
1
U4

B

ESD-TR-71-344

IR1 Call No. /T ^7*7 .-

iDepy. No, ^_of_2. cyt

THE LAYOUT PROBLEM FOR GRAPHS

Martha Greenberg Dennis

August 1971

ESO RECORD COPY
I URN TO

SCIENT.F.C * TECHI - -^

<TR1>, ,gi2i0

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Sponsored by: Advanced Research Projects Agency
(400 Wilson Boulevard
Arlington, Virginia 22209

ARPA Order No. 952

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FI9628-68-C-0379 by Harvard University,
Cambridge, Massachusetts 02138.)

Ab6^0#-

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-7I-344

THE LAYOUT PROBLEM FOR GRAPHS

Martha Greenberg Dennis

August 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Sponsored by: Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

ARPA Order No. 952

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FI9628-68-C-0379 by Harvard University,
Cambridge, Massachusetts 02138.)

FOREWORD

This report presents the results of research conducted by Harvard
University, Cambridge, Massachusetts in support of ARPA Order 952 under
contract F19628-68-C-0379. Dr. John B. Goodenough (ESD/MCDT-1) was the
ESD Project Monitor.

This technical report has been reviewed and is approved.

Lonel, USAF
Director, Systems Design & Development
Deputy for Command & Management Systems

ABSTRACT

The layout problem for graphs, the problem of automatically

generating a representation of a graph on a two-dimensional surface,

has been of interest in specific applications for many years, although

little work has been done on the general problem. In this thesis

three approaches are taken towards solution of the problem. The

first approach defines general layout qualities believed to be desir-

able. Means for measuring these qualities in layouts and algorithms

for their realization are developed. A graph layout building and mod-

ification system is described which provides an experimental environ-

ment for such layout algorithms. The second approach considers

layout from an application dependent point of view. A classification

of layouts into types is developed according to application, and layout

algorithms for each type are discussed. In this classification, a

correlation is found between complexity of layout type and complexity

of layout algorithm. An extension of the above graph layout building

system is designed, which allows for inclusion of application depend-

ent information in layout processing. The third approach, that of

considering the layout of modifications of graphs, rather than layout

of whole graphs, is briefly considered. It is concluded that this

third approach is the least effective for finding solutions to the layout

problem.

iii

TABLE OF CONTENTS

Page

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: GENERAL LAYOUT CRITERIA 6

2. 1 REGULARITY, DIRECTIONALITY AND
SIMPLICITY 7

2. 1. 1 Regularity 7

2. 1. 2 Directionality 16

2. 1. 3 Simplicity 25

2.1.4 Concepts in Aesthetics and Perception . . . 28

2.2 MEASUREMENTS AND REALIZATION 37

2. 2. 1 Measurements . , 38

2. 2. 1. 1 Repetition 40

2. 2. 1.2 Symmetry 43

2.2. 1.3 Other Qualities of Regularity . . 49

2.2. 1.4 Directional Consistency 55

2. 2. 1.5 Other Qualities of
Directionality 64

2. 2. 2 Realization 68

2. 2. 2. 1 Repetition 73

2. 2. 2. 2 Familiar Figures 78

2. 2. 2. 3 Link Length Consistency 78

2. 2. 2. 4 Fidelity 85

2.2.2.5 Directional Consistency 86

Page

2.2.2.6 Minimum Number of Bends ... 92

2. 2. 2. 7 Minimum Number of
Intersections 98

2. 2. 2. 8 Minimum Link Length 106

2.2.2.9 Parallelism 106

2. 2. 2. 10 Horizontal-Vertical
Orientation 107

2. 3 THE MOD SYSTEM 108

2. 3. 1 The Input System 109

2.3.2 The Framemaker System 121

2. 3. 3 The Output System 123

CHAPTER 3: APPLICATION DEPENDENT LAYOUT 143

3. 1 APPLICATION DEPENDENCY -
A JUSTIFICATION 144

3. 2 APPLICATION DEPENDENT LAYOUT
TYPES 147

3. 2. 1 Classification of Layout Types 147

3.2.2 Layout Types and Algorithms 153

3. 2. 2. 1 Linear Layouts 153

3. 2. 2. 2 Tree Layouts 155

3. 2. 2. 3 Network Layouts 174

3. 2. 2. 4 General Layouts 188

3. 2. 2. 5 Ordered-Arc Layouts 196

3.2.2.6 Summary of Layout Types 219

vi

Page

3. 3 A DESIGN FOR THE EXTENSION OF MOD 221

CHAPTER 4: ANOTHER APPROACH TO LAYOUT 236

APPENDIX 1: AMBIT/G OUTPUT PROGRAM 243

APPENDIX 2: AN ALGORITHM FOR REPETITION 252

APPENDIX 3: AN ALGORITHM FOR LINK LENGTH
CONSISTENCY 276

APPENDIX 4: AN ALGORITHM FOR PARALLELISM 298

APPENDIX 5: DETAILS OF THE MOD SYSTEM 306

REFERENCES 313

vii

Chapter 1

INTRODUCTION*

The "layout problem," the problem of generating an arrange-

ment of objects on a two dimensional surface, was mentioned by

Sutherland (34) as one of ten unsolved problems in computer graphics.

Solutions to the problem for some specific applications have been

found, but the general problem still remains unsolved. This work

discusses the layout problem for the graph theoretic type of graph

which Berge (5) has defined.** Such graphs consist of elements

called nodes (or vertices) which are connected to one another by

links (or edges). We will use the terminology "node" and "link."

Links will be denoted by single letters or numbers or by a parenthe-

sized pair listing the nodes they connect, for example, (a,b). Nodes

will be indicated by letters or numbers.

The layout problem 1s then, given a fixed graph theoretic

graph, which by definition is only a structural entity and has no

physical characteristics, automatically generate a two-dimensional

representation or layout of this graph. Many layouts are possible

for each graph. In this work we only consider layouts 1n which links

are drawn as series of straight-line segments. Line segments of

•This paper has also been included in the publication series

of the Harvard Center for Research in Computing Technology as Technical

Report 1-71.

••Additional references on graph theory are: Busaker and

Saaty (10), Liu (25), and Ore (31).

links (also referred to as link segments) will be denoted by single

letters or numbers or by a bracketed pair listing the endpoints of the

line segment, for example, [a,b]. A point at which two link seg-

ments of a link are connected will be referred to as a "bend point,"

or simply a "bend."

In this dissertation no general solution to the layout problem

for graphs is given, although some generally desirable criteria are

discussed, along with methods by which these criteria may be

realized in layouts. Furthermore, we consider solutions to graph

layout in several particular applications in which graphs are used

and in which layouts are needed. Many questions are brought out in

these discussions, which remain unanswered and which require

further work.

As an historical note, the author first dealt with the layout

problem while attempting to develop an output program for AMBIT/G

data. AMBIT/G is a computer language, the data and program of

which are in the form of directed graphs. Thus the output problem

for AMBIT/G was to generate and display a layout of some portion

of the graphical data.

Two basic questions arose in the development of the output

program, the first of which was how much of the layout was to be

prespecified by the user and how much was to be generated auto-

matically. Secondly, in the case of automatic generation of layout,

what criteria should be used and how should these criteria be

realized ?

The AMBIT/G output program finally developed allows for

both prespecified and automatic layout. Automatic layout is used as

a default condition in the absence of layout prespecification. Pre-

specification is accomplished by the building of a cumbersome

super-structure over the data to be displayed (see Appendix 1 for

details), and only relationships between node positions can be speci-

fied. Links are always routed automatically.

The automatic portion of the output program uses very

simple criteria, disregarding such information as the original layout

of the data and the general properties of the data graph. First, all

nodes are placed on a grid, and then links are routed. When posi-

tions are not prespecified, automatic node placement is performed

Even without layout prespecification, some super-structure
has to be built in order to specify the portion of the graph to be out-
put. This makes the whole output process difficult to use. In fact,
another easier means for output was devised by one of the imple-
menters of AMBIT/G. This was "on-line" as opposed to the method
discussed above. In the "on-line" method the user started a display
by naming a node which then appeared on the screen. He simply
indicated which node he wished to appear next by pointing to a link
origin in a node on the screen, or by naming another node and indi-
cating where it was to appear. This method avoids all the complica-
tions of automatic layout generation.

For example, we may specify that one node is to be placed
to the east of another node.

as follows: if the node to be placed, a, is linked to a node, b,

already placed, node a is positioned on a grid point adjacent to

node b and in the direction of the connecting link from b, which

direction is fixed, given b and the connecting link. If this position

was previously occupied, or if node a has no connections with nodes

already placed, it is placed to the right of those nodes already placed.

Thus, the first criterion for automatic node placement is node con-

nectivity, and the second is geometric linearity of a sort.

Links are routed equally as simply, with paths deviating from

straight lines only to avoid nodes. No attempt is made to avoid inter-

sections, or to provide regularity. Thus, this simple solution to the

AMBIT/G output problem avoids some of the more important con-

siderations of the layout problem.

In this dissertation we will discuss some of the more basic

problems involved in automatic layout generation for graphs and

some possible approaches towards solution. The second chapter

examines the more general comprehension criteria for layout. An

attempt is made to separate out those application independent quali-

ties of graph layouts which make some layouts more readable than

others. Relevant literature from the fields of perception and aesthe-

tics is considered. Discussion of the measurement and realization

In other words, the default condition that a node is placed to
the right of those already placed.

of such qualities is given. Included in this chapter is a description

of the MOD system, a graph layout input/output system designed for

experimentation with these application independent criteria.

The third chapter deals with the layout problem from an

application dependent point of view. A defense is given for the argu-

ment that the application dependent approach may be more practical

than the approach of chapter 2 for graph layout generation in some

cases. A means for classifying several commonly used layout types

for the purposes of layout is given. These layout types are dis-

cussed along with some layout algorithms. The chapter concludes

with a design for including layout type information and type dependent

layout generation in a graph layout input/output system like MOD.

Finally, the fourth chapter briefly considers another

approach to the layout problem, that of laying out graph modifica-

tions, rather than whole graphs. This approach was found to be less

productive than those taken in chapters 2 and 3.

Chapter 2

GENERAL LAYOUT CRITERIA

In attempting to characterize what makes a layout of a graph

a good representation of the graph we must consider those overall

qualities of layout which add to the readability of the graph repre-

sentation. Here, we make an attempt to separate out and categorize

those qualities which are generally grouped together so as to obscure

definition. The categorization is based on the functions these quali-

ties perform. Three broad categories which seem to account for

graph readability are regularity, directionality (of reading), and

simplicity. However, it will be shown that the third category is

somewhat dependent on the first two. This problem of characteriz-

ing these qualities has previously been considered in studies of

aesthetics and of perception.

After defining the qualities for overall layout, the feasibility

of their measurement and realization in layout must be considered.

Some work has been done in the direction of realization in the MOD

system.

Section 2.1 discusses regularity, directionality, and sim-

plicity, and considers previous work on this topic. Section 2. 2 dis-

cusses the measurability of these qualities and the possibility of

their realization in layout generation, and section 2.3 reports on the

work done in the MOD system.

It must be emphasized that the material of section 2.1 is a

first attempt at classification of the layout characteristics which

add to readability. This, by nature, is a subjective topic. The

reader may disagree with the effectiveness and classification of some

of the qualities discussed. He may also think of other qualities

which should be included. What we aim at here is to provide a

framework in which we can name and classify graph layout qualities,

and understand and measure their effects. The contents of section

2.1, then, is only a beginning in the direction of this goal, and is

based to some extent on the subjective views of the author, and

those in her proximity.

2.1 REGULARITY, DIRECTIONALITY AND SIMPLICITY

2.1.1 Regularity

The category of regularity is a broad one. It includes those

characteristics of layout which involve repetition, consistency, and

the occurrence of easily recognized geometrical forms. Regularity

seems to be one of the most important qualities responsible for

making graph representations or layouts readable. Certainly, large

layouts must be read in subsections, and where subsections are

similar, the layout is more easily subdivided by the eye. Further-

more, the fewer the types of subsections there are to comprehend,

the easier the pattern matching necessary for reading. It is clear

then that the larger the layout, the more important regularity

becomes for comprehension.

Let us consider the most obvious type of regularity, repeti-

tion. There are several forms repetition may take. We first name

and define these forms:

1) Literal repetition: two subparts of the layout are congruent

and have the same orientation (also referred to as identical repeti-

tion).

2) Symmetrical repetition: two subparts of the layout are

reflections of one another, with respect to an axis; i. e. , if one of

the subparts is flipped over this axis, it will lie on top of the other
o - JL.

subpart.

3) Rotational repetition: two subparts of the layout are congru-

ent but have different orientations, or, the mirror image of one

subpart is congruent to another subpart, but the two subparts do not

fulfill the requirements of symmetrical repetition; i.e. , their

orientations are different.

It is assumed here that the subparts referred to here and
below lie in different positions.

Point symmetry, in other words, symmetry with respect to
a point (such as that found in a pin wheel) is not considered here.

4) Similar repetition: two subparts are geometrically similar

to one another but not congruent, or, the mirror image of one sub-

part is geometrically similar, but not congruent, to another subpart.

Let us first consider literal repetition. When a subpart of a

layout is repeated exactly one or more times, it tends to identify

itself as a distinct subpart of the layout, lending to the viewer's

ability to subdivide the layout. But the number of these repetitions

which may exist in a good layout is limited. For example, quickly

glance at figure 2- la. The structure is quite clear. Now do the

same for figure 2-lb. How many nodes are there? In 2-lb the

number of repetitions, it seems, are too many to comprehend at

once, whereas in 2-la we can easily do this. Now if we modify 2-lb

slightly to obtain 2-lc, we notice that the result is much easier to

read. The repetition is on two levels; we read the layout as three

no n n
(a) (b)

Figure 2- 1

(c)

units of four nodes each. We are again reading the layout using

literal repetition, but more easily than in 2- lb, since the nodes are

divided into countable units. Thus repetition may occur at many

levels in a layout, and the layout remains readable as long as the

number of repetitions of a given unit at a given level remains easily

countable.

We notice that repetition may describe the relationships of

non-distinct subparts of a layout as well as those of distinct subparts

For example, we understand the layout of figure 2-2 easily because

we see four identical, but non-distinct subparts.

II • •

ii (i n

u 1 1

Figure 2-2

Symmetrical repetition also acts as an aid to comprehension

of layouts . For example, in figure 2-3a, the right side is a reflec-

tion of the left with respect to a vertical axis, adding to readability,

whereas in 2-3b, there is no symmetry.

(a) (b)

Figure 2- 3

10

There is some question as to whether rotational repetition

aids significantly in layout readability. It is quite clear that rota-

tional repetition is not as effective as literal or symmetrical repeti-

tion. How much clearer figure 2-4a is than figure 2-4b seems

mainly to depend on the particular viewer's ability to identify rota-

tional instances .

(a) (b)

Figure 2-4

There is also some question about the advantage of similar

repetition. One factor which seems to determine the ease with

which one detects similar instances in a layout is the closeness in

size between the two instances. For example, parts (i) and (ii) in

figure 2-5a are seen as similar much more easily than parts (i) and

(ii) in figure 2-5b. This phenomenon may be related to that of size

consistency, which is discussed below. Orientation also seems to

contribute greatly to the detection of similarity. When the similar

instances are oriented identically, or when the reflection of one

instance with respect to some axis is oriented identically to the other

instance, the two similar instances seem much easier to associate

11

(a) (b)

Figure 2-5

than two similar instances not oriented in these ways. Examine,

for example, the pairs of triangles in 2-6a and b as opposed to the

pairs in 2-6c and d.

P
(a) (b) (c)

Figure 2-6

We must also consider as part of regularity, the occurrence

of certain very familiar, easily recognized geometrical patterns

such as lines, triangles, squares, regular polygons, etc. These

familiar aids help the viewer to organize a layout, since they are

easily seen when they occur, and thus lead to a faster comprehension

of a layout.

A main component of regularity which seems to underlie much

12

of what was mentioned above is what we shall call size and distance

consistency. In general, this implies equivalence of link lengths,

where possible, and, at a more subtle level, what Baecker (4) calls

fidelity, which will be described below. Applying the equivalence

criterion where possible, similar images tend to become closer in

size, some literal, symmetrical, and rotational repetitions tend to

appear, and in general the graph layout becomes more regular. This

explains the discussion of figure 2-5. Application of this constraint

in its literal form to the layout of figure 2-7a might result in the lay-

out of figure 2-7b, a definite improvement. This length constraint,

which we will call "link length consistency," will be taken to mean

that as few different link lengths as possible appear in the layout.

<m>
(a) (b)

Figure 2-7

The concept of size and distance consistency is intended to
apply to layouts in which links consist of a single line segment. The
extension for multi-segment links, although not considered here,
might be worthwhile to explore.

13

Baecker has expressed size and distance consistency in

another form, which he calls fidelity. He suggests that graph lay-

outs are better, the more the graph-theoretic distances and layout

distances between nodes correspond. In this sense he is concerned

with how faithful a representation of a graph is to the graph itself.

For example, in figure 2-8a, node a is separated from node b by

at least two links (hence, the graph-theoretic distance is two), and

yet it is drawn closer to node b than to node c, which is adjacent

to a. In figure 2-8b the layout has better fidelity.

(a) (b)

Figure 2-8

It seems appropriate to discuss one final layout character-

istic, balance, under the topic of regularity. A crude definition of

balance might be evenness of node and link distribution throughout a

graph layout. We want to separate symmetry from balance, how-

ever, so as not to attribute clarity to balance when it is due to sym-

metry. Let us look at the graph layouts in figure 2-9a and b. The

14

amount of symmetry seems the same in both, but b is much better

balanced than a, in other words, the nodes and links are distributed

more evenly. There is some question as to whether balance con-

tributes significantly to readability, or whether it just adds to the

aesthetics of a layout.

(a) (b)

Figure 2-9

In summary, we have included under the category of regular-

ity several layout qualities, all of which contribute to the readability

of graph layout by adding consistency or by facilitating some form of

pattern recognition. This category includes literal, symmetri-

cal, rotational, and similar repetition of both distinct and non-

distinct layout subparts, which may occur on many levels. The

appearance of familiar figures was considered, as well as consist-

ency of size and distance in layout. Finally, balance was discussed

as a possible aid to readability.

15

2.1.2 Directionality

Another category of qualities, which we shall call direction-

ality, deals with the layout as a whole rather than in terms of its

parts. Directionality includes those qualities which aid in a directed

reading of a layout. This may be taken literally, or may be con-

sidered at a more subtle level. To some extent, then, directionality

seems to deal more with links and their paths in a layout, rather

than with nodes.

What first comes to mind is the nature of the links in a lay-

out. If the layout is directed is there some consistency in the

direction in which the arrows point? Flow-type and network diagrams

by convention ask that there be some directional consistency, often

requiring that arrows point predominantly in one direction, say to the

right. The constraint of directional consistency may also be met

when arrows point consistently toward, away from, or around a

center, as in figure 2-10. In general, directional consistency for

directed layout means that there is some regular manner in which

arrows are arranged. It is clear that this quality aids in the ease of

reading directed layouts by providing some pattern in eye movement.

Two other qualities seem to be good candidates for

In other words, links have a direction, indicated by arrows.
This type of graph representation is used when the underlying graph
is directed.

16

^^

Figure 2-10

directionality. These are, first, the number of bends, or equiva-

lently, link segments used in representing the links of the graph,

and, second, the total link length used in representing these links.

We will call these qualities "number of bends" and "total link length,"

respectively. Both qualities have been considered as layout criteria

in circuit layout. In the first case, clearly, the fewer the bends in

a representation of a link, the easier it is for the eye to follow its

path. Furthermore, in the places where bends occur, in some

cases, there is a tendency for the eye to create nodes, for example,

in figure 2-11.

Figure 2-11

17

In the second case, it seems obvious that the greater the total

link length for a layout, the more complex the layout will be. First of

all, we find that the more link length there is, in general, the greater

the probability that bends will also be present. Furthermore, when

link length is in excess in a layout, it is usually because some other

criterion such as the number of intersections is being minimized in

the layout. Thus the complexity due to large link length in a layout

may really be due to inherent graph complexity in the underlying

graph. To illustrate, consider figure 2-12a. We may attribute its

complexity to link length (and to the number of bends). However, we

see in figure 2- 12b, the same graph represented with a smaller total

link length contains other features which reflect the inherent com-

plexity of the underlying graph.

(a) (b)

Figure 2-12

Another quality which seems to affect directionality in a layout

is the number of link intersections other than at nodes. As is well

18

known in graph theory, some graphs cannot be drawn on a two-

dimensional surface without intersections. These are called non-

planar graphs. In fact, the minimum number of intersections which

can be attained for any two-dimensional representation of a given

graph is inherent in the graph and is called the genus of the graph.

For example, the graphs represented in figure 2-13 are non-planar.

We might require for readability that the number of inter-

sections in a layout be as small as possible for the underlying graph.

For instance, the minimum number for the graph represented in

figure 2- 14 is zero, and we find that 2- 14a is easier to comprehend

than 2- 14b, where the intersection adds complexity similar to that

added by bends in links. A further complication produced by

Figure 2-13

With this quality, one of the main problems underlying the
layout problem surfaces. This is the problem of differentiating what
part of the layout is determined by the graph theoretic structure of
the underlying graph and what part depends only on a Euclidean
metric. In the case of intersections the effects of graph theoretic
structure are quite clear, but in most cases, the effects are not as
clear.

19

(a) (b)

Figure 2-14

intersections is that faces are created visually which are not true

graph theoretic faces. This also leads to difficulty in comprehension.

But consider the layouts in figure 2-15. The number of inter-

sections in 2-15a is much greater than in 2-15b, yet we do not find it

particularly more complex. The same situation occurs in comparing

2- 15b to 2- 15c. Here we have a case where the intersections, due to

their number and regularity, do not detract from the directionality of

the layout. Thus the importance of the minimum intersection con-

straint is more difficult to assess than was first expected. We must

also take into account how much the particular intersections add or

detract from directionality.

it • n

• •

• —•

• •

<i 1 i

(a) (b)

J ••

T~J *-

(c)

Figure 2-15

20

We will now consider a more subtle aspect of directionality,

that involving link (or line segment) orientation. Two questions arise

when we consider orientation. First, what effect does the variation

of the slope of the link segments have on the layout? And second, is

a generally horizontal-vertical link segment orientation better than

any other general orientation?

To answer the first question, examine figure 2-16. The lay-

out in figure 2- 16a is quite clearly better than that of figure 2- 16b.

There are several factors which contribute to this difference. In one

(b)

figure, the number of parallel lines is large, the number of different

slopes is small, and angles between link segments are limited to 0

and 90° . In the second figure this is not the case. Let us consider

each of these factors separately.

We first conjecture that parallel lines are much more effec-

tive in layout than non-parallel lines. The larger the number of

different link slopes in a layout the more confusing it is. Examine

21

the gradation of the layouts in figure Z-17, for example. Recurrence

of a particular slope in the form of several parallel lines tends to

reinforce a direction in the layout. Whereas, lack of such reinforce-

ment may generate directional confusion. This quality will be

referred to as "number of link slopes," or, equivalently, "amount of

parallelism."

Figure 2-17

We then ask whether certain angles between links are prefer-

able to others. One might first guess that 90° is a preferable angle.

However, in examining figure 2- 18, we see that this is not neces-

sarily the case. This first guess, we find, is instead accounted for

^90c
90°

Figure 2- 18

22

when we consider horizontal-vertical link segment orientation.

This lack of preference may be explained somewhat by our ability

and tendency to see things in perspective, and to give a three-

dimensional reading to a two-dimensional figure.

We will now consider the question of whether a horizontal-

vertical link segment orientation is preferable to any other. By

horizontal-vertical link segment orientation, more specifically, we

mean that the link segments of a layout are oriented either horizon-

tally or vertically. The answer to the question of whether such an

orientation is preferable is obvious in the comparison of figures

2-19a and b. The reason for this preference is not clear, although

*
it has been mentioned as an important factor by Birkhoff (6).

• • II

• II 41

• n

(H II

(a) (b)

Figure 2-19

Actually, Birkhoff mentions two factors which might contri-
bute to this preference. One is what he calls "equilibrium," which
accounts for whether a figure looks stable or unstable. The other
factor, which he calls "the relation to a horizontal-vertical network,"
expresses the fact that humans prefer figures whose sides (link seg-
ments) fall on a horizontal-vertical network, or, as a second pref-
erence, on a network whose grid cells are diamonds. Birkhoff
relates this factor to our everyday experience.

23

Thus, if we were to pose the question about angle preference with the

example in figure 2-20, we might arrive at a different answer. This

can easily be explained by preference for horizontal-vertical orienta-

tion.

f "
^_^4 >-"""' I n

JL- J^~ >-1 1-1-1 HL r4

Figure 2-20

In summary, we have considered several layout qualities

under the category of directionality. These have the common fea-

ture that they all contribute to some directional organization of the

layout of a graph. The most obvious quality which has been con-

sidered is directional consistency in directed layouts. Bends in

links, total link length, and link intersections have also been exam-

ined for their effect on directionality. Aspects of link (or line seg-

ment) orientation in a layout have been discussed; this includes the

qualities of parallelism, number of different link slopes, and size of

angles between links in a layout. Finally, horizontal-vertical link

segment orientation preference has been considered.

24

2.1.3 Simplicity

It seems appropriate that we should also consider simplicity

as a category of layout qualities, since most observers tend initially

to equate clarity and simplicity to some degree. Let us try to define

what is meant by simplicity in a layout. The most obvious definition

*
is that a layout is simplest when it represents the underlying graph

in the most straightforward manner possible, and it avoids unneces-

sary complication. For example, figure 2-2la is certainly simpler

than figure 2-2 lb, because of the unnecessary complication of a link

intersection in 2-2lb.

(a) (b)

Figure 2-21

We must then ask what qualities tend to add to the unnecessary com-

plication of a layout. And, are these qualities different from those

discussed under regularity and directionality.

To review, the qualities included under regularity are those

which affect the reading of a layout through its subparts.

Note that this issue is not to be confused with the graph
theoretic simplicity (or complexity) of the underlying graph itself.

25

Directionality, on the other hand, includes those qualities which

affect the overall direction and orientation of a layout. As can be

seen in many of the examples above, optimizing on the qualities dis-

cussed under these categories seems to produce simpler layouts.

Unnecessary complication can usually be pin-pointed as a lack of

optimization of one or more of these qualities. It seems, further-

more, that with the categorization given above, any quality which

affects the simplicity of a layout, is more specifically affecting either

the regularity or the directionality of the layout and should be cate-

gorized accordingly.

From this discussion, we conclude that simplicity, in itself,

should not be considered as a separate category, but as a complex of

the effects of qualities we've already considered under regularity and

directionality.

Some further examples may help convince us of this point.

Consider the pairs in figure 2-22. In each pair there is one layout

which is obviously simpler than the other. The difference in each

case can be understood by pointing to a quality or set of qualities

discussed under regularity or directionality which accounts for the

simplicity or complication present. In figure 2-22a the most obvious

quality is the number of intersections. In b, it is the existence of

literal repetition. In c both symmetrical repetition and directional

consistency contribute, whereas in d we find that parallelism and

26

• •

• •

•s: 5»

(a)

ra

(b)

(c)

><>X A^h
(d)

(e)

Figure 2-22

27

horizontal-vertical link segment orientation accounts for most of the

difference. Finally, in e the separation into literally repetitious

subparts as well as symmetrical repetition makes one figure simpler

than the other. The reader should try several pairs himself, and

examine the qualities which account for simplicity or complication.

Perhaps, in this examination, other qualities which have not been

brought out above may appear.

2.1.4 Concepts in Aesthetics and Perception

In this section we will supplement the discussion of sections

2.1.1 through 2.1.3 by considering some relevant ideas found in the

literature of aesthetics and psychology. Both fields have dealt with

the question of -what factors add to the readability of a two dimen-

sional layout, or, more generally, a two dimensional figure.

In studies of aesthetics, the motivation for answering this

question is to understand what factors add to the aesthetic quality of

a figure or an object. And as Birkhoff reports, Helmholtz stated:

"The more easily we perceive the order which characterizes the

objects contemplated, the more simple and perfect will they appear,

and the more easily and joyfully shall we acknowledge them"

(6, page 199).

In psychology, an understanding of the factors contributing to

readability of figures is linked to an understanding of human visual

28

perception.

In the remainder of this section we will briefly describe some

of the relevant literature in these two fields. In doing so, we will try-

to list those factors thought by the authors to contribute to reada-

bility, and briefly examine how these factors correlate with the ideas

given in the previous three sections.

Let us start with aesthetics. The wish to understand what

factors cause a sensation of aesthetic feeling when an object is per-

ceived, has long been of concern to philosophers. Few, however,

have attempted to describe aesthetic factors in a formal manner.

The one exception seems to be the careful work done by George

Birkhoff in 193 3 on this subject.

To Birkhoff, "the fundamental problem of aesthetics [is] to

determine, within each class of aesthetic objects those specific

attributes upon which the aesthetic value depends" (6, page 3). In

summary, Birkhoff first proposes that the measure of the aesthetic

value (M) of an object may be determined by the complexity (C) of the

object, and the order (O) or harmony of the object, according to the

formula: M = O/C. The complexity (C) of an object is a measure of

the amount of effort which must be expended in perceiving the object.

The measurement of complexity is different for each class of objects.

The order (O) of an object is determined as a summation of the

measures of various "elements of order" for the object. The elements

29

of order reflect the various attributes of the object contributing to or

detracting from the aesthetic value. Positive elements of order are,

for example, repetition, similarity, contrast, equality, symmetry,

balance, and sequence (6, page 9). Negative elements of order

include ambiguity, undue repetition, and unnecessary imperfection

(6, page 10). Birkhoff determines for each class of objects those

elements of order which he feels contribute to the measure of order

(O).

Having established this formalism, Birkhoff proceeds to

derive measures of aesthetic value (M), for several classes of

objects found in art, music, and poetry. For each such class, he

determines the set of elements of order to be considered in the

measure of order (O) for the objects in this class, as well as some

measure of the complexity (C) of these objects.

Of particular interest to us is his study of the class of poly-

gons, in that polygons are so integral a part of graph layouts in

which links consist of straight line segments. In the class of poly-

gons, the elements of order Birkhoff considers are briefly described

below:

1) Vertical symmetry: the figure is symmetrical with respect

to a vertical axis.

2) Equilibrium: the figure rests on a horizontal base with optical

center of gravity above this base.

30

3) Rotational symmetry: the figure is symmetric with respect

to a point at its center.

4) Relation to a horizontal-vertical network: the sides of the

figure lie along lines of a horizontal-vertical network.

5) Unsatisfactory form: Birkhoff's "omnium gatherum" of

negative factors.

Given a figure, for each of these elements of order, i, a

quantity, x., is determined, according to how the figure meets the

requirements of the particular element of order. The order (O) is

then the sum of the measures x. . The details of how a given x. is
I l

calculated will not be mentioned here.

Birkhoff then proceeds to calculate the aesthetic value (M) for

a large group of polygons. According to his analysis, the square is

the most aesthetic of all polygons.

Let us now briefly compare Birkhoff's selection of aesthetic

factors with the group of readability qualities discussed in sections

2.1.1 and 2. 1.2. The idea basic to both approaches is the concept

of order; underlying this we find that both approaches consider sym-

metry (although Birkhoff includes point symmetry), horizontal-

vertical orientation, diversity of directions, and similarity within

figures (a concept which Birkhoff discusses when he considers orna-

ments as a class of objects to be analyzed).

31

In addition, several factors not considered in sections Z. 1. 1

and 2.1.2 are brought out by Birkhoff. In this author's opinion, how-

ever, these factors tend to add more to aesthetics than to readability.

Among these factors are Birkhoff s idea of equilibrium, which relates,

in a sense, to the idea of balance (section 2. 1.1), and the concepts of

unnecessary imperfection and ambiguity.

We will now examine some of the ideas found in the literature

of psychology, which are pertinent to the problem of readability. As

mentioned above, the problem became important in this field when

questions of human visual perception were seriously considered. The

basis of many of the current concepts in visual perception was devel-

oped in the writings of the Gestalt school of psychologists. According

to Boring (7), this school began in 1912 with the writing of Wertheimer

which "treats of the general dynamics of the formation of form" (7,

page 252). Several well-known publications cover the concepts of the

Gestalt school, including those by Hartmann (18), Koffka (22), and

Katz (21).

As a brief background note, the approach of the Gestalt psy-

chologists differs from previous approaches to perceptual studies in

that the Gestalt studies were basically phenomenological, rather than

physiological. In other words, perceptual phenomena are "allowed to

speak for themselves" (21, page 18), rather than being subject to

various types of physiological analysis.

32

According to Boring, "the chief contribution of Gestalt psy-

chology to the psychology of perceived form was its insistence that

the perception is formed under certain dynamical laws which give it

its specific psychological organization. A perception is not a copy of

its stimulus" (7, page 246). And according to Allport (1), these

"laws are natively given, and are a property of the organizing action

of the nervous system" (1, page 115).

Allport states that "no less than '114 laws of gestalten' have

been formulated by various writers" (1, page 113). In subsequent

literature, the list has been made more compact. Most of these

principles apply to visual form. Let us first summarize a few of the

more general principles of Gestalt with relevant quotations from

Allport (1, page 113):

1) Form-concept isomorphism: "When one perceives an object

that object tends, psychologically, to take on form; and forms estab-

lish themselves and persist . . . such forms occur within the ner-

vous system or brain as macroscopic states or physiological config-

urations which are isomorphic . . . with the configuration of the

percept to which they give rise. "

2) Wholeness-character and relationships: "The form always

has a 'whole-character1 that transcends the characteristics of the

parts. . . . The perceiving of relationships is an essential aspect of

wholeness in experience. "

33

Allport also includes other principles stating that laws

"intrinsic to the organism" underlie the perception of form. The

perceived configurations tend to be "self-closing and to be simple,

balanced, and symmetrical. The tendency is toward 'good' form. "

In addition, the configuration is organized by certain forces, "giving

rise to segregation, groupings, combinations into subsystems, and

articulation. "

Some of the more specific laws for producing visual form

have been summarized by Katz. These specific laws are of more

interest to us, in that they describe in more detail what factors help

organize perception of a two-dimensional representation. A few of

these are (21, page 25 ff.):

1) The law of proximity: "Other things being equal, in a total

stimulus situation those elements which are closest to each other

tend to form groups. "

2) The law of similarity: "When more than one kind of element

is present, those which are similar tend to form groups. "

3) The law of closed forms: "Other things being equal, lines

which enclose a surface tend to be seen as a unit. "

4) The law of "good" contour, or common density: "Parts of a

figure which have a 'good' contour, or common density tend to form

units. " (Also known as the law of "good" continuation.)

34

Wertheimer (38) and Koffka, who have originated much of this

work, both discuss these laws in detail and give several examples of

their application. In 1940 Mowatt (29) published the results of an

experiment to test the value of these laws. In summary, her subjects

were given a series of drawings and asked to change them in any way

desired to produce what they felt were "good" figures from the draw-

ings. She found that, in general, subjects changed drawings in such

a way as to increase, among other things, differentiation, simplicity,

closure, symmetry, good continuation, and occurrence of familiar

forms .

