34050

INVESTIGATION OF THE ABSORPTION OF INFRARED RADIATION BY NITROUS OXIDE FROM 4000 to 6700 cm⁻¹ (2.5 to 1.5 µm)

by

Darrell E. Burch David A. Gryvnak
John D. Pembrook

Philco-Ford Corporation
Aeronutronic Division
Ford Road
Newport Beach, California 92663

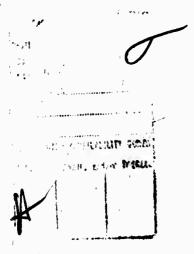
Contract No. F19628-69-C-0263 Project No. 5130

Semi-Annual Technical Report No. 3

June 1971

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, or the U. S. Government.

Approved for public release; distribution unlimited.


NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

Contract Monitor: Robert A. McClatchey
Optical Physics Laboratory

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 1366
Monitored by
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

Program Code No	1E50
Effective Date of Contract	15 May 1969
Contract Expiration Date	14 July 1971
Principal Investigator and Telephone No	Dr. Darrell E. Burch (714) 833-1611
Project Scientist or Engineer and Telephone No	Dr. Robert A. McClatchey (617) 961-3224

Qualified requestors may obtain additional copies from the Defense Documentation Center

Security Classification

2a. REPORT SECURITY CLASSIFICATION Unclassified 2b. GROUP ION BY NITROUS OXIDE FROM			
Unclassified Zh GROUP			
Zh GROUP			
ON BY NITROUS OXIDE FROM			
ION BY NITROUS OXIDE FROM			
ION BY NITROUS OXIDE FROM			
L NO. OF PAGES 7& NO. OF REFS			
6			
NATOR'S PEPORT NUMBER(S)			
nnual Technical Report No. 3			
R REPORT NO(S) (Any other numbers that may be sed this report)			
71-0536 -			
ited.			
Air Force Cambridge Research Laboratories(O			
L. G. Hanscom Field Bedford, Massachusetts 01730			
tly between 4000 and 6700 cm have tronger bands have been determined. Use so that the line structure rethe structure smoothed out. The the high wavenumber side of the head of the lines absorb less than idths.			

DD 1 NOV 65 1473

UNCLASSIFIED
Security Classification

Security Classification

Security Classification	LIN	KA	LINK B		LINK C	
KEY WORDS	ROLE	WT	HOLE	WT	ROLE	WT
N ₂ O						
Atmospheric Transmission	:					
Absorption						
				i		i
					0 0	
				:	. :	
			!			
			Ī			
	()					
(1//			(C - 0)	E

UNCLASS IF 1ED

INVESTIGATION OF THE ABSORPTION OF INFRARED RADIATION BY NITROUS OXIDE FROM 4000 to 6700 cm⁻¹
(2.5 to 1.5 µm)

by

Darrell E. Burch David A. Gryvnak John D. Pembrook

Philo-Ford Corporation
Aeronutronic Division
Ford Road
Newport Beach, California 92663

Contract No. F19628-69-C-0263 Project No. 5130

Semi-Annual Technical Report No. 3

June 1971

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, or the U. S. Government.

Approved for public release; distribution unlimited.

Contract Monitor: Robert A. McClatchey
Optical Physics Laboratory

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 1366
Monitored by
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

ABSTRACT

All of the N₂O bands expected to absorb significantly between 4000 and 6700 cm⁻¹ have been listed, and the strengths of several of the stronger bands have been determined. Spectral curves are shown for samples at low pressure so that the line structure remains and for samples at approximately 15 atm with the structure smoothed out. The amount of absorption between 6600 and 6650 cm⁻¹ on the high wavenumber side of the head of the 00^o3 band indicates that the extreme wings of the lines absorb less than Lorentz-shaped lines with the same strengths and widths.

TABLE OF CONTENTS

SECTION	AGE
INTRODUCTION AND SUMMARY	1
EXPERIMENTAL PROCEDURES AND DATA ANALYSIS	3
SPECTRAL DATA AND BAND STRENGTHS	5
LINE SHAPE	8
Table 1. Band identifications and Strengths	9
Table 2. $-1/u \int_{v}^{v} \ln T dv \dots 1$	2
Figure 1. Spectral curve of absorptance between 4020 and 4090 cm ⁻¹ for a pure N ₂ O sample	3
Figure 2. Spectral curve of (-1/u) of between 4000 and 4100 cm ⁻¹ for an N ₂ O + N ₂ sample at approximately 15 atm	
	4
Figure 3. Spectral curve of absorptance between 4350 and 4445 cm ⁻¹ for an N_2 0 + N_2 sample 1.	5
Figure 4. Spectral curve of $(-1/u) \ln T$ between 4290 and 4465 cm ⁻¹ for an N ₂ O + N ₂ sample at	
approximately 15 atm 10	5
Figure 5. Spectral curve of absorptance between 4580 and 4665 cm ⁻¹ for a pure N ₂ O sample	7
Figure 6. Spectral curve of absorptance between 4665 and 4760 cm ⁻¹ for an N ₂ O + N ₂ sample	8

TABLE OF CONTENTS (Continued)

