Reproduce 13

ced bY
NATIONAL TECHNICAL
\NFORMAT!ON SERVICE

spnnoh.!d, va 12151




4




T b
E'ﬁ?’ P YN M et 00 b O i [ S

i

’

__UNCLASSIFIED

Security Classification

i sl

ST s, WHESIOTY T

: '

\ DOCUMENT CONTROL DATA - R&D

(Security cleseificatian of title, body of abatract and indexing annotation must be entersd when the overell repart (s clessilied)

1 ORIGINATIN G ACTIVITY (Corporete author)

The University of Texas at Austin
Eleqtronlcs Research Center

28. REPORYT SECURITY C LASSIFICATION

UNCLASSIFIED

2b amrouP

_Austin, Texas 78712

3. REPORT TiTLE

THROUGH A RANDOM MEDIUM

THE SCATTERING FROM ROUGH CURVED SURFACES OF A WAVE PROPAGATED

4 DESCRIPTIVE NOTES (Type of report ond Inchusive dates)
. Scientific Interim

5. AUTHOR(S) (Last name. firet name, initial)

{1 Darryl P, Greenwood
E. J. .Powers, ]Jr.

6. REPO RT DATE

1 June 1971 ‘ o

78 FOTAL NO. OF PaASES

94

70 NO OF REFS
12

fa. CONTRACT OR GRANT NO.

98 ORIGINATOR'S REPORT NUMBER(S)

F44620-71-C-0091

b PRQIECT NO.

ISEP, Technical Repcrt No. 104

4751

€. D j 9b. gTHIR l’!on? NO(8) (A ny other numbdere that may be seeigned
61 1 0 2 F is report,

¢ 681305 / AFOSR-TR-71-1988

10. AVA‘ ILABILITY/LIMITATION NOTICES

"1, This document has been approved for public releas and sale; its distribution
is unlimited.

RTINS, AT =~ S

11. SUPPL EMENTARY NOTES

TECH, OTHER

12. SPONSORING MILITARY ACTIVITY JSEP through

AF Office of Scientific Research (NE)
' _ 1400 Wilson Boulevard
Arlington, Virginia 22209

13. ABSTRACT: ! )
A generalized investigation of wave scattering from rough surfaces yields an expression for mean
3 n scattersd power flux which i3 the spatial Fourler transform of the product of three transfer functions:
e (a) the optical transfer function (OTF) of the propagating medium, (b) the joint characteristic
function of the surface roughness, and (c) a coherence involving the mean surface and the wave
3 profile. The results are applicable to rough surfaces which do not have rms slopes greater than a
few degrees.

T 4 : ~The solution is applied to laser scattering from aluminum and titanium airplane surfaces where the
medium is the clear atmosphere, Proficorder tracing of sample rough surfaces reveals independent
. "roughness™and “waviness® components normally distributed with Gaussian (1sotropic) auto-
correlation, The deterministic surface mode!l is a generalized quadratic approximation to the
surface mean, The laser profile is the lowest-order circular laser mode. The atmospheric OTF 18
modeled as Gaussian.

U 4 : For typical parameters, the result decouples into a specular term (depending on turbulence, wave

+ profile, and the known surface) and a diffuse component (depending on the rough and known surfaces).
! The deterministic surface is deformed spherically to account for an incident wave of slight spherical
character. (A spherical wave affects only the coherent scatter.) From a measurement of scatter at
normal incidence the surface power spectral density and the atmospheric refractive index structure
E: ( " constant may be determined provided the surface is isotropic, homogenaous, and normally distributed,

. Rough suﬁacs and profile aspects of the theory are verified by nearfield measurements of scatter

i from titanium and aluminum when there is no turbulence present. Surface power spectral densities
found empirically from scatter at normal incidence agree with the spectra found from proficorder

tracing. !

DD %% 1473

T

UNCLASSIFIED

Security Classification




T

T S ———

-

P

o o RS I oo

UNCIASSIFIED
Security Classification

ﬂ H
KEY WORDS

LINK A LINK B LINK C

ROL & wv noLE wT hoLw wy

ATMOSPHERE
DIFFRACTION
ELECTROMAGNETIC
LASERS

TURBULENT

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantes, Department of De-
fense activity or other organization (corporate suthor) iasuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
““Restricted Data’’ is included Marking is to be in sccord-
ance with sppropriate security regulations.

2b. GROUP: Automstic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrisl Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as suthor-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If s meaningful title cannot be selected without classifice-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If sppropriste, enter the type of
report, e.g., interim, progress, summary, annual, or finel.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter ast name, first name, middie initial.
If xilitery, show rank end branch of service. The name of
the principal aithor is an absolute minimum requirement,

6. REPORT DATZ. Enter the date of the report as day,
month, year; or month, year. If more than one date appesrs
on the report, use date of publication

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing Information

7b. NUMHBER OF REFERENCES Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9s. ORIGINATOR'’S REPORT NUMBER(S): Eater the offi-
cial report number by which the document will be identified
and controlled by the originating sctivity. This number must
be unique to this report.

95. OTHER REPORT NUMBER($): If the report has been
assigned any other report numbars (either by the ariginetor
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than thoss

INSTRUCTIONS

imposed by security classification, using standard statements
such as:
(1) *“Qualified requesters may obtain copies of this
teport from DDC."’
(2) *“Foreign snmouncement and dissemination of this
report by DDC is not authorized '’
(3) ‘U. 8 Govemment agencies may obtein copies of
this report directly from DDC, Other qualified DDC

users shall request through

”
.

(4) ‘‘U. 8 military agencies may obtain copies of this

report directly from DDC. Other quelified users
shall request through

.
”
.

(3) **All dietribution of this report is controlled Qual-
ified DDC users shall request through

If the report has been furnighed tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known
11, SUPPLEMENTARY NOTES: Use for additional explans-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or 1aboratory sponsoring (pey~
ing for) the research and development. Include sddress.

13. ABSTRACT: Eater an abstract giving s brief and (actual

summary of the document indicative of the report, even though
it may also appesr elsewhere in the body of the techaical re-

port. If additions! spece is required, & continuation sheei shall’

be attached.

It is highly desirable that the abstract of classified reports

be unclsssified. Each paragreaph of the abstract shall end with
an indication of the military security classification of the in-

formation in the paragraph, represented ss (T8), (S), (C), or (U).

There is no Uimitation cn the length of the abatract. How-
ever, the suggested length is from 150 t2 225 worda.

14. KEY WORDS: Key words are technically meaningful terms
or short ph that ch ize 8 report and may be used ss
index entries for cataloging the report. Key words must be

selected so that oo security classificetion is required. ldeatl-

fiers, such es equipment model designetion, trade name, military

project cods name, geographic location, may be used as key
words bt will be foltewed by an indicstion of technicsl con-
text. The sssignment of links, rules, and weights ia optional.

GPO 886-581

UNCLASSIFIED

Security Classification




R ey A Balua s L e [ T ik b i G " gl b 45 1u ™ i b L
4 [ t-un e ionid s Rl s et g s v Ter T i3 4
Gl At AP TR o ”
iZileaiiy Rkt A L e b R L e - i T
i Moot Sy Pkt L b D gl il Al A i e A
AVET e e C Alihuic L Lbial

L v e AR RSB ey

N
Y
V1

THE SCATTERING FROM ROUGH CURVED SURFACES OF A WAVE

PROPAGATED THROUGH A RANDOM MEDIUM*

By

Darryl P. Greenwood and E. J. Powers
Department of Electrical Engineering

Tech‘nical Report No. 104
June 1, 1971

PLASMA AND QUANT UM ELECTRONICS RESEARCH LABORATORY

ELECTRONICS RESEARCH CENTER
THE UNIVERSITY OF TEXAS AT AUSTIN
Austin, Texas 78712

*Research sponsored in part by the Joint Services Electronics Program

under Research Contract F44620-71-C-0091.

approved for public release " !
1

distribution is unlimited.




ABSTRACT

A generalized investigation of wave scattering from rough surfaces
ylelds an expression for mean scattered power flux which is the spatial
Fourier transform of the product of three transfer functions: (a) the optical
transfer function (OTF) of the propagating medium, (b) the joint characteristic
function of the surface roughness, and (¢) a coherence involving the mean
surface and the wave profile. The results are applicable to rough surfaces
which have rms slopes less than a few degrees.

The solution is applied to laser scattering from aluminum and titan-
ium airplane surfaces where the medium is the clear atmosphere. Proficorder
tracing of sample rough surfaces reveals independent "roughness" and "wavi-
ness" components normally distributed with Gaussian (isotropic) autocorrela-
tion. The deterministic surface model is a generalized quadratic approximation
to the surface mean. The laser profile is the lowest-order circular laser mode.
The atmospheric OTF is modeled as Gaussian.

For typical parameters, the result decouples into a specular term
(depending on turbulence, wave profile, and the known surface) and a diffuse
component (depending on the rough and known surfaces). The deterministic sur-
face may be deformed spherically to account for an incident wave of slight
spherical character. (A spherical wave affects only the coherent scatter.)

From a measurement of scatter at normal incidence the surface power spectral
density and the atmospheric refractive index structure constant may be deter-
mined provided the surface is isotropic, homogeneous, and normally distributed.

Rough surface and profile aspects of the theory are verified by near-
field measurements of scatter from titanium and aluminum when there is no
turbulence present. Surface power spectral densities found empirically from
scatter at normal incidence agree with the spectra found from proficorder

tracing.
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Chapter I :

INTRODUCTION ,

In the theoretical analysis of electromagnetic wave scaitering from

rough surfaces, there are three factors in addition to surface roughness which
determine the scattering behavior: beam profile, surface curvature, and pron-
agating medium turbulence. The rough surface statistical description is the . 1
most important aspect of the problem, and numerous previous investigators i
(most notably Beckmann {1]) have dwelt mainly on the scattering from zero-

mean rough surfaces under spatially uniform illumination. However, when tar-

i

get dimensions are greater than the beam size, the spatial wave profile affects
the scattering, Eckart [2] included a beam profile term, but he restricted him-
self to slightly rough surfaces by approximating the local normal on the surface
with the normal direction of the mean plane. Also, surfaces most likely have a
mean structure that is not a flat plane. Hence the general surface model is a
composite sum of a deterministic and a random component. Except when the
beam is propagated through vacuum, the medium will distort the plane charac-
ter of the wave. Propagation in a turbulent medium is carefully examined by

Tatarski [3] and Strohbehn [47 but not in a connotation of surface scattering.

We assume the incident wave is plane, but the field profile multiplier is a prod-
uct of a deterministic term (the profile without turbulence) and a random com- §
ponent (which characterizes the medium),

The expression for scattered power flux is derived from the Helmholz
wave equation and is averaged over ensembles of rough surfaces and incident
waves. The final result is a spatial Fourier transform of the product of three
coherences (or transfer function). The first transfer function involves the known
aspects of the problem -- the wave profile sans turbulence and the known sur-

face component -- and is called the DTF (deterministic transfer function). The

second, the familiar optical (or modulation) transfer function (OTF), relates
the statistical properties of the medium. Finally, the rough surface transfer

function (RSTF) is found from the joint characteristic function of the surface

1
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roughness . The advantage of the transfer function'formulation is that some'
aspects of the problem may be changed without affecting the others.

' The expression for mean scattered power is applied to the scattering
of laser radiation from rough metallic surfaces where the medium is the clear
atmosphere (particle scattering neglected) This application serves an an ex-
emplary use of the generalized result, but more 1mportant the problem is the
:basic research in the study of images generated by scanning a laser’ beam
over a target. In practice a highly-collimated CO2 or Nd-YAG beam is scanned
. across the target (in the pattern of a Lissajou or a sinusoid, ,for example)
the beam cice is much less than typical target dimensions, an image may be
created by proportionally displaying the received scattered radiation as in-
tensity on a display device such as a CRT Ah example of the use of such a
system is the identificatign or clessification of aircraft:by an air traffic con-
troller. To study the imagery theoretically, we much ca'lculate the power
scattered by the surface under the beam at selected points in time. To form
a suitable image we expect surface roughness to give a detectable back-

scatter level even when the backscatter direction to the detector is not near

specyilar, : - | ' C | C,
' The theoretical analysis was carried out because'of the inadequacies i
of prebious theories in ‘predicting the p'ropagation and scatter of a laser beam.
Medium turbulence (for example atmospherlc) becomes most significant when
the wavelength is short, Also beam profile and surface curvature are signifi-
cant when the beam is well- colhmated Certainly profile is unimportant when
a microwave radar beam is scattered from an aircraft but becomes significant
when thé scattering is from 'the occan surface. Our results apply at longer
.'wave:lengths such as microwave, Ul—lF, or acoustic, but some of the four
aspects may be negligible. . ‘ : D | D

In the modeling of the three system transfer functions the laser

beam profile is the lowest order (TEM ) circular mode, the deterministic sur-
face is guadric, and the log- amplitude and phase fluctuations of the wave due
to turbulence have isotropic Gaussian statistics. The aluminum and titanium,

.
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r'qugh surfaéqg 'studlea are shown by measurement (tracing on a proficorder to
détermine ginstantaneous' surface height) and by argument (using the central
limit theorem) to be normally distributed. From the measurement, the power
, spectral‘dgnsity is modeled as a sum of two Gaussians. These two rough
surfacé components are shown to be the "roughness" and "waviness" compon-
‘ents of the randomly rough surface.