We see then that some of the Gestalt concepts of visual per-

ception agree with some of the factors mentioned in sections 2.1.1

and 2.1.2, for example, the importance of symmetry, similarity, and

the occurrence of familiar forms. Other factors are mentioned by

the Gestaltists which should be examined as possible additions to the

list of readability qualities. Among these are the concepts of prox-

imity, good continuation, and closure, none of which have been con-

sidered in the previous sections.

More recent work on the problem of determining the factors

affecting visual perception has been done by Attneave and Arnoult (3).

They mention that the problem underlying work in the area is that:

"Our most precise knowledge of perception is in those areas which

35

have yielded to psychophysical analysis (e.g. , the perception of size,

color, and pitch), but there is virtually no psychophysics of shape or

pattern" (3, page 123). And in regard to natural form, "relatively

few scientists have seriously applied themselves to the problems of

analyzing and describing form; these problems seem to have fallen

into the cracks between sciences, and no general quantitative morph-

ology has ever been developed" (3, page 132). They mention the work

of Thompson (35) as the only major work in the field, but a work

which is limited in its contribution to the identification of psycho-

physical variables of form.

Hake (17) has summarized some of the more recent experi-

ments with the factors involved in visual perception. Among these

he mentions experiments in judgement of complexity of figures, in

which results show dependency on the number of turns or angles, and

upon symmetry. He also summarizes experiments on the effects of

redundancy in figures, and concludes that the helpfulness of redund-

ancy in figures depends on the context of the figures. Experiments on

the effects of rotation are also mentioned. In all rotation experiments

reported on, accuracy of figure recognition is impaired by the rota-

tion of a figure. Hake also reports on a large amount of experimenta-

tion with figures tilted toward or away from the observer. To some

degree, it is found that an adjustment in the perception of such a

tilted figure is made for perspective.

36

Comparing Hake's discussion with that of sections 2.1.1 and

2.1.2, we find support for the ideas found in the discussions on the

number of bends, rotational repetition, and angles between slopes.

However, some question about the effectiveness of symmetry and of

literal repetition is raised by the experiments reported on by Hake.

As a final note, we mention the work of Miller (28), who has

dealt with a problem implicitly mentioned in section 2.1.1, namely,

the problem of what a "countable" number of repetitions is in a lay-

out. In his essay, "The Magical Number Seven, Plus or Minus Two:

Some Limits on Our Capacity for Processing Information," Miller

presents evidence that humans seem to be limited in what he calls

"channel capacity, " in number estimation ability, and in immediate

memory span, by a number in the range of seven. Although he draws

no conclusions about this "coincidence," the results of several ex-

periments are reported on. These experiments suggest that, per-

haps, the answer to the problem posed in section 2.1.1 is seven plus

or minus two.

2.2 MEASUREMENTS AND REALIZATION

Having established some of the qualities which we believe

contribute to readable graph layouts, we would like to be able to

measure how much a particular layout fulfills a particular quality.

Furthermore, we wish to examine the possibilities for the

37

realization of these qualities. In other words, can we provide some

method to optimize these qualities in layouts ? Both problems are
a.

quite complex and require close examination.

2.2.1 Measurements

The ideal measurement of a quality in a layout tells us to what

extent we have optimized the layout for the particular quality. There

are two types of measurements we would like to consider. The first,

which we shall call the "normalized measurement," states the extent

to which a quality is fulfilled in a layout, relative to the optimal pos-

sible fulfillment for any layout of the particular underlying graph.

The second, which we shall call the "non-normalized measurement,"

does not take the optimal case into consideration. This second mea-

surement gives us some idea about how well a quality is fulfilled in a

layout, but is useful only when a comparison of two layouts of the

same graph is made, and the best of the two is to be chosen. It does

not tell the extent to which one layout is better than the other, with

respect to a particular quality.

The normalized measurement of a quality requires that we

have a method to establish the absolute minimum (or maximum) for

Note that in this work we do not examine the question of
internal representation of graphs and layouts although the nature of
this representation has an effect on the efficiency of measurement
and realization techniques, and should eventually be looked into.

38

this quality and a particular graph. It seems that for many qualities,

this is a very difficult task. For example, with the minimum number

of intersections, this would mean the establishment of the genus of

the graph. Furthermore, the absolute optimum, given a graph, may

be dependent to some extent on factors which are irrelevant to the

particular quality under consideration. For example, the optimum

may depend on other qualities to which we give priority in layout, if

these qualities conflict with the particular quality under consideration.

Then we must modify the definition of "absolute optimum given a

graph" to "optimum given that the layout will be optimized first for

qualities with higher priority. " Thus, a more feasible approach to

measurement is the use of the non-normalized measurement. In

fact, in many optimization procedures, this is all that is necessary

since only the relative maxima (or minima) are sought.

In the following discussion of specific measurements, we will

only consider measurements for those qualities which we feel are

most effective for layout clarity. Thus, measurements will not be

examined for qualities defined in sections 2. 1. 1 and 2.1.2, which

are not believed to contribute significantly to readability, such as

rotational repetition, balance, and angles between links. The main

aim is to find at least one non-normalized measure for each quality.

Should a normalized measure be found easily for a quality, it will

also be discussed. Even with the simplest measurements as our

39

goal, however, we find that there are some qualities which appear

very difficult to quantify. For these more unquantifiable qualities

some of the complicating factors and possible paths toward solution

will be discussed, but no particular measurement will be given.

2.2.1.1 Repetition

The first set of qualities we will consider, those involving

repetition, is probably the most difficult to quantify. Let us first

examine the automatic measurement of the amount of literal repeti-

tion of distinct subparts. The most obvious obstacle here is the

problem of pattern recognition. The complexity of an automated

pattern search and match in a layout is greatly augmented by the fact

that it is unclear at what level to look for patterns. An example will

clarify this. In figure 2-23 we may consider the total figure to con-

tain one pattern, two repetitions of a pattern, four or eight. Most

observers would not have this difficulty; the ambiguity is usually

rmrra
nnnn

Figure 2-23

resolved by the viewer. Solving the problem of choosing patterns,

then, requires some insight into the selective process by which

40

humans resolve this ambiguity. This is beyond the scope of this

work. We can only suggest that for each viewer there is some

mechanism by which he decides quite quickly that a particular pat-

tern is in some sense maximal and minimal simultaneously and thus

distinguishes it as a pattern to be matched. One factor in this deci-

sion might be that he chooses as patterns those subparts of the lay-

out which are small enough to remember and to be easily reproduced,

but large enough to be separable as a subpart of the layout.

To consider actual non-normalized measurement of the qual-

ity of literal repetition of distinct subparts, however, we must

assume that the patterns of a layout have been chosen and matched,

and then make our measurements on the results. The measurement

is not simple even then. First we consider two obvious measure-

ments, the number of distinct patterns and the number of instances

of each pattern. As we discussed in section 2.1.1, the fewer the

number of different patterns, the better the layout for comprehen-

sion. The number of instances and its effect is more difficult to

judge. Here, we are concerned that the number of instances of each

pattern is countable in the sense discussed in section 2.1.1. Thus

we aren't interested in this number unless it exceeds some threshold

and this threshold is difficult to determine.

To complete the measurement of literal repetition of distinct

subparts, the patterns themselves must be examined. First we

41

consider their size, for, the smaller they are, the easier, in general,

they will be to comprehend. But on a more subtle level, we must

also consider the repetition within each pattern. In other words, if

the pattern itself consists of several instances of some smaller pat-

tern, as in figure 2-24a, it will be simpler to understand than one

which does not, as in figure 2-24b. Furthermore, we must consider

the relationships between patterns.

(a) (b)

Figure 2- 24

For example, are two patterns the same except for one element?

Certainly, close relationships between the various patterns helps

comprehension.

Thus we find that a non-normalized measurement of the

amount of literal repetition of distinct subparts consists of several

factors, many of which are, in themselves, somewhat unquantifiable

To combine all these factors into one measurement would be infea-

sible at this point.

42

When we consider other types of repetition, except for the

very specific case of symmetrical repetition, the pattern selection

and matching problem becomes worse. For the problem is compli-

cated by the fact that if we consider non-distinct subparts we are no

longer restricted to having a graph component belong to only one

instance of a pattern; it may belong to several. Furthermore, when

we allow for matching of pattern instances of differing sizes and

orientations, the matching process becomes that much more complex.

Moreover, added to the factors we must measure for literal repeti-

tion of distinct subparts, we must also consider other factors, such

as size difference with similar subparts. It is clear then that finding

measurements for the amounts of other types of repetition in layouts

is even more difficult than for the amount of literal repetition of dis-

tinct subparts.

2.2.1.2 Symmetry

The one exception to the difficulty of measuring repetition

seems to be measuring the amount of symmetrical repetition in a lay-

out when the two repetitious subparts are to account for the whole lay-

out. Symmetrical repetition is a very specific type of repetition (as

defined in section 2.1.1). In the case that the two subparts make up

the whole layout, for each possible axis of symmetry we have one

pattern with two instances, one of which must be the mirror image of

43

the other. Therefore, a very straightforward and meaningful mea-

surement of such symmetrical repetition in a layout, is the number

of axes of symmetry in the layout. This measurement corresponds

well with the extent to which such symmetrical repetition contributes

to the clarity of a layout as a whole.

The one complication in automatically measuring the number

of axes of symmetry in a layout is generating these axes. Since

there are an infinite number of possibilities for axes of symmetry,

we must use a method which somehow limits this number. Such a

method has been devised for layouts with at least one link, and is

given below. This method is based on the following observation.

For every axis of symmetry, each line segment in a link fits one of

the following descriptions:

a) the line is on the axis,

b) the line is perpendicularly bisected by the axis, or

c) the line has an image under reflection with respect to the

axis (this image will be called the "mirror image" of the line with

respect to the axis).

Thus to find all the possible axes of symmetry, we need only

consider for any one line segment in the layout:

1) the axis based on the line itself,

2) the axis which perpendicularly bisects the line, and

44

3) any axis with respect to which another line might be the

mirror image of this line.

Each such possible axis is then checked to see whether or

not, in fact, it is a real axis.

We need to describe in more detail the method used to obtain

the third group of possible axes. For the chosen line segment, say

[a,b] , we consider, in turn, every other line segment in the graph

which is exactly the same length as the chosen line (since a mirror

image of the line must be the same length as the line itself). For

each such line of equal length, say [c,d] , we must examine several

alternatives .

If two ends of the two line segments [a,b] and [c,d] coincide,

then the axis which makes them mirror images must pass through

this coincidental point, and the remaining two ends must be equi-

distant from the axis. Hence, we would obtain the dotted axis in

figure 2-25a. In order for two lines without coinciding endpoints to

be mirror images, there must be two pairs of endpoints (each pair

having one point from each line), for example, (a,c) and (b,d), for

which the respective elements of each pair are equidistant from the

axis of symmetry. Furthermore, the axis must be perpendicular to

both of the lines, say, (a, c) and (b, d), generated by these pairs

(hence, the lines must be parallel), in order that line [a, b] be a

45

reflection of [c,d] with respect to the axis. Thus the pair of lines

in figure 2-25b may be mirror images but the pair in figure 2-25c

is excluded.

However, it may be possible that two lines may be mirror

images of one another with respect to two different axes, for example,

the pair in figure 2-25d. For this very special case however, it

must be that the two line segments cross one another. We must

remember to check both pairings of endpoints, for, although one

pairing, say, (a,c), (b, d), might not succeed, the second, say,

(a,d), (b,c), may, as in figure 2-25e.

The algorithm to check for these possibilities, given two line

segments [a,b] and [c,d], then proceeds through the seven steps

listed below. It must be emphasized that the success of this algorithm

depends on the fact that the length of [a,b] is equal to that of [c,d]:

1) Check for coinciding endpoints: if any pair of endpoints

of the two line coincide, go to step 2; else, go to step 3.

2) Generate as a possible axis the line which bisects the

angle between the two line segments. This line is determined by the

coinciding endpoints and the midpoint between the remaining two

endpoints. Exit.

3) Check the first pairing of endpoints, (a,c), (b,d): if the

line (a,c) is parallel to the line (b,d), go to step 4; otherwise, the

axis determined by this pairing is not an axis of symmetry, therefore

46

(a)

(c) (d)

Figure 2-25

47

proceed to step 6, to check the other pairing.

4) Complete the check of the pairing (a,c), (b,d): if the line

determined by the midpoint of (a, c) and the midpoint of (b,d) is per-

pendicular to (a,c), generate this line as possible axis and go to

step 5; otherwise, exit.

5) If the lines (a, c) and (b, d) cross, there may be a second

axis of symmetry, therefore, proceed to step 6 to check this; other-

wise, exit.

6) Check the second pairing of endpoints, (a,d), (b, c): if the

line (a,d) is parallel to the line (b,c), go to step 7; otherwise, the

axis determined by this pairing is not an axis of symmetry; therefore,

exit.

7) Complete the check of the pairing (a,d), (b,c): if the line

determined by the midpoint of (a, d) and the midpoint of (b, c) is per-

pendicular to (a,d), generate this line as a possible axis of symmetry.

In any case, exit.

The optimal way to implement this algorithm would be to take

as the chosen line, [a,b] , a line with the fewest equals in length in

the layout. This would minimize the number of possible axes gener-

ated. Figure 2-26 depicts the generation of possible axes of sym-

metry for a regular hexagon using the above method, where side two

is the chosen line, and where the dotted lines represent possible

axes generated.

48

0
with side 1 by-
steps (1) and (2)

0
with side 5 by-
steps (3) and (4)

0
parallel to chosen
line

-e-
with side 3 by
steps (1) and (2)

I

0
with side 6 by
steps (3) and (4)

Figure 2-26

perpendicular to
chosen line

0-
with side 4 by
steps (3) and (4)

\
\ 1 \,

N

X

* i \

all p: redicted axes

Once the axes of symmetry have thus been generated and

checked, a count may be made to measure this type of symmetrical

repetition in the layout.

2.2.1.3 Other Qualities of Regularity

Let us now consider measures of other qualities categorized

under regularity, aside from the various types of repetition. First

we will attempt to examine measurement of the effect of familiar

figures. The problem here, again, is that although we may measure

49

certain quantities, the significance of these measurements is in

question. For example, although we may measure the number of

equilateral triangles that appear in a layout, this number may have

nothing to do with how we perceive the layout. Compare figures

2-27a and b, for example: in 2-27a triangle recognition is key

in aiding comprehension, whereas, in 2-27b, it is not. Thus we have

a measurable quantity, but it does not reveal the information desired.

(a) (b)

Figure 2- 27

Although it detects the presence of familiar figures, it does not indi-

cate to what extent they aid comprehension. Ideally we would like

some means to pin down whether or not a familiar figure significantly

determines the organization for comprehension of a layout, for

example, the triangle in figure 2-27a and the hexagon in figure 2-27b.

But, again, we are dealing with an extremely complex task involving

the understanding of the method used by humans in resolving visual

ambiguities to obtain an organization for comprehension, and this is

beyond the scope of this work.

Moving on to the next quality, size and distance consistency

50

for single segment links, we find much more hope for significant

measurement. As discussed in section 2. 1. 1, there are two different

approaches to consistency. The first, consistency of link scale (link

length consistency), might be examined by looking at the distribution

of link lengths in the layout. The problem of measurement is com-

plicated by the fact that it is not always possible to obtain total con-

sistency in the layout for a graph. For example, it is not possible to

draw all diagonals in a regular polygon the same length as the sides.

The ideal measurement would first consider the minimal number of

different lengths required for a particular underlying graph (for

example, the complete graph on five vertices requires two lengths).

It would then determine how closely the various link lengths corre-

sponded to this ideal number. This measurement can be made

clearer by an example.

Consider the layout in figure 2-28a. The underlying graph

can be drawn with a minimum of two different lengths . Both figures

2-28a and b meet this requirement equally. However, figure 2-28c

does not, and thus is not as consistent as possible. The layout in

2-28d, however, deviates even more from the minimum than 2-28c.

Distributions of link lengths for these various layouts are shown in

figure 2-29. Given that we know the minimum number of lengths for

the graph, then, we might measure the deviation from this minimum

in a layout by trying to answer the following questions: How close is

51

the number of different lengths from the minimum? If n is the

minimum number of lengths for the graph, does the length distribu-

tion form n length clusters ? What are the ranges in these clusters ?

(For example, compare figures 2-30a and b and their length distribu-

tions.)

(a) (b) (c)

Figure 2-28

(d)

6]
4-

2-

61
4 -

2 -
1

6 -.

4 .

2 - II

6 j

4 -

2 -

.llll.i ll» 1 IT

1/2

-n

1

"TI mill i

1/2 1

I i i i i

1/2 1

• i i i • *

1/2

1 1

1

(a) (b) (c) (d)

Figure 2- 29

52

15/16

1-1/8 1-1/4

4-

21
1/2 5/16

I 1 I 1 I I • 1 '
1 1-1/2

(b)

Figure 2-30

Practically speaking, however, several problems are inher-

ent in such measurements. Foremost is the problem of obtaining the
a. •v

minimum number of lengths for an arbitrary graph. There is also

a question of validity in our reading of the length distribution. Sup-

pose that length clusters overlap, or that deviations are such that

there are no clusters. We cannot really get from the distributions

any information which reveals which link belongs to which length

It is clear, however, that for a complete graph on n nodes,
the minimum Nn is such that:

1 + (n-2)/2 n even
n I 1 + (n- (n-3)/2 n odd

and thus that for any graph on n nodes, the minimum is less than or
equal to Nn. This result is obtained by counting the number of lengths
required in a regular polygon on n nodes.

53

cluster. In fact, the same link in two different optimal layouts can

belong to two different length clusters (for example, link e in fig-

ures 2-28a and b). Thus the problem of link scale consistency mea-

surement turns out to be extremely complex, and should be examined

further. However, for the present, we will use a simple count of

different link lengths as a non-normalized measurement.

For the second approach towards examining size and distance

consistency, fidelity, Baecker has designed an efficient and sensitive

measurement. Several measurements were tried, and it was found

that the most effective measurement was one which measured only the

number of violations of the fidelity constraint, and which ignored any

consideration of scale and distance deviation. The fidelity constraint

is that for each link and endpoint pair, no node with graph distance

two or greater from that endpoint may be closer to the endpoint than

the length of that link. The measurement then checks each link and

endpoint pair in the layout and counts the number of violations of this

constraint. The sum is the measurement of the infidelity of a layout.

Baecker points out that the minimum value of the infidelity

measurement is not always zero. For example, he proves that the

graph of figure 2-31 has a non-zero minimum fidelity. He does not

concern himself with obtaining the absolute minimum for a graph,

*
Again, here we are dealing with single segment links.

54

Figure 2- 31

however, and finds it sufficient to observe the change in this non-

normalized infidelity measurement as layouts are simplified.

2.2.1.4 Directional Consistency

The next set of measurements we consider are those involving

the qualities categorized under directionality. The first quality

seems the most difficult to measure, that of directional consistency

in layouts. When we consider the cases in which the consistency

criterion is met by the existence of a predominant direction in which

arrows point (we call this the linear case), there is no problem with

measurement. In flow and network diagrams, for example, to mea-

sure consistency we might measure the proportion of total link length

contributing to the predominant direction. The predominant direction

of the layout is determined by the direction of the vector sum of the

*
links, and the magnitude of the predominant direction, by the magni-

tude of this vector sum. The proportion of total link length

In the following discussion of directional consistency, when-
ever we are dealing with links with more than one line segment, each
link segment should be treated as a separate link with direction
derived from that of the whole link.

55

contributing to this predominant direction, and thus our measurement

of linear directional consistency is:

where | |i . | is the length of the i link and where | V is the
1 s

length of the vector sum of all the links . Note that 0 < L < 1, so that

in the totally consistent case of figure 2- 32a, L = 1 , whereas with the

less consistent 2- 32b, L - . 8, and with the totally non-linear case of

2-32c, L= 0.

1 1 1
• >• 5«

L = 3/3 = 1

(a)

V = 2 V2 + 2
s '

L = (2-^2 + 2)/6 «

(b)

Figure 2- 32

. 8

|vs|=o

L = 0/6 = 0

(c)

However, we would also like to find measurements for the

cases in which predominant direction cannot be expressed in terms of

a vector sum, the cases in which the predominant direction is radial

56

or circular as in figure 2-10. We note that in these cases, often

vector sums tend to be near zero. However, we would like to find

directional consistency measurements, analogous to that for linear

consistency, for these cases. Instead of using the vector sum, then,

we must find an analogous measure which sums the contributions of

each of the links to radial or circular orientation with respect to a

center.

Let us first consider the measurement for outward radial

orientation from some fixed center. For each link, we include as

the magnitude of its contribution to outward radiality its projection

on the radius which runs from the fixed center through the starting

node of the link. For example, in figure 2-33 links a and b have as

their contribution their total lengths, since both lie on radii from the

fixed center, c, and both are directed outward from c. Link d,

however, has a contribution of e, since it does not lie on a radius.

The length e may be determined by subtracting the distance between

the end node of d and the center, c, from the distance between the

start node of d and the center, c. Link f contributes the negative of

its length to outward radiality, since although it lies on a radius, it

is directed inward towards c. Likewise, link g contributes the nega-

tive of the quantity h; the negative value is the result of the same

calculation used to find the length e. Thus this calculation also

reflects link direction. In fact, if we apply this calculation to each

57

Figure 2-33

link, we obtain the outward radial contribution for that link, so that

we may obtain the desired sum, a , analogous to | V | as:

r -/. (d(center, endpoint.) - d(center, startpoint.))

where i ranges over the set of link segments of the layout, and thus

the measurement of outward radial orientation, R :
o

° IKI

Some examples are found in figure 2-34. We note that the range for

the measurement R is - 1 to 1 . This requires some explanation.

In the case of measuring linearity using V , | V is always posi-
s s

tive or zero. However, were we to examine the magnitude of the

vector with direction opposite to V we would find it to be negative,
s

but of the same size. When radiality is measured the "vector"

58

opposite to the radially outward vector, a , is the radially inward

vector, a. . Unlike the linear case, the stronger of these two oppo-

site directions is not necessarily selected in the process of measure-

ment. The measurement R assumes that the outward direction
o

predominates. Thus if R is negative, the wrong direction has been

chosen as the predominant direction; we should have chosen the

radially inward vector as the predominant one, and measured R. ,

radially inward orientation, instead of R . The magnitudes of ~o.
o 1

and a are the same, as with V and its opposite, and thus we may
o s

express R. as -R (see figure 2-34).

One further problem should be mentioned concerning this

measurement. With the linearity measurement, L was found to be

very small in the case that directions diverged considerably; in other

words, directions seemed to cancel each other out. There is an

analogous effect with R (and R.), where radially inward contribu-

tions tend to cancel out radially outward contributions. But there is

also another factor which affects the magnitude of R (and R.), the
o 1

total amount of radiality. For example, if links were completely

circular around a center, as in figure 2-34d both R and R. would
o 1

be zero. In the linear case the analogous effect by itself is not as

marked, for the predominant direction, that of V , is determined by
s

all the links, whereas, in the radial case, the predominant direction

is predetermined without reference to the links. This suggests that

59

Ro = 0

R. = 0
1

R = 0

(d)

R = 0 o

R. =0

R = 1

(b)

R = -i o

R. = 1
I

R = 1

(e)

Ro = 3/8

Rt = -3/8

R = 5/8

(c)

Figure 2-34

a simple measurement of radiality, regardless of direction, might be

of interest also. Such a measurement is:

R =

SK

where:

O - /. | d(center, endpoint.) - d(center , startpcint.) |

60

This measurement sums contributions to radiality in either direction,

inward or outward (see figure 2-34).

When dealing with analogous measurements for circularity

with respect to a fixed center, c, the same phenomenon is found.

First we will look at the magnitude of the "vector" sum of circular

movement with respect to one direction (clockwise or counterclock-

wise), as determined by the sum of the contribution of each link. The

contribution of a link is determined from its midpoint, m, as follows.

Draw the tangent at the point m to the circle with center c, which

passes through the point m. The magnitude, n, of the contribution

is then the length, n, of the projection of the link onto this tangent

line (see figure 2-35). Both sign and magnitude may be calculated by

using I |i I cos 8 , where | |i | is the length of the link, and 8 is the

angle between the link vector and a vector on the tangent line oriented

in the direction of the circular measurement (i.e. either clockwise

or counterclockwise) (see figure 2-36).

n

tangent
at m

Figure 2- 35

61

I \l I cos 8 |u | cos 6 | u | cos 6 \\i | cos G

clockwise counterclockwise

Figure 2- 36

Summing these contributions, we obtain the measurement,

0 (clockwise) or a (counterclockwise), depending on the direc-
c c

tion of the tangent vectors used. Thus as measurements of directed

circularity we have:

IK IK

As for R and R. , C and C range between - 1 and 1 , and
o l - -

C_^ = -C for any layout. Analogous problems arise with C and

C as with R and R. resulting from the effects of cancelling and
- o 1 6 &

circularity. Thus we might also be interested in obtaining a measure-

ment for undirected circularity, C, analogous to R. To do this we

simply disregard sign in measuring the projections onto the tangents,

to obtain:

62

i

where:

CTC =2 lnj COS 9i

and where 0. is the smaller angle between the link and the tangent.

Some examples are given in figure 2-37.

(a)

C = -1 C = 1 C = 5/11
c"= 1 c" = -1 CT = -5/11
c"= 1 C*~ = 1 c" = 1

(b) (c)

d 1 1

i CA

C = 1/3
C"= -1/3
C*~ = 1/3

C = 0
cT = o
C*~ = 1/3

(d) (e)

F: Lgure 2- 37

C^= 0
c"= 0
C*~ = 0

(f)

63

2.2.1.5 Other Qualities of Directionality

Measurement of the remainder of the qualities categorized

under directionality is quite straightforward. For example, as non-

normalized measurements for the number of bends, total link length,

and the number of intersections, we may simply use these numbers.

It is interesting to note that Fary (14) has proven that for planar

graphs, with no self-loops or parallel links (two links connecting the

same two nodes), there always exists a layout which has no bends,

or equivalently, one in which all links are represented by single line

segments.

The question of a normalized measurement for the number of

intersections involves a well-known problem in graph theory, that of

determining the genus of a graph. This problem has been examined

by several people including Anger (2). A modified version of the

problem, that of determining whether or not a given graph is planar,

has also been of interest in graph theory, and has been examined by

Even et al. (13) among others. Anger's method to find the genus of

a graph constructs layouts with all possible permutations of link

orders around the nodes. This produces all possible representations

of a graph with respect to genus. The genus of each such layout is

examined, and the layout with the smallest genus determines that of

the graph. The method may be quite time consuming, and Anger

mentions several ways in which it may be made more efficient. Thus,

64

if we wished to find the value of the normalized measurement of

intersections in a layout, it would first be necessary to determine

the genus of the underlying graph using a method such as Anger's.

To answer the question of whether or not the genus is zero, we need

only use an algorithm such as Even's. Even's algorithm is more

direct and less time consuming than one which determines genus.

And it is constructive in that the results of the check can be used to

generate a planar layout, if the graph is planar.

There is an additional problem in measuring the number of

intersections. As mentioned in section 2. 1. 2, it may be the case

that a smaller number of intersections is not necessarily best. Con-

sidering this, we would ideally like to measure not the number of

intersections, but how much the intersections present add or detract

from directionality in the layout. Such a measurement is very diffi-

cult to make, however. One indirect approach might be to make the

judgment based on the amount of complication which develops when

the intersection or set of intersections is removed. We might exam-

ine the increase in link length and number of bends in this case. For

example, when we eliminated the intersections in figure 2-15b, the

result, 2-15c, had four more bends and some increase in link length.

Here, in order to measure how much the intersection adds or detracts

from directionality, we are measuring how much other complication

we avoid by allowing the intersection, keeping everything else

65

constant. This seems a feasible approach to the measurement in a

local sense. However, when we consider such a measurement with-

out keeping other layout factors constant, such as node position, the

measurement would become extremely difficult to devise.

Several measurements may be developed to quantify the

amount of parallelism or the number of different link segment slopes

in a layout. We may, on the simplest level, consider counting the

number of different slopes. Or, we may also take the number of link

segments into account in the measurement, and use a measurement

sue has:

number of slopes (= N)
N =

number of link segments (= N)

Here N ranges between 1, in which case every link segment has a

different slope, and 1/N , in which case all link segments are

parallel. We will not consider measuring parallelism separately,

since, in a sense it is reflected adequately in the measurement N.

When N is small with respect to a given N. , this implies that the s 1 r

parallelism is large.

An interesting question to ask is how the number of link slopes

relates to the phenomenon of directional consistency, and furthermore,

should we consider a measurement of the number of slopes similar to

the measurements used for directional consistency. In measuring

66

directional consistency we are trying to determine how well the vari-

ous links combine to give a total direction to the layout. In examining

the number of slopes, on the other hand, we wish to determine how

much divergence (in a discrete sense) there is between link directions;

it is not a measurement of total direction, but of relationships between

the link segments. Thus, in measuring the latter, we do not want to

take total direction into account, but only whether or not link direc-

tions agree.

Finally, we would like to obtain a measurement of horizontal-

vertical link segment orientation in a layout. There are two senses

in which we may measure this, corresponding to the two interpreta-

tions of link slope just discussed. In the first case, using a vector

type analysis, we would be asking what contribution each link gives to

both horizontal and vertical movement in either direction. Since these

are perpendicular directions, this sum accounts for all orientation,

and the answer is meaningless. In the second case, we would simply

examine the ratio of the number of strictly horizontal and vertical

*
segments, N, , to the total number of link segments, N . This

JlV s

approach is preferable, not only because it gives a meaningful result,

but also because, again, we are interested in a discrete relationship,

*
Or, we might measure the ratio of total horizontal and verti-

cal length to total length. This gives the percent of total link length
which is horizontally or vertically oriented.

67

that between the links and the horizontal and vertical axes. In other

words, in this measurement, we are not concerned with how close a

link is from being horizontal or vertical, but whether or not it actu-

ally has one of these orientations.

2.2.2 Realization

In dealing with the problem of realization in graph layouts of

the qualities discussed above, there are two main approaches which

might be taken. The first, which we shall call the constructive

approach, includes realization techniques which aim at providing

layouts with the absolute optimum for the qualities under considera-

tion. With this approach a layout is developed from the graph, with-

out reference to any previous layout for the graph, but based only on

the criterion that a quality or set of qualities chosen be optimized.

The second approach, called the modifying approach, aims

at realizing the local optimum for the qualities being considered,

given an already existing layout for the graph. Methods developed

with this approach apply to a given layout in order to improve that

layout as much as possible with respect to a given quality, while

changing the layout as little as possible. This constraint that as

This terminology should not be confused with the ideas pre-
sented in chapter 4. A "modifying algorithm" applies to a layout in
a global sense, whereas the "modified layout problem" (as presented
in chapter 4) deals with layouts in a very local sense.

68

little as possible be changed with the modifying approach is based on

the fact that with these algorithms we want to preserve as much of

the original layout as we can while optimizing for a quality.

Although the constructive approach is initially more appealing

than the modifying approach, since the results promise to be better,

there are many problems which accompany it. In order to provide

the greatest amount of flexibility of layout, the constructive approach

requires that algorithms use no reference to any previous layout.

The problem here is that given a graph and a set of layout qualities

to be optimized there may be several layouts for this graph which

optimize this set of qualities. In other words, with the constructive

approach, part of the resulting layout may be arbitrary. For

example, in figure 2-38, we see several layouts for one graph which

meet the requirement of minimal number of different link lengths

(link length consistency). Thus this link length consistency require-

ment is not enough to determine, for the graph underlying figure 2-38,

which layout a constructive algorithm should produce, and an arbitrary

decision must be made. With the modifying approach, no arbitrary

layout decisions are made; as mentioned above the implication behind

this approach is that, given a layout, as little as possible in that lay-

out should be changed in optimizing for a quality.

69

Figure 2-38

A second problem to consider with the constructive approach is

the problem of combination of criteria. We can apply a constructive

realization algorithm only once to a graph to obtain a layout, since it

must always be applied to a graph, and not to another layout. A

second application obliterates the results of a first application. And

if we wish to optimize for more than one criterion, we must combine

the respective constructive realization algorithms into one. The

difficulties then begin to multiply, for, first of all, this means that

we must obtain a different algorithm for each combination of criteria,

and second, it may be the case that for a particular graph, two

criteria may conflict. For example, in figure 2-12a, we optimize

the layout for minimal number of intersections, and in 2- 12b for

minimal link length and number of bends. We cannot, for this under-

lying graph, have all three measurements be at absolute minima

simultaneously. This implies that we must assign priorities to the

vThis problem of interaction and trade-offs between qualities,
where they conflict in layout, is an important problem in itself, and
should be looked into further.

70

criteria in a constructive realization algorithm. The problem here,

however, is that we often cannot know, before experimenting with

several layouts, what criteria should be given priority and how one

criterion affects another. Furthermore, the addition of choices of

priorities would increase the complexity of these algorithms a great

deal.

With the modifying approach, we do not have these problems,

since these algorithms apply to already existing layouts. We need

only consider one algorithm for each quality, and apply these algor-

ithms to the layout one at a time. This puts the concept of algorithm

definition at a much more feasible level. There is also an advantage

in that we may examine the results of optimizing for a particular

quality more closely, and observe how it affects other qualities in the

layout.

This modifying approach also provides the possibility of a

somewhat interactive environment in which, perhaps, a user may try

several different orderings and combinations of qualities for optimiza-

tion, to find the ones which are most appropriate for his particular

graph. The modifying approach also seems much more reasonable

in that it provides a good environment for testing more than one

method to optimize for a given quality. This ability to experiment

which is facilitated by such an environment is a very important con-

sideration at this point in our research. For example, we might

71

wish to experiment with the extent to which we allow an algorithm to

change a layout for optimization purposes.

To complete the comparison of these two approaches, we must

also take into account the difficulty mentioned in section 2.2. 1 in

measuring the absolute optimum for many of the qualities considered

given a graph. Since a realization of such an optimum is the inherent

goal of constructive realization algorithms, they must be able to find

this optimum. With the modifying approach this problem is avoided.

Essentially we ask that these algorithms do the best they can in opti-

mizing, while limiting the power of the particular algorithm to change

a layout. Thus, we are not concerned with what the absolute optimum

may be, but what the local optimum is, given certain constraints.

For these reasons the modifying approach is the one taken in

the discussion of realization algorithms which follows, as well as in

the experimental MOD system described in the next section. For a

few qualities, however, there are some constructive algorithms

which are of interest. These will be mentioned.

There are many difficulties in the development of realization

algorithms for the various qualities discussed in section 2. 1, as was

seen in the discussion of measurements for these qualities. Again,

where we cannot actually provide an algorithm for realization of a

specific quality, we will attempt to point out some of the problems

involved.

72

2.2.2. 1 Repetition

As in the case of measurement, the first quality we will con-

sider, repetition, is the most difficult to deal with. Here the aim is

to find a method for changing a layout so that more repetition occurs

in the layout. The complication in dealing with repetition, as dis-

cussed in section 2.2. 1. 1, is the discovery of matching patterns in

the layout and the decision as to the level at which to select patterns.