SECTION		PAGE
	Figure 7. Spectral curve of $(-1/u)$ L_T between 4560 and 4770 cm ⁻¹ for an N ₂ 0 + N ₂ sample at approximately 15 atm	19
	Figure 8. Spectral curve of absorptance between 4875 and 4950 cm ⁻¹ for a pure N ₂ O sample	20
	Figure 9. Spectral curve of absorptance between 4950 and 5060 cm ⁻¹ for a pure N ₂ O sample	21
	Figure 10. Spectral curve of absorptance between 5055 and 5135 cm ⁻¹ for a pure N ₂ O sample	22
	Figure 11. Spectral curve of (-1/u) In T between 4850 and 5180 cm for an N ₂ 0 + N ₂ sample at approximately 15 atm	23
	Figure 12. Spectral curve of (-1/u) In T between 5580 and 5680 cm ⁻¹ for an N ₂ O + N ₂ sample at approximately 15 atm	24
	Figure 13. Spectral curve of $(-1/u) \int_0^{\pi} T$ between 5915 and 6010 cm ⁻¹ for an N ₂ 0 + N ₂ sample at approximately 15 atm	25
	Figure 14. Spectral curves of absorptance between 6500 and 6650 cm ⁻¹ for two samples of pure N ₂ O	26
	Figure 15. Spectral curve of (-1/u) In T between 6500 and 6605 cm ⁻¹ for an N ₂ O sample at approximately	27
	REFERENCES	2 7 28

INTRODUCTION AND SUMMARY

As part of a large program to tabulate the parameters of all the significant absorption lines of atmospheric gases, we have recently analyzed some N₂O data in the 4000-6700 cm⁻¹ region obtained a few years ago on a different project. The bands in this region are generally much weaker than the fundamental bands and many of the combination bands that occur at lower wavenumbers. It seems unlikely that a band with strength less than 10⁻²¹ molecules cm⁻¹ cm⁻¹ would absorb significantly over any usable atmospheric path, therefore, we have restricted the careful analysis to the bands above this "cut-off" value. Approximate strengths and upper limits have also been determined for several of the weaker bands, but further study would be required to determine their strengths accurately.

Douglas and Moller¹ and Plyler, Tidwell and Allen² have identified several of the N₂O bands in the region of interest and have published data on the line positions. These workers did not include information on the strengths of lines or bands. Pliva^{3,4} has accumulated previous data on N₂O energy levels and has tabulated many of the energy levels and constants from which line positions can be determined accurately. In a previous report⁵, we listed the strengths of a few of the bands contained in this study; however, the previous report did not include the detailed curves and tables shown below.

From data on the absorption on the high wavenumber side of the head of the 00[°]3 band, we have found that the extreme wings of N₂O lines are quite sub-Lorentzian; i.e., they absorb less than Lorentz-shaped lines with the same strengths and widths.

EXPERIMENTAL PROCEDURES AND DATA ANALYSIS

The spectral curves were scanned with a grating spectrometer and stripchart recorder with the spectral resolution varying from approximately 0.2 to 0.9 cm⁻¹. Several of the curves were digitized, and a computer was used to calculate the transmittance T, absorptance A, (-1/u) In T, and (-1/u) flor dv. Samples were contained in a multiple-pass absorption cell with path lengths, L, up to 3290 cm. Since the cell had been cooled to 196 K for a different project, a few transmittance curves were obtained for samples at this temperature. These curves are valuable in identifying the temperature-sensitive difference bands which result from transitions from an excited vibrational level. Samples at pressures less than 1 atm were employed to study the line structure within the bands. In order to obtain information about band strengths, we used N₂O + N₂ samples at approximately 15 atm so that the structure was smoothed out. Under this condition, the observed transmittance is very nearly equal to the actual transmittance that would be observed with infinite resolving power. The quantity (-1/u) n T is then equal to the absorption coefficient, and the integral of this quantity over a spectral interval is the sum of the strengths of the bands within the interval. The absorber thickness u is expressed in molecules of N_2O/cm^2 . The quantity $(-1/u) \mathcal{L}_n$ T is essentially independent of pressure for a wide range of pressures greater than about 10 acm, which is required to smooth out the line structure. Data from references 1, 2, and 4 were used to identify the absorption bands and to

determine line positions. Pliva's article is more recent than the other two and incorporates the results of several previous articles. Therefore, Pliva's values for energy levels were used in preference to others when they were available.

SPECTRAL DATA AND BAND STRENGTHS

Figures 1-15 show spectral curves for the regions containing the stronger bands between 4000 and 6700 cm⁻¹. Two curves are shown for most of the regions. The first is a curve of absorptance for samples with line structure, and the second is of $(-1/u) \int_{\Omega} T$ for higher-pressure samples. Band identifications and comments on the curves appear in Table 1.

The three fundamental bands v_1 , v_2 , and v_3 are at 1284.907, 588.767, and 2223.756 cm⁻¹, respectively. Note that $v_3 = 2v_1 = 4v_2$. The quantity N defined as $2v_1 + v_2 + 4v_3$, where the v's are the vibrational quantum numbers, is convenient in specifying energy levels and in estimating band positions. Because of the approximate relationship between v_1 , v_2 , and v_3 , levels having the same N are approximately equal. It follows that bands arising from transitions from the $00^{\circ}0$ level to different levels having the same N occur near each other. All of the important N₂0 bands between 4000 and 6700 cm⁻¹ resulting from transitions from the $00^{\circ}0$ state have upper levels with N between 7 and 12.

