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ABSTRACT 

The layout problem for graphs,   the problem of automatically 

generating a representation of a graph on a two-dimensional surface, 

has been of interest in specific applications for many years,  although 

little work has been done on the general problem.    In this thesis 

three approaches are taken towards solution of the problem.    The 

first approach defines general layout qualities believed to be desir- 

able.    Means for measuring these qualities in layouts and algorithms 

for their realization are developed.    A graph layout building and mod- 

ification system is described which provides an experimental environ- 

ment for such layout algorithms.    The second approach considers 

layout from an application dependent point of view.    A classification 

of layouts into types is developed according to application,  and layout 

algorithms for each type are discussed.    In this classification,  a 

correlation is found between complexity of layout type and complexity 

of layout algorithm.    An extension of the above graph layout building 

system is designed,  which allows for inclusion of application depend- 

ent information in layout processing.    The third approach,  that of 

considering the layout of modifications of graphs,   rather than layout 

of whole graphs,   is briefly considered.    It is concluded that this 

third approach is the least effective for finding solutions to the layout 

problem. 
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Chapter 1 

INTRODUCTION* 

The "layout problem," the problem of generating an arrange- 

ment of objects on a two dimensional surface, was mentioned by 

Sutherland (34) as one of ten unsolved problems in computer graphics. 

Solutions to the problem for some specific applications have been 

found, but the general problem still remains unsolved. This work 

discusses the layout problem for the graph theoretic type of graph 

which Berge (5) has defined.** Such graphs consist of elements 

called nodes (or vertices) which are connected to one another by 

links (or edges). We will use the terminology "node" and "link." 

Links will be denoted by single letters or numbers or by a parenthe- 

sized pair listing the nodes they connect, for example, (a,b). Nodes 

will be indicated by letters or numbers. 

The layout problem 1s then, given a fixed graph theoretic 

graph, which by definition is only a structural entity and has no 

physical characteristics, automatically generate a two-dimensional 

representation or layout of this graph. Many layouts are possible 

for each graph. In this work we only consider layouts 1n which links 

are drawn as series of straight-line segments. Line segments of 

•This paper has also been included in the publication series 

of the Harvard Center for Research in Computing Technology as Technical 

Report 1-71. 

••Additional references on graph theory are: Busaker and 

Saaty (10), Liu (25), and Ore (31). 



links (also referred to as link segments) will be denoted by single 

letters or numbers or by a bracketed pair listing the endpoints of the 

line segment,  for example,  [a,b].    A point at which two link seg- 

ments of a link are connected will be referred to as a "bend point," 

or simply a "bend." 

In this dissertation no general solution to the layout problem 

for graphs is given,  although some generally desirable criteria are 

discussed,  along with methods by which these criteria may be 

realized in layouts.    Furthermore, we consider solutions to graph 

layout in several particular applications in which graphs are used 

and in which layouts are needed.    Many questions are brought out in 

these discussions, which remain unanswered and which require 

further work. 

As an historical note, the author first dealt with the layout 

problem while attempting to develop an output program for AMBIT/G 

data.    AMBIT/G is a computer language,  the data and program of 

which are in the form of directed graphs.    Thus the output problem 

for AMBIT/G was to generate and display a layout of some portion 

of the graphical data. 

Two basic questions arose in the development of the output 

program,  the first of which was how much of the layout was to be 

prespecified by the user and how much was to be generated auto- 

matically.    Secondly,   in the case of automatic generation of layout, 



what criteria should be used and how should these criteria be 

realized ? 

The AMBIT/G output program finally developed allows for 

both prespecified and automatic layout.    Automatic layout is used as 

a default condition in the absence of layout prespecification.    Pre- 

specification is accomplished by the building of a cumbersome 

super-structure over the data to be displayed    (see Appendix 1 for 

details),  and only relationships between node positions can be speci- 

fied. Links are always routed automatically. 

The automatic portion of the output program uses very 

simple criteria,  disregarding such information as the original layout 

of the data and the general properties of the data graph.    First,  all 

nodes are placed on a grid,  and then links are routed.    When posi- 

tions are not prespecified,   automatic node placement is performed 

Even without layout prespecification,   some super-structure 
has to be built in order to specify the portion of the graph to be out- 
put.      This makes the whole output process difficult to use.    In fact, 
another easier means for output was devised by one of the imple- 
menters of AMBIT/G.    This was  "on-line" as opposed to the method 
discussed above.    In the "on-line" method the user started a display 
by naming a node which then appeared on the screen.    He simply 
indicated which node he wished to appear next by pointing to a link 
origin in a node on the screen,  or by naming another node and indi- 
cating where it was to appear.    This method avoids all the complica- 
tions of automatic layout generation. 

For example, we may specify that one node is to be placed 
to the east of another node. 



as follows:    if the node to be placed,  a,   is linked to a node,   b, 

already placed, node   a   is positioned on a grid point adjacent to 

node b and in the direction of the connecting link from b, which 

direction   is   fixed,     given   b   and the connecting link.    If this position 

was previously occupied,   or if node   a   has no connections with nodes 

already placed,   it is placed to the right of those nodes already placed. 

Thus,  the first criterion for automatic node placement is node con- 

nectivity,   and the second is geometric linearity of a sort. 

Links are routed equally as simply, with paths deviating from 

straight lines only to avoid nodes.    No attempt is made to avoid inter- 

sections,   or to provide regularity.    Thus,  this simple solution to the 

AMBIT/G output problem avoids some of the more important con- 

siderations of the layout problem. 

In this dissertation we will discuss some of the more basic 

problems involved in automatic layout generation for graphs and 

some possible approaches towards solution.    The second chapter 

examines the  more general comprehension criteria for layout.    An 

attempt is made to separate out those application independent quali- 

ties of graph layouts which make some layouts more readable than 

others.    Relevant literature from the fields of perception and aesthe- 

tics is considered.    Discussion of the measurement and realization 

In other words,  the default condition that a node is placed to 
the right of those already placed. 



of such qualities is given.    Included in this chapter is a description 

of the MOD system,  a graph layout input/output system designed for 

experimentation with these application independent criteria. 

The third chapter deals with the layout problem from an 

application dependent point of view.    A defense is given for the argu- 

ment that the application dependent approach may be more practical 

than the approach of chapter 2 for graph layout generation in some 

cases.    A means for classifying several commonly used layout types 

for the purposes of layout is given.    These layout types are dis- 

cussed along with some layout algorithms.    The   chapter concludes 

with a design for including layout type information and type dependent 

layout generation in a graph layout input/output system like MOD. 

Finally,  the fourth chapter briefly considers another 

approach to the layout problem,  that of laying out graph modifica- 

tions,   rather than whole graphs.    This approach was found to be less 

productive than those taken in chapters 2 and 3. 



Chapter 2 

GENERAL LAYOUT CRITERIA 

In attempting to characterize what makes a layout of a graph 

a good representation of the graph we must consider those overall 

qualities of layout which add to the readability of the graph repre- 

sentation.    Here,  we make an attempt to separate out and categorize 

those   qualities which are generally grouped together so as to obscure 

definition.    The categorization is based on the functions these quali- 

ties perform.    Three broad categories which seem to account for 

graph readability are regularity,   directionality (of reading),  and 

simplicity.    However,   it will be shown that the third category is 

somewhat dependent on the first two.    This problem of characteriz- 

ing these qualities has previously been considered in studies of 

aesthetics and of perception. 

After defining the qualities for overall layout,  the feasibility 

of their measurement and realization in layout must be considered. 

Some work has been done in the direction of realization in the MOD 

system. 

Section 2.1 discusses regularity,  directionality,   and sim- 

plicity,  and considers previous work on this topic.    Section 2. 2 dis- 

cusses the measurability of these qualities and the possibility of 

their realization in layout generation,   and section 2.3 reports on the 



work done in the MOD system. 

It must be emphasized that the material of section 2.1 is a 

first attempt at classification of the layout characteristics which 

add to readability.    This, by nature,  is a subjective topic.    The 

reader may disagree with the effectiveness and classification of some 

of the qualities discussed.    He may also think of other qualities 

which should be included.    What we aim at here is to provide a 

framework in which we can name and classify graph layout qualities, 

and understand and measure their effects.    The contents of section 

2.1,  then,  is only a beginning in the direction of this goal,   and is 

based to some extent on the subjective views of the author,  and 

those in her proximity. 

2.1 REGULARITY,  DIRECTIONALITY AND SIMPLICITY 

2.1.1     Regularity 

The category of regularity is a broad one.    It includes those 

characteristics of layout which involve repetition,   consistency,  and 

the occurrence of easily recognized geometrical forms.    Regularity 

seems to be one of the most important qualities responsible for 

making graph representations or layouts readable.    Certainly,  large 

layouts must be read in subsections,  and where subsections are 

similar, the layout is more easily subdivided by the eye.    Further- 

more,   the fewer the types of subsections there are to comprehend, 



the easier the pattern matching necessary for reading.    It is clear 

then that the larger the layout, the more important regularity 

becomes for comprehension. 

Let us consider the most obvious type of regularity,   repeti- 

tion.    There are several forms repetition may take.    We first name 

and define these forms: 

1) Literal repetition:   two subparts of the layout    are congruent 

and have the same orientation (also referred to as identical repeti- 

tion). 

2) Symmetrical repetition:   two subparts of the layout are 

reflections of one another,  with respect to an axis; i. e. ,   if one of 

the subparts is flipped over this axis,  it will lie on top of the other 
o - JL. 

subpart. 

3) Rotational repetition:   two subparts of the layout are congru- 

ent but have different orientations,   or, the mirror image of one 

subpart is congruent to another subpart,  but the two subparts do not 

fulfill the requirements of symmetrical repetition; i.e. ,  their 

orientations are different. 

It is assumed here that the subparts referred to here and 
below lie in different positions. 

Point symmetry,   in other words,   symmetry with respect to 
a point (such as that found in a pin wheel) is not considered here. 



4) Similar repetition: two subparts are geometrically similar 

to one another but not congruent, or, the mirror image of one sub- 

part is geometrically similar,  but not congruent, to another subpart. 

Let us first consider literal repetition.    When a subpart of a 

layout is repeated exactly one or more times,  it tends to identify 

itself as a distinct subpart of the layout,  lending to the viewer's 

ability to subdivide the layout.    But the number of these repetitions 

which may exist in a good layout is limited.    For example,   quickly 

glance at figure 2- la.    The structure is quite clear.    Now do the 

same for figure 2-lb.    How many nodes are there?   In 2-lb the 

number of repetitions,  it seems,  are too many to comprehend at 

once, whereas in 2-la we can easily do this.    Now if we modify 2-lb 

slightly to obtain 2-lc, we notice that the result is much easier to 

read.    The repetition is on two levels; we read the layout as three 

no n n 
(a) (b) 

Figure 2- 1 

(c) 

units of four nodes each.    We are again reading the layout using 

literal repetition,  but more easily than in 2- lb,   since the nodes are 

divided into countable units.    Thus repetition may occur at many 



levels in a layout,  and the layout remains readable as long as the 

number of repetitions of a given unit at a given level remains easily 

countable. 

We notice that repetition may describe the relationships of 

non-distinct subparts of a layout as well as those of distinct subparts 

For example, we understand the layout of figure 2-2 easily because 

we see four identical,  but non-distinct subparts. 

II • • 

ii (i n 

u 1 1 

Figure  2-2 

Symmetrical repetition also acts as an aid to comprehension 

of layouts . For example, in figure 2-3a, the right side is a reflec- 

tion of the left with respect to a vertical axis, adding to readability, 

whereas in 2-3b,  there is no symmetry. 

(a) (b) 

Figure 2- 3 

10 



There is some question as to whether rotational repetition 

aids significantly in layout readability.    It is quite clear that rota- 

tional repetition is not as effective as literal or symmetrical repeti- 

tion.    How much clearer figure 2-4a is than figure 2-4b seems 

mainly to depend on the particular viewer's ability to identify rota- 

tional instances . 

(a) (b) 

Figure 2-4 

There is also some question about the advantage of similar 

repetition.    One factor which seems to determine the ease with 

which one detects similar instances in a layout is the closeness in 

size between the two instances.    For example,  parts (i) and (ii) in 

figure 2-5a are seen as similar much more easily than parts (i) and 

(ii) in figure 2-5b.    This phenomenon may be related to that of size 

consistency,  which is discussed below.     Orientation also seems to 

contribute greatly to the detection of similarity.    When the similar 

instances are oriented identically,  or when the reflection of one 

instance with respect to some axis is oriented identically to the other 

instance, the two similar instances seem much easier to associate 

11 



(a) (b) 

Figure 2-5 

than two similar instances not oriented in these ways.    Examine, 

for example,  the pairs of triangles in 2-6a and b as opposed to the 

pairs in 2-6c and d. 

P 
(a) (b) (c) 

Figure 2-6 

We must also consider as part of regularity,   the occurrence 

of certain very familiar,  easily recognized geometrical patterns 

such as lines,  triangles,   squares,  regular polygons,   etc.    These 

familiar aids help the viewer to organize a layout,   since they are 

easily seen when they occur,   and thus lead to a faster comprehension 

of a layout. 

A main component of regularity which seems to underlie much 

12 



of what was mentioned above is what we shall call size and distance 

consistency.       In general,   this implies equivalence of link lengths, 

where possible,  and,   at a more subtle level,  what Baecker (4) calls 

fidelity,  which will be described below.    Applying the equivalence 

criterion where possible,   similar images tend to become closer in 

size,   some literal,   symmetrical,   and rotational repetitions tend to 

appear,  and in general the graph layout becomes more regular.   This 

explains the discussion of figure 2-5.    Application of this constraint 

in its literal form to the layout of figure 2-7a might result in the lay- 

out of figure 2-7b,   a definite improvement.    This length constraint, 

which we will call "link length consistency,"  will be taken to mean 

that as few different link lengths as possible appear in the layout. 

<m> 
(a) (b) 

Figure 2-7 

The concept of size and distance consistency is intended to 
apply to layouts in which links consist of a single line segment.   The 
extension for multi-segment links,   although not considered here, 
might be worthwhile to explore. 

13 



Baecker has expressed size and distance consistency in 

another form,  which he calls fidelity.    He suggests that graph lay- 

outs are better,  the more the graph-theoretic distances and layout 

distances between nodes correspond.    In this sense he is concerned 

with how faithful a representation of a graph is to the graph itself. 

For example,   in figure 2-8a,  node   a   is separated from node  b by 

at least two links (hence,  the graph-theoretic distance is two),  and 

yet it is drawn closer to node   b  than to node   c,  which is adjacent 

to  a.    In figure 2-8b the layout has better fidelity. 

(a) (b) 

Figure 2-8 

It seems appropriate to discuss one final layout character- 

istic,   balance,   under the topic of regularity.      A crude definition of 

balance might be evenness of node and link distribution throughout a 

graph layout.    We want to separate symmetry from balance,  how- 

ever,   so as not to attribute clarity to balance when it is due to  sym- 

metry.    Let us look at the graph layouts in figure 2-9a and b.    The 

14 



amount of symmetry seems the same in both, but b  is much better 

balanced than a,  in other words,  the nodes and links are distributed 

more evenly.    There is some question as to whether balance con- 

tributes significantly to readability,   or whether it just adds to the 

aesthetics of a layout. 

(a) (b) 

Figure 2-9 

In summary, we have included under the category of regular- 

ity several layout qualities,  all of which contribute to the readability 

of graph layout by adding consistency or by facilitating some form of 

pattern recognition.    This category includes   literal,    symmetri- 

cal,   rotational,   and similar repetition of both distinct and non- 

distinct layout subparts, which may occur on many levels.    The 

appearance of familiar figures was considered,  as well as consist- 

ency of size and distance in layout.    Finally,   balance was discussed 

as a possible aid to readability. 

15 



2.1.2    Directionality 

Another category of qualities, which we shall call direction- 

ality,  deals with the layout as a whole rather than in terms of its 

parts.    Directionality includes those qualities which aid in a directed 

reading of a layout.    This may be taken literally,   or may be con- 

sidered at a more subtle level.    To some extent,  then,  directionality 

seems to deal more with links and their paths in a layout,  rather 

than with nodes. 

What first comes to mind is the nature of the links in a lay- 

out.      If the layout is directed    is there some consistency in the 

direction in which the arrows point?    Flow-type and network diagrams 

by convention ask that there be some directional consistency,   often 

requiring that arrows point predominantly in one direction,   say to the 

right.    The constraint of directional consistency may also be met 

when arrows point consistently toward,   away from,  or around a 

center,  as in figure 2-10.    In general,   directional consistency for 

directed layout means that there is some regular manner in which 

arrows are arranged.    It is clear that this quality aids in the ease of 

reading directed layouts by providing some pattern in eye movement. 

Two other qualities seem to be good candidates for 

In other words,   links have a direction,   indicated by arrows. 
This type of graph representation is used when the underlying graph 
is directed. 

16 



^^ 

Figure 2-10 

directionality.    These are,  first,  the number of bends,  or equiva- 

lently,  link segments used in representing the links of the graph, 

and,   second,  the total link length used in representing these links. 

We will call these qualities "number of bends" and "total link length," 

respectively.    Both qualities have been considered as layout criteria 

in circuit layout.    In the first case,   clearly,   the fewer the bends in 

a representation of a link,  the easier it is for the eye to follow its 

path.    Furthermore,   in the places where bends occur,  in some 

cases, there is a tendency for the eye to create nodes, for example, 

in figure 2-11. 

Figure 2-11 

17 



In the second case,   it seems obvious that the greater the total 

link length for a layout,   the more complex the layout will be.    First of 

all,  we find that the more link length there is,  in general,  the greater 

the probability that bends will also be present.    Furthermore,   when 

link length is in excess in a layout,   it is usually because some other 

criterion such as the number of intersections is being minimized in 

the layout.    Thus the complexity due to large link length in a layout 

may really be due to inherent graph complexity in the underlying 

graph.    To illustrate,  consider figure 2-12a.    We may attribute its 

complexity to link length (and to the number of bends).    However,  we 

see in figure 2- 12b,  the same graph represented with a smaller total 

link length contains other features which reflect the inherent com- 

plexity of the underlying graph. 

(a) (b) 

Figure 2-12 

Another quality which seems to affect directionality in a layout 

is the number of link intersections other than at nodes.    As  is well 

18 



known in graph theory,   some graphs cannot be drawn on a two- 

dimensional surface without intersections.    These are called non- 

planar graphs.    In fact,   the minimum number of intersections which 

can be attained for any two-dimensional representation of a given 

graph is inherent in the graph and is called the genus of the graph. 

For example, the graphs represented in figure 2-13 are non-planar. 

We might require for   readability that the number of inter- 

sections in a layout be as small as possible for the underlying graph. 

For instance,  the minimum number for the graph represented in 

figure 2- 14 is zero,  and we find that 2- 14a is easier to comprehend 

than 2- 14b, where the intersection adds complexity similar to that 

added by bends in links.    A further complication produced by 

Figure 2-13 

With this quality,  one of the main problems underlying the 
layout problem surfaces.    This is the problem of differentiating what 
part of the layout is determined by the graph theoretic structure of 
the underlying graph and what part depends only on a Euclidean 
metric.    In the  case of intersections the effects of graph theoretic 
structure are quite clear, but in most cases,  the effects are not as 
clear. 

19 



(a) (b) 

Figure 2-14 

intersections is that faces are created visually which are not true 

graph theoretic faces.    This also leads to difficulty in comprehension. 

But consider the layouts in figure 2-15.    The number of inter- 

sections in 2-15a is much greater than in 2-15b,  yet we do not find it 

particularly more complex.    The same situation occurs in comparing 

2- 15b to 2- 15c.    Here we have a case where the intersections,   due to 

their number and regularity,   do not detract from the directionality of 

the layout.    Thus the importance of the minimum intersection con- 

straint is more difficult to assess than was first expected.    We must 

also take into account how much the particular intersections add or 

detract from directionality. 

it    •    n 

• • 

• —• 

• • 

<i    1    i 

(a) (b) 

J    •• 

T~J   *- 

(c) 

Figure 2-15 
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We will now consider a more subtle aspect of directionality, 

that involving link (or line segment) orientation.    Two questions arise 

when we consider orientation.    First,  what effect does the variation 

of the slope of the link segments have on the layout?   And second,   is 

a generally horizontal-vertical link segment orientation better than 

any other general orientation? 

To answer the first question,  examine figure 2-16.    The lay- 

out in figure 2- 16a is quite clearly better than that of figure 2- 16b. 

There are several factors which contribute to this difference.     In one 

(b) 

figure, the number of parallel lines is large,  the number of different 

slopes is small,  and angles between link segments are limited to   0 

and 90° .    In the second figure this is not the case.    Let us consider 

each of these factors  separately. 

We first conjecture that parallel lines are much more effec- 

tive in layout than non-parallel lines.    The larger the   number of 

different link slopes in a layout the more confusing it is.    Examine 

21 



the gradation of the layouts in figure Z-17,  for example.     Recurrence 

of a particular slope in the form of several parallel lines tends to 

reinforce a direction in the layout.    Whereas,  lack of such reinforce- 

ment may generate directional confusion.    This quality will be 

referred to as  "number of link slopes,"  or,   equivalently,   "amount of 

parallelism." 

Figure 2-17 

We then ask whether certain angles between links are prefer- 

able to others.     One might first guess that 90° is a preferable angle. 

However,   in examining figure 2- 18,  we see that this is not neces- 

sarily the case.    This first guess,  we find,   is instead accounted for 

^90c 
90° 

Figure 2- 18 
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when we consider horizontal-vertical link segment orientation. 

This lack of preference may be explained somewhat by our ability 

and tendency to see things in perspective,  and to give a three- 

dimensional reading to a two-dimensional figure. 

We will now consider the question of whether a horizontal- 

vertical link segment orientation is preferable to any other.    By 

horizontal-vertical link segment orientation,  more specifically, we 

mean that the link segments of a layout are oriented either horizon- 

tally or vertically.    The answer to the question of whether such an 

orientation is preferable is obvious in the comparison of figures 

2-19a and b.    The reason for this preference is not clear,  although 

* 
it has been mentioned as an important factor by Birkhoff (6). 

• • II 
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(a) (b) 

Figure 2-19 

Actually,   Birkhoff mentions two factors which might contri- 
bute to this preference.    One is what he calls  "equilibrium,"   which 
accounts for whether a figure looks stable or unstable.   The other 
factor, which he calls  "the relation to a horizontal-vertical network," 
expresses the fact that humans prefer figures whose sides (link seg- 
ments) fall on a horizontal-vertical network,   or,   as a second pref- 
erence,  on a network whose grid cells are diamonds.    Birkhoff 
relates this factor to our everyday experience. 
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Thus,   if we were to pose the question about angle preference with the 

example in figure 2-20,  we might arrive at a different answer.    This 

can easily be explained by preference for horizontal-vertical orienta- 

tion. 

f                                            " 
^_^4 >-"""' I n  

JL-        J^~ >-1 1-1-1       HL        r4 

Figure 2-20 

In summary, we have considered several layout qualities 

under the category of directionality.    These have the common fea- 

ture that they all contribute to some directional organization of the 

layout of a graph.    The most obvious quality which has been con- 

sidered is directional consistency in directed layouts.    Bends in 

links,  total link length,  and link intersections have also been exam- 

ined for their effect on directionality.    Aspects of link (or line seg- 

ment) orientation in a layout have been discussed; this includes the 

qualities of parallelism,   number of different link slopes,   and size of 

angles between links in a layout.     Finally,  horizontal-vertical link 

segment orientation preference has been considered. 
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2.1.3    Simplicity 

It seems appropriate that we should also consider simplicity 

as a category of layout qualities,   since most observers tend initially 

to equate clarity and simplicity to some degree.    Let us try to define 

what is meant by simplicity in a layout.    The most obvious definition 

* 
is that a layout is simplest when it represents the underlying graph 

in the most   straightforward manner possible,  and it avoids unneces- 

sary complication.    For example,  figure 2-2la is certainly simpler 

than figure 2-2 lb,  because of the unnecessary complication of a link 

intersection in 2-2lb. 

(a) (b) 

Figure 2-21 

We must then ask what qualities tend to add to the unnecessary com- 

plication of a layout.    And,  are these qualities different from those 

discussed under regularity and directionality. 

To review,  the qualities included under regularity are those 

which affect the reading of a layout through its subparts. 

Note that this issue is not to be confused with the graph 
theoretic  simplicity (or complexity) of the underlying graph itself. 
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Directionality,   on the other hand,   includes those qualities which 

affect the overall direction and orientation of a layout.    As can be 

seen in many of the examples above,  optimizing on the qualities dis- 

cussed under these categories seems to produce simpler layouts. 

Unnecessary complication can usually be pin-pointed as a lack of 

optimization of one or more of these qualities.    It seems,  further- 

more,  that with the categorization given above,   any quality which 

affects the simplicity of a layout,   is more specifically affecting either 

the regularity or the directionality of the layout and should be cate- 

gorized accordingly. 

From this discussion,   we conclude that simplicity,   in itself, 

should not be considered as a separate category,  but as a complex of 

the effects of qualities we've already considered under regularity and 

directionality. 

Some further examples may help convince us of this point. 

Consider the pairs in figure 2-22.    In each pair there is one layout 

which is obviously simpler than the other.    The difference in each 

case can be understood by pointing to a quality or set of qualities 

discussed under regularity or directionality which accounts for the 

simplicity or complication present.     In figure 2-22a the most obvious 

quality is the number of intersections.    In  b,   it is the existence of 

literal repetition.     In  c   both symmetrical repetition and directional 

consistency contribute,  whereas in  d we find that parallelism and 
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Figure 2-22 
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horizontal-vertical link segment orientation accounts for most of the 

difference.    Finally,   in  e   the  separation into literally repetitious 

subparts as well as symmetrical repetition makes one figure simpler 

than the other.     The reader should try several pairs himself,   and 

examine the qualities which account for simplicity or complication. 

Perhaps,   in this examination,   other qualities which have not been 

brought out above may appear. 

2.1.4    Concepts in Aesthetics and Perception 

In this section we will supplement the discussion of sections 

2.1.1 through 2.1.3 by considering some relevant ideas found in the 

literature of aesthetics and psychology.    Both fields have dealt with 

the question of -what factors add to the readability of a two dimen- 

sional layout,   or,  more generally,   a two dimensional figure. 

In studies of aesthetics,  the motivation for answering this 

question is to understand what factors add to the aesthetic quality of 

a figure or an object.  And as Birkhoff reports,   Helmholtz stated: 

"The more easily we perceive the order which characterizes the 

objects contemplated, the more simple and perfect will they appear, 

and the more easily and joyfully shall we acknowledge them" 

(6,   page  199). 

In psychology,  an understanding of the factors contributing to 

readability of figures is linked to an understanding of human visual 
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perception. 

In the remainder of this section we will briefly describe some 

of the relevant literature in these two fields.    In doing so, we will try- 

to list those factors thought by the authors to contribute to reada- 

bility,  and briefly examine how these factors correlate with the ideas 

given in the previous three sections. 

Let us  start with aesthetics.    The wish to understand what 

factors cause a sensation of aesthetic feeling when an object is per- 

ceived,  has long been of concern to philosophers.    Few,   however, 

have attempted to describe aesthetic factors in a formal manner. 

The one exception seems to be the careful work done by George 

Birkhoff in 193 3 on this subject. 

To Birkhoff,   "the fundamental problem of aesthetics [is]  to 

determine,  within each class of aesthetic objects those specific 

attributes upon which the aesthetic value depends" (6,   page 3).    In 

summary,  Birkhoff first proposes that the measure of the aesthetic 

value (M) of an object may be determined by the complexity (C) of the 

object,  and the order (O) or harmony of the object,  according to the 

formula:   M = O/C.    The complexity (C) of an object is a measure of 

the amount of effort which must be expended in perceiving the object. 

The measurement of complexity is different for each class of objects. 

The order (O) of an object is determined as a summation of the 

measures of various  "elements of order" for the object.    The elements 
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of order reflect the various attributes of the object contributing to or 

detracting from the aesthetic value.    Positive elements of order are, 

for example,   repetition,   similarity,   contrast,   equality,   symmetry, 

balance,  and sequence (6,  page 9).    Negative elements of order 

include ambiguity,  undue repetition,   and unnecessary imperfection 

(6,   page  10).    Birkhoff determines for each class of objects those 

elements of order which he feels contribute to the measure of order 

(O). 

Having established this formalism,  Birkhoff proceeds to 

derive measures of aesthetic value (M),  for several classes of 

objects found in art,  music,  and poetry.    For each such class,   he 

determines the set of elements of order to be considered in the 

measure of order (O) for the objects in this class,   as well as some 

measure of the complexity (C) of these  objects. 

Of particular interest to us is his study of the class of poly- 

gons,   in that polygons are so integral a part of graph layouts in 

which links consist of straight line segments.    In the class of poly- 

gons,   the elements of order Birkhoff considers are briefly described 

below: 

1) Vertical symmetry:   the figure is  symmetrical with respect 

to a vertical axis. 

2) Equilibrium:   the figure rests on a horizontal base with optical 

center of gravity above this base. 
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3) Rotational symmetry:   the figure is symmetric with respect 

to a point at its center. 

4) Relation to a horizontal-vertical network:   the sides of the 

figure lie along lines of a horizontal-vertical network. 

5) Unsatisfactory form:   Birkhoff's "omnium gatherum" of 

negative factors. 

Given a figure, for each of these elements of order,   i,   a 

quantity,  x.,   is determined,  according to how the figure meets the 

requirements of the particular element of order.    The order (O) is 

then the sum of the measures x. .    The details of how a given x.   is 
I l 

calculated will not be mentioned here. 

Birkhoff then proceeds to calculate the aesthetic value (M) for 

a large group of polygons.    According to his analysis, the square is 

the most aesthetic of all polygons. 

Let us now briefly compare Birkhoff's selection of aesthetic 

factors with the group of readability qualities discussed in sections 

2.1.1 and 2. 1.2.    The idea basic to both approaches   is   the concept 

of order; underlying this we find that both approaches consider sym- 

metry (although Birkhoff includes point symmetry), horizontal- 

vertical orientation,   diversity of directions,   and similarity within 

figures (a concept which Birkhoff discusses when he considers  orna- 

ments as a class of objects to be analyzed). 
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In addition,  several factors not considered in sections Z. 1. 1 

and 2.1.2 are brought out by Birkhoff.    In this author's opinion,  how- 

ever, these factors tend to add more to aesthetics than to readability. 

Among these factors are Birkhoff s idea of equilibrium,  which relates, 

in a sense,  to the idea of balance (section 2. 1.1),  and the concepts of 

unnecessary imperfection and ambiguity. 

We will now examine some of the ideas found in the literature 

of psychology, which are pertinent to the problem of readability.    As 

mentioned above,  the problem became important in this field when 

questions of human visual perception were seriously considered.    The 

basis of many of the current concepts in visual perception was devel- 

oped in the writings of the Gestalt school of psychologists.    According 

to Boring (7),  this school began in 1912 with the writing of Wertheimer 

which "treats of the general dynamics of the formation of form" (7, 

page 252).    Several well-known publications cover the concepts of the 

Gestalt school,   including those by Hartmann (18),   Koffka    (22),  and 

Katz (21). 

As a brief background note, the approach of the Gestalt psy- 

chologists differs from previous approaches to perceptual studies in 

that the Gestalt studies were basically phenomenological,  rather than 

physiological.    In other words,  perceptual phenomena are "allowed to 

speak for themselves" (21,  page  18),   rather than being subject to 

various types of physiological analysis. 

32 



According to Boring,   "the chief contribution of Gestalt psy- 

chology to the psychology of perceived form was its insistence that 

the perception is formed under certain dynamical laws which give it 

its specific psychological organization.    A perception is not a copy of 

its stimulus" (7, page 246).    And according to Allport (1),  these 

"laws are natively given,  and are a property of the organizing action 

of the nervous system" (1,   page 115). 

Allport states that "no less than '114 laws of gestalten' have 

been formulated by various writers" (1,  page 113).    In subsequent 

literature, the list has been made more compact.    Most of these 

principles apply to visual form.    Let us first summarize a few of the 

more general principles of Gestalt with relevant quotations from 

Allport (1, page 113): 

1) Form-concept isomorphism:    "When one perceives an object 

that object tends,  psychologically, to take on form; and forms estab- 

lish themselves and persist .   .   .   such forms occur within the ner- 

vous system or brain as macroscopic states or physiological config- 

urations which are isomorphic  .   .   .   with the configuration of the 

percept to which they give rise. " 

2) Wholeness-character and relationships:    "The form always 

has a 'whole-character1 that transcends the characteristics of the 

parts.  . . .    The perceiving of relationships is an essential aspect of 

wholeness in experience. " 
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Allport also includes other principles stating that laws 

"intrinsic to the organism" underlie the perception of form.    The 

perceived configurations tend to be "self-closing and to be simple, 

balanced,  and symmetrical.    The tendency is toward 'good' form. " 

In addition,  the configuration is organized by certain forces,   "giving 

rise to segregation,   groupings,   combinations into subsystems,  and 

articulation. " 

Some of the more specific laws for producing visual form 

have been summarized by Katz.    These specific laws are of more 

interest to us,   in that they describe in more detail what factors help 

organize perception of a two-dimensional representation.    A few of 

these are (21,  page 25 ff.): 

1) The law of proximity:    "Other things being equal,   in a total 

stimulus situation those elements which are closest to each other 

tend to form groups. " 

2) The law of similarity: "When more than one kind of element 

is present,  those which are similar tend to form groups. " 

3) The law of closed forms:    "Other things being equal,  lines 

which enclose a surface tend to be seen as a unit. " 

4) The law of "good" contour, or common density: "Parts of a 

figure which have a 'good' contour, or common density tend to form 

units. "   (Also known as the law of "good" continuation. ) 
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Wertheimer (38) and Koffka,  who have originated much of this 

work,  both discuss these laws in detail and give several examples of 

their application.    In 1940 Mowatt (29) published the results of an 

experiment to test the value of these laws.    In summary,  her subjects 

were given a series of drawings and asked to change them in any way 

desired to produce what they felt were "good" figures from the draw- 

ings.    She found that,   in general,   subjects changed drawings in such 

a way as to increase, among other things,   differentiation,   simplicity, 

closure,   symmetry,  good continuation,   and occurrence of familiar 

forms . 

We see then that some of the Gestalt concepts of visual per- 

ception agree with some of the factors mentioned in sections 2.1.1 

and 2.1.2, for example,  the importance of symmetry,  similarity,  and 

the   occurrence of familiar forms.    Other factors are mentioned by 

the Gestaltists which should be examined as possible additions to the 

list of readability qualities.    Among these are the concepts of prox- 

imity,   good continuation,  and closure,  none of which have been con- 

sidered in the previous sections. 

More recent work on the problem of determining the factors 

affecting visual perception has been done by Attneave and Arnoult (3). 

They mention that the problem underlying work in the area is that: 

"Our most precise knowledge of perception is in those areas which 
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have yielded to psychophysical analysis (e.g. , the   perception of size, 

color,  and pitch),   but there is virtually no psychophysics of shape or 

pattern" (3,   page 123).    And in regard to natural form,   "relatively 

few scientists have seriously applied themselves to the problems of 

analyzing and describing form; these problems seem to have fallen 

into the cracks between sciences,  and no general quantitative morph- 

ology has ever been developed" (3,  page 132).    They mention the work 

of Thompson (35) as the only major work in the   field,  but a work 

which is limited in its contribution to the identification of psycho- 

physical variables of form. 

Hake (17) has summarized some of the more recent experi- 

ments with the factors involved in visual perception.    Among these 

he mentions experiments in judgement of complexity of figures,  in 

which results show dependency on the number of turns or angles,   and 

upon symmetry.    He also summarizes experiments on the effects of 

redundancy in figures,  and concludes that the helpfulness of redund- 

ancy in figures depends on the context of the figures.    Experiments on 

the effects of rotation are also mentioned.    In all rotation experiments 

reported on,   accuracy of figure recognition is impaired by the rota- 

tion of a figure.    Hake also reports on a large amount of experimenta- 

tion with figures tilted toward or away from the observer.    To some 

degree,   it is found that an adjustment in the   perception of such a 

tilted figure is made for perspective. 
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Comparing Hake's discussion with that of sections 2.1.1 and 

2.1.2, we find support for the ideas found in the discussions on the 

number of bends,  rotational repetition,  and angles between slopes. 

However,   some question about the effectiveness of symmetry and of 

literal repetition is raised by the experiments reported on by Hake. 

As a final note, we mention the work of Miller (28),  who has 

dealt with a problem implicitly mentioned in section 2.1.1,   namely, 

the problem of what a "countable" number of repetitions is in a lay- 

out.    In his essay,   "The Magical Number Seven, Plus or Minus Two: 

Some Limits on Our Capacity for Processing Information," Miller 

presents evidence that humans seem to be limited in what he calls 

"channel capacity, " in number estimation ability,   and in immediate 

memory span,  by a number in the range of seven.    Although he draws 

no conclusions about this "coincidence," the results of several ex- 

periments are reported on.    These experiments suggest that,  per- 

haps,  the answer to the problem posed in section 2.1.1 is seven plus 

or minus two. 

2.2 MEASUREMENTS AND REALIZATION 

Having established some of the qualities which we believe 

contribute to readable graph layouts, we would like to be able to 

measure how much a particular layout fulfills a particular quality. 

Furthermore, we wish to examine the possibilities for the 
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realization of these qualities.    In other words,   can we provide some 

method to optimize these qualities in layouts ?    Both problems are 
a. 

quite complex and require close examination. 

2.2.1    Measurements 

The ideal measurement of a quality in a layout tells us to what 

extent we have optimized the layout for the particular quality.    There 

are two types of measurements we would like to consider.    The first, 

which we shall call the "normalized measurement,"   states the extent 

to which a quality is fulfilled in a layout,   relative to the optimal pos- 

sible fulfillment for any layout of the particular underlying graph. 

The second,  which we shall call the  "non-normalized measurement," 

does not take the optimal case into consideration.    This second mea- 

surement gives us some idea about how well a quality is fulfilled in a 

layout,  but is useful only when a comparison of two layouts of the 

same graph is made,   and the best of the two is to be chosen.    It does 

not tell the extent to which one layout is better than the other,  with 

respect to a particular quality. 

The normalized measurement of a quality requires that we 

have a method to establish the absolute minimum (or maximum) for 

Note that in this work we do not examine the question of 
internal representation of graphs and layouts although the nature of 
this representation has an effect on the efficiency of measurement 
and realization techniques,   and should eventually be looked into. 
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this quality and a particular graph.    It seems that for many qualities, 

this is a very difficult task.    For example, with the minimum number 

of intersections,  this would mean the establishment of the genus of 

the graph.    Furthermore,  the absolute optimum,   given a graph, may 

be dependent to some extent on factors which are irrelevant to the 

particular quality under consideration.    For example, the optimum 

may depend on other qualities to which we give priority in layout,   if 

these qualities conflict with the particular quality under consideration. 

Then we must modify the definition of "absolute optimum given a 

graph" to "optimum given that the layout will be optimized first for 

qualities with higher priority. "   Thus,   a more feasible approach to 

measurement is the use of the non-normalized measurement.    In 

fact,   in many optimization procedures,  this is all that is necessary 

since only the relative maxima (or minima) are sought. 

In the following discussion of specific measurements, we will 

only consider measurements for those qualities which we feel are 

most effective for layout clarity.    Thus,  measurements will not be 

examined for qualities defined in sections 2. 1. 1 and 2.1.2,  which 

are not believed to contribute significantly to readability,  such as 

rotational repetition,   balance,   and angles between links.    The main 

aim is to find at least one non-normalized measure for each quality. 

Should a normalized measure be found easily for a quality,   it will 

also be discussed.    Even with the simplest measurements as our 
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goal,  however, we find that there are some qualities which appear 

very difficult to quantify.    For these more unquantifiable qualities 

some of the complicating factors and possible paths toward solution 

will be discussed,  but no particular measurement will be given. 