With realization, however, the problem is even worse than it is with

measurement since we are not looking for pattern matches which

presently exist in the layouts, but for possibilities of creating them.

Were we to try to develop a modifying algorithm, this would perhaps

mean identifying "near" matches and making them "perfect" matches.

Finding a constructive algorithm would involve identifying structural

matches in the graph and realizing them in layouts. Both tasks seem

infeasible at this point.

However, since we have chosen to work in a somewhat inter-

active environment, a compromise is possible. The most difficult

part of the task to automate is the identification of possible matches.

The most tedious part for the user is the realization of the repetition.

Thus, if we break the task up and allow the user to specify the sub-

parts of the layout to be matched, and allow a modifying algorithm to

actually make the subparts repetitious, we have a reasonable com-

promise. With such an approach to the realization of repetition there

73

are several things to consider. Foremost is the question of node-

to-node mapping from one subpart onto another. An example can

best explain this. Suppose in the layout of figure 2-39a that the user

specified, with appropriate enclosures, the two subparts to be

matched (these need not be distinct). This is not a complete specifi-

cation since he has not explicitly identified nodes. It seems quite

clear, however, that he means that node a is to be mapped onto a'

etc. , if he wishes to make the two patterns repetitions of one another

as in figure 2-39b. But suppose he wishes to make them symmetric

images of one another with respect to an axis between them. Then

the mapping would be different, as indicated in 2-39c. Thus the user

should specify in which sense (literal or symmetrical) he wishes to

have the repetition realized, but he may leave to the realization

algorithm the task of making the node-to-node map given this

(a)

b,a' b'

c d.c' d'

(b)

Figure 2- 39

(c)

74

information. In fact, with either literal or symmetrical repetition,

there may be more than one mapping which will suffice. This will be

brought out later in the discussion.

Another question of importance is whether, in changing the lay-

out to produce repetitious figures, we should use one of the specified

subparts as a pattern and require that the other conform to it, or,

whether we should find some compromise between the two to which

we make both subparts conform. If we allowed only the first alterna-

tive, and chose subpart A in figure 2-39a as the fixed pattern, we

could not make subpart B a literal repetition of it, as can be seen in

the figure. If we followed the other alternative, we would have a

problem when we wanted to make several subparts the same by using

this operation which applies to only two subparts at a time. Thus,

the success of the manner in which we realize repetition depends on

what the user desires. It should thus be left to him to choose between

the two methods according to what he has in mind.

In summary, then, we have sketched the following require-

ments for our repetition algorithm. Given, by the user:

(a) two layout subparts (designated in some way, for example,

by enclosure),

(b) whether we want to make the subparts literal or symmetri-

cal repetitions of one another, and

75

(c) whether the first subpart designated may be modified, per-

form the following:

(1) Find isomorphic node-to-node maps between the subparts,

which are appropriate to the choice in option (b). Establish the axis

of symmetry for each mapping, when symmetrical repetition is

requested.

(2) Dependent on the choice in option (c), attempt to make the

two subparts either literal or symmetrical repetitions of one another

by either :

(2a) changing the second specified subpart to conform to

the first, or

(2b) finding an intermediate form between the two subparts

and changing both to this new form.

In some cases, it is obvious that literal or symmetrical repeti-

tion is not obtainable; in these cases the algorithm should terminate

without making any changes. For example, if we were to require that

subparts A and B of figure 2-39a be made literal repetitions of one

another without changing subpart A, the algorithm should fail. In

other cases, it may be that the only solution is one in which the two

subparts overlap; we also want the algorithm to fail in these cases.

Such an algorithm has been written, and, due to its length, has

been placed in Appendix 2, rather than in the text. The appendix

76

includes the algorithm, along with a detailed explanation and some

examples of its application.

Several problems remain with the algorithm as stated in the

appendix, and should be looked into further. The foremost problem

is prevention of overlap of two nodes in the resultant layout. The

algorithm does not necessarily prevent this. In fact, it is possible

that in moving nodes to produce literal or symmetrical repetition,

with certain layouts, two nodes might be placed at the same location.

The algorithm in its present form, contains no checks for this,

although, a more detailed version might include such checks.

Another problem is that we have included no provision for

similar and rotational repetition. It seems in cases like that of fig-

ure 2-39a, were we to require that B be made a literal repetition of

A without moving A, the result, since literal repetition is not pos-

sible, should be similar repetition, if this were possible. Similar

repetition has a natural place in such an algorithm as a default condi-

tion when literal repetition cannot be accomplished. Again a later

version of the algorithm might include a provision for similar repeti-

tion in this form. Despite these problems, the algorithm in its

present form, reflects a feasible approach to realizing repetition in

layouts.

77

2.2.2.2 Familar Figures

The next problem to consider is the realization of familiar fig-

ures in layouts. Again the problem is that it is difficult to recognize

automatically when a familiar figure, such as an equilateral triangle,

is possible and appropriate in a layout. Once this has been established,

it is quite easy to realize the figure. Thus, an approach similar to

that used for repetition might be appropriate, where the user indicates

the subpart of the layout he would like to have appear as a regular

figure, and an algorithm performs the mechanics to produce it. For

example, the user might indicate some simple cycle of the layout, and

the algorithm would move the nodes of the cycle minimally to obtain

a regular polygon. The one exception to the problem of recognition

of familiar figure possibilities seems to be recognition of horizontal

and vertical lines of nodes in a figure. It is quite simple to detect when

a series of nodes in a layout is intended to fall in a straight horizontal

or vertical line, and to modify the layout so that the nodes are aligned

in this way. Such an algorithm has been implemented in the MOD sys-

tem and is described in section 2.3.3 under the pretty command.

2.2.2.3 Link Length Consistency

We would now like to find a method to optimize link length con-

sistency in layouts. Using the number of different lengths in a layout

as a measurement of length consistency, one such procedure might be

78

as follows. For each nodes (and bend point) in turn find a new posi-

tion for the node (leaving other nodes fixed), which minimizes the

number of lengths. Continue until one complete pass through the

nodes yields no improvement in the measurement.

The heart of the algorithm is the determination of a position

for the node under consideration which minimizes the number of link

lengths. The constraint is implied in this step that we move the node

as little as possible, in order that the layout is disrupted minimally.

Suppose the node under consideration, say a, is of degree n (i.e. ,

has n links attached to it). And suppose that of the links not attached

to a in the layout, there are m different lengths, t ,,..., t . We
1 m

will try to find a position for the node a, such that each of the n

links is equal to one of the m lengths. There may be several such

positions. To find these positions, we first try as signing the n

links so that they all will be equal to the same one of the m lengths,

and then derive a position for the node a which satisfies this assign-

ment. If no such position can be found, we try assignments which

use only two of the m lengths; if this fails, try three, and so on.

Once we find a successful assignment and position using p of the m

lengths, the process is terminated for the node under consideration.

An assignment is considered to fail if the set of equations

described below has no solution. Let x, y be the new position to be

derived for node a. Let x. , y. (i = 1, 2, . . . , n) be the position of the

79

node at the other end of the i*n link adjacent to a, and let I.

(i=l n) be the length (one of m) assigned to link i. Then we

must find a value for x and y which satisfies each equation in the

set:

{ V(x.-x)2 + (y.- y)2 = -e.; (i=l,2 n)}

In the case that n = 1, the new position, x,y of node a will be on the

line ((x', y'), (x. , y)), where x', y is the old position of node a.

Where the position x,y is not uniquely determined by this set of

equations, the position closest to x,y is taken as the solution. Thus,

an assignment fails if no position can be found for node a which allows

links 1 n to have lengths I .,..., I , respectively.
1 n

It is possible that if we are using p of the m lengths there

might be several assignments which can be satisfied. We make a se-

lection among these by choosing that assignment which yields the new

x,y closest to the old position x',y'. The number of different assign-

ments of m lengths to the n links where we want to use p of the

m lengths is given by N , as follows:
p, n, m

N. = m
1, n, m

p- 1

N = n pn-1 (P)M- p, n, m \ p / .*—' \ I / I, n, m
x = 1

where:

80

M =N / (m)
p,n,m p, n, m \ p /

An example will help to explain the procedure better. Suppose

node a with position x',y' has three links adjacent to it, and that

there are three lengths in the remainder of the layout, say I , I ,

and I . We first try the assignments for which p = 1. There will be

N = 3 of these:

Link
A

(i)
ssignment

(ii) (Hi)

1 S *2 <3

2
*1 <2 '3

3
*1

l2 *S

For each of the three assignments (i=l, 2, 3) we must solve the

equations:

[V(xk-x)2 + (yk-y)2 = *.; (k = L 2, 3)}

Suppose, then, we obtained solutions for ail of these, say respectively

112 2 3 3
(x , y), (x , y), and (x , y). We would then choose the assignment

i for which:

V(x'- x1)2 + (y'- y1) ^2

was minimal, and go on to the next node.

If, on the other hand, no solution was found to any of the equa-

tions for p = 1, we would have to try the N = 18 assignments for

81

which p = 2, proceeding in the same way we did for p = 1, to find the

solution which changes the position of node a the least. If we pro-

ceed through p =Min(m,n) without finding any solutions, we leave

the node at its original position and move on to the next node.

For each node considered, if at least one of the lengths of its

adjacent links was unequal to any one of the m lengths of the remain-

ing links, and if a successful assignment has been found for this node,

then we have improved the measurement of consistency, since the

total number of link lengths will be decreased to m. In any other

case, in other words, in the case that all the adjacent links originally

had one of the m lengths, or, in the case that no successful assign-

ment was found for the node, the measure of link length consistency

remains the same .

This algorithm has not yet been implemented or experimented

with. Thus, its performance and its pitfalls are not known. For

example, perhaps we should also allow assignment of only some of

the n links for a node, leaving some fixed as they are. Or perhaps,

when the n links are already of equal length, we should not change

them. One obvious problem is that for large n or m the number

of trials for a given p becomes very large. Figure 2-40 depicts an

example of the application of the algorithm as it stands. Figure 2-41

shows a table of the steps performed for this layout. The checked

column indicates the one assignment chosen from those of the

82

(1.3,1.5)
aH2,2.3)

(0,0)

(2,-2.3)

(iii)

Figure 2-40

N which are successful,
p, n, m

An alternative approach to the problem of realizing link length

consistency has been examined, and an algorithm has been sketched

out in Appendix 3. This approach is more of a constructive algorithm

(as defined in section 2. 2. 2) than the one given above, although it

83

Resultant Consist-
Step Node n m p Assignments Position ency

(1) a=(1.3, 1.5) 2 3 1 a-b 4 .3 2 x = 2 3
a-d 4 3 2 y = 2. 3

figure 2-44 i x 2 2 2
y 3.5 2.3 0

(2) b = (4, 0) 2 11 b-a 3 x = 4 3
b-d 3 y = 0

figure 2-44 ii b-c 3

}no solution

(e) c = (2.7, -1. 5) 2 2 1 c-b 4 3 x = 2 3
c-d 4 3 y = -2.3

figure 2-44 ii x 2 2
y 3.5 -2.3

(4) d = (0, 0) 3 1 1 d-a 3 x = 0 2
d-b 3 y = 0

figure 2-44 iii d-c 3

)no solution

(5) a =(2, 2.3) 2 2 1 a-b 4 3 x = 2 2
a-d 4 3 y = 2. 3

figure 2-44 iii x 2 2
y 3.5 2.3

(6) b = (4, 0) 3 1 1 b-a 3 x = 4 2
b-d 3 y = 0

figure 2-44 iii b-c 3

\ no solution
y J

(7) c =(2,-2.3) 2 2 1 c-b 4 3 x = 2 2
c-d 4 3 y = -2. 3

figure 2-44 iii x 2 2
y -3.5 -2.3

Figure 2-41

84

uses some of the original layout, and so should be classified as a

modifying algorithm. The idea behind it is to break the layout up into

cycles of minimal length, and to generate regular polygons for these

cycles wherever possible. It is guaranteed that the resultant layout

*
for n nodes will contain not more than N lengths. The algorithm

n

sketched is quite complex and several problems still remain in its

design.

2.2.2.4 Fidelity

In his paper Baecker has sketched a feasible approach to realiza-

tion of higher fidelity in a layout. In summary, given a layout, he

suggests four heuristics, the application of which should improve

fidelity:

1) Isolate "maximal dangling trees, " those non-cyclic components

obtained by separating the graph only at articulation points which lie

on simple cycles.

2) Move nodes of large degree in the direction of the vector sum

of the links from this node, taken in the direction away from this node.

* . . ,T 1 + (n-2)/2 n even
Agaxn, Nn, \1+(n_3)/z R odd

where n is the number of nodes and bend points.

A node in a graph is called an articulation point if, by deleting
the links adjacent to this node, the remainder of the graph is sepa-
rated into two or more components.

85

3) Reduce intersections by local node transversal of links;

for example, if all the links from one node cross some given link,

move the node to the other side of the given link.

4) Identify interesting subpatterns and manipulate them.

This is the least specific of the heuristics, and implies manipulations

such as recognizing poorly placed whole subgraphs and repositioning

them.

Baecker has derived these heuristics from observing the

manual manipulation of layout, and finds them quite successful in

improving fidelity. He does not, however, attempt to put them in the

form of an algorithm, although this might easily be done for the first

three heuristics.

2. 2. 2. 5 Directional Consistency

We will now move on to a discussion of the realization of

directional consistency for directed layouts. First we consider rea-

lization of linear directional consistency as discussed in section

2.2. 1.4. A direct approach to the improvement of the measurement

of linear directional consistency, L, might be accomplished by con-

tinuously alternating the following two operations; first, determine

the most deviant link in the current layout, and, second, rotate this

link so that its direction is less deviant, thus obtaining a new "current"

layout. A repetition of the following three steps would accomplish this:

86

1) Find the direction of the vector sum in the layout; if

| V | = 0 choose the direction of any one of the links.

2) Find the link not yet tried for this iteration for which the

product of the link length times the angle at which it deviates from

the direction chosen in step 1, is the largest, and call this link i.

If all links have been tried, the realization process is terminated.

3) Using the center point of link i as a pivotal point, and

keeping its length constant, rotate the link and its two endpoints until

it lies in the same direction as the direction chosen in step 1. If this

new position causes nodes to overlap over other nodes or links, or,

if the resultant L is not less than the previous L, return the link to

its previous position and go back to step 2; otherwise the new posi-

tion is kept, and the iteration is complete.

With each iteration through these three steps either we obtain

an improvement in the measurement L, or the iteration process

terminates. We note that the overlap condition must always be

checked since an optimal solution in some cases might be for some

links to lie on top of others. For example, with the layout in figure

2-42i an L of one would be obtained if the links on the upper part of

the layout and the links on the lower part of the layout were all placed

along the line through the center of the layout, in which case there

would be overlap.

87

There are several problems inherent in this method which

must be explored. First is the problem of determining when a suffi-

cient number of iterations have been performed. Perhaps, if we

measure L after each iteration, we might terminate the iteration

process when improvement begins to grow small, although we have

no guarantee that the improvement is a monotonically decreasing

function. Furthermore, we do not know how to define "small. "

Second is the question of whether or not the optimal new posi-

tion for a link i, chosen in step 2 of an iteration, is in the direction

chosen in step 1. Perhaps some intermediate position between the

old and the new direction might be more optimal and should be used.

In an actual implementation of the algorithm, this possibility should

definitely be explored.

A third question is whether, in fact, the most deviant link

should be the one adjusted first in an iteration. Certainly, reorient-

ing this link in the direction of V adds to the linear directional

consistency, L. However, other links, namely those attached to the

endpoints of the link i are also affected, and their modification may

detract from L. Considering this, perhaps, in step 3 we should,

instead, choose first the link whose movement would cause the great-

est net improvement in L. Thus we would have to perform step 3 for

each link in order to make our decision in step 2, choosing to move

that link with the greatest net increase in L for this iteration. At

88

this point this approach seems quite time consuming. The relative

performance both in time and in quality of results of this modified

method, compared to the one originally described, might be judged

best by a comparison of their performance upon implementation.

One further possibility should be mentioned, that of allowing

an iteration to decrease L, in anticipation of a later net increase.

In other words, by restricting ourselves only to modifications which

increase L, we may be restricting the possibility of improvement to

a very localized range. Whereas, perhaps, were we to allow L to

be decreased in an iteration (and backtrack upon failure to obtain a

net increase after a given number of iterations), our final results

might be improved. This possibility should be examined further.

An example of the method first described, using four itera-

tions, is shown in figure 2-42. The links chosen as link i in step 2

are indicated with x's, and the direction of the vector, V , is indi-
s

cated by the arrow under each layout.

A similar tack might be taken with the realization of radial

and circular directional consistency. However, in these cases

step 1 need not be performed, since the direction to be maximized is

always predetermined, in other words, radially outward or inward,

or circularly clockwise or counterclockwise. It is also necessary

that, for the complete series of iterations, a fixed center be chosen

with respect to which radial or circular movement is to be maximized.

89

L = .85

(iv)

Figure 2-42

For example, optimization of the radial outward (or inward) measure-

ment might proceed by several iterations of the following steps:

1) Find the link not yet tried for this iteration for which the

product of the link length times the angle between the link and the

radially outward (or inward) vector from (or to) the fixed center to

(or from) the midpoint of the link is largest. Call this link i. If all

links have been tried, the realization process is terminated.

2) Using the center of link i as a pivotal point, rotate the

link until it lies in the direction of the radially outward (or inward)

vector. If the resultant measurement of outward (or inward) radial-

ity, R (or R.) is not improved, or if the new node positions cause

90

overlap, return the link to its original position, and go back to step 1;

otherwise, the new position is kept, and the iteration is complete.

Similarly, for circular movement, in step 1 we look for the

link which deviates the most from the directed tangent at the link

center point to a circle with the fixed center as its center. And in

step 2, we rotate such a link until it is oriented in the direction of the

tangent.

Examples of these two realization methods are shown in fig-

ures 2-43 and 2-44. Figure 2-43 shows a series of two iterations to

improve R , and figure 2-44, to improve C . Lozenges indicate the

chosen fixed centers. The discussion of the problems relating to the

method given for realization of linear directional consistency also

applies here.

R = .75
o

(ii) (iii)

Figure 2-43

91

Figure 2-44

As a final note in the discussion of directional consistency we

mention that several algorithms have been developed for the linear

case. These methods, such as the one developed by Di Giulio and

Tuan (12) which were intended for the layout of directed networks,

attempt to place elements so that, if one element feeds another, the

first lies consistently to one horizontal side of the second (say, to

the left). The vertical coordinates are then chosen so that intersec-

tions are minimized. These algorithms are not actually concerned

with the measure L, as we are, but the results tend to produce

similar effects.

2. 2. 2. 6 Minimum Number of Bends

The next quality to be considered for realization is the num-

ber of bends in a layout. As mentioned above, Fary has proven that

every planar graph without self-loops and parallel links may be

drawn without bends. A constructive realization algorithm may be

92

derived from his proof. This algorithm is recursive in that it finds a

bend-free layout for the subparts of the original underlying graph

before it can build the final layout for the whole graph. It is described

and illustrated briefly below. The steps mentioned are guaranteed to

be possible as a result of Fary's proof. Given a layout, G, to obtain

a straight line (bend-free) representation, S(G):

A) Form a triangulated version of G, G', and go to step B.

A triangulated version of a layout, G, is that layout with enough links

added so that every region is bounded by exactly three links.

B) If G' has three nodes, form an equilateral triangle of the

nodes, call it S(G') and go to step C. If G' has more than three

nodes, pick an interior node, n, of maximal degree, m, and label

the nodes adjacent to it in clockwise order of links as n,, . .. , n .
1 m

If there is a node n., 2 < i < m, such that n.n, is in G', perform
1 l 1

(2) below; else, perform (1) below:

(1) Form G ' from G' without node n and its links.

Find S(G ') (i. e. , apply this algorithm to G '). S(G') is then

S(G') with node n and its links placed inside the region

bounded by the circuit containing links n.n , n_n0,..., n n ,
1 c 2 5 ml

Although the algorithm uses a layout as its input, this layout
is essentially ignored in the resultant layout. Hence, the algorithm
is considered to be a constructive realization algorithm.

93

so that no link adjacent to node n intersects with any of the

links n.n (i = 1, .. . , m - 1); go to step C.

(2) Form two layouts:

(i) G' , including the cycle n n, nn., n.n1 and all

links and nodes inside this cycle in G'. Find S(G/) (i. e. ,
1

apply this algorithm to G').
1

(ii) G/ , including the cycle n n, nn., n.n and all

links and nodes outside this cycle in G'. Find S(G/) (i.e.,
2

apply this algorithm to G ').
2

S(G') is the result of placing the interior of S(G') inside
1

the region n n, nn., n.n in S(G'). Go to step C.
1 l l 1 12

C) S(G) is S(G') with the links added in step A removed.

Processing is then complete for S(G).

An illustration is given in figure 2-45. Relevant steps are

noted in parentheses. The superscript stars act as left parentheses

and the subscript stars as right parentheses in the recursion.

This algorithm works well with those layouts whose under-

lying graphs are planar, in the case that the user prefers a construe

tive algorithm. However, it seems wise to also explore the possi-

bility of defining a modifying algorithm which may be applied to all

layouts. Let us try to describe such an algorithm.

For each bend point in the layout, in turn, examine the two

points (either nodes or other bend points) adjacent to this bend point.

94

G'(A) G'(B)
n. = n_

1 3

4)

(G;)' (A)
i

(G;)' (B)
I

(G;)' (BI)
i

((Gj')[)' (A)

S((G'))' (B)
1

S((G;)'.) (c).
li 1

S(G;)' (B)
I

S(G') (C).

G' (B2ii)
2

(G/)' (Bl)
2

Figure 2-45

95

((G;)',)' (A)
2

((G;)')' (B)
2

((G;)')' (BI)' (((G;)')')' (A)
2 2

S((((G')')')') (B) S(((G')[)[) (C)^ S(((G{)')' (B) S((G{)[) (C)i

2 2 2 2

S((G.')') (Bl) S(G/) (CK
l2 h

S(G') (B) S(G) (C)

Figure 2-45 (continued)

Call these adjacent points a and b. If a straight line can be drawn

from a to b without intersecting any link segment or node, it is

drawn, and this bend point is removed. However, if some obstruc-

tion exists between a and b, it must be removed, before we can

96

draw a straight line between a and b to remove this bend.

It is here that we run into difficulty. The removal of such an

obstruction involves a modification of node (and possibly other bend

point) positions of the layout, and may be done in several ways. We

may somehow move one or both of the two points, a and b, or we

may move other points from one side of the line a, b to the other in

some manner. The problem here is that for different cases, the

manner of modification should be different, and it is difficult to

determine automatically what type of movement is appropriate in a

given case.

For example, in figure 2-46a, it is quite clear that a and b

should be moved to the left, whereas, in figures 2-46b and 2-46c,

we should move nodes other than a and b, in one case to the right

m z*n
(a) (b)

-• a

7Mk
-•b *b

(c)

Figure 2-46

97

of (a,b), and, in the other, both ways. Thus we have the dilemma of

determining for each case, what type of modification is best suited to

the layout. Furthermore, it is not even clear that we should treat

bends one at a time. In 2-46c, for example, we have similar condi-

tions for both bends, and processing them simultaneously would be

wise.

This discussion leads us to the conclusion that, in fact, the

best modifying approach to bend point removal is manual, rather than

automatic. This is supported by the fact that, unlike realization

processes for most other qualities, that for bend removal is quite

easy for the user to accomplish manually. There is no measure to be

taken except the counting of bends, and all effects are visual. In

anticipation of this conclusion, the MOD system, as will be seen in

section 2. 3, has been designed so that addition and removal of bend

points is a simple operation. Thus, again we choose to depend on

the interactive nature of the environment in which we are working,

rather than developing a complex algorithm to perform a relatively

simple task.

2.2.2.7 Minimum Number of Intersections

The next problem to be discussed, the minimization of the

number of intersections in a layout, is one which has been studied

for many years and is considered to be a key problem in the

98

automatic generation of printed circuit layouts. As a result, many

constructive algorithms have been proposed, as well as what we shall

call semi-constructive algorithms, those for which node positions

are prespecified, and link paths are to be generated.

Underlying many of these semi-constructive algorithms we

find the basic idea developed by Lee (24), of finding paths for wires

(links) given element (node) positions and the positions of other wires.

This approach performs a search which finds the optimal path accord-

ing to any criterion prespecified by the user. With this method paths

are found for the wires one at a time. Breuer (9) notes that the order

in which wires are placed with this method affects the results and lay-

out. Vincent-Carrefaur (37) skirts this problem by proposing that all

wire paths be generated simultaneously. In section 3.2. 2. 5 these

ideas will be elaborated further, along with other methods for mini-

mizing intersections which were developed for the purpose of auto-

matic circuit layout.

However, we would now like to consider a modifying algorithm

aimed at achieving fewer intersections in a layout, while changing as

little as possible. A seven-step algorithm which accomplishes this

is given below. The main idea of the algorithm is to move nodes

from one region to another in order to minimize the number of inter-

sections. Nodes are considered one at a time, and are placed in a

region of the layout which minimizes the number of intersections in

99

which the links adjacent to that node are involved. Once a node has

been moved in such a way that the number of intersections is reduced,

the algorithm is restarted. If all nodes are tried and no improvement

found, the algorithm terminates.

A large part of the algorithm is concerned with determining

the order in which nodes should be considered. Nodes which involve

the largest number of intersections are considered first. Initially

we only allow moves which remove all the intersections a node is

involved in. If no such move is possible for any of the nodes, we

then try moves which remove all but one intersection for a node. If

this fails, we allow two intersections, and so forth. This process is

controlled with a counter, I, in the algorithm.

The algorithm is then as follows, given a layout, L:

1) For each node n, find the number of intersections there

are involving links adjacent to n, and call this number I . Call the
n

degree of node n, D . Go to step 2.

2) Form an ordered list of nodes as follows:

If I > I then n. precedes n. . If I =1 and
n. n. l j n. n.
i J i J

D < D , then n. precedes n.. If I =1 and D = D , then
n. n. l j n. n. n. n.
i J i J i J

order is arbitrary for the two. Call this list NODES. Set 1 = 0, and

go to step 3.

100

3) Remove all nodes, n. , from NODES for which I si.
1 n.

1

Go to step 4.

4) If NODES is empty, terminate the algorithm with L as the

resultant layout; otherwise, mark all nodes in NODES unprocessed,

and go to step 5.

5) If all nodes in NODES have been processed, add one to I

and go to step 3; otherwise, go to step 6.

6) Take the first unprocessed node in the list NODES, call

it n. and mark it as processed. Form a set called CONNECT of
l

nodes to which n. is adjacent. Remove n. and all connected links
l J l

from L. Make temporary nodes of all remaining points of inter-

section, and call this new layout L/, Go to step 7.

7) (a) Look for a region R of L/ (the infinite region should

also be considered, i.e. that surrounding the whole layout), for

which D -I nodes of CONNECT lie on its boimdary, and for which
n.

I

if node n. were placed inside R, each of the nodes of CONNECT,

p, not on the boundary, may be joined to n. with exactly one inter-

section resulting from the connection (i. e. they lie on the boundaries

of regions adjacent to the region, R).

(b) If such an R is not found, restore the layout to L

and go to step 5. If such an R is found, remove the temporary

nodes, place n. in R, and draw the links as specified above (bends

are allowed). The result is the new layout L. Go to step 1.

101

A few comments on the algorithm will be helpful. Each time

the algorithm returns to step 1, a reduction has been made in the

number of intersections. Since there is a lower limit for this number

for every graph, the algorithm always terminates. As mentioned

above, the counter I indicates how many intersections are allowed

in finding a new position for the node n. under consideration in step

6-7. In the first iteration of a pass through the algorithm I is zero,

indicating that we will only move a node to a new position when a

position can be found which makes all the links of the node intersec-

tion free. If no position can be found for any of the nodes under this

condition, we have another iteration in which we allow positions

which remove all but one intersection for a node, etc. When I is

large enough so that we are removing no intersections for a given

node, we no longer consider that node (step 3). When no nodes

remain to be considered, due to the size of I, the process is ter-

minated.

The question remains as to whether or not this process finds

the minimum number of intersections for the graph underlying the

given layout. We make no attempt here to prove or even to claim

such results from this algorithm. Such a claim would be extremely

difficult to prove, since, even at the present time, expressions and

methods to find such minima are quite complex or non-existent. We

can only guarantee that for each pass through the algorithm either the

102

number of intersections is reduced or the algorithm terminates.

The example shown in figure 2-47 illustrates the process.

Each line is to be read from left to right. The pairs (I , D) are
n n

shown adjacent to the nodes where appropriate. Single numbers give

positions in the list NODES. Nodes drawn as empty circles indicate

that they are members of CONNECT, and nodes shown as lozenges

are temporary nodes. Regions which satisfy the conditions in step 7

are indicated by R's. New layouts are shown only when changes

warrant it. When a node number is slashed it has been processed,

otherwise it is considered unprocessed.

An alternative and more complex procedure exists for step 7,
which produces more possibilities for the placement of a node nj
with Dn. links, and I intersections. Some of these possibilities
are not considered in the algorithm as written, but may turn out to
be necessary for guaranteeing a minimal result. In order to include
these possibilities, step 7a would proceed as follows:

(7a) Look for a region R of 1/ (the infinite region included)
for which if we placed n^ in R, the integers aQ, .. . , aj satisfy the
following conditions:

l) Z ak
= D

n k = 0 k ni

2) £ kak =
k = 0

3) a„ nodes of CONNECT lie on the boundary of R.
0 ' l

4) For each of a^ (k = 1, . . . , I) nodes of connect, n,
a minimum of k intersections are required to connect n^ and n.

103

(6,3) (6,3) (6,3) 1 2 3 n = 1, D =3

(3,3) (3,3)

(2,3

step 7b,5

n. =3, D = 3

P
L'

step 6,7a

(0,3)

1 = 0

104

1 = 1

Figure 2-47 (continued)

105

2. 2. 2. 8 Minimum Link Length

The problem of decreasing total link length has also been of

concern to the developers of methods for automatic circuit layout.

Thus many algorithms, both constructive and modifying have been

devised and are discussed in section 3. 2. 2. 5. Among them Lee's

algorithm mentioned above as a semi-constructive algorithm may be

used for this purpose.

However, another algorithm, developed by Steinberg (33)

meets the requirements of a modifying algorithm for minimization

of link length quite well. The details of this algorithm are given in

section 3. 2. 2. 5. In summary, Steinberg's method finds a group of

unconnected nodes, removes them from the layout, and then reposi-

tions these nodes in a manner which minimizes the total length of

the links to which they are adjacent. Each set of unconnected nodes

is processed, in turn, in this manner until no more improvement

can be made. Variations and improvements on this scheme have

been considered by Rutman (32).

2. 2. 2. 9 Parallelism

Next we consider methods to minimize the number of differ-

ent link slopes in a layout (or to increase parallelism). One trivial

solution might be to redraw all the links as series of horizontal and

vertical segments, wherever possible. This method would guarantee

106

to yield the minimum number of slopes for a layout, but it may

require the introduction of several bend points, and does not conform

with our idea of changing the layout as little as possible.

A more reasonable modifying algorithm is given in Appendix 4.

It is not included in the text due to its length. The idea of this algor-

ithm is to first place all of the link segments into sets. Once these

sets of link segments have been formed, the link segments in each

set are adjusted so that they are parallel to one another where pos-

sible. As the algorithm is now written, originally parallel link seg-

ments remain parallel. Again, the algorithm appears in Appendix 4,

along with a discussion, and an example of its use.

2. 2. 2. 10 Horizontal-Vertical Orientation

The final quality to be considered for realization is that of

horizontal-vertical link segment orientation. A method which accom-

plishes this by reorientation of the links in these two directions has

been implemented in the MOD system and is described in section

2. 3. 3 as a series of two commands, merge c and merge r.

In summary, we have considered the measurement and rea-

lization of many of the qualities discussed in section 2. 1. Realization

algorithms were developed which, for the most part, are intended for

implementation in an interactive graph building and layout environ-

ment such as that described in the next section. Discussion of

107

algorithms for a few of the qualities was delayed until section 2. 3. 3,

since these algorithms have already been implemented in the MOD

output system.

2. 3 THE MOD SYSTEM

The MOD system was developed to provide an interactive

graphics environment for experimentation with various layout types

and layout algorithms. It has been implemented on a PDP-1 with 6k

of 18-bit core along with a drum, a teletype, and paper tape I/O.

Peripheral equipment used included a typewriter, a dectape unit, a

Calcomp plotter, a refreshing CRT, and a Rand tablet.

The system was designed in three parts: Mod Input, Mod

Framemaker, and Mod Output. Mod Input allows the user to draw

and modify graph layouts of several types, to store these on paper

tape, and plot them on a Calcomp plotter. Graph layouts previously

drawn and stored on paper tape may be read into MOD Input and

processed again. The MOD Framemaker is similar to MOD Input,

except that no Calcomp output is possible. Instead, a facility has

been provided with which the user may store sequences of graph lay-

outs (frames) on dectape or temporarily on the drum. These se-

quences may later be replayed or modified through the Framemaker.

The motivation for this system was to provide a facility for making

films or videotapes using the results of the rest of the MOD system.

108

The third part, MOD Output, was intended for experimenta-

tion with layout algorithms such as those described in section 2. 2. 2.

Graph layouts may be read in on paper tape, but their structure may

not be modified. The only changes allowed are those involving the

layout of the given graph. Again, the output may be either paper

tape or Calcomp plotter.

The following three subsections describe in more detail how

these three systems are used. Further details on the structure of

the system may be found in Appendix 5. The last of the subsections

also includes a more detailed discussion of the layout algorithms

implemented in the MOD system at the present time.

2. 3. 1 The Input System

The MOD Input system provides a means for inputing various

types of graph layouts. The user first selects the kind of graph lay-

out he wishes to draw, and then proceeds to draw graph layouts of

this type. He may output the graph layouts either on paper tape or

on the Calcomp plotter.

Upon starting, the system types out the options from which a

user must select a graph layout type. The options are:

1. a) directed
b) undirected

2. a) net
b) graph

3. a) adp's
b) none

109

4. a) ep's
b) none

5. a) shapes
b) standard

6. a) define shapes
b) no

7. a) functions
b) none

Option 1 is clear. Option 2 allows the user to specify that

either

a) links may branch, or

b) links may not branch.

Option 3 specifies that the nodes in the graph layouts to be drawn

may include, in their definition, certain points from which links or

arcs may originate (arc departure points, ADP's). Normally, a

link leaves a node from its center point, with that portion of the link

which lies inside the node removed from the graph layout. When

ADP's are specified for a node, the user may draw a link either

from an ADP or from the center of the node. Option 4 provides for

arc entry points (EP's) which are similar in nature to ADP's, except

that they specify points on nodes at which links may terminate.

Again, the center point may be used for termination.

Option 5 allows the user to choose between using one standard

node shape, provided by the system (a square), or several shapes,

either defined by the user or read in on paper tape (N. B. , this last

facility has not yet been implemented). Option 6 specifies whether

110

the user is to define these shapes or read them in. Option 7 provides

the user the ability when he is defining shapes to associate a number

with each shape he defines, which will be stored with that shape.