Table 1 lists all of the bands with the 00°0 lower level and upper levels from N = 7 to N = 12. Values of the band centers followed by P and PTA are from Pliva and Plyler, Tidwell and Allen , respectively. The centers of several of the bands with N of 10, 11, or 12, are not given by either of these authors and have not been calculated since they are too weak to be

of interest in atmospheric transmission problems. We note that for N = 7, 8, and 9, the band at the lowest wavenumber in each group has the largest v_3 and smallest v_1 . As expected, the highest wavenumber band has the smallest v_3 and largest v_1 . Also included in Table 1 are the numbers of the figures in which spectral curves of the bands can be seen. The remarks column contains additional information about the observance of the bands. All of the stronger bands ($S_V > 1$ E-21 molecules $c_1 c_2 c_3 c_4 c_4 c_5$) can be seen in the figures. A few very weak bands were observed in spectral regions between those covered by the figures. The raw data for these very weak bands were not analyzed.

The strengths of several of the bands were determined by integrating (-1/u) In T over the spectral interval including the band. As discussed previously, the curves of (-1/u) In T were based on samples at high enough pressure for the structure to be smoothed out. The interval integrated over for a particular band also contains associated difference bands arising from transitions from excited vibrational states with the same changes in vibrational quantum numbers as the band of primary interest. The difference bands are weaker because of the lower population of the excited states. Strengths listed in Table 1 include the difference bands associated with the fundamental or combination band. In a few cases, it was necessary to account for overlapping by other bands. Care was exercised in measuring the bands stronger than 10^{-21} molecules $1 \text{cm}^2 \text{cm}^{-1}$. With the exception of the 2310 band at 4335.798 cm⁻¹, these stronger bands were measured with reasonable accuracy. More spectral data with good resolution are required in order to account for the overlapping of this band with neighboring ones. Upper limits and approximate strengths were determined for some of the weaker bands. Those indicated with an approximate sign (~) may be in error by as much as a factor of 2 or 3.

Additional information about the relative strengths of lines within the bands and of the different branches can be obtained from Table 2 which lists the cumulative integral of (-1/u) T. Values are tabulated each

5 cm⁻¹ and near the centers of most of the strong bands. The value of the integral between any two wavenumbers listed can be determined by subtracting the corresponding values of the cumulative integral. Spectral regions containing only very weak bands are not included in the table.

LINE SHAPE

A few years ago, we investigated the absorption on the high-wavenumber side of the head of the 00°3 band of CO₂ near 7000 cm⁻¹. From the absorption data and previous knowledge of the strengths and widths of the lines, we were able to infer the shapes of the extreme wings of the lines centered on the low wavenumber side of the band head. We found that self-broadened CO₂ lines absorbed less beyond about 5 cm⁻¹ from the line centers than Lorentz-shaped lines with the same widths and strengths. Lines broadened by N₂ deviated even further from the Lorentz shape.

A similar study has been made near $6600~\rm cm^{-1}$ on the high wavenumber side of the head of the $00^{\circ}3~\rm N_2O$ band shown in Figs. 14 and 15. Between $6600~\rm cm^{-1}$, most of the absorption by samples at pressures greater than a few atm is due to the extreme wings of the lines centered between $6500~\rm cm^{-1}$. The shapes of the $\rm N_2O$ lines inferred from these data are surprisingly similar to those found earlier for $\rm CO_2$ lines. The difference between the results from self broadening is less than the experimental uncertainty. The same is also true for $\rm N_2$ -broadened lines.

TABLE 1

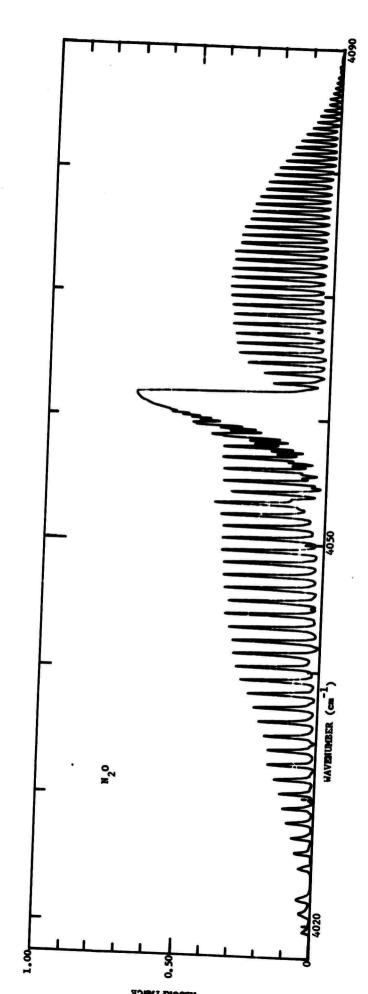
BAND IDENTIFICATIONS AND STRENGTHS

m ⁻¹)	Not apparent in Fig. 1. Possibly masked by 11^{11} band. Not observed. Observed in raw data. Some of R branch in Fig. 3. Q branch observed in raw data. Observed in raw data.	2 band.	Overlaps 01^12 band. Observed in raw data.	Difference band also appears in Fig. 3.	Q branch may show in Fig. 11. Not observed.
Strength (molecules - 1 cm cm - 1)	<pre><5 E-23 <5 E-23 <1 E-21 <1 E-22 <1 E-22</pre>	E-21 E-21 E-22	E-21 E-21 E-22 E-21 E-20	6.9 E-20 ±10%	<2 E-22 <2 E-22
Fig.	3		10 5	3	11
Band Center (cm ⁻¹)	4037.13 P 4197.960 P 4335.798 P 4446.379 P 3931.258 P		5026.34 P 5105.65 P 4491.541 P 4630.164 P 4730.828 P	4417.379 P	5168.27 P 5338.51 P 5489.74 P
Band	0 71 0 1 51 0 2 31 0 3 11 0	8000	2°0 0°0 11 2°1 0°1	0 0 2	0 91 0 1 71 0 2 51 0