To justify the use of the models and to verify, in part, the theory,
we preseﬁt measurements of power scattered from aluminum and titanium air-
plane surfaces. Since the scattering is from surfaces with a flat mean under
laboratory conditions of no turbulence, the measurements are a verification of
thg rough surface and profile aspects of the theory and model. As a by-
,product of the theorfr, we learn how to find the surface statistics from a
meaéurement of scattered power at normal incidence from an isotropic, homo-

geneous normally-distributed surface. Such measurements are made, and the

surface height power spectral densities found are compared with those found

in proficorder tracing.

| The following sections include: a general derivation for the
sc¢attered power, assuming the incident wave and surface are known exactly
(ch. II{ sect. A); averaging over ensembles of rough surfaces and turbulent

waves (ch. II, sect. B); a suitable modeling of the transfer functions which

comprise the mean scattered power solution (ch, III, sect. A-E); investiga-

RE e R

‘tion of special cases (ch. III, sect. F-G); and presentation of experimental
results a.nd‘analysls (ch. IV). Three related mathematical analyses are re-

‘served for the appendix.

FQ TR
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Chapter II
GENERALIZED THEORETICAL SCATTERING ANALYSIS

This chapter presents the derivation of the generalized scattering
equation which includes the effects of arbitrary wave profile, deterministic '
surface, rough surface, and the propagating medium. The result allows the
user to specify his own surface and wave properties for his particular scattering
problem, Chapterlllwill demonstrate a suitable modeling for the laser
scattering problem mentioned in the introduction, but for the present all assump-

tions are made with the widest range of application.

A. DETERMINISTIC SCATTERING
This section is the derivation of the scattered power where the
surface and incident wave are known exactly. The result will be shown to be
formally independent of incident polarization. However, initially the scattered
electric field for an incident field of horizontal polarization is derived. "Hor-
izontal polarization" implies the incident E-vector is normal to the xz plane
of incidence, and the incident H-vector lies in the plane of incidence. (For
that plane and for ease in understanding the subsequent definitions, refer to
figure 1.) In this section, Beckmann's [ 1] notation is followed when possible.
The starting point of the derivation is the scalar Helmholz integral

relation for the scattered E-field (EZ) at a receiver point P:
_ 1 3y __ . 3E;
Ey(P) = o= LJ“ (E, 5 V=) ds (1)

where in the integrand E2 and -2—53 are the scattered electric field and its
normal derivative on the scattering surface S, and ¢ and Z—nw- are the Green's
function and its normal derivative. Beckmann has the total field at the surface
(E1 + E2 , where El is the incident field) in the integral rather than just the
scattered field. However, Stakgold [5] shows the two expressions are equal

by provino
2, 2K =
ISI (El an ¥ 3n i S0 (2)

4
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[

Figure 1, Surface geometry. (Only one surface point, Py, is depicted to

reduce complexity.)

The appropriate Green's furction is

y = 2R (3)

where k is the wave number and R’ is the variable distance from P to a surface
point Ps . If the receiver point P is in the far-field, only the first two terms

of the power series for R’ need be kept:

kR szo- kz-r (4)

e

where Ro is the (constant) range, jc_z is the propagation vector directed from

the origin to P, and

e

T=x+y+ Cx,y)E. (5)

(The hat (") above the letter indicates a unit vector: for example 2= ;/ | z |.)

5
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The familiar ¢ is chosen as the surface height function. From (3) and (4) we

2

find
v L% -
—r ikz Ay (6)
and - - :
wz—g’%-(-i—k—R-Q—) exp (-ik, 1) . (7)
o

In the far- field limit, the vector directed from Ps to P is assumed to have the

unit vector k—z/ k.

The incident electric field is assumed harmonic and nearly plane:
El(r‘,t)=U(?) exp(ﬁl.?-iwt). (8)

(In keeping with Beckmann notation, sub-1 implies an incident quantity;
sub-2, scattered. As usual, the temporal frequency is w, and t is time.)
The wave profile factor U (;) is complex in general and includes (a) the
deviation of the E-field from a pure plane wave (due to scintillation), and
(b) the original spatial profile at the wave source. In equation (8), 1_<-1 is
a propagation vector directed from the far-field source point Q to the origin
of the scattering system.

The tangent plane approximation is made as a preliminary to a
Kirchhoff boundary condition. The surface must have large local radii of
curvature with respect to 2, the wavelength, for the approximation to be rea-
sonable. Moreover, the slope along the surface must be small (less than a
few degrees) so that the incident polarization on the plane as a whole is
equivalent to the polarization on the individual tangent planes. Both Leader
T6] and Valenzuela "7] have shown that depolarization is an effect of
multiple scattering; but since small slope and large radius of curvature are
assumed here, the surface roughness is slight to moderate, and multiple
scattering will be insignificant. Finally, since the simple plane-wave
reflection problem is solved to establish the boundary conditions on a single
tangent plane, we are justified in using the Fresnel horizontal reflection
coefficient R in expressing the scattered E-field at the surface as R~ times

the incident field there:

e o

el i

N T
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(9)

= R E

*‘ Ez 1 *

S S
What to use for the Fresnel coefficient is a subject of continuing argument;
however, for present purposes, we assume R is not a function of the integration

variables of (1). This is at least valid for infinitely conductive surfaces; and

as an approximation for other surfaces, an average R~ taken over the surface
for a given incident angle might be sufficient. Error for this type of average
increases with increasing roughness of the surface, but once again the tangent- :
4 plane approximation restricts us to moderately rough surfaces. '

The normal derivative boundary condition is also found from the

tangent-plane reflection problem:

—= = - . Fo—_— ==
“ El R ( ikl fi T 3 ) (10)

T T T v

In most circumstances the second term in the parentheses in (10) is negligible.
Mathematically we require

_ 12U
k U cos el 2z

and that the surface slopes (gx,cy) be much less than unity. This

says grazing incidence is avoided, and the gradient of U normal to the mean

< 1 (11)

surface is smaller than kU. There is an example of a verification of (11)
c _‘ in appendix I wherein the inequality is checked for the models presented in
chapter III. Satisfying (11) also implies there is only a slight variation in
U in the z-direction over distances the order of the wavelength and hence of
the composite surface. If the Maclaurin series inz for U (F) is written:

3 U

f U(r) = Ulk,y,0) +2=] z+..., (11a)
) 82 z=0

then by inequality (11) only the first term in the series need be kept:
U(r) ~ Ux,y. (12)
After putting (6), (7), (8), (9), (10), and (12) into (1), dropping the

time-harmonic factor, and performing vector-algebra manipulation:
it/
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Ri exp(ikRo) or iver
p a - +
Ez( ) TR :[I Ue [ 0, Vs cyvy vz] dxdy (13)
where v = k1 - kz = v X+ vyy+ v, 2 (14)
- i - 2 - - + 5 %
k [ (sin ® 1 sin 92 cos 93)x sin 92 sin 63 ¢ -(cos 91 cos ez)z ]

(Subscripts x and y, when appearing on { or U, imply those partial derivatives,)
Equation (13) is the first reasonable form for use when U and { are exactly
known, but without further approximation the integral is revised via partial
integration such that the derivatives appear on U rather than (:

Ty i iver
E,(P) = C R ”[U--F(vxux+vyuy)]e dx dy (15)

-0

_ ik exp(ikRg) Vg
where Cl = —TRO—— ( cos Ql T; sin el) (16)
2 - - 2 ,
and vi=vev =2k (l-sme1 sirm2 cos 93+cos el cos 62). (17)

Reduction of (15) by eliminating the second term in the bracket requires (for

each (x,y) and (91 ,92,63)):

lu| v*

2k (|Ux| + |Uy|)

>> 1, (18)

Loosely, (18) is satisfied if (a) there are no edges or sharp boundaries
(shadowing is neglected); (k) k is large (this is consistent with the local

radius of curvature being much larger than 1); and (c) if 6_=0, then

3
0.= 6254 +n/2 (grazing incidence is avoided if the observer at P "looks at"

1
the specularly scattered component). If (18) is indeed satisfied, then the
expression for scattered E-field of horizontal polarization for known U and (
1 ~
S @ isz i(vxx + vyy)
EZ(V) = C1 R ff U e e dx dy (19)
which is written to emphasize the Fourier kernel. Like inequality (11), the
validity of inequality (18) is checked in appendix I for the specific field
profile and medium turbulence model of chapter III.
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The above result is also applicable to scattering of & vertically

polarized incident electric field:

B‘l = U(r) [& cos ©

= E

e 2 sin el] exp(ik—1 ‘T -iwt) (20)

% +E, 2
e T,

or an H-field of either polarization. The new electric field boundary conditions

are
Ez = R+(-E1 %+E, 2) (21)
S x z s
and aE + e A 1 aU A
—i — . - — ————— -
== R (i kj*h-5 =) (Elxx Elzﬁ) . (22)

S
+ -
where R is the vertical Fresnel coefficient. (For the forms for R+ and R ,

see Beckmann [1], p. 21.) Because of the similarities between (9) and (21),
and (10) and (22), the steps leading to the scattering equation (19) are found
to be applicable to each of the two scalar components of the scattered field
(termed Eo and E2 ) where the incident field is vertically polarized. The

X —
(scalar) Euclidean fiorm ( JEZ + EF
25 2,

) of the scattered field is the desired
quantity since it is the field observed by a receiver at P looking along ko
That scalar scattered field is also given by (19) if we employ inequality (11)
again and let R--R+. The scattered magnetic fields are then found by duality.
For example, to derive the scattered H-field due to an incident H lying normal
to the incident plene, replace the E in the derivation of scattered E-field for
horizontal polarization by H, and let R=R'.

The real scattered power (flux) is now easily written for either

vertical or horizontal polarization:

*

P,=%E, H,
Y ® ivehA
_ o 2 2 T I e
- 2101 [J eyt e a2 (23)

where R is the reflection coefficient of the appropriate polarization, and Yo

is the admittance of free space. The function Gd in (23) is an unnormalized
9
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mutual coherence:

ol *
Glv, i 8) = (v V)

[ V" (x,y) V(x+ax, y+ay) dx dy (24)

| |
where V = U exp (inC) is known exactly. (The sub-d is for "deterministic.")
Moreover, for simplicity:
v =v&R+v
b X YY

is a spatial frequency,

A =AXX+AY §

is a spatial distance, and

db =dax d ay. (25)

In a coherence in the "bra-ket" form in (24), the convention is to take (x,y)
as the subscript 1, and (x + px, y + Ay) as sub-2, Not only is the functional
form of Gd a coherence, but the Fourier transform in (23) of Gd is a power
spectral density function. Furthermore, note that in general a covariance

B(4) which is defined by
B(3) = ((V,~(V )" (V, ~(V,) ) (252)

is inturn related to the coherence by rewriting (25a):

= N S
and that a correiation C(X) is defined by
— B P
C (B )N= —% . (25¢)
B(0)

In generzal, the incident polarization is neither purely vertical nor
horizontal but is arbitrary. When superposition is used on the incident E
and H fields to represent an arbitrary polarization, one finds that the relation
(23) is still applicable. Suppose El is rotated through an angle « from the
incident plane about the propagation vector k1 (as depicted in figure 2). Then
the coefficient R2 needs only to be redefined:

10
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+ -
R2 = (R cos a)z+(R sin a)z. (26) .

However, the integrals (23) and (24) are unaltered. The preceding polar-
ization analysis indeed shows that the term "scalar scattering" is still ap-
propriate even when the incident fields are of arbitrary polarization. In

fact the question of incident polarization can be ignored since it is obviously

a matter of choosing the proper form for RZ. From now on, the case of a perfect

reflector (R2 = 1) is taken without significant loss of generality.