2.2.1.1    Repetition 

The first set of qualities we will consider, those involving 

repetition,  is probably the most difficult to quantify.    Let us first 

examine the automatic measurement of the amount of literal repeti- 

tion of distinct subparts.    The most obvious obstacle here is the 

problem of pattern recognition.    The complexity of an automated 

pattern search and match in a layout is greatly augmented by the fact 

that it is unclear at what level to look for patterns.    An example will 

clarify this.    In figure 2-23 we may consider the total figure to con- 

tain one pattern,  two repetitions of a pattern,  four or eight.    Most 

observers would not have this difficulty; the ambiguity is usually 
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Figure 2-23 

resolved by the viewer.    Solving the problem of choosing patterns, 

then,   requires some insight into the selective process by which 
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humans resolve this ambiguity.    This is beyond the scope of this 

work.    We can only suggest that for each viewer there is some 

mechanism by which he decides quite quickly that a particular pat- 

tern is in some sense maximal and minimal simultaneously and thus 

distinguishes it as a pattern to be matched.    One factor in this deci- 

sion might be that he chooses as patterns those subparts of the lay- 

out which are small enough to remember and to be easily reproduced, 

but large enough to be separable as a subpart of the layout. 

To consider actual non-normalized measurement of the qual- 

ity of literal repetition of distinct subparts,  however, we must 

assume that the patterns of a layout have been chosen and matched, 

and then make our measurements on the results.    The measurement 

is not simple even then.    First we consider two obvious measure- 

ments, the number of distinct patterns and the number of instances 

of each pattern.    As we discussed in section 2.1.1, the fewer the 

number of different patterns,  the better the layout for comprehen- 

sion.    The number of instances and its effect is more difficult to 

judge.    Here,  we are concerned that the number of instances of each 

pattern is countable in the sense discussed in section 2.1.1.    Thus 

we aren't interested in this number unless it exceeds some threshold 

and this threshold is difficult to determine. 

To complete the measurement of literal repetition of distinct 

subparts,   the patterns themselves must be examined.    First we 
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consider their size,  for, the smaller they are,  the easier,   in general, 

they will be to comprehend.    But on a more subtle level,  we must 

also consider the repetition within each pattern.    In other words,   if 

the pattern itself consists of several instances of some smaller pat- 

tern,  as in figure 2-24a,  it will be simpler to understand than one 

which does not,  as in figure 2-24b.    Furthermore, we must consider 

the relationships between patterns. 

(a) (b) 

Figure 2- 24 

For example, are two patterns the same except for one element? 

Certainly, close relationships between the various patterns helps 

comprehension. 

Thus we find that a non-normalized measurement of the 

amount of literal repetition of distinct subparts consists of several 

factors,   many of which are,   in themselves,   somewhat unquantifiable 

To combine all these factors into one measurement would be infea- 

sible at this point. 

42 



When we consider other types of repetition,  except for the 

very specific case of symmetrical repetition,  the pattern selection 

and matching problem becomes worse.    For the problem is compli- 

cated by the fact that if we consider non-distinct subparts we are no 

longer restricted to having a graph component belong to only one 

instance of a pattern; it may belong to several.    Furthermore, when 

we allow for matching of pattern instances of differing sizes and 

orientations, the matching process becomes that much more complex. 

Moreover,  added to the factors we must measure for literal repeti- 

tion of distinct subparts, we must also consider other factors,   such 

as size difference with similar subparts.    It is clear then that finding 

measurements for the amounts of other types of repetition in layouts 

is even more difficult than for the amount of literal repetition of dis- 

tinct subparts. 

2.2.1.2   Symmetry 

The one exception to the difficulty of measuring repetition 

seems to be measuring the amount of symmetrical repetition in a lay- 

out when the two repetitious subparts are to account for the whole lay- 

out.    Symmetrical repetition is a very specific type of repetition (as 

defined in section 2.1.1).    In the case that the two subparts make up 

the whole layout,   for each possible axis of symmetry we have one 

pattern with two instances,   one of which must be the mirror image of 
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the other.    Therefore,  a very straightforward and meaningful mea- 

surement of such symmetrical repetition in a layout,   is the number 

of axes of symmetry in the layout.    This measurement corresponds 

well with the extent to which such symmetrical repetition contributes 

to the clarity of a layout as a whole. 

The one complication in automatically measuring the number 

of axes of symmetry in a layout is generating these axes.    Since 

there are an infinite number of possibilities for axes of symmetry, 

we must use a method which somehow limits this number.    Such a 

method has been devised for layouts with at least one link,  and is 

given below.    This method is based on the following observation. 

For every axis of symmetry,   each line segment in a link fits one of 

the following descriptions: 

a) the line is  on the axis, 

b) the line is perpendicularly bisected by the axis,   or 

c) the line has an image under reflection with respect to the 

axis (this image will be called the "mirror image" of the line with 

respect to the axis). 

Thus to find all the possible axes of symmetry,  we need only 

consider for any one line segment in the layout: 

1) the axis based on the line itself, 

2) the axis which perpendicularly bisects the line,  and 
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3)   any axis with respect to which another line might be the 

mirror image of this line. 

Each such possible axis is then checked to see whether or 

not,  in fact,  it is a real axis. 

We need to describe in more detail the method used to obtain 

the third group of  possible axes.    For the chosen line segment,   say 

[a,b] ,  we consider,  in turn,  every other line segment in the graph 

which is exactly the same length as the chosen line (since a mirror 

image of the line must be the same length as the line itself).    For 

each such line of equal length,   say [c,d] ,  we must examine several 

alternatives . 

If two ends of the two line segments [a,b]  and [c,d]   coincide, 

then the axis which makes them mirror images must pass through 

this coincidental point,  and the remaining two ends must be equi- 

distant from the axis.    Hence,  we would obtain the dotted axis in 

figure 2-25a.    In order for two lines without coinciding endpoints to 

be mirror images,  there must be two pairs of endpoints (each pair 

having one point from each line),  for example,   (a,c) and (b,d),  for 

which the respective elements of each pair are equidistant from the 

axis of symmetry.    Furthermore,  the axis must be perpendicular to 

both of the lines,   say,   (a, c) and (b, d),   generated by these pairs 

(hence,  the lines must be parallel),   in order that line   [a, b]   be a 
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reflection of [c,d]  with respect to the axis.    Thus the pair of lines 

in figure 2-25b may be mirror images but the pair in figure 2-25c 

is excluded. 

However,   it may be possible that two lines may be mirror 

images of one another with respect to two different axes,  for example, 

the pair in figure 2-25d.    For this very special case however,   it 

must be that the two line segments cross one another.    We must 

remember to check both pairings of endpoints,  for,  although one 

pairing,   say,  (a,c),   (b, d),  might not succeed,  the second,   say, 

(a,d),   (b,c),  may,   as in figure 2-25e. 

The algorithm to check for these possibilities,   given two line 

segments   [a,b]   and  [c,d],  then proceeds through the seven steps 

listed below.    It must be emphasized that the success  of this algorithm 

depends on the fact that the length of [a,b]   is equal to that of [c,d]: 

1) Check for coinciding endpoints:    if any pair of endpoints 

of the two line coincide,   go to step 2; else,   go to step 3. 

2) Generate as a possible axis the line which bisects the 

angle between the two line segments.     This line is determined by the 

coinciding endpoints and the midpoint between the remaining two 

endpoints.    Exit. 

3) Check the first pairing of endpoints,   (a,c),   (b,d):    if the 

line (a,c) is parallel to the line (b,d),   go to step 4; otherwise,  the 

axis determined by this pairing is not an axis of symmetry, therefore 
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(a) 

(c) (d) 

Figure 2-25 

47 



proceed to step 6,  to check the other pairing. 

4) Complete the check of the pairing (a,c),   (b,d):   if the line 

determined by the midpoint of (a, c) and the midpoint of (b,d) is per- 

pendicular to (a,c),   generate this line as possible axis and go to 

step 5; otherwise,   exit. 

5) If the lines (a, c) and (b, d) cross,  there may be a second 

axis of symmetry,  therefore,   proceed to step 6 to check this; other- 

wise,   exit. 

6) Check the second pairing of endpoints,  (a,d),   (b, c):    if the 

line (a,d) is parallel to the line (b,c),   go to step 7; otherwise,   the 

axis determined by this pairing is not an axis of symmetry; therefore, 

exit. 

7) Complete the check of the pairing (a,d),   (b,c):    if the line 

determined by the midpoint of (a, d) and the midpoint of (b, c) is per- 

pendicular to (a,d),   generate this line as a possible axis of symmetry. 

In any case,   exit. 

The optimal way to implement this algorithm would be to take 

as the chosen line,  [a,b] ,   a line with the fewest equals in length in 

the layout.     This would minimize the number of possible axes gener- 

ated.    Figure 2-26 depicts the generation of possible axes of sym- 

metry for a regular hexagon using the above method,  where  side two 

is the chosen line,   and where the dotted lines represent possible 

axes generated. 
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with side  1 by- 
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steps (3) and (4) 

Figure 2-26 
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all p: redicted axes 

Once the axes of symmetry have thus been generated and 

checked,   a count may be made to measure this type of symmetrical 

repetition in the layout. 

2.2.1.3   Other Qualities of Regularity 

Let us now consider measures of other qualities categorized 

under regularity,  aside from the various types of repetition.    First 

we will attempt to examine measurement of the effect of familiar 

figures.    The  problem here,  again,  is that although we may measure 

49 



certain quantities,  the significance of these measurements is in 

question.    For example,  although we may measure the number of 

equilateral triangles that appear in a layout,  this number may have 

nothing to do with how we perceive the   layout.    Compare figures 

2-27a and b,   for example:     in  2-27a   triangle recognition is key 

in aiding comprehension, whereas,   in 2-27b,   it is not.    Thus we have 

a measurable quantity,  but it does not reveal the information desired. 

(a) (b) 

Figure 2- 27 

Although it detects the presence of familiar figures,   it does not indi- 

cate to what extent they aid comprehension.    Ideally we would like 

some means to pin down whether or not a familiar figure significantly 

determines the  organization for comprehension of a layout,   for 

example,  the triangle in figure 2-27a and the hexagon in figure 2-27b. 

But,  again,  we are dealing with an extremely complex task involving 

the understanding of the method used by humans in resolving visual 

ambiguities to obtain an organization for comprehension,  and this is 

beyond the scope of this work. 

Moving on to the next quality,   size and distance consistency 
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for single segment links, we find much more hope for significant 

measurement.    As discussed in section 2. 1. 1,  there are two different 

approaches to consistency.    The first,   consistency of link scale (link 

length consistency),  might be examined by looking at the distribution 

of link lengths in the layout.    The problem of measurement is com- 

plicated by the fact that it is not always possible to obtain total con- 

sistency in the layout for a graph.    For example,  it is not possible to 

draw all diagonals in a regular polygon the same length as the sides. 

The ideal measurement would first consider the minimal number of 

different lengths required for a particular underlying graph (for 

example,  the complete graph on five vertices requires two lengths). 

It would then determine how closely the various link lengths corre- 

sponded to this ideal number.    This measurement can be made 

clearer by an example. 

Consider the  layout in figure 2-28a.    The underlying graph 

can be drawn with a minimum of two different lengths .    Both figures 

2-28a and b meet this requirement equally.    However,   figure 2-28c 

does not,  and thus is not as consistent as possible.    The layout in 

2-28d,  however,  deviates even more from the  minimum than 2-28c. 

Distributions of link lengths for these various layouts are shown in 

figure 2-29.    Given that we know the  minimum number of lengths for 

the graph, then, we might measure the deviation from this minimum 

in a layout by trying to answer the following questions:   How close is 
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the number of different lengths from the minimum?   If   n   is the 

minimum number of lengths for the graph,  does the length distribu- 

tion form   n   length clusters ?   What are the ranges in these clusters ? 

(For example,  compare figures 2-30a and b and their length distribu- 

tions. ) 

(a) (b) (c) 

Figure 2-28 

(d) 
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Figure 2-30 

Practically speaking,  however,   several problems are inher- 

ent in such measurements.    Foremost is the problem of obtaining the 
a. •v 

minimum number of lengths for an arbitrary graph.      There is also 

a question of validity in our reading of the length distribution.    Sup- 

pose that length clusters overlap,   or that   deviations are such that 

there are no clusters.    We cannot really get from the distributions 

any information which reveals which link belongs to which length 

It is clear,  however,  that for a complete graph on n nodes, 
the minimum  Nn  is such that: 

1 + (n-2)/2     n  even 
n I   1 + (n- (n-3)/2     n odd 

and thus that for any graph on n nodes, the minimum is less than or 
equal to  Nn.   This result is obtained by counting the number of lengths 
required in a regular polygon on n nodes. 
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cluster.    In fact, the same link in two different optimal layouts can 

belong to two different length clusters (for example,  link   e   in fig- 

ures 2-28a and b).    Thus the problem of link scale consistency mea- 

surement turns out to be extremely complex,   and should be examined 

further.    However,  for the present,  we will use a simple count of 

different link lengths as a non-normalized measurement. 

For the second approach towards examining size and distance 

consistency,   fidelity,   Baecker has designed an efficient and sensitive 

measurement.    Several measurements were tried,  and it was found 

that the most effective measurement was one which measured only the 

number of violations of the fidelity constraint,  and which ignored any 

consideration of scale and distance deviation.    The fidelity constraint 

is that for each link and endpoint pair,     no node with graph distance 

two or greater from that endpoint may be closer to the endpoint than 

the length of that link.    The measurement then checks each link and 

endpoint pair in the layout and counts the number of violations of this 

constraint.    The sum is the measurement of the infidelity of a layout. 

Baecker points out that the minimum value of the infidelity 

measurement is not always zero.    For example, he proves that the 

graph of figure 2-31 has a non-zero minimum fidelity.    He does not 

concern himself with obtaining the absolute minimum for a graph, 

* 
Again,  here we are dealing with single segment links. 
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Figure 2- 31 

however, and finds it sufficient to observe the change in this non- 

normalized infidelity measurement as layouts are simplified. 

2.2.1.4   Directional Consistency 

The next set of measurements we consider are those involving 

the qualities categorized under directionality.    The first quality 

seems the most difficult to measure, that of directional consistency 

in layouts.    When we consider the cases in which the consistency 

criterion is met by the existence of a predominant direction in which 

arrows point (we call this the linear case), there is no problem with 

measurement.    In flow and network diagrams,  for example, to mea- 

sure consistency we might measure the proportion of total link length 

contributing to the predominant direction.    The predominant direction 

of the layout is determined by the direction of the vector sum of the 

* 
links,     and the magnitude of the predominant direction,  by the magni- 

tude of this vector sum.    The proportion of total link length 

In the following discussion of directional consistency,   when- 
ever we are   dealing with links with more than one line segment,   each 
link segment should be treated as a separate link with direction 
derived from that of the whole link. 
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contributing to this predominant direction,  and thus our measurement 

of linear directional consistency is: 

where    | |i . |    is the length of the   i      link and where    | V is the 
1 s 

length of the vector sum of all the links .    Note that  0 < L < 1,   so that 

in the totally consistent case of figure 2- 32a,   L = 1 ,  whereas with the 

less consistent 2- 32b,   L - . 8,   and with the totally non-linear case of 

2-32c,   L= 0. 

1           1           1 
• >• 5«  

L = 3/3 = 1 

(a) 

V       =  2 V2 +  2 
s ' 

L = (2-^2 + 2)/6 « 

(b) 

Figure 2- 32 

. 8 

|vs|=o 

L = 0/6 = 0 

(c) 

However,  we would also like to find measurements for the 

cases in which predominant direction cannot be expressed in terms of 

a vector sum,   the cases in which the predominant direction is radial 
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or circular as in figure 2-10.    We note that in these cases,   often 

vector sums tend to be near zero.    However,  we would like to find 

directional consistency measurements,  analogous to that for linear 

consistency,  for these cases.    Instead of using the vector sum, then, 

we must find an analogous  measure which sums the contributions of 

each of the links to radial or circular orientation with respect to a 

center. 

Let us first consider the  measurement for outward radial 

orientation from some fixed center.    For each link, we include as 

the magnitude of its contribution to outward radiality its projection 

on the radius which runs from the fixed center through the starting 

node of the link.    For example,  in figure 2-33 links  a  and b have as 

their contribution their total lengths,   since both lie on radii from the 

fixed center,   c,  and both are directed outward from  c.    Link d, 

however,  has a contribution of e,   since it does not lie on a radius. 

The length e  may be determined by subtracting the distance between 

the end node of d  and the center,   c, from the distance between the 

start node of d  and the center,   c.    Link f contributes the negative of 

its length to outward radiality,   since although it lies on a radius,   it 

is directed inward towards   c.    Likewise,   link   g  contributes the nega- 

tive of the quantity h; the   negative value is the result of the same 

calculation used to find the length e.    Thus this calculation also 

reflects link direction.    In fact,   if we apply this calculation to each 
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Figure 2-33 

link, we obtain the outward radial contribution for that link,   so that 

we may obtain the desired sum,   a   ,   analogous to    | V    |   as: 

r     -/. (d(center,   endpoint.) - d(center, startpoint.) ) 

where    i   ranges over the set of link segments of the layout,   and thus 

the measurement of outward radial orientation,   R    : 
o 

° IKI 

Some examples are found in figure 2-34.    We note that the range for 

the measurement   R      is   - 1  to   1 .      This requires  some explanation. 

In the case of measuring linearity using   V    ,    | V        is always posi- 
s s 

tive or zero.    However,  were we to examine the magnitude of the 

vector with direction opposite to   V      we would find it to be negative, 
s 

but of the same size.    When radiality is measured the  "vector" 
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opposite to the radially outward vector,   a    ,   is the radially inward 

vector,  a. .    Unlike the linear case,  the stronger of these two oppo- 

site directions is not necessarily selected in the process of measure- 

ment.     The measurement   R      assumes that the outward direction 
o 

predominates.    Thus if   R      is negative, the wrong direction has been 

chosen as the predominant direction; we should have chosen the 

radially inward vector as the predominant one,   and measured   R. , 

radially inward orientation,   instead of   R   .     The magnitudes of   ~o. 
o 1 

and   a      are the same,  as with  V     and its opposite,  and thus we may 
o s 

express   R.    as   -R     (see figure 2-34). 

One further problem should be mentioned concerning this 

measurement.    With the linearity measurement,  L   was found to be 

very small in the case that directions diverged considerably; in other 

words,  directions  seemed to cancel each other out.    There is an 

analogous effect with   R      (and   R.),  where radially inward contribu- 

tions tend to cancel out radially outward contributions.    But there is 

also another factor which affects the magnitude of   R      (and   R.),  the 
o 1 

total amount of radiality.    For example,   if links were completely 

circular around a center,  as in figure 2-34d both  R     and  R.   would 
o 1 

be zero.    In the linear case the analogous effect by itself is not as 

marked,  for the predominant direction,  that of   V   ,   is determined by 
s 

all the links,  whereas,   in the radial case,  the predominant direction 

is predetermined without reference to the links.    This suggests that 
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R.   = 1 
I 

R    = 1 

(e) 

Ro = 3/8 

Rt   = -3/8 

R    = 5/8 

(c) 

Figure 2-34 

a simple measurement of radiality,   regardless  of direction,  might be 

of interest also.    Such a measurement is: 

R    = 

SK 

where: 

O    - /.   | d(center,   endpoint.) - d(center ,   startpcint.) | 
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This measurement sums contributions to radiality in either direction, 

inward or outward (see figure 2-34). 

When dealing with analogous measurements for circularity 

with respect to a fixed center,   c,  the same phenomenon is found. 

First we will look at the magnitude of the "vector" sum of circular 

movement with respect to one direction (clockwise or counterclock- 

wise),   as determined by the sum of the contribution of each link.     The 

contribution of a link is determined from its midpoint,  m,  as follows. 

Draw the tangent at the point   m   to the circle with center   c,  which 

passes through the point   m.    The magnitude,  n,  of the contribution 

is then the length,   n,   of the projection of the link onto this tangent 

line (see figure 2-35).    Both sign and magnitude may be calculated by 

using     I |i I  cos  8 ,  where    | |i |     is the length of the link,   and    8    is the 

angle between the link vector and a vector on the tangent line oriented 

in the direction of the circular measurement (i.e.   either clockwise 

or counterclockwise) (see figure 2-36). 

n 

tangent 
at m 

Figure 2- 35 

61 



I \l I cos 8 |u | cos 6 | u | cos 6 \\i | cos G 

clockwise counterclockwise 

Figure 2- 36 

Summing these contributions, we obtain the measurement, 

0      (clockwise) or    a      (counterclockwise),  depending on the direc- 
c c 

tion of the tangent vectors used.    Thus as measurements of directed 

circularity we have: 

IK IK 

As for   R     and   R. ,   C     and   C       range between  - 1   and   1 ,  and 
o l - - 

C_^ = -C       for any layout.    Analogous problems arise with   C     and 

C        as with   R     and   R.    resulting from the effects of cancelling and 
- o 1 6 & 

circularity.    Thus we might also be interested in obtaining a measure- 

ment for undirected circularity,   C,   analogous to  R.    To do this we 

simply disregard sign in measuring the projections onto the tangents, 

to obtain: 
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i 

where: 

CTC   =2 lnj  COS 9i 

and where    0.    is the smaller angle between the link and the tangent. 

Some examples are given in figure 2-37. 

(a) 

C    = -1 C    = 1 C     = 5/11 
c"= 1 c" = -1 CT = -5/11 
c"= 1 C*~ = 1 c" = 1 

(b) (c) 

d 1        1 

i CA 

C    = 1/3 
C"=   -1/3 
C*~ = 1/3 

C     = 0 
cT = o 
C*~ = 1/3 

(d) (e) 

F: Lgure 2- 37 

C^= 0 
c"= 0 
C*~ = 0 

(f) 
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2.2.1.5   Other Qualities of Directionality 

Measurement of the remainder of the qualities categorized 

under directionality is quite straightforward.    For example,  as non- 

normalized measurements for the number of bends,  total link length, 

and the number of intersections,  we may simply use these numbers. 

It is interesting to note that Fary (14) has proven that for planar 

graphs, with no self-loops or parallel links (two links connecting the 

same two nodes),  there always exists a layout which has no bends, 

or equivalently,  one in which all links are represented by single line 

segments. 

The question of a normalized measurement for the number of 

intersections involves a well-known problem in graph theory,  that of 

determining the genus of a graph.    This problem has been examined 

by several people including Anger (2).    A modified version of the 

problem,  that of determining whether or not a given graph is planar, 

has also been of interest in graph theory,   and has been examined by 

Even et al.   (13) among others.    Anger's method to find the genus of 

a graph constructs layouts with all possible permutations  of link 

orders around the nodes.    This produces all possible representations 

of a graph with respect to genus.    The genus of each such layout is 

examined,  and the layout with the smallest genus determines that of 

the graph.    The method may be quite time consuming,   and Anger 

mentions several ways in which it may be made more efficient.   Thus, 
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if we wished to find the value of the normalized measurement of 

intersections in a layout,   it would first be necessary to determine 

the genus of the underlying graph using a method such as Anger's. 

To answer the question of whether or not the genus is zero, we need 

only use an algorithm such as Even's.    Even's algorithm is more 

direct and less time consuming than one which determines genus. 

And it is constructive in that the results of the check can be used to 

generate a planar layout,  if the graph is planar. 

There is an additional problem in measuring the number of 

intersections.    As mentioned in section 2. 1. 2,   it may be the case 

that a smaller number of intersections is not necessarily best.    Con- 

sidering this,  we would ideally like to measure not the number of 

intersections,  but how much the intersections present add or detract 

from directionality in the layout.    Such a measurement is very diffi- 

cult to make,  however.    One indirect approach might be to make the 

judgment based on the amount of complication which develops when 

the intersection or set of intersections is removed.    We might exam- 

ine the increase in link length and number of bends in this case.   For 

example,  when we eliminated the intersections in figure 2-15b, the 

result,  2-15c,  had four more bends and some increase in link length. 

Here,   in order to measure how much the intersection adds or detracts 

from directionality,  we are measuring how much other complication 

we avoid by allowing the intersection,   keeping everything else 
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constant.    This seems a feasible approach to the measurement in a 

local sense.    However,  when we consider such a measurement with- 

out keeping other layout factors constant,   such as node position,  the 

measurement would become extremely difficult to devise. 

Several measurements may be developed to quantify the 

amount of parallelism or the number of different link segment slopes 

in a layout.    We may,  on the simplest level,   consider counting the 

number of different slopes.    Or,  we may also take the number of link 

segments into account in the measurement,  and use a measurement 

sue has: 

number of slopes   ( = N   ) 
N   = 

number of link segments ( = N   ) 

Here   N   ranges between 1,   in which case every link segment has a 

different slope,  and   1/N   ,   in which case all link segments are 

parallel.    We will not consider measuring parallelism separately, 

since,   in a sense it is reflected adequately in the measurement   N. 

When   N      is small with respect to a given   N. ,   this implies that the s 1 r 

parallelism is large. 

An interesting question to ask is how the number of link slopes 

relates to the phenomenon of directional consistency,   and furthermore, 

should we consider a measurement of the number of slopes similar to 

the measurements used for directional consistency.    In measuring 
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directional consistency we are trying to determine how well the vari- 

ous links combine to give a total direction to the layout.    In examining 

the number of slopes,  on the other hand,  we wish to determine how 

much divergence (in a discrete sense) there is between link directions; 

it is not a measurement of total direction,  but of relationships between 

the link segments.    Thus,   in measuring the latter, we do not want to 

take total direction into account,  but only whether or not link direc- 

tions agree. 

Finally,   we would like to obtain a measurement of horizontal- 

vertical link segment orientation in a layout.    There are two senses 

in which we may measure this,   corresponding to the two interpreta- 

tions of link slope just discussed.    In the first case, using a vector 

type analysis,  we would be asking what contribution each link gives to 

both horizontal and vertical movement in either direction.    Since these 

are perpendicular directions,   this sum accounts for all orientation, 

and the answer is meaningless.    In the second case, we would simply 

examine the ratio of the number of strictly horizontal and vertical 

* 
segments,  N,    , to the total number of link segments,  N   .       This 

JlV s 

approach is preferable,   not only because it gives a meaningful result, 

but also because,  again, we are interested in a discrete relationship, 

* 
Or, we might measure the ratio of total horizontal and verti- 

cal length to total length.    This gives the percent of total link length 
which is horizontally or vertically oriented. 
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that between the links and the horizontal and vertical axes. In other 

words, in this measurement, we are not concerned with how close a 

link is from being horizontal or vertical, but whether or not it actu- 

ally has one of these orientations. 

2.2.2    Realization 

In dealing with the problem of realization in graph layouts of 

the qualities discussed above,  there are two main approaches which 

might be taken.    The first, which we shall call the constructive 

approach,  includes realization techniques which aim at providing 

layouts with the absolute optimum for the qualities under considera- 

tion.    With this approach a layout is developed from the graph,  with- 

out reference to any previous layout for the graph,  but based only on 

the criterion that a quality or set of qualities chosen be optimized. 

The second approach,   called the modifying approach,     aims 

at realizing the local optimum for the qualities being considered, 

given an already existing layout for the graph.     Methods developed 

with this approach apply to a given layout in order to improve that 

layout as much as possible with respect to a given quality,  while 

changing the layout as little as possible.    This constraint that as 

This terminology should not be confused with the ideas pre- 
sented in chapter 4.    A "modifying algorithm" applies to a layout in 
a global sense,  whereas the "modified layout problem" (as presented 
in chapter 4) deals with layouts in a very local sense. 
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little as possible be changed with the modifying approach is based on 

the fact that with these algorithms we want to preserve as much of 

the original layout as we can while optimizing for a quality. 

Although the constructive approach is initially more appealing 

than the modifying approach,   since the results promise to be better, 

there are many problems which accompany it.    In order to provide 

the greatest amount of flexibility of layout,  the constructive approach 

requires that algorithms use no reference to any previous layout. 

The problem here is that given a graph and a set of layout qualities 

to be optimized there may be several layouts for this graph which 

optimize this set of qualities.    In other words,  with the constructive 

approach,  part of the resulting layout may be arbitrary.    For 

example,  in figure 2-38, we see several layouts for one graph which 

meet the requirement of minimal number of different link lengths 

(link length consistency).    Thus this link length consistency require- 

ment is not enough to determine,  for the graph underlying figure 2-38, 

which layout a constructive algorithm should produce, and an arbitrary 

decision must be made.    With the modifying approach,  no arbitrary 

layout decisions are made; as mentioned above the implication behind 

this approach is that,   given a layout,  as little as possible in that lay- 

out should be changed in optimizing for a quality. 
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Figure 2-38 

A second problem to consider with the constructive approach is 

the problem of combination of criteria.    We can apply a constructive 

realization algorithm only once to a graph to obtain a layout,   since it 

must always be applied to a graph,  and not to another layout.    A 

second application obliterates the results of a first application.    And 

if we wish to optimize for more than one criterion,  we must combine 

the respective constructive realization algorithms into one.    The 

difficulties then begin to multiply,  for,  first of all,  this means that 

we must obtain a different algorithm for each combination of criteria, 

and second,   it may be the case that for a particular graph,  two 

criteria may conflict.    For example,   in figure 2-12a,  we optimize 

the layout for minimal number of intersections,  and in 2- 12b for 

minimal link length and number of bends.    We cannot,  for this under- 

lying graph,   have all three measurements be at absolute minima 

simultaneously.       This implies that we must assign priorities to the 

vThis problem of interaction and trade-offs between qualities, 
where they conflict in layout, is an important problem in itself, and 
should be looked into further. 
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criteria in a constructive realization algorithm.    The problem here, 

however,  is that we often cannot know,  before experimenting with 

several layouts, what criteria should be given priority and how one 

criterion affects another.    Furthermore, the addition of choices of 

priorities would increase the complexity of these algorithms a great 

deal. 

With the modifying approach,  we do not have these problems, 

since these algorithms apply to already existing layouts.    We need 

only consider one algorithm for each quality,  and apply these algor- 

ithms to the layout one at a time.    This puts the concept of algorithm 

definition at a much more feasible level.    There is also an advantage 

in that we may examine the results of optimizing for a particular 

quality more closely,  and observe how it affects other qualities in the 

layout. 

This modifying approach also provides the  possibility of a 

somewhat interactive environment in which,   perhaps,  a user may try 

several different orderings and combinations of qualities for optimiza- 

tion, to find the ones which are most appropriate for his particular 

graph.    The modifying approach also seems much more reasonable 

in that it provides a good environment for testing more than one 

method to optimize for a given quality.    This ability to experiment 

which is facilitated by such an environment is a very important con- 

sideration at this point in our research.    For example, we might 

71 



wish to experiment with the extent to which we allow an algorithm to 

change a layout for optimization purposes. 

To complete the comparison of these two approaches,  we must 

also take into account the difficulty mentioned in section 2.2. 1  in 

measuring the absolute optimum for many of the qualities considered 

given a graph.    Since a realization of such an optimum is the  inherent 

goal of constructive realization algorithms, they must be able to find 

this optimum.    With the modifying approach this problem is avoided. 

Essentially we ask that these algorithms do the best they can in opti- 

mizing, while limiting the power of the particular algorithm to change 

a layout.     Thus,  we are not concerned with what the absolute optimum 

may be,  but what the local optimum is,   given certain constraints. 

For these reasons the  modifying approach is the   one taken in 

the discussion of realization algorithms which follows,  as well as in 

the experimental MOD system described in the next section.    For a 

few qualities, however,  there are some constructive algorithms 

which are of interest.    These will be mentioned. 

There are many difficulties in the development of realization 

algorithms for the various qualities discussed in section 2. 1,   as was 

seen in the discussion of measurements for these qualities.    Again, 

where we cannot actually provide an algorithm for realization of a 

specific quality,  we will attempt to point out some of the problems 

involved. 
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2.2.2. 1    Repetition 

As in the case of measurement, the first quality we will con- 

sider,   repetition,   is the most difficult to deal with.    Here the aim is 

to find a method for changing a layout so that more repetition occurs 

in the layout.    The complication in dealing with repetition,  as dis- 

cussed in section 2.2. 1. 1,   is the discovery of matching patterns in 

the layout and the decision as to the level at which to select patterns. 

With realization,  however,  the problem is even worse than it is with 

measurement since we are not looking for pattern matches which 

presently exist in the layouts,  but for possibilities of creating them. 

Were we to try to develop a modifying algorithm,  this would perhaps 

mean identifying "near" matches and making them "perfect" matches. 

Finding a constructive algorithm would involve identifying structural 

matches in the graph and realizing them in layouts.    Both tasks seem 

infeasible at this point. 

However,   since we have chosen to work in a somewhat inter- 

active environment,   a compromise is possible.     The most difficult 

part of the task to automate is the identification of possible matches. 

The most tedious part for the user is the realization of the repetition. 

Thus,   if we break the task up and allow the user to specify the sub- 

parts of the layout to be matched,  and allow a modifying algorithm to 

actually make the subparts repetitious,  we have a reasonable com- 

promise.    With such an approach to the realization of repetition there 

73 



are several things to consider.    Foremost is the question of node- 

to-node mapping from one subpart onto another.    An example can 

best explain this.    Suppose in the layout of figure 2-39a  that the user 

specified,  with appropriate enclosures,  the two subparts to be 

matched (these need not be distinct).    This is not a complete specifi- 

cation since he has not explicitly identified nodes.    It seems quite 

clear,  however, that he means that node   a  is to be mapped onto  a' 

etc. ,   if he wishes to make the two patterns repetitions of one another 

as in figure 2-39b.    But suppose he wishes to make them symmetric 

images of one another with respect to an axis between them.    Then 

the mapping would be different,  as indicated in 2-39c.    Thus the user 

should specify in which sense (literal or symmetrical) he wishes to 

have the repetition realized,  but he may leave to the realization 

algorithm the task of making the   node-to-node map   given this 

(a) 

b,a' b' 

c d.c' d' 

(b) 

Figure 2- 39 

(c) 
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information.    In fact, with either literal or symmetrical repetition, 

there may be more than one mapping which will suffice.    This will be 

brought out later in the discussion. 

Another question of importance is whether,  in changing the lay- 

out to produce repetitious figures, we should use one of the specified 

subparts as a pattern and require that the other conform to it,   or, 

whether we should find some compromise between the two to which 

we make both subparts conform.    If we allowed only the first alterna- 

tive,  and chose subpart A in figure 2-39a as the fixed pattern,  we 

could not make subpart B a literal repetition of it,   as can be seen in 

the figure.    If we followed the other alternative, we would have a 

problem when we wanted to make several subparts the same by using 

this operation which applies to only two subparts at a time.    Thus, 

the success of the manner in which we realize repetition depends on 

what the user desires.    It should thus be left to him to choose between 

the two methods according to what he has in mind. 

In summary,  then, we have sketched the following require- 

ments for our repetition algorithm.     Given,  by the user: 

(a) two layout subparts (designated in some way,  for example, 

by enclosure), 

(b) whether we want to make the subparts literal or symmetri- 

cal repetitions of one another,   and 
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(c)   whether the first subpart designated may be modified,  per- 

form the following: 

(1) Find isomorphic node-to-node maps between the subparts, 

which are appropriate to the choice in option (b).    Establish the axis 

of symmetry for each mapping,  when symmetrical repetition is 

requested. 

(2) Dependent on the choice in option (c),   attempt to make the 

two subparts either literal or symmetrical repetitions  of one another 

by either : 

(2a)    changing the second specified subpart to conform to 

the first,   or 

(2b)   finding an intermediate form between the two subparts 

and changing both to this new form. 

In some cases,   it is obvious that literal or symmetrical repeti- 

tion is not obtainable; in these cases the algorithm should terminate 

without making any changes.    For example,   if we were to require that 

subparts A and B of figure 2-39a be made literal repetitions  of one 

another without changing subpart A,  the algorithm should fail.     In 

other cases,   it may be that the only solution is  one in which the two 

subparts overlap; we also want the algorithm to fail in these cases. 

Such an algorithm has been written,   and,   due to its length,   has 

been placed in Appendix 2,   rather than in the text.    The appendix 
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includes the algorithm,   along with a detailed explanation and some 

examples of its application. 

Several problems remain with the algorithm as stated in the 

appendix,   and should be looked into further.    The foremost problem 

is prevention of overlap of two nodes in the resultant layout.    The 

algorithm does not necessarily prevent this.    In fact,   it is possible 

that in moving nodes to produce literal or symmetrical repetition, 

with certain layouts,  two nodes might be placed at the same location. 

The algorithm in its present form,   contains no checks for this, 

although,   a more detailed version might include such checks. 

Another problem is that we have included no provision for 

similar and  rotational repetition.    It seems in cases like that of fig- 

ure 2-39a, were we to require that B  be made a literal repetition of 

A without moving A,  the result,   since literal repetition is not pos- 

sible,   should be similar repetition,   if this were possible.    Similar 

repetition has a natural place in such an algorithm as a default condi- 

tion when literal repetition cannot be accomplished.    Again a later 

version of the algorithm might include a provision for similar repeti- 

tion in this form.    Despite these problems, the algorithm in its 

present form,   reflects a feasible approach to realizing repetition in 

layouts. 
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2.2.2.2 Familar Figures 

The next problem to consider is the realization of familiar fig- 

ures in layouts.    Again the problem is that it is difficult to recognize 

automatically when a familiar figure,   such as an equilateral triangle, 

is possible and appropriate in a layout.    Once this has been established, 

it is quite easy to realize the figure.    Thus,  an approach similar to 

that used for repetition might be appropriate, where the user indicates 

the subpart of the layout he would like to have appear as a regular 

figure,  and an algorithm performs the mechanics to produce it.    For 

example,  the user might indicate some simple cycle of the layout,  and 

the algorithm would move the  nodes of the cycle minimally to obtain 

a regular polygon.    The   one exception to the problem of recognition 

of familiar figure possibilities  seems to be recognition of horizontal 

and vertical lines of nodes in a figure.    It is quite simple to detect when 

a series of nodes in a layout is intended to fall in a straight horizontal 

or vertical line,  and to modify the layout so that the  nodes are aligned 

in this way.    Such an algorithm has been implemented in the MOD  sys- 

tem and is described in section 2.3.3 under the pretty command. 

2.2.2.3 Link Length Consistency 

We would now like to find a method to optimize link length con- 

sistency in layouts.    Using the number of different lengths in a layout 

as a measurement of length consistency,   one such procedure might be 
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as follows.    For each nodes (and bend point) in turn find a new posi- 

tion for the node (leaving other nodes fixed),  which minimizes the 

number of lengths.    Continue until one complete pass through the 

nodes yields no improvement in the measurement. 

The heart of the algorithm is the determination of a position 

for the node under consideration which minimizes the number of link 

lengths.     The constraint is implied in this  step that we move the node 

as little as possible,   in order that the layout is disrupted minimally. 

Suppose the node under consideration,   say  a,   is of degree   n  (i.e. , 

has   n  links attached to it).    And suppose that of the links not attached 

to a  in the layout,  there are   m  different lengths,   t ,,...,  t       .    We 
1 m 

will try to find a position for the node   a,   such that each of the   n 

links is equal to one of the  m  lengths.     There may be several such 

positions.    To find these positions,  we first try as signing the   n 

links so that they all will be equal to the same one of the   m  lengths, 

and then derive a position for the node   a  which satisfies this assign- 

ment.     If no such position can be found,  we try assignments which 

use only two of the  m lengths; if this fails, try three,   and so on. 

Once we find a successful assignment and position using  p   of the   m 

lengths,  the process is terminated for the node under consideration. 

An assignment is considered to fail if the set of equations 

described below has no solution.     Let   x, y  be the new position to be 

derived for node   a.    Let   x. , y.    (i = 1, 2, . . . , n)  be the position of the 
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node at the other end of the   i*n link adjacent to  a,   and let    I. 

(i=l  n)  be the  length (one of m)  assigned to link   i.    Then we 

must find a value for    x   and   y   which satisfies each equation in the 

set: 

{ V(x.-x)2 + (y.- y)2 = -e.;    (i=l,2 n)} 

In the case that   n = 1, the new position, x,y  of node  a  will be on the 

line ( (x', y'),  (x. , y   ) ),  where   x', y    is the old position of node   a. 