Remarks	Possibly masked by $32^{\circ}0$ and $40^{\circ}0$ bands. Not observed. Not observed. Q branch is prominent. Overlaps $32^{\circ}0$ band.	Not observed. Not observed. Not observed. Not observed. Observed in raw data. Not observed.	Not observed. Observed in raw data. Not observed.	None of the bands for N = 11 were observed. The band centers are expected to occur between 6200 and 7000 cm ⁻¹ . Their strengths are <2 E-22.
Strength (molecules cm cm cm)	<1 E-22 P <2 E-22 N <2 E-22 N ~5 E-22 Q	 2 E-22 2 E-22 2 E-22 2 E-22 3 E-22 8 E-22 8 E-22 8 E-22 	E-22 E-22 E-21 E-21	
Fig.	6		13	
Band Center (cm-1)	5053.582 P 5200.780 P 5319.175 P 4977.695 P	6295.06 PTA	5887.99 PTA 5974.74 PTA 5646.59 PTA	
Band	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 10 2 4 6 5 0 5 0 0 5 0 0	0 60 1 2 20 1 3 00 1 1 00 2	0 11 0 1 9 0 3 7 0 4 3 0 5 1 0

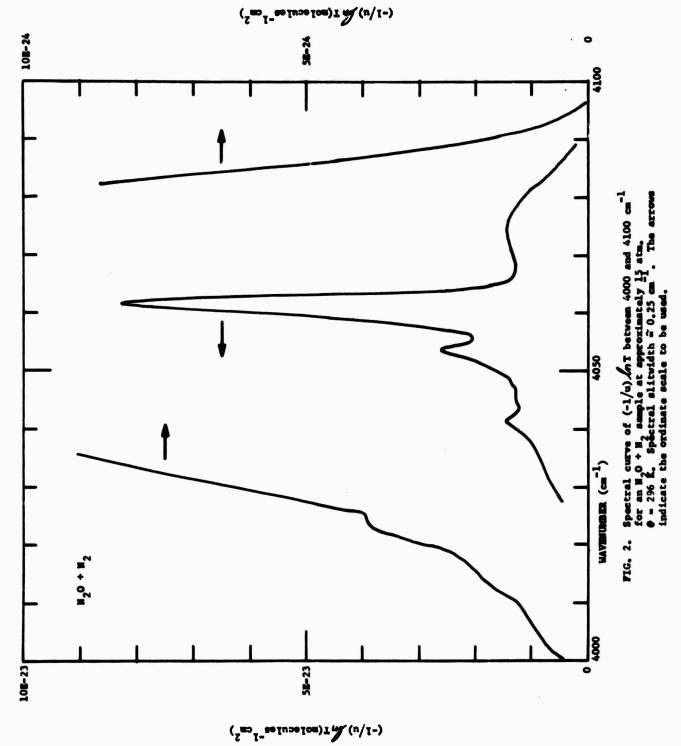
TABLE 1 (Continued)

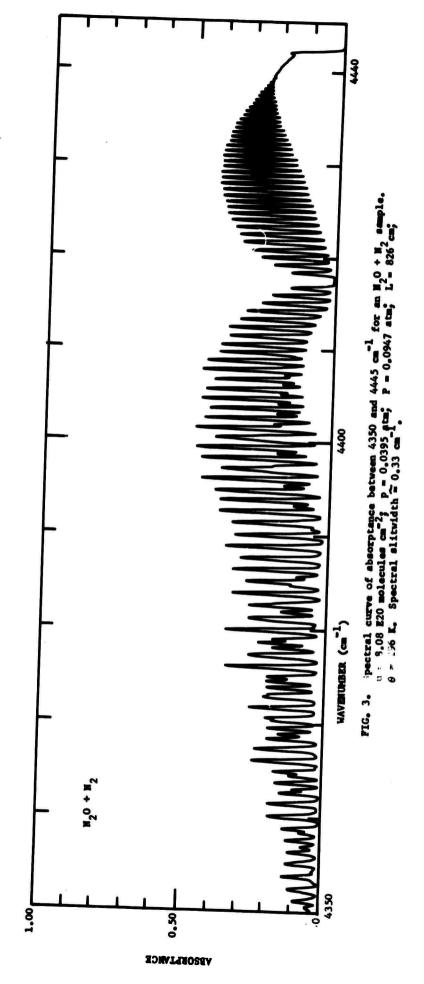
Remarks	N = 11 (Contd.)			N = 12	Most of the others are probably centered above 6700 cm ⁻¹ , the upper limit of the region studied.				
Strength (molecules $^{-1}$ cm 2									1.52 E-21 ± 67
Fig. No.									14
Band Center (cm-1)									6580.83 PTA
Band		3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	79°6°	6 5 4 3 0 0 0 0	0 8 0 1 2 4 6 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0	0 4°2 1 2°2 2 0°2	0 0 3