Note that 6a may only be used if 5a was specified. The

sequence 5a, 6b implies a facility not yet available. Option 7a may

only be chosen if 6a was chosen.

Upon completion of the option specification, the main frame

for MOD Input appears on the scope. From this point on, the system

is controlled, for the most part, with the Rand tablet. The main

frame is shown in figure 2-48. Pen position is shown by a small

" + " on the scope.

If the user has chosen to use the standard node shape, this

shape will appear at the top of the right hand column. In this case

the words "page" and "define" will not appear in the menu at the

bottom of the main frame. On the other hand, if he chooses to define

node shapes, those he has defined will appear in this column. If

there are too many shapes to fit into this space, pointing to "page"

will cause another group of defined shapes to appear.

At this point in the use of MOD there is a current shape.

Initially, this is null. To make a shape current, the user must point

to its prototype in the right hand column.

To define shapes, the user points to "define. " The main

frame is replaced by the define frame (see figure 2-49). All shapes

111

MOD INPUT Z ~-v «t" -.:
+z -z output pin

net
i page

define

Figure 2-48

112

LINE
FUNCTION
A DP
EP

DEFINED SHAPES

INPUT
COPY
REMOVE
FILE
EDIT

Figure 2-49

113

already defined and filed appear to the left in this frame. To define

a new shape, the user first points to "line. " As long as "line"

remains illuminated, he may draw lines in the box on the right of the

define frame, and these will be recorded as part of his shape defini-

tion. Each line must begin and end inside the box. To begin a line

the pen is pressed down; the line ends when the pen is lifted. If a

line is begun inside the box but the pen is taken out of the box before

the line is completed, no line is remembered, but the word "line"

remains illuminated.

If functions have been specified (Option 7) the word "function"

appears in the define frame menu. Pointing to function causes the

typewriter to output "type two numbers. " The user must respond by

typing two digits between 0 and 7, which then become the function

name for the shape he is defining. He may change the function name

by simply repeating this procedure. Initially the function name for a

shape is "00. "

If ADP's (Option 3) have been specified, the word "adp"

appears. Pointing to "adp" causes this word to illuminate. The

user may then put the pen down any place within the box. Each time

he puts the pen down, he specifies another ADP for the shape he is

defining. He may include as many as he likes, or none. For each

ADP specified, a small "x" appears in the shape.

Similarly, when EP's (Option 4) are chosen, the word "ep"

114

appears in the define frame. "Ep" functions in the same manner as

"adp" except that for each point specified, a small "o" appears which

functions as an EP for the shape.

To turn off "line, " "adp, " or "ep, " the user simply puts the

pen down anywhere outside the small box (for example, on any other

label). When no label is illuminated, the user may point inside the

box to erase part of its contents. This is called scrubbing. To

erase ADP's or EP's he presses the pen down on these points; to

erase lines, he points to their beginning points.

When a shape definition is completed, it must be filed to be

remembered. This is done by pointing to the word "file. " The shape

in the box, along with its function, if it has one, will then appear in

the list of defined shapes on the left.

To erase the contents of the box completely, whether or not

the shape has been filed, the user points to "remove. " It is impor-

tant that he remember to file a shape he wishes to retain, before

removing it.

To change or remove a shape which has already been filed,

the user first points to "edit, " which illuminates, and then to the

shape on the left he wishes to edit. Pointing elsewhere will simply

turn off the edit light. The shape then appears inside the box and is

removed from the list of defined shapes. Any changes may be made

to the shape by using "line," 'adp, " "ep, " "function, " "copy" (to be

115

explained below), or by scrubbing. When the edited shape is refiled,

each occurrence of the shape is changed in the graph layout of the

main frame, if any appear there, but all links to and from any occur-

rence of this shape are removed. However, if, when editing a shape,

"remove" is pressed, the shape edited is considered deleted and will

totally disappear from the layout in the main frame.

Any filed shape may be copied for modification and filing as

another shape definition. This is done by pressing "copy, " which

illuminates, and then pointing to the defined shape to be copied.

Pointing elsewhere will simply turn off the copy light. A copy of the

specified shape will appear in the box. The user may then continue

any way he likes.

When all defining is done, the user presses "input" to retrieve

the main frame. All shapes he has defined and filed, or edited and

filed will appear in the right hand column along with old, unedited

shapes. He may define shapes again at any point during the session.

A graph layout is drawn inside the box in the main frame.

Nodes are obtained by drawing an x at the position desired. A node

with the current shape will appear. Links consist of a series of

straight line segments. The points at which these segments connect

to one another in a link are called pins (or bends). To draw a link,

the user puts the pen down in the center of a node or at an ADP,

wherever he wishes the link to begin; then, keeping the pen down, he

116

draws the first line segment, and lifts the pen up. If he ends at a

node (or EP) the link is considered completed. Otherwise, he must

draw the next line segment of the link beginning at the end of the last

line segment. This process continues until he ends a segment at a

node or EP. A link of one segment cannot begin and end at the same

node. Any incorrectly drawn links will disappear immediately.

Should the user wish to copy or move any portion of the graph

layout he has drawn, he may draw a closed shape around that portion.

A closed shape must end close to the point at which it began. To move

that part of the graph layout, he then points inside the closed shape.

By keeping the pen down he maintains a handle on the enclosed por-

tion of the graph layout, and, as he moves the pen, this portion will

move with it. When the pen is lifted, the move operations ends.

Any nodes and pins enclosed may be moved in this manner.

To copy a portion of the graph layout, the user again encircles

that part, but then points outside the closed shape, keeping the pen

down. The copy soon appears, and, as in the move operation, as

long as the pen is down, the user may move the copy anywhere in the

box. Upon lifting the pen, the copy remains stationary. The copy of the

portion of the graph layout enclosed contains all nodes and pins of

that portion (but not their names), and all link segments whose begin-

ning and end points are on nodes or pins in that portion.

The user may also remove an element of the graph layout by

117

scrubbing it. A scrub consists of drawing in an erasure motion on

the object to be scrubbed. Scrubbing a node causes the node and all

attached links to disappear. To remove a link, its visible origin

must be scrubbed. When a pin is scrubbed, it disappears, and the

two line segments it connects become one.

It must be noted that with the five previous operations, all of

which are initiated by drawing instead of pointing, the pen movement

is "inked" (traced with small dots). When the operation is recog-

nized by the system, the inking disappears. If the effects of the

operation are not seen reasonably quickly, it means that the pen

movement was incorrect and did not initiate the operation which was

intended. The operation must then be repeated.

The whole graph layout may be moved to the right, left, up,

or down by pressing " +x, " " -x, " " +y, " or " -y, " respectively. The

graph layout may be enlarged by pressing "+z" or made smaller by

pressing " -z. " Nodes may be made only as small as their size when

they were originally defined.

The number of pins in a link may be increased by going into

pin mode. This is accomplished by pressing "pin. " When in pin

mode, the user may point to any existing pin, or any link beginning.

Keeping the pen down, he then has a handle on a newly created pin for

this link, which he may move around as long as he keeps the pen

down. This may be done any number of times in pin mode. To leave

118

pin mode, the user need only put the pen down anywhere else outside

the square of the main frame.

When "name" is pressed, the user is in name mode. Any

node he points to will cause the typewriter to carriage return. The

user must respond by typing a six or fewer character name made up

of alphabetics, numbers, space, "+, " and "-'•; he indicates the end

of a name with a carriage return. The name will then appear on this

node. To leave the name mode, again the user points anywhere out-

side the square. The user may make the name characters larger by

keeping sense switch 3 up.

To erase the whole graph layout, the user may press "erase. "

At this point the typewriter outputs:

New options

a) yes
b) no

If the user then types "a, " MOD Input is reinitialized. If he types

"b, " the typewriter outputs:

Keep shapes

a) yes
b) no

If the user then types "a, " all the defined shapes as well as the graph

layout are removed, otherwise only the graph layout disappears.

If the user has specified net (Option 2) then the word "net"

appears in the main frame menu. "Net" is pressed and used as if

119

it were a defined shape. However, nodes produced when net is the

current shape (net nodes) have some special properties. They only

appear when net is the current shape, and then they appear as small

triangles. When directed links are used, no arrowhead appears on

links ending at net nodes. These are the only such nodes. Net nodes

may have no ADP's or EP's. Net may be removed from current

shape status by simply pointing anywhere in the right hand column

above the word "net. " At this point all the triangles for net nodes

disappear, although the nodes still exist. The intent of including net

nodes is to allow for drawing links which branch. Net nodes provide

an intermediary point for branching. Net nodes may also be used for

placing labels on graphs in a convenient manner, since net nodes may

be given names, and the names will remain even when the net node

is not visible.

Three other labels appear in the main frame menu. These

are used for input and output of graph layouts. Pressing "output"

initiates the Calcomp drawing of the graph in the box of the main

frame, and a drawing of the list of defined shapes if there are any.

Pressing "file" initiates the output of the graph layout, pres-

ent options, and defined shapes on a paper tape. This is in a form

which may be input later to any of the three MOD systems. To input

such a tape in MOD Input, the tape must be loaded in the paper-tape

reader, the reader turned on, and "edit" pressed. When a tape is

120

read in, any previous graph layout, defined shapes, and options are

lost, and those on the tape become current.

2. 3. 2 The Framemaker System

The MOD Framemaker is a variation of MOD Input which

allows the storing, editing, and playing of sequences of graph layouts

(referred to now as frames). The only difference in the two systems

is in the output command. Output no longer initiates Calcomp draw-

ing; its new effects are described below. The main frame for the

Framemaker is the same as figure 2-48.

Sequences of frames may now be created on the drum, and

quickly replayed on the scope. These sequences may be output on

dectape and saved for later read in to the drum.

To initiate any frame operation the user points to "output" on

the scope. A carriage return will be typed. Then, any of the follow-

ing may be typed, ending with a carriage return:

"id" - initializes the drum for storage of frames. Before

any frames may be stored or retrieved, either the drum must be

initialized, or, a dectape must be read in which has been previously

output from the Framemaker. The current frame pointer (CFP) is

initialized to block zero.

"td" - reads a previously output dectape onto the drum and

sets the CFP to the first frame of this tape, displaying this frame.

121

If there are no frames in the sequence, the CFP points to block

zero.

"dt" - outputs the drum frames onto tape, renumbering the

frames so that they are numbered in their sequential order. This

operation should not be attempted until the drum has been either id'd

or td'd.

"m(-)xxx" - moves the CFP up or down in the sequence xxx

(octal) frames and displays the new current frame. If xxx is large

enough to go beyond the limits of the sequence, the last or first

frame of the sequence will become the current one, depending on the

direction of the move.

"s xxx" - moves the CFP to block xxx . There are 377
o o

blocks numbered from 1 through 377 , and each frame occupies one
o

block. If xxx is not a frame, an error message is printed out and

the old CFP is kept. If xxx is a frame, it is displayed.

"i (xxx)" - records the graph layout now on the scope as a

frame and inserts it in the frame sequence directly after that pointed

by the CFP, or after that frame mentioned, if a number is given.

The CFP is then updated to point to this new frame.

"d" - deletes from the sequence that frame pointed to by the

CFP. The CFP is moved to the previous frame in the sequence, or,

if no previous frame exits, to the next frame in the sequence.

122

"p" - starting with the frame pointed to by the CFP, succeed-

ing frames of the sequence are placed on the screen for a period of

time proportional to the number appearing in the test word on the

console of the computer. This process is halted by setting sense

switch 1 up or by reaching the end of the frame sequence. The test

word may be changed at any time during this procedure. The CFP

is updated to coincide with the picture appearing on the screen.

If the operations "m, " "s, " "d, " or "p" are attempted when

CFP = 0, or when there are no frames, an error message is printed

out and the operation has no effect. Printout also occurs when the

drum is initializing or when the CFP is updated. In the first case,

the word "initializing" is printed. In the second, the number of the

current frame is printed. The printout of frame numbers may be

suppressed by setting sense switch 2 on. It is important to remember

that the picture which appears on the screen may not be the same as

the current frame, for, the user may modify what appears on the

screen.

2. 3. 3 The Output System

The purpose of the MOD Output system is to experiment with

layout algorithms for graph layouts drawn with MOD Input or Frame-

maker. Upon starting, the system displays the main frame shown in

figure 2-50. The system allows commands which change the layout

123

-

MOD OUTPUT * :; X» ?.
+z -z draw pin

merge c
merge r
pretty

Figure 2-50

12A

of graphs, but excludes those which change the content of the graphs

underlying the graph layouts. The following MOD Input commands

are included in MOD Output, and function in the same way as for

MOD Input:

+x, -x

+y» -y
+z, -z
input (same as edit)
output (same as file)
pin

The draw command is similar to the output command in MOD

except that only the graph layout is drawn. The defined shapes are

not drawn. Neither do the defined shapes appear in the right hand

column of the main frame of MOD Output.

The net command has been modified and now only controls

the appearance of net nodes. To turn net off in MOD Output one

points at any empty space outside the main frame box. Note that in

order to obtain a graph layout on the screen, the input command must

be given and a paper tape read in.

The edit command has not yet been implemented. It is

intended to cause the read in of editing commands (perhaps on paper

tape) for modification of the contents of the graph underlying the lay-

out appearing on the screen. The form and function of these com-

mands has yet to be decided upon. The remainder of the commands

to MOD Output are intended for layout improvement. At present

125

there are three operations for this purpose, pretty, merge c, and

merge r. These provide some facility for improving a graph layout.

It is hoped that this list will be expanded in the future.

The pretty command is used to align nodes into rows and

columns as mentioned in section 2. 2. 2. 2. It has several options.

Upon pressing "pretty, " the following is typed out:

pins?

a) yes
b) no

If the user desires pins to be included in the aligning, along with

nodes, he types "a, " otherwise he types "b. " This is followed by:

net nodes?

a) yes
b) no

The user types "a" if net nodes are to be included and "b" if they are

not. It is suggested that the user experiment first with aligning regu-

lar nodes only. The next message is:

sspace =

The user must type an octal number which is the distance in scope

2
units (the scope is 1024) within which two rows or columns of nodes

are considered to be the same and may thus be aligned into one. The

user must respond with a positive octal number (20 or thereabouts
o

is suggested) followed by a space. The next message is:

126

space rows?

a) yes
b) no

The user types "a" if he wishes the rows and columns formed to be

equidistantly spaced and "b" otherwise. It is suggested that this not

be done unless net nodes and pins are also aligned, since there is a

great deal of node movement when rows and columns are spaced

equidistantly. If his answer was "b" the option specification is ended.

If he typed "a" the typewriter responds with:

rspace =

Again the user responds with a positive octal number ending with a

space. This number represents the distance in scope units between

rows and columns (100 is suggested). The pretty operation is then
o

executed according to the options specified.

The algorithm used to accomplish the first part of the pretty

operation, the aligning of nodes into rows and columns, proceeds by

repeating the following four steps, once for x-coordinates and once

for y-coordinates:

1) Make a list, POINTS, of all points; if pins or net points

are to be processed, they should be included; otherwise, the list

consists only of nodes. Go to step 2.

2) If POINTS is empty, terminate. Otherwise, choose an

element of POINTS, call it N, and remove it from POINTS. Set the

list SAME to null, and go to step 3.

127

3) If POINTS is null, go to step 4. Otherwise, look for an

element M of POINTS whose z-coordinate (z is x or y depending on

which coordinate is being processed) is within SSPACE of N's z-

coordinate. If none is found, go to step 4. Otherwise, remove M

from POINTS, add it to SAME, and go to step 3.

4) For each element of SAME, make the z-coordinate equal

to that of N. Go to step 2.

The second part of the pretty operation, which is optional,

that of equalizing the distance between rows and columns to RSPACE,

is accomplished by proceeding through the following four steps,

again, once for each coordinate:

1) Make a list of nodes (and pins and net points if appropriate),

and call it POINTS. Set IND = 1, and go to step 2.

2) If POINTS is null, terminate. Otherwise, find that ele-

ment, N, of POINTS with the smallest z-coordinate, Z, and remove

it from POINTS. Go to step 3.

3) If IND = 1, set IND = 0, set Y equal to Z, and go to step 4.

Otherwise, set Y equal to Y+RSPACE, and go to step 4.

4) For all elements P of POINTS whose z-coordinates are

equal to Z, set the z-coordinate of P equal to Y, and remove P from

POINTS. Set the z-coordinate of N equal to Y, and go to step 2.

128

The pretty process is straightforward, and needs little explana^

tion. The only problem is that if a row of nodes, for example, is

drawn with a large enough range of y-coordinate, pretty might sepa-

rate the row into two distinct rows as shown in figure 2-51. However,

this is easily remedied by a small manual movement of the nodes and

a reapplication of pretty for exact placement.

The merge c and merge r operations are initiated by pointing

to one of these labels in the menu. As mentioned in section 2. 2. 2. 10,

they increase horizontal and vertical link segment orientation in a

layout. When merge c is pressed the links of the graph layout are

made to appear as vertical as possible. The non-net nodes (and their

attachment points) are considered immovable, but pins and net nodes,

if desired, may be moved for this purpose. Adjacent columns of pins

are merged to form vertical columns on which links run, when no

conflict occurs, as long as they are within sspace of one another.

The user must input sspace in response to the message:

sspace =

1
pretty

<•—< •—4 'MI >

> < • (• manual
adjust
and
pretty

Figure 2-51

12 19

which is typed when merge c is activated. Again, the response must

be a positive octal number (around 20 is suggested). This message
o

is followed by:

net nodes?

a) yes
b) no

Responding with "a" allows net nodes to be moved along with pins.

Answering with Irb" means that net nodes are considered immovable,

as are all other nodes. The merge c operation is then executed.

Merge r proceeds in a manner similar to merge c. The only

difference is that the aim is to make links as horizontal as possible.

The final result of applying merge c and merge r should be a graph

layout in which the link segments run horizontally and vertically

(Manhattan geometry), wherever they can.

An explanation of merge r should suffice to make both opera-

tions clear. The merging process proceeds from top to bottom (and

in the case of merge c, from right to left). Once we have determined

that two rows can be merged, they are considered as one row. If a

row, say a, cannot be merged with the row below it, no row below a

is merged with a or any above a. The constraints which prevent

rows from being merged are as follows, where NC stands for an

immovable point (i. e. all nodes, and net nodes if they are not to be

moved), and P stands for a movable point (i. e. all pins, and net

nodes if they are to be moved):

130

1) Two adjacent rows cannot be merged if they both contain

NC's.

2) Two adjacent rows cannot be merged if merging introduces

overlap of NC's, P's, or link segments.

3) Two adjacent rows are not merged if merging changes the

side of a link segment on which a point (NC or P) lies.

4) Two adjacent rows are not merged if they are more than

sspace units apart.

Constraint one is clear, since NC's are not movable, and

requires only a check on the contents of the two rows under consid-

eration. Constraint two is broken up into several cases, each of

which must be checked for. The cases are shown in figure 2-52

where the a's are elements of the top row being considered, and the

c's are elements of the adjacent row. If any of these cases arises,

the rows are not merged.

 0 -&-© © ©-©•
 © © © ©

(i) (ii) (iii) (iv)

Figure 2-52

131

The third constraint is somewhat intuitive. There are two

cases which must be watched for, as shown in figure 2-53. In 2-53a

if the two rows were merged we would have the result shown in fig-

ure 2-54a. But if node a were connected to another node as shown

Figure 2-53

in 2-54b, then merging the two rows would cause a link intersection

as in 2-54c. Similarly, in 2-53b if the two rows were merged we

-^©^)--

(a) (b)

Figure 2-54

(c)

would have 2-55a; but if c were connected to another node as in

2-55b, then merging the two rows would cause a link intersection as

--a©— Z

(a) (b)

Figure 2-55

(c)

in 2-55c. Thus constraint three is observed in order to avoid the

132

possible creation of intersections.

Constraint four is straightforward, but it should be noted that

if the top row, a, of two adjacent rows, a and c, being considered

for merging is really the merge of two or more rows, then the dis-

tance between a and c is calculated as the distance from c to the

lowest point which any member of a has occupied in the original

layout.

To implement this algorithm two subroutines are used, merge

and forbid. Merge is the main algorithm; it calls forbid. The one

argument to merge determines whether we are merging rows or

columns.

Merge proceeds by finding succeeding rows (or columns) from

the highest coordinate value to the lowest. Having found two adjacent

rows which are within sspace of one another, it checks for constraint

one. If this constraint is met, it checks for the next two constraints

by forming a set of "forbidden regions" for each row using forbid.

We note at this point that the highest of these two adjacent rows may

not, in fact, be a single row, but a set of rows which are considered

to have already been merged. In this case all elements in the row

are considered to have the same coordinate value.

Forbidden regions are segments along the x-axis (if we are

merging rows or the y-axis if we are merging columns) in which no

NC or P of the adjacent row (or column) to be merged may lie, if

133

constraints two and three are to be met. Thus, once forbidden

regions are formed for a row, we need only check that one coordinate

for each member of the adjacent row does not lie in a forbidden

region.

Forbidden regions for the highest of the two adjacent rows

are formed when the cases shown in figure 2-56 arise. Brackets

indicate forbidden regions. For the next row they are produced for

--©—©--

Figure 2-56

the cases shown in figures 2-57. Thus the rows in figure 2-58 would

not merge, and constraints two and three are met.

© Q—Q
* V '

Figure 2-57

/ A >

"©--© © ©-~©Wa)-

-© ©— ©—©---^
©- -X©

W-J « „ • L KrJ

Figure 2-58

134

When two adjacent rows are found to be compatible, they are

merged. Merge puts together as many rows as possible before cal-

culating the resultant row (or column) coordinate for this set. The

resultant coordinate is either the coordinate of the NC occurring in

this set (by constraint one, there is only one), or, if no NC exists

for the set, the resultant coordinate is the midpoint between the high-

est and lowest row (or column) coordinates in the set.

After experimentation with this algorithm, the question has

arisen as to the effect of the directional processing of rows (and

columns) it includes. The algorithm always proceeds top to bottom

(or right to left) and, quite clearly, the result is somewhat dependent

on this direction. It might therefore be worthwhile to try a reversal

of directions (bottom to top, for example), or, to include two passes,

one in each direction. The results might prove better than those

given by the present implementation.

To conclude this section, we give several figures illustrating

the use of the MOD system. Figure 2-59 depicts a MOD Input main

frame and defines frame in use. Figure 2-60 shows a MOD Output

frame in use. And figures 2-61 and 2-62 show sequences of layouts

produced by MOD Input and Output using the pretty and merge opera-

tions.

135

-x>

MOD INPUT

D

+x -x edit
+y -y file
+z -z output

name
erase
pin

net
page
define

Figure 2-59

136

^02

LINE
FUNCTION
A DP
EP

>:

o

DEFINED SHAPES

INPUT
COPY
REMOVE
FILE
EDIT

Figure 2-59 (continued)

137

MOD OUTPUT +x
+y
+z

-y

input net merge c
output edit merge r
draw pin pretty

Figure 2-60

138

input:

pretty: r

] n
Figure 2-61

139

merge c:

* • • *

merge r:
<>

• — in .1 — i • a • • -

i • • 1 ii it <

Figure 2-61 (continued)

140

input:

pretty:

Figure 2-62

141

merge c:

merge r:

Figure 2-62 (continued)

142

Chapter 3

APPLICATION DEPENDENT LAYOUT

The problem of layout generation and modification for graphs

may be approached from a viewpoint totally different from that used

in chapter 2. This new approach considers the problem from an

application dependent point of view. By this we mean that we will

examine the problem of layout for specific layout types which are

dependent, to some degree, on the application in which these layouts

are used.

Section 3. 1 discusses the advantages of using such an ap-

proach. We find that the possibility exists with this approach, for

some layout types, of developing algorithms which are in some sense

more effective than those developed in chapter 2. Section 3.2 dis-

cusses actual layout types and methods to classify layouts. Here

we attempt to examine criteria and algorithms for the layout of

specific layout types. For several layout types work has already

been done, and this work will be mentioned. Finally, section 3. 3

briefly considers how a system like MOD may be modified to take

advantage of the knowledge of layout types in laying out graphs.

143

3. 1 APPLICATION DEPENDENCY - A JUSTIFICATION

When we examine the value of a study of layout methods, we

find that we must consider some of the actual applications in which

layout algorithms for graphs might be used. For example, we might

consider a graph layout as a circuit layout, flow chart, organization

chart, or AMBIT/G data. There are several reasons for this appli-

cation dependent view of layouts, besides the practical value of the

algorithms which might result.

Foremost is the fact that each application carries with it cer-

tain conventions about what a layout should look like. For example,

how a layout is oriented or how links are drawn may be part of the

convention. The conventions of an application may also tell us which

of the layout qualities discussed in section 2. 1 are to be given prior-

ity, and which qualities are to be ignored. In circuit layouts, for

example, the qualities most often considered are total link length and

the number of intersections; other qualities are relatively unimpor-

tant.

Not only may the layout quality priorites be dictated by the

particular application, but specific layout characteristics may also

be given by these conventions. As seen in the design of the MOD sys-

tem, in order that it be as general as possible, several different lay-

out characteristics were allowed in the system. In a particular

application, however, we are dealing either with, say, undirected or

144

directed links, nodes with or without shape, and so on. In other

words, given a specific application, we need only concern ourselves

with layouts containing particular characteristics.

Furthermore, we may know, for a given application, the graph

theoretic complexity of the graphs underlying the layouts used. By

this we mean the type of graph theoretic structure of the graphs under-

lying the layouts used in a given application. For example, organiza-

tional charts tend to be based on trees or graphs without cycles. But

the notion of underlying graph theoretic complexity must be modified

when we talk about layouts. We must really consider, instead, what

we shall call "apparent underlying graph theoretic complexity" in the

layouts of a given application. What we mean here is the amount of

underlying graph theoretic complexity which is relevant to the layouts

of a given application. For, although the underlying graph of layouts

for an application may be quite complex, this complexity may be

totally ignored in the layouts. Flowcharts are an example of this

phenomenon, for, although the underlying graphs for flowcharts may

be quite complex, flowcharts are, in general, arranged so that the

nodes are placed in a linear fashion. Thus flowcharts have little

apparent graph theoretic complexity.

The point of this discussion is that with any application for

which we know layout quality priorities, layout characteristics, and

apparent underlying graph complexity, we certainly have a greater

145

potential for producing more effective layout algorithms than we do

by treating the most general case, as we have done in chapter 2.

Certainly, we may better tailor the various algorithms to these par-

ticular priorities, characteristics, and complexities. Furthermore,

we find that many of the considerations which led us to look for modi-

fying algorithms rather than constructive algorithms in section 2. 2. 2

are no longer relevant in an application dependent framework. For

example, we now may have a knowledge of layout priorities, and per-

haps even some means for deciding on layout when an arbitrary choice

might otherwise be made. Thus, in an application framework, we

may more easily consider the possibility of a single constructive lay-

out algorithm (as defined in section 2. 2. 2) for each application,

rather than depending on an interactive environment in which several

modifying algorithms must be applied. In fact, it will be seen that

this constructive approach (as well as the semi-constructive approach

described in section 2. 2. 2. 7) has been used often in the development

of layout algorithms for a few of the particular applications mentioned.

Thus, we find that there may be an advantage in examining

layout from an application dependent point of view, in that, within

this framework, constructive layout algorithms may be more feasible,

and more effective results may be possible from application tailored

algorithms.

146

3.2 APPLICATION DEPENDENT LAYOUT TYPES

In this section our aim is to explore the possibility of produc-

ing effective constructive layout algorithms given application depend-

ent information. Before doing this, however, we will consider a

method of classification of layout types found in various applications,

based on layout characteristics, apparent underlying graph complex-

ity, and layout quality priorities. Examples of layouts used in

several fields will then be discussed along with their types. It is

within this framework of layout type that we will consider constructive

algorithms for application dependent layout. We will see that con-

structive algorithms are not always feasible. Both new algorithms

and previously developed algorithms will be mentioned in this dis-

cussion.

3. 2. 1 Classification of Layout Types

We must first consider the motivation for classifying layouts

found in various applications into types. The motivation is twofold.

First, we would like some method for comparison of layout algor-

ithms for layouts found in different applications. By classifying lay-

outs according to type, we hopefully will see some kind of gradation

in algorithms type corresponding to layout type. This would be a

helpful environment in which to better understand what factors add

to the complexity of layout algorithms, and, perhaps, how they can

be simplified. Secondly, once we have developed the framework for

147

making such correlations, it may prove to be very useful in the devel-

opment of new algorithms. For, given a new layout type, we may

gain some insight into algorithms for its layout by examining algor-

ithms for layouts of similar types.

The classification itself will be based first on apparent under-

lying graph theoretic complexity, and then on layout characteristics

and quality priorities. For example, the main typing "tree, " mean-

ing layouts whose underlying graphs are treated as graph theoretic

trees, might be divided into subtypes based on particular layout

characteristics and priorities. We might then develop several

specific algorithms, one for the layout of each different subtype, each

of which might have some basic process in common with the others,

due to the fact that all are classified under the general typing "tree. "

We would then like some ordering of these layout types, hope-

fully, such that some gradation can be observed in the corresponding

layout algorithms. Let us try ordering the types according to appar-

ent underlying graph theoretic complexity, and look for a gradation

in corresponding layout algorithms. Those layouts with simpler

apparent underlying graphs, are referred to as simple layout types,

and those with more complex apparent underlying graphs will be

known as complex layout types.

Before looking for this correlation, however, we must decide

what algorithm characteristics we should look for a gradation in.

148

We want algorithm characteristics which reflect the complexity of the

algorithms to some extent, although what we mean by algorithm com-

plexity is not quite clear. However, two algorithm characteristics

might be appropriate, namely, the amounts of what we shall call

structural rigidity and constraint optimization.

The "amount of structural rigidity" in an algorithm means the

extent to which algorithm predetermines the layout. For example, at

one extreme we have layout types whose algorithms assign the nodes

a linear placement, no matter what the input graph is, for example,

a flowcharting algorithm. Such an algorithm will be called structur-

ally rigid. On the other hand, we might have layout types whose

algorithms have no predetermined mold which layouts follow, for

example, those most often used for circuit layouts. Such algorithms

have little structural rigidity. Structural rigidity effects the com-

plexity of a layout algorithm, in that, if there is large amount of

structural rigidity, the algorithm will probably proceed in a more

straightforward manner to obtain a layout, than if there is little

structural rigidity, since the layout will be less dependent upon the

input, in general.

The meaning of the "amount of constraint optimization" in an

algorithm is more obvious. For some layouts little constraint opti-

mization is necessary, whereas for others, layout algorithms may be

totally based on constraint optimization. The amount of constraint

149

optimization in an algorithm is also a good reflection of algorithm

complexity, for, in general, the more constraint optimization present

in an algorithm, the more complex it will be.

Structural rigidity in an algorithm seems to be at the opposite

pole to constraint optimization, for, while the former is based on the

assumption that a certain result can always be obtained no matter

what the input, the results from the latter are totally dependent on

the input, and no amount of success is guaranteed.

In fact, a correlation appears between these two algorithm

characteristics. For, where a structurally rigid algorithm may be

used, there is little constraint optimization required; and, where

much constraint optimization is required, there can be little struc-

tural rigidity. Thus we may combine these two factors into one scale

for measuring algorithm complexity.

Now, if we consider our original plan for ordering layout

types, that of ordering by apparent underlying graph theoretic com-

plexity, we find the following correlation with algorithm complexity

(as measured on the structural rigidity-constraint optimization scale).

In general, the simpler the layout type in terms of apparent under-

lying graph theoretic complexity, the greater the possibility for

structural rigidity in layout algorithms, and the less the need for

constraint optimization in order to obtain layouts. This is clear

since, the simpler the apparent underlying graph theoretic complexity

150

of a layout type, the more we can predict about the structure of the

apparent underlying graph (the structure we must consider in layout),

and thus, the more we can predetermine what manipulations are

necessary for layout and what final forms layouts may take. For

more complex layout types, less of the structure of the apparent

underlying graph may be predicted, and thus, layout algorithms must

depend more on testing and constraint optimization. Thus with the

simplest layout types, a layout algorithm may be a simple, rigid,

and direct procedure for layout, whereas, with the most complex

layout types, layout algorithms may consist of complex optimization

procedures.

With this correlation and ordering in mind, we must then con-

sider how to rank the apparent underlying graph theoretic simplicity

of layouts in different applications. There are several factors which

might be considered. For example, we might take into account

whether the apparent underlying graphs have cycles or not, whether

they are planar or not, whether they are separable (i. e. , can be

separated into components as in the algorithm of Appendix 3) or not,

and so on. The ordering will be as follows. Near the bottom of the

Again, by apparent underlying graph, we mean the structure
of the underlying graph which is relevant in layout. So that, for
example, if we do not care in a layout process whether the underly-
ing graph has cycles or not, then the apparent underlying graph is
considered not to have cycles.

151

scale we will consider the simplest layout types, those whose appar-

ent underlying graphs are without cycles (and which are therefore

planar and separable). We will name this layout type the tree type

after the graph-theoretic name of the structure of its apparent under-

lying graph. We will see that algorithms for tree layout are quite

straightforward and structurally rigid. At the top of the scale, we

have layout types with apparent underlying graphs which may be non-

planar, may contain cycles, and may be non-separable. The most

complex type are layouts with such apparent underlying graphs and

which use both ADP's and EP's (as defined in section 2. 3. 1), thus

requiring that links be placed around a node in a certain order. We

expect that constructive layout algorithms for such complex layout

types will consist mainly of constraint optimization, and, will be very

difficult to develop, if not impossible.

We will not consider a complete categorization of all possible

layout types, as such a task seems infeasible. We will attempt, how-

ever, to order several common layout types, according to their appar-

ent underlying graph theoretic complexity and thus according to their

respective layout algorithm complexity. . The intention here is only to

experiment with the possibility of a layout classification, rather than

to strictly define it.

152

3. 2. 2 Layout Types and Algorithms

What follows is a description and classification of various

commonly used layout types, along with a discussion of algorithms

for the layout of these types. The layout types are described in order

of layout type complexity. A corresponding gradation in layout algor-

*
ithm complexity is also seen. Five layout types are presented. We

start with the simplest types and proceed to the most complex. With

each type several subtypes may be included.

3. 2. 2. 1 Linear Layouts

The linear type is the layout type in which there is the least

apparent underlying graph theoretic complexity. In other words, the

apparent underlying graph consists of a simple string of nodes, per-

haps connected by links, or, it is treated as if it does. The only

general constraint of this layout type is that the nodes be placed in

some linear arrangement. Thus the basic form of a linear layout is

quite rigidly predetermined.

As mentioned above, flowcharts are an example of this layout

type. By convention, nodes of flowcharts generally assume a linear

placement, regardless of underlying graph theoretic structure. Often

The type names given to the various layout types, in general,
have no relationship to definitions commonly found in graph theory.
When there is a correspondence with a type name and a graph theo-
retic definition, as in the case of "tree layouts, " it is pointed out in
the text.