TR

y <

Figure 2. Rotation from a vertical incident polarization (dashed lines)

to an arbitrary one. Note each vector E and —}-11 can now be

1
! split into vertically and horizontally polarized components.
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B. ENSEMBLE AVERAGING

Since very often in scattering the surface is not exactly known, the
scattered power as averaged over an ensemble of random surfaces is needed.
The actual surface model chosen is a sum of a randomly rough (Cr) and a
deterministic surface (Cd):

€ =6+ (27)

The rough surface is described by its second order statistics and is assumed
to be statistically homogeneous (stationary) on the area under the beam. The

joint probability density of the random variable Cr is W (z1 ,2.; 0%, Ay), and

2
the joint characteristic function is the double Fourier transform:

i(v,z, +v223)dz s

(v .v,i ) = E Wz, .z,i0) e p 92,

B (ei("x z, +v223)) ) (28)

(The reader should be careful not to confuse the statistical characteristic
function (28) with the deterministic coherence function (24) even though the
bracket notation is the same.) The surface ensemble average is now taken

on P_ given by (23):

2 -_— -
(P} = % |Cl|2 _ﬁ' G (v i ) x(v_: ) s (29)
where Gd is as in (24) except now { = Cq and
x(v i8) = x(v,, =v_ i8). (30)

Homogeneity of C‘r allowed the y to be extracted from the integral defining

Gd' If the surface model chosen were a more general higher order composite:
n
S

Er Sy
= + 31
4 Cat /) Cr1 (31)
i=1
and if X4 is the joint characteristic function of Cr» then in (29):
i

_ n
x(vz:A) = 15 xi(vz:A) (32)

1
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if { Cri} is a mutually independent set.

Next, rather than assuming exact knowledge of the incoming wave,
an average over an ensemble of incoming waves U is taken. The field profile
is rewritten as the product:

U= ¢2 (33)

where ¢ is the deterministic character of the incident field, and 2 is a
homogeneous random variable whose statistics are assumed known. The
random variable Z is the output of a turbulent medium where the input is a
spatially uniform illumination of unity amplitude. (Hence Z is itself
unitless.) A second averaging is then performed on the mean scattered power

over the ensemble of incident waves:

s g _ _ _ iv, K
({P}) = 5= lcll L\de(vz;A)x(vz:A)Co(A)e da (34)

where Co (3)= (ZIr Z2 Y is a statistical mutual coherence (unnormalized), and

the Gy is still defined by (24) except now U~ ¢ and ¢ ~ C .. In obtaining

(34), the homogeneous property of the medium (and hence of g) is used to
extract Co from the integral defining Gd' The model for the wave profile (33)
is especially chosen to yield this decoupling, since U itself is non-homo-
geneous.

Relation (34) is the most general form for mean scattered power flux
to be obtained here. It sets forth the four contributors to the problem -- the
incident wave, transmitting medium turbulence, the deterministic surface,
and the rough surface. It quite obviously reduces to the earlier, less general
scattering equations (23) and (29). This extends Beckmann's result in that his
involves only the rough surface. Three special cases are notable: (a) if the
rough surface goes to zero, x = 1; (b) if there is no turbulence, Co -1; and
(c) if the mean surface is a flat plane ( l;d= 0), G, becomes the mutual

d
coherence which Eckart [2] found as part of his result:
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|

d = ”'.8* '()‘c,y) e:(x + Ax, y+ AY) dxidy ,
Cd=(.) - 0 !

* : {
<al 8,23. | : | (35)

The 'above integral may also be termed the fncident wave Icoherence.

| Interpretation of (34) is best don‘e via a systems transfer function
viewpoint. Since (34) is a Fourier transform (where v is spatial frequency),
each component of the 1ntegrand (except the kernel) can be interpreted as a

transfer functlon, as exemplified by the "system" of figure 3. In usual termi- '

it smliv it s,

nology C is the optical (or modulation) transfer functlon (OTF). Let Gd and

x be defined as the deterministic and rough surface transfer functions (DTF and

RSTF), respectwely. The ' mput" to the system is the constant factor

# Y !Cl |2. The amplitude of the incident wave' is in the DTF Gd Because

" of the decoupled nature of the result, certain aspects of the prob|1em (such

] : as the rough surface) can be revised without varying others (deterministic . b |
components and the turbulence). | '
{
{
‘ , |
‘ ' ]
| | . TRANSMITTING '
MEDIUM RESPONSE MEAN . i
= -~ SCATTERED | -
INPUT | Gq(vziB)| | Co (B) X (vz4 B)| ~power : i
. bgiefl otr [ orF RSTF [N T DOMAIN) > |
KNOWN SURFACE : ROUGH SURFACE . ' i
AND WAVE PROFILE RESPONSE "

RESPONSE i

~w—re

" Figure 3. SyStem transfer function model for the mean scattered power as
given by equation (34).
14

\ 8 {




Chapter III
MODELING OF TRANSFER FUNCTIONS

The general solution (34) is now applied to the scattering of laser
r‘adia'tiongfrom rough curved surfaces where the propagating medium is the clear
atmcsghere., 'This serves as an exemplary use of the result and more important
gives the desired theoretical information on scattering from the titanium and
élummum airplane surfaces. Initially the rough surface statistics are inves-
tigated to find the RSTF; then the OTF and DTF are found. Although these
models are optimal for the problem at hand, they are also applicable in numer-
ous parallel situations. The advantage of the formulation (34) is that inap-
propr.iaté transfer functions may be remodeled without disturbing the others.
For example, suppose after calculating the scatter from the titanium surface
in the atmosphere, we desire the scatter from the same surface under water.
Then tt e new OTF would be determinegi but the remainder of the analysis

would remain intact,

f

A . ROUGH SURFACE TRANSFER FUNCTION

‘The aluminum stydied was taken from a scrapped USAF F-84 tail
section. “Because the part had been in extensive use, it is more typical of

aircraft in use today than an unused sample would be. Aluminum is generally

_ used in sub-Mach 2.5 aircraft, and titanium in Mach 2.5 and up. The titanium

studied is a sample used in stress testing. Since titanium does not corrode as
aluminum does, it too is typical of present-day aircraft materials. Other sam-
ples which were not 1nvgst1gated were (a) a painted one, since presently paint
of military aircraft is classified and hence unavailable; (b) composite materials
such as Boron/Epoxy and Graphite/Epoxy which are formed by a process which
does not obey the cen‘tral limit theorem. In fact, the composites exhibit a
nearly periodic surface. Moreover, neither composite nor painted surfaces

have a near-unity reflection coefficient.

15




To establish the RSTF, the second-order statistics of the rough
surface must be found by directly probing the surface. Since the surfaces
under study are optically rough, the proper instrument is a proficorder, A
proficorder (Bendix trade-name) drags a stylus slowly across a surface and
produces an output proportional to surface height, The analog output is
recorded and converted to digital form for computer analysis. In our case, the
recording was made on a strip-chart and the conversion was manual. Traces
were made on the surfaces at various locations to check for homogeneity
(stationarity); moreover at some locations, traces at 90° and 45° to each
other were made to check for isotropy. A total of six traces with number of
points ranging from 128 to 512 were taken for the aluminum to give a total
number of 1920 data points for analysis. There were four titanium traces,
each with 128 data points. The sample period was 0.2 mil; hence trace
lengths ranged from 25.6 to 102.4 mil in length. The first step in computer
analysis is the removal of a linear trend and mean to minimize surface orient-
ation errors. The output of the program includes probability density (p.d.f.),
cumulative distribution (c.d.f.), and power spectral density (p.s.d.f.).

1. Probability Density.
Williamson [8], [9] has shown that to remarkable accuracy most

randomly-prepared metallic surfaces possess a Gaussian probability density.
For surfaces where the preparation technique is a cumulative result of a large
number of repeated events occurring randomly over the surface, the central
limit theorem applies and insures a nearly normal probability density [8].
Such preparation must completely define the surface roughness; it cannot
merely reshape maxima. Hence sanding, sand blasting, corrosion, and
rolling of sheet metal may generate a normal density; whereas light polish-
ing and buffing may not. Moreover, if the effect of these processes is
distributed uniformly over the surfaces, the statistics will be homogeneous.,
And if the process operates without "preferred direction" , the statistics are
isotropic. Hence the above-mentioned processes should generate isotropic,
16
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homogeneous normal statistics. (An example of a non-isotropic, but homo-
geneous random surface is the ocean. Here, the wind direction is the pre-
ferred direction.) Rather than relying completely on this heuristic approach,
the surfaces are checked for p.d.f., isotropy, and homogeneity.

The probability density of the aluminum and titanium surfaces
was obtained by the histogram method suggested by Jenkins and Watts [10].
To see how close to a Gaussian the p.d.f. is, the c.d.f. was found by a
cumulative summation of the p.d.f. and was plotted on probability paper.
The composite c.d.f. for titanium in figure 4 and for aluminum in figure 5
(indicated by "total") closely follow a straight line; so these surfaces are nearly
normally distributed . That straight line is the c¢.d.f. corresponding to a
Gaussian p.d.f. which has the same variance and mean as found for the
sample. In figure 4, the abscissa is normalized to the standard deviation;
however the abscissa in 5 is not normalized. The two c.d.f.'s in figure 4
labeled "roughness" and "waviness" are explained in part 2 of this section.
Not only were the composite p.d.f.'s nearly Gaussian, but the c.d.f. for
each surface trace (not shown) closely followed the straight line as well,
The individual standard deviations are given in the captions of figures 6
and 7. The properly-weighted average standard deviations are : aluminum
0.067 y ; titanium 0.095u. From this information we can conclude the
assumption of stationarity to first order is reasonable. We still need to show

second order homogeneity is valid,

2. Power Spectral Density.

Since the surfaces can be suitably represented by a normal p.d.f.,
all that remains in completely defining the surface second-order statistics is
a measurement of the power spectral density, Ps. The p.s.d.f. is obtained
through the following steps: (a) taking the (fast) Fourier discrete series
expansion of the data, (b) applying a Hanning window as a three-point con-
volver, (c¢) taking the modulus-square of the resultant sequence as a raw
estimate of power, and (d) averaging over bands of frequency to improve con-

fidence limits. (The final limits, or error bars, were evaluated from the table
17
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provided by Blackman and Tukey [11].) The individual p.s.d.f.'s for
each of the four titanium traces are shown in figure 6; and figure 7 has the
six aluminum p.s.d.f.'s. The titanium spectra display the expected isotropic
and homogeneous behavior; however the aluminum is at best only isotropic

and locally homogeneous in that traces labeled 1,2,3 are at one location on
the surface and traces 4,5, 6 are one inch away. The poor behavior of the
aluminum is due to non-uniform corrosion of the surface. Hence

for the aluminum, an averaged power spectrum is used to represent the entire
surface. Since the titanium appears stationary (to second order), averaging

of titanium Ps improves confidence limits. (Titanium averaged p.s.d.f.

is in figure 8; aluminum, figure 9.) When scattering measurements are made
and compared with theoretical curves which use these averaged spectra,

we will observe a good match which confirms the necessity of taking the
average for aluminum.

We notice that there are two regions in which the power is located.
The low frequency power is termed the "waviness" component because of the
long wavelengths. Waviness is a result of the rolling process that formed the
metal. Similarly, the wide-band component is termed "roughness". The
origin of the roughness component is partly the process which formed the metal
originally and partly the processes that act on the surface after formation (e.g.
corrosion in the case of aluminum). Because of the multiple-application of
events to create the random surface structure in surface formation and in the
post-formation processes, we expect the roughness and waviness components
each to be normally distributed. Each surface trace was then filtered into its
two components, and each was investigated for c.d.f. Once again the exper-
imental results contirm the expected Gaussian p.d.f. The c.d.f.'s of the
individual titanium components are shown in figure 4 wherein the abscissa of
each is normalized to the individual standard deviation.

Since the two surface components appear to be created by inde-
pendent processes (even in sheet rolling the small-scale fluctuations are not
related to large-scale), the components are themselves independent. Hence
the sum of the individual power spectra equals the total spectrum, and

19
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i Figure 6.Individual titanium surface height power spectral density versus

LI t
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wavenumber v . (Each trace has 128 data points. Individual
standard deviations (in p) are 0.099 (#1), 0.102 (#2), 0.084
(#3), and 0.094 (#4). Nyquist frequency is 0.0984 p.-l.)
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Figure 7.Individual aluminum surface height power spzactral density versus

wavenumber v. Confidence limits are not shown due to non-
stationarity. (Individual standard deviations (in p) followed by
number of data points are 0,072, 512 (#1); 0.062, 128 (#2);0.125,
256 (#3); 0,063, 256 (4#4); 0,049, 256 (#5); 0.077, 512 (#6).
Nyquist frequency is 0.0984 p.-l.)
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Figure 8. Average titanium p.s.d.f. and best Gaussian fits to waviness

(low-frequency) and roughness (high-frequency) components.