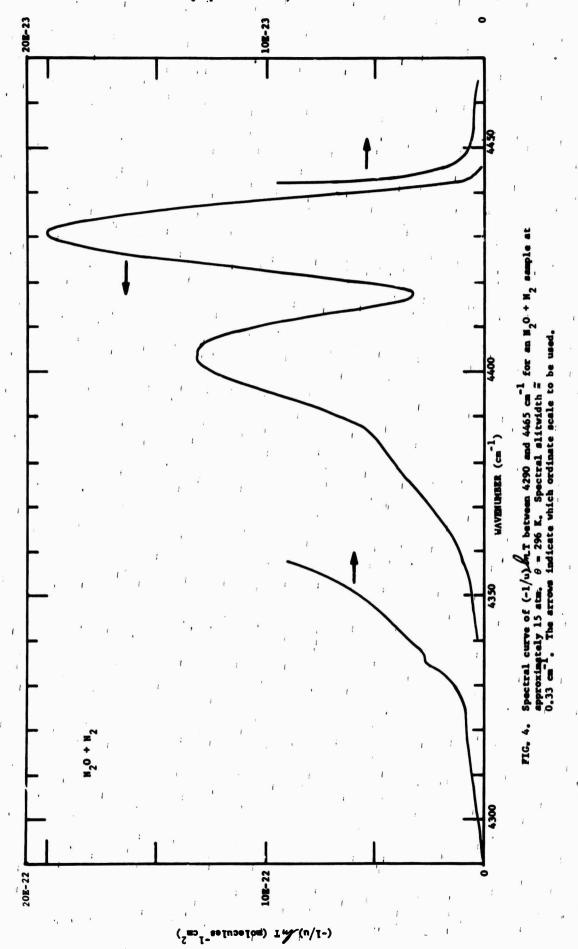

- \frac{1}{u} \frac{f}{v} \int T \, dv

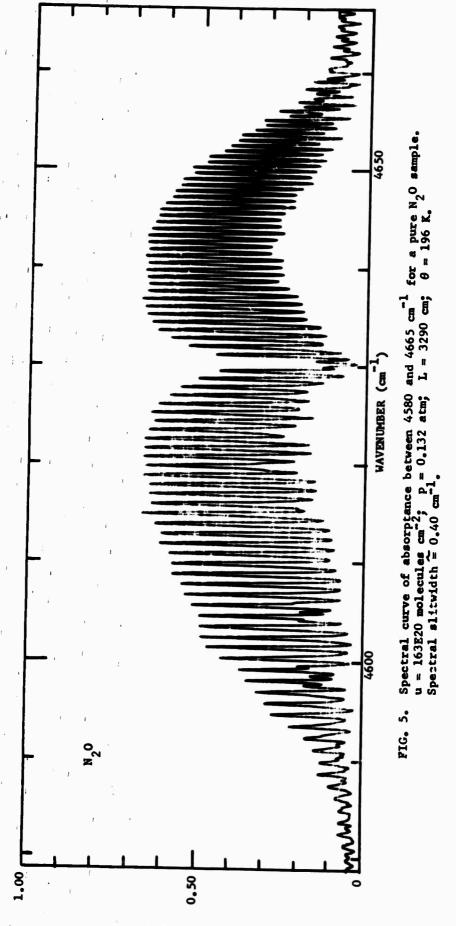
(Molecules \frac{1}{cm} cm^2 \, cm^1)

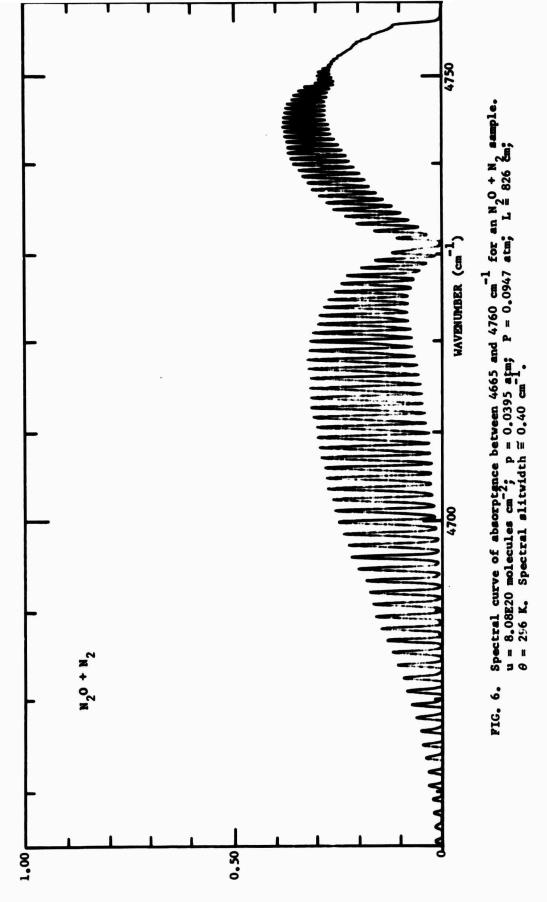
(Multiply all Values by 10^24)