153

nodes are aligned in a vertical arrangement. One complication in

flowchart layout, however, is that of link routing. In general, links

are required to be drawn as series of horizontal and vertical seg-

ments. This may not always be possible.

The usual requirements of an algorithm for flowchart layout,

then, are that, given the order in which nodes are to be placed, the

algorithm must decide on a linear placement, and then must route

links along horizontal and vertical runs, where possible. Often,

where the origin and destination of a link are far apart, intermediate

reference nodes are allowed. These are nodes especially created

and labeled in pairs. They imply that a link which ends at such a

node really continues with the link which originates at the other ref-

erence node with the same lable. Link intersections are generally

allowed, and thus, the only difficulty of such an algorithm is in check-

ing that no link segments are drawn on top of others previously drawn

(in some cases the horizontal-vertical requirement may have to be

broken to avoid this). Many such algorithms have been written and

implemented as computer packages for flowchart generation, for

example, System/360 Flowchart by IBM (19).

In this discussion we have been careful to separate out the task

of deciding on linear node order, from that of generating a layout

given an order. It is felt that the manner in which node order is

decided upon is not relevant to the actual problem of layout, and

154

seems to depend upon the requirements of the particular language for

which a flowcharting program is to be used and on the particular

priorities of the user.

It is clear, then, that for this example of the linear layout

type, straightforward structurally rigid constructive algorithms with-

out optimization are easy to design. Although algorithms may include

optimization procedures for minimizing the number of non-horizontal

and vertical link segments, such optimization is not necessary for

flowchart layout. An example of a typical flowchart is shown in

figure 3-1.

• I
«

T
Figure 3-1

3. 2. 2. 2 Tree Layouts

The tree type includes layouts which are more two-dimensional

than the linear layouts, but the underlying graphs for this type may con-

tain no cycles. In forming tree layouts, underlying graph-theoretic

structure is relevant in determining node position. If a graph is a

155

tree in the graph-theoretic sense, we are guaranteed that it may have

a planar representation (no intersections) and may be laid out in one

of many predetermined, somewhat rigid forms without complication.

This will be demonstrated below.

In most applications tree layouts are formed in levels as fol-

lows. Some single node is designated as the "root" node. The root

node comprises the first level. Each node adjacent (in the graph

theoretic sense) to the root lies in a level higher than the root node

level. They may or may not all lie in the next level, but at least one

does. In turn, for each node, say b, adjacent to a node, say a,

which is closer to the root node than b in terms of graph theoretic

distance, node b lies at a higher level than node a. It is guaranteed

that there will be no level conflict because there are no cycles; hence,

nodes may be partially ordered with respect to any root node.

Nodes without successors in this description are known as leaves.

Algorithms for general tree layout must, given a root, separate the

nodes into levels and place them accordingly. In general, levels are

spaced at regular intervals.

Tree layouts are used in many applications to represent

Node a is then called the "father" of node b, and node b is
called the "son" of node a.

Tree layout does not require that the nodes be totally
ordered.

156

hierarchical structure or dependency relationships. Each application

may carry with it additional requirements as to what tree layouts

should look like. Additional requirements regarding horizontal and

vertical placement of nodes are often found. For example, one appli-

cation may require that a node lie in the level immediately next to its

father node (leveled trees), or conversely, that a node lie in the high-

est level possible, the level just before the lowest of any of its sons,

and that all leaf nodes lie in the same level (unleveled trees). Or,

we may have the requirement that a node must be centered over its

sons (son-centered), or, on the other hand, that nodes in a given

level and links passing through the level be placed evenly spaced in

the level around some center, regardless of the placement of sons

(level-centered). Furthermore, bends in links may or may not be

allowed.

For example, in linguistic applications, a phrase marker

representing the parse of a sentence is often depicted by an unleveled,

son-centered tree layout without bends, as shown in figure 3-2a.

Whereas, tree layouts used as organization charts are often leveled,

level-centered trees (with bends allowed, although no bends will

appear) as shown in figure 3-2b. It is of interest to note, however,

that with tree layouts, as with linear layouts, layout characteristics

as defined in section 3. 1, such as directedness of links, are of little

importance in the layout process.

157

(a) (b)

Figure 3-2

Again, for clarity, we will repeat the definitions of these lay-

out requirements:

1) Leveled trees: every node lies in the level immediately

next to its father node.

2) Unleveled trees: every node lies in the highest level pos-

sible, the level just before the lowest of any of its sons, and all leaf

nodes (nodes without sons) lie in the same level.

3) Son-centered trees: every node is centered over its sons.

4) Level-centered trees: nodes in a given level and links

passing through that level are evenly spaced around some center.

Since each of the application dependent requirements men-

tioned above affects the formation of tree layouts, they must be con-

sidered in the formulation of layout algorithms. Most tree layout

*
In the following algorithm description we will talk about tree

layouts oriented with roots on top and leaves on the bottom; however,
this discussion may also apply to tree layouts with other orientations,
such as left to right.

158

algorithms, however, may consist of two main steps:

a) place nodes into levels to determine y-coordinate, and

b) place nodes within levels to determine x-coordinate.

The details of these steps differ according to whether the tree layout

is to be leveled or unleveled, son-centered or level-centered, and

whether or not bends are allowed. Each such variation is considered

as a separate tree subtype.

An algorithm for the layout of all of these tree subtypes will

now be presented. The algorithm consists of the two basic steps

(a and b) mentioned above. As stated, there are variations in these

two steps according to the subtype of tree layout desired. Step a has

two variations, a. 1 for all leveled layouts, and a. 2 for all unleveled

layouts. In the following description of these variations of step a,

the symbol "# " is used as a place marker.

Step a. 1: for all leveled subtypes, place the node in the low-

est level possible as follows: form ordered list of nodes, S^'s ,

i = 0, . . . , n, one for each level, as:

i) Sft = (root node)

ii) If S. = (K., K,, ... , K) and for some K. , K. ^ #,
l 1 Z m ii

then S = (K. , K. K. , K_ , . .. , K) where:
i+l i, 1_ 12. m 12 n, 1 n 1 m

159

K.

, if K. is # or if K. has no sons
3 J

the kth son of K. , if K. has any sons
J J

n.
1, if K. is # or if K. has no sons

J J

the number of sons of K. , otherwise
J

If, for all K. in S. , K. = # , then n = i-1.
J i J

Step a.Z: for all unleveled subtypes, place the nodes in the

highest level possible, as follows: form ordered lists of nodes,

S.'s, i=0,...,n, one for each level, as:
l

i) S = (root node)

ii) If S. = (K. ,K_, . . . , K) and some K. has a son, then
x 1 2 m j

S. = (K. , K. , . . . , K. , K_ , . . . , K) where:
1+1 i, l _ i zS, m

12 n, 1 n
m

K.

K. , if K. has no sons; K. in S. is then
J J J i

changed to a #

the kth son of K. , if K. has any sons
J J

1, if K. has no sons
J

. the number of sons of K. , otherwise
J

If, for all K. in S. , K. has no sons, then n = i.
J 1 J

Variations in step b then complete the algorithm description.

There are six variations, one for each possible combination of the

160

*
layout requirements mentioned above. These six variations are

given below as steps b. 1 through b. 6. In the description of these

steps, c is some x-coordinate arbitrarily chosen as a fixed center

for the layout. Once the K.'s are positioned in step b, only the K.'s

such that K. ^ # actually appear in the layout; the others simply act

as guides for links, or are ignored.

Step b. 1: for all leveled, son centered subtypes:

i) Evenly space all the K.'s in S around the fixed
J n

center c.

ii) For each S. in the order i = n- 1, n-2, . . . , 0, place

each node K. ^ # in the center of the x-coordinates of the elements
J

, K. . which it generated in S. , , , K. , . . . , K.
i+1 Jj J n.

J

Step b.2: for all leveled, level-centered subtypes: for each

S. place the K.'s 4 # evenly spaced and centered with respect to the
i J

fixed center c.

In both steps b. 1 and b.2, links are then drawn between each

of the pairs K. € S. and K. 6 S. , , , where K. ^ # , for i = 0, . . . ,
J X Jk 1+1 Jk

n-1.

In the leveled subtypes no bends can occur since links travel
only between adjacent levels. Hence we have six combinations of the
requirements, instead of eight, as would be expected.

The details of this spacing operation will be worked out when
the algorithm is implemented, and will not be bothered with here.

161

Step b.3: for the unleveled, son centered subtype with bends:

i) Evenly space all the K.'s in S around the center c.
J n

ii) For each S. in the order i = n- 1, n-2, . . . , 0 place

each K. in the center of the x-coordinates of the elements which it
J

generated in S .

Step b.4: for the unleveled, level-centered subtype with bends.*

for each S. , place all the K.'s evenly spaced and centered with

respect to the fixed center c.

In both steps b. 3 and b.4, links are then drawn between each

of the pairs K. € S. and K. € S. , , , i = 0, . . . , n- 1.
j > jk i+l

Step b.5: for the unleveled, son-centered subtype without

bends: there is a problem with this subtype, in that intersecting lines

may be created. If, for example, we represented the underlying

graph of figure 3-3a in this manner, we would obtain that of figure 3- 3b.

To remedy this situation, let us first form the layout as for the

(a)

Figure 3- 3

162

unleveled, son-centered subtype with bends, and put in single segment

links, father to son as in 3-3b. We may then remove any resulting

intersections using the procedure shown in figure 3-4.

The basic idea of this procedure is that if two links, say (a,p)

and (b,q), intersect, as in figure 3-3, where a and b are the node

labels of the topmost node of each link, and the level of a precedes

that of b, then, by moving up the y-coordinate of the level of a and

that of all other levels above a, the intersection may be removed. It

should be noted that in order to avoid intersection with this subtype

we can no longer guarantee that levels will be evenly spaced. Hence,

we are sacrificing some structural rigidity.

Let us discuss the intersection removal procedure in more

detail. First, notice that if any two links, say again (a,p) and (b,q),

intersect in the unleveled, son-centered subtype without bends, it

*
must be that either a is an ancestor of b, or that b is an ancestor

of a. Proof of this fact is sketched as follows:

Lemma: Let links (a,p) and (b,q) intersect in the unleveled, son-

centered subtype without bends, as described above. Then

either a is an ancestor of b, or b is an ancestor of a.

Proof: Suppose that (a,p) and (b,q) intersect, where a and b

are the lower level nodes in each of these links. We will

The term ancestor is used to mean father, or grandfather,
or great-grandfather, and so on.

163

assume that a is not an ancester of b, and that b is

not an ancestor of a, and show that this leads to a con-

tradiction.

First note that for every node z not in the highest

level (level n), by our formulation of node order in levels

(step a for the unleveled subtypes), all leaves of node z

are in sequential order in level n. Let us then define a

range R (z) for node z in level n, as the range along the

x-axis in which leaves of node z lie. Note that, by our

formulation, only nodes which are progeny of node z lie

in R (z). Now, since nodes are son-centered in this sub-
n

type, all progeny of z lie in the area, A (z), over R (z)

running from the level of z to level n. Thus all links

from z to nodes in higher levels lie within A (z).

Furthermore, only nodes which are progency of z

lie in A (z). For, assume that this is not the case and
n

that some node w lies in A (z) and is not progeny of z.

According to our formulation of R (z), w is not in level n. o n

Furthermore, due to the son-centered requirement, it

must be that R (z) l~l R (w) ^ 0. Then there must be a
n n

node v in level n such that v € R (z) 0 R (w) and such
n n

*
Again, progeny is used to mean sons, grandsons, great-

grandsons, and so on.

164

that v is progeny of both z and w. Now, since each

node has only one father, we may trace from node v back

through its forefathers in sequence starting with v's

father. If node w appears first in this sequence, then v

cannot also be progeny of node z, since w isn't. If node

z appears first in this sequence, then by formulation of

levels, z must be progeny of w, and w ? A (z). Hence
n

we have a contradiction, and w # A (z), if w isn't
n

progeny of z.

Now, if a is not an ancestor of b, and b is not

an ancestor of a, then b # A (a) and a ? A (b). Hence
n n

the two areas, A (a) and A (b) are distinct, and no link
n n

from a to a higher level can intersect with any link

from b to a higher level.

QED

Thus it must be that either a is the ancestor of b (denoted

* *
by a = f (b)) or vice versa. Suppose, then that a =f (b). Then,

certainly, a and b could not be at the same level, and, in fact,

the level of a (denoted by L(a)) must be smaller than that of b.

We have then determined that for two links, (a,p) and (b,q),

to intersect, L(a) f L(b), and either a=f (b) or b=f (a), depending

on whether L(a) < L(b) or L(b) < L(a), respectively. The method

for intersection elimination in figure 3-4 uncovers intersections in a

165

layout by looking for b's starting with level n- 1 and proceeding to

lower levels, where the b's are assumed to be the lower of the top-

most nodes, a and b, of intersecting links. While considering each

node as a b, all of the node's ancestors, starting with immediate and

proceeding to more distant, are considered as a's. We are guaran-

teed that if, say, L(a) < L(b), then we can eliminate the intersection

if we move L(a) up far enough, along with all levels above it. The

idea is that we move L(a) up far enough so that the link (a,p) clears

A (b). This can always be done, since p cannot lie in A (b) (other-
n n

wise p would have two fathers). Thus if we make the link (a,p)

vertical enough (by moving a up and leaving p fixed, where, of

course, L(p) > L(b)) it must clear A (b).

The only problem left to worry about with this procedure is

that no new intersections are created by such a move. In fact, we

find that new intersections may be created by such a move, but that

they are such that the topmost node involved in the new intersection,

a', must be such that L(a) £ L(a), since no nodes in levels greater

than L(a) are effected by the move. Even better, we find that

L(a') < L(a), since, if we are moving L(a) up, the move has the

same effect on all intersections with topmost node in L(a) as it does

on the intersection involving a. Thus, if we process the layout for

intersections, bottom up, we may remove them all in one pass.

166

In the algorithm, then, for each (a,p) and b considered, the

process checks the cases listed below to see if (a,p) intersects with

some link downward from b. The line y = X(L(b)) is the horizontal

at the level of b, and y = X (n) is the horizontal at level n. The line

x = x, is the vertical at the left of the range R (b), and x=x_ is the

1 n c

vertical at the right of R (b). The cases are:
n

a) If x1 =x , then there is an intersection if and only if (a,p)

intersects the line x=x between y=X(L(b)) and y = X(n).

b) If X, ^ x , then there is an intersection if and only if

either:

1) All of the following three conditions hold:

i) (a, p) intersects y = X(L(b)) between x = x and

x = x2,

ii) (a, p) intersects either x = x or x = x between

y = X(L(b)) and y= X(n), and

iii) (a, p) intersects some horizontal y = X(k), where

L(b) < k < n, between x=x1 and x = x', where x = x' is

the vertical on the left side of the range of progeny of b

at level k, and x = x ' is the vertical on the right side of

this range.

or 2) (a,p) intersects both x=x. and x = x between

y = X(L(b)) and y = X(n).

See definition in preceding proof.

167

In checking for these cases, the algorithm first decides

whether or not x = x . If x ^ x , if first checks whether (a,p)

intersects y = X(L(b)). If it doesn't, case (b,l) is eliminated imme-

diately, and, at that point, the algorithm needs only to check for

intersection with one of the sides x=x and x = x to see if (b,2)

holds.

The algorithm shown in figure 3-4 proceeds using the approach

in the preceding discussion to remove all intersections from a layout

for the unleveled, son-centered subtype without bends. It processes

levels for intersections, starting at the highest (bottommost) level

and proceeding to the lowest (topmost). Initially all levels are evenly

spaced, but are changed when necessary to avoid intersections. The

following notation is used in the flowchart of figure 3-4:

L counts levels looking for b's

i is the ith node in the Lth level, left to right

n is the total number of levels

X(L) is the y-coordinate of level L; the results of the process
may be seen in these numbers

YINC is the original distance in y-coordinate between levels

S(x,y) gives the next son of x after son y; if y = 0 the first
son is given; if S(x,y) = 0, then y was the last son

f(x) gives the father of x; if f(x.) = 0 then x is the root

Rm(x) gives two values, xj and X£ , denoting the left and
right limits, respectively, of the range along the x-axis which
progeny of x occupy on level m; obviously, if L(x) > m then
R~JX) has no value

168

Set X(n) «- 0 and for k = 1, . . . , n
set X(n-k) - kxYINC . Set L - n- 1

L = l ?
yes

^ EXIT

Set i -1
Set L - L- 1

Set b •- i-L
Set xj, x2 - Rn(b)
and a *- f(b)

yes

no

Does level L
have an ith
node ?

Set
i- i+1

Set p «- s(a, 0)
Set a - f(a) £

no
yes

f(a) = 0?

= b?
yes

no
Xl X2?

yes

yes

no
(a,p) intersects
y = X(L) between
x=Xi and x = x2 ?

no

(a,p) intersects
x =xj between
y = X(L) and y = X(n) ?

yes

no

* Set c - 1

"* L + c = n?
yes

Set s •- s(a ,p)
 7K

no

Set x{, x^RL+c(b)

yes

p = 0?
no

no
(a,p) intersects
x =x.\ between
y = X(L) and
y = X(n)?

(a,p) intersects y=X(L+c)
between x=x' and x = x ' ?

yes

For all levels I > L(f)
set X(l) - X(l) + YINC

yes

Set

no

-c+1

Figure 3-4

169

Again, we emphasize that this algorithm is applied to a layout

which has been formed by proceeding as in the unleveled son-centered

subtype with bends, and then removing the bends in the links.

In summary, then, with the unleveled son-centered subtype

without bends, we lose some structural rigidity, in that, in order to

guarantee that no intersections will occur, we cannot guarantee that

levels will be evenly spaced.

Step b. 6: for the unleveled, level-centered subtype without

bends: there is a problem with intersections in this subtype also;

however, here we can find no remedy. Figure 3-5b shows an example

of such a layout for the underlying graph of 3-5a. It is clear that

moving levels up or down is not a solution. Unfortunately, the method

for the unleveled, level-centered subtype with bends may produce

(a) (b)

Figure 3-5

170

more than one bend per link.

To handle the problem of layout for the bend-free unleveled,

level-centered subtype, we might consider an optimization tech-

nique. For example, we might use an algorithm which performs

several passes. Each pass may rearrange the order of sons under

a father, in order to find an arrangement which yields a layout with

the minimal number of intersections possible. Such an approach

would not guarantee an intersection-free-layout, but would find the

optimal solution, given the constraints of this subtype. Thus we

must sacrifice the guarantee of node order in order to meet the lay-

out requirements for this subtype. Even then, we cannot be sure

that the requirements will be met.

Examples of layout for the leveled subtypes with and without

bends and the unleveled subtypes with bends are shown in figures

3-6a, b, c, and d for the same underlying graph. In this example,

the lists, S. , for the leveled subtypes are:

We note that we can guarantee at most one bend per link for
the unleveled, son-centered subtype with bends, and, in all leveled
subtypes, obviously, no bends occur since links always travel be-
tween two adjacent levels. In the unleveled, son-centered subtypes,
it turns out that each K; = # is aligned directly above either another
or the node whose place is marked by this #, due to the son-
centered requirement. Thus a straight line may be drawn through
the series of #'s over a node making one link segment, and a line
may be drawn between the top # and the father node, completing the
link with only two segments.

171

s0 = (D
Sj =(2,3,4)

52 = (5,6,7,8,9,10)

53 = (#,11,#,#,12,#)

and those for the unleveled subtypes are:

s0 = (D
Sj = (2,3,#)

52 =(#,6,#,#,9,4)

53 = (5,11,7,8,12,10)

Leveled
son-centered

Leveled
level-center ed

(a) (b)

Unleveled
son- centered

(c)

Unleveled
level- centered

(d)

Figure 3-6

172

Figure 3-7 depicts a sequence of layouts generated by the algorithm

for removing intersections from the unleveled, son-centered sub-

type without bends (step b.5). Initially (3-7a) there is one inter-

section. To remove it, levels 0-2 are moved up (3-7b), causing

another intersection. When this is discovered, level 0 is moved up.

The result (3-7c) is intersection free.

(a) (b)

Figure 3-7

(c)

We may be assured in all leveled subtypes that no intersec-

tions occur. For, since links run only between two adjacent levels,

any intersection, say (a,p) and (b,q) must occur between two adja-

cent levels. Say that L(a) = L(b) = k and L(p) = L(q) = k+1.

Obviously, it must be that a^ b (otherwise there would be no inter-

section). But, by the formulation of S, , , from S, , if a precedes
k+1 k

b in S, , then the sons of a precede those of b in S. , , , and vice
k k + 1

versa. Hence (a,p) and (b,q) cannot cross. In the unleveled sub-

types with bends, we have the same assurance, since the # elements

173

act as nodes in the argument, and links may be considered to travel

only between two adjacent levels.

In summary, we have examined several subtypes of the tree

layout type and developed constructive algorithms for the layout of

each subtype. A gradation was found in complexity of layout accord-

ing to subtype. With all leveled subtypes, and with the unleveled

subtypes with bends, the algorithms are straightforward and struc-

turally rigid. With the unleveled, son-centered, bend-free subtype

the layout algorithm is still direct, but the resultant layout struc-

ture may not be predicted as rigidly. With the unleveled, level-

centered, bend-free subtype, the desired structure cannot always

be attained. In fact, with this subtype, a procedure involving opti-

mization, with no guarantee of total success, seems the only feasible

approach to meeting the requirements.

3.2.2.3 Network Layouts

The network type includes the set of layouts whose apparent

underlying graphs have nodes which are partially ordered by the

links which connect them and by the directions of those links. In

other words, the apparent underlying graphs are directed. The

resultant layouts are to reflect this partial ordering. This implies

that, although the undirected structure of the underlying graph may

have cycles, the directed graph representing the partial ordering

174

does not contain directed cycles. This also implies, of course, that

the underlying graph may have no self-loops. The underlying graph

itself, however, need not necessarily be directed, but information

about intended link direction, and hence, the partial ordering of

nodes, must be available.

We do not require that network layouts be intersection free,

although the number of intersections should be minimized. Nodes,

in general, should not have ADP's and EP's which might restrict the

order in which links may be placed around a given node. Although,

nodes which specify one side for input, and one for output may be

used. The resultant layout should optimize linear directional con-

sistency by giving an overall direction to the node placement based

on the partial order. It should also minimize the number of inter-

sections which appear in the links between these nodes.

We find then, that in forming network type layouts, some

structural rigidity exists in the form of node placement with respect

to partial ordering. But some constraint optimization must be used

for the attainment of a minimal number of intersections. Layouts

generated may include more than one source node (a node at which

no arrows terminate), and/or more than one sink node (a node from

which no arrows originate).

Network type layouts are common to many applications and

and often used to depict logical order or flow, such as in logic

175

diagrams or PERT flowcharts. Some examples are shown in fig-

ure 3-8. In some cases where a network type layout is desired, but

the partial node ordering contains directed cycles, as in 3-8c, the

directions of some of the arrows are temporarily reversed to remove

the cycles as in 3-9a, and once a layout has been achieved, the

original link directions are restored, as in 3-9b. In this case, the

directional consistency of the result is decreased.

(a)

(a) (b)

Figure 3-9

176

By convention, the partial order of the nodes is usually

reflected in their placement along either the x- or y-axis. For

example, source nodes may be placed to the left, sink nodes to the

right, and all others in between, dependent on their place in the

partial order. In our discussion of algorithms for network layout,

this left to right placement will be used, but algorithms for other

orientations may easily be derived from this discussion. In sum-

mary, we require that an algorithm for network layout place the

nodes in such a manner that x-coordinate reflects the partial order-

ing. The y-coordinates (and within some limitation, the x-

coordinates) may then provide some degree of freedom, so that

nodes may be positioned to minimize the number of intersections.

Di Giulio and Tuan (12) have designed a two step algorithm

to accomplish these tasks. The first step consists of assigning the

nodes to "stages" or groups to be given the same x-coordinate,

according to the partial ordering. Stages are numbered so that the

lower the number, the smaller the x-coordinate. They are formed

as follows:

1) Form stage zero, S(0), from the union of all source

nodes.

2) Form stage n, S(n), from the union of all nodes, y, such

that for x 6 S(n- 1), there is a directed link from x to y in the under-

lying graph. If the resultant S(n) contains any node z found in a

177

previous stage, say, S(n-i), U 1, mark the occurrence of z in

S(n-i) as a "dummy node" (indicated by [zj), delete all successors

of z from stages S(n-i+l), . . . , S(n) unless these nodes are also

successors of other non-dummy nodes, and add the dummy node [z]

to each of the stages S(n- i+1), . . . , S(n- 1).

3) The process stops when a stage, S(m) is reached for

which S(m) = 0 .

Relative y-coordinate position of the nodes in each stage is

indicated by the order of the nodes within the stage, where the first

node is the highest, and so on. Links are then drawn between appro-

priate nodes in adjacent stages, with the exception that if the node

at which a link should terminate is not in the next stage, the dummy

node for that node is, and the link is terminated here (without an

arrow). If a dummy node appears in a stage, a link is drawn from

it to the similar dummy node in the next stage (without an arrow), or

to the actual node for which it is a dummy (with an arrow), which-

ever appears in the next stage. In the final layout, dummy nodes

appear only as points.

With the graph underlying figure 3-9a the following stages

are formed during the first step:

S(0) = (1)
S(l) = (2,3)
S(2) = (4, [|] , 6, |T|)
S(3) = (5,7)

178

The next step of the algorithm then consists of rearranging

the order of nodes within the stages in such a way that intersections

are minimized. First an N X N matrix, P is formed where
m

N = y I S(i) I . The rows and columns are labeled with the
i= 1

names of the nodes in each stage, in order, starting with those in

S(0), then S(l), and so on. The matrix entry P(a,b) is then zero

unless there is a link from node a to node b, in which case the

entry is one.

Once P is formed, the number of intersections which would

result from drawing the layout according to the order within each

stage may be seen in P. For, one intersection occurs in the layout

for each case in which, for x < y, i < j (where a<b implies that

row (and column) a precedes row (and column) b in P), both

P(x, j) = 1 and P(y,i) = 1, and only in these cases. This is proven

as follows:

Lemma: In the construction of the matrix, P, and the layout corre-

sponding to this matrix, for each case in P for which both

P(x, j) = 1 and P(y, i) = 1, where x < y and i < j, there is

exactly one intersection in the layout, and intersections

occur only in these cases.

Proof: We first show that for each intersection, there is a corre-

sponding case in P.

179

Let (x,j) and (y,i) be two links that cross. Since

links essentially run only between two adjacent stages, it

must be that x,y € S(n) and i,j € S(n+1) for some n.

Furthermore, since the links cross, we must have that

x < y in S(n) and i < j in S(n+1) or that x > y in

S(n) and i > j in S(n+1). Assume the former (with no

loss of generality). Then it must be that P(x,j) = l and

P(y, i) = 1 for x < y and i < j .

We now show the converse: if x < y, i < j,

P(x,j) = 1 and P(y,i) = 1 then there is an intersection.

Let it be the case that x < y, i < j, P(x,j) = 1, and

P(y,i) = 1. Now, if x € S(n) and y € S(n+k) for some

k ^ 0, then, since links only travel for one stage,

j € S(n+1) and i G S(n+k+l). If k M then by the row

ordering in the matrix, i > j; this is contrary to the

premise; hence, k = 0 and x,y € S(n) and i,j € S(n+1)

for some n. Then x will be positioned above y in S(n)

and i above j in S(n+1) yielding an intersection when

the links are drawn.

QED

Thus the removal of all such arrangements in the matrix would

180

remove all intersections. If it is possible to remove them, they may

be removed by changing the order of nodes within a stage, and thus the

order of the corresponding rows and columns in P. Once we have

obtained a new P matrix (and corresponding node order in the stages)

for which the constraint is not violated, the corresponding layout will

be intersection-free.

An example might clarify this procedure. Suppose we have

the stages:

*
In the paper describing this algorithm DiGiulo and Tuan

require that the matrix P meet two contraints if the layout is to be
intersection free:

i) The non-zero element of each row should be consecu-
tively located, and

ii) If the non-zero element of a row begins in column j,
then no non-zero element of any previous row may begin in a column
with column index less than j.

It is believed that this second constraint is in error, for this
allows situations which violate the constraint stated in the text and
proven to account for the presence or absence of intersections.

Furthermore, violation of the first constraint implies violation
of the constraint in the text. This is shown as follows: let P(x,k) = 1,
P(x, k+kj) = 0, and P(x,k+k2) = l, for some x and k and some k2> ki>0,
and let x 6 S(n) (this is a violation of the first constraint). Now, since
links travel only between adjacent stages, and by formulation of P,
k.k+ko € S(n+1), and thus k+k^ € S(n+1). But also by formulation of
the stages, every element in a stage other than stage 0 has a prede-
cessor in the previous stage. But obviously n+1 -f 0, so that there
must exist a y € S(n) for-which P(y,k+kj)= 1. Now if y < x in S(n),
then since P(x,k)=l, P(y,k+ki)=l where k < k+ki , the text con-
straint is violated. And if x > y in S(n), then since P(x,k+k2) = l,
P(y,k+k,) = 1 where k+kj < k+k2> the text constraint is again violated.

For these reasons we have replaced the two constraints in the
original algorithm of DiGiulio and Tuan, with the single constraint in
the text.

181

S(0) = (1)
S(l) = (lH ,3,4)
S(2) = (2,5)
S(3) = (6)

The initial matrix P is shown along with the layout it would generate

in figure 3-10a. Note that the constraint is violated once in the

matrix and one intersection appears in the graph. By exchanging

rows and columns 3 and 4, we obtain the matrix of figure 3- 10b,

p 1 an 2 5 6
1 i i i

m
tl

1
1

1

2

5

1

1

6

P 1 G3 4 3 2 5 6

1 1 1 1

m 1

4 1

3 1

2 1

5 1

6

(a)

(b)

Figure 3-10

182

which contains no constraint violations. The resulting intersection-

free layout generated is shown adjacent to the new matrix.

It may not always be possible to remove all intersections,

and certainly not in the case that the underlying graph is non-planar.

However, the constraint optimization portion of network layout

algorithms must attempt to meet this one constraint. DiGiulio and

Tuan give no information on how they optimize, and no exact proce-

dure will be given here. However, one observation will be made

which allows us to outline such a procedure. We note that ones will

appear only in certain submatrices of P, namely those covering

both the rows of S(n) and the columns of S(n+1) for n = 0, . . . , m- 1.

All other entries in P are gxiaranteed to be zero. Let us number

these submatrices M(l) M(m) by column stage. Now, chang-

ing the column order in M(n) affects two submatrices, M(n) and

M(n+1), since we must also change the order of rows in M(n+1).

And, changing the row order in M(n) affects two submatrices, M(n)

and M(n-l), since we must also change the column order in M(n-l).

The remainder of P is unchanged by these modifications.

With this information in mind, we may then outline a method

for proceeding through the matrix in an orderly fashion to remove

violations of the intersection constraint:

1) Set i = 1 and go to step 2.

2) Check for violation of the intersection constraint in

183

submatrix M(i). If there are no violations in M(i), go to step 4. If

there are violations, attempt to remove one or more by first chang-

ing column order in M(i). If only changing column order does not

suffice then row order in M(i) may also be changed. If no violations

can be so removed, go to step 4. If one or more violations have

been removed, then, if only column order was changed, go to step 2;

if row order was changed at all, go to step 3.

3) Set i = i- 1 and go to step 2 .

4) Set i = i+1. If i > m, exit; else, go to step 2.

This is only a suggestion for an approach to optimization. We do

not claim that any decrease in the number of intersections will

result. At this point we are unable even to guarantee that the pro-

cedure will terminate. The problem requires further examination.

A few additional difficulties are found with the procedure

suggested by Di Giulio and Tuan which will be noted here. First,

consider the situation for the underlying graph of figure 3- 11a. If

we follow the procedure given, we will be unable to remove the

intersection shown in the layout of 3-lib. The procedure, as stated,

requires that only one occurrence of a dummy node per real node

exist in a given stage. Thus, effectively, links with common ter-

mination points are joined in the earliest stage possible. This

treatment, as shown in 3-lib may generate unnecessary intersec-

tions. However, if we change the procedure to allow a number of

184

(a) (b)

Figure 3-11

(c)

dummy nodes to be generated per stage, one for each predecessor,

such unnecessary intersections may be avoided. For example, we

might change step 2 of the stage generation process to read:

2) Form stage n, S(n), from the union of all nodes y such

that for x € S(n- 1), there is a directed link from x to y. If the

resultant S(n) contains any node z found in a previous stage, say

S(n-i), i^l, create q dummy nodes z, , . . . , | zn in S(n-i),

one for each predecessor of z in S(n-i-l), and remove z from

S(n-i). Delete all successors of z from stage S(n-i+1),..., S(n),

unless these nodes are also successors of other non-dummy nodes.

Add the q dummy nodes, z-. , . . . ,

S(n-i+l) S(n-l).

, to each of the stages

185

These q dummy nodes are to be handled in the P matrix in the same

manner as any other nodes. However, when links are drawn, only

dummy nodes with matching subscripts are attached. The q prede-

cessors of the dummy nodes are attached only to dummy nodes with

matching subscripts. When the real node represented by the q

dummy nodes appears, all q dummy nodes are attached to it. Thus

the stages for the example in figure 3- Ha would be:

S(0) = (1)
S(l) = (2,3)
S(2) = ([5oL4, 5o)
S(3) = (5T^

The resultant layout is shown in figure 3-lie.

A similar difficulty is found with the procedure of DiGiulio

and Tuan due to the requirement that non-dummy nodes be placed in

the earliest stage possible. Consider the underlying graph of figure

3-12a, for example. According to the procedure of DiGiulio and Tuan,

the layout of 3-12b would result, with one intersection. Again, the

underlying graph is planar, and the intersection unncessary. The

procedural modification required here is more complex than that for

the previous problem. What is necessary is a detection of situations

such as that in stage 2, .and a separation of such a stage into two

stages, along with the creation of an appropriate number of dummy

nodes. The results of such a modification on 3-12b are shown in

figure 3- 12c. The main problems here are the detection of the

186

or

(a) (b)

Figure 3- 12

(c)

situation and the decision as to the manner in which the nodes of a

stage should be broken up. For example, with the figure of 3-13a,

no such solution is possible, whereas with 3-13b and c, a solution

is possible, although it is difficult to make rules for obtaining these

solutions.

Returning to our discussion of network layouts, we have seen

that constructive algorithms required for their formation combine

both structural rigidity and constraint optimization. In the last few

paragraphs the interrelation between these two algorithmic charac-

teristics has become apparent. For, it was shown that the more we

allow the algorithm to optimize for minimal intersections, the less

rigidly the resultant structure (and stage contents) could be pre-

dicted.

187

(a)

(c)

Figure 3- 13

3.2.2.4 General Layouts

The main characteristic of the layouts classified under the

general type is that very little, if any, particular structure is pre-

dictable. It is often the case that for these applications, the appar-

ent underlying graphs used may be too complex for layout structure

to be predetermined. We include here layouts with apparent under-

lying graphs which have all ranges of complexities and character-

istics. The exceptions are those layouts which use ADP's or EP's.