Where the position   x,y   is not uniquely determined by this  set of 

equations,  the position closest to   x,y    is taken as the solution.   Thus, 

an assignment fails if no position can be found for node   a  which allows 

links    1 n   to have lengths    I .,..., I    ,   respectively. 
1 n 

It is possible that if we are using   p    of the   m   lengths there 

might be several assignments which can be  satisfied.    We make a se- 

lection among these by choosing that assignment which yields the new 

x,y  closest to the old position   x',y'.    The number of different assign- 

ments  of   m   lengths to the    n   links where we want to use   p    of the 

m   lengths is given by   N ,   as follows: 
p, n, m 

N. = m 
1, n, m 

p- 1 

N = n pn-1 (P)M- p, n, m       \ p / .*—'      \ I /      I, n, m 
x = 1 

where: 
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M =N /   (m) 
p,n,m        p, n, m     \ p / 

An example will help to explain the  procedure better.    Suppose 

node   a   with position   x',y'  has three links adjacent to it,  and that 

there are three lengths in the remainder of the layout,   say    I   ,   I   , 

and   I   .    We first try the assignments for which   p = 1.    There will be 

N = 3  of these: 

Link 
A 

(i) 
ssignment 

(ii) (Hi) 

1 S *2 <3 

2 
*1 <2 '3 

3 
*1 

l2 *S 

For each of the three assignments (i=l, 2, 3) we must solve the 

equations: 

[V(xk-x)2 + (yk-y)2 = *.; (k = L 2, 3)} 

Suppose,  then,  we obtained solutions for ail of these,   say respectively 

112       2 3       3 
(x   , y   ),   (x   ,  y   ),  and (x  ,  y   ).    We would then choose the assignment 

i   for which: 

V(x'- x1 )2 + (y'- y1 ) ^2 

was minimal,  and go on to the next node. 

If,   on the other hand,  no solution was found to any of the equa- 

tions for   p = 1,  we would have to try the   N =  18 assignments for 
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which   p = 2,  proceeding in the same way we did for   p = 1, to find the 

solution which changes the position of node   a   the least.    If we pro- 

ceed through   p =Min(m,n)   without finding any solutions, we leave 

the node at its original position and move on to the next node. 

For each node considered,   if at least one of the lengths of its 

adjacent links was unequal to any one of the   m   lengths of the remain- 

ing links,   and if a successful assignment has been found for this node, 

then we have improved the   measurement of consistency,   since the 

total number of link lengths will be decreased to   m.    In any other 

case,  in other words,  in the case that all the adjacent links originally 

had one of the   m   lengths,   or,  in the case that no successful assign- 

ment was found for the  node,  the measure of link length consistency 

remains the  same . 

This algorithm has not yet been implemented or experimented 

with.    Thus,   its performance and its pitfalls are not known.    For 

example,   perhaps we should also allow assignment of only some of 

the   n   links for a node,   leaving some fixed as they are.     Or perhaps, 

when the   n   links are already of equal length,  we should not change 

them.    One obvious problem is that for large   n   or   m   the number 

of trials for a given   p    becomes very large.     Figure 2-40 depicts an 

example of the application of the algorithm as it stands.    Figure 2-41 

shows a table of the steps performed for this layout.    The checked 

column indicates the one assignment chosen from those of the 
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(1.3,1.5) 
aH2,2.3) 

(0,0) 

(2,-2.3) 

(iii) 

Figure 2-40 

N which are successful, 
p, n, m 

An alternative approach to the problem of realizing link length 

consistency has been examined,   and an algorithm has been sketched 

out in Appendix 3.     This approach is more of a constructive algorithm 

(as defined in section 2. 2. 2) than the one given above,   although it 
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Resultant        Consist- 
Step Node n  m p Assignments Position ency 

(1) a=(1.3,   1.5)      2   3    1      a-b 4        .3    2      x = 2 3 
a-d 4 3   2      y = 2. 3 

figure 2-44   i x 2 2   2 
y        3.5      2.3   0 

(2) b = (4, 0) 2    11      b-a       3 x = 4 3 
b-d       3 y = 0 

figure 2-44 ii b-c       3 

}no solution 

(e)    c = (2.7, -1. 5)     2   2   1      c-b 4          3            x = 2                      3 
c-d 4          3            y = -2.3 

figure 2-44   ii                          x 2          2 
y 3.5 -2.3 

(4) d = (0, 0) 3    1    1      d-a        3 x = 0 2 
d-b        3 y = 0 

figure 2-44 iii d-c        3 

)no solution 

(5) a =(2, 2.3) 2   2    1      a-b 4 3 x = 2 2 
a-d 4 3 y = 2. 3 

figure 2-44  iii x 2 2 
y        3.5      2.3 

(6) b = (4, 0) 3    1    1      b-a        3 x = 4 2 
b-d        3 y = 0 

figure 2-44  iii b-c 3 

\ no solution 
y J 

(7) c =(2,-2.3) 2   2    1      c-b 4 3 x = 2 2 
c-d 4 3 y = -2. 3 

figure 2-44  iii x 2 2 
y      -3.5    -2.3 

Figure 2-41 
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uses some of the original layout,  and so should be classified as a 

modifying algorithm.    The idea behind it is to break the layout up into 

cycles of minimal length,   and to generate regular polygons for these 

cycles wherever possible.    It is guaranteed that the resultant layout 

* 
for   n   nodes will contain not more than   N        lengths.    The algorithm 

n 

sketched is quite complex and several problems still remain in its 

design. 

2.2.2.4   Fidelity 

In his paper Baecker has sketched a feasible approach to realiza- 

tion of higher fidelity in a layout.    In summary,   given a layout,   he 

suggests four heuristics,   the application of which should improve 

fidelity: 

1) Isolate "maximal dangling trees, " those non-cyclic components 

obtained by separating the graph only at articulation points      which lie 

on simple cycles. 

2) Move nodes of large degree in the direction of the vector sum 

of the links from this node,   taken in the direction away from this node. 

* .      .       ,T 1 + (n-2)/2   n even 
Agaxn,   Nn,   \1+(n_3)/z  R odd 

where   n   is the number of nodes and bend points. 

A node in a graph is called an articulation point if,   by deleting 
the links adjacent to this node,   the remainder of the graph is sepa- 
rated into two or more components. 
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3) Reduce intersections by local node transversal of links; 

for example, if all the links from one node cross some given link, 

move the node to the other side of the given link. 

4) Identify interesting subpatterns and manipulate them. 

This is the least specific of the heuristics,  and implies manipulations 

such as recognizing poorly placed whole subgraphs and repositioning 

them. 

Baecker has derived these heuristics from observing the 

manual manipulation of layout,   and finds them quite successful in 

improving fidelity.    He does not,   however,   attempt to put them in the 

form of an algorithm,   although this might easily be done for the first 

three heuristics. 

2. 2. 2. 5   Directional Consistency 

We will now move on to a discussion of the realization of 

directional consistency for directed layouts.    First we consider rea- 

lization of linear directional consistency as discussed in section 

2.2. 1.4.    A direct approach to the improvement of the measurement 

of linear directional consistency,   L,   might be accomplished by con- 

tinuously alternating the following two operations; first,   determine 

the most deviant link in the current layout,   and,   second,   rotate this 

link so that its direction is less deviant,   thus obtaining a new "current" 

layout.    A repetition of the following three steps would accomplish this: 
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1) Find the direction of the vector sum in the layout; if 

| V   |  = 0   choose the direction of any one of the links. 

2) Find the link not yet tried for this iteration for which the 

product of the link length times the angle at which it deviates from 

the direction chosen in step 1,   is the largest,   and call this link  i. 

If all links have been tried,   the realization process is terminated. 

3) Using the center point of link   i   as a pivotal point,   and 

keeping its length constant,   rotate the link and its two endpoints until 

it lies in the same direction as the direction chosen in step 1.    If this 

new position causes nodes to overlap over other nodes or links,  or, 

if the resultant   L   is not less than the previous   L,   return the link to 

its previous position and go back to step 2; otherwise the new posi- 

tion is kept,   and the iteration is complete. 

With each iteration through these three steps either we obtain 

an improvement in the measurement  L,   or the iteration process 

terminates.    We note that the overlap condition must always be 

checked since an optimal solution in some cases might be for some 

links to lie on top of others.    For example,  with the layout in figure 

2-42i an L  of one would be obtained if the links on the upper part of 

the layout and the links on the lower part of the layout were all placed 

along the line through the center of the layout,   in which case there 

would be overlap. 
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There are several problems inherent in this method which 

must be explored.    First is the problem of determining when a suffi- 

cient number of iterations have been performed.    Perhaps,   if we 

measure   L after each iteration,  we might terminate the iteration 

process when improvement begins to grow small,   although we have 

no guarantee that the improvement is a monotonically decreasing 

function.    Furthermore,  we do not know how to define  "small. " 

Second is the question of whether or not the optimal new posi- 

tion for a link   i,   chosen in step 2 of an iteration,   is in the direction 

chosen in step 1.    Perhaps some intermediate position between the 

old and the new direction might be more optimal and should be used. 

In an actual implementation of the algorithm,   this possibility should 

definitely be explored. 

A third question is whether,   in fact,   the most deviant link 

should be the one adjusted first in an iteration.     Certainly,   reorient- 

ing this link in the direction of   V      adds to the linear directional 

consistency,   L.    However,   other links,   namely those attached to the 

endpoints of the link  i  are also affected,   and their modification may 

detract from  L.     Considering this,   perhaps,   in step 3 we should, 

instead,   choose first the link whose movement would cause the great- 

est net improvement in  L.     Thus we would have to perform step 3 for 

each link in order to make our decision in step 2,   choosing to move 

that link with the greatest net increase in  L  for this iteration.    At 
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this point this approach seems quite time consuming.    The relative 

performance both in time and in quality of results of this modified 

method,   compared to the one originally described,   might be judged 

best by a comparison of their performance upon implementation. 

One further possibility should be mentioned,   that of allowing 

an iteration to decrease   L,   in anticipation of a later net increase. 

In other words,  by restricting ourselves only to modifications which 

increase   L, we may be restricting the possibility of improvement to 

a very localized range.    Whereas,  perhaps,  were we to allow   L   to 

be decreased in an iteration (and backtrack upon failure to obtain a 

net increase after a given number of iterations),  our final results 

might be improved.    This possibility should be examined further. 

An example of the method first described,  using four itera- 

tions,   is shown in figure 2-42.    The links chosen as link  i  in step 2 

are indicated with x's,  and the direction of the vector,   V  ,  is indi- 
s 

cated by the arrow under each layout. 

A similar tack might be taken with the realization of radial 

and circular directional consistency.    However,   in these cases 

step 1 need not be performed,   since the direction to be maximized is 

always predetermined,   in other words,   radially outward or inward, 

or circularly clockwise or counterclockwise.    It is also necessary 

that,   for the complete series of iterations,   a fixed center be chosen 

with respect to which radial or circular movement is to be maximized. 
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L = .85 

(iv) 

Figure 2-42 

For example,   optimization of the radial outward (or inward) measure- 

ment might proceed by several iterations of the following steps: 

1) Find the link not yet tried for this iteration for which the 

product of the link length times the angle between the link and the 

radially outward (or inward) vector from (or to) the fixed center to 

(or from) the midpoint of the link is largest.    Call this link  i.    If all 

links have been tried,   the realization process is terminated. 

2) Using the center of link  i  as a pivotal point,   rotate the 

link until it lies in the direction of the radially outward (or inward) 

vector.    If the resultant measurement of outward (or inward) radial- 

ity,   R    (or R.) is not improved,   or if the new node positions cause 
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overlap,   return the link to its original position,  and go back to step 1; 

otherwise,  the new position is kept,  and the iteration is complete. 

Similarly,   for circular movement,   in step 1 we look for the 

link which deviates the most from the directed tangent at the link 

center point to a circle with the fixed center as its center.    And in 

step 2,  we rotate such a link until it is oriented in the direction of the 

tangent. 

Examples of these two realization methods are shown in fig- 

ures 2-43 and 2-44.    Figure 2-43 shows a series of two iterations to 

improve  R  ,   and figure 2-44,   to improve   C    .    Lozenges indicate the 

chosen fixed centers.    The discussion of the problems relating to the 

method given for realization of linear directional consistency also 

applies here. 

R    = .75 
o 

(ii) (iii) 

Figure 2-43 
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Figure 2-44 

As a final note in the discussion of directional consistency we 

mention that several algorithms have been developed for the linear 

case.    These methods,   such as the one developed by Di Giulio and 

Tuan (12) which were intended for the layout of directed networks, 

attempt to place elements so that,   if one element feeds another,   the 

first lies consistently to one horizontal side of the second (say,   to 

the left).    The vertical coordinates are then chosen so that intersec- 

tions are minimized.    These algorithms are not actually concerned 

with the measure  L,   as we are,   but the results tend to produce 

similar effects. 

2. 2. 2. 6    Minimum Number of Bends 

The next quality to be considered for realization is the num- 

ber of bends in a layout.    As mentioned above,   Fary has proven that 

every planar graph without self-loops and parallel links may be 

drawn without bends.    A constructive realization algorithm may be 
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derived from his proof.    This algorithm is recursive in that it finds a 

bend-free layout for the subparts of the original underlying graph 

before it can build the final layout for the whole graph.    It is described 

and illustrated briefly below.       The steps mentioned are guaranteed to 

be possible as a result of Fary's proof.    Given a layout,  G,   to obtain 

a straight line (bend-free) representation,   S(G): 

A) Form a triangulated version of G,   G',   and go to step B. 

A triangulated version of a layout,  G,   is that layout with enough links 

added so that every region is bounded by exactly three links. 

B) If   G'  has three nodes,   form an equilateral triangle of the 

nodes,   call it  S(G')   and go to step C.    If   G'  has more than three 

nodes,   pick an interior node,   n,   of maximal degree,   m,   and label 

the nodes adjacent to it in clockwise order of links as   n,, . .. , n    . 
1 m 

If there is a node   n.,   2 < i < m,   such that n.n,    is in   G',  perform 
1 l   1 

(2) below; else,  perform (1) below: 

(1)   Form   G '  from   G' without node   n and its links. 

Find   S(G ')   (i. e. ,  apply this algorithm to G ').    S(G')   is then 

S(G') with node  n and its links placed inside the region 

bounded by the circuit containing links   n.n  , n_n0,..., n    n , 
1   c      2   5 ml 

Although the algorithm uses a layout as its input,   this layout 
is essentially ignored in the resultant layout.    Hence,   the algorithm 
is considered to be a constructive realization algorithm. 
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so that no link adjacent to node   n    intersects with any of the 

links   n.n        (i = 1, .. . , m - 1); go to step C. 

(2)   Form two layouts: 

(i)   G'   ,   including the cycle   n n, nn., n.n1    and all 

links and nodes inside this cycle in G'.    Find   S(G/   )    (i. e. , 
1 

apply this algorithm to   G' ). 
1 

(ii)   G/   ,   including the cycle   n n, nn., n.n     and all 

links and nodes outside this cycle in   G'.    Find   S(G/   )   (i.e., 
2 

apply this algorithm to   G '  ). 
2 

S(G')    is the result of placing the interior of   S(G'  )    inside 
1 

the region   n  n, nn., n.n      in   S(G'   ).    Go to step C. 
1 l      l   1 12 

C)    S(G)   is   S(G')  with the links added in step A removed. 

Processing is then complete for   S(G). 

An illustration is given in figure 2-45.    Relevant steps are 

noted in parentheses.    The superscript stars act as left parentheses 

and the subscript stars as right parentheses in the recursion. 

This algorithm works well with those layouts whose under- 

lying graphs are planar,   in the case that the user prefers a construe 

tive algorithm.    However,   it seems wise to also explore the possi- 

bility of defining a modifying algorithm which may be applied to all 

layouts.    Let us try to describe such an algorithm. 

For each bend point in the layout,   in turn,   examine the two 

points (either nodes or other bend points) adjacent to this bend point. 
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1        3 
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(G; )'  (B) 
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i 

((Gj'   )[)'    (A) 

S((G'  )  )'  (B) 
1 

S((G; )'.) (c). 
li 1 

S(G; )'  (B) 
I 

S(G'  )   (C). 

G'     (B2ii) 
2 

(G/  )'    (Bl) 
2 

Figure 2-45 
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((G; )',)'   (A) 
2 

((G; )')' (B) 
2 

((G; )')' (BI)'   (((G; )')')' (A) 
2 2 

S((((G'  )')')') (B) S(((G'  )[)[) (C)^ S(((G{  )')'    (B)   S((G{  )[)   (C)i 

2 2 2 2 

S((G.'   )')   (Bl)       S(G/   )   (CK 
l2 h 

S(G')   (B) S(G)   (C) 

Figure 2-45   (continued) 

Call these adjacent points   a   and   b.    If a straight line can be drawn 

from   a   to   b   without intersecting any link segment or node,     it is 

drawn,  and this bend point is removed.    However,   if some obstruc- 

tion exists between   a   and   b,   it must be removed,  before we can 
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draw a straight line between   a   and   b   to remove this bend. 

It is here that we run into difficulty.    The removal of such an 

obstruction involves a modification of node (and possibly other bend 

point) positions of the layout,  and may be done in several ways.    We 

may somehow move one or both of the two points,   a   and   b,   or we 

may move other points from one side of the line   a, b   to the other in 

some manner.    The problem here is that for different cases,   the 

manner of modification should be different,   and it is difficult to 

determine automatically what type of movement is appropriate in a 

given case. 

For example,   in figure 2-46a,   it is quite clear that   a   and   b 

should be moved to the left,  whereas,   in figures 2-46b and 2-46c, 

we should move nodes other than   a   and   b,   in one case to the right 

m z*n 
(a) (b) 

-• a 

7Mk 
-•b *b 

(c) 

Figure 2-46 
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of (a,b),  and,   in the other,  both ways.    Thus we have the dilemma of 

determining for each case,  what type of modification is best suited to 

the layout.    Furthermore,   it is not even clear that we should treat 

bends one at a time.    In 2-46c,  for example,  we have similar condi- 

tions for both bends,  and processing them simultaneously would be 

wise. 

This discussion leads us to the conclusion that,   in fact,   the 

best modifying approach to bend point removal is manual,   rather than 

automatic.    This is supported by the fact that,  unlike realization 

processes for most other qualities,   that for bend removal is quite 

easy for the user to accomplish manually.    There is no measure to be 

taken except the counting of bends,  and all effects are visual.    In 

anticipation of this conclusion,   the MOD system,   as will be seen in 

section 2. 3,   has been designed so that addition and removal of bend 

points is a simple operation.    Thus,   again we choose to depend on 

the interactive nature of the environment in which we are working, 

rather than developing a complex algorithm to perform a relatively 

simple task. 

2.2.2.7   Minimum Number of Intersections 

The next problem to be discussed,   the minimization of the 

number of intersections in a layout,   is one which has been studied 

for many years and is considered to be a key problem in the 
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automatic generation of printed circuit layouts.    As a result,   many 

constructive algorithms have been proposed,   as well as what we shall 

call semi-constructive algorithms,   those for which node positions 

are prespecified,  and link paths are to be generated. 

Underlying many of these semi-constructive algorithms we 

find the basic idea developed by Lee (24),   of finding paths for wires 

(links) given element (node) positions and the positions of other wires. 

This approach performs a search which finds the optimal path accord- 

ing to any criterion prespecified by the user.    With this method paths 

are found for the wires one at a time.    Breuer (9) notes that the order 

in which wires are placed with this method affects the results and lay- 

out.   Vincent-Carrefaur (37) skirts this problem by proposing that all 

wire paths be generated simultaneously.    In section 3.2. 2. 5 these 

ideas will be elaborated further,   along with other methods for mini- 

mizing intersections which were developed for the purpose of auto- 

matic circuit layout. 

However,  we would now like to consider a modifying algorithm 

aimed at achieving fewer intersections in a layout,  while changing as 

little as possible.    A seven-step algorithm which accomplishes this 

is given below.    The main idea of the algorithm is to move nodes 

from one region to another in order to minimize the   number of inter- 

sections.    Nodes are considered one at a time,   and are placed in a 

region of the layout which minimizes the number of intersections in 
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which the links adjacent to that node are involved.    Once a node has 

been moved in such a way that the number of intersections is reduced, 

the algorithm is restarted.    If all nodes are tried and no improvement 

found,   the algorithm terminates. 

A large part of the algorithm is concerned with determining 

the order in which nodes should be considered.    Nodes which involve 

the largest number of intersections are considered first.    Initially 

we only allow moves which remove all the intersections a node is 

involved in.    If no such move is possible for any of the nodes,  we 

then try moves which remove all but one intersection for a node.    If 

this fails,  we allow two intersections,   and so forth.    This process is 

controlled with a counter,   I,   in the algorithm. 

The algorithm is then as follows,   given a layout,   L: 

1) For each node   n,   find the number of intersections there 

are involving links adjacent to  n,   and call this number   I   .    Call the 
n 

degree of node   n,   D   .    Go to step 2. 

2) Form an ordered list of nodes as follows: 

If   I      > I       then   n. precedes    n. .      If   I      =1       and 
n. n. l j n.        n. 
i J i J 

D      < D      ,   then   n.    precedes    n..    If   I      =1       and   D      = D     ,   then 
n. n. l j n.        n. n. n. 
i J i J i J 

order is arbitrary for the two.    Call this list NODES.     Set 1 = 0,  and 

go to step 3. 
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3) Remove all nodes,   n. ,   from NODES for which   I      si. 
1 n. 

1 

Go to step 4. 

4) If NODES is empty,   terminate the algorithm with   L  as the 

resultant layout; otherwise,   mark all nodes in NODES unprocessed, 

and go to step 5. 

5) If all nodes in NODES have been processed,   add one to   I 

and go to step 3; otherwise,   go to step 6. 

6) Take the first unprocessed node in the list NODES,   call 

it   n.    and mark it as processed.    Form a set called CONNECT of 
l 

nodes to which   n.    is adjacent.    Remove    n.    and all connected links 
l J l 

from    L.     Make temporary nodes of all remaining points of inter- 

section,   and call this new layout   L/,    Go to step 7. 

7) (a)    Look for a region   R   of   L/   (the infinite region should 

also be considered,   i.e.   that surrounding the whole layout),   for 

which   D     -I  nodes of CONNECT lie on its boimdary,   and for which 
n. 

I 

if node    n.   were placed inside   R,   each of the nodes of CONNECT, 

p,   not on the boundary,   may be joined to    n.    with exactly one inter- 

section resulting from the connection (i. e.   they lie on the boundaries 

of regions adjacent to the region,   R). 

(b)    If such an   R    is not found,   restore the layout to    L 

and go to step 5.    If such an   R   is found,   remove the temporary 

nodes,   place    n.    in   R,   and draw the links as specified above (bends 

are allowed).    The result is the new layout   L.    Go to step 1. 
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A few comments on the algorithm will be helpful.    Each time 

the algorithm returns to step 1,   a reduction has been made in the 

number of intersections.    Since there is a lower limit for this number 

for every graph,   the algorithm always terminates.    As mentioned 

above,  the counter   I   indicates how many intersections are allowed 

in finding a new position for the node   n.   under consideration in step 

6-7.    In the first iteration of a pass through the algorithm   I   is zero, 

indicating that we will only move a node to a new position when a 

position can be found which makes all the links of the node intersec- 

tion free.    If no position can be found for any of the nodes under this 

condition,  we have another iteration in which we allow positions 

which remove all but one intersection for a node,   etc.    When   I   is 

large enough so that we are removing no intersections for a given 

node,  we no longer consider that node (step 3).    When no nodes 

remain to be considered,   due to the size of  I,   the process is ter- 

minated. 

The question remains as to whether or not this process finds 

the minimum number of intersections for the graph underlying the 

given layout.    We make no attempt here to prove or even to claim 

such results from this algorithm.    Such a claim would be extremely 

difficult to prove,   since,   even at the present time,   expressions and 

methods to find such minima are quite complex or non-existent.    We 

can only guarantee that for each pass through the algorithm either the 
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number of intersections is reduced or the algorithm terminates. 

The example shown in figure 2-47 illustrates the process. 

Each line is to be read from left to right.    The pairs (I , D )   are 
n      n 

shown adjacent to the nodes where appropriate.    Single numbers give 

positions in the list NODES.    Nodes drawn as empty circles indicate 

that they are members of CONNECT,  and nodes shown as lozenges 

are temporary nodes.    Regions which satisfy the conditions in step 7 

are indicated by  R's.    New layouts are shown only when changes 

warrant it.    When a node number is slashed it has been processed, 

otherwise it is considered unprocessed. 

An alternative and more complex procedure exists for step 7, 
which produces more possibilities for the placement of a node   nj 
with   Dn.   links,  and I intersections.    Some of these possibilities 
are not considered in the algorithm as written,  but may turn out to 
be necessary for guaranteeing a minimal result.    In order to include 
these possibilities,   step 7a would proceed as follows: 

(7a)   Look for a region   R   of   1/  (the infinite region included) 
for which if we placed   n^   in   R,   the integers   aQ, .. . , aj   satisfy the 
following conditions: 

l) Z     ak 
= D

n k = 0    k       ni 

2) £    kak = 
k = 0 

3) a„   nodes of CONNECT lie on the boundary of R. 
0 ' l 

4) For each of   a^ (k = 1, . . . ,   I) nodes of connect,   n, 
a minimum of   k   intersections are required to connect   n^   and   n. 
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(6,3)   (6,3)   (6,3)        1 2 3 n = 1, D     =3 

(3,3)   (3,3) 

(2,3 

step 7b,5 

n. =3, D      = 3 

P 
L' 

step 6,7a 

(0,3) 

1 = 0 
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1 = 1 

Figure 2-47  (continued) 
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2. 2. 2. 8   Minimum Link Length 

The problem of decreasing total link length has also been of 

concern to the developers of methods for automatic circuit layout. 

Thus many algorithms,   both constructive and modifying have been 

devised and are discussed in section 3. 2. 2. 5.    Among them Lee's 

algorithm mentioned above as a semi-constructive algorithm may be 

used for this purpose. 

However,   another algorithm,   developed by Steinberg (33) 

meets the requirements of a modifying algorithm for minimization 

of link length quite well.    The details of this algorithm are given in 

section 3. 2. 2. 5.    In summary,   Steinberg's method finds a group of 

unconnected nodes,   removes them from the layout,   and then reposi- 

tions these nodes in a manner which minimizes the total length of 

the links to which they are adjacent.     Each set of unconnected nodes 

is processed,   in turn,   in this manner until no more improvement 

can be made.     Variations and improvements on this scheme have 

been considered by Rutman (32). 

2. 2. 2. 9   Parallelism 

Next we consider methods to minimize the number of differ- 

ent link slopes in a layout (or to increase parallelism). One trivial 

solution might be to redraw all the links as series of horizontal and 

vertical segments,  wherever possible.    This method would guarantee 
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to yield the minimum number of slopes for a layout,  but it may 

require the introduction of several bend points,   and does not conform 

with our idea of changing the layout as little as possible. 

A more reasonable modifying algorithm is given in Appendix 4. 

It is not included in the text due to its length.    The idea of this algor- 

ithm is to first place all of the link segments into sets.    Once these 

sets of link segments have been formed,   the link segments in each 

set are adjusted so that they are parallel to one another where pos- 

sible.    As the algorithm is now written,   originally parallel link seg- 

ments remain parallel.    Again,  the algorithm appears in Appendix 4, 

along with a discussion,  and an example of its use. 

2. 2. 2. 10   Horizontal-Vertical Orientation 

The final quality to be considered for realization is that of 

horizontal-vertical link segment orientation.    A method which accom- 

plishes this by reorientation of the links in these two directions has 

been implemented in the MOD system and is described in section 

2. 3. 3 as a series of two commands,   merge   c  and merge   r. 

In summary,  we have considered the measurement and rea- 

lization of many of the qualities discussed in section 2. 1.    Realization 

algorithms were developed which,   for the most part,  are intended for 

implementation in an interactive graph building and layout environ- 

ment such as that described in the next section.     Discussion of 
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algorithms for a few of the qualities was delayed until section 2. 3. 3, 

since these algorithms have already been implemented in the MOD 

output system. 

2. 3 THE MOD SYSTEM 

The MOD system was developed to provide an interactive 

graphics environment for experimentation with various layout types 

and layout algorithms.    It has been implemented on a PDP-1 with 6k 

of 18-bit core along with a drum,   a teletype,   and paper tape I/O. 

Peripheral equipment used included a typewriter,   a dectape unit,   a 

Calcomp plotter,   a refreshing CRT,   and a Rand tablet. 

The system was designed in three parts:   Mod Input,   Mod 

Framemaker,   and Mod Output.    Mod Input allows the user to draw 

and modify graph layouts of several types,   to store these on paper 

tape,   and plot them on a Calcomp plotter.    Graph layouts previously 

drawn and stored on paper tape may be read into MOD Input and 

processed again.     The MOD Framemaker is  similar to MOD Input, 

except that no Calcomp output is possible.    Instead,  a facility has 

been provided with which the user may store sequences of graph lay- 

outs (frames) on dectape or temporarily on the drum.     These se- 

quences may later be replayed or modified through the Framemaker. 

The motivation for this  system was to provide a facility for making 

films or videotapes using the results of the rest of the MOD system. 

108 



The third part,   MOD Output,  was intended for experimenta- 

tion with layout algorithms such as those described in section 2. 2. 2. 

Graph layouts may be read in on paper tape,  but their structure may 

not be modified.    The only changes allowed are those involving the 

layout of the given graph.     Again,   the output may be either paper 

tape or Calcomp plotter. 

The following three subsections describe in more detail how 

these three systems are used.    Further details on the structure of 

the system may be found in Appendix 5.    The last of the subsections 

also includes a more detailed discussion of the layout algorithms 

implemented in the MOD system at the present time. 

2. 3. 1     The Input System 

The MOD Input system provides a means for inputing various 

types of graph layouts.    The user first selects the kind of graph lay- 

out he wishes to draw,  and then proceeds to draw graph layouts of 

this type.    He may output the graph layouts either on paper tape or 

on the Calcomp plotter. 

Upon starting,   the system types out the options from which a 

user must select a graph layout type.    The options are: 

1. a)   directed 
b)   undirected 

2. a)   net 
b)   graph 

3. a)   adp's 
b)   none 
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4. a) ep's 
b) none 

5. a) shapes 
b) standard 

6. a) define shapes 
b) no 

7. a) functions 
b) none 

Option 1 is clear.    Option 2 allows the user to specify that 

either 

a) links may branch,   or 

b) links may not branch. 

Option 3 specifies that the nodes in the graph layouts to be drawn 

may include,   in their definition,   certain points from which links or 

arcs may originate (arc departure points,  ADP's).    Normally,  a 

link leaves a node from its center point,   with that portion of the link 

which lies inside the node removed from the graph layout.    When 

ADP's are specified for a node,   the user may draw a link either 

from an ADP or from the center of the node.    Option 4 provides for 

arc entry points (EP's) which are similar in nature to ADP's,   except 

that they specify points on nodes at which links may terminate. 

Again,   the center point may be used for termination. 

Option 5 allows the user to choose between using one standard 

node shape,   provided by the system (a square),   or  several shapes, 

either defined by the user or read in on paper tape (N. B. ,   this last 

facility has not yet been implemented).    Option 6  specifies whether 
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the user is to define these shapes or read them in.    Option 7 provides 

the user the ability when he is defining shapes to associate a number 

with each shape he defines,  which will be stored with that shape. 

Note that 6a may only be used if 5a was specified.    The 

sequence 5a,   6b implies a facility not yet available.    Option 7a may 

only be chosen if 6a was chosen. 

Upon completion of the option specification,  the main frame 

for MOD Input appears on the scope.    From this point on,  the system 

is controlled,   for the most part,  with the Rand tablet.    The main 

frame is shown in figure 2-48.    Pen position is shown by a small 

" + " on the scope. 

If the user has chosen to use the standard node shape,   this 

shape will appear at the top of the right hand column.    In this case 

the words  "page" and "define" will not appear in the menu at the 

bottom of the main frame.    On the other hand,   if he chooses to define 

node shapes,  those he has defined will appear in this column.    If 

there are too many shapes to fit into this space,  pointing to "page" 

will cause another group of defined shapes to appear. 

At this point in the use of MOD there is a current shape. 

Initially,   this is null.    To make a shape current,   the user must point 

to its prototype in the right hand column. 

To define shapes,   the user points to "define. "   The main 

frame is replaced by the define frame (see figure 2-49).    All shapes 
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already defined and filed appear to the left in this frame.    To define 

a new shape,   the user first points to "line. "   As long as  "line" 

remains illuminated,   he may draw lines in the box on the right of the 

define frame,   and these will be recorded as part of his shape defini- 

tion.    Each line must begin and end inside the box.    To begin a line 

the pen is pressed down; the line ends when the pen is lifted.    If a 

line is begun inside the box but the pen is taken out of the box before 

the line is completed,   no line is remembered,   but the word "line" 

remains illuminated. 

If functions have been specified (Option 7) the word "function" 

appears in the define frame menu. Pointing to function causes the 

typewriter to output "type two numbers. " The user must respond by 

typing two digits between 0 and 7, which then become the function 

name for the shape he is defining. He may change the function name 

by simply repeating this procedure. Initially the function name for a 

shape is "00. " 

If ADP's (Option 3) have been specified,   the word "adp" 

appears.     Pointing to "adp" causes this word to illuminate.    The 

user may then put the pen down any place within the box.     Each time 

he puts the pen down,   he specifies another ADP for the shape he is 

defining.    He may include as many as he likes,   or none.    For each 

ADP specified,   a small "x" appears in the shape. 

Similarly,   when EP's (Option 4) are chosen,   the word "ep" 
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appears in the define frame.     "Ep" functions in the same manner as 

"adp" except that for each point specified,  a small "o" appears which 

functions as an EP for the shape. 

To turn off "line, " "adp, " or "ep, " the user simply puts the 

pen down anywhere outside the small box (for example,   on any other 

label).    When no label is illuminated,  the user may point inside the 

box to erase part of its contents.    This is called scrubbing.    To 

erase ADP's or EP's he presses the pen down on these points; to 

erase lines,   he points to their beginning points. 

When a shape definition is completed,   it must be filed to be 

remembered.    This is done by pointing to the word "file. "   The shape 

in the box,  along with its function,   if it has one,  will then appear in 

the list of defined shapes on the left. 

To erase the contents of the box completely,  whether or not 

the shape has been filed,   the user points to "remove. "   It is impor- 

tant that he remember to file a shape he wishes to retain,   before 

removing it. 

To change or remove a shape which has already been filed, 

the user first points to  "edit, " which illuminates,   and then to the 

shape on the left he wishes to edit.    Pointing elsewhere will simply 

turn off the edit light.     The shape then appears inside the box and is 

removed from the list of defined shapes.    Any changes may be made 

to the shape by using "line," 'adp, " "ep, " "function, " "copy" (to be 
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explained below),   or by scrubbing.    When the edited shape is refiled, 

each occurrence of the shape is changed in the graph layout of the 

main frame,   if any appear there,  but all links to and from any occur- 

rence of this shape are removed.    However,   if,  when editing a shape, 

"remove" is pressed,   the shape edited is considered deleted and will 

totally disappear from the layout in the main frame. 

Any filed shape may be copied for modification and filing as 

another shape definition.     This is done by pressing "copy, " which 

illuminates,   and then pointing to the defined shape to be copied. 

Pointing elsewhere will simply turn off the copy light.    A copy of the 

specified shape will appear in the box.    The user may then continue 

any way he likes. 

When all defining is done,   the user presses  "input" to retrieve 

the main frame.    All shapes he has defined and filed,   or edited and 

filed will appear in the right hand column along with old,  unedited 

shapes.    He may define shapes again at any point during the session. 

A graph layout is drawn inside the box in the main frame. 

Nodes are obtained by drawing an x at the position desired.    A node 

with the current shape will appear.    Links consist of a series of 

straight line segments.     The points at which these segments connect 

to one another in a link are called pins (or bends).     To draw a link, 

the user puts the pen down in the center of a node or at an ADP, 

wherever he wishes the link to begin; then,   keeping the pen down,   he 
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draws the first line segment,  and lifts the pen up.    If he ends at a 

node (or EP) the link is considered completed.    Otherwise,   he must 

draw the next line segment of the link beginning at the end of the last 

line segment.    This process continues until he ends a segment at a 

node or EP.    A link of one segment cannot begin and end at the same 

node.    Any incorrectly drawn links will disappear immediately. 

Should the user wish to copy or move any portion of the graph 

layout he has drawn,   he may draw a closed shape around that portion. 

A closed shape must end close to the point at which it began.    To move 

that part of the graph layout,   he then points inside the closed shape. 

By keeping the pen down he maintains a handle on the enclosed por- 

tion of the graph layout,   and,  as he moves the pen,   this portion will 

move with it.    When the pen is lifted,   the move operations ends. 

Any nodes and pins enclosed may be moved in this manner. 

To copy a portion of the graph layout,   the user again encircles 

that part,  but then points outside the closed shape,  keeping the pen 

down.    The copy soon appears,   and,   as in the move operation,  as 

long as the pen is down,   the user may move the copy anywhere in the 

box.    Upon lifting the pen,   the copy remains stationary.  The copy of the 

portion of the   graph  layout enclosed contains all nodes and pins of 

that portion (but not their names),   and all link segments whose begin- 

ning and end points are on nodes or pins in that portion. 

The user may also remove an element of the graph layout by 
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scrubbing it.    A scrub consists of drawing in an erasure motion on 

the object to be scrubbed.    Scrubbing a node causes the node and all 

attached links to disappear.    To remove a link,   its visible origin 

must be scrubbed.    When a pin is scrubbed,   it disappears,   and the 

two line segments it connects become one. 

It must be noted that with the five previous operations,   all of 

which are initiated by drawing instead of pointing,   the pen movement 

is "inked" (traced with small dots).    When the operation is recog- 

nized by the system,   the inking disappears.    If the effects of the 

operation are not seen reasonably quickly,   it means that the pen 

movement was incorrect and did not initiate the operation which was 

intended.    The operation must then be repeated. 

The whole graph layout may be moved to the right,   left,  up, 

or down by pressing " +x, " " -x, " " +y, " or " -y, " respectively.    The 

graph layout may be enlarged by pressing  "+z"  or made smaller by 

pressing " -z. "   Nodes may be made only as small as their size when 

they were originally defined. 

The number of pins in a link may be increased by going into 

pin mode.    This is accomplished by pressing "pin. "   When in pin 

mode,   the user may point to any existing pin,   or any link beginning. 

Keeping the pen down,   he then has a handle on a newly created pin for 

this link,  which he may move around as long as he keeps the pen 

down.    This may be done any number of times in pin mode.     To leave 
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pin mode,  the user need only put the pen down anywhere else outside 

the square of the main frame. 

When "name" is pressed,  the user is in name mode.    Any 

node he points to will cause the typewriter to carriage return.    The 

user must respond by typing a six or fewer character name made up 

of alphabetics,   numbers,   space,   "+, " and   "-'•; he indicates the end 

of a name with a carriage return.    The name will then appear on this 

node.    To leave the name mode,   again the user points anywhere out- 

side the square.    The user may make the name characters larger by 

keeping sense switch 3 up. 

To erase the whole graph layout,   the user may press "erase. " 

At this point the typewriter outputs: 

New options 

a) yes 
b) no 

If the user then types "a, " MOD Input is reinitialized.    If he types 

"b, " the typewriter outputs: 

Keep shapes 

a) yes 
b) no 

If the user then types "a, " all the defined shapes as well as the graph 

layout are removed,   otherwise only the graph layout disappears. 