22

L




5 e
3
~ i
at ] Py, = 0.140 axp [-(1/128 x 10727
e s To* 249 0y 200563
I HEh
§ e
- i Ben @ 2
E N Ry" 0.0204 exp [ -(v/0.05)2 ]
O g2 Top=6.37 03,20.0425
. i =)
w3
@ - L
Y e N
z
a

'D.l 1 I ] ] I ] ] Ll 1 ] L] ]

615 12,3 248 49.2
10° v (™)
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the surface characteristic function can be written as the product of individ-

ual characteristic functions, For the individual power spectra Ps . a Gaussian

i
model is closely fitted to the data (see figures 8 and 9):

P_(v) = Py (0) exp [~ (v/vy)?] (38) |
i i i

where v is spatial frequency and vy is the e-folding frequency of the ' '

Gaussian. Consequently, the individual surface autocorrelation functions

are the Fourier-cosine transforms of Pg (v):
|

Csi("l') = [ cos(2mvT) Psi(v) dv . (36a)
_ 2
Hence Csi(w) = exp [-(T/Toi) ] (37)
where 72 = (Ax)2 + (Ay)z, (38)
— |
. =(mv_) : , and 02 = P_ (0) v_«/m is the individual surface variance.
O1 01 Si Si o‘i

3. Form of the RSTF.

In general, the RSTF is the joint characteristic function of the

surface roughness x(vl,vz;'E) evaluated along the diagonal v =vz; vV,==V .,

1 2 z
But since the composite surface given by (31) is desired, where crl is the
"waviness" component, and {, is the "roughness" component, the RSTF

2
(by (32) ) is the product of the respective characteristic functions evaluated

along the diagonal. For each roughness component (. the RSTF is
i

Xl(vz; T) = exp[—osz sz(l —Csi('r))] . (39)

i

Extension to higher order surface composites ( ng> 2) is straightforward.

Depending on the size of the normalized surface variance
- L2 2
9, =V, c::s1 (40)
with respect to unity, the characteristic function Xy may be written two
ways:
Case 1: For 9 € 1, the surface is slightly to moderately rough, amd Xi in

(39) is expanded in an exponential series which in general appears as:

24
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Z o Zm
e =z i (41)
m=0

The plot of figure 10 gives the absolute error (¢) in approximating the

infinite series (41) by the series which is truncated at m1 , as a function of

z. For example when z= 0.1, m1= 3 is sufficient for e< 10-5. So

g . . / 2

. Yy gi -m(t/7_)

xi(vz, T) = e Z T e of : (42)
m=0

Case 2: For gy >>1, the surface is very rough, and the characteristic function
X i is predominantly affected by C$i near unity (or T near zero). Hence only

the first two terms of the Maclaurin series for Cg are retained and
i
2
X WziT) ~exp [-g; (T/Toi) 1. (43)

This case should be used with caution, however, since for very rough sur-

faces the tangent plane approximation weakens.

4, Checking Boundary Conditions.

Finally, the initial assumptions of small slope and large radius of
curvature are checked. The mean slopes (J_Z- USi/'roi from eq. (106) )
are found not to exceed 0.3 degrees for the waviness component and 1.0
degrees for the roughness component ., Hence the small slope assumption
is valid. To check for large radius of curvature, the one-dimensional cur-

vature ( K) is found point-wise on the computer for the samples using:

2 2 _=3/2
_ d da¢
e - S (e (8] 2
(Curvature is the inverse of the radius of curvature.) The probability
density of K is found empirically, and the standard deviation Ok is found

from that density. Moments of the density of K are more meaningful than

those of 1/K since in general the latter has a bimodal density and the former
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B, OPTICAL TRANSFER FUNCTION
In this section an OTF for the clear atmosphere is derived in a form
{

suitable for the integration of (34). Such a solution is not only applicable to
the scattering probleih but more generally supplies the loss in coherence of a
plane wave in the optical to infrared wavelengths propagated through the
atmosphere. An alternate form for the OTF derived by Hufnagel and Stanley[12]
: 5/3
M(p) =exp [-cp / ] (44)

d !
(where ¢ is some cqnstant),is perhaps accurate but prohibits closed-form

integratioﬁ of(34) since,(44) is not analytic at the origin, Rather, an

! ' ‘appioximate Gaussian model:

Co(p) = exp [—c'pz] (45)
(‘c' a_,con"stant) is derived heérein from the initial steps provided by Beran[1317,
14]and Strohbehn raj, risl.

It is inappropriate here to reiterate Tatarski's work [3] on wave
'propagation in a turbulent medium. For our purposes, the most useful quan-
=1:1ty pt'esentgd by Tatarski is the three-dimensional spectral density of the

ind_ex ,of refraction fluctuations as a function of wavenumber:

-11/3

& (n) ~n n<H<n (46)

l ‘ ass'un;ing local isotropy and homogeneity. In (46), n = 5.92/&o and "= 21'r/Lo
where L,o and Lo are the inner and outer scales of turbulence, respectively.

The outer scale (I,'d) is usually taken [4]as the constant height above ground,
apd L0~ 1 to 10 mm. Strohbehn [47] has improved the form of d>n by rewriting

the fﬁnction to remove the singularity at the origin:
i

t -11 6

d[1+nzL2 ] / US %

o} m
o (x) = (a7)

. 0 U>H

m
| ‘ o2 L11/3
: ‘ foon oo

’I w . .
herel o mz— ( KmLo>>1 )

and Cn is the refractive index structure constant. Typical values for Ci
: 27
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(for L < a few hundred meters) given by Brown [16] range from 6 x 10~13

m-z/ for the strongest daytime turbulence (L0 < a few meters) to 6 x 10'-15

-2/3
m / for very weak turbulence at dawn cr dusk. Actually, Strohbehn used

a Gaussian taper function exp[~(u/x m)z] to turn off tbn at u = "o However,

due to the low value of cbn atw . form (47) is suitable here. As the wave-
number u decreases for u< Mo the spectral density loses validity for two
reasons: (a) The model presented by Strohbehn is only supposed to reduce
the mathematical problems by removing the singularity at the origin. It does
not necessarily fit experimental data for small v, (b) For such small x,
the spectrum actually loses meaning since one may not assume homogeneity
over very large separations in the corresponding structure function [3].

The OTF is found in terms of cbn by assuming the statistics of
the wave amplitude ( |Z|) are log normal and the wave phase (arg(Z) ) are
normal. Experimental measurement [17],[18] and theoretical analysis [31,
[ 4] using the central limit theorem have validated those assumptions. Beran
(137,147 and Strohbehn [4],[157 have derived the OTF in terms of the wave

structure function (D) by somewhat independent procedures:
CO(A§ » AM) = exp [-D(ag, an) /2] (48)

where (A€ , AT) are distances in the "incident system" (& , 1) which is
normal to the incident propagation vector l—<'1. (The wave structure function
is the sum of Tatarski's log-amplitude and phase structure functions.) If,
in addition to statistical homogeneity, isotropy is assumed, then C°= Co(p)

where
ol= (ae)? + (am)l. (49)

The wave structure function is related in general to the wave covariance

(Bu) by
D(p) =2 (BU(O) - B (o). (50)

If the wave correlation function Cu( p) = Bu( p)/ Bu(O), where Bu(O) is the

wave variance, then

C (e)=exp[-B (0) (1 - C (p))]. (51)

28
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Note the formal similarity between (51) and the RSTF (39). In (51), Bu(O) is
a wave variance normalized to 7\2, and in (39) osz sz is a normalized surface
variance. The reason for the similarity is that a ijoint characteristic function
involving normal random variables is obtained as the RSTF; whereas a coher-
ence of log-normal variables is the OTF.

The expression for the OTF in (48) and (51) is for an infinite plane
wave Z. The results of this section are applicable to the scattering problem
only if the separation U =€ Z in (33) is valid. In an independent approach based
on Whitman and Beran [20], the decoupling is not assumed, and precisely the
same scattering result (34) is derived. The reader can verify this by using an
arbitrary boundary condition rather than Whitman's (3) and then evaluating the
resulting coherence corresponding to his (22) at frequency E =0.

The correlation is written as a Fourier-Bessel transform of the

spectrum <I>n( w):

2 »
Cu(p)= %Q g Io(up)tbn(u) nw du (52)

where Io is the Bessel function of first kind, zero order, At this point we
note that since <I>n for small » loses validity, Cu( p) for large p (>Lo) is
likewise questionable. Through straightforward integration the wave var-

iance is found to be:

B (0) = 4 i k2 R, j ® (%) wdn
= 0.786 !:ZR 02 L5/3 (53)

Equation (52) must be integrated numerically, except for small p<<{,o when

C (o) ~1- ST n )2 2 (/)% (54

(Equations (52), (53), and (54) all assume u L >>1,) Unfortunately, the

absolute error in using (54) is less than or equal to (pn ) per cent, Since
the beam size is much greater than Lo, form (54) is essentlally us®eless. So

computer integration is used to give a close approximation to Cu( 0):
29
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(p/Lo)ZW, umza.s(Bﬁ(oHS/B (55)

C (o)~ exp[-1.125 (B (0) )2
u u

where B°(0) = B (0) p-5/3
u u [0}

to the extent that Cn does. The steps in deriving (55) are outlined in
appendix II. For x < 3.3 (Bz(o) yove

than (55); however, (54) will be rarely needed except at long ranges or very

is not a function of "o and only depends on Lo
, equation (54) is more appropriate

short wavelengths. Furthermore, for Bu(o) >> 1 (easily achived), Co( p) in
(51) is affected predominately by Cu( o) near unity (i.e., for p near zero).
Hence, only the first two terms of the Maclaurin series for Cu( p) are kept

in writing the OTF in the desired Gaussian form:
2
CQ(p)z exp[—(p/oo) ] (56)

where  p_=0.945 (82(0) )" %/8 1 "1/, (57)
o u o
For LO less than a thousand meters, the e-folding length p ocan be approx-
imated as
etk R e S (58)
o o n
: , -1/24
which is not quite dimensionally correct since the L0 factor has been
dropped. Since Cu (p) for p near zero is all that is needed in writing
the OTF, the questionable character of Cu(p) for large p 1is of no concern.
Equation (58) says that the OTF of the atmosphere is only a function of
wavelength, range, and the atmospheric structure constant.
It is now interesting to compare the above OTF with Hufnagel and
Stanley's OTF 127

2 5/3
nf

2 1. (59)

M(p) = exp[-1.455k R C
A graphical comparison of (56) and (59) reveals only slight discrepancies,
and indeed (56) is more suited for the closed-form integration of the mean
power given by (34). In that integration, the independent variable p will
be written in terms of the scattering coordinate system (x,y) rather than the
incident system (€ ,M) using the isotropic distance p where

pz = ( A cos 61)2 + (Ay)z. (60)
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Another OTF which may be of value to the reader was derived by
Yura [19] for transmission through ocean water, He shows two mechanisms
give rise to small-angle (less than 10-3 rad) forward light scattering:
suspended biological particles with permittivity approximately that of water,
and large-scale (with respect to 1) refractive index fluctuations. The OTF

for the latter mechanism

M (p) = exp f—(p/po)z'] (60a)

where  p_ = 2.76 % R, cﬁ ) L01/6 (60b)

is of course quite comparable to the atmospheric OTF in (56) and (57). Yura's

notation has been changed for comparison with the present author's results, :

Note that Yura's variance of index of refraction fluctuations is An® =

0.526 L02/3 Cf . Initially it appears that the e-folding length of the OTF
is larger in water than in the air -- a result which is not expected. However, g

this is not the case, since Cj in water is typically about 3 x 10"8 m-2/3‘

much larger than in air. Notice it is a trivial matter to change from a cal-
culation of scattering frocm a target in the a mosphere to scattering from the
same target underwater. All that changes is the value of the "constant" Py

Because of the formal similarity of the OTF in (51) with the RSTF 3
in (39), a rough surface with appropriate statistical characteristics can be 4
used to simulate the turbulent atmosphere. Rather than transmit the wave i
through the atmosphere, the beam would be reflected at nomal incidence from
a rough surface (or transmitted through a random-phase transparency). The

normally-distributed surface would have height variance Bu(O) / (4 kz), and

the e-folding length of the Gaussian autocorrelation would be po. The sur-
face would typically have a much larger variance and correlation length than
the aluminum and titanium surfaces under study; hence the roughness could be
formed by peening. Moreover, the mean slope W /W2 k po) (from (106))

would not exceed about 1,0° (using A=10.6uw, R =L =1000. m, and
2 L14 ~3/8 X
Cn =6x 10 m ), and so the tangent-plane approximation would still

be valid. This is of course expected because the propagating medium cannot
distort the phase of the wave so as to violate the original boundary conditions.
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C. DETERMINISTIC TRANSFER FUNCTION v ¢
The DTF Gd is given by (24) where V= ¢ e 2 d. For the wave:
profile &, the lowest order (TEMOO) circular output mode of the laser (assum-

ing uniform spatial coupling at the output mirror ) is taken in the scattering

coordinate system:
2 2 2
e(x,y) = 60 exp {-I(x cos 91) +y 1/27} (61)

where 14 is the e-folding length of the electric (magnetic) field profile and
80 is the real amplitude factor. The e-folding length (4’) of the incident
power is related to 4 by £ = 4°./2 .

The deterministic surface model is a quadric. In a coordinate
system (u,v) which is rotated through an arbitrary angle 17 from (x,y) but

in the same plane as (x,y):

2 2
S
Gy = - (5 * 5 ) . (62)
u v
The transformation
(u,v) = (xcosn -ysinf, ycos T +xsin7) (63)

is needed to write Cd(x,y). Relation (62) is the most general needed for
a second-order surface since terms of lower order can be removed by rotation
about the x or y axes. A rotation about the x-axis can be done arbitrarily
since that merely redefines the incident polarization which has no effect
here since R= 1+ 1. That rotation would not be proper in the case of a non-
perfect conductor, and hence first-order terms would be needed. A rotation
about the y-axis can always be freely done since the incident angle 91 is
with respect to the normal to the surface mean at the origin of the scattering
system, However, rotation about the z-axis is not allowed since the orienta-
tion of this known surface (set by 1) with respect to the incident (xz) plane
cannot be changed at will.