188

The reason for this exception will become clear in the discussion of

the next layout type. Algorithms for general layouts, then, must

consist mainly of constraint optimization, as determined by the

particular application. Subtypes may be differentiated by the par-

ticular constraints or qualities optimized, and the particular prior-

ities the various qualities are given.

Among the layouts categorized under the general layout typ-

ing we find, for example, layouts used in graph theoretic illustra-

tions, chemical structure diagrams, state diagrams, and layouts

used as diagrams in countless other applications in which underlying

graph structure is too complex for structural rigidity. We will con-

sider a few of the layouts found in this typing, along with their con-

straints and priorities.

Layouts used to illustrate the chemical structure of a mole-

cule, by convention, preserve certain familiar figures where

possible, such as hexagons and pentagons. Nodes usually represent

atoms and links represent bonds. In order that links be somewhat

representative of the physical make-up of the molecule being

depicted, link length consistency should be aimed at, along with a

minimum number of bends. Another characteristic, not considered

in section 1.1, and not common to many layout applications, the

characteristic of three-dimensionality, is relevant in chemical lay-

outs. What is meant here is that, where possible, the layout should

189

be drawn so that a three-dimensional interpretation may be given to

the layout. Three-dimensionality is, in general, very difficult to

realize, unless, of course, the three-dimensional coordinates of

the nodes are known, in which case, the layout may be generated as

two-dimensional projection of the three-dimensional object. This

quality, however, is not the type of layout criterion considered in

this work, and will not be treated here.

Layouts used as graph theoretic illustrations may be formed

in many ways. Often the requirements of the layout are dependent

on the particular idea to be illustrated. However, in general, the

idea of greatest concern is that the graph theoretic structure be

easily seen in the resultant layout. This suggests that the quality

of fidelity, as described in section 2. 1.1, might have first priority.

Next in priority might be those qualities which add to directionality

in layout such as minimum number of intersections, minimum num-

ber of bends, and minimum total link length. In fact, most of the

qualities discussed in section 2. 1 are appropriate for application

here, and the decision about priorities may become quite arbitrary.

With state diagrams, we find that the qualities and priorities

are similar to those of graph theoretic illustrations, although the

most important qualities are probably a minimum number of inter-

sections and a minimum number of bends. For, with state diagrams,

the greatest concern is that links be easy to follow (and to label).

190

Again, most of the other qualities considered in section 2. 1 are

applicable to state diagrams. Examples of layouts from these three

applications are shown in figure 3-14.

chemical
structure

graph theoretic
illustration

Figure 3- 14

state
diagram

Thus we see that different applications are distinguished by

different sets of qualities and priorities. A small amount of struc-

tural rigidity may be present. In the case of chemical structures,

the requirement that, above all, certain familiar figures be rea-

lized, may be interpreted as a somewhat structurally rigid require-

ment. A chemical layout algorithm might begin by forming such

figures, and throughout the constraint optimization phase of the

algorithm, these familiar figures may be treated as inseparable

units. However, with cases such as graph theoretic illustrations

and state diagrams, the algorithms will be totally dependent on

constraint optimization!

With this in mind, we must consider whether a sufficient

number of the advantages of application dependency still remain with

most layouts of the general type to merit the development of new

191

constructive algorithms for layout, in place of using sequences of

modifying algorithms as in section 2.2.2. Although some structural

rigidity may be present with general layouts, it is not enough, in

general, to avoid the need for some arbitrary placement in layout.

Furthermore, certainly, in many applications using the general lay-

out type, algorithms which modify existing layout, rather than arbi-

trarily creating new layout, would be preferred. For these reasons,

it is felt that perhaps, a better approach to layout for the general

type is the modifying approach and that the constructive approach is

improper for these layouts. We need not, however, lose the advan-

tage of applying a single algorithm for layout rather than a sequence

of modifying algorithms. For, since we know the quality priorities,

we may combine the sequence into one algorithm. The modifying

algorithms will be combined so that, in order that the changes they

make will be overridden the least, those algorithms for qualities with

higher priority will be performed later than those for qualities with

lower priority.

An example might make the above discussion clearer. Sup-

pose we are given the graph underlying figure 3-15a, along with its

present layout. This figure represents a state diagram for a machine

which accepts the strings a b and b a for n odd. We wish to mini-

mize the number of bends and the number of intersections, above all

else, perhaps, giving priority to the number of intersections . Instead

192

(b)

(c)

Figure 3-15

(d)

of using a constructive algorithm which ignores the initial layout,

and which might give us the layout in figure 3- 15b, we use an algor-

ithm which is a combination of modifying algorithms of section 2.2. Z,

first one for bend removal, and then for intersection removal. This

algorithm would first give us the layout of 3-15c, and finally that of

3- 15d. This final figure depicts the structure of the state diagram in

a layout which is more in accordance with the original layout than

that of 3-15b.

In the cases where some structural rigidity is to be

193

maintained, as with chemical structures, two approaches are pos-

sible within this modifying framework. On one hand, a layout algor-

ithm may consist first of a series of modifying algorithms applied

in the order suggested above, followed, second, by a procedure

which insures that the requirements of structural rigidity are met.

Or, on the other hand, a layout algorithm may first introduce the

structural rigidity, and follow this by an appropriately ordered

sequence of modifying algorithms similar to those in section 2.2.2,

but which have been modified so that in any manipulation performed,

they retain the particular structural rigidity introduced in the first

part of the layout process. It seems that since we are building

algorithms for particular applications, perhaps, the second approach

would give the best result. For, in a sense, all of the optimization

is tailored to the particular application with this approach.

One problem remains, however, with the use of modifying

algorithms in combination in a non-interactive environment. Sup-

pose the original layout were drawn as in figure 3-16a. Then no

intersection would need to be removed, although the number of bends

is large. A single layout algorithm made from a combination of

modifying algorithms might then yield the result in 3-16b, rather

than that in 3- 15d, since the bend removal algorithm must not cause

any intersections to be created. But if we were to allow the user to

interact with the layout procedure, rather than applying a

194

(a) (b)

Figure 3- 16

non-interruptible process, we could obtain the result of 3- 15d, which

seems to be a better layout in terms of clarity, and which is closer

to the layout originally drawn. Thus a single non-interruptible

algorithm for layout might not produce the best result, and, with

algorithms containing so little structural rigidity, perhaps, some

amount of user interaction is desirable.

Thus we might even question whether a single algorithm

approach is suitable for most applications using general layouts.

Or, in fact whether, due to the non-predictable structure of their

underlying graphs, the interactive type of environment used in

chapter 2 is best. Even when some structural rigidity exists, as in

the familiar figure requirement of chemical layouts, placing speci-

ally designed modification algorithms which retain initially intro-

duced rigidity in an interactive environment, might prove to yield

195

better results than those provided by a single non-interactive

process.

3.2.2.5 Ordered-Arc Layouts

The ordered-arc type includes layouts which are found in

applications where there may be little structural rigidity, due to the

complexity of the apparent underlying graphs, as with the general

type. But these layouts also contain specific fixed points on their

nodes at which links may terminate or begin (EP's or ADP's).

Hence, there is some restriction of the order in which links may

be arranged around a node. The reason for the differentiation of

layouts of this type from those found in the general type is that, due

to this extra restriction on links, additional difficulty is found in

developing optimization procedures for some qualities. Any move-

ment during an optimization process, which changes the order of

links around a node must be examined to avoid violation of these

order restrictions.

The best example in which the effectiveness of an optimiza-

tion procedure is inhibited by this restriction is found with the modi-

fying algorithm of section 2.2.2.7 for minimizing the number of

intersections in a layout. The algorithm proceeds by moving nodes

from one region to another. Often, when a node is moved in this

way, the link order around some node is changed. In fact, Anger (2)

196

states that the number of intersections for each representation of a

graph with a distinct link order around the nodes is completely deter-

mined by this order. Thus, if link order is restricted, the minimal

number of intersections for the underlying graph may not be attain-

able in the layout.

For example, consider the layout of figure 3-17a. If we

restrict link order to that which appears, we cannot obtain an inter-

section free layout; whereas, if we allow order to change around

nodes b and d, we may obtain the intersection free layout in 3- 17b.

We see then that the intersection elimination algorithm which

has been designed for layouts in which link orders may be changed,

may not be effective with ordered-arc layouts. Other algorithms for

these layouts must be designed. Similar problems are seen with

many of the algorithms discussed in section 2. 2. 2. For example,

those algorithms given for the realization of repetition, familiar

figures, link length consistency, fidelity, bend removal, and

(b)

Figure 3-17

197

minimum link length may also change the order of links around a

node.

Thus, although ordered-arc layouts are similar to general

layouts, algorithms cannot, in general be built on the modifying

algorithms of section 2.2.2. Instead we will see that specially

designed optimization procedures must be used for these layouts.

These include both modifying and constructive or semi-constructive

algorithms. The fact that constructive algorithms have been built

for the layout of some ordered-arc layouts, whereas we find this

most difficult with general layouts needs some explanation. With

ordered-arc layouts, the restricted link ordering may impose

structure on a layout which has an effect similar to structural rigid-

ity, although, here, the basis for the structure is inherent in the

original layout given rather than imposed on the layout by the algor-

ithm, as with structural rigidity found above. For, the link order

itself may limit the number of ways the layout may be formed. Thus

there is not as much room for arbitrary positioning as there is with

layouts of the general type.

The problem of designing either modifying or constructive

algorithms for ordered-arc layouts is very difficult. What has been

done in many cases is that the layout problem has been broken into

subparts. For example, first the node positions might be decided,

and then the links might be routed. Only a few algorithms developed

198

to date treat the nodes and links of ordered-arc layouts simultane-

ously.

Among the applications in which ordered-arc layouts are

found we will consider two in particular, AMBIT/G and circuit lay-

out. With AMBIT/G layouts, only the points of link origin are fixed;

links may terminate anywhere on a node. Whereas, with circuit lay-

outs, where the nodes represent circuit elements with fixed input

and output pins, both link origin and termination points are fixed.

Example of these layouts may be seen in figure 3-18.

AMBIT/G Graph Circuit Layout

Figure 3-18

Little work has been done on automatic layout generation for

AMBIT/G. The most important quality for layouts of graphs output

in this particular application is that the layout of an output graph

resemble, as closely as possible, the layout of the input graph from

which it was derived. Here, again, we have a layout criterion which

is common to few applications and has not been considered in section

2. 1. After this first criterion has been met, most of the criterion

199

found in section 2. 1 are applicable. As mentioned above, however,

the algorithms for realizing these qualities must be changed in order

to account for the presence of ADP's. An additional restriction also

occurs in AMBIT/G, in that nodes may not change their orientation;

for example, they may not be turned upside down. Criteria may

take new forms as a result of such restrictions. For example,

examine the criterion used in the original AMBIT/G output program.

This criterion causes a node at which a link terminates to be placed

in the direction of the link relative to the node at which the link

begins. Such a criterion tends to minimize the number of bends,

and, in general, to add to directionality. Yet such a criterion is not

possible with general layouts, since neither are the points at which

links leave a node fixed, nor, in general, are the node orientations.

Thus an algorithm for AMBIT/G layout must first base the

layout on that of the original input graph, and then fill in the remain-

der using a procedure which optimizes the qualities of section 2.1,

but which is specifically designed to deal with the additional restric-

tions of ADP's and node orientation. The amount of arbitrary place-

ment resulting will depend on the similarity of the output graph to

the input graph, and upon the amount of restriction in link order

provided by the ADP's in the particular output graph. In a sense,

*
See chapter 1

200

we may consider such an algorithm as semi-modifying due to the

fact that it is based on another layout.

With circuit layouts, both link origins and termination points

are fixed, although node orientations, in general, are not. Circuit

layouts are used to represent the manner in which circuit elements

are to be placed and wired in manufactured circuits. Two design

and economic considerations determine the most important criteria

for circuit layouts. These are that the number of intersections be

minimal and that the total wire (link) length be minimal. The

reason for the first criterion is that circuits are often printed; for

each intersection, a special bridge must be built to insulate one

wire from another, and each such bridge adds to the manufacturing

cost for the circuit. The second criterion is relevant for two rea-

sons. First, the more wiring necessary, the higher the cost for

the circuit, and second, the greater the length of a wire, the longer

it takes for a signal to go through it. Such delay is undesirable in

circuits. Few other criteria of sections 2. 1 are relevant to circuit

layouts, since such layouts are not, in general, intended for human

consumption.

The problem of automatic circuit layout, given these two

criteria, has been studied for many years, and has been of increas-

ing interest in the field of computer development. The problem has

been called the "backboard wiring problem" in the past. Many

201

methods for layout have been suggested, and will be summarized

here. We will see that the development of an effective constructive

algorithm which treats the complete problem is very difficult,

although several attempts have been made. Instead the problem is

usually broken up into a node placement stage, "the placement prob-

lem, " and a wire routing stage, "the connection problem, " and

each is treated separately. Each of these two problems assumes

the other to be solved, or, to be solvable, and ignores it. It has

been suggested by Breuer (9) that this divided treatment of the prob-

lem is not as effective as a total solution might be.

Several authors have considered variations of the problem

which are relevant to circuit layouts, but which go beyond the scope

of our study. Among these variations are the concept of orthogonal

wiring, wiring on two sides of a board to which elements are

attached, one side with horizontal wires, and one with vertical.

Also considered is multi-layer wiring, or placement and wiring on

several layers or boards. Since our goal is to study the layout

problem on a two-dimensional surface, we will not concern our-

selves with these variations.

Let us begin by examining some of the approaches developed

for the placement problem. Most approaches solve the problem on

a grid. The general placement problem may be stated as follows:

Given a set of elements E= { e , e e] and an mxn grid, P,

202

where mxn a k, with positions P.. , i = 1, . . . , m, j = 1, . . . , n, find

a placement of E on P such that a function F dependent on the

placement, is minimized. A more restricted form of the problem

has been considered by Miehle (27), in which some of the elements

are in fixed positions.

The function, F, to be minimized is usually a measure of the

optimization of a particular placement for wiring purposes. Thus,

for example, F may be a measure of the total resulting wire length

or the number of intersections in the wiring of the system or both.

The connection information for the system, which is needed for the

calculation of F, is usually recorded in a kxk connection matrix,

C, where the entry C.. is the number of wires connecting e. and e..
ij i 3

A common approach to the problem is the modifying approach

in the form of a one or two step algorithm, in which, starting with an

initial placement, each pass through the algorithm improves the

function F by a change in the placement. The algorithm is con-

sidered completed when no improvement can be made by another

pass; in other words, a local minimum has been reached. The mini-

mum reached is, in general dependent on the initial placement, as

with most modifying algorithms.

As mentioned in section 2.2.2.8, Steinberg (33), whose only

aim is to minimize wire length, formulates a solution as a one- step

algorithm. His algorithm has been used as the basis for many

203

others. In preparation for the application of the algorithm, a family

of unconnected sets (U,, . . . , U } is formed from E, such that
1 P

every e. 6 E is contained in at least one unconnected set, and if e.
' 1 l

and e. are in the same unconnected set, then C.. = C. = 0. An
J ij Ji

initial placement is then specified. A step of the algorithm proceeds

by considering one of the unconnected sets, U , and the set of posi-
9

tions A which are either unoccupied, or occupied by e. € U . It is
S X s

then necessary to find that placement of U into A , leaving all
s s

other elements fixed, which minimizes the function F. Steinberg

defines F as the sum of a function, g. :

k

£«!' h • .2 «C«j ' V).

where d , , ... is a function of distance depending on the place-
P(i), p(j)

ments of e. and e., p(i) and p(j), respectively, and where

f(C. d ) = 0 if C.. = 0. We have then that:
ij> P(0, p(j) xj

F = £ f+2 f+2 f+S f
i?us i€Us Uus i6Us
j?us jeus

V F2 F3

Now F. remains fixed for all placement of U in A since none of
1 s s

these elements are moved. F_ is zero since C =0 for all
3 ij

e. , e. 6 U . And finally, it remains to find that placement of U l j s 7 r s

204

into A which minimizes F„. But this problem may be formulated
s 2

as the classical assignment problem as defined by Flood (15): given

N men and M jobs, N < M, and for each man-job combination, a

rating a.., i € N, j € M, find the assignment of men to jobs that

minimizes / a.. . In our problem, U replaces N, A replaces
^—i IJ s s

M, and a., is the function g. = / f(c.. , d. ,, .) where
U 1 k^u ik j.p(k)

S
p(i) = j. Steinberg refers to the work of Munkres (30) and Kuhn (23)

for solutions to the assignment problem. The algorithms discussed

in these papers consider the matrix A = ||a..|| , and look for a set

of N independent entries (one in each row and no two in the same

column of A), such that the sum of this set is a minimum. Given the

solution to the assignment problem, Steinberg's algorithm proceeds

by placing the elements of U in the optimal positions determined,
s

and concludes the step by calculating the value of F resulting from

this new placement. The algorithm proceeds cyclically through U

until, for p successive steps, no improvement is made in F.

In his work, Rutman (32) makes several improvements and

additions to Steinberg's basic algorithm, which make it more suit-

able for computer use and which better the results. He gives a

procedure for forming a family of unconnected sets, and a method

for solving the assignment problem efficiently on a computer using

Munkres' algorithm.

Rutman also mentions that often an interchange of connected

205

elements helps to improve the solution. In Steinberg's algorithm,

no means for such interchange is provided, as connected elements

are never processed in the same step. Thus Rutman suggests that

interchanges be made at certain intervals between algorithmic steps.

Finally, he states that in Steinberg's algorithm groups of tightly

connected elements are reluctant to move; as a result, long single

wire connections tend not to be minimized in some cases. To

remedy this, he suggests that the algorithm proceed in two phases.

In the first phase, by changing the definition of the function g. ,

longer wires tend to be minimized. In the second phase, all wires

are minimized by another function, g. . The results Rutman obtains

using these modifications tend to be better than those from the

unmodified algorithm.

Steinberg's algorithm as formulated has not considered the

problems specific to ordered-arc layouts, even though he is dealing

with this layout type. However, this is to be expected, since neither

does he concern himself with the number of intersections the result-

ant layout will contain. He may thus ignore link order since chang-

ing the link order, while keeping link terminals fixed, essentially

affects only the number of intersections in a layout.

In another general approach to the placement problem, a

constructive approach, the elements are placed one at a time on the

board. The position and time at which an element, say a, is placed,

206

is based upon the positions of elements already placed, and the rela-

tion of element a to these elements. ,

Gamblin, Jacobs and Tunis (16) use this method to place those

elements with "maximum conjunction" and "minimum disjunction" of

pins in closest proximity. They choose from those elements not yet

placed, one which ranks highest in this respect to the elements

already placed, and a position is then given to this element. With

this positioning the authors conclude that smaller wire lengths and

fewer intersections will result when the system is wired.

Case, et al. (11) also incorporate this element-by-element

approach into their placement system. For each element in turn,

where order here is arbitrary, that position is chosen which mini-

mizes a distance measure with respect to the elements already

placed. The measure used is the sum of the rectangular distances

from this element to all others to which it is connected and which are

already on the board. However, at the conclusion of this initial

phase, the placement measure is improved by a series of element

interchanges between every pair on the board. If the placement

measure is improved by a given interchange, the new positions are

kept. The process continues until no gain is obtained by such inter-

changes. This process does not concern itself directly with minimal

intersection, however.

As an interesting sidelight, we mention the solution formulated

207

by Miehle, as a system of equations, the solutions of which are found

by known numerical techniques. Miehle has used this approach to

find a placement for a subset of E, where the remaining elements of

E have fixed positions, such that wire length is minimized. The set

of equations which he formulates is a mathematical description of a

physical model he built. With pins as elements, where some are

fixed and others freely movable, the connections are modeled by the

winding of a string throughout the system. When the string is pulled,

the movable pins assume those positions which minimize total string

length.

In summary, there have been two main approaches to place-

ment, the modifying approach used by Steinberg, and the constructive

approach used by Gamblin, et al. In the former, no consideration is

given to the minimal number of intersections, whereas in the latter,

both minimal intersections and minimal length are kept in mind.

We now consider approaches to the second part of the back-

board wiring problem, the connection problem. The connection prob-

lem may be stated most generally as follows: given a list of connec-

tions to be made between fixed points on a two-dimensional surface,

specify the routes of these connections so as to minimize a function F,

dependent on this routing. As mentioned in section 2.2.2.7, algor-

ithms which solve such a problem are considered to be semi-

constructive, since part of the layout is fixed (the nodes), and part is

208

to be constructed (the links).

The problem then, for circuits is to find routes for wires

which minimize the total length and the number of intersections.

This problem has been examined by Lee (24). Lee's algorithm pro-

vides a general method for finding a path from one point to another on

a grid, while minimizing any number of monotonic functions simul-

taneously. A function, f, is monotonic with respect to Lee's algor-

i i i k
ithm if for every path p(c , c) we have the inequality f(p(c , c)) ^

f(p(c , c)) where p(c , c) is any subpath of p(c , c). For the back-

board wiring problem, the functions considered are, of course, total

length and number of intersections, although Lee gives examples of

other functions, such as minimal proximity to certain objects.

Generally speaking, the algorithm proceeds step-by-step on a

grid, building outward from the starting cell of a path, until the final

cell is reached. If the final cell is not reached after a certain point,

no path exists . With each step those cells adjacent to already

recorded cells, which are not barriers to a path and which maintain

a minimum value for the series of functions being considered, are

recorded, so that when the final cell is reached, the minimal path

may be traced back to the starting point.

More specifically, let steps from a given cell be allowed in

four directions: up(T), down (I), left(*~), and right (-*). Let the

set L be the set of those cells from which we may still explore paths,

299

and to which paths are still minimal. If we are to find a path from

A to B, originally L, contains only A. Let us also assign to each

cell in L a cell mass, or set of minimal values for the series of

functions under consideration; this appears in the form of a vector

of values. The cell mass for A is a vector of zeroes. The algor-

ithm is then:

1) Form L , a set of all cells adjacent to those cells in L

which are not barriers. For each of these cells find the minimum

function value sums possible, and the direction of the cell in L

from which a step was taken in order to obtain the minimal sum for

this cell. Go to step 2.

2) Choose that set of cells from L with the minimum func-

tion value sum; add this set to L, and assign those function values

as cell mass for these cells; delete L , and go to step 3.

3) Adjust L by removing those cells in L, all of whose

adjacent cells, if not barriers, have had their cell mass determined.

When B appears in L, the minimum path may be obtained by trac-

ing back from B according to the directions recorded. If L is

exhausted before B appears, no path exists.

A small example should clarify the algorithm. Consider the

board shown in figure 3-19 where cell 11 is a barrier cell.

210

1 2
A

3 4

5 6 7
X

8

9 10
X

11
F

12

13 14 15
B

16

Figure 3- 19

Let us consider optimizing two functions, f and g where:

f(p(c\ c1)) = 0

and for all c ^ F:

f(p(c\ c3)) •I
i k i I

f(p(c , c)) + 1 iff c is T , i , -, or -» of c

undefined, otherwise

g(p(c1. c1)) = 0

for all cJ ± F and cJ = X:

= { -1 Ji

i k i k g(p(c , c)) + 2 iff cJ is t, I, «-, or - of c

undefined, otherwise

and for all cJ ± F and cJ $ X:

211

g(p(c\ cJ))
g(p(c , c)) iff c is f, I, *-, or -• of c

undefined, otherwise

Then, originally, the cell mass of A or cell 2 is (0,0) and the set

L. = { 2} . Proceeding to step 1 we find L to be:

W
sum

1 (1,0) -* 1
3 (1,0) - 1
6 (1,0) t 1

since, for example f(p(2, 1)) = 1, g(p(2, 1)) = 0. In step 2 we find

the minimum function value sum to be 1, and thus we choose the set

{1,3,6} to add to L. We now assign those function values to 1, 3,

and 6 as cell masses which are shown in figure 3-20, and we can

1

(i.of

2
A

(0,0)

3

(1,0)"

4

5 6

(i.o/

7
X

8

9 10
X

11
F

12

13 14 15
B

16

Figure 3-20

delete 2 from L, leaving L = {1,3,6} in step 3. Proceeding through

212

steps 1, 2, and 3 again, we have:

sum
L : 5 (2,0) t 2

10 (2,2) T 4
7 (2,2) t 4
4 (2,0) - 2

The minimum sum is 2 and thus the set {5,4} is added to L, and

each of these cells is assigned a cell mass. Cells 7 and 10 are left

unassigned. L finally becomes L = {3,6,5,4}. Continuing for

four more passes through the algorithm we have the steps shown in

figure 3-21.

*i
sum min. sum ce 11s assigned resultant L

9 (3,0) 1 f 3
10 (2,2) 1 4
7 (2,2) 1 f 4
8 (3,0) 1 3 3 9,8 {3,6,9,8}

7 (2,2) 1 \ 4
10 (2,2) 1 4
13 (4,0) 1 4
12 (4,0) 1 r 4 4 7,10,13, 12 {10,13,12}

14 (3,2) f 5
16 (5,0) 1 f 5 5 14,16 {14,16}

15 (4,2) • 6 6

Figure 3-21

15 {15}

We have then reached B with the cell masses shown in figure 3-22.

We may trace the minimum path back to A, to obtain the resultant

path 15-14-10-6-2. Note that several arbitrary decisions were made

in assigning cell masses and directions, and thus, that this is not a

213

1 2
A

3 4

(i.of (0,0) (l.of (2,0f

5 6 7
X

8

(2,0)! (1,0)! (2,2)T (3,0)T

9 10 11 12
X F

(3,0)T
(2,2)* (4,0)T

13 14 15
B

16

(4,0)t (3,2)T (4,2)" (5,0)T

Figure 3-22

unique minimal path.

Lee's algorithm has been incorporated into many backboard

wiring systems. Case, et al, for example use their own heuristic

for wiring a board, but follow its application by the application of

Lee's algorithm to complete paths which their own heuristic is

unable to complete.

In applying Lee's algorithm, however, the question of order

of routing arises. Breuer (9) says that when longer wires are routed

first, more channels are blocked, making it difficult to route short

wires, whereas, since longer wires are more difficult to route, per-

haps they should be placed first. Thus, one may either minimize

the number of wires left unrouted or minimize the total wire length

of unrouted wire.

214

Vincent-Carrefaur (37) has tried to do away with ordering in

the process of routing connections by forming all paths simultane-

ously. However he finds this "dynamic" method too inefficient for

large system. In exploring several algorithms for simultaneous

routing he finds the "obstacle method" to give the best results. With

this method, initially all connections are made along the best paths

possible. Each path is then examined and adjusted with respect to

the others, until no gain is made by the adjustment. If a required

minimum is not met, then the least optimal path is removed and

replaced with a path which was previously eliminated but is more

optimal. Although good results were obtained with this method,

large systems are not handled easily.

Thus we find that Lee's algorithm contains the basic approach

underlying many solutions to the connection problem, by routing

wires using a search for the best path with respect to a given set of

functions on the paths. Both criteria for circuit layout may be opti-

mized in the result.

Let us now examine the approaches in which the two problems

are handled together. Breuer (8), who maintains that this approach

is the best, since the tWo problems are closely interrelated, has

formulated the two problems together as an integer linear program.

He forms a set of inequalities which require that the elements be

placed on a rectangular grid with no two elements occupying the

215

same position. In his formulation, Breuer allows that links are not

completely determined, but that certain groups of pins which are to

be connected are specified. He then asks that for each such group

the tree with the shortest length, which connects members of the

group be used, and that the sum of all of these shortest lengths be a

minimum. He also allows other restrictions to be specified, for

example, that certain elements be directly connected, that two

elements be separated by a certain distance, or that no connection

be longer than a certain length.

Kalish (20), in his MAPID system, which is unusual in that

he considers ease of reading as one criterion, also handles the two

problems together. His system consists of two processes, a

"topological" process and a "geometric" process. The topological

process is subdivided into two phases. In the first phase, the

"horizontal" phase, the elements are placed in separate columns in

order of dependence, with each element placed to the right of all its

input elements. Single-input-single-output elements are not con-

sidered. The vertical positions for elements are assigned in a

snake-like pattern with each element in a different row as well as

column.

In the second phase, or "vertical" phase, the elements are

adjusted vertically in their columns and connections are rerouted to

minimize intersection. All connections are restricted to a simple

216

L-shape. Initially a list of intersections is made. The list is then

processed cyclicly. A step consists of processing the intersection

at the top of the list. In an attempt to remove the intersection, the

four nodes which it involves are moved vertically in their columns

above and below all connections in the columns. The position with

the total net gain in number of intersections removed is chosen. If

there is no gain, the intersection is placed at the bottom of the list.

Any new intersections are recorded. When the list has been proc-

essed completely at least once with no net gain, the process ends

and the geometric process begins.

The geometric process is intended to increase clarity. It

begins by the inclusion of those single-input-single-output elements

discarded in the previous process. These are placed in separate

columns but in the same row as the horizontal part of the connec-

tions on which they lie. There are then two phases of the geometric

process: a "vertical" phase and a "horizontal" phase. In the verti-

cal phase the elements are moved up or down in their columns to

obtain a minimum number of rows and a minimum number of bends

in the connections. In the horizontal phase, to reduce unnecessary

space, all elements are moved to the left as far as possible, and

then those elements with more output than input are moved to the

right to reduce the number of long wires. We notice that his

approach is similar to that used for network type layouts.

217

Another approach to the simultaneous solution of these two

problems is found in the work of Mamelak (26) who is concerned with

the layout of logic diagrams. He tries to identify "chains" or sets

of interconnected elements, two of which are connected to all of the

remaining elements of the set. Mamelak claims that these chains

are characteristic of circuits. Each chain found is assigned to a

row or column of the board. In this way intersections are minimized.

Placement of chains relative to one another is determined by total

wire length, and other electrical criteria. He claims that the results

obtained using this method were comparable to the work of experi-

enced designers.

We notice that with Kalish's approach to the problem, a

means for structuring the layout has been chosen which is not part

of the convention of circuit layout. In fact, the structuring chosen

reduces the problem to one similar to that for network type layouts.

This cannot be considered a general solution for layouts of the

ordered-arc type since such a structuring may not always be pos-

sible. In Mamelak's solution another structuring is chosen, but it is

one which is based on what the author believes to be a

characteristic of graphs'underlying this type, and hence, seems a

more natural solution. Breuer's approach, however, simply states

the requirements and searches for a solution without any prestruc-

turing. Since no structure is assumed, it seems that solutions found

218

using his system would be the most effective. The problem with his

approach, and, in fact, with many of the approaches mentioned, is

that large circuits are difficult to handle.

In summary, many solutions to layout for the ordered-arc

type have been developed. No single algorithmic form stands out as

being most effective, although many have been tried. All involve

a great deal of optimization and little prestructuring, and must, in

general, be tailored to the particular peculiarities of the application.

For this reason we consider ordered-arc type the most complex.

3.2.2.6 Summary of Layout Types

We have classified several layout types common to many

applications, and considered algorithms for their layout. Layout

types were ordered, and a gradation was found in algorithm charac-

teristics and complexity corresponding to this ordering. The simp-

lest type, linear layouts, may be formed using a totally structurally

rigid algorithm which is constructive in nature.

In the next type, tree layouts, a gradation in algorithm char-

acteristics appears according to subtype, although constructive

algorithms were found for all subtypes. With all leveled subtypes

and with the unleveled subtypes with bends, again a totally rigid

structure is predictable. However, with the unleveled, son-

centered, subtype without bends, the predictable structure is not as

219

rigid, and with the unleveled, level-centered subtype without bends,

again, the structure is not as rigid and optimization is required for

the first time in the classification.

In the next type, network layouts, again constructive algor-

ithms are feasible. A good amount of structural rigidity is still

present, but optimization is also required to a great degree.

With general layouts we find that little may be predicted

about layout and most of the layout depends upon optimization. Due

to the complexity and unpredictability of their underlying graphs it

was felt that constructive algorithms are not appropriate for layouts

of the general type but that the realization methods discussed in

section 2.2.2 should be used as the basis for these layout algorithms.

It was found that, perhaps, the best environment for layout of the

general type is an interactive one.

Finally, ordered-arc layouts were discussed. These layouts

whose underlying graphs are essentially as complex as those for

general layouts, have the additional difficulty of the restriction of

link order. It was found that algorithms are as complex as for

general layouts, but that they cannot be built on those methods devel-

oped in section 2.2.2 in "most cases. In order to form layouts of the

ordered-arc type, special optimization algorithms must be developed

which account for the special restrictions of this type. Realization

of qualities for these layouts is, in general, more difficult than with

220

layouts of the general type, and algorithms tend to be more special-

ized, difficult to perform on large layouts, and often promise less

than optimal solutions.

Hence, we see that knowledge of particular application

characteristics may or may not be helpful in layout. With the simple

layout types, constructive algorithms are easy to develop and to

apply, and the results may often be guaranteed to some extent. With

increasing complexity in type, difficulty in developing algorithms

approaches and even goes beyond that found with the general case

discussed in chapter 2. But, given this framework for layout type

classification, we may see where in this range a new layout type

falls. Thus, this classification may be useful in developing the

simplest layout algorithms possible for a new layout type, and in

understanding what factors contribute to the complexities encountered

in its layout.

3.3 A DESIGN FOR THE EXTENSION OF MOD

In this section we will briefly consider changes and extensions

to the MOD system, which allow us to take advantage of the type

dependent information discussed above. Here, we are concerned

mainly with modification of the MOD Output system, since provision

has already been made in the Input and Framemaker systems for

graph layouts of many types. Our aim is then to somehow allow the

221

user to input, along with his graph layout, information concerning

layout type, and to have the system provide him with a type depend-

ent menu of algorithms (either modifying, constructive, or both)

which he may use to obtain a new layout.

Such a design is easy to envision as an extension of the

present system. For, as the system now is designed, it contains a

small library of modifying algorithms which may be easily extended.

Rather than having a single library, we might give the user a choice

of several libraries, containing both modifying and constructive

algorithms. The choice could depend on layout type as specified by

the user. The contents of a library would be a set of algorithms

tailored to a particular layout type. The user will have a choice of

algorithms, as he does now.

Let us consider what a sample session might be like with an

extended MOD Output system. Initially, the user might find the

frame shown in figure 3-2 3 on the scope. He may then input, output,

or manipulate the current graph layout as in the old MOD Output, or,

he may choose one of the layout types listed in the column on the

right.

When a choice is made, the menu in the right-hand column

would change to a list of commands for the execution of the algorithms

in the library for this particular type. This list would also include

a label, "new type. " Pointing to this label returns the user to the

222

MOD OUTPUT +x -x input net
+y -y output edit
+z draw pin

linear
tree
network
general
ord-arc

new alg

Figure 3-23

223

type selection found in figure 3-23, while retaining the graph layout

in the box. For example, should the user choose the tree type he

would obtain the frame of figure 3-24.

In addition, when a new type is chosen, the system checks

that, if a graph layout appears in the box on the scope, it conforms

to the restrictions of the particular type chosen. For example,

when the tree type is chosen, the graph layout must not contain

cycles. When network is chosen, the graph layout should be directed

and contain no directed cycles. When these conditions are violated

by the existing graph layout, the words "graph layout does not con-

form to type" will appear in place of the graph layout in the box.

