampled time function.  In time 
compression systems the sampling rate is equal to the number of 
times the oscillator sweeps through each frequency bin per second. 
There is no particular constraint on the relationship between this 
and the filter bandwidth, time compressor memory length, or bin 
spacing, but the sweep rate is gunerally chosen to be roughly equal 
to the nominal filter bandwidth.  The product of the sweep rate and 
tne time compressor memory length is often termed the redundar .■   of 
the processor, since it represents the number of times a singi 
sample of input signal is used to form the output in a given fre- 
quency bin. 

In fast-fourier transform systems, several of the processing 
parameters are inherently related by the FFT algorithm.  Normally 
only one transform is don^ on each block of input data, so that the 
nominal filter bandwidth, the inverse of the block length, and the 
sampling rate into the post-detection integrator are all equal. 
However it is possible to overlap input data blocks so that each input 
sample typically appears in more than one transform, and thus increase 
the sampling rate at the integrator input. 

The output spectrum from the square law detector was shown in 
Fig. 2(c) for the ideal bandpass filter and extended up to 2B Hz. 
For other filter bandpass functions this spectrum does not have a 
sharp cutoff and thus extends over all frequencies.  consequently, 
any finite sampling rate at this point results in some information 
loss and therefore a loss in system performance.  This question is 
explored in detail in reference 1 for each of the filter functions 
shown in Fig. 8.  For any finite actual sampling rate at the 
integrator input a sampling efficiency is defined which relates the 
actual output variance of the integrator to that which would be 
obtained without sampling..  Reference 1 distinguishes between a 
component due orly to the input noise, which represents the total 
fluctuations in the no-signal case, and a second component which 
apoears only when signal is present.  Since our MDS computations for 
50% probability of detection do not require knowledge of the variance 
with signal, we need only consider the noi^e-induced component. 
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From reference 1 it may be seen that any reduction of this 
sampling efficiency £  below unity is equivalent to a similar 
reduction in the integration time T.  Thus the effect of the 
sampling efficiency on the system MDS is of the form 

Au_c(sampling) ■ - 5 log E 
(■ nuo n 
i 

Figure 11 shows these MDS corrections for various filter functions, 
as converted from the results in reference 1.  The loss due to 
sampling is determined as a function of the integrator sampling 
rate relative to the nominal bandwidth B of the bandpass filter. 
Note this is not necessarily the same as the system redundancy, 
since the filter need not be matched to the memory length in time 
compression systems. 

As an example, consider a time compression system using a 3rd 
order Butterworth filter with an 0.1 Hz bandwidth, and which sweeps 
through all analysis bins once per ten seconds.  The sampling rate 
of the integrator is thus equal to B and the sampling loss may be 
read from Fig. 11 as 0.5 db.  If the sweep rate of the system were 
increased by 25% (to one sweep per 8 seconds), this loss would be 
reduced to about 0.2 db.  On the other hand, if the filter bandwidth 
were increased 25% without changing the system sweep rate, the 
sampling rate is then only 0.8 B and the loss due to sampling 
increases to about 1.0 db. 

As a second example consider an FFT system without overlapped 
transforms so that the sampling rate is equal to the nominal band- 
width B.  if no weighting of the signal data block is done, the loss 
due to sampling is 0.88 db.  Note this exactly cancels the gain shown 
in Table 1 for this filter function, since the samples are completely 
uncorrelated at this sampling rate.  If Manning weighting is applied 
to the data blocks to be transformed, the loss is 1.59 db, which 
again is just the gain shown in Table 1 for the F  contribution to 
the MDS in systems with post-detection integration.  It may be 
further seen from Fig. 11 that, whether or not Hanning weighting 
is used, the loss due to sampling is reduced to about 0.25 db when 
the sampling rate is twice the nominal filter bandwidth.  This may 
be implemented in an FFT system by computing a new transform each 
time half of the input data buffer is updated, rather than waiting 
for a complete block of new input data before transforming. 
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EXAMPLES 

In this section the minimum detectable signal is computed for 
four typical spectrum analyzers.  The first two are Oeltic type time 
compression systems, differing only in the choice of the bandpass 
filter bandwidth.  The second two are Fast Fourier Transform systems, 
and they differ from each other only in that one employs Hanning weight- 
ing of the data and the other does not.  In all four systems the 
spacing of analysis frequencies is 0.1 Hz and each frequency output 
is generated once every ten seconds for inclusion in the post-detec- 
tion integrators.  These integrators in each case are exponential 
averagers with a three minute time constant, and the output threshold 
is set to give a 10 ' false alarm probability in each frequency bin. 
A 50% probability of detection is required at an observation time 
five minutes after a signal is applied.  The Celtic systems employ 
hard clipping of the signal input with a sampling rate equal to three 
times the highest frequency and use a linear detector, while the FFT 
systems use multibit signal representation and square law detectors. 
It is emphasized that Deltic systems do not necessarily employ 
clipping or linear detectors nor do FFT systems necessarily have 
multibit signal sampling or square law detectors.  These associations 
are used here for purposes of the examples only.  The MDS calculations 
for these four systems are summarized in Table 3 and are discussed 
for each system below. 