If the exact surface can be adequately represented by terms to
second order in its Maclaurin series, then the quadric surface (62) is

82
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suitable. Such surfaces include a small area on a sphere, an ellipsoid,

and a circular cylinder. In fact pu (or pv) is the radius of curvature of { d
taken along the v-axis (or u-axis) and then evaluated at the origin u =0

(or v=0). Moreover, the form in (62) will allow for closed-form integration
for the DTF and the final power. Higher order terms of the expansion force
computer integration,

Integration for the DTF yields the (anticipated) Gaussian form:

Az 2 v2 22
) = —Oo _p _z 2 2
G'd(vz’A) cos 61 exp [- 217 8 (BI(AX) nC B2 bx By +B3(AY) )]

(64)
2
where Ao =1 Lzeoz/z is a pure constant formed for conservation of power,

Namely # Y0 A; is the total power in the incident wave neglecting turbu-

lence. Also

2 2 2 2
B, = secze ( DT [ Lt ) + sinz'n cosz'ﬂ (-l- -—1>
1 : M pv Pu Py
1 1
= =« g1 « s = e
BZ sn'ﬂcos'n(pu pv>
2 cos2 sin2 sinzn os2
oo’ s, (20 ¢ S0 ), (S0, corn)
- pu Py Pu pv -
2 2 2 2
and B, = secze (-l- o —l—\ sinz'n coszn i ( 500 28] ) (65)
3 1\ o Py oy Py

Special cases including (a) a parabolic cylinder (pv- =), (b) a paraboloid of
revolution (pu = pv), and (c) a flat plate (ou-' =, 0 e ) may be easily worked
out if desired. For example if the mean surface is a flat plane, the DIF

becomes the incident wave coherence:

A2
= 2 - P
Sy =0_ cos 8, exp( W) ’ (652)
Cq

Hence the e-folding length of the incident wave coherence is+/2 £, of the
incident field profile is 4, and of the incident power flux is £/./2 . The
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radii of curvature P, and p, may be either positive or negative; however,

T T I

to justify the use of the tangent -plane approximation, |pu| and Ipvl must

be much greater than the wavelength and the beam size. Hence the scattering
result (34) may not give the correct mean scattered power for every portion of

the target surface -- especially if the beam size is large (e.g., one-fifth the

length of the target), and the surface curvature is large (e.g.,on a wing-tip).

D. FINAL INTEGRATED RESULT
The general result (34) with the three transfer functions (OTF
(56,57),RSTF (32,39), and DTF (64) ) substituted in is integrated to yield

the expression for mean scattered power in closed form. Since Case 1 above

e S i ians

AR e

(gi < 1; i=1,2) is better suited to the original tangent plane approximation,

and since the surfaces being studied are slightly to moderately rough, only

3 the Case 1 expansion is necessary for each component of the rough surface. 3‘

After integration of (34):

A2 |c |2 ¥ ™ Mmoo
_ %9 'T1 o -lgy+g3)T © g. g» —
« P2>> ~ 2 cos 91 © S - Tminl Gly: vx'vy) (66)

m=0 n=0

where G is defined as a generalized two-dimensional Gaussian integral:

A
E:

Fﬂ G(VY;iu,v) = exp |i{ug+vn) - (y €2+Y EN +vy ﬂz) dgdn
, ed 1 2 3

-2 -
u y3+uvY2 vayl

£ 2 = i
- 4y v, -y2 3
e 3
JAY Yy Y2 137 "2
L . 1
é (y1>0, 495 Vo> yz). (67) ;
{
; In particular, the arguments vy for (66) are: 2 2
v 4 B
1 1 2 m n z 1
= + + ——
Y <? 2L>°°591 =t t—g
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One further solution is written for the convenience of the reader -- that of

a single component very rough surface (Case 2, g >1 ; n_= 1):

A2 |CI|3Y

_ (o} e}
(<P2)>_ Zcose1

G(y; vx,vy) (69)

where ? is as in (68), except let n - 0, m~g, and A

Solutions of the form (66) and (69) are useful in computer program-
ming the solution to the scattering problem but give little insight as to the
mechanisms affecting the scattering behavior. Next, to reduce the complexity
of the solution (66), typical values of the parameters of Y in (68) are inves-

tigated.

E. NUMERICAL RESULTS
The rough surface parameters were determined in the analysis out-
lined in sectionA of this chapter. For all the surfaces examined, 0.04 <

€2forx 21.0u.

R - ot e .

i
This justifies the use of only Case 1 in the previous section, since the

Nd-YAG (A = 1,06 u) and the CO2 (A =10.6 u) lasers are the most promising

0 $0.1u(i=1,2); hence the roughness parameter g
il

imaging sources. Except for very long ranges, very short wavelengths, or

very small illuminated areas:

TN (-—17+-1-3) ,i=1,2.
T oy A

(In fact, the definition of waviness and roughness components implies

but that assumption is not needed here.) Notice that if the wave

were propagated underwater, o would be much smaller than in the atmosphere,
35




-

4

narran- At e s o

and the above assumption would not be applicable, (Refer back to (60b) and

(58).) Furthermore, a flat mean (C,d= 0= Bi; i=1,2,3) is taken to reduce the

complexity and to increase our understanding of the result.

The solution (66) is then separable into four significant terms:

A% jc |3y 2
o 1 o -(g,+g.) A cos 8 Vx 2
\‘l" P AR N 1 2 [_ =] )]
' 2>> 2 cos 91 € {Aexp 4n (( cos(l)1 )+vy
m, n
m n
2. g 2 2 2 T g 2 2
S R R R LR )
Toln L — exp[ Tol V.L / (4m) + -roan —=— exp 'roz v.L /(4n)
m=1 n=1
S m n
< g 2 m n )
) L el v/ (4( 2t 2 ) )
1"“1 m!n!(ﬂ,+_?) 2 To, "02
m=] n= T T=
01 02 (70)
i
where v2= vV ev , and an effective area of illumination is defined as
L L1
2| N 1 -1
A = TT[COS GIKW -a)tl . (71)

In the special case of no turbulence ( Py o) and a flat mean ( _Cd=0), the
effective area is the total integral of the incident coherence (AZ 2 Bay/ cosael)
divided by the peak incident coherence (Az / cos 91). (The incident coherence
is given in general by (35) and for a Gaussian profile by (65a).) Alterna-

tively the area A is the area of an ellipse with semi-axes equal to the e-folding

lengths in the Ax and Ay directions of the incident coherence ( /2 1/ cos 61

and .JZ 4, respectively).

The first term in (70) is defined as the coherent (or specular)

scatter since it is the observed scatter from a perfectly flat plase {i.e.,
g, =g, = 0). The second term is the primary diffuse scatter dve to the surface

waviness component; third is the primary diffuse term due to the surface rough-

P A e i e

ness component; and the double summation is a remaining contribution due to

all surface roughness, If g <« 0,25 (where g = g, + 95 ), then the double

summation in (70) is negligible. In that case we can letn, = m, =1 since
36
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the absolute truncation error will not exceed 10"3 (obtained from figure 10

for g = 0.2). Hence, if g <<0.25:

A |c. 2y
. o'"1' "o _-g _ _Acos Vig
« P2>>~ 2 cos 91 4 {AGXP[ 4 m (<cos 91

)

2

+v:)

2 2 2 2 2 2
T g, exp[-'rolvl /4] + 11702 9, exp[—'rozv.L /4 ]} . (72)

1
i

Equation (72) is appropriate for the CO2

g £ 0,02 for the titanium and aluminum under examination. However, if

laser wavelength, 10.6u, since

the Nd-YAG laser is used, A =1.06p, g<2., and all the terms in (70) must

be retained. (The summations could terminate at n1=m1=8 for an error less

3

than 10" °.)

Note that in(71) an increase in turbulence (oo decreasing) implies

]

a decrease in effective area A. Consequently the coherent component widens,

and its peak decreases. Most important, the coherent term is affected by

both the wave profile (via 4) and the turbulence (via po); whereas the diffuse

terms depend only on surface parameters ( e and og ). If the turbulence

i

had been much stronger (say for a wave propagated underwater), then o

would have influenced the diffuse terms rather than the coherent. The expres-

sion for such a case will not be shown since it is taken care of by (66).

When

the surface becomes rougher (by increasing g), power is coupled from the

coherent component to the diffuse., That decrease in the coherent component

is accounied for by the exp [-g ] factor which multiplies the entire expression.

It is observed that variable Bi ( and hence a variable deterministic surface Cd)

will affect either the diffuse or the coherent terms, or both, for typical ﬂi. If

such values are Lo be included, then one should either use the general expres-

sion (66) or, based on the actual values of Bi' decide whether the known

. surface affects the diffuse or the coherent terms in (70).

To give further feel for the scattering expression (70), sample

scattering patterns at the CO2

titanium and figure 12 for aluminum, The condition of turbulence is weak
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laser wavelength are given in figure 11 for
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PARAMETERS ' ' ‘
A =106 i , %, =0.0764)
Po =05 m ' Yo, 2245, :
2 .=002m ! oy *0.09544 '
n,em =3 *8.06 4 .
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.Figure 11, Polar plots of mean scattered power {in, db) for e3=o, ] e
constant, 92 varied; normalized to power at 0 —62=63=0.

‘Parameters for titanium found in surface tracing.

' PARAMETERS
! i I
A =106 %, =0.0563u .
Po *05m : ' . |%o, =249, Co
4 =0 _ ; o5y 0.0425 4
Toz t 6-37"[1.
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=70 80 -80 -100 410 ~I20 ~130 -140 -150 460  ~I6O ~150 40 ~130 420 110 40O -90 80 -70
i DECIBELS —»

Figure 12. Polar plots of mean scattered power. Same conditions as

figure 11 but for aluminurﬁ parameters.
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(C ='6 % 10 SLs m_z/3_, Ro = 250 m) so that the individual components of

scatter may be discerned The polar plots of scattered power are in decibels
where the reference power is the backscattered power at normal incidence.

. _ (Hence the norm is not a function of (9 6_,0 ) but does depend on the sys-

2
tem parameters - b To. » and °s N For each incident angle (e =0°,30°,60°),

the widest and next-to-widest lobes are the diffuse scatter due to roughness

and waviness respectively. The extremely narrow lobe is the coherent com-

ponent, In practice wider coherent components are encountered because
t

| . of stronger turbulence and because of an incident spherical wave. All

reasonable degrees of turbulence are taken care of by (70); how to account

for an incoming - spherical wave is the subject of the next section, part 1,

{

F. SPECIAL CASES

In'this section we give further interpretation of the scattering

: result (70) by investigating special cases. Actually the first case extends

| (70) by introducing incident waves with slight spherical character. Second,

1 “in the special case of zero mean ({ d=0), equation (70) reduces to Beckmann' s
result, Third, the direct backscatter case is analyzed to show more closely
the Way roughness parameters affect scattering behavior. Finally, scatter
from a perfectly smooth surface is presented. All cases are tied closely toge-
ther, and the reader will note some conclusions apply to many special cases.

'1. Incident Spherical Waves.

As pointed out in the examples of scatter in figures 11 and

12, the coherent component of scatter is often much wider than predicted for
’ an incident plane-wave. The reason in part is that the incident wave must

1 always possess some spherical (or second-order) curvature, To account for

this, we do not have to go back to the Helmholz integral and rewrite the

expression for incident fields. Rather, the deterministic surface is deformed

i spherically with radius of curvature twice that of the radius of the incident

| wave-fronts, If the incident divergence angle is ao (between e-folding points
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of the incident field ), then 1= 0, p,= 4 L/ozo, and o, = pv/ cos el. Hence
e,l= 32= [o:o/ (4 4,)]2 - az= 0 is substituted iny, eq. (68). As a result, the

revised coherent term (first in the brace of (70) ) becomes

1 Va V2
—— exp [ -5 (- +-5)] (73)
NYIY, BRI 3
13
é_3
where . 1 1 2 V2%
Yl =i ( —p:- + '2—;2) coSs el + _—128
V2a2
. 1 1 zZ o
= + +
4 Y3 ( 522 4F> 128

provided aj << ( x/'ro )2 , i= 12
i

To demonstrate the significance of including an incident spherical wave,
suppose po=10 cm, 4 =1 cm, a = 1 mrad, and \ = 10-5 m. Then 1/(2 13)=
5x103m—zand (vzao)2/128 < 1.25x% 104m_2,1n this typical example, turbulence
is negligible, but the spherical wave is as important as the wave profile

contribution.