To remedy the situation, the user may either read in a new graph

layout to be checked, keeping the type fixed, or, press "new type, "

to return to the original frame and choose a new type, retaining the

graph layout.

When a graph layout and a type which agree have been chosen,

the user may proceed to apply to the graph layout, any of the algor-

ithms listed in the right-hand column. He initiates an algorithm by

pointing to the appropriate label in the menu. If the algorithm is a

constructive one, the underlying graph structure is derived from the

Or, perhaps some means can be built for the user to specify
partial node order when no arrows appear. This problem also exists
with the linear graph type, in that node order must somehow be indi-
cated.

224

tree:

lev- s-c

lev-l-c

unl- s-c
bends

unl- s-c
no bends

unl-l-c
bends

unl-l-c
no bends

MOD OUTPUT :; :xy x. S.
+z -z draw pin new type

Figure 3-24

225

graph in the box, but the present layout is ignored and eventually lost.

If the algorithm is a modifying algorithm, it would use the present

layout as a basis. As many algorithm applications as desired could be

performed.

When the user has modified the layout to his satisfaction,

using the set of algorithms for a given type, he can then output the

new layout as in the old MOD Output system, read in a new graph

layout within the same type or within a new type, and so on. He may,

if his graph layout is appropriately structured, process it under sev-

eral types.

It is necessary with some of the algorithms, that further

information be supplied for their execution besides that given by the

graph layout in the box. For example, when processing a tree type

layout with one of the algorithms for the tree type, the root node must

be designated. Thus, for example, with each execution of such an

algorithm, a message might be typed as follows: "point to root node. "

In response, the user must indicate which node is to be treated as the

root. Such information will be called "run information, " and must be

supplied each time the algorithm is executed.

Another type of information which we shall call "option

* The one exception might be when we input a tree which has a
unique node with no incoming links. In this case we might assume that
the root node is that unique node.

226

information" must be supplied to some of the algorithms. This

information tells the algorithm more specifically what constraints the

user desires, without having to list numerous versions of an algor-

ithm in a type menu. For example, one of the tree type algorithms

might ask for orientation, in the form of the typewriter message:

Type desired orientation:

1) root on top
2) root on bottom
3) root to left
4) root to right

Option information differs from run information in that, with the

former, once a choice has been made, we may wish that choice to

apply to several graph layouts without having to repeat the choice;

but the latter is valid for only one application of the algorithm and

must be specified each time the algorithm is executed. This differ-

ence will become important later in the discussion.

The libraries for the various types would initially be set up to

correspond to the needs of the types as discussed in section 3. 2. The

initial plan for the contents of each of the libraries is as follows:

1) linear type: constructive algorithm for linear layout,

2) tree type: the various constructive algorithms for layout of

tree layout subtypes,

3) network: constructive algorithm for network layout with

provision for interactive adjustment of stages and creation of addi-

tional dummy nodes between steps,

227

4) general type: modifying algorithms of the type discussed

in section 2. 2. 2; special modifying algorithms for specific cases such

as chemical molecules, and

5) ordered-arc type: modifying and constructive algorithms,

as well as semi-constructive algorithms, for ordered-arc layouts.

However, such a system is not complete without a good facil-

ity for creating and adding new algorithms. The "new alg" label in

the menu of figure 3-23 is used for this purpose. There are two ways

in which we would like to be able to create algorithms. First, it

should be possible to add totally new algorithms to the system, and

second, it should be possible to combine algorithms already included

to form new algorithms. For example, we might wish to define a

new algorithm for a tree layout subtype from an old one, with the only

modification being that the orientation always be with the root on top.

Or, we might want to write an algorithm for finding and forming hexa-

gons and pentagons, to be added to an already existing algorithm for

minimal number of intersections, thus resulting in a single modifica-

tion algorithm for chemical molecules.

As mentioned in Appendix 5, it is not very difficult to program

and add new layout algorithms to the old MOD system. It should be

equally as easy to do this for the new MOD system, especially if the

system is designed to treat the collection of algorithms simply as a

list. To be included in the system, newly programmed algorithms

228

file new alg:

return

erase

edit

copy

linear: tree: network: general: ord-arc:

• lev-s-c • •
• * • •
• lev-l-c

•
•
•

•

A*

B*

•
•

•

Figure 3-25

must be added before the system is run. Care must be taken, how-

ever, that the algorithm is appropriate for the type in which it is in-

cluded, and, that its name be original. Algorithms added to the

system in this manner, as well as those already in the system, are

called "compiled" algorithms.

To combine algorithms in the system in order to form new

229

algorithms while the system is running, the user first points to the

label "new alg" in the frame of figure 3-23. The frame of figure 3-25

then appears on the scope. This frame lists all of the algorithms cur-

rently in the system, under appropriate type. To form a new algor-

ithm the user simply points to the label of an algorithm under its type

and then to the place in the new algorithm list at which this algorithm

is to be included. List order in the new algorithm reflects logical

order. To delete an algorithm from the new algorithm list, he simply

scrubs the name. Each addition to or deletion from the new algorithm

is reflected in this list.

When an algorithm is included in the list, if it contains any

option information inquiries, they are typed out as if the algorithm

were really being executed. For each inquiry, the user responds on

the typewriter with either a choice of options or with a carriage

return. If an option is chosen, this choice will remain fixed in the

new algorithm, and the option information inquiry will not be made

when the new algorithm is executed. If the response was a carriage

return, the option information inquiry will be included each time this

instance of the algorithm is executed within the new algorithm. How-

ever, run information inquiries are always made.

Once the new algorithm designation is complete, the user

points to "file. " This action causes the new algorithm to be filed.

A message is typed: "name, " to which the user must respond with an

original name for the algorith, followed by a carriage return. If the

230

name is not original, the system again types "name. " Once an orig-

inal name has been given, the message: "type, " is output. The user

must respond with the layout type under which this algorithm is to be

placed.

Upon completion of naming and typing, the algorithm will be

filed under the type, and appropriately added to one of the type lists

with a star next to its name. The star indicates that this is an

"uncompiled" algorithm. All algorithms defined while the system is

running are uncompiled algorithms. When the system is terminated,

uncompiled algorithms will be lost. Of course, both uncompiled and

compiled algorithms may be used in building new algorithms.

Only uncompiled algorithms may be edited or deleted within

this facility while the system is running. Editing and deletion of

compiled algorithms must be done before the system is run. Thus,

compiled algorithms are permanent in a sense, whereas, uncompiled

algorithms are temporary, and are intended for experimentation only.

To edit or delete an uncompiled algorithm the user points to

"edit" and then to a particular algorithm in the type lists. The algor-

ithm name disappears from this list, and the algorithm itself appears

in the new algorithm list.' The user then treats this algorithm as if

he were just building it. Once appropriate changes are made he must

refile it, in order that it be remembered. When an edited algorithm

is filed, no new name is requested, and it is filed under the old name.

231

Type must be respecified.

If the user presses "erase, " the new algorithm column is

emptied, and the building process may be started anew. If an old

algorithm was being edited and was not filed, this action amounts to

deletion. All algorithms built which included this algorithm are also

automatically deleted.

An uncompiled algorithm may also be copied as a basis for

another new algorithm by pressing "copy, " and then by pointing to

the name of the algorithm. This action is equivalent to repeating the

actions used to build the copied algorithm, and is included only as a

convenience. In order to return to the frame of 3-23, the user

presses "return. " Any unfiled new algorithm is lost. Any changes

in type libraries resulting from new algorithm definition will be seen

in the menus for each type.

The user is responsible for the effect of any algorithms he

builds. He may combine algorithms from several types, and no check

is made that the result is consistent with respect to type. A few guide-

lines are given, however. Constructive algorithms obliterate any pre-

vious layout whereas modifying algorithms do not. Thus if both

constructive and modifying algorithms are included in a single new

*
algorithm, the constructive one should precede the modifying ones.

Otherwise, any results from the modifying algorithms are

lost once the constructive algorithm is executed.

232

Furthermore, algorithms for qualities of highest priority should be

placed as late as possible in the new algorithm.

The details of the system will not be worked out here. How-

ever, we note that compiled algorithms will take some common form

in which run information and option information inquiries will be

designed in the form of lists attached to the body of the algorithm.

When new uncompiled algorithms are formed, they will be defined by

lists of other algorithms. Each compiled algorithm included in such

a list will be accompanied by an appropriate vector, designating

which option inquiries for the algorithm are to be made and which

have been fixed. Upon execution of a compiled algorithm, all option

inquiries are made as well as run inquiries. When an uncompiled

algorithm is executed, each algorithm in the defining list is examined

in turn. If the included algorithm is compiled, the vector associated

with it is examined; all run inquiries are made but only those option

inquiries not specified as fixed are made. If the included algorithm

is an uncompiled algorithm, it is performed in the same manner as

for the uncompiled algorithm in which it is included.

Figure 3-26 shows an example of this structure. Suppose we

have two compiled algorithms, A and B. Suppose also that there is

one run inquiry, x, and three option inquiries for A, each with the

possible choices, a, b, or c, and no run inquiries and one option

inquiry for B with the possible choices, a, b, or c. The uncompiled

233

-..- -^

~^
opt •""

body

{x}
1: a, b, c]
2: a, b, c
3: a, b, c

A*:

B*

B: run

opt

body

{ 1: a,b, c} C#:

Figure 3-26

A

A* 6
B »

B ©.

B Q-

{a.6. b}

{*}

{a}

(#3

algorithm A* then specifies, by a vector associated with its first and

only entry, that A is to be run once with options 1 and 3 fixed to a

and b, respectively, and that along with the one run inquiry, one

option inquiry, namely 2, is to be made. B* is designated by a list

of two algorithms, A* and B. With A* no vector is needed and it is

performed as above. B is then performed with a single option in-

quiry being made. Finally C* consists of two executions of B, the

first with no option inquiry and the second with one.

In summary, these proposed modifications to the MOD Output

system allow the user to process a graph layout according to layout

type, and provide a facility for the definition of new layout algorithms,

both experimentally and in a permanent manner. The possibility of

one further facility should be mentioned, that of allowing for new lay-

out types. Such a facility should be included as a logical extension to

this system. As with the addition of compiled algorithms, if the sys-

tem is built to process the collection of layout types as a list, in some

234

orderly manner, this extension should be quite easy to make. All

that is necessary is the careful addition of layout type requirements,

a new type name, and any appropriately designed algorithms.

235

Chapter 4

ANOTHER APPROACH TO LAYOUT

When research was initially undertaken on the layout problem

for graphs by this author, another approach to the problem was taken.

This approach was found to be unsuccessful for several reasons.

However, we will briefly discuss it here since it is a logical modifica-

tion of the general layout problem and might be of interest at some

future time.

This approach which we shall call the "modified layout

problem, " ''* has several variations. The basic idea is that, given a

graph, its layout, and a list of changes to the graph (additions or

deletions of nodes or links), a new layout for the modified graph

should be produced. Several variations in the main constraint of the

problem are possible. On the one hand, we may apply the constraint

that as little be changed as possible in the original layout in obtaining

the new layout (similar to the constraint for AMBIT/G graphs), or,

on the other hand, we could apply the constraint that as little work be

done as necessary in laying out the new graph. This second constraint

is based on the assumption that it is easier to layout graph modifica-

tions within an existing layout than it is to layout the complete graph

This terminology is not to be confused with "modifying algor-

ithms" as described in section 2. 2. 2. The two ideas are not directly
related.

236

from scratch.

The motivation for using this approach was that the layout

problem could be attacked gradually, as a graph was being built,

rather than facing the problem with a completely specified graph.

The approach using the first constraint certainly has value for

AMBIT/G, and reduces to the problem defined for AMBIT/G layout

which was discussed in section 3. 2. 2. 5. With the second constraint,

the question remains as to whether or not the amount of layout effort

saved by algorithms for handling graph modification only, is worth

the effort of developing them. In either case, we must also ask

whether, in fact, such an approach provides any additional handle on

the layout problem, or whether it really makes the possibility of solu-

tion more difficult.

In considering the approach using the second constraint, we

have examined a sampling of what might be involved in providing a

set of algorithms for handling graph modifications and resulting layout

modifications while maintaining certain layout constraints. The modif-

ication of adding a single node to a tree layout of one of the subtypes

discussed in section 3. 2. 2. 2 was considered. As was shown in sec-

tion 3. 2. 2. 2, we may form these tree layouts according to certain

constraints, and almost always obtain a result which conforms. The

problem with adding single nodes to tree layouts is that, in general,

unless some modifications of the original layout is made, the new tree

237

will not meet the constraints for the particular layout subtype. The

only two exceptions to this rule are when a leaf is added to an exist-

ing leaf in the leveled, son-centered subtype, or when a new root is

added in any subtype. In these two cases we need not change other

node positions to maintain the constraints.

Let us look in more detail at modifications and procedures

necessary for maintaining constraints in some of the various tree

subtypes when a single node is added:

1) For the leveled, son-centered subtype:

a) To add a node, a, to a leaf, b: As mentioned above,

this does not affect the positions of the other nodes; but we must adjust

the appropriate level, S , to account for the new node (where b is in

S.), in order that further additions may be correctly handled. Do this

by replacing the K. = # in S. , , by a, where K. = b in S.. The x-
Jk l+l ' j 1

coordinate of a is the same as that of b. If there is no S. ,,, derive l + l

one appropriately.

b) To add a node, a to a non-leaf, b: in this case, all

x-coordinates are affected; nodes in levels above that of b are

affected since space must be made for the new node, a; and all nodes

in levels below that of b are affected, since their sons have been

moved. To obtain the new placement, first, add the node a to S.
i+1

appropriately, where b is in S.. In each succeeding S add a #

appropriately for a. After these insertions have been made,

238

recompute the x-coordinates for all S .

c) To add a node, a as a new root: this operation should

not affect the other nodes, but again we must adjust the S . Renumber

all S, as S, ,, and set S =(a). The x-coordinate value for a is
K k+1 0

the same as that for the old root.

2) For the unleveled, son-centered subtype with bends:

a) To add a node, a, to a leaf, b: this may cause read-

justment in the levels of b and of some of b's ancestors, although

new x-coordinates need not be calculated. The x-coordinate for a

will be that of b. The algorithm in figure 4-1 is required to adjust

levels. In this case it becomes especially clear that reapplication of

the original layout algorithm is simpler than providing and running an

additional procedure for such a special case of modification.

b) To add a node, a, to a non-leaf, b: this addition should

not change the level of any node, but the x-coordinates will have to be

recalculated. The new node should be added to the last level and

marked by a # in each level down to, but not including, that of b.

c) To add a node, a, as a new root: similar to the case

for the subtype above.

3) For the leveled, level-centered subtype:

a) To add a node, a. to a leaf, b: the only x-coordinates

it changes are those in the level above that of b. Kb is in S.,
l

239

set: n-»m
a - i

4f—»

set: f-K- 6 S^ , where b = K; €S . J m-l Jj^ m

If m = 0 then create a new S_j = (#) and
set f to this element of S_j.

f has more than one son in Sm ?

no

Put i into j's place
in Sm and set j -> i
and f-» j.

i=all #'s?
yes

EXIT

no

±-
yes

m Put i into j's place in S
Set i to an ordered series
of #'s, one for each son of
f except for son j, for
which j actually appears
(j may be a f also).
Set f -» j .

set m-l -» m

Figure 4-1

replace the I in S. , . by node a as in the case for the leveled, son- 1+1

centered subtype. Then recompute the x-coordinates in level S. ...

b) To add a node, a, to a non-leaf, b: this is similar in

effect to the case for the leveled, son-centered subtype. Just add

node a appropriately to S. ,. where b is in S., add #'s to the suc- l+l I

ceeding S. 's, and recalculate the x-coordinates in S. , .. B k l+l

c) To add a node, a, as a new root: similar to the case

for the subtype above.

240

4) For the unleveled, level-centered subtype with bends:

a) To add a node, a, to a leaf, b: again, this causes the

problems found with the case for the unleveled, son-centered subtype.

But here, x-coordinates must also be recalculated since the contents

of the levels may change.

b) To add a node, a, to a non-leaf, b: add this new node

and required #'s in the same manner as in the case for the unleveled,

son-centered subtype. The x-coordinates need to be recalculated for

levels above that of b.

c) To add a node, a, as a new root: similar to the case

for the subtype above.

In summary, all subtypes require some modification in the

level contents in order to add new nodes. Six of these cases require

a recalculation of x-coordinates within one or more levels, and two

require redistribution of old nodes into levels, a very time-consuming

procedure. But the most striking fact is that the numerous ways in

which a node may be added must be differentiated within each subtype.

Thus with tree layouts, certainly the reapplication of one of the orig-

inal tree subtype algorithms would be much simpler than adding sev-

eral new algorithms, and having to determine which is to be applied

in each specific case.

It was concluded that this brief study was an indication as to

what might be involved in more complex cases using this approach,

241

and work along this line was discontinued on the assumption that the

effort was not worthwhile.

Furthermore, it was felt that such an approach does not deal

with graph layouts in a manner suitable for effective constraint opti-

mization. By nature it deals with graph layouts only in a local sense,

at the points where graph modifications might cause change. The

approaches used in chapters 2 and 3, however, are designed to handle

graph layouts both in a local and a global manner, whichever is appro-

priate in a particular case. This leads us to the conclusion that this

modified problem approach may result in algorithms which have

limited power, and that the two approaches used in chapters 2 and 3

are much more effective in solving the problems of layout.

242

Appendix 1

AMBIT/G OUTPUT PROGRAM

Before describing the output program, we will first give a

brief description of AMBIT/G itself. The language, as previously

mentioned, deals with graphs. The data and program statements are

both in this form. The graphs consist of specially designed nodes of

various types and directed, labeled links. In the layouts of these

graphs the nodes have shapes which are user defined and which

include arc departure points (ADP's), the only points at which links

may depart from the nodes. The nodes may also have names. The

links are multisegment links. The program statements are in the

form of graphs expressing patterns to be matched with the data and

data graph changes to be made if a match is successful. The state-

ments are labeled, and each statement contains two succeeding state-

ment labels; one is used if the match is successful, and one is used

if it fails. The node shapes, data graph, and program statements

are drawn by the user. The program is then run on the data graph.

The output program is designed so that any portion of the cur-

rent state of the data graph may be examined at any point during pro-

gram execution. This is accomplished by the insertion of output

statements in the program using the form shown in figure Al-1.

These statements cause the specified portion of the data graph to be

243

OUTXXX

D>
FAIL: LABEL
SUCCESS: LABEL

Figure Al-1

displayed; execution is stopped and the user has control of the scope

until he presses the return button. At this point the display disap-

pears and execution continues. The output statement succeeds if a

display is generated, and fails otherwise.

As mentioned above, a super-structure must be built over the

data graph for each display. It is described below. Several node

shapes are reserved specifically for display purposes. These are

shown in figure A 1-2 where lozenges indicate the ADP's.

The output statement mentions a single node. This node must

have a single link pointing to some display specification. The display

specification is built of a series of pictures represented by P-nodes,

the first of which is that pointed to by the node appearing in the output

statement as in figure Al-3.

A P-node may point to a D-node giving this picture a direction-

al placement in the total display, relative to the previous P-node or

244

-Q
picture nodes
(P-nodes)

N NE
S SE
E NW

W SW

direction nodes
(D-nodes)

node specification nodes
(N-nodes)

link specification nodes
(L-nodes)

Figure 1-2

X> Lr-Lr EH?
Figure Al -3

245

picture. For example, figure Al-4, will place the second picture to

the right of the first in the display. If no D-node is specified, the

current picture will be placed to the south of the previous picture.

P
Figure Al-4

The contents of the picture for a P-node are specified by a

string of L- and N-nodes, the first of which is pointed to by the

P-node, as in figure Al-5.

P
LTH^CMrfrfG

Figure Al-5

Each N-node in the string points to some data node which is to

be displayed. Two N-nodes may point to the same data node, in which

case this node will appear twice in the display. The N-nodes are

examined in order, and, using D-nodes, direction may be assigned to

an N-node, giving it a directional placement relative to the previous

N-node. For example, the specification in figure Al-6 will result in

246

the picture of figure Al-7. When no direction is assigned to a node

relative to the previous node by D-nodes, directional placement is

Figure Al -6 Figure Al-7

derived from link directions. For example, the specification of

figure Al-8a results in the layout of Al-8b.

I
(a) (b)

Figure A1-8

If no directional information is obtainable from the links a node is

placed to the east of the previous node. For example, figure Al-9a

yields Al-8b.

Each of the two bottom links from any L-node in the string

must point to some N-node in the string. All links which originate

247

H|3
A

(a) (b)

Figure Al-9

at the first data node referred to, and which terminate at the second

data node referred to, are drawn. For example, figure Al-10a

gives Al-lOb. This super-structure must be correct in order for any

display to appear.

(a) (b)

Figure Al-10

In addition to a simple display, the output program provides a

facility for modifying displays which appear on the scope. As men-

tioned above, once a picture appears, the user has control of the scope

until he presses the return button. It is while he is in control that he

248

may modify a picture. In brief, the modification facility allows the

user to cause part or all of the graph layout to be moved or deleted.

He may also enlarge or diminish the size of the graph layout.

Furthermore, he may duplicate a node (but not its links, although

links may be divided between instances of the same node), as well as

add bends to links.

The actual layout algorithm used is described below. The

nodes are placed on a grid, and links are drawn after all nodes have

been placed. The procedure for node placement is as follows. First

each P-node or picture is separated into subpictures using the steps

shown in figure Al-11.

first N-node of picture — Nl

create a new subpicture and ^
put Nl in it

find next N-node; anymore?
yes

new N-node -> NZ
T

no

does N2 have a direction?
no

4» Yes

is the position in the direction
relative to Nl occupied in this
subpicture?

J, no
place N2 in this subpicture at
the position indicated

*©

^ N2 - Nl

yes

N2 - Nl

Figure Al-11

249

Then the positions for the subpictures are found relative to one

another, as shown in Al-12.

L
any links in the picture?

no ©
yes

first L-node of picture -» L

more than one subpicture?

>£

yes

start and end nodes of L
in different subpictures?

^L
yes

using direction of link L
merge subpictures of start
and end nodes into one
subpicture

no
exit

next L-node -• L

yes

no } any more L-nodes?

Np-

©
no

©
T

r-5> more than one subpicture?

4- yes
form one subpicture from
first and second placing
second to the east of the
first

no
exit

Figure Al -12

250

To obtain one display layout from several P-nodes or pictures we

then follow the steps shown in figure Al-13.

first P-node -. PI merge PI and P2
into one picture
using direction
given

s' N/ no
more than one picture? exit /

s , yes
next P-node -» P2

V * no
does P2 have a direction? make direction south 7

yes

Figure Al-13

Once node positions have been obtained, links are routed

between nodes. Links are routed as follows. A straight-line is

begun from the ADP to the midpoint of the target link. If the line is

obstructed by another node, the link is stopped just before the node,

a bend is made, and the node is skirted until it no longer stands in

the way. A straight line is again followed to the target node. All

other obstructions found are skirted in the same manner until the

link reaches its target node. The link end is clipped at the edge of

the target node shape, and an arrowhead is drawn.

251

Appendix 2

AN ALGORITHM FOR REPETITION

Reading of this algorithm should follow reading of the discus-

sion of section 2. 2. 2. 1 of the text. The algorithm applies to a layout,

two subparts of which have been designated by the user with appro-

priate enclosures. The effect of the algorithm is to change the layout

so that the two subparts designated are made to be literal or symmet-

rical repetitions of one another, according to what the user desires.

In the description of the algorithm which follows the first sub-

part designated will be called A, and the second, B. When a subpart

is designated, it contains all nodes which are enclosed, and all links

connecting these nodes. If there is a bend in a link which is included,

it will be treated as a node. A center, c(A), for a subpart, A, will

be determined as follows, where, if p is a point, p implies its x-

coordinate and p its y-coordinate, and where a 6 A implies that a

is a node (or bend point) in subpart A:

c(A) = (Max(a , a £ A) + Min(a , a€A))/2
XX X

c(A) = (Max(a , a € A) + Min(a , a€A))/2
y y y

The set S designates nodes common to both A and B, in other words

S = A n B.

* Thus any isomorphisms between subparts must also include
bend points. From this point on in the discussion, the word "node"
is meant to include bend points as well as nodes.

252

The algorithm then proceeds through two main steps. In the

first step, we look for isomorphic node-to-node maps between the

two subparts (step la), and, in the case where symmetrical repeti-

tion is requested, we establish the axis of symmetry for each map

(step lb). The mappings are then ordered so that those which change

the rest of the layout the least are used first (step lc). In the second

step, we attempt to make the two subparts literal or symmetrical

repetitions of one another by either changing the second subpart

specified to conform to the first (i. e. , A cannot be moved), or by

finding an intermediate form between the two subparts and changing

both to this new form (i. e. , A can be moved). We must consider the

cases in which S =0 and those in which S fc 0 separately. All map-

pings are tried until a success is found, or the list is exhausted.

Step 2 is divided into eight cases; only the appropriate case should be

executed for each application of the algorithm.

The substeps of step 1 are then as follows:

(la) Find all one-one mappings, f, of the nodes of A onto

those of B such that for all a, b € A:

b<ET(a) <=> f(b)€ r(£(a))

where T(a) is the set of nodes adjacent to a.

*
Note that these mappings are isomorphic.

253

If the two subparts are to be made literal repetitions,we then remove

from the set of mappings, all mappings:

(i) f such that f(S')=S' where S'c s and S ± <t>; this includes

the case in which f(x) = x, x € S, and

(ii) f such that if there is a cycle in A labeled clockwise

(a, b, c, . . . , x), the corresponding cycle in B is not labeled

clockwise (f(a), f(b), f(c), . . . , f(x)).

If the two subparts are to be made symmetrical repetitions, we then

remove from the set of mappings, all mappings:

(i) f such that if x € S, f(x) i S,

(ii) f such that x, y 6 S, f(x) =y, f(y) ^ x, and

(iii) f such that if there is a cycle in A labeled clockwise

(a, b, c, . . . , x), the corresponding cycle in B is not labeled

counterclockwise (f(a), f(b), f(c), f(x)).

The justification for the removal of these mappings is given later in

the discussion of the algorithm. The resultant set of mappings will

be called F. If F = 0 the algorithm fails.

(lb) If the two subparts are to be made symmetrical repeti-

tions, determine the axis of symmetry a, for each mapping f 6 F,

according to the size of S, and according to whether A can be

moved or not, as follows:

254

(i) if S = 0, a, is the perpendicular bisector of the line

c(A), c(B).

(ii) if |S| = 1, and A cannot be moved, a, is the perpendicu-

lar to the line c(A), c(B) which passes through the single node

in S.

(iii) if I S| > 1 and A cannot be moved, then a, is the line

which perpendicularly bisects all lines x, y such that x, y € S

and f(x)=y, and which passes through all points x€S such

that f(x) = x. If such a line cannot be drawn, no symmetrical

repetition can result from this mapping; thus this mapping fails

and is removed from F.

(iv) if | S| ^ 1 and A can be moved, a, is the perpendicular

bisector of the line c(A), c(B).

In the case that c(A) = c(B), and the line c(A), c(B) is required, any

line which passes through c(A) may be used (as a convention, we use

the vertical line through c(A)).

(lc) Order the mappings in F as follows, dependent on whether

the two subparts are to be made literal or symmetrical repetitions.

For literal repetition: f. precedes f. if 0. < 0. , where
1 J ! J

0 is the angle for mapping f determined as follows. Let a be the
K K

a label of an arbitrary node of A. Then 0 is the angle (less than
K

180°) between the direction of a from the center c(A), and the direc-

tion of f (a) from the center c(B). If a does not determine a total
K.

255

ordering on F, use another arbitrary node, b, to resolve undeter-

mined order. Continue through the nodes until a total order is deter-

mined, resulting in F = { f , f , f , . . . , f] .

For symmetrical repetition: f. precedes f. if 6. < 6 . , where 0
» J i J k

is the angle determined as follows. Let a be the label of an arbitrary

node of A. Let a be the reflection of the point a with respect to

th e axis OL (for the mapping f). Then Q is the angle (less than

180°) between the direction of a from the center c(B), and the

direction of f (a) from the center c(B). The direction of a from

the center c(B) maybe determined by Za, -a , where a, is the
K K

*
angle of a, (either direction will do) and a is the angle of a from

c(A). If a does not determine a total ordering on F, use another

arbitrary node, b, to resolve undetermined order. Continue through

the nodes until a total order is determined, resulting in

F = {f,,f,,f...... f }. 1 2 3 n

Step 2 then proceeds as follows to make the two subparts either literal

or symmetrical repetitions of one another:

(2) For each f, £ F, in order, until a success is found, per-
k

form the appropriate step within step 2, dependent on whether literal

or symmetrical repetition is desired, whether subpart A can be moved

or not, and whether or not S = 0. If no success is found for any f,
k

(i. e. repetition cannot be achieved), the algorithm fails. The steps

256

according to case are:

(Za) If only subpart B may be moved:

(i) For literal repetition where S = 0: Based on the map-

ping f construct a layout for B which is geometrically congruent to

the given layout for A, using c(B) as a reference point corresponding

to c(A); in other words, for all x € A, if f(x)=y, then place y so that

it has the same relation to c(B) as x does to c(A). Succeed.

(ii) For literal repetition where S^ 0: determine a new

center for B, c'(B), using an arbitrary node a € S as follows: let

b =f~1(a); then c'(B) = c(A) -b +a and c'(B) =c(A) -b +a .
k xxxx yyyy

Based on the mapping f construct a layout for B which is geomet-
.K

rically congruent to the given layout for A, using c'(B) as a refer-

ence point corresponding to c(A). If this requires moving any c 6 S

then fail for this mapping; else, succeed.

(iii) For symmetrical repetition where S = 0: Based on

the mapping f , construct a layout for B which is geometrically

symmetric to the given layout for A with respect to the axis a, for

the mapping f ; in other words, for all x 6 A, if f (x) = x', place x'

so that the line x, x' is perpendicularly bisected by a, . Succeed.

(iv) For symmetrical repetition where S^0: Based on

the mapping f , construct a layout for B' = B-S which is geometri-

cally symmetric to the given layout for A' = A-S with respect to the

axis a, • Succeed.

257

(2b) If both subparts A and B may be moved:

(i) For literal repetition where S = 0: Construct the lay-

out for A and B as follows. For each pair a 6 A and f (a) = b, we

determine first an average distance, d, and then an average line seg-

ment, I. From the average line segment, I., we then determine new

positions in the layout for a and b. To find the average distance, d,

first let d be the distance from a to c(A), and let d, be that from
a b

b to c(B). Then d-(d + d)/2. To then determine the average line
a b

segment, / , first let b be the point such that:

b' = b + c(A) - c(B)
XX X X

b' = b + c(A) - c(B)
y y y y

Then f, is the line segment with length d and startpoint c(A) which

bisects the smaller of the angles between line segments (a, c(A)) and

(b', c(A)). Let us now call the other end of line segment I, c. Then

if Ax = c - c(A) and Ay = c - c(A) , we determine the new positions
xx y y

for a and b as follows:

a = c(A) + Ax = c
XX X

a = c(A) + Ay = c
y y y

b = c(B) + Ax
X • X

b = c(B) + Ay
y y

Succeed.

258

(ii) For literal repetition where S / $: Construct the lay-

out for A and B as follows. Label each node in A U B as p.,
1

i = 1, . . . , n, where A U B | - n. Form 2m equations where

I A I = I B I = m, as follows. For each p. (A if p. = a and f, (a) = p. i i i i ri ri k j

for the equations:

p. - c(A) - p. - c(B)
1 XI X
X X

p. - c(A) = p. - c(B)
1 y j y
y y

We will abbreviate each pair as:

p. - c(A) = p. - c(B)

giving us m equations in n unknowns. The equations express the fact

that each a=p. has the same x and y relationships to c(A) as its

image f (a) = p. has to c(B)„ We then solve the equations to express
k J

all p.'s in terms of any n-m arbitrary p. 's, say p,,..., p . To
l I 1 n-m

more closely determine the value of p., ... , p we then require
1 n-m

that:

c(A) = (Max(p. , p. € A) + Min(p. , p. € A))/2
x x

c(A) = (Max(p. , p. € A) + Min(p. , p. 6 A))/2

y y

This assures us that the centers for A and B remain fixed. We

need only check for one center, for, if these equations hold for A

and not for B, it must be that for some a £ A, f (a) £ B, a does not
.K.

259

have the same x and y relationships to c(A) that f, (a) has to

c(B). This last step may not completely determine p., . . . , p ,
1 n-m

but any assignment of values to these variables which meets the

requirements of this last pair of equations is a solution and thus

yields a layout. However, care must be taken so that points do not

overlap.

If these last equations yield the result that two points, p. and

p. are to be determined subject to the constraints that p. +p. =k.
J 1x Jx

and p. =p. = k , one procedure for solution which seems to cause
1 L,
y y

the least amount of twisting is as follows:

(a) if the line c(A), c(B) tends to be more horizontal than

vertical, choose p. = p. , and
i J x x

(1) if p. £ p. , choose p. = p. + | c(A) - c(B) | , and
V Jy V Jy

(2) if p. < p. , choose p. = p. + | c(A) - c(B) | .
y Jy Jy y

(b) if the line c(A), c(B) tends to be more vertical than hori-

zontal, choose p. = p. , and
l J
y y

(1) if p. 2; p. , choose p. = p. + j c(A) - c(B) | , and
xx xx

(2) if p. < p. , choose p. = p. + j c(A) - c(B) | .
xx xx

With p,, . . . , p thus chosen, we may then determine all p. 's
1 n-m l

from the original m equations and thus obtain a layout which

260

succeeds. An example of this method for finding a layout is given

later in the discussion of the algorithm.

(iii) For symmetrical repetition where S = 0: Construct

the layout for A and B as follows. For each pair a 6 A and f (a) =b,

we determine first an average distance, d, and then an average line

segment, I. From the average line segment, I, we then determine

new positions in the layout for a and b. To find the average distance,

d, first let d be the distance from a to c(A), and let d, be that
a b

from b to c(B). Then d = (d +d,)/2. To then determine the aver-
a b

age line segment, I, first let b' be the reflection of b with respect

to the axis of symmetry, a, , for the mapping f . Then I is the

line segment with length d and startpoint c(A) which bisects the

smaller of the angles between line segments (a, c(A)) and (b', c(B)).

Let us now call the other end of the line segment £ , c. The new posi-

tion for a is then that of c. And the new position of b is then that

of the reflection of c with respect to the axis a, • Succeed.

(iv) For symmetrical repetition where S ^ 0: Construct

a new layout for A and B as follows. For all a£ S where f (a) =a,

find the point a' at which the perpendicular from a to the axis a,
K.

intersects a, ; then, move a to the position of a'. For all pairs
K.

a,b £ S such that f (a) =b and 1(b) -a., find the node of the pair which

is closest to the axis a, , say, for example, a; then, move a so that

it lies in a position symmetric to b with respect to the axis a, • For

261

all other nodes, proceed as in (2b-iii). Succeed.

We will first give some examples of the application of the algor

ithm, and then explain a few of the steps in more detail. Figure AZ-1

shows an example of the application of each of the steps within step 2,

each with a different graph. Let us now explain step 1 in more detail.