Deltic Spectrum Analyzer 

The first step in determining the system MDS is to determine 
the basic processor sensitivity from figure 3, using the nominal filter 
bandwidth of 0.1 Hz and the integration time of three minutes (180 
seconds).  This gives a processor sensitivity of -16.3 db and shows 
the BT product of the post-detection integrator to be 18.  The first 
correction to this basic sensitivity ia   for the false alarm probability 
of 10  .  Using Figure 4 and interpolating for the approximate BT 
product gives a A   (FAP) of about 6.7 db.  Since the desired detection 
probability is 50V, no correction is required here and a

Mnc(
p
H) is zmxo. 

Adding these two corrections to the basic processor sensitivity gives 
an ideal MDS of -9.6 db for the system. 

The first variation from this idealized system   takes into 
account the exponential integrator and the allowed observation time. 
This detection time is 1.67 times the integrator tim»s constant, and 
Figure 7 shows the resulting MDS is lowered by 0.6 db relative to 
that for a three-minute rectangular averager.  The n^xt correction 
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is for the filter noise bandwidth and tne output bandwidth of the 
detector fluctuations due to the shape function of the bandpass 
filter, which is assumed to be a Jrd order Butterworth for this 
example.  Table 1 shows this correction to be -0.3 db.  The average 
scalloping loss for this filter function may be read from Figure 
9(c) as 0.55 db, since the nominal filter bandwidth and the frequency 
spacing are equal.  The loss due to the filter transient response 
is seen from Figure 10 to be 1.3 db, assuming that the Deltic storage 
time is the inverse of the filter bandwidth or ten seconds. 

The loss due to the input signal clipping is estimated from 
Taole 2   as 1.4 db, since the spectrum analyzer is assumed to operate 
on a low-pass input spectrum and the sampling frequency is three 
times the input cutoff frequency.  The MDS correction  for the 
linear detector is taicen to be zero because the BT product of the 
averager is well below the point where the linear detector becomes 
worse than the square law detector.  Finally from Figure 11 the 
averager input sampling loss is evaluated to be 0.5 db because the 
u.l per second rate of a ,  , „ 
width of the Butterworth filter. 

verager updates is equal to the nominal band- 

The adjusted MDS calculated by adding all these corrections 
to the ideal system MDS is -6.75 db, or some 2.85 db higher than that 
of the idealized system.  In scanning through the losses it may be 
observed that much of the loss comes from filter scalloping effects 
and transient response, both of which may be improved by increasing 
tne filter bandwidth slightly.  This is the motivation for the second 
sys tern. 

Modified Bandpass Filter Bandwidth 

This system is identical to the previous one except that the 
oandpass filter bandwidth has been increased to 0.125 Hz in an effort 
to reduce sampling and transient response losses.  Since the nominal 
value of B has been changed (even though the frequency bin spacing 
is still 0.1 Hz), a new basic processor sensitivity of -15.8 db is 
found from Figure 3.  The averager BT product is also increased to 
22.5, but no significant change occurs in the A„t,„(FAP) of 6.7 db. 

M US 
Again ^ (

P
H' ^

S
 
zero» 3C the   ideal system MDS is -9.1 db or about 

0.5 do worse tnan that of the previous system. 

The corrections for observation time (TJ, filter shape 
d 

function, clipping, and detector function are unchanged from the 
previous system since tney do not depend on the filter bandwidth. 
However the average scalloping loss is reduced to 0.2 db, since 
the frequency Din spacing is now only 0.8 times the filter nominal 
bandwidth.   The transient response effect may be seen from Figure 
10 to be a -0.1 db correction,  since the dwell time in each 
frequency bin is increased to 1.25/ß due to the increase in i. 
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Figure 11 however show« that the averager input sampling loss increases 
to 1.0 db because the averager sampling rate is now only 0.8 B. 