If the user has specified net (Option 2) then the word "net" 

appears in the main frame menu.     "Net" is pressed and used as if 
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it were a defined shape.    However,   nodes produced when net is the 

current shape (net nodes) have some special properties.    They only 

appear when net is the current shape,   and then they appear as small 

triangles.    When directed links are used,   no arrowhead appears on 

links ending at net nodes.    These are the only such nodes.    Net nodes 

may have no ADP's or EP's.    Net may be removed from current 

shape status by simply pointing anywhere in the right hand column 

above the word "net. "   At this point all the triangles for net nodes 

disappear,   although the nodes still exist.     The intent of including net 

nodes is to allow for drawing links which branch.    Net nodes provide 

an intermediary point for branching.    Net nodes may also be used for 

placing labels on graphs in a convenient manner,   since net nodes may 

be given names,   and the names will remain even when the net node 

is not visible. 

Three other labels appear in the main frame menu.     These 

are used for input and output of graph layouts.     Pressing  "output" 

initiates the Calcomp drawing of the graph in the box of the main 

frame,   and a drawing of the list of defined shapes if there are any. 

Pressing "file" initiates the output of the graph layout,   pres- 

ent options,   and defined shapes on a paper tape.    This is in a form 

which may be input later to any of the three MOD systems.     To input 

such a tape in MOD Input,   the tape must be loaded in the paper-tape 

reader,   the reader turned on,   and "edit" pressed.    When a tape is 
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read in,  any previous graph layout,   defined shapes,  and options are 

lost,  and those on the tape become current. 

2. 3. 2    The Framemaker System 

The MOD Framemaker is a variation of MOD Input which 

allows the storing,   editing,  and playing of sequences of graph layouts 

(referred to now as frames).    The only difference in the two systems 

is in the output command.    Output no longer initiates Calcomp draw- 

ing; its new effects are described below.    The main frame for the 

Framemaker is the same as figure 2-48. 

Sequences of frames may now be created on the drum, and 

quickly replayed on the scope. These sequences may be output on 

dectape and saved for later read in to the drum. 

To initiate any frame operation the user points to "output" on 

the scope.    A carriage return will be typed.    Then,  any of the follow- 

ing may be typed,   ending with a carriage return: 

"id" - initializes the drum for storage of frames.    Before 

any frames may be stored or retrieved,   either the drum must be 

initialized,   or,  a dectape must be read in which has been previously 

output from the Framemaker.    The current frame pointer (CFP) is 

initialized to block zero. 

"td" - reads a previously output dectape onto the drum and 

sets the CFP to the first frame of this tape,   displaying this frame. 
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If there are no frames in the sequence,   the CFP points to block 

zero. 

"dt" - outputs the drum frames onto tape,   renumbering the 

frames so that they are numbered in their sequential order.    This 

operation should not be attempted until the drum has been either id'd 

or td'd. 

"m(-)xxx" - moves the CFP up or down in the sequence   xxx 

(octal) frames and displays the new current frame.    If  xxx  is large 

enough to go beyond the limits of the sequence,   the last or first 

frame of the sequence will become the current one,   depending on the 

direction of the move. 

"s xxx" - moves the CFP to block xxx . There are 377 
o o 

blocks numbered from 1 through 377    ,   and each frame occupies one 
o 

block.    If xxx is not a frame,   an error message is printed out and 

the old CFP is kept.    If  xxx  is a frame,   it is displayed. 

"i (xxx)" - records the graph layout now on the scope as a 

frame and inserts it in the frame sequence directly after that pointed 

by the CFP,   or after that frame mentioned,   if a number is given. 

The CFP is then updated to point to this new frame. 

"d" - deletes from the sequence that frame pointed to by the 

CFP.     The CFP is moved to the previous frame in the sequence,   or, 

if no previous frame exits,   to the next frame in the sequence. 
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"p" - starting with the frame pointed to by the CFP,   succeed- 

ing frames of the sequence are placed on the screen for a period of 

time proportional to the number appearing in the test word on the 

console of the computer.    This process is halted by setting sense 

switch 1 up or by reaching the end of the frame sequence.    The test 

word may be changed at any time during this procedure.    The CFP 

is updated to coincide with the picture appearing on the screen. 

If the operations "m, " "s, " "d, " or "p" are attempted when 

CFP = 0,   or when there are no frames,   an error message is printed 

out and the operation has no effect.    Printout also occurs when the 

drum is initializing or when the CFP is updated.    In the first case, 

the word "initializing" is printed.    In the second,   the number of the 

current frame is printed.    The printout of frame numbers may be 

suppressed by setting sense switch 2 on.    It is important to remember 

that the picture which appears on the screen may not be the same as 

the current frame,  for,  the user may modify what appears on the 

screen. 

2. 3. 3    The Output System 

The purpose of the MOD Output system is to experiment with 

layout algorithms for graph layouts drawn with MOD Input or Frame- 

maker.    Upon starting,  the system displays the main frame shown in 

figure 2-50.    The system allows commands which change the layout 
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Figure 2-50 
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of graphs,  but excludes those which change the content of the graphs 

underlying the graph layouts.    The following MOD Input commands 

are included in MOD Output,   and function in the same way as for 

MOD Input: 

+x,   -x 

+y» -y 
+z,   -z 
input (same as edit) 
output (same as file) 
pin 

The draw command is similar to the output command in MOD 

except that only the graph layout is drawn.    The defined shapes are 

not drawn.    Neither do the defined shapes appear in the right hand 

column of the main frame of MOD Output. 

The net command has been modified and now only controls 

the appearance of net nodes.    To turn net off in MOD Output one 

points at any empty space outside the main frame box.    Note that in 

order to obtain a graph layout on the screen,  the input command must 

be given and a paper tape read in. 

The edit command has not yet been implemented.    It is 

intended to cause the read in of editing commands (perhaps on paper 

tape) for modification of the contents of the graph underlying the lay- 

out appearing on the screen.    The form and function of these com- 

mands has yet to be decided upon.    The remainder of the commands 

to MOD Output are intended for layout improvement.    At present 
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there are three operations for this purpose,   pretty,   merge c,  and 

merge r.    These provide some facility for improving a graph layout. 

It is hoped that this list will be expanded in the future. 

The pretty command is used to align nodes into rows and 

columns as mentioned in section 2. 2. 2. 2.    It has several options. 

Upon pressing "pretty, " the following is typed out: 

pins? 

a) yes 
b) no 

If the user desires pins to be included in the aligning,   along with 

nodes,   he types "a, " otherwise he types "b. "   This is followed by: 

net nodes? 

a) yes 
b) no 

The user types "a" if net nodes are to be included and "b" if they are 

not.    It is suggested that the user experiment first with aligning regu- 

lar nodes only.    The next message is: 

sspace = 

The user must type an octal number which is the distance in scope 

2 
units (the scope is  1024  ) within which two rows or columns of nodes 

are considered to be the same and may thus be aligned into one.     The 

user must respond with a positive octal number (20    or thereabouts 
o 

is suggested) followed by a space.    The next message is: 
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space rows? 

a) yes 
b) no 

The user types "a" if he wishes the rows and columns formed to be 

equidistantly spaced and "b" otherwise.    It is suggested that this not 

be done unless net nodes and pins are also aligned,   since there is a 

great deal of node movement when rows and columns are spaced 

equidistantly.    If his answer was  "b" the option specification is ended. 

If he typed "a" the typewriter responds with: 

rspace = 

Again the user responds with a positive octal number ending with a 

space.    This number represents the distance in scope units between 

rows and columns (100    is suggested).    The pretty operation is then 
o 

executed according to the options specified. 

The algorithm used to accomplish the first part of the pretty 

operation,   the aligning of nodes into rows and columns,  proceeds by 

repeating the following four steps,   once for x-coordinates and once 

for y-coordinates: 

1) Make a list,   POINTS,   of all points; if pins or net points 

are to be processed,   they should be included; otherwise,   the list 

consists only of nodes.    Go to step 2. 

2) If POINTS is empty,   terminate.    Otherwise,   choose an 

element of POINTS,   call it N,   and remove it from POINTS.    Set the 

list SAME to null,   and go to step 3. 
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3) If POINTS is null,   go to step 4.    Otherwise,   look for an 

element M of POINTS whose z-coordinate (z  is  x or  y depending on 

which coordinate is being processed) is within SSPACE of N's z- 

coordinate.    If none is found,   go to step 4.    Otherwise,   remove  M 

from POINTS,   add it to SAME,   and go to step 3. 

4) For each element of SAME,   make the z-coordinate equal 

to that of N.    Go to step 2. 

The second part of the pretty operation,  which is optional, 

that of equalizing the distance between rows and columns to RSPACE, 

is accomplished by proceeding through the following four steps, 

again,   once for each coordinate: 

1) Make a list of nodes (and pins and net points if appropriate), 

and call it POINTS.    Set IND = 1,   and go to step 2. 

2) If POINTS is null,   terminate.    Otherwise,   find that ele- 

ment,   N,   of POINTS with the smallest z-coordinate,   Z,   and remove 

it from POINTS.    Go to step 3. 

3) If IND = 1,   set IND = 0,   set Y equal to Z,   and go to step 4. 

Otherwise,   set Y equal to Y+RSPACE,   and go to step 4. 

4) For all elements P of POINTS whose z-coordinates are 

equal to Z,   set the z-coordinate of P equal to Y,  and remove P from 

POINTS.    Set the z-coordinate of N equal to Y,   and go to step 2. 
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The pretty process is straightforward,   and needs little explana^ 

tion.    The only problem is that if a row of nodes,   for example,  is 

drawn with a large enough range of y-coordinate,   pretty might sepa- 

rate the row into two distinct rows as shown in figure 2-51.    However, 

this is easily remedied by a small manual movement of the nodes and 

a reapplication of pretty for exact placement. 

The merge c and merge r operations are initiated by pointing 

to one of these labels in the menu.    As mentioned in section 2. 2. 2. 10, 

they increase horizontal and vertical link segment orientation in a 

layout.    When merge c is pressed the links of the graph layout are 

made to appear as vertical as possible.    The non-net nodes (and their 

attachment points) are considered immovable,  but pins and net nodes, 

if desired,   may be moved for this purpose.    Adjacent columns of pins 

are merged to form vertical columns on which links run,  when no 

conflict occurs,  as long as they are within sspace of one another. 

The user must input sspace in response to the message: 

sspace = 

1 
pretty 

<•—< •—4 'MI > 

> < •    ( • manual 
adjust 
and 
pretty 

Figure 2-51 
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which is typed when merge c is activated.    Again,   the response must 

be a positive octal number (around 20    is suggested).    This message 
o 

is followed by: 

net nodes? 

a) yes 
b) no 

Responding with "a" allows net nodes to be moved along with pins. 

Answering with Irb" means that net nodes are considered immovable, 

as are all other nodes.    The merge c operation is then executed. 

Merge r proceeds in a manner similar to merge c.     The only 

difference is that the aim is to make links as horizontal as possible. 

The final result of applying merge c and merge r should be a graph 

layout in which the link segments run horizontally and vertically 

(Manhattan geometry),  wherever they can. 

An explanation of merge r should suffice to make both opera- 

tions clear.     The merging process proceeds from top to bottom (and 

in the case of merge c,   from right to left).    Once we have determined 

that two rows can be merged,  they are considered as one row.    If a 

row,   say a,   cannot be merged with the row below it,   no row below  a 

is merged with  a   or any above  a.     The constraints which prevent 

rows from being merged are as follows,  where NC stands for an 

immovable point (i. e.   all nodes,   and net nodes if they are not to be 

moved),   and P stands for a movable point (i. e.   all pins,   and net 

nodes if they are to be moved): 
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1) Two adjacent rows cannot be merged if they both contain 

NC's. 

2) Two adjacent rows cannot be merged if merging introduces 

overlap of NC's,  P's,   or link segments. 

3) Two adjacent rows are not merged if merging changes the 

side of a link segment on which a point (NC or P) lies. 

4) Two adjacent rows are not merged if they are more than 

sspace units apart. 

Constraint one is clear,   since NC's are not movable,  and 

requires only a check on the contents of the two rows under consid- 

eration.    Constraint two is broken up into several cases,   each of 

which must be checked for.    The cases are shown in figure 2-52 

where the a's  are elements of the top row being considered,  and the 

c's  are elements of the adjacent row.    If any of these cases arises, 

the rows are not merged. 

 0 -&-© © ©-©• 
 © © © ©  

(i) (ii) (iii) (iv) 

Figure 2-52 
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The third constraint is somewhat intuitive.    There are two 

cases which must be watched for,  as shown in figure 2-53.    In 2-53a 

if the two rows were merged we would have the result shown in fig- 

ure 2-54a.    But if node  a were connected to another node as shown 

Figure 2-53 

in 2-54b,  then merging the two rows would cause a link intersection 

as in 2-54c.    Similarly,   in 2-53b if the two rows were merged we 

-^©^)-- 

(a) (b) 

Figure 2-54 

(c) 

would have 2-55a; but if c  were connected to another node as in 

2-55b,   then merging the two rows would cause a link intersection as 

--a©—        Z 

(a) (b) 

Figure 2-55 

(c) 

in 2-55c.    Thus constraint three is observed in order to avoid the 
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possible creation of intersections. 

Constraint four is straightforward,  but it should be noted that 

if the top row,  a,   of two adjacent rows,  a and  c,  being considered 

for merging is really the merge of two or more rows,  then the dis- 

tance between a  and  c  is calculated as the distance from  c  to the 

lowest point which any member of   a   has occupied in the original 

layout. 

To implement this algorithm two subroutines are used,   merge 

and forbid.    Merge is the main algorithm; it calls forbid.    The one 

argument to merge determines whether we are merging rows or 

columns. 

Merge proceeds by finding succeeding rows (or columns) from 

the highest coordinate value to the lowest.    Having found two adjacent 

rows which are within sspace of one another,   it checks for constraint 

one.    If this constraint is met,   it checks for the next two constraints 

by forming a set of "forbidden regions" for each row using forbid. 

We note at this point that the highest of these two adjacent rows may 

not,   in fact,  be a single row,  but a set of rows which are considered 

to have already been merged.    In this case all elements in the row 

are considered to have the same coordinate value. 

Forbidden regions are segments along the x-axis (if we are 

merging rows or the y-axis if we are  merging columns) in which no 

NC or P of the adjacent row (or column) to be merged may lie,   if 
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constraints two and three are to be met.    Thus,   once forbidden 

regions are formed for a row,  we need only check that one coordinate 

for each member of the adjacent row does not lie in a forbidden 

region. 

Forbidden regions for the highest of the two adjacent rows 

are formed when the cases shown in figure 2-56 arise.   Brackets 

indicate forbidden regions.    For the next row they are produced for 

--©—©-- 

Figure 2-56 

the cases shown in figures 2-57.    Thus the rows in figure 2-58 would 

not merge,   and constraints two and three are met. 

©  Q—Q  
* V ' 

Figure 2-57 
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Figure 2-58 
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When two adjacent rows are found to be compatible,   they are 

merged.    Merge puts together as many rows as possible before cal- 

culating the resultant row (or column) coordinate for this set.     The 

resultant coordinate is either the coordinate of the NC occurring in 

this set (by constraint one,   there is only one),   or,   if no NC exists 

for the set,   the resultant coordinate is the midpoint between the high- 

est and lowest row (or column) coordinates in the set. 

After experimentation with this algorithm,   the question has 

arisen as to the effect of the directional processing of rows (and 

columns) it includes.    The algorithm always proceeds top to bottom 

(or right to left) and,   quite clearly,   the result is somewhat dependent 

on this direction.     It might therefore be worthwhile to try a reversal 

of directions (bottom to top,   for example),   or,   to include two passes, 

one in each direction.    The results might prove better than those 

given by the present implementation. 

To conclude this section,  we give several figures illustrating 

the use of the MOD system.     Figure 2-59 depicts a MOD Input main 

frame and defines frame in use.     Figure 2-60 shows a MOD Output 

frame in use.    And figures 2-61 and 2-62 show sequences of layouts 

produced by MOD Input and Output using the pretty and merge opera- 

tions. 
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Figure 2-59 

136 



^02 

LINE 
FUNCTION 
A DP 
EP 

>: 

o 

DEFINED SHAPES 

INPUT 
COPY 
REMOVE 
FILE 
EDIT 

Figure 2-59   (continued) 
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Figure 2-60 
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input: 

pretty: r 

] n 
Figure 2-61 
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merge c: 
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merge r: 
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Figure 2-61   (continued) 
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input: 

pretty: 

Figure 2-62 
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merge c: 

merge r: 

Figure 2-62 (continued) 
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Chapter 3 

APPLICATION DEPENDENT LAYOUT 

The problem of layout generation and modification for graphs 

may be approached from a viewpoint totally different from that used 

in chapter 2.    This new approach considers the problem from an 

application dependent point of view.    By this we mean that we will 

examine the problem of layout for specific layout types which are 

dependent,   to some degree,   on the application in which these layouts 

are used. 

Section 3. 1 discusses the advantages of using such an ap- 

proach.    We find that the possibility exists with this approach,   for 

some layout types,   of developing algorithms which are in some sense 

more effective than those developed in chapter 2.     Section 3.2 dis- 

cusses actual layout types and methods to classify layouts.    Here 

we attempt to examine criteria and algorithms for the layout of 

specific layout types.     For several layout types work has already 

been done,   and this work will be mentioned.     Finally,   section 3. 3 

briefly considers how a system like MOD may be modified to take 

advantage of the knowledge of layout types in laying out graphs. 
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3. 1        APPLICATION DEPENDENCY - A JUSTIFICATION 

When we examine the value of a study of layout methods, we 

find that we must consider some of the actual applications in which 

layout algorithms for graphs might be used.    For example,  we might 

consider a graph layout as a circuit layout,   flow chart,   organization 

chart,   or AMBIT/G data.    There are several reasons for this appli- 

cation dependent view of layouts,  besides the practical value of the 

algorithms which might result. 

Foremost is the fact that each application carries with it cer- 

tain conventions about what a layout should look like.    For example, 

how a layout is oriented or how links are drawn may be part of the 

convention.    The conventions of an application may also tell us which 

of the layout qualities discussed in section 2. 1 are to be given prior- 

ity,  and which qualities are to be ignored.    In circuit layouts,   for 

example,   the qualities most often considered are total link length and 

the number of intersections; other qualities are relatively unimpor- 

tant. 

Not only may the layout quality priorites be dictated by the 

particular application,   but specific layout characteristics may also 

be given by these conventions.    As seen in the design of the MOD sys- 

tem,   in order that it be as general as possible,   several different lay- 

out characteristics were allowed in the system.    In a particular 

application,   however,  we are dealing either with,   say,  undirected or 
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directed links,   nodes with or without shape,   and so on.    In other 

words,   given a specific application,  we need only concern ourselves 

with layouts containing particular characteristics. 

Furthermore,  we may know,   for a given application,   the graph 

theoretic complexity of the graphs underlying the layouts used.    By 

this we mean the type of graph theoretic structure of the graphs under- 

lying the layouts used in a given application.     For example,   organiza- 

tional charts tend to be based on trees or graphs without cycles.    But 

the notion of underlying graph theoretic complexity must be modified 

when we talk about layouts.    We must really consider,   instead, what 

we shall call "apparent underlying graph theoretic complexity" in the 

layouts of a given application.    What we mean here is the amount of 

underlying graph theoretic complexity which is relevant to the layouts 

of a given application.     For,   although the underlying graph of layouts 

for an application may be quite complex,   this complexity may be 

totally ignored in the layouts.    Flowcharts are an example of this 

phenomenon,   for,   although the underlying graphs for flowcharts may 

be quite complex,   flowcharts are,   in general,   arranged so that the 

nodes are placed in a linear fashion.     Thus flowcharts have little 

apparent graph theoretic complexity. 

The point of this discussion is that with any application for 

which we know layout quality priorities,   layout characteristics,  and 

apparent underlying graph complexity,  we certainly have a greater 
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potential for producing more effective layout algorithms than we do 

by treating the most general case,  as we have done in chapter 2. 

Certainly,  we may better tailor the various algorithms to these par- 

ticular priorities,   characteristics,   and complexities.    Furthermore, 

we find that many of the considerations which led us to look for modi- 

fying algorithms rather than constructive algorithms in section 2. 2. 2 

are no longer relevant in an application dependent framework.    For 

example,  we now may have a knowledge of layout priorities,   and per- 

haps even some means for deciding on layout when an arbitrary choice 

might otherwise be made.    Thus,   in an application framework,  we 

may more easily consider the possibility of a single constructive lay- 

out algorithm (as defined in section 2. 2. 2) for each application, 

rather than depending on an interactive environment in which several 

modifying algorithms must be applied.    In fact,   it will be seen that 

this constructive approach (as well as the semi-constructive approach 

described in section 2. 2. 2. 7) has been used often in the development 

of layout algorithms for a few of the particular applications mentioned. 

Thus, we find that there may be an advantage in examining 

layout from an application dependent point of view,   in that,  within 

this framework,   constructive layout algorithms may be more feasible, 

and more effective results may be possible from application tailored 

algorithms. 
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3.2 APPLICATION DEPENDENT LAYOUT TYPES 

In this section our aim is to explore the possibility of produc- 

ing effective constructive layout algorithms given application depend- 

ent information.    Before doing this,   however,  we will consider a 

method of classification of layout types found in various applications, 

based on layout characteristics,  apparent underlying graph complex- 

ity,   and layout quality priorities.     Examples of layouts used in 

several fields will then be discussed along with their types.    It is 

within this framework of layout type that we will consider constructive 

algorithms for application dependent layout.    We will see that con- 

structive algorithms are not always feasible.    Both new algorithms 

and previously developed algorithms will be mentioned in this dis- 

cussion. 

3. 2. 1     Classification of Layout Types 

We must first consider the motivation for classifying layouts 

found in various applications into types.    The motivation is twofold. 

First,  we would like some method for comparison of layout algor- 

ithms for layouts found in different applications.    By classifying lay- 

outs according to type,  we hopefully will see some kind of gradation 

in algorithms type corresponding to layout type.    This would be a 

helpful environment in which to better understand what factors add 

to the complexity of layout algorithms,   and,   perhaps,   how they can 

be simplified.    Secondly,   once we have developed the framework for 
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making such correlations,   it may prove to be very useful in the devel- 

opment of new algorithms.    For,   given a new layout type,  we may 

gain some insight into algorithms for its layout by examining algor- 

ithms for layouts of similar types. 

The classification itself will be based first on apparent under- 

lying graph theoretic complexity,   and then on layout characteristics 

and quality priorities.    For example,  the  main typing "tree, " mean- 

ing layouts whose underlying graphs are treated as graph theoretic 

trees,   might be divided into subtypes based on particular layout 

characteristics and priorities.    We might then develop several 

specific algorithms,   one for the layout of each different subtype,   each 

of which might have some basic process in common with the others, 

due to the fact that all are classified under the general typing "tree. " 

We would then like some ordering of these layout types,   hope- 

fully,   such that some gradation can be observed in the corresponding 

layout algorithms.     Let us try ordering the types according to appar- 

ent underlying graph theoretic complexity,   and look for a gradation 

in corresponding layout algorithms.     Those layouts with simpler 

apparent underlying graphs,   are referred to as simple layout types, 

and those with more complex apparent underlying graphs will be 

known as complex layout types. 

Before looking for this correlation,  however,  we must decide 

what algorithm characteristics we should look for a gradation in. 
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We want algorithm characteristics which reflect the complexity of the 

algorithms to some extent,  although what we mean by algorithm com- 

plexity is not quite clear.    However,   two algorithm characteristics 

might be appropriate,   namely,  the amounts of what we shall call 

structural rigidity and constraint optimization. 

The "amount of structural rigidity" in an algorithm means the 

extent to which algorithm predetermines the layout.     For example,   at 

one extreme we have layout types whose algorithms assign the nodes 

a linear placement,   no matter what the input graph is,  for example, 

a flowcharting algorithm.    Such an algorithm will be called structur- 

ally rigid.    On the other hand,  we might have layout types whose 

algorithms have no predetermined mold which layouts follow,   for 

example,   those most often used for circuit layouts.    Such algorithms 

have little structural rigidity.    Structural rigidity effects the com- 

plexity of a layout algorithm,   in that,   if there is large amount of 

structural rigidity,   the algorithm will probably proceed in a more 

straightforward manner to obtain a layout,   than if there is little 

structural rigidity,   since the layout will be less dependent upon the 

input,   in general. 

The meaning of the "amount of constraint optimization" in an 

algorithm is more obvious.     For some layouts little constraint opti- 

mization is necessary,  whereas for others,   layout algorithms may be 

totally based on constraint optimization.    The amount of constraint 
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optimization in an algorithm is also a good reflection of algorithm 

complexity,   for,   in general,   the more constraint optimization present 

in an algorithm,   the more complex it will be. 

Structural rigidity in an algorithm seems to be at the opposite 

pole to constraint optimization,  for,  while the former is based on the 

assumption that a certain result can always be obtained no matter 

what the input,   the results from the latter are totally dependent on 

the input,   and no amount of success is guaranteed. 

In fact,  a correlation appears between these two algorithm 

characteristics.    For,  where a structurally rigid algorithm may be 

used,   there is little constraint optimization required; and,  where 

much constraint optimization is required,   there can be little struc- 

tural rigidity.    Thus we may combine these two factors into one scale 

for measuring algorithm complexity. 

Now,   if we consider our original plan for ordering layout 

types,   that of ordering by apparent underlying graph theoretic com- 

plexity,  we find the following correlation with algorithm complexity 

(as measured on the structural rigidity-constraint optimization scale). 

In general,   the simpler the layout type in terms of apparent under- 

lying graph theoretic complexity,   the greater the possibility for 

structural rigidity in layout algorithms,   and the less the need for 

constraint optimization in order to obtain layouts.     This is clear 

since,   the simpler the apparent underlying graph theoretic complexity 
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of a layout type,   the more we can predict about the structure of the 

apparent underlying graph (the structure we must consider in layout), 

and thus,   the more we can predetermine what manipulations are 

necessary for layout and what final forms layouts may take.    For 

more complex layout types,   less of the structure of the apparent 

underlying graph may be predicted,  and thus,   layout algorithms must 

depend more on testing and constraint optimization.    Thus with the 

simplest layout types,   a layout algorithm may be a simple,   rigid, 

and direct procedure for layout,  whereas,  with the most complex 

layout types,   layout algorithms may consist of complex optimization 

procedures. 

With this correlation and ordering in mind,  we must then con- 

sider how to rank the apparent underlying graph theoretic simplicity 

of layouts in different applications.    There are several factors which 

might be considered.    For example,  we might take into account 

whether the apparent underlying graphs have cycles or not,  whether 

they are planar or not,  whether they are separable (i. e. ,   can be 

separated into components as in the algorithm of Appendix 3) or not, 

and so on.       The ordering will be as follows.    Near the bottom of the 

Again,   by apparent underlying graph,  we mean the structure 
of the  underlying graph which is relevant in layout.    So that,   for 
example,   if we do not care in a layout process whether the underly- 
ing graph has cycles or not,   then the apparent underlying graph is 
considered not to have cycles. 
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scale we will consider the simplest layout types,   those whose appar- 

ent underlying graphs are without cycles (and which are therefore 

planar and separable).    We will name this layout type the tree type 

after the graph-theoretic name of the structure of its apparent under- 

lying graph.    We will see that algorithms for tree layout are quite 

straightforward and structurally rigid.    At the top of the scale,  we 

have layout types with apparent underlying graphs which may be non- 

planar,   may contain cycles,  and may be non-separable.    The most 

complex type are layouts with such apparent underlying graphs and 

which use both ADP's and EP's (as defined in section 2. 3. 1),  thus 

requiring that links be placed around a node in a certain order.    We 

expect that constructive layout algorithms for such complex layout 

types will consist mainly of constraint optimization,  and,  will be very 

difficult to develop,   if not impossible. 

We will not consider a complete categorization of all possible 

layout types,   as such a task seems   infeasible.    We will attempt,   how- 

ever,   to order several common layout types,   according to their appar- 

ent underlying graph theoretic complexity and thus according to their 

respective layout algorithm complexity. . The intention here is only to 

experiment with the possibility of a layout classification,   rather than 

to strictly define it. 
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3. 2. 2    Layout Types and Algorithms 

What follows is a description and classification of various 

commonly used layout types,  along with a discussion of algorithms 

for the layout of these types.    The layout types are described in order 

of layout type complexity.    A corresponding gradation in layout algor- 

* 
ithm complexity is also seen.    Five layout types are presented.      We 

start with the simplest types and proceed to the most complex.    With 

each type several subtypes may be included. 

3. 2. 2. 1   Linear Layouts 

The linear type is the layout type in which there is the least 

apparent underlying graph theoretic complexity.    In other words,  the 

apparent underlying graph consists of a simple string of nodes,   per- 

haps connected by links,   or,   it is treated as if it does.    The only 

general constraint of this layout type is that the nodes be placed in 

some linear arrangement.    Thus the basic form of a linear layout is 

quite rigidly predetermined. 

As mentioned above,   flowcharts are an example of this layout 

type.    By convention,   nodes of flowcharts generally assume a linear 

placement,   regardless   of underlying graph theoretic structure.   Often 

The type names given to the various layout types,   in general, 
have no relationship to definitions commonly found in graph theory. 
When there is a correspondence with a type name and a graph theo- 
retic definition,  as in the case of "tree layouts, " it is pointed out in 
the text. 
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nodes are aligned in a vertical arrangement.    One complication in 

flowchart layout,  however,   is that of link routing.    In general,   links 

are required to be drawn as series of horizontal and vertical seg- 

ments.    This may not always be possible. 

The usual requirements of an algorithm for flowchart layout, 

then,   are that,   given the order in which nodes are to be placed,  the 

algorithm must decide on a linear placement,  and then must route 

links along horizontal and vertical runs,  where possible.    Often, 

where the origin and destination of a link are far apart,   intermediate 

reference nodes are allowed.    These are nodes especially created 

and labeled in pairs.    They imply that a link which ends at such a 

node really continues with the link which originates at the other ref- 

erence node with the same lable.    Link intersections are generally 

allowed,   and thus,   the only difficulty of such an algorithm is in check- 

ing that no link segments are drawn on top of others previously drawn 

(in some cases the horizontal-vertical requirement may have to be 

broken to avoid this).    Many such algorithms have been written and 

implemented as computer packages for flowchart generation,   for 

example,   System/360 Flowchart by IBM (19). 

In this discussion we have been careful to separate out the task 

of deciding on linear node order,   from that of generating a layout 

given an order.    It is felt that the manner in which node order is 

decided upon is not relevant to the actual problem of layout,   and 
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seems to depend upon the requirements of the particular language for 

which a flowcharting program is to be used and on the particular 

priorities of the user. 

It is clear,  then,   that for this example of the linear layout 

type,   straightforward structurally rigid constructive algorithms with- 

out optimization are easy to design.    Although algorithms may include 

optimization procedures for minimizing the number of non-horizontal 

and vertical link segments,   such optimization is not necessary for 

flowchart layout.    An example of a typical flowchart is shown in 

figure 3-1. 

•       I 
« 

T 
Figure 3-1 

3. 2. 2. 2   Tree Layouts 

The tree type includes layouts which are more two-dimensional 

than the linear layouts,  but the underlying graphs for this type may con- 

tain no cycles.    In forming tree layouts,   underlying graph-theoretic 

structure is relevant in determining node position.    If a graph is a 
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tree in the graph-theoretic sense,  we are guaranteed that it may have 

a planar representation (no intersections) and may be laid out in one 

of many predetermined,   somewhat rigid forms without complication. 

This will be demonstrated below. 

In most applications tree layouts are formed in levels as fol- 

lows.    Some single node is designated as the "root" node.    The root 

node comprises the first level.    Each node adjacent (in the graph 

theoretic sense) to the root lies in a level higher than the root node 

level.    They may or may not all lie in the next level,  but at least one 

does.    In turn,   for each node,   say b,  adjacent to a node,   say a, 

which is closer to the root node than b  in terms of graph theoretic 

distance,   node  b  lies at a higher level than node  a.       It is guaranteed 

that there will be no level conflict because there are no cycles; hence, 

nodes may be partially ordered with respect to any root node. 

Nodes without successors in this description are known as leaves. 

Algorithms for general tree layout must,   given a root,   separate the 

nodes into levels and place them accordingly.    In general,   levels are 

spaced at regular intervals. 

Tree layouts are used in many applications to represent 

Node  a  is then called the "father" of node  b,   and node b  is 
called the "son" of node  a. 

Tree  layout  does   not  require  that  the   nodes  be   totally 
ordered. 
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hierarchical structure or dependency relationships.    Each application 

may carry with it additional requirements as to what tree layouts 

should look like.    Additional requirements regarding horizontal and 

vertical placement of nodes are often found.    For example,   one appli- 

cation may require that a node lie in the level immediately next to its 

father node (leveled trees),   or conversely,  that a node lie in the high- 

est level possible,  the level just before the lowest of any of its sons, 

and that all leaf nodes lie in the same level (unleveled trees).    Or, 

we may have the requirement that a node must be centered over its 

sons (son-centered),   or,   on the other hand,   that nodes in a given 

level and links passing through the level be placed evenly spaced in 

the level around some center,   regardless of the placement of sons 

(level-centered). Furthermore,  bends in links may or may not be 

allowed. 

For example,   in linguistic applications,   a phrase marker 

representing the parse of a sentence is often depicted by an unleveled, 

son-centered tree layout without bends,  as shown in figure 3-2a. 

Whereas,  tree layouts used as organization charts are often leveled, 

level-centered trees (with bends allowed,   although no bends will 

appear) as shown in figure 3-2b. It is of interest to note,   however, 

that with tree layouts,  as with linear layouts,   layout characteristics 

as defined in section 3. 1,   such as directedness of links,  are of little 

importance in the layout process. 
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(a) (b) 

Figure 3-2 

Again,   for clarity,  we will repeat the definitions of these lay- 

out requirements: 

1) Leveled trees:    every node lies in the level immediately 

next to its father node. 

2) Unleveled trees: every node lies in the highest level pos- 

sible, the level just before the lowest of any of its sons, and all leaf 

nodes (nodes without sons) lie in the same level. 

3) Son-centered trees:   every node is centered over its sons. 

4) Level-centered trees:   nodes in a given level and links 

passing through that level are evenly spaced around some center. 

Since each of the application dependent requirements men- 

tioned above affects the formation of tree layouts,  they must be con- 

sidered in the formulation of layout algorithms.       Most tree layout 

* 
In the following algorithm description we will talk about tree 

layouts oriented with roots on top and leaves on the bottom; however, 
this discussion may also apply to tree layouts with other orientations, 
such as left to right. 
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algorithms,  however,   may consist of two main steps: 

a) place nodes into levels to determine y-coordinate,  and 

b) place nodes within levels to determine x-coordinate. 

The details of these steps differ according to whether the tree layout 

is to be leveled or unleveled,   son-centered or level-centered,  and 

whether or not bends are allowed.    Each such variation is considered 

as a separate tree subtype. 

An algorithm for the layout of all of these tree subtypes will 

now be presented.    The algorithm consists of the two basic steps 

(a  and b) mentioned above.    As stated,  there are variations in these 

two steps according to the subtype of tree layout desired.    Step a has 

two variations,  a. 1  for all leveled layouts,  and a. 2  for all unleveled 

layouts.    In the following description of these variations of step a, 

the symbol "# " is used as a place marker. 

Step a. 1:   for all leveled subtypes,  place the node in the low- 

est level possible as follows:   form ordered list of nodes, S^'s , 

i = 0, . . . , n,   one for each level,  as: 

i)   Sft = (root node) 

ii)   If S. = (K., K,, ... , K    )  and for some  K. , K. ^ #, 
l 1       Z m ii 

then S        = (K.   , K.    K.      ,  K_   , . .. , K )   where: 
i+l i,       1_ 12. m 12 n, 1 n 1 m 
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K. 

# ,  if K.   is   #   or if  K.   has no sons 
3 J 

the   kth son of  K. ,   if  K.  has any sons 
J J 

n. 
1,  if K.   is   #   or if K.  has no sons 

J J 

the number of sons of   K. ,   otherwise 
J 

If, for all  K.   in   S. ,  K. = # ,  then n = i-1. 
J i       J 

Step a.Z:   for all unleveled subtypes,  place the nodes in the 

highest level possible,  as follows:   form ordered lists of nodes, 

S.'s,  i=0,...,n,   one for each level,  as: 
l 

i)   S    = (root node) 

ii) If S. = (K. ,K_, . . . , K    ) and some  K.  has a son,  then 
x 1      2 m j 

S.       = (K.   , K.   , . . . , K.      ,  K_   , . . . , K ) where: 
1+1 i,       l _ i zS, m 

12 n, 1 n 
m 

K. 

K. ,   if K.   has no sons; K.   in  S.   is then 
J J J i 

changed to a # 

the  kth son of K. ,  if K.  has any sons 
J J 

1,   if  K.   has no sons 
J 

.    the number of sons of K. ,  otherwise 
J 

If,  for all   K.   in   S. ,  K.  has no sons,  then n = i. 
J 1        J 

Variations in step b then complete the algorithm description. 

There are six variations,  one for each possible combination of the 
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* 
layout requirements mentioned above.       These six variations are 

given below as steps b. 1 through b. 6.    In the description of these 

steps,  c   is some x-coordinate arbitrarily chosen as a fixed center 

for the layout.    Once the   K.'s   are positioned in step b,   only the   K.'s 

such that   K. ^ #   actually appear in the layout; the others simply act 

as guides for links,  or are ignored. 

Step b. 1:   for all leveled,   son centered subtypes: 

i)   Evenly space      all the   K.'s   in   S      around the fixed 
J n 

center c. 

ii)   For each   S.   in the order   i = n- 1, n-2, . . . , 0,  place 

each node   K. ^  #  in the center of the x-coordinates of the elements 
J 

, K.    . which it generated in   S. , , , K.   , . . . , K. 
i+1      Jj J n. 

J 

Step b.2:   for all leveled,   level-centered subtypes:   for each 

S.   place the    K.'s 4 #  evenly spaced and centered with respect to the 
i J 

fixed center c. 

In both steps  b. 1   and  b.2,  links are then drawn between each 

of the pairs   K.   € S.   and   K.     6 S. , , , where   K.    ^ # , for   i = 0, . . . , 
J X Jk 1+1 Jk 

n-1. 

In the leveled subtypes no bends can occur since links travel 
only between adjacent levels. Hence we have six combinations of the 
requirements,   instead of eight,  as would be expected. 

The details of this spacing operation will be worked out when 
the algorithm is implemented,   and will not be bothered with here. 
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Step b.3:   for the unleveled,   son centered subtype with bends: 

i)   Evenly space all the   K.'s in   S     around the center c. 
J n 

ii)   For each   S.   in the order   i = n- 1, n-2, . . . , 0 place 

each K.   in the center of the x-coordinates of the elements which it 
J 

generated in   S        . 

Step b.4:   for the unleveled,  level-centered subtype with bends.* 

for each   S. , place all the   K.'s evenly spaced and centered with 

respect to the fixed center   c. 

In both steps b. 3 and b.4,  links are then drawn between each 

of the pairs   K.  € S.   and   K.     €   S. , , ,   i = 0, . . . , n- 1. 
j > jk i+l 

Step b.5:   for the unleveled,   son-centered subtype without 

bends:   there is a problem with this subtype,   in that intersecting lines 

may be created.    If,  for example,  we represented the underlying 

graph of figure 3-3a in this manner,  we would obtain that of figure 3- 3b. 

To remedy this situation, let us first form the layout as for the 

  

(a) 

Figure 3- 3 
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unleveled,   son-centered subtype with bends,  and put in single segment 

links,  father to son as in 3-3b.    We may then remove any resulting 

intersections using the procedure shown in figure 3-4. 

The basic idea of this procedure is that if two links,   say (a,p) 

and (b,q), intersect,   as in figure 3-3, where   a   and   b   are the node 

labels of the topmost node of each link,   and the level of   a     precedes 

that of   b, then, by moving up the y-coordinate of the level of   a   and 

that of all other levels above   a,  the intersection may be removed.    It 

should be noted that in order to avoid intersection with this subtype 

we can no longer guarantee that levels will be evenly spaced.    Hence, 

we are sacrificing some structural rigidity. 