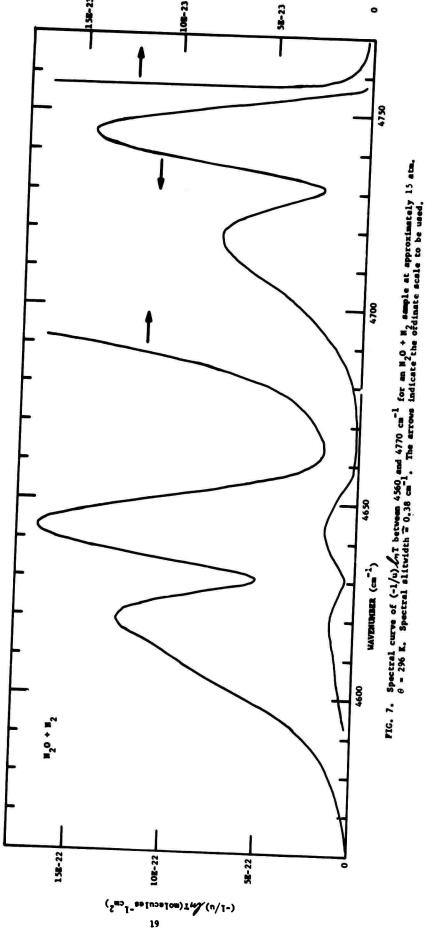

e 6500		5.2 14.7 26.7 39.4	77.0 98.6 124.6 168.7 243.3	344.2 431.2 534.4 647.5 745.9	801.0 808.3 860.0 1031.	1520. 1520.			
*^	, (cm ⁻ 1)	6505 6510 6515 6520	6539 6538 6545 6545	6555 6560 6565 6570 6570	6580 6581 6585 6590 6595	9600 6605			
5916.5		4.5 13.0 39.1	101.9 153.7 221.8 302.8 387.9	456.5 496.9 558.7 685.0 862.1	999.4 1035. 1044. 1045.				
- 'V	, (cm ⁻¹)	5920 5930 5935	5945 5955 5960 5965	5970 5975 5980 5985 5985	5995 6000 6005 6010				
= 5565		E 2 4 4 4	22.1 35.8 54.8 80.8	116.0 225.8 300.8 389.7 477.4	535.1 544.6 571.8 668.9 829.3	976.6 1006. 1007.			
۰۸ =	(1-ED)	5570 5575 5580 5585	5595 5605 5605 5610 5610	5625 5635 5635 5635	\$645 \$650 \$650 \$655	5665 5670 5675			
= 4850		2642.4 2891.4 3285.2 3704.7	4142.1 4187.8 4219.5 4268.6 4347.1	4466.8 4635.3 4853.4 5098.8 5323.9	5464.0 5480.4 5572.5 5846.5 6263.0	6655.2 6886.3 6953.6 6973.6 7005.3	7044.8 7076.9 7093.7 7099.0	7104.7	
^	, (c=-1)	5030 5040 5045 5045	80 80 80 80 80 80 80 80 80 80 80 80 80 8	5080 5085 5095 5095	5105 5106 5110 5115 5120	5125 5130 5135 5135 5140	5150 5155 5160 5165 5165	5175 5180	
= 4850		1.9 5.5 12.4 25.0	76.1 118.3 170.5 223.6 269.8	302.9 307.9 334.5 391.8 464.4	532.7 584.7 622.9 647.7 676.6	695.5 717.9 745.3 782.5 867.5	1005.3 1057.9 1140.1 1255.7 1407.0	1599.9 1843.0 2119.6 2376.1 2535.4	2553.6
*^	, (cm ⁻ 1)	4860 4865 4870 4875	4885 4890 4900 4900	4910 4911 ^c 4915 4920 4925	4935 4940 4945 4945	4955 4960 4965 4970 4975	4985 4995 4995 7000	5005 5010 5020 5020	5026°
= 4665		105.8 243.8 443.7 772.9	2235.7 3517.8 5614.3 8367.7 11823.	15644. 19044. 21032. 21271. 22758.	27380. 34334. 40705. 43614.	43965.			
• ^	(ca)	4670 4680 4680 4685	4695 4700 4705 4710 4715	4720 4725 4730 4731c 4731c	4740 4745 4750 4755 4760	4765		•	
= 4560		5.0 16.9 40.0 79.4	250.9 410.3 650.3 987.3	1939.9 2549.0 3130.6 3506.4	4507.0 5335.4 6061.3 6494.9 6686.7	6789.4			
*^	, (cm-1)	4565 4570 4575 4580	4590 4595 4600 4605	4615 4620 4625 4630 4635	4640 4645 4655 4655 4660	\$ 994			
- 4290		13.7 31.8 56.7 89.2	170.1 223.4 319.9 466.3	918.4 1245.2 1696.3 2352.7 3333.6	4722.8 6586.1 8841.4 11682.	21285. 27782. 33828. 37638.	39582. 44559. 53452. 62958. 68757.	69734. 69793. 69822. 69842.	
>	(ca)	4300 4305 4310 4315	4325 4330 4340 4345	4355 4355 4360 4365 4370	4375 4380 4385 4390 4395	4400 4405 4410 4415 4417c	##52 ##30 ##32 ##32	4445 4450 4455 4460	
3990		2.30 5.91 11.24 19.39	48.89 73.90 1111.7 162.5 228.8	297.2 405.5 562.5 706.0	904.9 975.5 1041.1 1084.3	1107.3			
,	(ca-1)	4000 4005 4010 4015	4025 4030 4040 4040	4050 4055 4060 4062c 4065	4070 4075 4080 14085 1	4095 1			