While some of the changes due to the increased filter bandwidth 
tend \o   improve performance while others tend to degrade it, the 
adjusted NDS after all corrections are made is -7.5 db.  This is 
3/4 db better than the system whose filter bandwidth was matched to 
the frequency bin spacing and Celtic storage time.  The list of MDS 
corrections shows that further improvement in performance would 
come primarily by eliminating the input clipping signal operation 
or by increasing the averager input sampling rate.  The former re- 
quires uore storage in the time compressor memories, while the latter 
requires increasing the time compression ratio (Deltic shift fre- 
quency) in order to allow more rapid scanning through the signal 
spectrum. 

Digital FFT Spectrum Analyzer 

This system is assumed to accumulate ten-second samples of 
the input signal and to transform each such sample to form a spectrum 
with 0.1 Hz frequency spacing.  The basic processor sensitivity and 
the corrections for false alarm probability and detection probability 
are found in the same way as for the initial Deltic system, to give 
an ideal system MDS of -9.6 db.  Again the five minute allowed 
observation time on the output of the three minute exponential 
integrator provides an NDS decrease of about 0.6 db.  The correction 
for the equivalent filter shape function is found from Table 1 to 
be -0.88 db for the digital correlator which the FFT system resembles. 
The average scalloping loss for the unweighted correlator is found 
from Figure 9(e) to be 1.25 db, since the output frequency spacing 
is equal to the nominal filter bandwidth of 0.1 Hz.  The averager 
input sampling loss is 0.88 db since output transforms are only 
produced at a rate equal to the nominal bandwidth.  No corrections 
are necessary for filter transient response in correlator type 
systems,  there is no clipping loss, and no correction is required 
for the square law detector. 

The adjusted MDS obtained by adding all corrections to the 
ideal system MDS is -8.95 db, or just about lialf a decibel worse 
than the idealized system.  The outstanding loss term is the scal- 
loping loss, which averages 1.25 db and in the worst case amounts 
to 3.9 db.  The fourth system represents an attempt to reduce this 
scalloping loss. 

Digital System with Hanning Weighting 

This system is identical to the previous FFT system except 
that Hanning weighting is employed, either on the signal sample 
before transforming or on the output spectral estimates, to broaden 
the equivalent filter shape function.  The motivation for this is 

47 



,,„..,.,.,., .m ■HUM     i   i ii | "ii IWIIWHUIH.II ' 
■m "«m I» J ppww» m wyi '.' 

NOLTR 71-92 

similar to that for the second Oeltic system.  Since the nominal 
bandwidth is still 0.1 Hz,   there is no change in the basic processor 
sensitivity or ^MDS<

FAP^*  Similarly the correction for observation 
time is unchanged.  Table 1 shows that the correction for noise 
bandwidth and detector fluctuation bandwidth is 0.17 db with Manning 
weignting, and Figure 9(f) shows that the average scalloping loss 
is reduced to 0.5 db.  Figure 11 shows that because of the increased 
fluctuation bandwidth with Hanning weighting the averager input 
sampling loss is increased to 1.59 db. 

When 
resultan t 
decibel wo 
conclus ion 
thougn it 
for this a 
with Hanni 
s ampi .ng r 
in Hanning 
dramatical 
form opera 
The averag 
bandwidth, 
0.25 db. 
within 1/3 

all corrections are added to the ideal 
adjusted MDS is -7.94 db.  This is almos 
rse than for the system without Hanning 
is that Hanning weighting cuases a net 

substantially reduces the scalloping los 
re the increased noise bandwidth of the 
ng weighting and the inadequacy of the a 
ate.  While the increase in noise bandwi 
weighting, the averager input sampling 

ly by computing transforms twice as ofte 
tion reusing half the data from the prev 
er input sampling rate is thus twice the 
and Figure 11 shows that the loss is re 

This would give an adjusted MDS of -9.28 
decibel of the ideal system MDS. 

system MDS, the 
t exactly one 
weighting, so the 
degredation even 
s.  The reasons 
equivalent filter 
verager input 
dth is inherent 
loss can be reduced 
n with each trans- 
ious transform. 
nominal filter 

duced to about 
db, which is 
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Table   3.      MDS   Calculations   for   Example   Spectrum   Analyzers 

System   1 System   2 System   3 System   4 

Del tic 
with   .1   Hz 

Filter 

Deltic 
with   .125 
Hz   Filter 

FFT 
with   no 

weighting 

FFT   with 
Manning 

Weighting 

Basic   Processor 
Sensitivity -16,3   db -15.8   db -16.3   db -16. .5   db 

^DS^ 
6.7 6.7 6.7 6-7       i 

^DS'V 0. 0. 0. 0. 