Let us discuss the intersection removal procedure in more 

detail.    First,  notice that if any two links,   say again (a,p) and (b,q), 

intersect in the unleveled,   son-centered subtype without bends, it 

* 
must be that either   a   is an ancestor    of   b,   or that   b   is an ancestor 

of   a.    Proof of this fact is sketched as follows: 

Lemma:        Let links (a,p) and (b,q) intersect in the unleveled,   son- 

centered subtype without bends,  as described above.   Then 

either   a   is an ancestor of   b,   or   b   is an ancestor of   a. 

Proof: Suppose that (a,p) and (b,q) intersect,  where   a   and   b 

are the lower level nodes in each of these links.    We will 

The term ancestor is used to mean father,   or grandfather, 
or great-grandfather,  and so on. 
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assume that   a   is not an ancester of   b,  and that   b   is 

not an ancestor of   a,  and show that this leads to a con- 

tradiction. 

First note that for every node z not in the highest 

level (level n), by our formulation of node order in levels 

(step a for the unleveled subtypes), all leaves of node z 

are in sequential order in level n. Let us then define a 

range R (z) for node z in level n, as the range along the 

x-axis in which leaves of node z lie. Note that, by our 

formulation,   only nodes which are progeny    of node  z  lie 

in   R  (z).    Now,   since nodes are son-centered in this sub- 
n 

type,   all progeny of   z   lie in the area,  A   (z),   over   R  (z) 

running from the level of   z   to level   n.    Thus all links 

from   z   to nodes in higher levels lie within   A   (z). 

Furthermore,   only nodes which are progency of   z 

lie in A  (z).    For,  assume that this is not the case and 
n 

that some node  w  lies in A   (z)  and is not progeny of  z. 

According to our formulation of  R  (z),   w   is not in level   n. o n 

Furthermore,  due to the son-centered requirement,  it 

must be that   R   (z)   l~l R  (w) ^  0.    Then there must be a 
n n 

node  v  in level  n  such that   v €  R  (z) 0 R   (w)   and such 
n      n 

* 
Again, progeny is used to mean sons, grandsons, great- 

grandsons, and so on. 
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that   v   is progeny of both   z   and   w.    Now,   since each 

node has only one father, we may trace from node   v back 

through its forefathers in sequence starting with   v's 

father.    If node w  appears first in this sequence,  then v 

cannot also be progeny of node   z,   since w  isn't.    If node 

z   appears first in this sequence, then by formulation of 

levels,   z  must be progeny of w,   and   w ?   A  (z).    Hence 
n 

we have a contradiction,   and   w #  A  (z),   if w  isn't 
n 

progeny of z. 

Now,  if   a   is not an ancestor of   b,   and   b   is not 

an ancestor of   a,  then   b # A   (a)  and   a ? A   (b).    Hence 
n n 

the two areas,  A  (a)  and A   (b) are distinct,  and no link 
n n 

from   a   to a higher level can intersect with any link 

from   b   to a higher level. 

QED 

Thus it must be that either   a   is the ancestor of   b (denoted 

* * 
by   a = f (b))  or vice versa.    Suppose,  then that   a =f  (b).    Then, 

certainly,  a   and   b   could not be at the same level,  and,   in fact, 

the level of   a (denoted by  L(a))  must be smaller than that of b. 

We have then determined that for two links,   (a,p) and (b,q), 

to intersect,   L(a) f L(b),  and either  a=f  (b)   or   b=f  (a), depending 

on whether   L(a) < L(b)   or   L(b) < L(a),   respectively.    The method 

for intersection elimination in figure 3-4 uncovers intersections in a 
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layout by looking for  b's starting with level  n- 1   and proceeding to 

lower levels, where the  b's   are assumed to be the lower of the top- 

most nodes,  a and b,  of intersecting links.    While considering each 

node as a b,  all of the node's ancestors,   starting with immediate and 

proceeding to more distant,  are considered as   a's.    We are guaran- 

teed that if,   say,   L(a) < L(b),  then we can eliminate the intersection 

if we move   L(a)   up far enough,  along with all levels above it.    The 

idea is that we move   L(a)   up far enough so that the link (a,p)  clears 

A  (b).    This can always be done,   since  p  cannot lie in A  (b) (other- 
n n 

wise p would have two fathers).    Thus if we make the link  (a,p) 

vertical enough (by moving   a   up and leaving   p   fixed, where,   of 

course,  L(p) > L(b) )   it must clear   A   (b). 

The only problem left to worry about with this procedure is 

that no new intersections are created by such a move.    In fact, we 

find that new intersections may be created by such a move,  but that 

they are such that the topmost node involved in the new intersection, 

a',  must be such that   L(a )   £ L(a),   since no nodes in levels greater 

than   L(a)   are effected by the move.    Even better,  we find that 

L(a') < L(a),   since,   if we are moving   L(a)   up, the move has the 

same effect on all intersections with topmost node in   L(a) as it does 

on the intersection involving   a.    Thus,   if we process the layout for 

intersections,  bottom up, we may remove them all in one pass. 
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In the algorithm, then,  for each (a,p) and   b   considered,  the 

process checks the cases listed below to see if (a,p) intersects with 

some link downward from b.    The line   y = X(L(b) )   is the horizontal 

at the level of   b,  and   y = X (n)   is the horizontal at level   n.    The line 

# 
x = x,    is the vertical at the left of the range   R   (b),     and x=x_    is the 

1 n c 

vertical at the right of   R   (b).    The cases are: 
n 

a) If   x1 =x   ,  then there is an intersection if and only if (a,p) 

intersects the line   x=x     between   y=X(L(b))   and   y = X(n). 

b) If   X, ^ x   ,  then there is an intersection if and only if 

either: 

1)   All of the following three conditions hold: 

i)   (a, p) intersects   y = X(L(b))   between   x = x      and 

x = x2, 

ii)   (a, p) intersects either   x = x      or   x = x     between 

y = X(L(b))   and   y= X(n),  and 

iii)   (a, p) intersects some horizontal   y = X(k), where 

L(b) < k < n,  between   x=x1   and   x = x', where   x = x'    is 

the vertical on the left side of the range of progeny of   b 

at level   k,   and   x = x '    is the vertical on the right side of 

this range. 

or 2)   (a,p) intersects both   x=x.    and   x = x     between 

y =  X(L(b))   and   y = X(n). 

See definition in preceding proof. 
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In checking for these cases,  the algorithm first decides 

whether or not   x   = x   .    If   x    ^ x  ,   if first checks whether   (a,p) 

intersects  y = X(L(b)).    If it doesn't,  case (b,l) is eliminated imme- 

diately, and,  at that point,  the algorithm needs only to check for 

intersection with one of the sides   x=x     and   x = x     to see if (b,2) 

holds. 

The algorithm shown in figure 3-4 proceeds using the approach 

in the preceding discussion to remove all intersections from a layout 

for the unleveled,   son-centered subtype without bends.    It processes 

levels for intersections,   starting at the highest (bottommost) level 

and proceeding to the lowest (topmost).    Initially all levels are evenly 

spaced, but are changed when necessary to avoid intersections.    The 

following notation is used in the flowchart of figure 3-4: 

L   counts levels looking for b's 

i       is the ith node in the   Lth level,  left to right 

n   is the total number of levels 

X(L)   is the y-coordinate of level  L; the results of the process 
may be seen in these numbers 

YINC   is the original distance in y-coordinate between levels 

S(x,y)   gives the next son of   x   after son   y; if   y = 0   the first 
son is given; if S(x,y) = 0, then   y   was the last son 

f(x)   gives the father of   x; if   f(x.) = 0   then   x   is the root 

Rm(x)    gives two values,  xj   and  X£ ,   denoting the left and 
right limits,   respectively,   of the range along the x-axis which 
progeny of x  occupy on level  m; obviously,   if  L(x) > m  then 
R~JX)  has no value 
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Set   X(n) «- 0   and for  k = 1, . . . , n 
set  X(n-k) - kxYINC . Set L - n- 1 

L = l ? 
yes 

^ EXIT 

Set   i -1 
Set L - L- 1 

Set b •- i-L 
Set   xj, x2 - Rn(b) 
and   a *- f(b) 

yes 

no 

Does level  L 
have an  ith 
node ? 

Set 
i- i+1 

Set   p «-  s(a, 0) 
Set  a - f(a) £ 

no 
yes 

f(a) = 0? 

= b? 
yes 

no 
Xl      X2? 

yes 

yes 

no 
(a,p) intersects 
y = X(L) between 
x=Xi   and x = x2 ? 

no 

(a,p) intersects 
x =xj   between 
y = X(L)  and   y = X(n) ? 

yes 

no 

* Set  c - 1 

"* L + c = n? 
yes 

Set   s •-  s(a ,p) 
 7K  

no 

Set   x{,  x^RL+c(b) 

yes 

p = 0? 
no 

no 
(a,p) intersects 
x =x.\ between 
y = X(L) and 
y = X(n)?        

(a,p) intersects  y=X(L+c) 
between  x=x' and x = x ' ? 

yes 

For all levels   I > L(f) 
set   X(l) -  X(l) + YINC 

yes 

Set 

no 

-c+1 

Figure 3-4 
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Again, we emphasize that this algorithm is applied to a layout 

which has been formed by proceeding as in the unleveled son-centered 

subtype with bends,  and then removing the bends in the links. 

In summary, then, with the unleveled son-centered subtype 

without bends, we lose some structural rigidity,  in that,   in order to 

guarantee that no intersections will occur, we cannot guarantee that 

levels will be evenly spaced. 

Step b. 6:   for the unleveled,  level-centered subtype without 

bends:   there is a problem with intersections in this subtype also; 

however,  here we can find no remedy.    Figure 3-5b shows an example 

of such a layout for the underlying graph of 3-5a.    It is clear that 

moving levels up or down is not a solution.    Unfortunately,  the method 

for the unleveled,  level-centered subtype with bends may produce 

(a) (b) 

Figure 3-5 
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more than one bend per link. 

To handle the problem of layout for the bend-free unleveled, 

level-centered subtype, we might consider an optimization tech- 

nique.    For example, we might use an algorithm which performs 

several passes.    Each pass may rearrange the order of sons under 

a father,  in order to find an arrangement which yields a layout with 

the  minimal number of intersections possible.    Such an approach 

would not guarantee an intersection-free-layout,  but would find the 

optimal solution,   given the constraints of this subtype.    Thus we 

must sacrifice the guarantee of node order in order to meet the lay- 

out requirements for this subtype.    Even then, we cannot be sure 

that the requirements will be met. 

Examples of layout for the leveled subtypes with and without 

bends and the unleveled subtypes with bends are shown in figures 

3-6a, b,  c,  and d for the same underlying graph.    In this example, 

the lists,  S. ,  for the leveled subtypes are: 

We note that we can guarantee at most one bend per link for 
the unleveled,   son-centered subtype with bends,   and,   in all leveled 
subtypes,   obviously,  no bends occur since links always travel be- 
tween two adjacent levels.    In the unleveled,   son-centered subtypes, 
it turns out that each K; = #  is aligned directly above either another 
#  or the node whose place is marked by this   #,  due to the son- 
centered requirement.     Thus a straight line may be drawn through 
the series of  #'s over a node making one link segment,  and a line 
may be drawn between the top  #  and the father node,  completing the 
link with only two segments. 
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s0 = (D 
Sj =(2,3,4) 

52 = (5,6,7,8,9,10) 

53 = (#,11,#,#,12,#) 

and those for the unleveled subtypes are: 

s0 = (D 
Sj = (2,3,#) 

52 =(#,6,#,#,9,4) 

53 = (5,11,7,8,12,10) 

Leveled 
son-centered 

Leveled 
level-center ed 

(a) (b) 

Unleveled 
son- centered 

(c) 

Unleveled 
level- centered 

(d) 

Figure 3-6 
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Figure 3-7 depicts a sequence of layouts generated by the algorithm 

for removing intersections from the unleveled,   son-centered sub- 

type without bends (step b.5).    Initially (3-7a) there is one inter- 

section.    To remove it, levels 0-2 are moved up (3-7b),  causing 

another intersection.    When this is discovered,  level 0 is moved up. 

The result (3-7c) is intersection free. 

(a) (b) 

Figure 3-7 

(c) 

We may be assured in all leveled subtypes that no intersec- 

tions occur.    For,   since links run only between two adjacent levels, 

any intersection,   say (a,p) and (b,q) must occur between two adja- 

cent levels.    Say that  L(a) = L(b) = k   and   L(p) = L(q) = k+1. 

Obviously,   it must be that   a^ b  (otherwise there would be no inter- 

section).    But, by the formulation of S, , ,   from S,   ,   if   a   precedes 
k+1 k 

b   in   S, ,  then the sons of a precede those of   b   in   S.  , , ,  and vice 
k k + 1 

versa.  Hence (a,p) and (b,q) cannot cross.    In the unleveled sub- 

types with bends, we have the same assurance,   since the   #  elements 
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act as nodes in the argument, and links may be considered to travel 

only between two adjacent levels. 

In summary, we have examined several subtypes of the tree 

layout type and developed constructive algorithms for the layout of 

each subtype.    A gradation was found in complexity of layout accord- 

ing to subtype.    With all leveled subtypes,  and with the unleveled 

subtypes with bends,  the algorithms are straightforward and struc- 

turally rigid.    With the unleveled,   son-centered,  bend-free subtype 

the layout algorithm is still direct, but the resultant layout struc- 

ture may not be predicted as rigidly.    With the unleveled,  level- 

centered,  bend-free subtype, the desired structure cannot always 

be attained.    In fact,  with this subtype,   a procedure involving opti- 

mization,  with no guarantee of total success,   seems the only feasible 

approach to meeting the requirements. 

3.2.2.3   Network Layouts 

The network type includes the set of layouts whose apparent 

underlying graphs have nodes which are partially ordered by the 

links which connect them and by the directions of those links.    In 

other words,   the apparent underlying graphs are directed.    The 

resultant layouts are to reflect this partial ordering.    This implies 

that,   although the undirected structure of the underlying graph may 

have cycles,  the directed graph representing the  partial ordering 
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does not contain directed cycles.    This also implies,  of course,   that 

the underlying graph may have no self-loops.    The underlying graph 

itself, however,   need not necessarily be directed,  but information 

about intended link direction,  and hence,  the partial ordering of 

nodes,  must be available. 

We do not require that network layouts be intersection free, 

although the number of intersections  should be minimized.    Nodes, 

in general,   should not have ADP's and EP's which might restrict the 

order in which links may be placed around a given node.    Although, 

nodes which specify one side for input,  and one for output may be 

used.     The resultant layout should optimize linear directional con- 

sistency by giving an overall direction to the  node placement based 

on the partial order.    It should also minimize the number of inter- 

sections which appear in the links between these nodes. 

We find then, that in forming   network type layouts,  some 

structural rigidity exists in the form of node placement with respect 

to partial ordering.    But some constraint optimization must be used 

for the attainment of a minimal number of intersections.    Layouts 

generated may include more than one source node (a node at which 

no arrows terminate),   and/or more than one sink node (a node from 

which no arrows originate). 

Network type layouts are common to many applications and 

and often used to depict logical order or flow,   such as in logic 
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diagrams or PERT flowcharts.    Some examples are shown in fig- 

ure 3-8.    In some cases where a network type layout is desired,  but 

the partial node ordering contains directed cycles, as in 3-8c, the 

directions of some of the arrows are temporarily reversed to remove 

the cycles as in 3-9a,   and once a layout has been achieved,  the 

original link directions are restored,  as in 3-9b.    In this case,  the 

directional consistency of the result is decreased. 

(a) 

(a) (b) 

Figure 3-9 
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By convention,  the partial order of the nodes is usually 

reflected in their placement along either the x- or y-axis.    For 

example,   source nodes may be placed to the left,   sink nodes to the 

right,  and all others in between,  dependent on their place in the 

partial order.    In our discussion of algorithms for network layout, 

this left to right placement will be used, but algorithms for other 

orientations may easily be derived from this discussion.  In sum- 

mary, we require that an algorithm for network layout place the 

nodes in such a manner that x-coordinate reflects the partial order- 

ing.    The y-coordinates (and within some limitation, the x- 

coordinates) may then provide some degree of freedom,   so that 

nodes may be positioned to minimize the number of intersections. 

Di Giulio and Tuan (12) have designed a two step algorithm 

to accomplish these tasks.    The first step consists of assigning the 

nodes to "stages" or groups to be given the same x-coordinate, 

according to the partial ordering.    Stages are numbered so that the 

lower the number,  the smaller the x-coordinate.    They are formed 

as follows: 

1) Form stage zero,  S(0),  from the union of all source 

nodes. 

2) Form stage   n,  S(n),  from the union of all nodes,  y,   such 

that for x 6 S(n- 1),  there is a directed link from x to y in the under- 

lying graph.    If the resultant S(n) contains any node   z  found in a 
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previous stage,   say,   S(n-i),   U   1,    mark the occurrence of  z   in 

S(n-i)  as a "dummy node" (indicated by  [zj   ),   delete all successors 

of  z  from stages   S(n-i+l), . . . , S(n)  unless these nodes are also 

successors of other non-dummy nodes,   and add the dummy node   [z] 

to each of the stages  S(n- i+1), . . . , S(n- 1). 

3)    The process stops when a stage,  S(m)   is reached for 

which   S(m) = 0 . 

Relative y-coordinate position of the nodes in each stage is 

indicated by the order of the nodes within the stage,  where the first 

node is the highest,  and so on.    Links are then drawn between appro- 

priate nodes in adjacent stages,  with the exception that if the node 

at which a link should terminate is not  in the next stage, the dummy 

node for that node is,   and the link is terminated here (without an 

arrow).    If a dummy node appears in a stage,  a link is drawn from 

it to the similar dummy node in the next stage (without an arrow),   or 

to the actual node for which it is a dummy (with an arrow), which- 

ever appears in the next stage.     In the final layout,  dummy nodes 

appear only as points. 

With the   graph underlying figure 3-9a the following stages 

are formed during the first step: 

S(0)   =   (1) 
S(l)   =   (2,3) 
S(2)   =   (4,  [|] , 6,  |T| ) 
S(3)   =   (5,7) 
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The next step of the algorithm then consists of rearranging 

the order of nodes within the stages in such a way that intersections 

are minimized.    First an  N X N matrix,   P  is formed where 
m 

N   =      y       I S(i) I .    The rows and columns are labeled with the 
i= 1 

names of the nodes in each stage,   in order,   starting with those in 

S(0),  then S(l),  and so on.    The matrix entry P(a,b) is then zero 

unless there is a link from node   a   to node   b,   in which case the 

entry is one. 

Once   P  is formed, the number of intersections which would 

result from drawing the layout according to the order within each 

stage may be seen in  P.    For,   one intersection occurs in the layout 

for each case in which, for  x < y,   i < j   (where   a<b   implies that 

row (and column)   a   precedes row (and column)  b in P),  both 

P(x, j) = 1   and   P(y,i) = 1,  and only in these cases.    This is proven 

as follows: 

Lemma:     In the construction of the matrix,  P,  and the layout corre- 

sponding to this matrix,   for each case in  P  for which both 

P(x, j) = 1   and   P(y, i) = 1, where   x < y   and   i < j,  there is 

exactly one intersection in the layout,   and intersections 

occur only in these cases. 

Proof: We first show that for each intersection,   there is a corre- 

sponding case in P. 
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Let (x,j)  and (y,i)  be two links that cross.    Since 

links essentially run only between two adjacent stages,   it 

must be that   x,y € S(n)   and   i,j  € S(n+1)   for some   n. 

Furthermore,   since the links cross, we must have that 

x < y   in   S(n)   and   i < j   in   S(n+1)   or that   x > y   in 

S(n)   and   i > j   in   S(n+1).    Assume the former (with no 

loss of generality).    Then it must be that   P(x,j) = l    and 

P(y, i) = 1   for   x < y   and   i < j . 

We now show the converse:   if   x < y,   i < j, 

P(x,j) = 1   and   P(y,i) = 1   then there is an intersection. 

Let it be the case that   x < y,   i < j,  P(x,j) = 1,    and 

P(y,i) = 1.    Now,   if x € S(n)   and   y € S(n+k)   for some 

k ^ 0,  then,   since links only travel for one stage, 

j € S(n+1)   and   i G S(n+k+l).    If   k M   then by the row 

ordering in the matrix,  i > j;  this is contrary to the 

premise;  hence,  k = 0   and   x,y € S(n)   and   i,j  € S(n+1) 

for some  n.    Then   x   will be positioned above   y   in   S(n) 

and   i   above   j    in   S(n+1)   yielding an intersection when 

the links are drawn. 

QED 

Thus the removal of all such arrangements in the matrix would 
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remove all intersections.      If it is possible to remove them,  they may 

be removed by changing the order of nodes within a stage,  and thus the 

order of the corresponding rows and columns in P.    Once we have 

obtained a new  P matrix (and corresponding node order in the stages) 

for which the constraint is not violated,  the corresponding layout will 

be intersection-free. 

An example might clarify this procedure.    Suppose we have 

the stages: 

* 
In the paper describing this algorithm DiGiulo and Tuan 

require that the matrix P  meet two contraints if the layout is to be 
intersection free: 

i)   The non-zero element of each row should be consecu- 
tively located,  and 

ii)   If the non-zero element of a row begins in column  j, 
then no non-zero element of any previous row may begin in a column 
with column index less than j. 

It is believed that this second constraint is in error,  for this 
allows situations which violate the constraint stated in the text and 
proven to account for the presence or absence of intersections. 

Furthermore,  violation of the first constraint implies violation 
of the constraint in the text.    This is shown as follows:   let   P(x,k) = 1, 
P(x, k+kj) = 0,  and P(x,k+k2) = l, for some  x and  k  and some k2> ki>0, 
and let x 6 S(n) (this is a violation of the first constraint).    Now,   since 
links travel only between adjacent stages,  and by formulation of  P, 
k.k+ko  € S(n+1),  and thus   k+k^  € S(n+1).    But also by formulation of 
the stages,   every element in a stage other than stage   0  has a prede- 
cessor in the previous stage.    But obviously n+1 -f 0,  so that there 
must exist a y € S(n) for-which  P(y,k+kj)= 1.    Now if   y < x  in S(n), 
then since   P(x,k)=l,   P(y,k+ki)=l  where   k < k+ki ,  the text con- 
straint is violated.    And if   x > y  in S(n), then since   P(x,k+k2) = l, 
P(y,k+k,) = 1  where   k+kj < k+k2>  the text constraint is again violated. 

For these reasons we have replaced the two constraints in the 
original algorithm of DiGiulio and Tuan, with the single constraint in 
the text. 
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S(0) = (1) 
S(l) = ( lH  ,3,4) 
S(2) = (2,5) 
S(3) = (6) 

The initial matrix P  is shown along with the layout it would generate 

in figure 3-10a.    Note that the constraint is violated once in the 

matrix and one intersection appears in the graph.    By exchanging 

rows and columns 3 and 4, we obtain the matrix of figure 3- 10b, 

p 1 an 2    5 6 
1 i i i 

m 
tl 

1 
1 

1 

2 

5 

1 

1 

6 

P 1 G3   4    3 2    5 6 

1 1   1   1 

m 1 

4 1 

3 1 

2 1 

5 1 

6 

(a) 

(b) 

Figure 3-10 
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which contains no constraint violations.    The resulting intersection- 

free layout generated is shown adjacent to the new matrix. 

It may not always be possible to remove all intersections, 

and certainly not in the case that the underlying graph is non-planar. 

However, the constraint optimization portion of network layout 

algorithms must attempt to meet this one constraint.    DiGiulio and 

Tuan give no information on how they optimize,  and no exact proce- 

dure will be given here.    However,  one observation will be made 

which allows us to outline such a procedure.    We note that ones will 

appear only in certain submatrices of P, namely those covering 

both the rows of S(n) and the columns of S(n+1)  for  n = 0, . . . , m- 1. 

All other entries in  P  are gxiaranteed to be zero.    Let us number 

these submatrices   M(l) M(m)  by column stage.      Now,   chang- 

ing the column order in M(n)  affects two submatrices,    M(n)  and 

M(n+1),   since we must also change the order of rows in M(n+1). 

And,  changing the row order in   M(n)  affects two submatrices,  M(n) 

and M(n-l),   since we must also change the column order in M(n-l). 

The remainder of P  is unchanged by these modifications. 

With this information in mind,  we may then outline a method 

for proceeding through the matrix in an orderly fashion to remove 

violations of the intersection constraint: 

1) Set   i = 1    and go to step 2. 

2) Check for violation of the intersection constraint in 
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submatrix  M(i).    If there are no violations in M(i),   go to step 4.   If 

there are violations,  attempt to remove one or more by first chang- 

ing column order in   M(i).    If only changing column order does not 

suffice then row order in  M(i)  may also be changed.    If no violations 

can be so removed,   go to step 4.    If one or more violations have 

been removed, then,  if only column order was changed,  go to step 2; 

if row order was changed at all,  go to step 3. 

3) Set   i = i- 1   and go to step 2 . 

4) Set   i = i+1.    If  i > m,  exit; else,   go to step 2. 

This is only a suggestion for an approach to optimization.    We do 

not claim that any decrease in the number of intersections will 

result.    At this point we are unable even to guarantee that the pro- 

cedure will terminate.    The problem requires further examination. 

A few additional difficulties are found with the procedure 

suggested by Di Giulio and Tuan which will be noted here.    First, 

consider the situation for the underlying graph of figure 3- 11a.    If 

we follow the procedure given,  we will be unable to remove the 

intersection shown in the layout of 3-lib.    The procedure,  as stated, 

requires that only one occurrence of a dummy node per real node 

exist in a given stage.    Thus,  effectively,  links with common ter- 

mination points are joined in the earliest stage possible.    This 

treatment,  as shown in 3-lib may generate unnecessary intersec- 

tions.    However,  if we change the procedure to allow a number of 
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(a) (b) 

Figure 3-11 

(c) 

dummy nodes to be generated per stage, one for each predecessor, 

such unnecessary intersections may be avoided. For example, we 

might change step 2 of the stage generation process to read: 

2)   Form stage n,  S(n),  from the union of all nodes   y   such 

that for   x € S(n- 1),  there is a directed link from  x  to  y.    If the 

resultant S(n)  contains any node  z  found in a previous stage,   say 

S(n-i),   i^l,  create  q  dummy nodes     z,    , . . . ,  | zn       in S(n-i), 

one for each predecessor of  z   in S(n-i-l),   and remove   z  from 

S(n-i).    Delete all successors of z  from stage   S(n-i+1),..., S(n), 

unless these nodes are also successors of other non-dummy nodes. 

Add the  q dummy nodes,      z-.     , . . . , 

S(n-i+l) S(n-l). 

,  to each of the stages 
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These  q dummy nodes are to be handled in the P  matrix in the same 

manner as any other nodes.    However, when links are drawn,   only 

dummy nodes with matching subscripts are attached.    The   q  prede- 

cessors of the dummy nodes are attached only to dummy nodes with 

matching subscripts.    When the real node represented by the   q 

dummy nodes appears,  all  q  dummy nodes are attached to it.    Thus 

the stages for the example in figure 3- Ha would be: 

S(0) = (1) 
S(l) = (2,3) 
S(2) = ([5oL4,    5o   ) 
S(3) = (5T^ 

The resultant layout is shown in figure 3-lie. 

A similar difficulty is found with the procedure of DiGiulio 

and Tuan due to the requirement that non-dummy nodes be placed in 

the earliest stage possible.    Consider the underlying graph of figure 

3-12a, for example.    According to the procedure of DiGiulio and Tuan, 

the layout of 3-12b would result, with one intersection.    Again,  the 

underlying graph is planar,  and the intersection unncessary.    The 

procedural modification required here is more complex than that for 

the previous problem.    What is necessary is a detection of situations 

such as that in stage 2, .and a separation of such a stage into two 

stages,   along with the creation of an appropriate number of dummy 

nodes.    The results of such a modification on 3-12b are shown in 

figure 3- 12c.    The main problems here are the detection of the 
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or 

(a) (b) 

Figure 3- 12 

(c) 

situation and the decision as to the manner in which the nodes of a 

stage should be broken up.    For example, with the figure of 3-13a, 

no such solution is possible,  whereas with 3-13b and c,  a solution 

is possible,   although it is difficult to make rules for obtaining these 

solutions. 

Returning to our discussion of network layouts,  we have seen 

that constructive algorithms required for their formation combine 

both structural rigidity and constraint optimization.    In the last few 

paragraphs the interrelation between these two algorithmic charac- 

teristics has become apparent.    For,   it was shown that the more we 

allow the algorithm to optimize for minimal intersections,  the less 

rigidly the resultant structure (and stage contents) could be pre- 

dicted. 
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(a) 

(c) 

Figure 3- 13 

3.2.2.4   General Layouts 

The main characteristic of the layouts classified under the 

general type is that very little,   if any,  particular structure is pre- 

dictable.    It is often the case that for these applications,  the appar- 

ent underlying graphs used may be too complex for layout structure 

to be predetermined.    We include here layouts with apparent under- 

lying graphs which have all ranges of complexities and character- 

istics. The exceptions are those layouts which use ADP's or EP's. 
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The reason for this exception will become clear in the discussion of 

the next layout type.    Algorithms for general layouts, then,  must 

consist mainly of constraint optimization,  as determined by the 

particular application.     Subtypes may be differentiated by the par- 

ticular constraints or qualities optimized,   and the particular prior- 

ities the various qualities are given. 

Among the layouts categorized under the general layout typ- 

ing we find,  for example,  layouts used in graph theoretic illustra- 

tions,  chemical structure diagrams,   state diagrams,  and layouts 

used as diagrams in countless other applications in which underlying 

graph structure is too complex for structural rigidity.    We will con- 

sider a few of the layouts found in this typing,   along with their con- 

straints and priorities. 

Layouts used to illustrate the chemical structure of a mole- 

cule,  by convention, preserve certain familiar figures where 

possible,   such as hexagons and pentagons.    Nodes usually represent 

atoms and links represent bonds.    In order that links be somewhat 

representative of the physical make-up of the molecule being 

depicted, link length consistency should be aimed at,  along with a 

minimum number of bends.    Another characteristic,  not considered 

in section 1.1,  and not common to many layout applications,  the 

characteristic of three-dimensionality,   is relevant in chemical lay- 

outs.    What is meant here is that,  where possible, the layout should 
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be drawn so that a three-dimensional interpretation may be given to 

the layout.    Three-dimensionality is,  in general,   very difficult to 

realize,   unless,   of course,   the three-dimensional coordinates of 

the nodes are known,  in which case,   the layout may be generated as 

two-dimensional projection of the three-dimensional object.    This 

quality,  however,   is not the type of layout criterion considered in 

this work,   and will not be treated here. 

Layouts used as graph theoretic illustrations may be formed 

in many ways.    Often the requirements of the layout are dependent 

on the particular idea to be illustrated.    However,   in general, the 

idea of greatest concern is that the graph theoretic structure be 

easily seen in the resultant layout.    This suggests that the quality 

of fidelity,   as described in section 2. 1.1,   might have first priority. 

Next in priority might be those qualities which add to directionality 

in layout such as minimum number of intersections,  minimum num- 

ber of bends,   and minimum total link length.    In fact,  most of the 

qualities discussed in section 2. 1 are appropriate for application 

here,  and the decision about priorities may become quite arbitrary. 

With state diagrams,  we find that the qualities and priorities 

are similar to those of graph theoretic illustrations,  although the 

most important qualities are probably a minimum number of inter- 

sections and a minimum number of bends.    For, with state diagrams, 

the greatest concern is that links be easy to follow (and to label). 
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Again,  most of the other qualities considered in section 2. 1 are 

applicable to state diagrams.    Examples of layouts from these three 

applications are shown in figure 3-14. 

chemical 
structure 

graph theoretic 
illustration 

Figure 3- 14 

state 
diagram 

Thus we see that different applications are distinguished by 

different sets of qualities and priorities.    A small amount of struc- 

tural rigidity may be present.    In the case of chemical structures, 

the requirement that,  above all,  certain familiar figures be rea- 

lized, may be interpreted as a somewhat structurally rigid require- 

ment.    A chemical layout algorithm might begin by forming such 

figures,  and throughout the constraint optimization phase of the 

algorithm,  these familiar figures may be treated as inseparable 

units.    However, with cases such as graph theoretic illustrations 

and state diagrams,  the algorithms will be totally dependent on 

constraint optimization! 

With this in mind, we must consider whether a sufficient 

number of the advantages of application dependency still remain with 

most layouts of the general type to merit the development of new 
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constructive algorithms for layout,  in place of using sequences of 

modifying algorithms as in section 2.2.2.    Although some structural 

rigidity may be present with general layouts,   it is not enough,   in 

general, to avoid the need for some arbitrary placement in layout. 

Furthermore,   certainly,   in many applications using the general lay- 

out type,  algorithms which modify existing layout,  rather than arbi- 

trarily creating new layout,  would be preferred.    For these reasons, 

it is felt that perhaps,   a better approach to layout for the general 

type is the modifying approach and that the constructive approach is 

improper for these layouts.    We need not,  however,  lose the advan- 

tage of applying a single algorithm for layout rather than a sequence 

of modifying algorithms.    For,   since we know the quality priorities, 

we may combine the sequence into one algorithm.    The modifying 

algorithms will be combined so that,   in order that the changes they 

make will be overridden the least,  those algorithms for qualities with 

higher priority will be performed later than those for qualities with 

lower priority. 

An example might make the above discussion clearer.    Sup- 

pose we are given the graph underlying figure 3-15a,  along with its 

present layout.    This figure represents a state diagram for a machine 

which accepts the strings   a b and b  a for   n   odd.    We wish to mini- 

mize the number of bends and the number of intersections,  above all 

else,  perhaps,   giving priority to the number of intersections .  Instead 
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(b) 

(c) 

Figure 3-15 

(d) 

of using a constructive algorithm which ignores the initial layout, 

and which might give us the layout in figure 3- 15b, we use an algor- 

ithm which is a combination of modifying algorithms of section 2.2. Z, 

first one for bend removal,  and then for intersection removal.    This 

algorithm would first give us the layout of 3-15c,  and finally that of 

3- 15d.    This final figure depicts the structure of the state diagram in 

a layout which is more in accordance with the original layout than 

that of 3-15b. 

In the cases where some structural rigidity is to be 
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maintained,  as with chemical structures,  two approaches are pos- 

sible within this modifying framework.    On one hand,  a layout algor- 

ithm may consist first of a series of modifying algorithms applied 

in the order suggested above,  followed,   second,  by a procedure 

which insures that the requirements of structural rigidity are met. 

Or,   on the other hand,   a layout algorithm may first introduce the 

structural rigidity,   and follow this by an appropriately ordered 

sequence of modifying algorithms similar to those in section 2.2.2, 

but which have been modified so that in any manipulation performed, 

they retain the particular structural rigidity introduced in the first 

part of the layout process.    It seems that since we are building 

algorithms for particular applications, perhaps,  the second approach 

would give the best result.    For,   in a sense,  all of the optimization 

is tailored to the particular application with this approach. 

One problem remains,  however,  with the use of modifying 

algorithms in combination in a non-interactive environment.    Sup- 

pose the   original layout were drawn as in figure 3-16a.     Then no 

intersection would need to be removed,  although the number of bends 

is large.    A single layout algorithm made from a combination of 

modifying algorithms might then yield the result in 3-16b,   rather 

than that in 3- 15d,   since the bend removal algorithm must not cause 

any intersections to be created.    But if we were to allow the user to 

interact with the layout procedure,   rather than applying a 
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(a) (b) 

Figure 3- 16 

non-interruptible process, we could obtain the result of 3- 15d,  which 

seems to be a better layout in terms of clarity,  and which is closer 

to the layout originally drawn.    Thus a single non-interruptible 

algorithm for layout might not produce the best result,   and, with 

algorithms containing so little structural rigidity, perhaps,   some 

amount of user interaction is desirable. 

Thus we might even question whether a single algorithm 

approach is suitable for most applications using general layouts. 

Or,  in fact whether,  due to the non-predictable structure of their 

underlying graphs, the interactive type of environment used in 

chapter 2 is best.    Even when some structural rigidity exists,  as in 

the familiar figure requirement of chemical layouts,   placing speci- 

ally designed modification algorithms which retain initially intro- 

duced rigidity in an interactive environment, might prove to yield 
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better results than those provided by a single non-interactive 

process. 

3.2.2.5   Ordered-Arc Layouts 

The ordered-arc type includes layouts which are found in 

applications where there may be little structural rigidity,   due to the 

complexity of the  apparent underlying graphs,  as with the general 

type.    But these layouts also contain specific fixed points on their 

nodes at which links may terminate or begin (EP's or ADP's). 

Hence, there is some restriction of the order   in which links may 

be arranged around a node.    The reason for the differentiation of 

layouts of this type from those found in the general type is that,   due 

to this extra restriction on links,  additional difficulty is found in 

developing optimization procedures for some qualities.    Any move- 

ment during an optimization process,  which changes the order of 

links around a node must be examined to avoid violation of these 

order restrictions. 

The best example in which the effectiveness of an optimiza- 

tion procedure is inhibited by this restriction is found with the modi- 

fying algorithm of section 2.2.2.7 for minimizing the number of 

intersections in a layout.    The algorithm proceeds by moving nodes 

from one region to another.    Often, when a node is moved in this 

way, the link order around some node is changed.    In fact, Anger (2) 
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states that the number of intersections for each representation of a 

graph with a distinct link order around the nodes is completely deter- 

mined by this order.    Thus,   if link order is restricted,  the minimal 

number of intersections for the underlying graph may not be attain- 

able in the layout. 

For example,  consider the   layout of figure 3-17a.      If we 

restrict link order to that which appears, we cannot obtain an inter- 

section free layout; whereas,  if we allow order to change around 

nodes b  and d, we may obtain the intersection free layout in 3- 17b. 

We see then that the intersection elimination algorithm which 

has been designed for layouts in which link orders may be changed, 

may not be effective with ordered-arc layouts.    Other algorithms for 

these layouts must be designed.    Similar problems are seen with 

many of the algorithms discussed in section 2. 2. 2.    For example, 

those algorithms given for the realization of repetition,  familiar 

figures,   link length consistency,  fidelity,  bend removal,  and 

(b) 

Figure 3-17 
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minimum link length may also change the order of links around a 

node. 

Thus,   although ordered-arc layouts are similar to general 

layouts,  algorithms cannot,   in general be built on the modifying 

algorithms of section 2.2.2.    Instead we will see that specially 

designed optimization procedures must be used for these layouts. 

These include both modifying and constructive or semi-constructive 

algorithms.    The fact that constructive algorithms have been built 

for the layout of some ordered-arc layouts, whereas we find this 

most difficult with general layouts needs some explanation.    With 

ordered-arc layouts, the restricted link ordering may impose 

structure on a layout which has an effect similar to structural rigid- 

ity,   although,  here,  the basis for the structure is inherent in the 

original layout given rather than imposed on the layout by the algor- 

ithm,  as with structural rigidity found above.    For,   the link order 

itself may limit the number of ways the layout may be formed.   Thus 

there is not as much room for arbitrary positioning as there is with 

layouts of the general type. 

The problem of designing either modifying or constructive 

algorithms for ordered-arc layouts is very difficult.    What has been 

done in many cases is that the layout problem has been broken into 

subparts.    For example,   first the node positions might be decided, 

and then the links might be routed.     Only a few algorithms developed 
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to date treat the nodes and links of ordered-arc layouts simultane- 

ously. 

Among the applications in which ordered-arc layouts are 

found we will consider two in particular,  AMBIT/G and circuit lay- 

out.    With AMBIT/G layouts,  only the points of link origin are fixed; 

links may terminate anywhere on a node.    Whereas,  with circuit lay- 

outs,   where the nodes represent circuit elements with fixed input 

and output pins,  both link origin and termination points are fixed. 

Example of these layouts may be seen in figure 3-18. 