2. Normalized Power, Compared With Beckmann.,

The normalized expression for mean scattered power is shown to
agree with Beckmann's result [ 1] in the special case of a zero-mean rough
surface (Cd= 0), a single-component rough surface model (ns= 1), and a
perfectly plane incident wave (Clo= 0). Normalization is with respect to back-
scatter at normal incidence from a perfectly smooth surface. The area A
defined by (71) is especially constructed to correspond to Beckmann's area
4 LxLy’ where 2 Lx and 2 Ly are the sidecs of the uniformly illuminated rec-
tangular surface. Since turbulence is lumped into the effective area A, it

is not necessary to require no turbulence in the comparison. The normalized

expression is:

40
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T -g{exp[ AcoseJ V,Z]

m
2
+19—1'v 9 exp[—'rfvg/(4m)]}
n

A L “mim (74)
m=1
2 Vx 2 2
where v = (cos 91) + vy '

2
g = (vz cs) ,
v

F3= [}——\ftanel] .

and

Beckmann's expression (eq. (57), p. 88 in [1]) can be achieved if the notation
is revised by

T = T,

o]
2 2
v = Vv .
1 Y
m, =,
2 r Acos Acose, -
and F3 expL ] p 3

The last expression is the normalized coherert component of scatter (the

scatter from a perfectly smooth surface replacing the rough one).

3. Direct Backscatter.

When an image is formed by scanning the source beam over the tar-
] get, a large amount of backscattered power is needed for all incident angles.
To investigate how the power in direct backscatter can be increased, the
power as given by (70) (at6_ = -6_; 6_=0 ) is normalized to the backscattered

2 1 3
power at normal incidence (a pure number) by:

((P.YYo = ((P.)) / ((P.)) . i75)
28t 2" Le,-0,0) 2" 1(0,0,0)

To simplify the analysis, we take only a single-surface model (ns=1). Then
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((Pz))B = (sec4e) expl(2k o sin 8 )2 1
Ak2 2 !

- 14 JTo T ©

{exp - sinetan9J+ i\ :

m=1

(os 2k cos 9)2"‘

('r,,kslne)2 \
m! m exp[— m ] I

(76)

If kTo is decreased, the surface roughens because the peaks come closer
together relative to the wavelength. Hence the diffuse scatter widens

Since we have no control over ‘To, we must increase the wavelength to increase
backscattered power at the large angles, 8. Unfortunately, a decrease in

kTo causes a decrease in the peak (at 6=0) and total power of the diffuse
component. So there is a trade-off between desired width and peak. In
addition, an increase in surface variance 052 will increase diffuse back-
scatter overall. An analysis similar to the above can be performed if the
imagery is effected at rome bistatic angle (i.e. receiver not located at laser
source!. yet monostatic ¥nagery gives us the required information on the effect
of surface parameters @n she liffuse scatter. Sample backscatter plots using
the aluminum and titarium parameters are provided in figure 13. These plots
and those o. figures 11 and 12 are generated on a digital computer using the
composite result (70). 3ecause of the low level power in the diffuse scatter,
it is readily obvious that receiver electronics, laser power, and detector
sensitivity will have to be quite good to detect backscattered power for angles

significantly different from the specular.

4, Scatter From a Perfectly Smooth Surface.

In order to provide a heuristic verification of the coherent com-
ponent in (70), the scatter from a perfectly smooth surface for vertical in-
cidence, when there is no turbulence present, is investigated. The normalized

coherent component of (74) for po - o js:

P, ~ exp [-(92/920)2] (77)
#
where _ 2 1 k? of
% = © (252 * 52°) 79
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PARAMETERS

A =106
Po =05 m

A =002 m
nem, =3 ‘L\O

TITANIUM ALUMINUM
- %, =0.0764, %, 005634 | VO
T, =245 T, =249,
=8 s, =0.0954, %, =0.0425, 8o0*
To, *8.06 4 T, *6.37 4
~70 80 -90 -I00 110 -120 -130 -140 B0 4140 | -150 150 0 150 450 oo 00 -80 -80 -T0
DECIBELS —»

Figure 13. Polar plots of mean backscattered power (in db) for 93 =0,
= = -0 . =0 =06_ = g
e 61 2 varied; normalized to power at 61 2 3 0
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is the e-folding angle ( © 20 <<mn/2 assumed ). Suppose divergence dominates

ST

profile: i
1 K2 o2 |
Tee < T (29)

Then the e-folding angle is the same as the e-folding angle of the incident

power: :
a
By = = (80)
0 /8
(Recall o is the total divergence angle measured between e-folding points H

on the incident field profile.) Now suppose profile dominates divergence:

1 k2 2 k
e > 3 - (81) ]

1%

i
920 = (82)

This compares favorably with the half-angle divergence 1.36/(k4) of a uniform

beam diffracted by a round pin-hole of diameter 4,/2 £. Hence for both the
special cases of the coherent scatter, the solution reduces to well-known i

results of diffraction theory.

G. THE INVERSE PROBLEM

1. Scatter at Normal Incidence.

The subsequent analysis demonstrates how to determine the surface
power spectral density and the atmospheric refractive index structure constant
from a measurement of scattered power where the wave is normally incident on ' ;
the surface (el=0). All the assumptions used in the modeling apply here
except we assume no knowledge of the surface power spectrum. One addi-
tional restriction is that the surface is only slightly rough:

X osz «<1, (83)

1
where osz is the rough surface variance. Recall that of all the aspects of ‘i
modeling, @ form for l; was never theoretically derived. Rather, a sum of E
|
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two Gaussians was determined experimentally to be a good approximation.

Once again, the assumptions of statistical isotropy and homogeneity for a
normally distributed surface are applied. If those assumptions are valid,
then a measurement of the surface power spectrum gives a complete second- i

order statistical description of the surface. Since this method determines

properties of the surface and the medium from scatter measurements, the
analysis is referred to as the "inverse problem." Not only are these results
valuable in studying surfaces at large ranges, but also in getting a quick
statistical description of a surface in a laboratory. There is less error in-
volved in this passive probe since most surface tracing devices physically
deform the surface.

The revised expression for normalized mean scattered power

(for 91=O ) is once again a sum of a coherent (pc) and a diffuse term (pd):
= +
p(ez) P, * Py
. v32n e
- expl - AV, 2o
exp | - o= ] = (')J‘BS(T) Io(v'r) Tdr  (84)
-1
7 = 1 1 k®o?
where Al = nmn ﬁ2+T§+ 32] '
v = ksinOzZ 0
and vz =k2(1+cose)2.
zZ0 2

The surface covariance Bs(1-) = <:rsa CS(-r) is assumed to drop to a value much
less than o: in a distance 1 <<.JA” /n , and that the e-folding angle of

the coherent component is much less than n/2. The Fourier-Bessel transform

in (84) is achieved because of vertical incidence and because of the isotropy

of the rough surface and the atmosphere. Normal incidence makes the three

transfer functions dependent on T rather than some being functions of p. !
The coherent term in (84) gives the information on the atmosphere

by relating po, the e-folding length of the OTF, to the measurable coherent

component of scatter. The e-folding angle of the coherent component 920
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is related to A’ through

_ 2 L
2" TN F -

Rearranging equation (85) we find:

3
W [ (2 - 8) -1 @

Finally, the refractive index structure constant Cn is related to po ia

equation (58) or

-8/5
c? - lpo/1.1) /

n R k° (87)
o

Hence the strength of turbulence can be measured by measuring the e-folding
angle of the coherent scatter (assuming we know Ro, k, ao' and 4).

From the diffuse component of scatter p d in (84), we can find the
surface power spectral density (and hence the variance and autocorrelation).

Since the surface two-dimensional power spectral density Vs is the Fourier-

Bessel transform of the covariance (see appendix III ), then by direct com-
parison with diffuse component in(84):

A’ pd(V)

VS(V)= -mz— . (88)
20

Hence to obtain Vs , the diffuse scatter p d (92) is scaled by the factor
A'/(ZTrvz"o ), and the abscissa is converted from 92 to k sin 62. Because

of isotropy of statistics, the relation is independent of 6, and requires a

3

measurement of scattered power for 0 < 92 <n/2 forany 93.

Vs (v) has non-zero values for v>k (where v=k is the limit of measure-

Even though

ment), we must make some assumption on the character of Vs (v>k). Either
Vs (v>k) is set to zero, or it is set by some trend (e.g. Gaussian) which is
established for v <k,
In appendix III, the one-dimensional power spectral density Ps
is related to Vs by
46
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ast

o 2v
P (k) = —_— V (V) dv (89)
: { Jv: - k2 °

where K= 2 v. (The only restriction on Vs is that it be Bessel-transform-
able.) Unfortunately the transform in(89) does not possess an inverse which
is a single-variable integral, and tables for this transform have not been
generated. Hence the most straightforward wey to go from VS to Ps is to
Fourier-Bessel transform Vs . and then Fourier-cosine transform the result.
To go from Ps to Vs, the procedure it reversed. There is one caution in
getting Vs from Ps: that the Fourier-cosine transform of Ps must be Bessel-
transformable. This immediately eliminates the Dirac-delta function (for PS)
which possesses a non-convergent Fourier-cosine transform. However, if

Vs is a delta function of area 2c:

Vs(v) - c[s(v-v1)+6(v+v1)] (90)
shen 2cv |« | < v,
P (k) = U= N (
3 - 91)
0 le | > v, -

This says that information stored as a delta function at v=+ v, in Vs affects

1

the character of P_(k) for |k|s<v,, but notfor |Kk|>v

ll 1 .
Relations (90) and (91) show how to choose a suitable Nyquist
frequency when Ps(u) is measured by a surface tracing method (e.g. on a

proficorder). The maximum value on the abscissa of Vs is v = k (since
;]

-

A . Hence for a scatter measurement for all 91 (rather than just ° 0),

| < n/2). In the abscissa of Ps’ that maximum corresponds to v=2nk =

a suitable Nyquist frequency is

- -1
VNY 2\ 7,

(92)
(Namely the sampling period would be \/4 or shorter. ) Alternatively, a
determination of Ps via a scatter measurement can be made for frequency v
greater than physically possible with the most sensitive surface tracing
devices. For example, generally on the best proficorder surface trace, a
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minimum reasonable sampling period is about 0.1 mil (which corresponds

to a Nyquist frequency of 0.196 u.-l ). However, for a Nd-YAG laser beém' :

(A= 1.06 p) scattered from the same surface (at normal incidence), the
Nyquist frequency is 0.943 u.-l. (Of course, inequality {83) must still
be satisfied.) | | |

To see how to use equations (88) and (89), we look at a concrete

example by returning to the Gaussian model for the one-dimensional power

{7
spectrum: . :

2 " 2 .

P = - ‘ y

s(v) cs To«/.ﬂ éxp [ (!"“To) 1

(A one-surface mod‘el, ns= 1, is sufficient for explanatory: purposes and can

easily be extended to-higher orders, ) Hence we find |

| "8 % Vzo |
= - 2 ;
Pglv) = — exp [ -(r_v/ 27 ] - (94)

If the Gaussian model is appropriate for Ps', the surface pqrameters os and
To can be found from a duicl; examination of the scatter pattern. Initially,

the peak of the diffuse component;lpd(O) gives

f

i

(93)

p.(0) A" o
(el S (95)
s O 4k n *
(Thé A’ is found in the analysis of the coherent 'component;) Secondiy,
suppose the e-folding angle of p‘ (9,) is e;_ , and that ez' €n l/4.'
t d 2l 0 t 0
Then to a close approximation 3 i
_ 2 | . :
To " ke, (96)
0
' f

and of course (96) in (95) gives o

|

We can extend this procedure to
! f 0
higher-order composite surfaces by examining each component of scatter

individually (prévided the components are distinguishéble). The e-folding

i i
angles of the coherent and diffuse components (assuming(93) is the power"

spectrum) are depicted in thé hypothetical sca"cter plot of figure, 14,
48 y
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Figure 14. Hypothetical scatter at normal incidence from a slightly rough
i surface with Gaussian p.s.d.f. and p.d.f. showing relation

, ' between e-folding widths and peaks of components,

4 bawl

1.0

3 . E
_ m(2k rg o )
pd(o)____Q__S._. U s

Pq (6)

-1rl/4

‘Figure 15. . Hypothetical backscatter (otherwise like figure 14).
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2. Direct Backscatter.