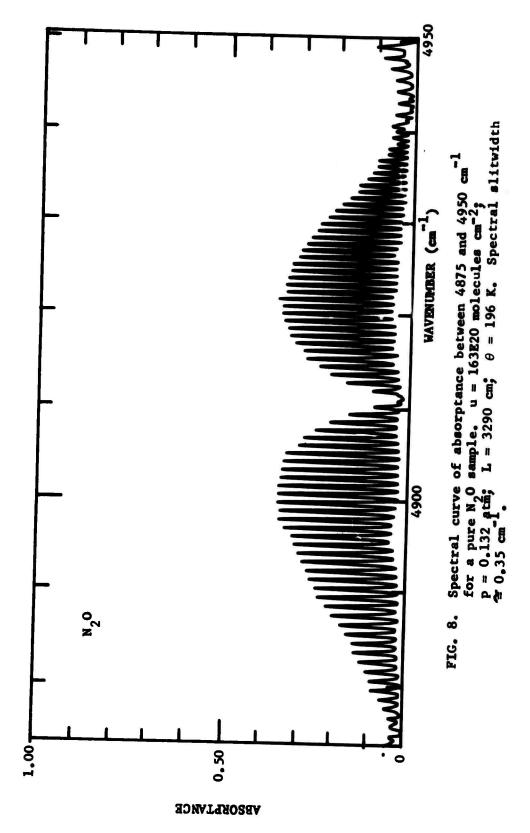

C This indicates that v is near the center of the primary band.

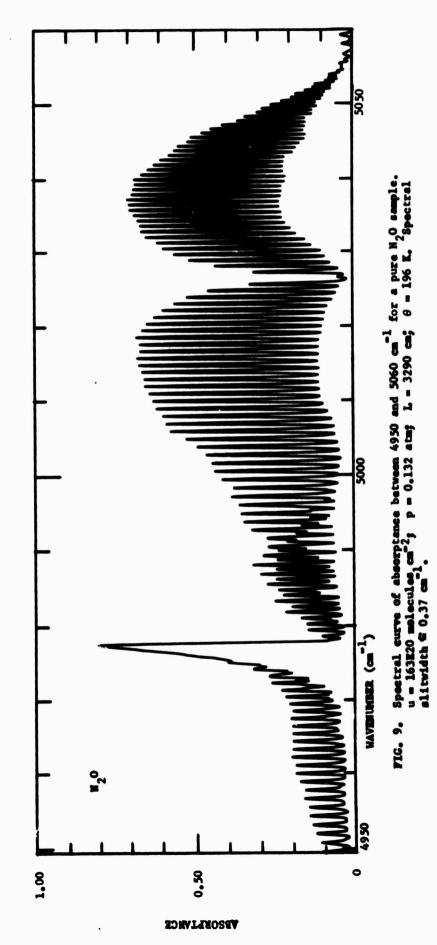

Spectral curve of absorptance between 4020 and 4090 cm for a pure N_2^0 sample, u = 163220 molecules cm⁻²; p = 0.132 atm; L = 3290 cm; θ = 196 K, Spectral slitwidth = 0.25 cm⁻¹. FIG. 1.