AMBIT/G Graph Circuit Layout 

Figure 3-18 

Little work has been done on automatic layout generation for 

AMBIT/G.    The most important quality for layouts of graphs  output 

in this particular application is that the layout of an output graph 

resemble,   as closely as possible,   the layout of the input graph from 

which it was derived.    Here,   again, we have a layout criterion which 

is common to few applications and has not been considered in section 

2. 1.    After this first criterion has been met, most of the criterion 
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found in section 2. 1 are applicable.    As mentioned above,   however, 

the algorithms for realizing these qualities must be changed in order 

to account for the presence of ADP's.    An additional restriction also 

occurs in AMBIT/G,  in that nodes may not change their orientation; 

for example,  they may not be turned upside down.    Criteria may 

take new forms as a result of such restrictions.    For example, 

examine the criterion used in the original AMBIT/G output program. 

This criterion causes a node at which a link terminates to be placed 

in the direction of the link relative to the node at which the link 

begins.      Such a criterion tends to minimize the number of bends, 

and,   in general,  to add to directionality.    Yet such a criterion is not 

possible with general layouts,   since neither are the points at which 

links leave a node fixed,   nor,   in general,  are the node orientations. 

Thus an algorithm for AMBIT/G layout must first base the 

layout on that of the original input graph,  and then fill in the remain- 

der using a procedure which optimizes the qualities of section 2.1, 

but which is specifically designed to deal with the additional restric- 

tions of ADP's and node orientation.    The amount of arbitrary place- 

ment resulting will depend on the similarity of the output graph to 

the input graph,   and upon the amount of restriction in link order 

provided by the ADP's in the particular output graph.    In a sense, 

* 
See chapter  1 
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we may consider such an algorithm as semi-modifying due to the 

fact that it is based on another layout. 

With circuit layouts,   both link origins and termination points 

are fixed,  although node orientations,   in general,  are not.    Circuit 

layouts are used to represent the manner in which circuit elements 

are to be placed and wired in manufactured circuits.    Two design 

and economic considerations determine the most important criteria 

for circuit layouts.    These are that the number of intersections be 

minimal and that the total wire (link) length be minimal.    The 

reason for the first criterion is that circuits are often printed; for 

each intersection,   a special bridge must be built to insulate one 

wire from another,   and each such bridge adds to the manufacturing 

cost for the circuit.    The second criterion is relevant for two rea- 

sons.    First,   the more wiring necessary,  the higher the cost for 

the circuit,  and second,  the greater the length of a wire,   the longer 

it takes for a signal to go through it.    Such delay is undesirable in 

circuits.    Few other criteria of sections 2. 1 are relevant to circuit 

layouts,   since such layouts are not,   in general,   intended for human 

consumption. 

The problem of automatic circuit layout,   given these two 

criteria,  has been studied for many years,   and has been of increas- 

ing interest in the field of computer development.    The problem has 

been called the  "backboard wiring problem" in the past.    Many 
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methods for layout have been suggested,  and will be summarized 

here.    We will see that the development of an effective constructive 

algorithm which treats the complete problem is very difficult, 

although several attempts have been made.    Instead the problem is 

usually broken up into a node placement stage,   "the placement prob- 

lem, " and a wire routing stage,   "the connection problem, " and 

each is treated separately.    Each of these two problems assumes 

the other to be solved,   or,  to be solvable,   and ignores it.    It has 

been suggested by Breuer (9) that this divided treatment of the prob- 

lem is not as effective as a total solution might be. 

Several authors have considered variations of the problem 

which are relevant to circuit layouts,   but which go beyond the scope 

of our study.    Among these variations are the concept of orthogonal 

wiring,   wiring on two sides of a board to which elements are 

attached,   one side with horizontal wires,  and one with vertical. 

Also considered is multi-layer wiring,   or placement and wiring on 

several layers or boards.    Since our goal is to study the layout 

problem on a two-dimensional surface,  we will not concern our- 

selves with these variations. 

Let us begin by examining some of the approaches developed 

for the placement problem.    Most approaches  solve the problem on 

a grid.    The general placement problem may be stated as follows: 

Given a set of elements   E=   { e   , e    e   ]   and an   mxn grid, P, 
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where mxn a  k,  with positions   P.. ,   i = 1, . . . , m, j = 1, . . . , n,  find 

a placement of E  on P  such that a function  F  dependent on the 

placement,  is minimized.    A more restricted form of the  problem 

has been considered by Miehle (27),  in which some of the elements 

are in fixed positions. 

The function,  F,  to be minimized is usually a measure of the 

optimization of a particular placement for wiring purposes.    Thus, 

for example,  F  may be a measure of the total resulting wire length 

or the number of intersections in the wiring of the system or both. 

The connection information for the system, which is needed for the 

calculation of F,   is usually recorded in a  kxk  connection matrix, 

C, where the entry  C..    is the number of wires connecting  e.   and   e.. 
ij i 3 

A common approach to the problem is the modifying approach 

in the form of a one or two step algorithm,   in which,   starting with an 

initial placement,  each pass through the algorithm improves the 

function F by a change in the placement.    The algorithm is con- 

sidered completed when no improvement can be made by another 

pass; in other words,  a local minimum has been reached.    The mini- 

mum reached is,   in general dependent on the initial placement,  as 

with most modifying algorithms. 

As mentioned in section 2.2.2.8, Steinberg (33), whose only 

aim is to minimize wire length, formulates a solution as a one- step 

algorithm.    His algorithm has been used as the basis for many 
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others.    In preparation for the application of the algorithm,  a family 

of unconnected sets   (U,, . . . , U   }    is formed from  E,   such that 
1 P 

every   e.  6 E   is contained in at least one unconnected set,  and if e. 
'      1 l 

and   e.   are in the same unconnected set, then   C.. = C. = 0.    An 
J ij Ji 

initial placement is then specified.    A step of the algorithm proceeds 

by considering one of the unconnected sets,  U   ,  and the set of posi- 
9 

tions   A     which are either unoccupied,   or occupied by   e.   € U   .    It is 
S X s 

then necessary to find that placement of  U     into A   , leaving all 
s s 

other elements fixed,  which minimizes the function F.    Steinberg 

defines   F   as the sum of a function,   g. : 

k 

£«!'    h •  .2  «C«j ' V). 

where   d   ,  ,      ...    is a function of distance depending on the place- 
P(i), p(j) 

ments of   e.    and   e.,  p(i)  and p(j),   respectively,  and where 

f(C.    d   ...      ...) = 0   if   C.. = 0.    We have then that: 
ij>     P(0, p(j) xj 

F    =     £        f+2        f+2 f+S f 
i?us i€Us Uus i6Us 
j?us jeus 

V F2 F3 

Now  F.   remains fixed for all placement of  U     in A     since none of 
1 s s 

these elements are moved.    F_   is zero since   C =0   for all 
3 ij 

e. , e.  6 U    .    And finally,   it remains to find that placement of   U l       j s 7 r s 
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into A     which minimizes   F„.    But this problem may be formulated 
s 2 

as the classical assignment problem as defined by Flood (15):   given 

N men and M jobs,  N < M,   and for each man-job combination,   a 

rating a..,   i € N, j  € M,  find the assignment of men to jobs that 

minimizes / a..  .    In our problem,  U     replaces   N,  A     replaces 
^—i   IJ s s 

M,  and   a.,   is the function   g. =     / f(c..   ,  d.     ,, .) where 
U 1      k^u ik       j.p(k) 

S 
p(i) = j.    Steinberg refers to the work of Munkres (30) and Kuhn (23) 

for solutions to the assignment problem.    The algorithms discussed 

in these papers consider the matrix A = ||a..|| ,  and look for a set 

of N  independent entries (one in each row and no two in the same 

column of A),   such that the sum of this set is a minimum.   Given the 

solution to the assignment problem,  Steinberg's algorithm proceeds 

by placing the elements of U     in the optimal positions determined, 
s 

and concludes the step by calculating the value of F  resulting from 

this new placement.    The algorithm proceeds cyclically through  U 

until, for  p  successive steps,  no improvement is made in  F. 

In his work,  Rutman (32) makes several improvements and 

additions to Steinberg's basic algorithm,  which make it more suit- 

able for computer use and which better the results.    He gives a 

procedure for forming a family of unconnected sets,  and a method 

for solving the assignment problem efficiently on a computer using 

Munkres' algorithm. 

Rutman also mentions that often an interchange of connected 
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elements helps to improve the solution.    In Steinberg's algorithm, 

no means for such interchange is provided,  as connected elements 

are never processed in the same step.    Thus Rutman suggests that 

interchanges be made at certain intervals between algorithmic steps. 

Finally,  he states that in Steinberg's algorithm groups of tightly 

connected elements are reluctant to move; as a result,   long single 

wire connections tend not to be minimized in some cases.    To 

remedy this,  he suggests that the algorithm proceed in two phases. 

In the first phase,  by changing the definition of the function   g. , 

longer wires tend to be minimized.    In the second phase,  all wires 

are minimized by another function,  g. .    The results Rutman obtains 

using these modifications tend to be better than those from the 

unmodified algorithm. 

Steinberg's algorithm as formulated has not considered the 

problems specific to ordered-arc layouts,   even though he is dealing 

with this layout type.    However, this is to be expected,   since neither 

does he concern himself with the number of intersections the result- 

ant layout will contain.    He may thus ignore link order since chang- 

ing the link order,  while keeping link terminals fixed,   essentially 

affects only the number of intersections in a layout. 

In another general approach to the placement problem,  a 

constructive approach,  the elements are placed one at a time on the 

board.    The position and time at which an element,   say   a,   is placed, 
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is based upon the positions of elements already placed,  and the rela- 

tion of element   a   to these elements. , 

Gamblin,   Jacobs and Tunis (16) use this method to place those 

elements with "maximum conjunction" and "minimum disjunction" of 

pins in closest proximity.    They choose from those elements not yet 

placed,   one which ranks highest in this respect to the elements 

already placed,  and a position is then given to this element.    With 

this positioning the authors conclude that smaller wire lengths and 

fewer intersections will result when the system is wired. 

Case,   et al.  (11) also incorporate this element-by-element 

approach into their placement system.    For each element in turn, 

where order here is arbitrary,  that position is chosen which mini- 

mizes a distance measure with respect to the elements already 

placed.    The measure used is the sum of the rectangular distances 

from this element to all others to which it is connected and which are 

already on the board.    However,  at the conclusion of this initial 

phase, the placement measure is improved by a series of element 

interchanges between every pair on the board.    If the placement 

measure is improved by a given interchange, the new positions are 

kept.    The process continues until no gain is obtained by such inter- 

changes.    This process does not concern itself directly with minimal 

intersection,  however. 

As an interesting sidelight, we mention the solution formulated 
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by Miehle,   as a system of equations,  the solutions of which are found 

by known numerical techniques.    Miehle has used this approach to 

find a placement for a subset of E, where the remaining elements of 

E   have fixed positions,   such that wire length is minimized.    The set 

of equations which he formulates is a mathematical description of a 

physical model he built.    With pins as elements,  where some are 

fixed and others freely movable,  the connections are modeled by the 

winding of a string throughout the system.    When the string is pulled, 

the movable pins assume those positions which minimize total string 

length. 

In summary,  there have been two main approaches to place- 

ment, the  modifying approach used by Steinberg,   and the constructive 

approach used by Gamblin,   et al.    In the former,  no consideration is 

given to the minimal number of intersections,  whereas in the latter, 

both minimal intersections and minimal length are kept in mind. 

We now consider approaches to the second part of the back- 

board wiring problem,  the connection problem.    The connection prob- 

lem may be stated most generally as follows:    given a list of connec- 

tions to be made between fixed points on a two-dimensional surface, 

specify the routes of these connections so as to minimize a function   F, 

dependent on this routing.    As mentioned in section 2.2.2.7,   algor- 

ithms which solve such a problem are considered to be semi- 

constructive,   since part of the layout is fixed (the nodes),   and part is 
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to be constructed (the links). 

The problem then,  for circuits is to find routes for wires 

which minimize the total length and the number of intersections. 

This problem has been examined by Lee (24).    Lee's algorithm pro- 

vides a general method for finding a path from one point to another on 

a grid, while minimizing any number of monotonic functions simul- 

taneously.    A function,  f,   is monotonic with respect to Lee's algor- 

i      i i     k 
ithm if for every path   p(c , c ) we have the inequality f(p(c , c   )) ^ 

f(p(c , c )) where   p(c , c   )   is any subpath of   p(c , c ).    For the back- 

board wiring problem, the functions considered are,   of course,   total 

length and number of intersections,  although Lee gives examples of 

other functions,   such as minimal proximity to certain objects. 

Generally speaking,  the algorithm proceeds step-by-step on a 

grid,  building outward from the starting cell of a path,  until the final 

cell is reached.    If the final cell is not reached after a certain point, 

no path exists .    With each step those cells adjacent to already 

recorded cells, which are not barriers to a path and which maintain 

a minimum value for the series of functions being considered,  are 

recorded,   so that when the final cell is reached,  the minimal path 

may be traced back to the starting point. 

More specifically, let steps from a given cell be allowed in 

four directions: up(T), down ( I ), left(*~), and right (-*). Let the 

set   L   be the set of those cells from which we may still explore paths, 
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and to which paths are still minimal.    If we are to find a path from 

A   to   B,   originally   L,   contains only   A.    Let us also assign to each 

cell in   L   a cell mass,  or set of minimal values for the series of 

functions under consideration; this appears in the form of a vector 

of values.    The cell mass for   A   is a vector of zeroes.    The algor- 

ithm is then: 

1) Form   L   ,  a set of all cells adjacent to those cells in   L 

which are not barriers.    For each of these cells find the minimum 

function value sums possible,  and the direction of the  cell in   L 

from which a step was taken in order to obtain the minimal sum for 

this cell.    Go to step 2. 

2) Choose that set of cells from   L     with the minimum func- 

tion value sum; add this set to   L,   and assign those function values 

as cell mass for these cells; delete   L   ,  and go to step 3. 

3) Adjust   L   by removing those cells in   L,   all of whose 

adjacent cells,   if not barriers,  have had their cell mass determined. 

When   B   appears in   L,  the minimum path may be obtained by trac- 

ing back from   B   according to the directions recorded.    If   L   is 

exhausted before   B   appears, no path exists. 

A small example should clarify the algorithm.    Consider the 

board shown in figure 3-19 where cell 11 is a barrier cell. 
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Figure 3- 19 

Let us consider optimizing two functions, f   and   g   where: 

f(p(c\ c1))   =   0 

and for all   c   ^ F: 

f(p(c\ c3)) •I 
i     k i I 

f(p(c  , c   )) + 1      iff   c     is    T ,   i , -,   or   -»    of  c 

undefined,   otherwise 

g(p(c1. c1))   =   0 

for all   cJ ± F   and   cJ = X: 

=   { -1   Ji 

i      k i k g(p(c  , c   )) + 2   iff   cJ    is   t,  I, «-,   or -    of   c 

undefined,   otherwise 

and for all   cJ ± F   and   cJ $ X: 
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g(p(c\ cJ)) 
g(p(c , c   ))   iff   c     is    f, I, *-,  or -•    of   c 

undefined,  otherwise 

Then,   originally, the cell mass of   A   or cell 2 is (0,0) and the set 

L. = { 2} .    Proceeding to step 1 we find   L     to be: 

W 
sum 

1   (1,0)   -*     1 
3   (1,0)    -      1 
6   (1,0)    t      1 

since, for example   f(p(2, 1)) = 1,   g(p(2, 1)) = 0.    In step 2 we find 

the  minimum function value sum to be 1,  and thus we choose the set 

{1,3,6}    to add to   L.    We now assign those function values to 1, 3, 

and 6 as cell masses which are shown in figure 3-20,  and we can 

1 

(i.of 

2 
A 

(0,0) 

3 

(1,0)" 

4 

5 6 

(i.o/ 

7 
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8 

9 10 
X 

11 
F 

12 

13 14 15 
B 

16 

Figure 3-20 

delete 2 from  L,  leaving  L =  {1,3,6}  in step 3.    Proceeding through 
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steps 1,   2,  and 3 again, we have: 

sum 
L  :      5     (2,0)    t      2 

10  (2,2)    T      4 
7     (2,2)    t      4 
4     (2,0)   -     2 

The minimum sum is   2  and thus the set    {5,4}    is added to   L,  and 

each of these cells is assigned a cell mass.    Cells 7 and 10 are left 

unassigned.    L   finally becomes   L =  {3,6,5,4}.    Continuing for 

four more passes through the algorithm we have the steps shown in 

figure 3-21. 

*i 
sum min. sum ce 11s assigned resultant L 

9 (3,0)   1 f           3 
10 (2,2)    1 4 
7 (2,2)    1 f           4 
8 (3,0)    1 3 3 9,8 {3,6,9,8} 

7 (2,2)    1 \           4 
10 (2,2)    1 4 
13 (4,0)    1 4 
12 (4,0)    1 r        4 4 7,10,13, 12 {10,13,12} 

14 (3,2) f           5 
16 (5,0)    1 f           5 5 14,16 {14,16} 

15 (4,2)   • 6 6 

Figure 3-21 

15 {15} 

We have then reached   B   with the cell masses shown in figure 3-22. 

We may trace the minimum path back to   A,  to obtain the resultant 

path 15-14-10-6-2.    Note that several arbitrary decisions were made 

in assigning cell masses and directions,  and thus,  that this is not a 
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unique minimal path. 

Lee's algorithm has been incorporated into many backboard 

wiring systems.     Case,   et al,  for example use their own heuristic 

for wiring a board,   but follow its application by the application of 

Lee's algorithm to complete paths which their own heuristic is 

unable to complete. 

In applying Lee's algorithm,  however,   the question of order 

of routing arises.    Breuer (9) says that when longer wires are routed 

first, more   channels are blocked,   making it difficult to route short 

wires,  whereas,   since longer wires are more difficult to route,  per- 

haps they should be placed first.    Thus,   one may either minimize 

the   number of wires left unrouted or minimize the total wire length 

of unrouted wire. 
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Vincent-Carrefaur (37) has tried to do away with ordering in 

the process of routing connections by forming all paths simultane- 

ously.    However he finds this "dynamic" method too inefficient for 

large system.    In exploring several algorithms for simultaneous 

routing he finds the "obstacle method" to give the best results.   With 

this method,  initially all connections are made along the best paths 

possible.    Each path is then examined and adjusted with respect to 

the others,  until no gain is made by the adjustment.    If a required 

minimum is  not met, then the least optimal path is removed and 

replaced with a path which was previously eliminated but is more 

optimal.    Although good results were obtained with this method, 

large systems are not handled  easily. 

Thus we find that Lee's algorithm contains the basic approach 

underlying many solutions to the connection problem,  by routing 

wires using a search for the best path with respect to a given set of 

functions on the paths.    Both criteria for circuit layout may be opti- 

mized in the result. 

Let us now examine the approaches in which the two problems 

are handled together.    Breuer (8),  who maintains that this approach 

is the best,   since the tWo problems are closely interrelated,   has 

formulated the two problems together as an integer linear program. 

He forms a set of inequalities which require that the elements be 

placed on a rectangular grid with no two elements occupying the 
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same position.    In his formulation,  Breuer allows that links are not 

completely determined,  but that certain groups of pins which are to 

be connected are specified.    He then asks that for each such group 

the tree with the shortest length, which connects members of the 

group be used,  and that the sum of all of these shortest lengths be a 

minimum.    He also allows other restrictions to be specified,  for 

example,  that certain elements be directly connected,  that two 

elements be separated by a certain distance,   or that no connection 

be longer than a certain length. 

Kalish (20),   in his MAPID system, which is unusual in that 

he considers ease of reading as one criterion,  also handles the two 

problems together.    His system consists of two processes,  a 

"topological" process and a  "geometric" process.    The topological 

process is subdivided into two phases.    In the first phase,  the 

"horizontal" phase,   the elements are placed in separate columns in 

order of dependence,  with each element placed to the right of all its 

input elements.    Single-input-single-output elements are not con- 

sidered.    The vertical positions for elements are assigned in a 

snake-like pattern with each element in a different row as well as 

column. 

In the second phase,   or  "vertical" phase,  the elements are 

adjusted vertically in their columns and connections are rerouted to 

minimize intersection.    All connections are restricted to a simple 
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L-shape.    Initially a list of intersections is made.    The list is then 

processed cyclicly.    A step consists of processing the intersection 

at the top of the list.    In an attempt to remove the intersection,  the 

four nodes which it involves are moved vertically in their columns 

above and below all connections in the columns.    The position with 

the total net gain in number of intersections removed is chosen.    If 

there is no gain,  the intersection is placed at the bottom of the list. 

Any new intersections are recorded.    When the list has been proc- 

essed completely at least once with no net gain,  the process ends 

and the geometric process begins. 

The geometric process is intended to increase clarity.    It 

begins by the inclusion of those  single-input-single-output elements 

discarded in the previous process.    These are placed in separate 

columns but in the same row as the horizontal part of the connec- 

tions on which they lie.    There are then two phases of the geometric 

process:   a "vertical" phase and a "horizontal" phase.    In the verti- 

cal phase the elements are moved up or down in their columns to 

obtain a minimum number of rows and a minimum number of bends 

in the connections.    In the horizontal phase, to reduce unnecessary 

space,  all elements are moved to the left as far as possible,   and 

then those elements with more output than input are moved to the 

right to reduce the number of long wires.    We notice that his 

approach is similar to that used for network type layouts. 
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Another approach to the simultaneous solution of these two 

problems is found in the work of Mamelak (26) who is concerned with 

the  layout of logic diagrams.    He tries to identify "chains" or sets 

of interconnected elements,  two of which are connected to all of the 

remaining elements of the set.    Mamelak claims that these chains 

are characteristic of circuits.    Each chain found is assigned to a 

row or column of the board.    In this way intersections are minimized. 

Placement of chains relative to one another is determined by total 

wire length, and other electrical criteria.    He claims that the results 

obtained using this method were comparable to the work of experi- 

enced designers. 

We notice that with Kalish's approach to the problem,  a 

means for structuring the layout has been chosen which is not part 

of the convention of circuit layout.    In fact,  the structuring chosen 

reduces the problem to one similar to that for network type layouts. 

This cannot be considered a general solution for layouts of the 

ordered-arc type since such a structuring may not always be pos- 

sible.    In Mamelak's solution another structuring is chosen,  but it is 

one which is based on what the author    believes   to   be    a 

characteristic of graphs'underlying this type,  and hence,   seems a 

more natural solution.    Breuer's approach,  however,   simply states 

the requirements and searches for a solution without any prestruc- 

turing.    Since no structure is assumed,   it seems that solutions found 
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using his system would be the most effective.    The  problem with his 

approach,  and,  in fact, with many of the approaches mentioned,   is 

that large circuits are difficult to handle. 

In summary,  many solutions to layout for the ordered-arc 

type have been developed.    No single algorithmic form stands out as 

being most effective,  although many have been tried.    All involve 

a great deal of optimization and little prestructuring,  and must,   in 

general, be tailored to the particular peculiarities of the application. 

For this reason we consider ordered-arc type the most complex. 

3.2.2.6   Summary of Layout Types 

We have classified several layout types common to many 

applications,   and considered algorithms for their layout.    Layout 

types were ordered,  and a gradation was found in algorithm charac- 

teristics and complexity corresponding to this ordering.    The simp- 

lest type,  linear layouts,  may be formed using a totally structurally 

rigid algorithm which is constructive in nature. 

In the next type,  tree layouts,   a gradation in algorithm char- 

acteristics appears according to subtype,  although constructive 

algorithms were found for all subtypes.    With all leveled subtypes 

and with the unleveled subtypes with bends,  again a totally rigid 

structure is predictable.    However, with the unleveled,   son- 

centered,   subtype without bends,  the predictable structure is not as 
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rigid, and with the unleveled, level-centered subtype without bends, 

again, the structure is not as rigid and optimization is required for 

the first time in the classification. 

In the next type,  network layouts,  again constructive algor- 

ithms are feasible.    A good amount of structural rigidity is still 

present, but optimization is also required to a great degree. 

With general layouts we find that little may be predicted 

about layout and most of the   layout depends upon optimization.    Due 

to the complexity and unpredictability of their underlying graphs it 

was felt that constructive algorithms are not appropriate for layouts 

of the general type but that the realization methods discussed in 

section 2.2.2 should be used as the basis for these layout algorithms. 

It was found that,  perhaps, the best environment for layout of the 

general type is an interactive one. 

Finally,   ordered-arc layouts were discussed.    These layouts 

whose underlying graphs are essentially as complex as those for 

general layouts,   have the additional difficulty of the restriction of 

link order.    It was found that algorithms are as complex as for 

general layouts,   but that they cannot be built on those methods devel- 

oped in section 2.2.2 in "most cases.    In order to form layouts of the 

ordered-arc type,   special optimization algorithms must be developed 

which account for the special restrictions of this type.    Realization 

of qualities for these layouts is,   in general,  more difficult than with 
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layouts of the general type,  and algorithms tend to be more special- 

ized,  difficult to perform on large  layouts,   and often promise less 

than optimal solutions. 

Hence, we see that knowledge of particular application 

characteristics may or may not be helpful in layout.    With the simple 

layout types,   constructive algorithms are easy to develop and to 

apply,   and the results may often be guaranteed to some extent.    With 

increasing complexity in type,   difficulty in developing algorithms 

approaches and even goes beyond that found with the general case 

discussed in chapter 2.    But,  given this framework for layout type 

classification,  we may see where in this range a new layout type 

falls.    Thus,  this classification may be useful in developing the 

simplest layout algorithms possible for a new layout type,   and in 

understanding what factors contribute to the complexities encountered 

in its layout. 

3.3 A DESIGN FOR THE EXTENSION OF MOD 

In this section we will briefly consider changes and extensions 

to the   MOD system, which allow us to take advantage of the type 

dependent information discussed above.    Here, we are concerned 

mainly with modification of the MOD Output system,   since provision 

has already been made in the Input and Framemaker systems for 

graph layouts of many types.    Our aim is then to somehow allow the 
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user to input,  along with his graph layout,   information concerning 

layout type,  and to have the system provide him with a type depend- 

ent menu of algorithms (either modifying,  constructive,  or both) 

which he may use to obtain a new layout. 

Such a design is easy to envision as an extension of the 

present system.    For,  as the system now is designed,   it contains a 

small library of modifying algorithms which may be easily extended. 

Rather than having a single library, we might give the user a choice 

of several libraries,  containing both modifying and constructive 

algorithms.    The choice could depend on layout type as specified by 

the user.    The contents of a library would be a set of algorithms 

tailored to a particular layout type.    The user will have a choice of 

algorithms,  as he does now. 

Let us consider what a sample session might be like with an 

extended MOD Output system.    Initially, the user might find the 

frame shown in figure 3-2 3 on the scope.    He may then input,   output, 

or manipulate the current graph layout as in the old MOD Output,   or, 

he may choose one of the layout types listed in the column on the 

right. 

When a choice is made,  the menu in the right-hand column 

would change to a list of commands for the execution of the algorithms 

in the library for this particular type.    This list would also include 

a label,   "new type. "   Pointing to this label  returns the user to the 
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type selection found in figure 3-23, while retaining the graph layout 

in the box.    For example,   should the user choose the tree type he 

would obtain the frame of figure 3-24. 

In addition, when a new type is chosen,  the system checks 

that,   if a graph layout appears in the box on the scope,   it conforms 

to the restrictions of the particular type chosen.    For example, 

when the tree type is chosen,  the graph layout must not contain 

cycles.    When network is chosen,   the graph layout should be directed 

and contain no directed cycles.      When these conditions are violated 

by the existing graph layout, the words "graph layout does not con- 

form to type" will appear in place of the graph layout in the box. 

To remedy the situation,  the user may either read in a new graph 

layout to be checked,  keeping the type fixed,   or,  press  "new type, " 

to return to the original frame and choose a new type,   retaining the 

graph layout. 

When a graph layout and a type which agree have been chosen, 

the user may proceed to apply to the graph layout,  any of the algor- 

ithms listed in the right-hand column.    He initiates an algorithm by 

pointing to the appropriate label in the menu.    If the algorithm is a 

constructive one,  the underlying graph structure is derived from the 

Or,  perhaps some means can be built for the user   to specify 
partial node order when no arrows appear.    This problem also exists 
with the linear graph type,  in that node order must somehow be indi- 
cated. 
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graph in the box,   but the present layout is ignored and eventually lost. 

If the algorithm is a modifying algorithm,   it would use the present 

layout as a basis.  As many algorithm applications as desired could be 

performed. 

When the user has modified the layout to his satisfaction, 

using the set of algorithms for a given type,   he can then output the 

new layout as in the old MOD Output system,   read  in a new graph 

layout within the same type or within a new type,   and so on.    He may, 

if his graph layout is appropriately structured,  process it under sev- 

eral types. 

It is necessary with some of the algorithms,  that further 

information be supplied for their execution besides that given by the 

graph layout in the box.     For example,   when processing a tree type 

layout with one of the algorithms for the tree type,   the root node must 

be designated.       Thus,   for example,  with each execution of such an 

algorithm, a message might be typed as follows:    "point to root node. " 

In response,   the user must indicate which node is to be treated as the 

root.     Such information will be called "run information, " and must be 

supplied each time the algorithm is executed. 

Another type of information which we shall call "option 

* The one exception might be when we input a tree which has a 
unique node with no incoming links.    In this case we might assume that 
the root node is that unique node. 
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information" must be supplied to some of the algorithms.    This 

information tells the algorithm more specifically what constraints the 

user desires,  without having to list numerous versions of an algor- 

ithm in a type menu.    For example,   one of the tree type algorithms 

might ask for orientation,   in the form of the typewriter message: 

Type desired orientation: 

1) root on top 
2) root on bottom 
3) root to left 
4) root to right 

Option information differs from run information in that,  with the 

former,   once a choice has been made,  we may wish that choice to 

apply to several graph layouts without having to repeat the choice; 

but the latter is valid for only one application of the algorithm and 

must be specified each time the algorithm is executed.    This differ- 

ence will become important later in the discussion. 

The libraries for the various types would initially be set up to 

correspond to the needs of the types as discussed in section 3. 2.    The 

initial plan for the contents of each of the libraries is as follows: 

1) linear type:   constructive algorithm for linear layout, 

2) tree type:   the various constructive algorithms for layout of 

tree layout subtypes, 

3) network: constructive algorithm for network layout with 

provision for interactive adjustment of stages and creation of addi- 

tional dummy nodes between steps, 
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4) general type:    modifying algorithms of the type discussed 

in section 2. 2. 2; special modifying algorithms for specific cases such 

as chemical molecules,   and 

5) ordered-arc type:    modifying and constructive algorithms, 

as well as semi-constructive algorithms,   for ordered-arc layouts. 

However,   such a system is not complete without a good facil- 

ity for creating and adding new algorithms.    The "new alg" label in 

the menu of figure 3-23 is used for this purpose.    There are two ways 

in which we would like to be able to create algorithms.    First,   it 

should be possible to add totally new algorithms to the system,  and 

second,   it should be possible to combine algorithms already included 

to form new algorithms.    For example,  we might wish to define a 

new algorithm for a tree layout subtype from an old one,  with the only 

modification being that the orientation always be with the root on top. 

Or,  we might want to write an algorithm for finding and forming hexa- 

gons and pentagons,   to be added to an already existing algorithm for 

minimal number of intersections,   thus resulting in a single modifica- 

tion algorithm for chemical molecules. 

As mentioned in Appendix 5,   it is not very difficult to program 

and add new layout algorithms to the old MOD system.    It should be 

equally as easy to do this for the new MOD system,   especially if the 

system is designed to treat the collection of algorithms simply as a 

list.    To be included in the system,   newly programmed algorithms 
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must be added before the system is run.    Care must be taken,  how- 

ever, that the algorithm is appropriate for the type in which it is in- 

cluded,   and,  that its name be original.   Algorithms added to the 

system in this manner,  as well as those already in the system,  are 

called "compiled" algorithms. 

To combine algorithms in the system in order to form new 
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algorithms while the system is running,  the user first points to the 

label "new alg" in the frame of figure 3-23.    The frame of figure 3-25 

then appears on the scope.    This frame lists all of the algorithms cur- 

rently in the system,  under appropriate type.   To form a new algor- 

ithm the user simply points to the label of an algorithm under its type 

and then to the place in the new algorithm list at which this algorithm 

is to be included.   List order in the new algorithm reflects logical 

order.   To delete an algorithm from the new algorithm list, he simply 

scrubs the name.   Each addition to or deletion from the new algorithm 

is reflected in this list. 

When an algorithm is included in the list,   if it contains any 

option information inquiries,   they are typed out as if the algorithm 

were really being executed.    For each inquiry,   the user responds on 

the typewriter with either a choice of options or with a carriage 

return.     If an option is chosen,   this choice will remain fixed in the 

new algorithm,   and the option information inquiry will not be made 

when the new algorithm is executed.    If the response was a carriage 

return,   the option information inquiry will be included each time this 

instance of the algorithm is executed within the new algorithm.    How- 

ever,   run information inquiries are always made. 

Once the new algorithm designation is complete,   the user 

points to  "file. "   This action causes the new algorithm to be filed. 

A message is typed:    "name, " to which the user must respond with an 

original name for the algorith,   followed by a carriage return.    If the 
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name is not original, the system again types "name. " Once an orig- 

inal name has been given, the message: "type, " is output. The user 

must respond with the layout type under which this algorithm is to be 

placed. 

Upon completion of naming and typing,   the algorithm will be 

filed under the type,   and appropriately added to one of the type lists 

with a star next to its name.     The star indicates that this is an 

"uncompiled" algorithm.    All algorithms defined while the system is 

running are uncompiled algorithms.    When the system is terminated, 

uncompiled algorithms will be lost.    Of course,  both uncompiled and 

compiled algorithms may be used in building new algorithms. 

Only uncompiled algorithms may be edited or deleted within 

this facility while the system is running.     Editing and deletion of 

compiled algorithms must be done before the system is run.     Thus, 

compiled algorithms are permanent in a sense,  whereas,  uncompiled 

algorithms are temporary,   and are intended for experimentation only. 

To edit or delete an uncompiled algorithm the user points to 

"edit" and then to a particular algorithm in the type lists.    The algor- 

ithm name disappears from this list,   and the algorithm itself appears 

in the new algorithm list.'   The user then treats this algorithm as if 

he were just building it.    Once appropriate changes are made he must 

refile it,   in order that it be remembered.     When an edited algorithm 

is filed,   no new name is requested,   and it is filed under the old name. 
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Type must be respecified. 

If the user presses  "erase, " the new algorithm column is 

emptied,   and the building process may be started anew.    If an old 

algorithm was being edited and was not filed,   this action amounts to 

deletion.    All algorithms built which included this algorithm are also 

automatically deleted. 

An uncompiled algorithm may also be copied as a basis for 

another new algorithm by pressing  "copy, " and then by pointing to 

the name of the algorithm.     This action is  equivalent to repeating the 

actions used to build the copied algorithm,   and is included only as a 

convenience.    In order to return to the frame of 3-23,   the user 

presses  "return. "   Any unfiled new algorithm is lost.    Any changes 

in type libraries resulting from new algorithm definition will be seen 

in the menus for each type. 

The user is responsible for the effect of any algorithms he 

builds.    He may combine algorithms from several types,   and no check 

is made that the result is consistent with respect to type.    A few guide- 

lines are given,   however.     Constructive algorithms obliterate any pre- 

vious layout whereas modifying algorithms do not.     Thus if both 

constructive and modifying algorithms are included in a single new 

* 
algorithm,   the constructive one should precede the modifying ones. 

# 
Otherwise,   any results from the modifying algorithms are 

lost once the constructive algorithm is executed. 
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Furthermore,  algorithms for qualities of highest priority should be 

placed as late as possible in the new algorithm. 

The details of the system will not be worked out here.    How- 

ever, we note that compiled algorithms will take some common form 

in which run information and option information inquiries will be 

designed in the form of lists attached to the body of the algorithm. 

When new uncompiled algorithms are formed,   they will be defined by 

lists of other algorithms.     Each compiled algorithm included in such 

a list will be accompanied by an appropriate vector,   designating 

which option inquiries for the algorithm are to be made and which 

have been fixed.    Upon execution of a compiled algorithm,  all option 

inquiries are made as well as run inquiries.    When an uncompiled 

algorithm is executed,   each algorithm in the defining list is examined 

in turn.    If the included algorithm is compiled,   the vector associated 

with it is examined; all run inquiries are made but only those option 

inquiries not specified as fixed are made.    If the included algorithm 

is an uncompiled algorithm,   it is performed in the same manner as 

for the uncompiled algorithm in which it is included. 

Figure 3-26 shows an example of this structure.     Suppose we 

have two compiled algorithms,  A  and  B.     Suppose also that there is 

one run inquiry,   x,  and three option inquiries for  A,   each with the 

possible choices,   a,   b,   or c,   and no run inquiries and one option 

inquiry for   B  with the possible choices,   a,  b,   or   c.    The uncompiled 
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algorithm A*   then specifies,   by a vector associated with its first and 

only entry,   that   A   is to be run once with options 1 and 3 fixed to   a 

and   b,   respectively,  and that along with the one run inquiry,   one 

option inquiry,   namely 2,   is to be made.    B*   is designated by a list 

of two algorithms,  A*  and B.    With A*  no vector is needed and it is 

performed as above.    B   is then performed with a single option in- 

quiry being made.     Finally   C*   consists of two executions of  B,   the 

first with no option inquiry and the second with one. 

In summary,   these proposed modifications to the MOD Output 

system allow the user to process a graph layout according to layout 

type,   and provide a facility for the definition of new layout algorithms, 

both experimentally and in a permanent manner.    The possibility of 

one further facility should be mentioned,   that of allowing for new lay- 

out types.    Such a facility should be included as a logical extension to 

this system.    As with the addition of compiled algorithms,   if the    sys- 

tem is built to process the collection of layout types as a list,   in some 
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orderly manner,   this extension should be quite easy to make.    All 

that is necessary is the careful addition of layout type requirements, 

a new type name,  and any appropriately designed algorithms. 
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Chapter 4 

ANOTHER APPROACH TO LAYOUT 

When research was initially undertaken on the layout problem 

for graphs by this author,   another approach to the problem was taken. 

This approach was found to be unsuccessful for several reasons. 

However,  we will briefly discuss it here since it is a logical modifica- 

tion of the general layout problem and might be of interest at some 

future time. 

This approach which we shall call the "modified layout 

problem, " ''*  has several variations.    The basic idea is that,   given a 

graph,   its layout,  and a list of changes to the graph (additions or 

deletions of nodes or links),   a new layout for the modified graph 

should be produced.    Several variations in the main constraint of the 

problem are possible.    On the one hand,  we may apply the constraint 

that as little be changed as possible in the original layout in obtaining 

the new layout (similar to the constraint for AMBIT/G graphs),   or, 

on the other hand,   we could apply the constraint that as little work be 

done as necessary in laying out the new graph.     This second constraint 

is based on the assumption that it is easier to layout graph modifica- 

tions within an existing layout than it is to layout the complete graph 

# 
This terminology is not to be confused with "modifying algor- 

ithms" as described in section 2. 2. 2.    The two ideas are not directly 
related. 
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from scratch. 

The motivation for using this approach was that the layout 

problem could be attacked gradually,   as a graph was being built, 

rather than facing the problem with a completely specified graph. 

The approach using the first constraint certainly has value for 

AMBIT/G,   and reduces to the problem defined for AMBIT/G layout 

which was discussed in section 3. 2. 2. 5.    With the second constraint, 

the question remains as to whether or not the amount of layout effort 

saved by algorithms for handling graph modification only,   is worth 

the effort of developing them.    In either case,  we must also ask 

whether,   in fact,   such an approach provides any additional handle on 

the layout problem,   or whether it really makes the possibility of solu- 

tion more difficult. 