There is, however, another measurement which can be made to
give po, To' and cs and in some cases the surface power spectral density.
If instead of the scatter for vertical incidence being measured, suppose that
the direct backscatter from the surface(9=62=—91, 6.,=0) is a more conven-

3
ient measurement. The expression analogous to (84) is

2 2 ©
_ A'v 4k” sec i2vx
pB(e)— exp[l- = } + _T_.‘U BS('r)e dx dy

(97)
Unfortunately (97) does not provide us a means of finding a general Bs('r)

from pB(G). If however, the covariance can be decoupled as
B(r)=02C (0 C (y) . (98)
s s s sl

then the covariance can be found from a measurement of diffuse power, pd(e)

(the second term in (97) ). If we define the Fourier-cosine transform

I(x) = f (cos 8) pd(e) cos (2vx) dv (99)

o
then Csl(x) = I(x) / I(0) (100)
e Bs (T) = A’ I (X) I(Y) . (101)

ank® 1) ax
(o]

From the covariance, either the one or two-dimensional power spectral den-
sities can be found (as Fourier-cosine or Fourier-Bessel transforms of Bs('r),
respectively). As in the case of scatter for normal incidence, the constant
A’ is found from the coherent component of scatter, pc( 0) (first term in (97) ).
If the e-folding angle of the coherent component, eo, is much less than w/2,

then
A = TeT - (102)

Moreover, the e-folding length of the OTF is
50
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r.2/.2 a2 1 -
°o'[k (eo_TZ-) 'ﬂzl . (103)
and Cf is found from (87). If in addition the Gaussian model (93) for Ps
is assumed, and the e-folding angle of the diffuse component of scatter,

90' , is less than about n/4, then to a close approximation:

ro= (ko) (104)
p (0) A’
L (GSTO) = —4-%(-57— . (105)

The e-folding angles and peaks of the diffuse and coherent components are
depicted in figure 15. From a direct comparison of figures 14 and 15, we
see that backscatter pB(O) is exactly the same as the direct scatter with its
abscissa compressed by a factor of two, p( 2 92 ). This conclusion does
not apply in general but is at least valid for a Gaussian power spectral
density. Extension to higher order surface composites is straightforward

provided the individual components are distinguishable.
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Chapter IV
EXPERIMENTAL RESULTS

This chapter presents measurements of scatterirg of a CO2 laser
beam from the aluminum and titanium surfaces which were analyzed on the pro-
ficorder., The turbulence is assumed negligible, and the surfaces have a zero
mean; hence the comparison of experimental results and theoretical computer-
generated curves will serve as a verification of the rough surface and profile
aspects of the theory. In addition, this checks the accuracy of the composite~
surface model. There are four pattems of scatter in the plane of incidence
(6,
inum for 18° and 3.5°. (The beam was incident upon the location where pro-

=0) presented: scatter from titanium for 6 1=27° and 3.5°, and from alum-

ficorder traces were made.) The data for the near-normal incidence (6 1=3. 5°)
are also used to derive the surface Ps via the procedure of the "inverse problem."
(Achieving 61=0 is physically impossible in the present experimental set-up.)

As a further check of the rough surface model, the power spectrum P: (super-s

t
to indicate originated from a scattering measurement) is compared with PS

(super-t for proficorder trace).

A. EXPERIMENTAL ARRANGEMENT

This section outlines the apparatus used in making the scatter
measurements. (See figure 16.) The CO2 laser beam passes through a beam
splitter (for monitoring laser power on the thermopile), through a chopper
wheel (for lock-in amplification), and is reflected to the scattering surface
mounted on the target table. All components are adjusted until the laser beam,
the normal direction to the surface, and the detector are coplanar. The max-
imum distance from target to detector is 50 cm; and a lens at the detector
increases signal strength. The detector is mounted on an optical bench which
is rotated manually about the scattering surface. Below the bench is a pointer

which indicates the scattering angle 8_ with accuracy better than + 4 degree.

2
The major system components--the laser and its monitor, the detector and its
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Figure 16a. Experimental set-up for measurement of scattered power versus
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lens, and the electronics -- are now described individually.
The CO2 laser built by the author has a CW output power of
40 watts (11% efficiency). Beam diameter at the output mirror is approximately
1.2 cm (as measured at e-folding points of the power), and divergence is
at 1.6 torr, and

0.4 mrad. Three gases -~ CO,, at a pressure of 1.4 torr, N

He at 7 torr -- are flowed throu%_;h the one inch inside diametzer pyrex tube.
The gold-coated pyrex mirror (diameter 3.8l cm, radius of curvature 10m)
and the germanium output mirror (diameter 2,54 cm, flat, 80% reflection)
are at a separation of 130 cm. Irtian II windows at the Brewster angle give
a vertical polarization at the target surface. The active discharge region is

86 cm in length and is cooled by a concentric water jacket. The output of the

power supply (operated at 60ma, 5500v) is filtered to give 0.05% voltage

ripple as measured at the discharge tube. The major source of short-term

laser noise is the uneven pumping of the Welch fore-pump. Long-term varia-

] tions are a result of the heating of the mirrors which causead the laser to

] tune and de-tune itself. Generally the long-term fluctuations stabilize after

] two hours of operation. Since the precise laser power is not certain, the power
L- is constantly monitored by reflecting part of the beam from an Irtran II flat to

! a thermopile (Eppley 8~junction Bismuth-Silver). All measurements of scattered
‘ power are normalized to the laser power as measured at the thermopile.

I The detector is a Santa Barbara Research Corporation gold-doped

germanium photoconductive device. All measurements of power were of

sufficiently low level that the detector always operated in the linear regime
of its bias circuitry. A thin uncoated germanium wafer (transmitting 10%)
protects the detector while the coherent component is measured. Also a
germanium meniscus lens of diameter 2.5cm and focal length 2.54 cm focuses

the radiation onto the detector. Over the face of the lens is a diaphragm which

can vary the f/stop from f/1 to £/10 continuously for a more selective sampling
of laser power. The lens serves four functions: (a) it increases the signal
level at the detector; (b) it increases the signal to noise ratio by filtering the
extraneous near-infrared and visible light; {c) it has the effect of reducing the :
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distance t> the far-field; and (d) it performs the surface ensemble average as

required by the theory.

The system electronics consist of two oscilloscopes, a lock-in ]
amplifier, two pre-amplifiers, and a chopper wheel, A Tektronix 503 oscil-
loscope monitors the thermopile voltage. (A micro-voltmeter could be used as
well.) The signal from the detector is fed to a PAR 211 pre-amplifier and then
to a PAR 120 lock=-in amplifier. The pre-amplificr matches the detector to the
lock-in amplifier without loading the detector bias circuit, and it allows vari-
able amplification from zero to 60 db. The output of the pre-amplifier is
monitored on an oscilloscope for visual inspection of the signal. Fora
reference signal, a zener diode (detector)views a pilot lamp through the
chopper wheel (frequency 330 Hz). That signal is amplified in a Tektronix ]
1A7A plug-in and fed as a "selective external" input to the lock-in ampli-
fier. The lock-in amplifier is needed to measure the diffuse component of
scatter since only the coherent canponent is easily measred on the oscil-
loscope. The lock-in amplifier has a time constant set to one second to
average the laser short-term fluctuations. This value corresponds to the

one second time constant of the thermopile monitoring the beam power,

B. MEASUREMENTS
1. Preliminary Comments. ;

Measurements were made in the near-field of the surfaces because

S il i

of the physical difficulties (e.g. alignment) of positioning the detector in
the far-field and because of the enhanced signal level in the near-field.

(The far-field is for ranges Ro > 50m for a beam diameter at the surface of

1 cm.) Good agreement for this set-up is expected for the diffuse component
of scatter, but not for the coherent component. The coherent scatter is not
yet fully developed when the target-to-detector distance is still significant

with respect to beam diameter. Most important, in all measurements of scatter

(figures 17-20) , the coherent component measured is equivalent to the scatter

from a perfectly smooth surface replacing the target surface. (On each figure !

a Gaussian is fitted through coherent data to show where the coherent component
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stops and the diffuse starts.) The measurements are not needed to verify
the coherent scatter since in part 4 , section F of chapterlli we see the
reasonability of the theoretical form of coherent scatter.

The measurement is of course power versus e2 for 91 and 93 con-
stants. However, the theory gives power flux (density). A comparison of
data with theory is still legitimate proviqed the size of the detector aperture
does not exceed large scale spatial power variations. Small scale variations
will be integrated since that average corresponds to the large ensemble aver-
age taken in the theoretical derivation. Hence power density curves of theory
are compared with experimental power curves by adjusting the ordinate of one
with respect to the other. No such adjustment of abscissa is necessary

since peaks of coherent components indicate a reference angle.

‘2, Titanium Scatter.

The data and theoretical curves for scattering from titanium where

9,=27° are in figure 17 and where 8.=3,5° in figure 18. General overall

1 1
agreement is obvious, especially for | 92-91 | < n/4 ; however three dis-

crepancies will be accounted for in the order of increasing 92 from specular.
i 5° and 57° in figure 17 and at 6, = 37°
in figure 18. We can see the source of this seeming anomaly in the power

First, a slight ripple is noted at 6

spectrum P; (figures 6 and 8) at v ~0.05 u-l. Irregularities of this sort
can not be accounted for by the Gaussian model, but they serve the more
important role of providing a target signature. A signature is a characteristic
of scatter from a surface which is not seen for other surfaces.

Second, for values | el—ezl ? 40° in the roughness component of
scatter, the dataare higher than theory predicts. The discrepancy is not
attributable to any theoretical error because no assumptions are violated
until |el| or Iezl approaches 90° . Moreover such an error does not appear
in the aluminum measurements (figure 20). Rather the explanation is that
the stylus of the proficorder can not make a perfect trace of the surface but
will slightly indent the material. This problem will become worse with
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Figure 17. Measured scattered power and theoretical power flux for
titanium, 91 = 27°, 93 = 0. (The vertical scale, in db normal-
ized to backscattered power at vertical incidence, in figures

17-20 is fcr the theory; ordinate for data is arbitrary.)
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increasing wavenumber in the, power spectrum. Hence the :measured values

of P (v) for v >v . /2 will bé lower than is actually the case. This problem
is not Te) bad for aluminum s ince the aluminum power spectrum is at least a
factor of two lower in this large: wavenumber region (See figures 8 and 9.)

‘ Finally, for scatter near the surface edge., the data fall off .more
rapidly than is predicted. Recall that the theory does not apply for grazing

. incidence (|e | ~n/2) or grazing scatter ( Ie | ~ n/2). AppendixI analyzes '

the graz ing problem. :

3. Aluminum Scatter. ;

!

The data and theoretical curves for scatter from the (corroded)

'aluminum where 6. = 1:8° are. given in figure 19 and where 9. = 3,5° in figure

20. The scatter of1 figure 19 is especially provided for the wlaviness component

of scatter, whereas figure 20 depicts the excellent agreement in the roughness
component Contrary to titanium measurements the waviness component does

not exhibit good agreement Initially the modeled values for °s‘ and T°1 are
suspect. From the data of figure 20 ard the procedure of the inverse problem
(assuming a Gaussian P 1) we find osl = 0.d44 " (rather than the modeled N

0.056 u) and Tol‘ =.37.0 p (rather than the 2’4.9;1, used). (The vdlue$ are found !
without a knowledge of the constant A' by assuming the values of GSZ and T

are correct and then noting the ratio of the peaks of the individual diffuse
components Pd () / pd (0) equals (o 'ro ) / {omp T )2 ) If the corrected;

values of og and T were used, the width of the waviness component would

o)
1 {
be smaller and its peak higher. ‘

i ! i
In the sectiop presenting surface measurements (chapter II1, section

A; and figure 7) we saw how traces at different places on the surface give

quite different power spectra The non-stationarity does not significantly "

affect the scattering behavior provided the beam covers the largest scale

surface vanations or provided the beam size is so small that the surface
under the beam is actually stationary. When scattering from an airplane
surface at a large range, the beam diameter will be large enough (about one
meter or greater) to average the non-stationarity $o that the scattering will ’ = , :
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appear stationary. In the laboratory, the 1 cm beam diameter exposes the

non-stationarity of the surface.

4, Titanium Inverse Measurements.

From the data of figure 18, the two-dimensional power spectrum
Vs and the one-dimensional power spectrum P: are determined. Since only
the diffuse scatter is needed, the first three data points in p q are estimated.
As demonstrated by equation (88), Vs is found by a scaling of p q° (That spec-
trum is plotted in figure 21.) After consecutive Bessel and Fourier transforms,
P: is ound., In figure 22 are P: and P: . Since the proper scaling of pd is
not known (due to the inability to determine pc in the near-field), there is an
arbitrary constant which multiplies P:. Hence the ordinate of Pz is adjusted
until a good match is obtained with P;. The scale factor would be known if
02 were measured by some other method. In the laboratory this poses no
problem since inexpensive mean-height indicators are generally available.

If instead, scatter from an airborne target is measured, the receiver would

be in the far-field, and once again the variance would be determined.