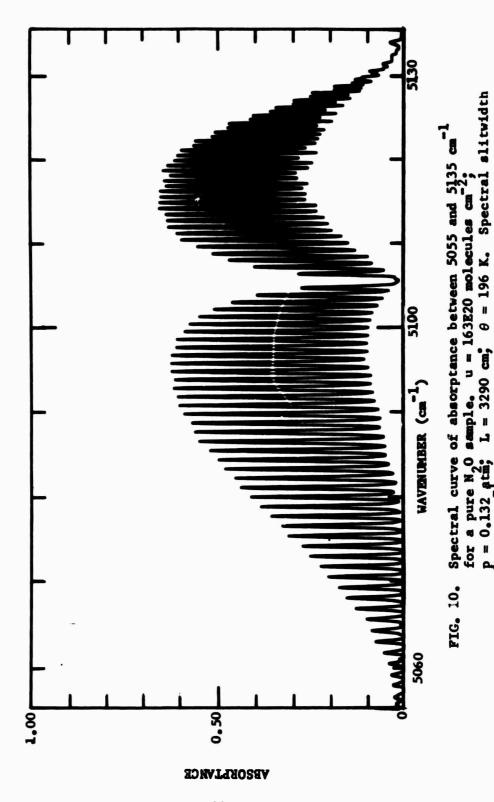


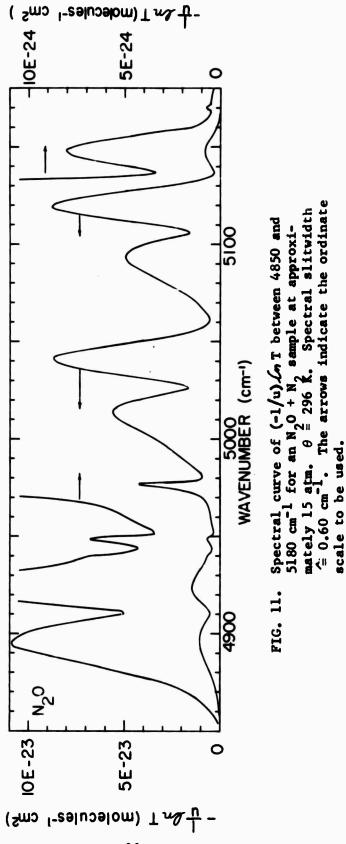


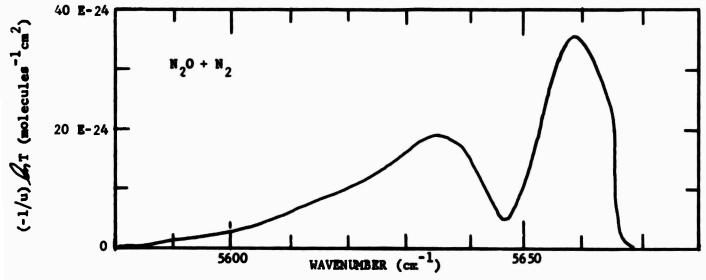
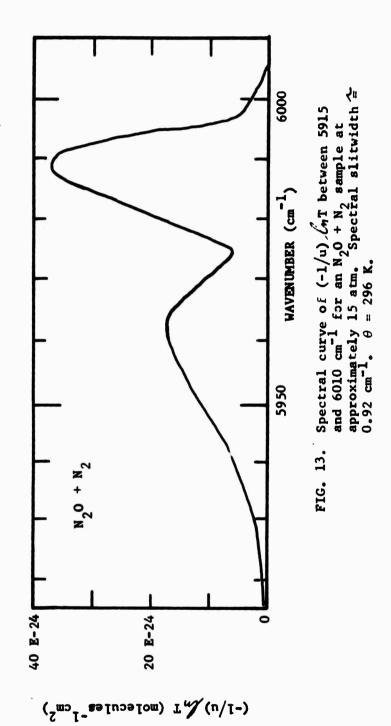


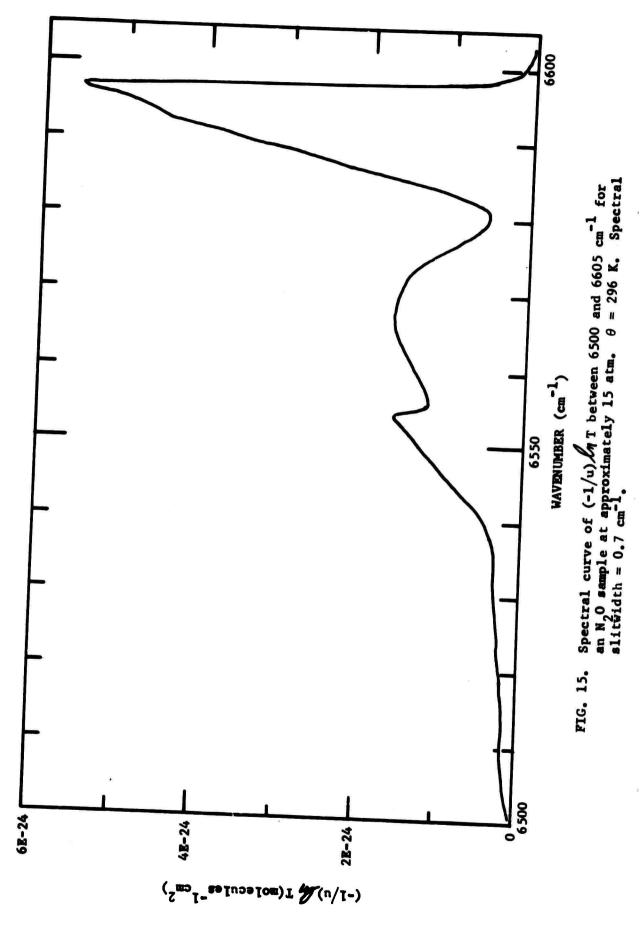

ABSORPTANCE




VBSORPTANCE


(Sml-seluselom) T. M. (u/l-)


FIG. 12. Spectral curve of (-1/u) \mathcal{L}_{n} T between 5580 and 5680 cm⁻¹ for an N₂O + N₂ sample at approximately 15 atm. Spectral slitwidth = 0.80 cm⁻¹. $\theta = 296$ K.

represents the estimated absorptance by the wings of the lines of the The broken curve between 6610 and 6650 cm The difference between the broken line and the solid one Spectral curves of absorptance between 6500 and 6650 cm for two is due to absorption by very weak lines centered between 6610 and samples of pure N20. The absorptance of Sample B is 1 between 6500 and 6600 cm. The broken curve between 6610 and 665 Spectral alitwidth ≈ 0.7 cm⁻¹ 00°3 band. FIG. 14.

θ (Kelvin	296
J (j)	3290
P (atm)	0.25 14.6
(molecules cm ²)	2.04 E 22 1.36 E 24
Number	4 8

REFERENCES

- 1. A. E. Douglas and C. K. Moller, J. Chem. Phys. 22, 275 (1954).
- 2. E. K. Plyler, E. D. Tidwell, and H. C. Allen, J. Chem. Phys. 24, 95 (1956).
- 3. Josef Pliva, J. Mol. Spectry. 25, 62 (1968).
- 4. Josef Pliva, J. Mol. Spectry. <u>27</u>, 461 (1968).
- 5. D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, Philco-Ford Corporation Report No. U-4897. Semi-Annual Technical Report No. 2, Contract No. F19628-69-C-0263, Project No. 5130, AFCRL-71-0124 (January 1971).
- D. E. Burch, D. A. Gryvnak, R. R. Patty, and C. E. Bartky, J. Opt. Soc. Am. <u>59</u>, 267 (1969).