In considering the approach using the second constraint,  we 

have examined a sampling of what might be involved in providing a 

set of algorithms for handling graph modifications and resulting layout 

modifications while maintaining certain layout constraints.     The modif- 

ication of adding a single node to a tree layout of one of the subtypes 

discussed in section 3. 2. 2. 2 was considered.    As was shown in sec- 

tion 3. 2. 2. 2,  we may form these tree layouts according to certain 

constraints,   and almost always obtain a result which conforms.     The 

problem with adding single nodes to tree layouts is that,   in general, 

unless some modifications of the original layout is made,   the new tree 
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will not meet the constraints for the particular layout subtype.    The 

only two exceptions to this rule are when a leaf is added to an exist- 

ing leaf in the leveled,   son-centered subtype,   or when a new root is 

added in any subtype.    In these two cases we need not change other 

node positions to maintain the constraints. 

Let us look in more detail at modifications and procedures 

necessary for maintaining constraints in some of the various tree 

subtypes when a single node is added: 

1)    For the leveled,   son-centered subtype: 

a) To add a node,   a,   to a leaf,  b:   As mentioned above, 

this does not affect the positions of the other nodes; but we must adjust 

the appropriate level,   S      ,   to account for the new node (where b   is in 

S.),   in order that further additions may be correctly handled.    Do this 

by replacing the   K.   = #   in   S. , ,    by   a,  where   K. = b  in S..    The  x- 
Jk l+l      ' j 1 

coordinate of   a   is the same as that of b.    If there is no   S. ,,,   derive l + l 

one appropriately. 

b) To add a node,   a   to a non-leaf,   b:    in this case,   all 

x-coordinates are affected; nodes in levels above that of   b   are 

affected since space must be made for the new node,   a; and all nodes 

in levels below that of   b   are affected,   since their sons have been 

moved.     To obtain the new placement,   first,   add the node   a   to   S. 
i+1 

appropriately,  where   b   is in   S..    In each succeeding  S     add  a  # 

appropriately for   a.    After these insertions have been made, 
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recompute the x-coordinates for all   S  . 

c)   To add a node,   a   as a new root:   this operation should 

not affect the other nodes,  but again we must adjust the   S  .    Renumber 

all    S,     as    S,     ,,   and set   S   =(a).     The  x-coordinate value for   a   is 
K k+1 0 

the same as that for the old root. 

2) For the unleveled,   son-centered subtype with bends: 

a) To add a node,   a,   to a leaf,  b:   this may cause read- 

justment in the levels of   b   and of some of   b's ancestors, although 

new x-coordinates need not be calculated.    The x-coordinate for   a 

will be that of   b.    The algorithm in figure 4-1 is required to adjust 

levels.    In this case it becomes especially clear that reapplication of 

the original layout algorithm is simpler than providing and running an 

additional procedure for such a special case of modification. 

b) To add a node,   a,   to a non-leaf,   b:    this addition should 

not change the level of any node,   but the x-coordinates will have to be 

recalculated.    The new node should be added to the last level and 

marked by a #   in each level down to,  but not including,   that of b. 

c) To add a node,   a,   as a new root:    similar to the case 

for the subtype above. 

3) For the leveled,   level-centered subtype: 

a)    To add a node,   a.   to a leaf,  b:    the only x-coordinates 

it changes are those in the level above that of b.    Kb   is in  S., 
l 
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set:    n-»m 
a - i 

4f—» 

set:   f-K- 6  S^   ,   where  b = K;   €S    . J m-l Jj^       m 

If  m = 0   then create a new  S_j = (#)   and 
set  f  to this element of  S_j. 

f   has more than one   son  in    Sm ? 

no 

Put  i  into j's place 
in  Sm  and set  j -> i 
and  f-» j.  

i=all   #'s? 
yes 

EXIT 

no 

±- 
yes 

m Put  i  into j's place in S 
Set i  to an ordered series 
of  #'s,   one for each son of 
f  except for son   j,   for 
which j  actually appears 
(j  may be a f   also). 
Set f -» j . 

set  m-l -» m 

Figure 4-1 

replace the   I  in S. , .   by node  a  as in the case for the leveled,   son- 1+1 

centered subtype.     Then recompute the x-coordinates in level  S. ... 

b) To add a node,   a,   to a non-leaf,   b:    this is similar in 

effect to the case for the leveled,   son-centered subtype.    Just add 

node a  appropriately to  S. ,.   where b  is in S.,  add #'s  to the suc- l+l I 

ceeding  S. 's,   and recalculate the x-coordinates in  S. , .. B     k l+l 

c) To add a node,   a,   as a new root:    similar to the case 

for the subtype above. 
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4)   For the unleveled,   level-centered subtype with bends: 

a) To add a node,   a,   to a leaf,  b:   again,   this causes the 

problems found with the case for the unleveled,   son-centered subtype. 

But here,   x-coordinates must also be recalculated since the contents 

of the levels may change. 

b) To add a node,   a,   to a non-leaf,  b:   add this new node 

and required #'s   in the same manner as in the case for the unleveled, 

son-centered subtype.     The x-coordinates need to be recalculated for 

levels above that of b. 

c) To add a node,   a,   as a new root:    similar to the case 

for the subtype above. 

In summary,   all subtypes require some modification in the 

level contents in order to add new nodes.     Six of these cases require 

a recalculation of x-coordinates within one or more levels,   and two 

require redistribution of old nodes into levels,   a very time-consuming 

procedure.    But the most striking fact is that the numerous ways in 

which a node may be added must be differentiated within each subtype. 

Thus with tree layouts,   certainly the reapplication of one of the orig- 

inal tree subtype algorithms would be much simpler than adding sev- 

eral new algorithms,   and having to determine which is to be applied 

in each specific case. 

It was concluded that this brief study was an indication as to 

what might be involved in more complex cases using this approach, 
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and work along this line was discontinued on the assumption that the 

effort was not worthwhile. 

Furthermore,   it was felt that such an approach does not deal 

with graph layouts in a manner suitable for effective constraint opti- 

mization.    By nature it deals with graph layouts only in a local sense, 

at the points where graph modifications might cause change.     The 

approaches used in chapters 2 and 3,   however,   are designed to handle 

graph layouts both in a local and a global manner,  whichever is appro- 

priate in a particular case.    This leads us to the conclusion that this 

modified problem approach may result in algorithms which have 

limited power,   and that the two approaches used in chapters 2 and 3 

are much more effective in solving the problems of layout. 
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Appendix 1 

AMBIT/G OUTPUT PROGRAM 

Before describing the output program,  we will first give a 

brief description of AMBIT/G itself.    The language,  as previously 

mentioned,   deals with graphs.    The data and program statements are 

both in this form.     The graphs consist of specially designed nodes of 

various types and directed,   labeled links.    In the layouts of these 

graphs the nodes have shapes which are user defined and which 

include arc departure points (ADP's),   the only points at which links 

may depart from the nodes.    The nodes may also have names.    The 

links are multisegment links.    The program statements are in the 

form of graphs expressing patterns to be matched with the data and 

data graph changes to be made if a match is successful.     The state- 

ments are labeled,   and each statement contains two succeeding state- 

ment labels; one is used if the match is successful,   and one is used 

if it fails.    The node shapes,   data graph,   and program statements 

are drawn by the user.    The program is then run on the data graph. 

The output program is designed so that any portion of the cur- 

rent state of the data graph may be examined at any point during pro- 

gram execution.    This is accomplished by the insertion of output 

statements in the program using the form shown in figure Al-1. 

These statements cause the specified portion of the data graph to be 
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OUTXXX 

D> 
FAIL:   LABEL 
SUCCESS:   LABEL 

Figure Al-1 

displayed; execution is stopped and the user has control of the scope 

until he presses the return button.    At this point the display disap- 

pears and execution continues.    The output statement succeeds if a 

display is generated,  and fails otherwise. 

As mentioned above,   a super-structure must be built over the 

data graph for each display.    It is described below.     Several node 

shapes are reserved specifically for display purposes.     These are 

shown in figure A 1-2 where lozenges indicate the ADP's. 

The output statement mentions a single node.    This node must 

have a single link pointing to some display specification.     The display 

specification is built of a series of pictures represented by P-nodes, 

the first of which is that pointed to by the node appearing in the output 

statement as in figure Al-3. 

A P-node may point to a D-node giving this picture a direction- 

al placement in the total display,   relative to the previous P-node or 
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-Q 
picture nodes 
(P-nodes) 

N NE 
S SE 
E NW 

W SW 

direction nodes 
(D-nodes) 

node specification nodes 
(N-nodes) 

link specification nodes 
(L-nodes) 

Figure 1-2 

X> Lr-Lr EH? 
Figure Al -3 
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picture.     For example,   figure Al-4,  will place the second picture to 

the right of the first in the display.    If no D-node is specified,   the 

current picture will be placed to the south of the previous picture. 

P 
Figure Al-4 

The contents of the picture for a P-node are specified by a 

string of L- and N-nodes,   the first of which is pointed to by the 

P-node,   as in figure Al-5. 

P 
LTH^CMrfrfG 

Figure Al-5 

Each N-node in the string points to some data node which is to 

be displayed.     Two N-nodes may point to the same data node,   in which 

case this node will appear twice in the display.     The N-nodes are 

examined in order,   and,   using D-nodes,   direction may be assigned to 

an N-node,   giving it a directional placement relative to the previous 

N-node.     For example,   the specification in figure Al-6 will result in 
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the picture of figure Al-7.    When no direction is assigned to a node 

relative to the previous node by D-nodes,   directional placement is 

Figure Al -6 Figure Al-7 

derived from link directions.     For example,   the specification of 

figure Al-8a results in the layout of Al-8b. 

I 
(a) (b) 

Figure A1-8 

If no directional information is obtainable from the links a node is 

placed to the east of the previous node.    For example,   figure Al-9a 

yields Al-8b. 

Each of the two bottom links from any L-node in the string 

must point to some N-node in the string.    All links which originate 
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H|3 
A 

(a) (b) 

Figure Al-9 

at the first data node referred to,   and which terminate at the second 

data node referred to,   are drawn.     For example,   figure Al-10a 

gives Al-lOb.     This super-structure must be correct in order for any 

display to appear. 

(a) (b) 

Figure Al-10 

In addition to a simple display,   the output program provides a 

facility for modifying displays which appear on the scope.    As men- 

tioned above,   once a picture appears,   the user has control of the scope 

until he presses the return button.    It is while he is in control that he 
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may modify a picture.    In brief,   the modification facility allows the 

user to cause part or all of the graph layout to be moved or deleted. 

He may also enlarge or diminish the size of the graph layout. 

Furthermore,   he may duplicate a node (but not its links,  although 

links may be divided between instances of the same node),   as well as 

add bends to links. 

The actual layout algorithm used is described below.    The 

nodes are placed on a grid,   and links are drawn after all nodes have 

been placed.    The procedure for node placement is as follows.     First 

each P-node or picture is separated into subpictures using the steps 

shown in figure Al-11. 

first N-node of picture —  Nl 

create a new subpicture and  ^ 
put Nl in it 

find next N-node; anymore? 
yes 

new N-node ->  NZ 
T 

no 

does N2 have a direction? 
no 

4»   Yes 

is the position in the direction 
relative to Nl occupied in this 
subpicture?  

J,   no 
place N2 in this subpicture at 
the position indicated 

*© 

^ N2 - Nl 

yes 

N2 - Nl 

Figure Al-11 
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Then the positions for the subpictures are found relative to one 

another,   as shown in Al-12. 

L 
any links in the picture? 

no © 
yes 

first L-node of picture -»  L 

more than one subpicture? 

>£ 

yes 

start and end nodes of L 
in different subpictures? 

^L 
yes 

using direction of link L 
merge subpictures of start 
and end nodes into one 
subpicture 

no 
exit 

next L-node   -•  L 

yes 

no } any more L-nodes? 

Np- 

© 
no 

© 
T 

r-5> more than one subpicture? 

4-      yes 
form one subpicture from 
first and second placing 
second to the east of the 
first 

no 
exit 

Figure Al -12 
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To obtain one display layout from several P-nodes or pictures we 

then follow the steps shown in figure Al-13. 

first P-node -. PI merge PI and P2 
into one picture 
using direction 
given 

s'                                                  N/ no 
more than one picture? exit / 

s ,         yes 
next P-node -» P2 

V * no 
does P2 have a direction? make direction south  7 

yes 

Figure Al-13 

Once node positions have been obtained,   links are routed 

between nodes.    Links are routed as follows.    A straight-line is 

begun from the ADP to the midpoint of the target link.    If the line is 

obstructed by another node,   the link is stopped just before the node, 

a bend is made,   and the node is skirted until it no longer stands in 

the way.     A straight line is again followed to the target node.    All 

other obstructions found are skirted in the same manner until the 

link reaches its target node.     The link end is clipped at the edge of 

the target node shape,   and an arrowhead is drawn. 
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Appendix 2 

AN ALGORITHM FOR REPETITION 

Reading of this algorithm should follow reading of the discus- 

sion of section 2. 2. 2. 1 of the text.    The algorithm applies to a layout, 

two subparts of which have been designated by the user with appro- 

priate enclosures.     The effect of the algorithm is to change the layout 

so that the two subparts designated are made to be literal or symmet- 

rical repetitions of one another,   according to what the user desires. 

In the description of the algorithm which follows the first sub- 

part designated will be called A,   and the second,   B.    When a subpart 

is designated,   it contains all nodes which are enclosed,   and all links 

connecting these nodes.    If there is a bend in a link which is included, 

it will be treated as a node.       A center,   c(A),   for a subpart,  A,  will 

be determined as follows,  where,   if p  is a point,   p     implies its x- 

coordinate and  p     its y-coordinate,   and where   a 6 A   implies that   a 

is a node (or bend point) in subpart A: 

c(A)      =   (Max(a   , a £ A) + Min(a   , a€A))/2 
XX X 

c(A)      =   (Max(a   , a € A) + Min(a   , a€A))/2 
y y y 

The set S designates nodes common to both   A   and   B,   in other words 

S = A n B. 

* Thus any isomorphisms between subparts must also include 
bend points.      From this point on in the discussion,   the word "node" 
is meant to include bend points as well as nodes. 
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The algorithm then proceeds through two main steps.    In the 

first step,  we look for isomorphic node-to-node maps between the 

two subparts (step la),  and,   in the case where symmetrical repeti- 

tion is requested,  we establish the axis of symmetry for each map 

(step lb).    The mappings are then ordered so that those which change 

the rest of the layout the least are used first (step lc).    In the second 

step,  we attempt to make the two subparts literal or symmetrical 

repetitions of one another by either changing the second subpart 

specified to conform to the first (i. e. ,   A   cannot be moved),   or by 

finding an intermediate form between the two subparts and changing 

both to this new form (i. e. ,  A  can be moved).     We must consider the 

cases in which   S =0   and those in which   S fc  0    separately.    All map- 

pings are tried until a success is found,   or the list is exhausted. 

Step 2 is divided into eight cases; only the appropriate case should be 

executed for each application of the algorithm. 

The substeps of step 1 are then as follows: 

(la)   Find all one-one mappings,  f,   of the nodes of A  onto 

those of B   such that for all   a, b € A: 

b<ET(a) <=>  f(b)€ r(£(a)) 

where   T(a)    is the set of nodes adjacent to   a. 

* 
Note that these mappings are isomorphic. 
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If the two subparts are to be made literal repetitions,we then remove 

from the set of mappings,   all mappings: 

(i)   f   such that   f(S')=S'  where   S'c s   and   S ±  <t>; this includes 

the case in which   f(x) = x,   x € S,   and 

(ii)   f   such that if there is a cycle in   A labeled clockwise 

(a, b, c, . . . , x),   the corresponding cycle in B   is not labeled 

clockwise   (f(a),   f(b),   f(c), . . . , f(x)). 

If the two subparts are to be made symmetrical repetitions,  we then 

remove from the set of mappings,   all mappings: 

(i)   f   such that if   x € S,   f(x) i S, 

(ii)   f  such that   x, y 6 S,  f(x) =y,  f(y) ^ x,   and 

(iii)   f  such that if there is a cycle in   A   labeled clockwise 

(a, b, c, . . . , x),   the corresponding cycle in B   is not labeled 

counterclockwise  (f(a), f(b), f(c), .... f(x)). 

The justification for the removal of these mappings is given later in 

the discussion of the algorithm.    The resultant set of mappings will 

be called  F.     If   F = 0   the algorithm fails. 

(lb)   If the two  subparts are to be made symmetrical repeti- 

tions,   determine the axis of symmetry   a,   for each mapping   f 6 F, 

according to the size of  S,   and according to whether   A   can be 

moved or not,   as follows: 
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(i)   if   S = 0,   a,   is the perpendicular bisector of the line 

c(A),   c(B). 

(ii) if |S| = 1, and A cannot be moved, a, is the perpendicu- 

lar to the line c(A), c(B) which passes through the single node 

in   S. 

(iii)    if    I S| >  1   and   A    cannot be moved,   then   a,   is the line 

which perpendicularly bisects all lines   x, y   such that  x, y € S 

and  f(x)=y,   and which passes through all points    x€S   such 

that   f(x) = x.    If such a line cannot be drawn,   no symmetrical 

repetition can result from this mapping; thus this mapping fails 

and is removed from   F. 

(iv)    if    | S| ^   1    and   A   can be moved,   a,   is the perpendicular 

bisector of the line   c(A),   c(B). 

In the case that   c(A) = c(B),  and the line c(A),   c(B)   is required,   any 

line which passes through   c(A)   may be used (as a convention,  we use 

the vertical line through   c(A)). 

(lc)   Order the mappings in   F   as follows,   dependent on whether 

the two subparts are to be made literal or  symmetrical repetitions. 

For literal repetition:    f.    precedes   f.    if   0.    <  0. ,  where 
1 J ! J 

0       is the angle for mapping   f      determined as follows.     Let   a   be the 
K K 

a label of an arbitrary node of   A.      Then   0       is the angle (less than 
K 

180°)  between the direction of   a   from the center    c(A),   and the direc- 

tion of   f  (a)   from the center    c(B).     If   a   does not determine a total 
K. 
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ordering on   F,  use another arbitrary node,   b,   to resolve undeter- 

mined order.     Continue through the nodes until a total order is deter- 

mined,   resulting in   F =  { f  , f   , f   , . . . , f   ] . 

For  symmetrical repetition: f. precedes f. if 6.  < 6 . ,   where 0 
» J i J k 

is the angle determined as follows.    Let  a   be the label of an arbitrary 

node of   A.    Let   a     be the reflection of the point   a   with respect to 

th e axis    OL     (for the mapping   f  ).     Then   Q        is the angle (less than 

180°)   between the direction of   a      from the center    c(B),   and the 

direction of   f  (a)    from the center    c(B).     The direction of   a      from 

the center    c(B)    maybe determined by   Za,    -a   ,  where   a,      is the 
K K 

* 
angle of   a,    (either direction will do) and   a      is the angle of   a   from 

c(A).    If   a   does not determine a total ordering on   F,  use another 

arbitrary node,  b,   to resolve undetermined order.     Continue through 

the nodes until a total order is determined,   resulting in 

F =  {f,,f,,f...... f   }. 1    2    3 n 

Step 2 then proceeds as follows to make the two subparts either literal 

or symmetrical repetitions of one another: 

(2)    For each   f,    £  F,   in order,  until a success is found,   per- 
k 

form the appropriate step within step 2,   dependent on whether literal 

or symmetrical repetition is desired, whether subpart  A   can be moved 

or not, and whether or not   S = 0.    If no success is found for any   f, 
k 

(i. e.   repetition cannot be achieved),   the algorithm fails.    The steps 
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according to case      are: 

(Za)   If only subpart   B   may be moved: 

(i)    For literal repetition where   S = 0:   Based on the map- 

ping   f      construct a layout for   B   which is geometrically congruent to 

the given layout for   A,  using   c(B)   as a reference point corresponding 

to   c(A); in other words,  for all   x € A,   if   f(x)=y,   then place   y   so that 

it has the same relation to   c(B)    as   x   does to   c(A).    Succeed. 

(ii)   For literal repetition where   S^ 0:   determine a new 

center for   B,   c'(B),   using an arbitrary node   a € S   as follows:   let 

b =f~1(a); then   c'(B)     = c(A)    -b   +a     and   c'(B)    =c(A)    -b    +a   . 
k xxxx yyyy 

Based on the mapping   f      construct a layout for   B   which is geomet- 
.K 

rically congruent to the given layout for A, using c'(B) as a refer- 

ence point corresponding to c(A). If this requires moving any c 6 S 

then fail for this mapping; else,   succeed. 

(iii)    For symmetrical repetition where   S = 0:    Based on 

the mapping   f  ,   construct a layout for   B   which is geometrically 

symmetric to the given layout for   A   with respect to the axis    a,     for 

the mapping   f  ; in other words,   for all   x 6 A,   if   f (x) = x',  place  x' 

so that the line   x, x'   is perpendicularly bisected by   a,   .     Succeed. 

(iv) For symmetrical repetition where S^0: Based on 

the mapping f , construct a layout for B' = B-S which is geometri- 

cally symmetric to the given layout for   A' = A-S   with respect to the 

axis    a, •    Succeed. 
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(2b)    If both subparts   A   and   B   may be moved: 

(i)   For literal repetition where   S = 0:    Construct the lay- 

out for   A   and   B   as follows.    For each pair   a 6 A   and   f (a) = b,  we 

determine first an average distance,   d,  and then an average line seg- 

ment,   I.    From the average line segment,   I.,  we then determine new 

positions in the layout for   a   and   b.    To find the average distance,   d, 

first let   d     be the distance from   a   to   c(A),  and let   d,    be that from 
a b 

b   to   c(B).     Then   d-(d   + d   )/2.     To then determine the average line 
a       b 

segment,   / ,   first let   b   be the point such that: 

b'   =   b    + c(A)     - c(B) 
XX X X 

b'   =   b    + c(A)     - c(B) 
y       y y y 

Then    f,    is the line segment with length   d   and startpoint   c(A)   which 

bisects the smaller of the angles between line segments    (a, c(A))    and 

(b', c(A)).     Let us now call the other end of line segment    I,   c.     Then 

if    Ax = c    - c(A)      and    Ay = c    - c(A)   ,  we determine the new positions 
xx y y 

for   a   and   b   as follows: 

a     = c(A)    + Ax = c 
XX X 

a    = c(A)    + Ay = c 
y y y 

b    = c(B)     + Ax 
X •    X 

b    = c(B)     + Ay 
y y 

Succeed. 
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(ii)    For literal repetition where    S /  $:    Construct the lay- 

out for   A   and   B   as follows.     Label  each node in   A U  B   as   p., 
1 

i = 1, . . . , n,   where      A U B |   - n.     Form   2m   equations where 

I A I   =   I B I   = m,   as follows.     For  each   p. (A    if   p. = a   and   f, (a) = p. i      i       i      i ri ri k j 

for the equations: 

p.     - c(A)     - p.     - c(B) 
1 XI X 
X X 

p.     - c(A)     = p.     - c(B) 
1 y      j y 
y y 

We will abbreviate each pair as: 

p.  - c(A)  = p.  -   c(B) 

giving us   m   equations in  n unknowns.     The equations express the fact 

that each   a=p.    has the same   x   and   y   relationships to    c(A)   as its 

image   f  (a)  = p.    has to    c(B)„    We then solve the equations to express 
k J 

all   p.'s    in terms of any   n-m   arbitrary   p. 's,   say  p,,..., p .    To 
l I 1 n-m 

more closely determine the value of   p., ... , p we then require 
1 n-m 

that: 

c(A)     = (Max(p.   , p. € A)  + Min(p.   , p. € A))/2 
x x 

c(A)     = (Max(p.   , p. € A) + Min(p.   , p. 6 A))/2 

y y 

This assures us that the   centers   for    A   and   B    remain fixed.    We 

need only check for one center,   for,   if these equations hold for   A 

and not for    B,   it must be that for  some   a £ A,   f  (a) £ B,    a    does not 
.K. 
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have the same   x   and   y   relationships to   c(A)   that   f, (a)    has to 

c(B).    This last step may not completely determine   p., . . . , p , 
1 n-m 

but any assignment of values to these variables which meets the 

requirements of this last pair of equations is a solution and thus 

yields a layout.    However,   care must be taken so that points do not 

overlap. 

If these last equations yield the result that two points,   p.    and 

p.   are to be determined subject to the constraints that  p.    +p.    =k. 
J 1x      Jx 

and   p.    =p.    = k  ,   one procedure for solution which seems to cause 
1 L, 
y     y 

the least amount of twisting is as follows: 

(a) if the line   c(A),   c(B)   tends to be more horizontal than 

vertical,   choose   p.     = p.   ,   and 
i J x x 

(1) if   p.     £ p.   ,   choose   p.     = p.     +  | c(A)  - c(B) | ,   and 
V      Jy V     Jy 

(2) if   p.     < p.   ,   choose   p.     = p.     + | c(A)  - c(B) | . 
y      Jy Jy       y 

(b) if the line   c(A),   c(B)   tends to be more vertical than hori- 

zontal,   choose   p.     = p.   ,   and 
l J 
y       y 

(1) if   p.     2; p.   ,   choose   p.     = p.     + j c(A)  - c(B) | ,   and 
xx xx 

(2) if   p.    < p.   ,   choose   p.     = p.     + j c(A)  - c(B) | . 
xx xx 

With   p,, . . . , p thus chosen,   we may then determine all   p. 's 
1 n-m l 

from the original   m    equations and thus obtain a layout which 
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succeeds.    An example of this method for finding a layout is given 

later in the discussion of the algorithm. 

(iii)    For symmetrical repetition where   S = 0:    Construct 

the layout for   A   and   B   as follows.    For each pair   a 6 A   and   f (a) =b, 

we determine first an average distance,   d,   and then an average line 

segment,   I.    From the average line segment,   I,  we then determine 

new positions in the layout for   a   and   b.    To find the average distance, 

d,  first let   d     be the distance from   a   to   c(A),   and let   d,    be that 
a b 

from   b   to   c(B).    Then   d = (d    +d, )/2.     To then determine the aver- 
a       b 

age line segment,   I,  first let   b'  be the reflection of   b   with respect 

to the axis of symmetry,   a, ,   for the mapping   f  .     Then   I    is the 

line segment with length   d   and startpoint   c(A)   which bisects the 

smaller of the angles between line segments   (a, c(A))   and   (b', c(B)). 

Let us now call the other end of the line segment    £ , c.     The new posi- 

tion for   a   is then that of  c.    And the new position of   b   is then that 

of the reflection   of     c   with respect to the axis    a, •    Succeed. 

(iv)   For symmetrical repetition where    S ^  0:   Construct 

a new layout for   A   and   B   as follows.    For all   a£ S   where f (a) =a, 

find the point   a'   at which the perpendicular from   a   to the axis    a, 
K. 

intersects   a, ;   then,   move   a   to the position of   a'.    For all pairs 
K. 

a,b £ S   such that   f (a) =b   and   1(b) -a.,  find the node of the pair which 

is closest to the axis   a, ,   say,   for example,  a;   then,   move   a    so that 

it lies in a position symmetric to   b   with respect to the axis    a, •    For 
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all other nodes,   proceed as in (2b-iii).     Succeed. 

We will first give some examples of the application of the algor 

ithm,   and then explain a few of the steps in more detail.     Figure AZ-1 

shows an example of the application of each of the steps within step 2, 

each with a different graph.     Let us now explain step 1 in more detail. 

In step (la) there are several conditions under which isomorphisms 

are excluded.     For literal repetition,   condition (i) may be justified by 

the following two proofs: 

Lemma:     Let   f   be a mapping as specified in step (la).    Suppose that 

for some   a € S,   f(a) =a.    If   A   and   B   are made literal 

repetitions of one another using   f,   then   A   and   B   will 

overlap. 

Proof: Since one condition for    A   and   B    to be literal repetitions 

is that: 

a    - c(A)    = f(a)     - c(B) 
X X X x 

a    - c(A)     = f(a)    - c(B) 
y y y y 

then if   a = f(a),  we have that   c(A)    = c(B)      and 
x x 

c(A)    = c(B)   .    But this implies for all pairs  b,   f(b),   that 
y y 

b     = f(b)      and .b     = f(b)   .    Hence,  A   and   B    must overlap, 
x x y y 

QED 

and: 
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Lemma:     Let   f   be a mapping as specified in step (la).     Suppose that 

S ^ 0,   and for some   S' ? 0.   S' £ S,   that   f(S') = S'.    If   A 

and   B   are made literal repetitions of one another using the 

map  f,   then   A   and   B   will overlap. 

Proof: Assume for    S'£ S,   S' £ 0,   that   f(S') = S',   and that   A   and 

3   will not overlap.    We will show that his leads to a con- 

tradiction.     Let    I S' |   = n.    Also,   let the relation   a > b 

mean that node   a   is higher than,   or,   if it is at the same 

height,   to the left of node  b. 

Now let   a   be the unique node in   S'   such that   a > b 

for all   b € S',   b ^ a.     Since we require that no two nodes 

occupy the same position,   a unique node   a    exists in   S'. 

But since   f(a) € S',   then   a > f(a)   unless   a    = f(a)      and 
x x 

a     - f(a)    .    By our previous lemma,   if   a     = f(a)      and 
y y xx 

a     = f(a)      then   A   and   B   will overlap.     Thus,   it must be 
y y 

that   a > f(a). 

Now by the conditions required for   A   and   B    to be 

literal repetitions under    f,  we have that: 

a    - c(A)    = f(a)    - c(B) 
X X X X 

a     - c(A)     = f(a)     - c(B) 
y y y y 

and furthermore,  where we use   f  (a)    to mean   f(f(a)), that: 
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f(a)     - c(A)     = f2(a)     - c(B) 
X X X X 

f(a)     - c(A)     = f2(a)     - c(B) 
y y y y 

since   f(S')  = S'   and   a( S.    But this implies that: 

a    - f(a)     = f(a)     - f2(a) 
XXX X 

a    - f(a)     = f(a)     - f2(a) 
y y y y 

2 2 
and unless we allow   f(a)    = f (a)      and   f(a)    = f (a)   , 

xx y y 
2 

which will cause   A   and   B    to overlap,    f(a) > f  (a). 

Similarly,  we have that: 

f2(a)   >   f3(a) 

fn_1(a)>fn(a) 

But since    | S' | = n,   f  (a)  = I  (a)    for  some   k <  n,   and thus 

for some   k < n   we have that   f       (a) > I  (a),  which is a 

contradiction. 

QED 

Hence,   removing mappings of this type avoids dead ends and 

overlaps.     Condition (ii),- the motivation for which is only intuitive at 

this point,   is used to avoid repetition in isomorphisms,   and twisting 

of results.     For example,   if we did not use this condition with the lay- 

out of figure A2-2a we would general four possible maps instead of 
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two (A2-2b); the layouts resulting from these maps are shown in fig- 

ure A2-2c.     Further examination of condition (ii) is necessary. 

The first two conditions for removal of isomorphisms in 

step (la),   in the case of symmetrical repetition,   may also be justi- 

fied by proof: 

Lemma:     Let   f   be a mapping as specified in step (la).     Suppose 

that for   a € S,   f(a) = b   and   b 4 S.    If   A   and   B   are made 

symmetrical repetitions of one another using the mapping 

f,   then   A   and   B   will overlap. 

Proof: Assume   a £ S,  f(a)  = b   and   b 4 S,   and that   a   is the axis 

of symmetry for the mapping   f.     Since   b £ S,   either  b 4 A 

or   b 4 B.    Assume   b 4 A   (the case where   b 4 B   is 

similar).     Then since   b    is to be the symmetric image of 

a   with respect to   a,   the line segment  (a,b)  will be per- 

pendicularly bisected by   a. 

Now since  a £ S,   there must be some   c £ A   for 

which   f(c)  = a,   according to the map formulation in step 

(la).    And since  b 4 A,   then  c ^ b.    But then the line seg- 

ment (a, c) is also perpendicularly bisected by the axis   a- 

Hnece,  b   and 'c   must have the same positions,   and   A 

and   B    must overlap. 

QED 
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Lemma:     Let   f   be a mapping as specified in step (la).    Suppose 

for   a,b€S,   that   f(a) =b   and   f(b) ^ a.    If   A   and   B   are 

made symmetrical repetitions of one another using the map- 

ping  f,   then   A   and   B   will overlap. 

Proof: Assume for   a,b £ S   that   f(a)  = b   and   f(b) jt a,   that that 

a    is the axis of symmetry for the mapping   f.     Then 

f(b)  = c   for  some   c ^ a.     Now since   b    is to be the sym- 

metric image of   a   with respect to the axis   a,   then the 

line segment (a,b) will be perpendicularly bisected by   a- 

Also,   since   c   is to be the symmetric image of   b 

with respect to the axis    a.   then the line segment (b, c) 

will also be perpendicularly bisected by a.    Hence    c   and 

a   must have the same positions,   and   A   and   B    must 

overlap. 

QED 

Condition (iii) for symmetrical repetition is again an intuitive 

conjecture which must be looked into further.     The reasons for its 

use are similar to those for condition (ii) for literal repetition. 

Step (lb), the determination of the axis of symmetry for each 

mapping, is self-explanatory. In general, the axis is taken to be the 

line which separates the region of   A   from that of   B. 

Step (lc),   the ordering of the isomorphisms remaining in   f, 
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is performed in an atteinpt to find solutions which involve the least 

amount of twisting possible.     For example,   in figure A2-2,   map (i) 

is tried before map (ii),   based on the directions of the node   a    from 

c(A)   and the node   a'   from   c(B).     We see that the layout based on the 

mapping of (i) is less twisted in terms of the whole graph than that 

based on (ii).    Proceeding according to step (lc)  should yield a total 

ordering of the maps,   otherwise at least two of the maps will be 

identical. 

Step (2),   which derives new layouts,   is broken down into cases 

according to options chosen and according to whether    S = 0    or   S ^ 0. 

Steps (2a-i),   (2a-iii),   (2b-i),   and (2b-iii),   the cases where   S = 0   are 

quite straightforward.    In the case where   A    cannot be moved,    B    is 

made to conform to   A.    When   A    can be moved,   an "average" position 

for each node is determined. 

The remainder of the steps all involve cases where    S /  0. 

These cases are more difficult to handle.     In step (2a-ii),   a new posi- 

tion for    c(B)    must be determined which makes   it possible for the 

nodes of   S   to have the correct relationships to   c(B).     In step (2a-iv), 

only those nodes in   A    not in   B    need be moved to obtain symmetrical 

repetition;  shared nodes are already symmetric.     Step (2b-iv) involves 

moving the nodes in   S   in a different manner from those not in   S,   in 

order to make the shared nodes symmetric,   as well as the nodes not 

shared. 
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The most complicated step,   (2b-ii) requires some explanation. 

The first part of the step,   that of labeling the nodes and forming 2m 

equations (or   m  abbreviated equations) is quite straightforward,   as 

is solving for   n-m variables.    With some of the mappings which we 

eliminated in step (la),   it is possible that these equations yield more 

than  n-m  free variables.     Furthermore,  with such cases,   it is also 

possible that the set of equations is incompatible in the following 

sense.    Suppose we had the equation: 

P2 - c(A) = p3 - c(B) 

where   p_    and   p      are elements of   S,   and where   p      was   a £ A   and 

also   f(b) £ B   (since it is shared it has two roles),   and   p     was  b € A 

and   f(a) € B.     Then substituting into the equations for each subpart 

we obtain: 

f(b) - f(a) = c(A)  - c(B) 

a -b = c(A)  - c(B) 

which unabbreviated implies: 

a    -b    = c(A)    -c(B)     = f(b)    - f(a) 
XX X X XX 

a    -b    = c(A)     -c(B)    = f(b)    - f(a) 
y    y y y y        y 

This condition is incompatible since   a    must relate to   b   in the 

same way   f(a)    relates to   f(b). 

However,   we conjecture that such cases do not arise once 
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step (la) is performed (step (la) eliminates the example above since 

f(S') = S'  for    S' £ S.     Thus we do not include checks for number of 

unknowns and for compatibility in step (2b-ii).    However,   this conjec- 

ture should be looked into further. 

As noted in the description,   the condition that centers remain 

centers in (2b-ii) may not completely determine the unknowns.     When 

arbitrary values may be given to the unknowns it is wise to avoid 

changing the order of placement along the   x   or   y axes where pos- 

sible,   as such a change may again cause twisting.     This may be seen 

in the last step of the example below. 

To clarify the procedure of step (2b-ii), we will show how it 

applies to the layout and mapping of figure A2-3, with node labeling 

as shown. 

Figure A2-3 
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The four (-m) equations in six (=n) unknowns for this example are: 

P]L - c(A) = p4 - c(B) 

P2 - c(A) = P3 - c(B) 

p3 - c(A) = p6 - c(B) 

P4 - c(A)  = p5 - c(B) 

The equations solved in terms of two   (=n-m) unknowns are: 

Pj =P5 - 2c(B) + 2c(A) 

p4 = p5 - c(B) + c(A) 

p3 = p6  - c(B)  + c(A) 

p2 = p6  - 2c(B)  + 2c(A) 

Using c(A)  = (1, 2) and   c(B)  = (3, 3)   they become: 

Pl    = P5    "4 Pl     = P5     "2 

xx y        y 

P4    = P5    " 2 P4    = P5    " * 
xx y y 

P3     = P6     - 2 P3     = P6     "  1 
xx y        y 

P2    =P6     "4 P2    =P6     "2 

xx y        y 

Applying the center criterion we have: 

(Max(p5 -4,p6 ~4,p6 -2,p5 -2) + Min(p5 -4, p^ -4, p& -2, pg -2))/2 = l 
XXX,    X xxxx 

P5     + P6     "6=2 
X X 

P5     +P6     =8 
X X 
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(Max(p    -2,p,   "2'P6 
_1'P5 -]) + Min(p5 -2, p^ -2,p6  _1.P5 -l))/2=2 

P5    +P6     -3=4 

P5    +P6     -1 

Using the method suggested in the algorithm for choosing values 

for   p and p, we obtain: 
5 o 
x, y x, y 

P5     =P6     = 4 

and since   p,     > p        in figure A2-3 
y        y 

P6     =P5     +2 

and thus   p.     - 9/2   and   p_     = 5/2.      We then have that: 
o b 

y y 

P1 =(0,1/2) 

P2 = (0,5/2) 

P3 = (2,7/2) 

P4 = (2,3/2) 

P5 = (4,5/2) 

P6 = (4,9/2) 

as can be seen in figure A2-4a.    If we had ignored the fact that 

P/     > Pr   ,  we might let   p,     + 2 = p     ,   and thus obtain the twisted 
y        y y y 

figure in A2-4b,   as was anticipated above. 
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(a) (b) 

Figure A2-4 
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Appendix 3 

AN ALGORITHM FOR LINK LENGTH CONSISTENCY 

An algorithm to improve link length consistency,   as measured 

by the number of different lengths appearing in a layout is described 

here.    In the description,  bend points are treated as nodes of degree 

two,  and the word link should be taken to mean link segment. 

As described briefly in section 2. 2. 2. 3,   this algorithm is 

partly constructive,   although it uses some of the original layout,   and 

so is classified as a modifying algorithm.    It proceeds by breaking 

the layout up into cycles of minimal length,   and generating regular 

polygons for these cycles wherever possible. 

In more detail,   the algorithm first removes all dangling trees 

from the layout (steps  1-3),   one link at a time,   recording the order 

in which links are removed.    After this is done,   the remainder of 

the layout is broken up into non-separating components (in the graph 

theoretic sense) (step 5). 

Each of these components is then processed one at a time 

(steps 6-33),   in order to derive layouts for the components.     The 

order in which the components are processed is arbitrary,   except 

that there is a preference for processing those components first 

which have nodes in common with already processed components. 

The processing of a component begins,   again by the removal 
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and recording of all dangling trees from the component (steps 7-9), 

one link at a time.    What remains are the cycles of the component. 

We begin processing the remainder of the component by find- 

ing the cycle of minimal length,   and forming a regular polygon of its 

sides (steps 6-17),  where the sides are a length which has been used 

before (perhaps in another component which has already been proc- 

essed).    If this is the first component to be processed,  we will,   of 

course,   determine the first length to be used in the layout here.     The 

first cycle has thus been placed. 