TITANIUM

{ARBITRARY UNITS )

L] LI LR

¥y (K]

B Tt o T e o —
[=]
LB L AL |

k(')
Figure 21, Titanium two-dimensional power spectral density Vs versus
wavenumber K , (Ordinate has units proportional to u4.)
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(surface p.s.d.f. from scattering). P: is found from the data

of figure 18 and the procedure of the inverse problem.
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From a comparison of P: and P: , we note the error in the form of
P: (v) is for frequency v approaching Nyquist. As noted earlier, the discre-
pancy is due to the inability of a proficorder to trace small-scale surface vari-
ations of significant height accurately. But when the power spectrum is mea-
sured by scattering, the surface is not deformed; hence the number of samples

(all points under the beam)can be large, and stationarity can be easily verified,

5. Aluminum Inverse Measurements.

The alumirum two and one-dimensional power spectra (figures 23
and 24 respectively) are obtained from the data of figure 20 by the same steps
as for titanium. The plot of P: better demonstrates the error in the waviness
structure. If the second through fourth points in P; had been used to estab-
lish the waviness model, the agreement between scattering theory and data

wo uld have been excellent. From an inspection of the individual traces of
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Figurc 27. Aluminum two dimensional power spectral denstty Vs versus
wavenumber K ., (Ordinate has units proportional to p,4.)
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and the procedure of the inverse problem.
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PS in figure 7, we gee that a single plot (number 3; 13% of all the data)
caused the error in waviness component, This indicates that because of the
non-stationarity of aluminum, a very large number of samples must be taken

to get an average power spectrum,

6. Conclusions.

Taking a two~-surface Gaussian model for the surface power spectrum
is justified by the form of P: for titanium (figure 22) and for aluminum (figure
24). In those plots, the waviness and roughness components are even more
distinct than in the plots of P:. The improvement is of course due to the large
number of samples the beam takes when it scatters from an area on the surface.
To get a smoother plot of P: , the number of data points should be increased
to at least 8000 for aluminum and 2000 for titanium (because of the more-
nearly stationary character of the latter). But still the problem of deformation
of the surface by the stylus cannot be avoided, and the increased sampling
will not help the titanitum agreement. To check for surface stationarity, the
beam size might be varied and P: found for each size. Conceivably there is
a size beyond which the diffuse pattern does not change further. For that size
the surface appears stationary, and an average power spectrum is the proper
one for use in modeling.

From the scattering measurements already done, we can visualize
an optimal system for the determination of rough surface (isotropic, homogen-
eous) statistics. First the probability density is found on a multi-channel
analyzer (MCA) by evaluation of the proﬁéorder output. If the density is nearly
Gaussian and isotropic, then the theoretical derivation of the inverse problem
is appropriate. Since a proficorder is being used, the surface variance, o : .
is easily measured -- either from the meter on the proficorder or as the second
central moment of the probability density. Next the appropriate laser is chosen
for scattering, depending on what Nyquist frequency ()\_1) is desired. The
beam is to have an incident angle as near normal as possible. The scattered
pattern from specular to the edge is measured and fed to a computer program
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which scales and transforms to get P:. Final scaling of P: is done with the
“2 found by another method. Finally, from the knowledge of Ps, one might
filter the proficorder output into waviness and roughness components for
individual analysis on the MCA. The advantage of this system over recording
the trace and analog-to-digital converting is in time saving. An excessive .
number of data points must be used to properly estabiish the power spectra
via tracing, but only about 90 to 180 data samples are taken in scattering.

If the cost of the MCA and proficorder is prohibitive, then the investigator
might establish the probability density by theoretical considerations (central
limit theorem) and measure oz on a simple (inexpensive) roughness-measuring
device. In any case, the computer is only used for data reduction, and the

problem of analog-to-digital conversion is avoided.
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Chapter V
CONCLUSIONS

With the increasing development and use of new airplane surfaces
(such as Graphite/Epoxy and Boron/Epoxy), measurements of scattering and
the establishment of new models will need to be effected for the n«'~ surfaces.
Also one surface presently in use, the painted one, needs to be modeled by
persons who have the material available to them. Since additional information
is available on the surface when the wavelength is changed, scattering
measurements should be made at wavelengths shorter than the 10.6 u used in
this analysis. (As pointed out in the text, the aluminum and titanium surfaces
are moderately rough at 1.0#; hence the theory should still give good agree-
ment there.) For all surfaces examined, the power spectra and scattering curves
should be carefully inspected for vnique characteristics which will be useful
in target identification. Such a characteristic was found for titanium as a
"ripple" in the power spectrum.

The theory (in the form of equation (66) ) is now ready for the gen=~
eration on a digital computer of simulated target images. The target would
be described by grid-points in a three-dimensional space, where the spacing
of grid lines is less than the beam diameter. A quadric surface would
approximate the deterministic surface at each grid crossing, and the scatter
to the detector at some bistatic or monostatic angle would be calculated. The
assemblage of the returns constitutes the image. Then the techniques of
pattern recognition would be applied to help establish a target-image relation-
ship. At the same time laboratory measurements of target images will further
establish the relation.

Turbulence was carefully injected into the scattering problem because
a disturbance of the incident plane wave character will obviously affect the
scattering, However , scintillation of the beam on the return path is not an
integral part of the scattering and hence must be treated separately. Once
again the optical transfer function would be used but would be applied to
the total target image in the image coordinate system. The optical transfer
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function derived in the text is not limited to use in this scattering problem.
The atmospheric OTF is important in all problems of propagating a coherent

beam through a turbulent medium. The result will find uses in communications

and radar,
Finally, the reader should be especially aware of the transfer function

formulation which allows the investigator to vary some aspects of the problem'
without disturbing the rest. The solution was kept as general as possible
before applying it to laser scattering from rough metallic surfaces so that
the solution can be easily applied to other scattering problems, including

underwater scattering from targets and scattering from the ocean surface.

¥
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APPENDIX I
Verification of Inequalities (11) and (18)

This appendix presents more explicit inequalities to replace (11)
and (18) based on the chosen field profile and OTF of chapter III, Neither
inequality can be strictly satisfied since U is a stochastic quantity which can
go to zero. However, the replacement yields inequalities not so precise but
easier to use,

For an isotropic homogeneous random variable with Gaussian
autocorrelation, the standard deviation (¢’) of the derivative of the variable

is given by
o' =2 o/ T, (106)

where ¢ is the standard deviation of the variable, and To is the e-folding

distance of the autocorrelation. Also the following replacement is used:

U e
= $+ i e
—LU (w+i cp)r+ 7 (107)
where w = £n |Z| and ¢=arg (2 (108)

represent the random nature of the medium, and the sub-r indicates the x,y
or z partial derivative. Using (107) , each inequality is split into a "deter-

ministic" and a "statistical" inequality. From (106), the approximations

|(W+1<P)x| = (cosel)~/2_/po ;

’

|(W+icp)y| < J-Z—-,/po

lw+ig, | < |sino (V2 /0, (109)

are made. (Note the variance of (w + 1 ¢) is Bu(O) , and To= 0.945 Lo [Bu(O)]_l/?)

In a similar fashion:

X! < (cos 91) 2/4 ,

t<

—| s2/1,

e

e
e
e
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‘ the study of scattering for grazing incidence. 'Finally, use of the weak bounds i

fied. If the inequalities had turned out to be marginal then a more precise o

t 1 B 13 i '
{
, il
and —2[ < |sine | 2/ | [ ¢ § 1) ,
H ’ il
Using (107), (109), and'{110), the first inequality (11) decouples
into a "detenninistic" 1nequality ' ; {J
k£ |tane |<<1 C L (111)
and a "statistical“ inequality ' '
“/2 |tan o, | «<1.” | | (112 ,
ko, 1 R - ' s

i . ‘ : , i |

Inequality (18) weakens when 95 = 0 and 92=9‘1~ + /2 (specular scatter

near grazingy. For these =anfgles, (18) becomes .
8 !

-k—zz 'sec?' 91 << 1 o | ' .: R (113)
and ' {-E—; secz 8, << 1. , | | . (114) '
{ o : 7 ! | : ) .

In summary, the four inequalities (111 114) depend only on the wave-

length the incident angle, and the e-folding lengths of the OTF and the inci-
dent field. The inequalities say the work of this paper is not applicable to '

of (109) and (110) is justified in that the inequalities are indeed easily satis- | ,

replacement would have been necessary. : "
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Cor 4 APPENDIX 1

Integration for the Wave Correlation Function

This section briefly outlines: the stéps taken in arriving at the

approximate form (55) for the wave correlation function. Initially the

 integral (52) which defines the correlation is rewritten as

I

|

' #mlo . |
Cu(p'.):N J", Io(ulép'l) 1+ n' 2) '11/}6‘

"o

w' du’ (115)

(where p' = p/L ‘ and «/ nL ) to reduce the number of parameters from

two ( o and L ) to one (u L ) Equation(lls) was numerically integrated

, using the ectangular rule on a digital computer. It was normalized such that
; .

Cu (p’) at some small p’ (less than l/(nm Lo) but not zero) matches the

value for Cu( p’) as given by (51'1) . Next the‘function

' 'y = -4nC (") | (116)
was plotted on log-log paper in order to determine the parametric dependence
~and possible functional dependence (perhaps C ~exp (-b p’ ) b and a
constants) That plot (of which a signiﬁcant portion is in figure 25) demon-
strates the exponent,'a, decreases from 2 0tol.5as p’ increases from
1I0-4 to 10”1 " However, a Gaussian form for C is desired; hence a suitable
method of approximating am2 is presented Since form (54) is essentially
valid for p' < l/ (n L ) the following curve (117) is also plotted (the dashed

liné) as an upper boundary for the validity of (54)
: 5 ,:-1/3‘6\ W2 '
le(p ) = .07 —;g]l(p) . (117)
Then ; ; o [

v, (p") ~ 0.695 (01%5 , 107%,rc107t, (118)

is found as a graphical approximation to (117). Fortunately for a constant
Bu(O) and the OTF Co varying from 0,9to 0,1, the function y = -4n (Cu) ‘
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Figure 25. Plot used in determining the approximate Gaussian form for

the OTF.
See appendix II.)

(Symbols correspond to computer generated data.
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varies only slightly more than one decade. (For a given Co' say 0.9 or

0.1, the ordinate is

, ~15Co]

° B0

Then note £n (0.1) / en(0.9) = 22,) Over this decade (termed the "operating

(119)

region"), the following approximate form is used:
"2

The constant 62 is found by forcing the curve (120) to intersect the dashed

line (118) aty = Y, where Co =0.9. (The Co was chosen by trial and error

to get the quadratic y in (120) as close as possible to the numerical results
within the operating region.) Namely y1 = yo in (118) determines the abscissa
p’ of the intercept. Finally y = Y, and the p’ thus determined are substituted

in (120) to yield

B 1/4
6, =1.125 (Bu(O) RN (121)

All that remains is to write the wave correlation as (55) using (116), (120), and

(121). Equation (55) is said to be the appropriate one if p’ at the intercept
is greater than 1/(x mLQ):

5/8
umL023.3 (Bu(O)) : (122)

If (122) is not satisfied, then the form (54) is to be used.
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APPENDIX III

Relations Between n-dimensional Power Spectra

This section provides the mathematical relations between power
spectral densities in one, two, and three dimensions. If an n-dimensional
random field is isotropic and homogeneous, then a one-dimensional sample
of the field is sufficient to give the power spectrum in any dimension (< n),
Some of the results of this appendix are used by the inverse problem of
chapter III section G.

The basis for the relations is that the (homogeneous but not- neces-
sarily isotrcpic) covariance B (X) is invariant with dimension in that it is
the (1,1) moment of the joint probability density W (z1 ,zz;Z) :

®
B(3) = fle z, W(zl,zz:-A") dz1 dz2 . (123)

-0

However, the power spectrum V(n) (where n is the dimension) is the n-th

order Fourier transform of B (4) :

v (x) - f-.] B(B) LAY (124)

w

where K = (Kl,Kz, ,Kn), A= (AI’AZ' ,z\n), and dA = dA1 dA2 dAn.
If isotropy is assumed:

B(A)= B(o) (125)
where p= | 2|, and the Fourier transform (124) may be reduced to a one-

dimensional integral. In particular, the relations forn=1,2,3 are:

B(p) = —ifcos(xp) V(l)(x)d:c (126)
o

= [ 1 (e0) v () ¢ ax (127)
o

= —if sin (X p) V(3)(K)K dk (128)
o
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where K = |W| . Since the three transforms possess inverses, they provide

a means of going between power spectral densities of dimension n <3,

(n)

In some cases, more direct expressions which relate V' '(k) may

be written from (126 - 128). First,

1 v

3% (129)

V(a)(v:)= -

is found by substituting (128) into the inverse of (126), and then taking the
derivative with respect to k. (Tatarski [ 3] found the same result by an
alternate method.) Second, a power spectrum in a particular dimension is
related to the spectrum in the next lower dimension by

(n-1) 3 2k’ (n),. . ,
\Y (¢) = —_— VV(K') dK (130)
{ JK'Z- k2

(n)

(provided V is Bessel-transformable). Unfortunately a transform inverse to
(130) which is a one-dimensional integral does not exist. Hence to go from
V(n) to V(n+1), the transforms in (126-128) and their inverses must be used.
Those transforms are in fact easier to use than (130) since Fourier integral

tables are available.
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