Ideal   System  MDS -    9.6   db -   9.6   db -   9.6   db -   9.6   db 

AMDS<V 
-   0.6 -   0.6 -   0.6 -    0.6 

Aunc(NBW   and   F   ) 
MDS                         n --   0.3 -   0.3 -   0.88 0.17 

AMDS(scalloPingJ 0.55 0.2 1.25 0.5 

AMDS(tranSient, 1.3 -   0.1     

AMDS(clippin9, 1.4 1.4   

Vs(detector) 0. 0.   

A
Ur,c 

(AIJI   sampling) 0.5 1.0 0.88 1.59             j 

Adjusted   MDS -   6.75   db -   7.5   db -   8.9 5   db -   7.94   db 
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SUMMARY 

The pro 
prediction of 
spectrum analy 
While no claim 
degredation ha 
the predominan 
the procedure 
reasons for de 
made clear. I 
«re not truly 
principle nece 
logarithmic de 
are simultaneo 
small compared 
that the steps 
witnin about 0 
types discusse 

cedures outlined in this report are intended to allow 
the minimum detectable signal for a large class of 
sis systems with a minimum of complex mathematics. 
is made that all possible sources of performance 

ve been considered, tnose discussed here are generally 
t loss mechanisms.  The intent of the organization of 
is to make the individual losses apparent so that the 
viations from ideal performance in a given system are 
t is recognized that many of these loss mechanisms 
independent, so that second order corrections ire in 
ssary whenever several loss mechanisms (for example 
tection and undersampled post-detection averager input) 
usly present.  However these interactions are generally 
to the first order loss corrections, and it is felt 
described here should allow prediction of MDS to 

.5 db in the majority of spectrum analyzers of the 
d. 
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LIST   OF   SYMBOLS 

Symbol 

a 

a    (t) 
i 

a    (t) 
o 

a 

a 

d 

d* 

D 

£ 
n 

f (x) 

o 

FAP 

H (ui) 

Meaning 

False   alarm  probability 

Input   to   averager 

Output   of   averager 

Value   of   definite   integral 

Nominal   bandwidth   of   bandpass   filter 

Value   of   definite   integral 

Spacing   between  adjacent   frequency  bins 

First  order  of  detector   output 

Second   order  of  detector  output 

Derivitive  of  detector  output 

Decision   threshold   ratio   for   FAP 

Decision   threshold   ratio   for   P, 
d 

10   log(d) 

Sampling   Efficiency   at   Averager   Input 

Detector   amplitude   response   function 

Center   Frequency   of   bandpass   filter 

Fluctuation  bandwidth   of   detector output 

Cutoff   frequency   of   input   noise   spectrum 

False   Alarm  Probability 

Bandpass    filter   response   function 

De fined 
on Page 

6 

2 

2 

37 

2 

38 

26 

36 

36 

36 

6 

14 

8 

43 

36 

5 

23 

5 

9 

27 
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Symbols 

I 
o 

K 

k» 

K' 

MDS 

AHDSiFhP) 

AMDS(V 

Meaning 

Modified Bessel function 

Decision threshold at averager output 

Threshold ratio for binary detector 

Decision threshold with modified detector 

Minimum Detectable Signal 

MDS Change for given FAP 

MDS Change for given P. 
d 

MDS Change for allowed Td 

MDS Change for filter NBW 

MDS Change for filter Fn 

A   (scalloping) MDS Change due to filter scalloping 

A   (transient) MDS Change due to filter transient response 

^„(clipping) MDS change due to clipping 

A   (detector) MDS Change due to detector characteristic 

A   (sampling) MDS Change due to averager input sampling 

N 

NBW 

P 

P(X) 

Pd 

r 

s 

Noise power density (single sided) 

Noise bandwidth of bandpass filter 

Ratio d'/d 

Probability density of envelope amplitude 

Probability of detection 

Ratio d//ßT 

Input signal power 

Variarnce of averager output 

Variance of detector output 

Integration time of averager 

Defined 
on Page 

36 

2 

40 

35 

1 

9 

14 

19 

22 

23 

27 

29 

32 

38 

43 

1 

22 

15 

36 

7 

15 

1 

6 

36 

2 
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Symbols 

T. 

Meaning 

Dwell    tine   in   single    frequency   bin 

Allowed   time   for  detection 

Exponential   averager   time   constant 

Envelope  amplitude   of   detector   input 

Detector  output  amplitude 

Defined 
on   Page 

29 

19 

19 

36 

36 
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