We next look for other cycles of the component which are 

attached to those already placed,   and which have not yet been placed. 

We first look for a smallest cycle which shares links with already 

placed cycles,   and try to place it (steps  17-30) by forming a regular 

polygon of its unplaced links with sides which are the same length as 

the distance between the two points at which it is attached to already 

placed cycles.    If,   with this placement we cause node or link overlap, 

we throw away this placement,  and try another cycle.     This series 

of steps is then repeated. 

At some point (step 31) we have either placed all the cycles 

of the component,   or found that they cannot be placed without causing 

overlap.    If the latter is the case,  we throw away any previous place- 

ment in the component (step 33) and layout the whole cyclic part of the 

component as a single regular polygon.    If we have found a placement 
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for all cycles,   but the number of lengths resulting exceeds the number 

we would obtain by forming a single regular polygon (step 32),  we 

again throw away the placement and form the single polygon.   Other- 

wise,   the placement is kept. 

The placement of the cyclic portion of the component is then 

complete,   and the dangling trees of the component are restored in the 

order in which they were removed (steps  11-13)  so as not  to    increase 

the total number of lengths in the layout.     The processing of this com- 

ponent is then completed (step 14) by placing it correctly in the total 

layout,   relative to other already processed components.    We then go 

on to process another component. 

When all components have been processed,   we restore the 

dangling trees initially removed from the layout in the order removed, 

in such a way as not to increase the total number of lengths in the lay- 

out (step 34-35) and terminate the algorithm. 

A few preliminaries should be noted before we state the 

algorithm: 

LEN  is a set of lengths. 

PLACED  is a set of nodes. 

REM  is a set of triples. 

TEMPLEN  is a set of lengths. 

TEMPREM  is a set of triples. 
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OLD(z)   is the pair of x, y-coordinates of node   z  in the orig- 

inal layout. 

NEW(z)   is the pair of x, y-coordinates of node   z  in the 

resultant layout. 

CYCLES is a set of cycles in the layout,   each recorded as a 

sequence of nodes. 

The algorithm is then: 

1) Set 1   => K,   REM = 0,   PLACED = 0,   LEN = 0.    For each 

node  x,   set OLD(x) => NEW(x).    Go to step 2. 

2) If any nodes are of degree one,   go to step 3; else,   go to 

step 4. 

3) Remove those nodes presently of degree one from the layout. 

For each node removed,   add a triple to REM of the form:   (removed 

node,   adjacent node,  K).    Add one to K,   and go to step 2. 

4) If only nodes of degree zero remain in the layout,   go to 

step 34; else,   go to step 5. 

5) Break the layout into non-separating components,   C., . . . , C . 

This is done as follows:    for each node,   in turn,   separate the node into 

n nodes if the node is of degree   n.    In each resulting distinct part of the 

layout,   if there are two or more nodes resulting from the original node 

in the same connected part,  join them back into one.     Then try this for 

the next node on each part of the layout thus formed.     Nodes of degree 
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zero are discarded.    An example of this process is shown in figure 

A3-1.     Each component,   C,   is considered unprocessed.    Go to step 6. 

a a 

4 W4\ 
original node a 

a a     a    a    a 
0    Q    0    9 

©99 
c    b    c 

node b 

a    a    a    a 
9  o   9 

6    9 
b     c 
9 
b 

6 
b   c 

node c 

a     a    a    a 
•   9  9  P 

9   9  9 
b    c     b    c 

b    c    b    c 

result 

a    a 

9  9 
b    c 

Figure A3-1 

6) If all components   C.f...,C     have been processed,   goto 

step 34.     Else,   if PLACED = 0,   set   z = 0,   choose any component   C. 

as the current component,   C,   and go to step 7.     If PLACED/ 0   look 

for an unprocessed component   C.   which contains a node   x   such that 

x 6  PLACED.     Make this component the current one,   C,   set  x =v>  z 

and NEW(x)  => RNEW,   and go to step 7.     If PLACED ^  0,   but there 

is no unprocessed component   C.   with  x € C.   and  x£ PLACED,   then 
11 

choose any unprocessed component as   C,   set   z=0,   and go to step 7. 

7) Set   1  ^>J,   TEMPREM = 0,   TEMPLEN = 0,   and go to 

step 8. 
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8) If there are nodes of degree one in  C,   go to step 9; else, 

go to step 10. 

9) Except for the node   z,   remove those nodes presently of 

degree one from the layout.    For each node removed,   add a triple to 

TEMPREM of the form:    (removed node,   adjacent node,   J).    Add one 

to J,  and go to step 8. 

10) If only nodes of degree zero remain in  C,   go to step 11; 

else,   go to step 15. 

11) Set  L   equal to the average of the lengths of the links orig- 

inally in C.    If LENUTEMPLEN = 0,   set  L => M,  add  L  to TEMPLEN, 

and go to step  12.    If  LENUTEMPLEN/ 0,   set  M  to that element of 

LENU TEMPLEN which is closest to   L,   and go to step 12. 

12) Subtract one from  J,   and go to step 13. 

13) If   J=0,   go to step 14.    If   J/0,   find all triples in TEMP- 

REM  of the form:    (nodel,   node2,   J).     For each such triple,   in turn, 

set  NEW(nodel) as follows:    if OLD(node2) = x  , y   ,   OLD(nodel) =x  ,y   , 

and NEW(node2) =x', y',   then NEW(nodel) = x, y where: 

x'-x 
=  ~~', »   sign (x   -x  )  = sign (x'-x) , 

x   -x. x'-x 

y2
_yi    y y 2 

and V(x-x')2 + (y-y')2 = M 

Go to step 12. 

(14)   If   z/0   calculate: 
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.        „      / II Ax - x   - x 

.      _    /        // 
Ay - y  -y 

where  RNEW = x', y',   NEW(z) =x", y",   and for each node a,  a £ C, 

where   NEW(a)=x, y,   set NEW(a)=x+ fix,   y + Ay.    In any case,   add 

the nodes of   C   to PLACED  and the lengths of TEMPLEN to LEN. 

Component  C  has thus been processed; go to step 6. 

15) Call the remainder of component  C,   C'.     All link segments 

in  C'  are now considered to be unmarked,  and all nodes to be un- 

placed.    Look for a simple cycle (no node appears twice except for 

the first and last) of minimal length in C'.    If there is a choice of 

minimal cycles,   and if  z ^ 0,   choose one which doesn't contain  z,   if 

possible.    Call the chosen cycle  p.    Set L   equal to the average of the 

lengths of the links of the cycle  p  in the original layout (i. e.  use 

OLD(x)).      Set  c   , c     as the center of the original positions of the 

nodes in the cycle  p.    If LEN = 0,   set  L => M,   and go to step 16.    If 

LEN/ 0,   set  M  to that element of LEN which is closest to   L,   and go 

to step 16. 

16) Add  M  to TEMPLEN.     Form a regular polygon from the 

cycle  p,  with center   c   , c   ,   and sides of length  M.     Choose  a 6 p' so 
x     y 

that if  z 6 p,   then  z => a,   and if   z i p,   then   x => a   for some arbi- 

trary   x £ p.     Then orient the regular polygon so that the direction of 

the new position of   a   from   c   , c      is the same as the direction of 
x     y 
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OLD(a)  from  c   , c   .    Record the new positions of all   x 6 p   as   NEW(x). 
x    y 

Mark each link in the cycle  p  as fixed and mark each node in the cycle 

as placed.    Go to step 17. 

17) If the number of unplaced nodes in  C ' is zero,   go to step 32; 

else,   set  0 => UNF,   1  => FX,   and go to step 21. 

18) Add one to UNF.    If UNF is greater than the number of links 

marked unfixed in C',   then go to step 31; else,   go to step 19. 

19) Set  0 =>  FX and go to step 21. 

20) Add one to FX.    If  FX  is greater than the number of links 

marked fixed in  C',   then go to step  18; else,   go to step 21. 

21) Set  0 => N; go to step 22. 

22) Add one to  N,  and go to step 23. 

23) If  N  is larger than the number of unplaced nodes in  C, 

then go to step 20;  else,   go to step 24. 

24) Set CYCLES = 0.    Look for the set of simple cycles of 

length  N + FX + UNF + 1 (the length of a cycle is the number of nodes it 

includes) with FX links marked fixed,   UNF links marked unfixed,   and 

N+l   links unmarked,   containing  N unplaced nodes.     The unplaced 

nodes must be consecutive in the cycle.    Set CYCLES equal to this 

set,   and go to step 25. 

25) If CYCLES = 0,   go to step 22; else,   go to step 26. 

26) Choose any cycle   q  in CYCLES,   and remove it from 

CYCLES,   if possible choosing  q   so that if  z/ 0,   z £ q.    Determine 

283 



the two points of contact of the unplaced part of the cycle with the 

placed part.     These two points are the placed nodes   a   and   b   which 

surround the sequence of unplaced nodes in q.     Draw an imaginary 

line,   a, b  on the layout and count the placed nodes on either side of the 

line.     Call the side with fewer nodes   S     and the other   S  .     If both 

sides have the same number of nodes,   and if  z   is placed on either 

side,   call the side not containing   z,   S   .     Set   S   => S,   and go to step 27. 

27)   Position the unplaced nodes in q,   say   n, n  ,   in order, 
In 

on side S of line a, b, so that a regular polygon of n+2 sides is 

formed with the line segment a, b as one side. For example, if 

q = (a, n  , n  , n   , b),  we would have the positioning in figure A3 -2. 

"2j 
ho* / 

/ 

.N© 

I 
I 

Figure A3-2 

28)    Draw all links of the layout connecting the nodes 

n., . . . , n    with each other and with those nodes already marked as 
1 n ' 

placed.     Check that neither of the following conditions exists: 

a) a node lies on top of another node or link. 

b) a link goes through a node to which it is not attached. 

284 



If neither of these conditions exists,   go to step 30; otherwise,   if 

S = S.,   go to step 29; else,  go to step 25. 

29) Set   S   ^> S,   and go to step 27. 

30) Record the positions of  n., ....n     as   NEW(n.), . . . , 
In 1 

NEWln )  and mark these nodes as placed.    Mark all fixed links of the 
n 

cycle  q as unfixed.     Mark all other links of  q as fixed.    Mark all 

links not in q but attached to an   n. €   q (i = 1, . . . , n) as unfixed and 

record their lengths in TEMPLEN as well as the length  a,b.    Go to 

step 17. 

31) If not all nodes of  C  are placed,   go to step 33; else, 

to step 32. 

32) _       „ (  1  +(n-3)/2    n   odd    1     , .      , 
Set   N    -    i   ,    ,   .     -./-, where   n   is the number n        11  +(n-2)/2    n   even J 

of nodes in  C'.    If   N <   | TEMPLEN |   go to step 33; else,   go to 

step 11. 

33) Find the center point of the old positioning of the nodes of 

C',   and call it  p  ,p   .    Form a regular polygon of the   n  nodes in C' the 

center of which lies at  p   ,p   .     The length  M  of the sides of the poly- 
x    y 

gon will be that element of  LEN which is closest to the average of the 

link lengths originally in   C',   or,   if  LEN = 0,   that average length.    The 

arrangement of nodes along the sides of the polygon should be as 

close as possible to their original arrangement.    Record the resultant 

position for each node   x€ C  as    NEW(x).    Draw all links in  C',   and 

record all lengths in TEMPLEN.    Go to step  11. 
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34) Set   K-l => K; go to step 35. 

35) If   K =0,   exit (positions in the new layout are those given by 

NEW(x); the number of lengths is   | LEN| ).     If   K/0,   find all triples in 

REM of the form:    (nodel,   node2,   K).    For each such triple,   in turn, 

set NEW(nodel) as follows:    if OLD(nodel) = x^y   ,   OLD(node2) =x  , y   , 

and NEW(node2)  = x', y',   then NEW(nodel)  = x, y where: 

x   -x x'-x 
=   ~,   ,   sign (x   -x  ) = sign (x'-x) , 

y2~yi     y ~y z   l 

m and   v(x-x')    + (y-y')     equals that element of LEN which is closest 

length to the distance between OLD(nodel) and OLD(node2).    If,  when 

this triple is processed,   LEN = 0,  use the distance between OLD(nodel) 

and OLD(node2) and add it to LEN.    Go to step 34. 

An example of the application of this algorithm will be helpful. 

Suppose we have the layout of figure A3-3a.    Applying steps 1-3,  we 

obtain figure A3-3b,   which is broken into components   C.,...,C     in 
1 5 

step 5 as shown in A3-3c.    In step 6 we choose a first component to 

process,   say   C   .    Processing   C.   we find no change from steps 7-10. 

In step 15,   we then choose a minimal cycle,   say (5,6,7),   and draw it 

as a regular polygon in steps   15-16.    Proceeding through steps  17-30, 

we choose (with UNF = 0,   FX = 1,   N = 1) the cycle (5, 6, 3) and install it. 

We then install cycle (7,8, 4, 5) since the next group of cycles that may 

be installed without violating the conditions of step 28 requires that 
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(a) (b) 

Figure A3-3 

(c) 

UNF = 0,   FX = 1,  and  N = 2.    We have thus placed all nodes in  C   ,  as 

shown in figure A3-4a,  using five different lengths.    But checking the 

maximum number of lengths allowed for a layout of six nodes in step 32, 

we find that  N, =3,  and,   proceeding through step 33,   our result will be 

the   layout of figure A3-4b,  with three different lengths. 

Returning to step 6,  we choose our next component so that it 

contains a node already placed.     Thus,   we choose   C   ,  with   z-7. 

287 



(a) 

Figure A3-4 

Proceeding again as for   C],  we find that we can go as far as the place- 

ment in figure A3-5a,  but cannot place the last node without violating 

step 28.    Thus we proceed through step 3 1 to step 33 to obtain the 

placement in figure A3-5b,   with two lengths,   one of which appears in 

C..    Proceeding back to steps 11-14,  we obtain an adjustment for the 

node positions of  C   ,   so that the placement of the node in common 

with  C.,   node 7,   corresponds to its previous positioning. 

Again at step 6,   we choose component  C     with  z = 12.    After 

removing node 13 in step 9,  we find that step 10 sends us to steps 11- 

14,  where we replace node  13 so that the length corresponds to one 

used in  C. U  C   ,   and the placement of the component   C     fits with 

that of   C. U  C   .     Similarly,   C     is chosen next with   z = 13,   and proc- 

essed in a manner analogous to   C   . 
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12 

(a) 

10 

Figure A3-5 

Finally we process    Cc   with   z - 14.     The placement shown in 

figure A3-6 is obtained by choosing the cycle (14, 15, 16) in step 15, 

and cycles (14, 17, 16) with UNF = 0,   FX = 1,   and N=l,  and (14, 18, 19, 

16, 15) with  UNF = 0,   FX = 2,   N = 2.     The number of lengths is two, 

which is less than  N, =3,   and so the layout of figure A3-6 is retained 

for   C_. 

Figure A3-6 

Adjusting the node positions of  C     to fit with those of  C.-C 

we obtain the layout of figure A3-7a.    Steps 34-35 then replace nodes 1 
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and 2 as shown in A3-7b,   so that the total number of lengths is five 

for the layout.     The layout is then complete,   and,   in fact, 

| LEN| = 5 <9 = N     . 

(a) (b) 

Figure A3-7 

There are several ways in which this algorithm may be modified. 

However,   at the present time,   no experimentation has been performed 

to determine whether or not these changes actually should be made. 

The most important area of question is in steps  17-33.    It would be 

more desirable,   if,   in stepping through the loops in 17-30,   conditions 

leading to the situations discovered in 31 and 32 could be determined 

earlier,   and the procedure of the algorithm corrected accordingly.     In 
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particular,   perhaps the algorithm should be aware of maximal cycles 

as well as minimal ones.    There is also some question as to the effect 

of the ordering of cycle examination in these steps.    As it now stands, 

the algorithm may find some larger cycles before finding smaller ones, 

since all fixed link cycles are examined first.    Whether or not this 

makes a difference is not known. 

Even with the algorithm as stated,   several problems will be 

encountered in its implementation.    Generation of regular polygons 

will be complicated.    Generation of cycles for a given UNF,   FX,   and 

N  is not a simple task either,   although an algorithm has been written 

by Tiernan (36) which generates the simple cycles of a given graph. 

Finally,   the check required in step 28 will be quite time-consuming to 

perform on a computer.     It would be quite an achievement to produce 

some method of placement which would guarantee no violation of the 

conditions of this step.     Thus,   there is much room for work on this 

algorithm,  but it is felt that the basic idea is a viable approach to the 

problem. 

In order to show that we can guarantee that the layout result- 

ing from the process just described contains   N     or fewer lengths, 

given a layout with  n  nodes,  we have the following proof: 

Lemma:     Let   G   be a layout with  n  nodes and at least one link (hence, 

at least two nodes),   then the layout resulting from the above 

algorithm will contain  N     or fewer lengths,  where: 
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N 
n 

1  + (n-3)/2 n odd 

1  +(n-2)/2        n  even 

Proof: We first consider the results of steps 3-4; there are two 

cases: 

a) If steps 3-4 remove all links of G  the resultant 

layout will have exactly one length in which case the number 

of lengths is less than or equal to   N  . 

b) If steps 3-4 do not remove all links of G,   then 

replacing those removed in steps 34-35 adds no new link 

lengths.    We must then be sure that  for the links and nodes 

not removed in steps 3-4,  the number of lengths in the 

resultant layout is less than  N .    We do this as follows. 
n 

Let  G'   be the layout after  steps 3-4 have been performed. 

Let  p  be the   number of nodes in G'.     Since   p ^  n,   cer- 

tainly,   N    <.  N  .     Now we must show that if we break the 
P n 

p  node layout,   G',  up into   c   components as in the algorithm, 

where for the  ith component,   the number of nodes is   p. , 

and where: 

c 

2     P.  " (c-1)  =p 
i = l 

(since shared nodes  should only be counted once),   that: 
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N     s       +/      (N     - 1) 
*-* P. 

1 P ; = l Pi 

For,   the right hand side of this inequality is the maximal 

number of link lengths we can obtain,   processing each com- 

ponent separately,   according to the algorithm.     This is 

because for the first component processed with,   say,   m 

nodes,   we guarantee no more than  N      lengths.    And,   for 
m 

any other components,   say,   with  q  nodes,   since at least 

one link length is chosen from the group of lengths already 

used,  we can guarantee no more than  N   -1   additional 
q 

lengths.     The removal and subsequent replacement of nodes 

of degree one,   in step 8-9 and steps  12-13,   adds no addi- 

tional lengths except for the case where nothing reinains in 

a component after steps 7-8.    In this case if this is the first 

component,   one length is added as expected,   and,   if it is not 

the first,   no new lengths are added. 

Thus it remains to be shown for: 

c 

Z    P:   " (c-1)  =P 
i = l        . 

that: 

I N     s   1   +     /      (N     - 1) 
l-l l 
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We do this by induction on  c   the number of components. 

1) For   c = 1   we have: 

N    ^ 1  + N      -  1  = N 
P Pj PX 

where   p-(l-l)=p=p   and thus 

N    £ N    . 
P P 

2) For   c =2 we have two cases to consider; let 

p     and  p     be the number of nodes in the two components, 

respectively,  where   p    + p    =(2-1) = p    + p    - 1 = p.   Then: 

i)   If p  is odd,   then   N    = 1 +(p-3)/2.    Since 

c = 2 we must have either that both components contain an 

even number of nodes,   or both contain an odd number.    In 

the first case: 

2 

1 +   /    (N     - 1) = 1 + N     -1 + N      -1 
i = l     Pi ?! P2 

= 1 +(Pl-2)/2 -1+1 +(p2-2)/2 -1+1 

= l+(Pl+P2-4)/2 

= 1 +(P -3)/2 <; N 

In the second case: 

2 

1 + Z,   (N    - 1)   = 1 + N     -1 + N      -1 
i = l      Pi Pl P2 

= l+(p1-3)/2- 1+1 +(p2-3)/2-l +1 
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= 1 +(Pl+P2-6)/2 

= 1  +(p-5)/2 ^  N 
P 

ii)   If p  is even,   then  N   = 1 +(p-2)/2.    Since 
P 

c =2  we must have that one component has an even number of 

nodes (say,   p.) and one has an odd number (say,   P-,)-     Then: 

1 +   ?     (N     - 1)  = 1 +N      - 1 +N      - 1 
i = l       Pi Pl P2 

= 1 +(Pl-2)/2 -1+1 +(p   -3)/2 - i +1 

= l+(p1+P2-5)/2 

= 1 +(p-4)/2 <  N 
P 

3.)   Assume for   c =m  that the inequality holds. 

4)    For   c = m + 1,   let G'  be a graph with  p   nodes 

and  m + 1   components.     Form the layout  G    with   m  compo- 

nents by adding an extra link between two adjacent components 

k     and k     to form the single component k.     The new link 

should not involve the node shared between k     and  k   .   (This 

can always be done since components have at least two nodes 

and share at most one).    An example of the modification is 

shown in figure A3-8.     Then for the new graph  G" we have 
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G' 

-v- 
k 

that: 

Figure A3-8 

N    ^   1 + 

m 

I 
i = l 

(N     -1) 

by the induction hypothesis.    But for   G',  we have that: 

m+1 m 

i + y (N -l) = i + y (N -l) - (N -l) 
• _ 1     p- • -1    p- Pi 1=1*1 1 = 1*1 rk 

+ (N       -1) + (N       -1) 

where   p,   - p     *Pi     " ^i   since unchanged components give 
k      kx      k2 

the same contribution,   and the contributions of components 

k     and  k     replace that of component  k.    But by part 2,   for: 

I p    - (2-1)  =   2   P;  " l  =P 
i=l i = l 

we have that: 
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N    s   1 +    /   (N    -1) 
P i = l     Pi 

or that: 

(N   -1)  ^ (N     -1) + (N     -1) 
P Pi P2 

But since  p    = p      +p      -1,   then: 
k      kl       K2 

(N      - 1)  s (N        -1) + (N        -1) 
Pk Pk, Pk. 

and thus: 

m+1 m 

1  +  V    (N    -1) <.  1 +   y   (N    -1) . 
•     i       P- •-i      P- i = l       ri l = 1        i 

QED 
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Appendix 4 

AN ALGORITHM FOR PARALLELISM 

This algorithm applies to a layout to increase the amount of 

parallelism (or to decrease the number of link slopes) in the link seg- 

ments of the layout.     The first part of the algorithm (steps  1-5) places 

the link segments into sets,   called S-sets according to the following 

requirements: 

1) Every link segment is in one and only one S-set, 

2) The first element placed in an S-set is called the key link 

segment of that S-set, 

3) Each S-set contains at most one subset of parallel link seg- 

ments, and, if it contains one such subset, the subset includes the key 

link segment of the S-set, 

4) Any link segment in an S-set has a slope within  r degrees 

of the slope of the key link segment of the S-set,  where   r   is deter- 

mined by the user,   and 

5) Any link segment in an S-set which is not parallel to the key 

link segment of the S-set,   is not parallel to any other link segment in 

the layout. 

In addition,   in the first part of the algorithm,   once S-sets are formed, 

a c-value or constraint-value is assigned to each node and bend point 

in the layout.     This value is used later in the algorithm to indicate 
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whether or not,   in order to increase parallelism,   these points may be 

moved,   and if so,   in what manner.     When the   c-value of a point is zero, 

its movement is unrestricted.    When the   c-value is one,   the point may- 

only be moved along a specific line.    And when the c-value is two or 

greater,   the point may not be moved.     The reason for these constraints 

on points is that once link segments are parallel,   or are made parallel, 

we want to maintain this parallelism. 

The c-values are assigned as follows:    Initially the c-value for 

a point,   p,   is zero.    Then for each S-set,   S,  we increase the c-value of 

p  by one if both of the conditions below are met: 

1) p  is the endpoint of some link segment,   l in  S,  and 

2) l has parallels in S. 

As the algorithm progresses,   and more link segments are made parallel, 

c-values are changed appropriately. 

The second part of the algorithm (steps 6-18) consists of proc- 

essing each S-set,   in turn,   starting with those containing the largest 

number of link segments.     The aim of processing an S-set is to adjust 

the  link segments of the set so that they are all parallel.    We need not, 

of course,  process S-sets containing only one element. 

The first part of processing an S-set (steps 6-10) is to deter- 

mine what the resultant slope of all elements in the S-set will be.   This 

is done by choosing an element of the S-set to whose slope all other ele- 

ments of the S-set will be made to conform.     This  selection is aimed at 
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maximizing the number of elements in the S-set which may be made 

parallel,   considering the current amount of parallelism and the c- 

values of the elements in the S-set.    Once the element with the 

desired slope is so determined,   it is made the new key link segment 

of the S-set.    At this point all elements in the S-set,  which,   due to 

their endpoint c-values,   cannot be made parallel to the new key link 

segment,   are removed from the S-set.    Since the slope of the key link 

segment is then to remain stationary,   the c-values of each of its end- 

points are then increased by one. 

The second part of processing the S-set consists of actually 

going through each of the link segments in the S-set and adjusting them 

so that they are parallel to the key link segment.    The manner in which 

a link segment is adjusted depends upon the c-value of its endpoints; 

thus,   according to these c-values the link segment is adjusted in one of 

the steps from 13 to 17. 

The algorithm is as follows; where   r   is an "angle of tolerance" 

to be set by the user: 

1) Record all sets of parallel link segments.     For all endpoints 

(nodes and bends),   n,   set  c(n) =0.    Set all S-sets to null.    Go to step 2. 

2) Set  i = 1; go to step 3. 

3) If no link segments remain unplaced in S-sets go to step 5; 

otherwise,   choose a link segment,   n.,   not yet placed in an S-set,   with 

preference for one to which others not yet placed are parallel,   and 
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place the single element  n.   in the S-set  S. ; mark link segment  n. 

as the key link segment for   S.   and go to step 4. 

4) Find a link segment,   m,   not yet placed in a set which 

meets the following conditions: 

(i)    If  n.   is parallel to other link segments then  m  may be 

parallel only to   n.   and its parallels,  but to no others. 

(ii)   The slope of m  measured over the first two quadrants 

is within  r   degrees of that of link segment  n. . 

(iii)    If  m   shares an endpoint with any other   p £ S.,   the 

slopes of  m and p  must be opposite in sign with respect to that point. 

If such a link segment is found,   add it to   S.   and go to step 4; otherwise, 

add one to i, and go to step 3. 

5) For each set  S. :    if the key link segment of  S.,   n.   has 
l ii 

parallels in  S.,   form a set of the endpoints of  n.   and of all link seg- 

ments in  S.   parallel to it; for each endpoint  n  in this set,   add one to 

c(n)„    In any case,   all sets,   S.,   are considered unprocessed at this 

point.    Go to step 6. 

6) If all sets,   S.,   have been processed,   or if the maximum 

number of slopes in all unprocessed sets is only one,   terminate the 

algorithm; otherwise,   choose the set  S.   which contains the largest 

number of different slopes,   and go to step 7. 

7) Mark  S.   as processed.    If the key link segment for   S.,   n. 

has no parallels in  S.   go to step 8; otherwise,   if there are any 
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elements of S. which are not parallel to n. and whose endpoints, say 

a and b, are such that c(a) > 1 and c(b) > 1, remove these elements 

from  S.,   and go to 10. 

8) If there are any elements in S.  with endpoints   a  and b 

such that  c(a) > 1   and  c(b) > 1,   choose one such,   mark it as the key 

link segment for   S. (removing the mark from  n.),   remove all other 

such from   S.,   and go to step 9.    Otherwise,   choose an element of S., 

say j,   for which the end points   a.   and  b.   are such that  c(a.) + c(b.)  = 
J J J J 

Max(c(a   ) + c(b   ),   k £ S.).    Mark j  as the key link segment for   S. 
K. K. 1 X 

(removing this mark from   n.) and go to step 9. 

9) Unless   | S. |   = 1,  for each of the endpoints  a  of the new key 

link segment for   S.,   add one to   c(a).    Go to step 10. 

10) Set  N  equal to the key link segment for   S.,   and remove   N 

and all elements parallel to  N    from   S..    Go to step 11. 

11) If   S. = 0,   go to step 6; otherwise,   choose an element of  S., 
l l 

call it  n,   and remove it from  S..    Go to step 12. 
l 

12) Record the positions of the endpoints of  n,   a  and b,   as  A 

and  B,   respectively.    If both endpoints of  n have c-values of zero,   go 

to step 13.    If both have c-values of one,   go to step 14.    If one has 

c-value of one,   and the otner,   of zero,   go to step 15.    If one has c- 

value of zero,   go to step  16.    Otherwise,   go to step 17. 

13) Rotate the link segment  n  around its centerpoint until it is 

parallel to   N (a rotation of less than 180°),   keeping its length constant. 
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Go to step 18. 

14) Find the two link segments   n     and  IT    ending on the two 

respective endpoints,   a  and b,   for which these endpoints were assigned 

c-values of 1.    It may be that  either   n    or   rL    consists of two parallel 

link segments from the same node,  but extending in opposite directions. 

If  n  , ITL    and  N  are parallel,   go to step 11.    If either   n     or   n     is 

parallel to   N  (say  n     is),   and  n     is only a single link segment,   then 
a a 

let  c  be the point of intersection of the extensions of  n     and   TL; now, 

if the slope of  n    with respect to   a   is the same as that of   a, c  with 
a 

respect to a, go to step 11, else, move b to coincide with c and go to 

step 18. If either n or n is parallel to N and the parallel segment 

is really two segments, go to step 11. Otherwise, find the midpoint of 

line segment n, c, and the line, Q, parallel to N which passes through 

c. The point at which Q intersects with the line based on the line seg- 

ment n is the new position for a, and the intersection of Q with the 
a 

extension of  n    is the new position for  b.    Go to step 18. 

15) Let  c(a)  be one,   where   a   is an endpoint of   n.     Then let 

n     be the link segment for which   a   was assigned the c-value of one. 
a 

It may be that   n      consists of two parallel link segments from the same 
a 

node but extending in opposite directions.      If  n     is parallel to   N,   and 
a 

n     consists only of one link segment,   reposition b   so that the length of 
a 

n  remains constant,   and so that  n  is parallel to   N  (rotating  b   through 

an arc of less than 180° around  a).   .If the slopes of  n     and the resulting 
ct 
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n are opposite in sign with respect to   a,   go to step 18; otherwise,   go 

to step  11.     If   n     is parallel to    N   and consists of two link segments, 
a 

go to step 11.    In any other case,  keeping the length of   n   constant, 

rotate   b   around   a (through an arc of less than 180°) until   n   is 

parallel to   N.    Go to step 18. 

16) Let   a   have a c-value of two or more.    Keeping the length of 

n   constant,   rotate   b   around   a (through an arc of less than 180°) until 

n   is parallel to   N.    Go to step 18. 

17) Let   a   have a c-value of two or more.    Let   n^   be the link 

segment for which   b   was assigned a c-value of one.    It may be that 

rL     consists of two parallel link segments from the same node but 

extending in opposite directions.    If   n     is parallel to   N,   go to step 11. 

Otherwise,   move   b   along the extension of   n     until   n   is parallel to 

N.    Go to step 18. 

18) If any node or link overlaps have been caused by the move- 

ment of   a   or   b,   restore   a   and   b   to the old values   A   and   B, 

respectively,   and go to step 11.    Otherwise,   add one to   c(a)   and  c(b) 

and go to step 11. 

The algorithm is illustrated in figure A4-1,  where   r    is about 

45° .  Relevant changes are noted after each step number.    In the algor- 

ithm   links which are parallel in the original layout remain parallel 

and fixed.    The realization of this last condition however,   causes  some 

difficulty,   in that two different sets of parallel links cannot be merged 

into one set. 

304 



If we are willing to give up the guarantee that parallel links 

remain parallel,  we may remedy this by changing constraint (i) of 

step 4 to read: 

(i)    if both  m  and   n are recorded as being parallel to other 

links,   but  m  is not parallel to   n,   then we must remove the record of 

the membership of m  in a set of parallel links (made in step 1) if we 

add  m  to   S.. 
1 

With this replacement,  we have no guarantee that the result keeps 

originally parallel links parallel. 

(a) 

D 
(c) 

step: 

1 c(l) = c(2) =c(3) =c(4) =0 
2,3,4 i = 1 

Si = {1-2, 3-4) 
i = 2 
S2=  {2-3,4-1} 

5,6 Si = Si 
7,8 j = l-2 
9 c(l)=c(2) = l 
10 N= 1-2, Sj = {3-4} 
11 n = 3-4, Sx =0 
12 a = 3, b =4 

A = p(3), B = p(4)   in (a) 
13 result shown in (b) 
18 c(3)  = c(4) = 1 
6 Si = s2 

7,8 j=2-3 
9 c(2) = c(3)  = 2 
10 N = 2-3,   S2 -  {4-1} 
11 n = 4-l,   S2 = 0 
12 a = l, b=4 

A=p(l), B=p(4)   in  (b) 
14 na = 1"2>   nb = 3"4 

result shown in (c) 
18 c(l) = c(4) = 2 
11,6 terminate 

Figure A4-1 

305 



Appendix 5 

DETAILS OF THE MOD SYSTEM 

Most of the details of the system are straightforward and will 

not be reported on here.    A few details of interest,  however,   will be 

discussed here.    These include the internal representation of graph 

layouts,   the basic structure of the system,   and finally,   the method 

used to determine which nodes and pins are indicated by the closed 

figures used for the move and copy operations. 

INTERNAL REPRESENTATION 

Three lists are used for representing graph layouts in the 

MOD system: 

1) NLST - node and link storage - 7 word entries . 

2) RSLST  - relative line,   shape,   and line storage - 3 word 

entries. 

3) PNTST  - point storage  - 3 word entries. 

The representation of each entity in these lists is described below. 

Each list is originally empty (entries are all zeroes).     There is room 

for 50 NLST entries,   46 RSLST entries,   and 50 PNTST entries.     The 

entries are used as follows: 

word bits 

NODES 
1        0-2 1  - indicates that this is a node 

3-17       pointer to point occupied by node 
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2 
3 
4 
5 
6 
7 

LINK 
1 

2 
3 
4 
5 
6 
7 

0-17       pointer to shape of node 
0-17 1 
0-17 J 
0-17 
0-17 
0-17 

0-2 
3-17 
0-17 
0-17 
0-17 
0-17 
0-17 
0-17 

RELIN 
1       0 

1-2 
3-17 

2 
3 

3-17 
3-17 

6 character name of node 

pointer to first outgoing link of node 
pointer to first incoming link of node 
(no permanent use) 

2 - indicates that this is a link 
pointer to node at which link starts 
pointer to node at which link ends 
pointer to next link starting at node in word 1 
pointer to next link ending at node in word 2 
pointer to first line segment for link 
pointer to ADP (relin) for link 
pointer to EP (relin) for link 

(relative line - used for ADP's,   EP's,   and shapes) 
1 if this is a visible line of a shape; 0  otherwise 
1  - indicates that this is a relin 
pointer to next relin for  shape line,   next ADP,   or 
next EP depending on what this relin is 

j   for ADP's and EP's these are positions relative 
AY 

to node center; for  shape lines this is   x   and   y 
increment for this line 

LINE 
1 0-2 

3-17 
2 0-17 
3 0-17 

SHAPE 
1 0-2 

3-17 
2 0-2 

3-17 
3 0-2 

3-17 

(link segments only) 
2  - indicates that this is a line 
pointer to point at which line starts 
pointer to point at which line ends 
pointer to next line in link 

3  - indicates that this is a shape 
pointer to first line of shape as relin 
first digit of function number for  shape 
pointer to first ADP of shape as relin 
second digit of function number for  shape 
pointer to first EP of shape as relin 
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POINT 
1 0-2 1  - indicates that this is a point 

3-17       pointer to node if this is a node position,   or to the line 
which ends at this position if this is a bend point 

2 0-17       x-coordinate of point 
3 0-17       y-coordinate of point 

Note that where a word in an entry is not appropriate for a particular 

entity,   the word is zero.    For example,   if a node has no outgoing links, 

the fifth word is zero,   or,   if an ADP is the last in a shape definition, 

bits 3-17 of word 1 are zero. 

Thus,  for example,  the shape in figure A5-la has the internal 

representation depicted in A5-lb.    The node in figure A5-2a has the 

structure shown in an abbreviated manner in figure A5-2b.    The lists 

NLST,   RSLST,   and PNTST reflect the current graph layout and defined 

shapes.     When a new graph layout is read in on paper tape,   the informa- 

tion is placed in these lists,  and any previous information is destroyed. 

When an operation is initiated which would cause any of the three lists 

to be exceeded,   the operation is aborted. 

BASIC STRUCTURE 

After initialization of any of the three systems,   the control of 

the program is essentially determined by the interrupts received from 

the Rand tablet.    A  "main'1 program (MODMN for Input and Frame- 

maker,   MODMN2 for Output) directs initialization and receives inter- 

rupts.     Once interrupts are received,   they are,   in general,   processed 

by an interrupt handling routine (LMNFRM for Input,   LMNFR2 for 
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(a) 

SHAPE: LINES: 

ADP's: 
3 
0 
5 

(b) 

Figure A5-1 

Output,   and FMNFRM for Framemaker).     These routines decode the 

type of action indicated by the pen movement and call routines to per- 

form that action.    For  example,   LMNFRM determines whether a label 

in the menu is being pointed at,   and,   if so,   calls the routine to perform 

the action indicated by this label.    LMNFRM also decides if part of the 

graph layout has been encircled.    If so,   it waits for the next pen move- 

ment,   to decide whether it should move or copy what has been enclosed. 
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(a) 

NODE: 

LINK 
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There are a few exceptions to this basic interrupt handling 

pattern.    If,   in Input or Framemaker,   the DEFINE label is pointed at, 

a routine,   GETDEF,   is called which puts the define frame on the scope. 

For each subsequent interrupt received in MODMN,   until "input" is 

pressed,   interrupts are processed in GETDEF and appropriate action 

taken there.    Once "input" is pressed,  the normal mode of operation 

is continued.     Similarly,   in Framemaker,   when "output" is pressed, 

FMNFRM calls a routine FOUTPT.     FOUTPT then receives the next 

interrupt which is typewriter input,   rather than tablet input,   and takes 

the appropriate action.    After one operation has been performed,   how- 

ever,   the normal mode of operation is resumed. 

Thus it is quite easy to see how additional layout modification 

algorithms might be added to MOD Output.    The appropriate label 

must be added to those displayed in the menu of the main frame (this is 

done by adding a label to the permanent display file INFIL2).    A routine 

must be written to perform the desired algorithm on the internal repre- 

sentation of the layout.    And,   instructions must be added to LMNFR2 

to determine when this new label is being pointed at and,  when it is,   to 

call the routine to perform the algorithm.    In the current implementa- 

tion of MOD,   unfortunately,   due to the limited size of the PDP-1 used, 

little space remains for additional algorithms.    A larger computer 

would be necessary for extension of the system. 
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METHOD FOR ENCLOSURE DETERMINATION 

As a final note,   a description is included of the method which 

is used to determine the contents of an enclosure made with the pen 

on part of the graph layout.    This method is based on the following 

observation: 

Given the interior region,  A,   defined by a closed curve,   C, 

within a surface with boundary,   B,   a point,   x,   on the surface has the 

following properties: 

(1) If x  lies in A,   any line drawn from  x   to any point on   B 

will cross    C   an odd number of times. 

(2) If x  lies outside  A,   any line drawn from  x  to any point 

B will cross   C an even number of times. 

Observation (1)  is  supported by the fact that,   if   x   is in  A,   for 

every crossing of  C,   the line passes alternately out of and into the 

region A.    Since   B   is always outside  A,   the total number of crossings 

must be odd.    A similar argument holds for (2). 

Using this observation,   then,   once a closed curve (represented 

internally by a series of straight line segments) is drawn,   we simply 

count,   for each node and pin,   x,   the number of times a line from  x  to 

some point on the boundary of the main frame box crosses the enclosure. 

If the number is odd,   x   is in the enclosure and will be moved or copied; 

if the number is even,   x  remains unaffected. 
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