In step (la) there are several conditions under which isomorphisms

are excluded. For literal repetition, condition (i) may be justified by

the following two proofs:

Lemma: Let f be a mapping as specified in step (la). Suppose that

for some a € S, f(a) =a. If A and B are made literal

repetitions of one another using f, then A and B will

overlap.

Proof: Since one condition for A and B to be literal repetitions

is that:

a - c(A) = f(a) - c(B)
X X X x

a - c(A) = f(a) - c(B)
y y y y

then if a = f(a), we have that c(A) = c(B) and
x x

c(A) = c(B) . But this implies for all pairs b, f(b), that
y y

b = f(b) and .b = f(b) . Hence, A and B must overlap,
x x y y

QED

and:

262

(2a-ii)

possible
mappings

b'

d'

b'

d'

d'

resultant
layouts

(2a-iv)

b'
•—i—•

d'

Figure A2-1

263

original layout

Ub-i)

N
/ a* *\ /

\

'&)

\ A C/ ^^

(2b-ii)

possible
mappings

resultant
layouts

b d

d /' v_ y

(2b-iv)

Figure A2-1 (continued)

264

Lemma: Let f be a mapping as specified in step (la). Suppose that

S ^ 0, and for some S' ? 0. S' £ S, that f(S') = S'. If A

and B are made literal repetitions of one another using the

map f, then A and B will overlap.

Proof: Assume for S'£ S, S' £ 0, that f(S') = S', and that A and

3 will not overlap. We will show that his leads to a con-

tradiction. Let I S' | = n. Also, let the relation a > b

mean that node a is higher than, or, if it is at the same

height, to the left of node b.

Now let a be the unique node in S' such that a > b

for all b € S', b ^ a. Since we require that no two nodes

occupy the same position, a unique node a exists in S'.

But since f(a) € S', then a > f(a) unless a = f(a) and
x x

a - f(a) . By our previous lemma, if a = f(a) and
y y xx

a = f(a) then A and B will overlap. Thus, it must be
y y

that a > f(a).

Now by the conditions required for A and B to be

literal repetitions under f, we have that:

a - c(A) = f(a) - c(B)
X X X X

a - c(A) = f(a) - c(B)
y y y y

and furthermore, where we use f (a) to mean f(f(a)), that:

265

f(a) - c(A) = f2(a) - c(B)
X X X X

f(a) - c(A) = f2(a) - c(B)
y y y y

since f(S') = S' and a(S. But this implies that:

a - f(a) = f(a) - f2(a)
XXX X

a - f(a) = f(a) - f2(a)
y y y y

2 2
and unless we allow f(a) = f (a) and f(a) = f (a) ,

xx y y
2

which will cause A and B to overlap, f(a) > f (a).

Similarly, we have that:

f2(a) > f3(a)

fn_1(a)>fn(a)

But since | S' | = n, f (a) = I (a) for some k < n, and thus

for some k < n we have that f (a) > I (a), which is a

contradiction.

QED

Hence, removing mappings of this type avoids dead ends and

overlaps. Condition (ii),- the motivation for which is only intuitive at

this point, is used to avoid repetition in isomorphisms, and twisting

of results. For example, if we did not use this condition with the lay-

out of figure A2-2a we would general four possible maps instead of

266

clockwise labeling

(a)

<Th' b'/ ^b'

c _V a

clockwise maps counterclockwise maps

(i) (ii) (iii) (iv)

(b)

(i)

(iii)

(c)

Figure A2-2

267

two (A2-2b); the layouts resulting from these maps are shown in fig-

ure A2-2c. Further examination of condition (ii) is necessary.

The first two conditions for removal of isomorphisms in

step (la), in the case of symmetrical repetition, may also be justi-

fied by proof:

Lemma: Let f be a mapping as specified in step (la). Suppose

that for a € S, f(a) = b and b 4 S. If A and B are made

symmetrical repetitions of one another using the mapping

f, then A and B will overlap.

Proof: Assume a £ S, f(a) = b and b 4 S, and that a is the axis

of symmetry for the mapping f. Since b £ S, either b 4 A

or b 4 B. Assume b 4 A (the case where b 4 B is

similar). Then since b is to be the symmetric image of

a with respect to a, the line segment (a,b) will be per-

pendicularly bisected by a.

Now since a £ S, there must be some c £ A for

which f(c) = a, according to the map formulation in step

(la). And since b 4 A, then c ^ b. But then the line seg-

ment (a, c) is also perpendicularly bisected by the axis a-

Hnece, b and 'c must have the same positions, and A

and B must overlap.

QED

268

Lemma: Let f be a mapping as specified in step (la). Suppose

for a,b€S, that f(a) =b and f(b) ^ a. If A and B are

made symmetrical repetitions of one another using the map-

ping f, then A and B will overlap.

Proof: Assume for a,b £ S that f(a) = b and f(b) jt a, that that

a is the axis of symmetry for the mapping f. Then

f(b) = c for some c ^ a. Now since b is to be the sym-

metric image of a with respect to the axis a, then the

line segment (a,b) will be perpendicularly bisected by a-

Also, since c is to be the symmetric image of b

with respect to the axis a. then the line segment (b, c)

will also be perpendicularly bisected by a. Hence c and

a must have the same positions, and A and B must

overlap.

QED

Condition (iii) for symmetrical repetition is again an intuitive

conjecture which must be looked into further. The reasons for its

use are similar to those for condition (ii) for literal repetition.

Step (lb), the determination of the axis of symmetry for each

mapping, is self-explanatory. In general, the axis is taken to be the

line which separates the region of A from that of B.

Step (lc), the ordering of the isomorphisms remaining in f,

269

is performed in an atteinpt to find solutions which involve the least

amount of twisting possible. For example, in figure A2-2, map (i)

is tried before map (ii), based on the directions of the node a from

c(A) and the node a' from c(B). We see that the layout based on the

mapping of (i) is less twisted in terms of the whole graph than that

based on (ii). Proceeding according to step (lc) should yield a total

ordering of the maps, otherwise at least two of the maps will be

identical.

Step (2), which derives new layouts, is broken down into cases

according to options chosen and according to whether S = 0 or S ^ 0.

Steps (2a-i), (2a-iii), (2b-i), and (2b-iii), the cases where S = 0 are

quite straightforward. In the case where A cannot be moved, B is

made to conform to A. When A can be moved, an "average" position

for each node is determined.

The remainder of the steps all involve cases where S / 0.

These cases are more difficult to handle. In step (2a-ii), a new posi-

tion for c(B) must be determined which makes it possible for the

nodes of S to have the correct relationships to c(B). In step (2a-iv),

only those nodes in A not in B need be moved to obtain symmetrical

repetition; shared nodes are already symmetric. Step (2b-iv) involves

moving the nodes in S in a different manner from those not in S, in

order to make the shared nodes symmetric, as well as the nodes not

shared.

270

The most complicated step, (2b-ii) requires some explanation.

The first part of the step, that of labeling the nodes and forming 2m

equations (or m abbreviated equations) is quite straightforward, as

is solving for n-m variables. With some of the mappings which we

eliminated in step (la), it is possible that these equations yield more

than n-m free variables. Furthermore, with such cases, it is also

possible that the set of equations is incompatible in the following

sense. Suppose we had the equation:

P2 - c(A) = p3 - c(B)

where p_ and p are elements of S, and where p was a £ A and

also f(b) £ B (since it is shared it has two roles), and p was b € A

and f(a) € B. Then substituting into the equations for each subpart

we obtain:

f(b) - f(a) = c(A) - c(B)

a -b = c(A) - c(B)

which unabbreviated implies:

a -b = c(A) -c(B) = f(b) - f(a)
XX X X XX

a -b = c(A) -c(B) = f(b) - f(a)
y y y y y y

This condition is incompatible since a must relate to b in the

same way f(a) relates to f(b).

However, we conjecture that such cases do not arise once

271

step (la) is performed (step (la) eliminates the example above since

f(S') = S' for S' £ S. Thus we do not include checks for number of

unknowns and for compatibility in step (2b-ii). However, this conjec-

ture should be looked into further.

As noted in the description, the condition that centers remain

centers in (2b-ii) may not completely determine the unknowns. When

arbitrary values may be given to the unknowns it is wise to avoid

changing the order of placement along the x or y axes where pos-

sible, as such a change may again cause twisting. This may be seen

in the last step of the example below.

To clarify the procedure of step (2b-ii), we will show how it

applies to the layout and mapping of figure A2-3, with node labeling

as shown.

Figure A2-3

272

The four (-m) equations in six (=n) unknowns for this example are:

P]L - c(A) = p4 - c(B)

P2 - c(A) = P3 - c(B)

p3 - c(A) = p6 - c(B)

P4 - c(A) = p5 - c(B)

The equations solved in terms of two (=n-m) unknowns are:

Pj =P5 - 2c(B) + 2c(A)

p4 = p5 - c(B) + c(A)

p3 = p6 - c(B) + c(A)

p2 = p6 - 2c(B) + 2c(A)

Using c(A) = (1, 2) and c(B) = (3, 3) they become:

Pl = P5 "4 Pl = P5 "2

xx y y

P4 = P5 " 2 P4 = P5 " *
xx y y

P3 = P6 - 2 P3 = P6 " 1
xx y y

P2 =P6 "4 P2 =P6 "2

xx y y

Applying the center criterion we have:

(Max(p5 -4,p6 ~4,p6 -2,p5 -2) + Min(p5 -4, p^ -4, p& -2, pg -2))/2 = l
XXX, X xxxx

P5 + P6 "6=2
X X

P5 +P6 =8
X X

273

(Max(p -2,p, "2'P6
_1'P5 -]) + Min(p5 -2, p^ -2,p6 _1.P5 -l))/2=2

P5 +P6 -3=4

P5 +P6 -1

Using the method suggested in the algorithm for choosing values

for p and p, we obtain:
5 o
x, y x, y

P5 =P6 = 4

and since p, > p in figure A2-3
y y

P6 =P5 +2

and thus p. - 9/2 and p_ = 5/2. We then have that:
o b

y y

P1 =(0,1/2)

P2 = (0,5/2)

P3 = (2,7/2)

P4 = (2,3/2)

P5 = (4,5/2)

P6 = (4,9/2)

as can be seen in figure A2-4a. If we had ignored the fact that

P/ > Pr , we might let p, + 2 = p , and thus obtain the twisted
y y y y

figure in A2-4b, as was anticipated above.

2 74

(a) (b)

Figure A2-4

275

Appendix 3

AN ALGORITHM FOR LINK LENGTH CONSISTENCY

An algorithm to improve link length consistency, as measured

by the number of different lengths appearing in a layout is described

here. In the description, bend points are treated as nodes of degree

two, and the word link should be taken to mean link segment.

As described briefly in section 2. 2. 2. 3, this algorithm is

partly constructive, although it uses some of the original layout, and

so is classified as a modifying algorithm. It proceeds by breaking

the layout up into cycles of minimal length, and generating regular

polygons for these cycles wherever possible.

In more detail, the algorithm first removes all dangling trees

from the layout (steps 1-3), one link at a time, recording the order

in which links are removed. After this is done, the remainder of

the layout is broken up into non-separating components (in the graph

theoretic sense) (step 5).

Each of these components is then processed one at a time

(steps 6-33), in order to derive layouts for the components. The

order in which the components are processed is arbitrary, except

that there is a preference for processing those components first

which have nodes in common with already processed components.

The processing of a component begins, again by the removal

276

and recording of all dangling trees from the component (steps 7-9),

one link at a time. What remains are the cycles of the component.

We begin processing the remainder of the component by find-

ing the cycle of minimal length, and forming a regular polygon of its

sides (steps 6-17), where the sides are a length which has been used

before (perhaps in another component which has already been proc-

essed). If this is the first component to be processed, we will, of

course, determine the first length to be used in the layout here. The

first cycle has thus been placed.

We next look for other cycles of the component which are

attached to those already placed, and which have not yet been placed.

We first look for a smallest cycle which shares links with already

placed cycles, and try to place it (steps 17-30) by forming a regular

polygon of its unplaced links with sides which are the same length as

the distance between the two points at which it is attached to already

placed cycles. If, with this placement we cause node or link overlap,

we throw away this placement, and try another cycle. This series

of steps is then repeated.

At some point (step 31) we have either placed all the cycles

of the component, or found that they cannot be placed without causing

overlap. If the latter is the case, we throw away any previous place-

ment in the component (step 33) and layout the whole cyclic part of the

component as a single regular polygon. If we have found a placement

277

for all cycles, but the number of lengths resulting exceeds the number

we would obtain by forming a single regular polygon (step 32), we

again throw away the placement and form the single polygon. Other-

wise, the placement is kept.

The placement of the cyclic portion of the component is then

complete, and the dangling trees of the component are restored in the

order in which they were removed (steps 11-13) so as not to increase

the total number of lengths in the layout. The processing of this com-

ponent is then completed (step 14) by placing it correctly in the total

layout, relative to other already processed components. We then go

on to process another component.

When all components have been processed, we restore the

dangling trees initially removed from the layout in the order removed,

in such a way as not to increase the total number of lengths in the lay-

out (step 34-35) and terminate the algorithm.

A few preliminaries should be noted before we state the

algorithm:

LEN is a set of lengths.

PLACED is a set of nodes.

REM is a set of triples.

TEMPLEN is a set of lengths.

TEMPREM is a set of triples.

278

OLD(z) is the pair of x, y-coordinates of node z in the orig-

inal layout.

NEW(z) is the pair of x, y-coordinates of node z in the

resultant layout.

CYCLES is a set of cycles in the layout, each recorded as a

sequence of nodes.

The algorithm is then:

1) Set 1 => K, REM = 0, PLACED = 0, LEN = 0. For each

node x, set OLD(x) => NEW(x). Go to step 2.

2) If any nodes are of degree one, go to step 3; else, go to

step 4.

3) Remove those nodes presently of degree one from the layout.

For each node removed, add a triple to REM of the form: (removed

node, adjacent node, K). Add one to K, and go to step 2.

4) If only nodes of degree zero remain in the layout, go to

step 34; else, go to step 5.

5) Break the layout into non-separating components, C., . . . , C .

This is done as follows: for each node, in turn, separate the node into

n nodes if the node is of degree n. In each resulting distinct part of the

layout, if there are two or more nodes resulting from the original node

in the same connected part, join them back into one. Then try this for

the next node on each part of the layout thus formed. Nodes of degree

279

zero are discarded. An example of this process is shown in figure

A3-1. Each component, C, is considered unprocessed. Go to step 6.

a a

4 W4\
original node a

a a a a a
0 Q 0 9

©99
c b c

node b

a a a a
9 o 9

6 9
b c
9
b

6
b c

node c

a a a a
• 9 9 P

9 9 9
b c b c

b c b c

result

a a

9 9
b c

Figure A3-1

6) If all components C.f...,C have been processed, goto

step 34. Else, if PLACED = 0, set z = 0, choose any component C.

as the current component, C, and go to step 7. If PLACED/ 0 look

for an unprocessed component C. which contains a node x such that

x 6 PLACED. Make this component the current one, C, set x =v> z

and NEW(x) => RNEW, and go to step 7. If PLACED ^ 0, but there

is no unprocessed component C. with x € C. and x£ PLACED, then
11

choose any unprocessed component as C, set z=0, and go to step 7.

7) Set 1 ^>J, TEMPREM = 0, TEMPLEN = 0, and go to

step 8.

280

8) If there are nodes of degree one in C, go to step 9; else,

go to step 10.

9) Except for the node z, remove those nodes presently of

degree one from the layout. For each node removed, add a triple to

TEMPREM of the form: (removed node, adjacent node, J). Add one

to J, and go to step 8.

10) If only nodes of degree zero remain in C, go to step 11;

else, go to step 15.

11) Set L equal to the average of the lengths of the links orig-

inally in C. If LENUTEMPLEN = 0, set L => M, add L to TEMPLEN,

and go to step 12. If LENUTEMPLEN/ 0, set M to that element of

LENU TEMPLEN which is closest to L, and go to step 12.

12) Subtract one from J, and go to step 13.

13) If J=0, go to step 14. If J/0, find all triples in TEMP-

REM of the form: (nodel, node2, J). For each such triple, in turn,

set NEW(nodel) as follows: if OLD(node2) = x , y , OLD(nodel) =x ,y ,

and NEW(node2) =x', y', then NEW(nodel) = x, y where:

x'-x
= ~~', » sign (x -x) = sign (x'-x) ,

x -x. x'-x

y2
_yi y y 2

and V(x-x')2 + (y-y')2 = M

Go to step 12.

(14) If z/0 calculate:

281

. „ / II Ax - x - x

. _ / //
Ay - y -y

where RNEW = x', y', NEW(z) =x", y", and for each node a, a £ C,

where NEW(a)=x, y, set NEW(a)=x+ fix, y + Ay. In any case, add

the nodes of C to PLACED and the lengths of TEMPLEN to LEN.

Component C has thus been processed; go to step 6.

15) Call the remainder of component C, C'. All link segments

in C' are now considered to be unmarked, and all nodes to be un-

placed. Look for a simple cycle (no node appears twice except for

the first and last) of minimal length in C'. If there is a choice of

minimal cycles, and if z ^ 0, choose one which doesn't contain z, if

possible. Call the chosen cycle p. Set L equal to the average of the

lengths of the links of the cycle p in the original layout (i. e. use

OLD(x)). Set c , c as the center of the original positions of the

nodes in the cycle p. If LEN = 0, set L => M, and go to step 16. If

LEN/ 0, set M to that element of LEN which is closest to L, and go

to step 16.

16) Add M to TEMPLEN. Form a regular polygon from the

cycle p, with center c , c , and sides of length M. Choose a 6 p' so
x y

that if z 6 p, then z => a, and if z i p, then x => a for some arbi-

trary x £ p. Then orient the regular polygon so that the direction of

the new position of a from c , c is the same as the direction of
x y

282

OLD(a) from c , c . Record the new positions of all x 6 p as NEW(x).
x y

Mark each link in the cycle p as fixed and mark each node in the cycle

as placed. Go to step 17.

17) If the number of unplaced nodes in C ' is zero, go to step 32;

else, set 0 => UNF, 1 => FX, and go to step 21.

18) Add one to UNF. If UNF is greater than the number of links

marked unfixed in C', then go to step 31; else, go to step 19.

19) Set 0 => FX and go to step 21.

20) Add one to FX. If FX is greater than the number of links

marked fixed in C', then go to step 18; else, go to step 21.

21) Set 0 => N; go to step 22.

22) Add one to N, and go to step 23.

23) If N is larger than the number of unplaced nodes in C,

then go to step 20; else, go to step 24.

24) Set CYCLES = 0. Look for the set of simple cycles of

length N + FX + UNF + 1 (the length of a cycle is the number of nodes it

includes) with FX links marked fixed, UNF links marked unfixed, and

N+l links unmarked, containing N unplaced nodes. The unplaced

nodes must be consecutive in the cycle. Set CYCLES equal to this

set, and go to step 25.

25) If CYCLES = 0, go to step 22; else, go to step 26.

26) Choose any cycle q in CYCLES, and remove it from

CYCLES, if possible choosing q so that if z/ 0, z £ q. Determine

283

the two points of contact of the unplaced part of the cycle with the

placed part. These two points are the placed nodes a and b which

surround the sequence of unplaced nodes in q. Draw an imaginary

line, a, b on the layout and count the placed nodes on either side of the

line. Call the side with fewer nodes S and the other S . If both

sides have the same number of nodes, and if z is placed on either

side, call the side not containing z, S . Set S => S, and go to step 27.

27) Position the unplaced nodes in q, say n, n , in order,
In

on side S of line a, b, so that a regular polygon of n+2 sides is

formed with the line segment a, b as one side. For example, if

q = (a, n , n , n , b), we would have the positioning in figure A3 -2.

"2j
ho* /

/

.N©

I
I

Figure A3-2

28) Draw all links of the layout connecting the nodes

n., . . . , n with each other and with those nodes already marked as
1 n '

placed. Check that neither of the following conditions exists:

a) a node lies on top of another node or link.

b) a link goes through a node to which it is not attached.

284

If neither of these conditions exists, go to step 30; otherwise, if

S = S., go to step 29; else, go to step 25.

29) Set S ^> S, and go to step 27.

30) Record the positions of n.,n as NEW(n.), . . . ,
In 1

NEWln) and mark these nodes as placed. Mark all fixed links of the
n

cycle q as unfixed. Mark all other links of q as fixed. Mark all

links not in q but attached to an n. € q (i = 1, . . . , n) as unfixed and

record their lengths in TEMPLEN as well as the length a,b. Go to

step 17.

31) If not all nodes of C are placed, go to step 33; else,

to step 32.

32) _ „ (1 +(n-3)/2 n odd 1 , . ,
Set N - i , , . -./-, where n is the number n 11 +(n-2)/2 n even J

of nodes in C'. If N < | TEMPLEN | go to step 33; else, go to

step 11.

33) Find the center point of the old positioning of the nodes of

C', and call it p ,p . Form a regular polygon of the n nodes in C' the

center of which lies at p ,p . The length M of the sides of the poly-
x y

gon will be that element of LEN which is closest to the average of the

link lengths originally in C', or, if LEN = 0, that average length. The

arrangement of nodes along the sides of the polygon should be as

close as possible to their original arrangement. Record the resultant

position for each node x€ C as NEW(x). Draw all links in C', and

record all lengths in TEMPLEN. Go to step 11.

285

34) Set K-l => K; go to step 35.

35) If K =0, exit (positions in the new layout are those given by

NEW(x); the number of lengths is | LEN|). If K/0, find all triples in

REM of the form: (nodel, node2, K). For each such triple, in turn,

set NEW(nodel) as follows: if OLD(nodel) = x^y , OLD(node2) =x , y ,

and NEW(node2) = x', y', then NEW(nodel) = x, y where:

x -x x'-x
= ~, , sign (x -x) = sign (x'-x) ,

y2~yi y ~y z l

m and v(x-x') + (y-y') equals that element of LEN which is closest

length to the distance between OLD(nodel) and OLD(node2). If, when

this triple is processed, LEN = 0, use the distance between OLD(nodel)

and OLD(node2) and add it to LEN. Go to step 34.

An example of the application of this algorithm will be helpful.

Suppose we have the layout of figure A3-3a. Applying steps 1-3, we

obtain figure A3-3b, which is broken into components C.,...,C in
1 5

step 5 as shown in A3-3c. In step 6 we choose a first component to

process, say C . Processing C. we find no change from steps 7-10.

In step 15, we then choose a minimal cycle, say (5,6,7), and draw it

as a regular polygon in steps 15-16. Proceeding through steps 17-30,

we choose (with UNF = 0, FX = 1, N = 1) the cycle (5, 6, 3) and install it.

We then install cycle (7,8, 4, 5) since the next group of cycles that may

be installed without violating the conditions of step 28 requires that

286

(a) (b)

Figure A3-3

(c)

UNF = 0, FX = 1, and N = 2. We have thus placed all nodes in C , as

shown in figure A3-4a, using five different lengths. But checking the

maximum number of lengths allowed for a layout of six nodes in step 32,

we find that N, =3, and, proceeding through step 33, our result will be

the layout of figure A3-4b, with three different lengths.

Returning to step 6, we choose our next component so that it

contains a node already placed. Thus, we choose C , with z-7.

287

(a)

Figure A3-4

Proceeding again as for C], we find that we can go as far as the place-

ment in figure A3-5a, but cannot place the last node without violating

step 28. Thus we proceed through step 3 1 to step 33 to obtain the

placement in figure A3-5b, with two lengths, one of which appears in

C.. Proceeding back to steps 11-14, we obtain an adjustment for the

node positions of C , so that the placement of the node in common

with C., node 7, corresponds to its previous positioning.

Again at step 6, we choose component C with z = 12. After

removing node 13 in step 9, we find that step 10 sends us to steps 11-

14, where we replace node 13 so that the length corresponds to one

used in C. U C , and the placement of the component C fits with

that of C. U C . Similarly, C is chosen next with z = 13, and proc-

essed in a manner analogous to C .

288

12

(a)

10

Figure A3-5

Finally we process Cc with z - 14. The placement shown in

figure A3-6 is obtained by choosing the cycle (14, 15, 16) in step 15,

and cycles (14, 17, 16) with UNF = 0, FX = 1, and N=l, and (14, 18, 19,

16, 15) with UNF = 0, FX = 2, N = 2. The number of lengths is two,

which is less than N, =3, and so the layout of figure A3-6 is retained

for C_.

Figure A3-6

Adjusting the node positions of C to fit with those of C.-C

we obtain the layout of figure A3-7a. Steps 34-35 then replace nodes 1

289

and 2 as shown in A3-7b, so that the total number of lengths is five

for the layout. The layout is then complete, and, in fact,

| LEN| = 5 <9 = N .

(a) (b)

Figure A3-7

There are several ways in which this algorithm may be modified.

However, at the present time, no experimentation has been performed

to determine whether or not these changes actually should be made.

The most important area of question is in steps 17-33. It would be

more desirable, if, in stepping through the loops in 17-30, conditions

leading to the situations discovered in 31 and 32 could be determined

earlier, and the procedure of the algorithm corrected accordingly. In

290

particular, perhaps the algorithm should be aware of maximal cycles

as well as minimal ones. There is also some question as to the effect

of the ordering of cycle examination in these steps. As it now stands,

the algorithm may find some larger cycles before finding smaller ones,

since all fixed link cycles are examined first. Whether or not this

makes a difference is not known.

Even with the algorithm as stated, several problems will be

encountered in its implementation. Generation of regular polygons

will be complicated. Generation of cycles for a given UNF, FX, and

N is not a simple task either, although an algorithm has been written

by Tiernan (36) which generates the simple cycles of a given graph.

Finally, the check required in step 28 will be quite time-consuming to

perform on a computer. It would be quite an achievement to produce

some method of placement which would guarantee no violation of the

conditions of this step. Thus, there is much room for work on this

algorithm, but it is felt that the basic idea is a viable approach to the

problem.

In order to show that we can guarantee that the layout result-

ing from the process just described contains N or fewer lengths,

given a layout with n nodes, we have the following proof:

Lemma: Let G be a layout with n nodes and at least one link (hence,

at least two nodes), then the layout resulting from the above

algorithm will contain N or fewer lengths, where:

291

N
n

1 + (n-3)/2 n odd

1 +(n-2)/2 n even

Proof: We first consider the results of steps 3-4; there are two

cases:

a) If steps 3-4 remove all links of G the resultant

layout will have exactly one length in which case the number

of lengths is less than or equal to N .

b) If steps 3-4 do not remove all links of G, then

replacing those removed in steps 34-35 adds no new link

lengths. We must then be sure that for the links and nodes

not removed in steps 3-4, the number of lengths in the

resultant layout is less than N . We do this as follows.
n

Let G' be the layout after steps 3-4 have been performed.

Let p be the number of nodes in G'. Since p ^ n, cer-

tainly, N <. N . Now we must show that if we break the
P n

p node layout, G', up into c components as in the algorithm,

where for the ith component, the number of nodes is p. ,

and where:

c

2 P. " (c-1) =p
i = l

(since shared nodes should only be counted once), that:

292

N s +/ (N - 1)
- P.

1 P ; = l Pi

For, the right hand side of this inequality is the maximal

number of link lengths we can obtain, processing each com-

ponent separately, according to the algorithm. This is

because for the first component processed with, say, m

nodes, we guarantee no more than N lengths. And, for
m

any other components, say, with q nodes, since at least

one link length is chosen from the group of lengths already

used, we can guarantee no more than N -1 additional
q

lengths. The removal and subsequent replacement of nodes

of degree one, in step 8-9 and steps 12-13, adds no addi-

tional lengths except for the case where nothing reinains in

a component after steps 7-8. In this case if this is the first

component, one length is added as expected, and, if it is not

the first, no new lengths are added.

Thus it remains to be shown for:

c

Z P: " (c-1) =P
i = l .

that:

I N s 1 + / (N - 1)
l-l l

293

We do this by induction on c the number of components.

1) For c = 1 we have:

N ^ 1 + N - 1 = N
P Pj PX

where p-(l-l)=p=p and thus

N £ N .
P P

2) For c =2 we have two cases to consider; let

p and p be the number of nodes in the two components,

respectively, where p + p =(2-1) = p + p - 1 = p. Then:

i) If p is odd, then N = 1 +(p-3)/2. Since

c = 2 we must have either that both components contain an

even number of nodes, or both contain an odd number. In

the first case:

2

1 + / (N - 1) = 1 + N -1 + N -1
i = l Pi ?! P2

= 1 +(Pl-2)/2 -1+1 +(p2-2)/2 -1+1

= l+(Pl+P2-4)/2

= 1 +(P -3)/2 <; N

In the second case:

2

1 + Z, (N - 1) = 1 + N -1 + N -1
i = l Pi Pl P2

= l+(p1-3)/2- 1+1 +(p2-3)/2-l +1

294

= 1 +(Pl+P2-6)/2

= 1 +(p-5)/2 ^ N
P

ii) If p is even, then N = 1 +(p-2)/2. Since
P

c =2 we must have that one component has an even number of

nodes (say, p.) and one has an odd number (say, P-,)- Then:

1 + ? (N - 1) = 1 +N - 1 +N - 1
i = l Pi Pl P2

= 1 +(Pl-2)/2 -1+1 +(p -3)/2 - i +1

= l+(p1+P2-5)/2

= 1 +(p-4)/2 < N
P

3.) Assume for c =m that the inequality holds.

4) For c = m + 1, let G' be a graph with p nodes

and m + 1 components. Form the layout G with m compo-

nents by adding an extra link between two adjacent components

k and k to form the single component k. The new link

should not involve the node shared between k and k . (This

can always be done since components have at least two nodes

and share at most one). An example of the modification is

shown in figure A3-8. Then for the new graph G" we have

295

G'

-v-
k

that:

Figure A3-8

N ^ 1 +

m

I
i = l

(N -1)

by the induction hypothesis. But for G', we have that:

m+1 m

i + y (N -l) = i + y (N -l) - (N -l)
• _ 1 p- • -1 p- Pi 1=1*1 1 = 1*1 rk

+ (N -1) + (N -1)

where p, - p *Pi " ^i since unchanged components give
k kx k2

the same contribution, and the contributions of components

k and k replace that of component k. But by part 2, for:

I p - (2-1) = 2 P; " l =P
i=l i = l

we have that:

296

N s 1 + / (N -1)
P i = l Pi

or that:

(N -1) ^ (N -1) + (N -1)
P Pi P2

But since p = p +p -1, then:
k kl K2

(N - 1) s (N -1) + (N -1)
Pk Pk, Pk.

and thus:

m+1 m

1 + V (N -1) <. 1 + y (N -1) .
• i P- •-i P- i = l ri l = 1 i

QED

297

Appendix 4

AN ALGORITHM FOR PARALLELISM

This algorithm applies to a layout to increase the amount of

parallelism (or to decrease the number of link slopes) in the link seg-

ments of the layout. The first part of the algorithm (steps 1-5) places

the link segments into sets, called S-sets according to the following

requirements:

1) Every link segment is in one and only one S-set,

2) The first element placed in an S-set is called the key link

segment of that S-set,

3) Each S-set contains at most one subset of parallel link seg-

ments, and, if it contains one such subset, the subset includes the key

link segment of the S-set,

4) Any link segment in an S-set has a slope within r degrees

of the slope of the key link segment of the S-set, where r is deter-

mined by the user, and

5) Any link segment in an S-set which is not parallel to the key

link segment of the S-set, is not parallel to any other link segment in

the layout.

In addition, in the first part of the algorithm, once S-sets are formed,

a c-value or constraint-value is assigned to each node and bend point

in the layout. This value is used later in the algorithm to indicate

298

whether or not, in order to increase parallelism, these points may be

moved, and if so, in what manner. When the c-value of a point is zero,

its movement is unrestricted. When the c-value is one, the point may-

only be moved along a specific line. And when the c-value is two or

greater, the point may not be moved. The reason for these constraints

on points is that once link segments are parallel, or are made parallel,

we want to maintain this parallelism.

The c-values are assigned as follows: Initially the c-value for

a point, p, is zero. Then for each S-set, S, we increase the c-value of

p by one if both of the conditions below are met:

1) p is the endpoint of some link segment, l in S, and

2) l has parallels in S.

As the algorithm progresses, and more link segments are made parallel,

c-values are changed appropriately.

The second part of the algorithm (steps 6-18) consists of proc-

essing each S-set, in turn, starting with those containing the largest

number of link segments. The aim of processing an S-set is to adjust

the link segments of the set so that they are all parallel. We need not,

of course, process S-sets containing only one element.

The first part of processing an S-set (steps 6-10) is to deter-

mine what the resultant slope of all elements in the S-set will be. This

is done by choosing an element of the S-set to whose slope all other ele-

ments of the S-set will be made to conform. This selection is aimed at

299

maximizing the number of elements in the S-set which may be made

parallel, considering the current amount of parallelism and the c-

values of the elements in the S-set. Once the element with the

desired slope is so determined, it is made the new key link segment

of the S-set. At this point all elements in the S-set, which, due to

their endpoint c-values, cannot be made parallel to the new key link

segment, are removed from the S-set. Since the slope of the key link

segment is then to remain stationary, the c-values of each of its end-

points are then increased by one.

The second part of processing the S-set consists of actually

going through each of the link segments in the S-set and adjusting them

so that they are parallel to the key link segment. The manner in which

a link segment is adjusted depends upon the c-value of its endpoints;

thus, according to these c-values the link segment is adjusted in one of

the steps from 13 to 17.

The algorithm is as follows; where r is an "angle of tolerance"

to be set by the user:

1) Record all sets of parallel link segments. For all endpoints

(nodes and bends), n, set c(n) =0. Set all S-sets to null. Go to step 2.

2) Set i = 1; go to step 3.

3) If no link segments remain unplaced in S-sets go to step 5;

otherwise, choose a link segment, n., not yet placed in an S-set, with

preference for one to which others not yet placed are parallel, and

300

place the single element n. in the S-set S. ; mark link segment n.

as the key link segment for S. and go to step 4.

4) Find a link segment, m, not yet placed in a set which

meets the following conditions:

(i) If n. is parallel to other link segments then m may be

parallel only to n. and its parallels, but to no others.

(ii) The slope of m measured over the first two quadrants

is within r degrees of that of link segment n. .

(iii) If m shares an endpoint with any other p £ S., the

slopes of m and p must be opposite in sign with respect to that point.

If such a link segment is found, add it to S. and go to step 4; otherwise,

add one to i, and go to step 3.

5) For each set S. : if the key link segment of S., n. has
l ii

parallels in S., form a set of the endpoints of n. and of all link seg-

ments in S. parallel to it; for each endpoint n in this set, add one to

c(n)„ In any case, all sets, S., are considered unprocessed at this

point. Go to step 6.

6) If all sets, S., have been processed, or if the maximum

number of slopes in all unprocessed sets is only one, terminate the

algorithm; otherwise, choose the set S. which contains the largest

number of different slopes, and go to step 7.

7) Mark S. as processed. If the key link segment for S., n.

has no parallels in S. go to step 8; otherwise, if there are any

301

elements of S. which are not parallel to n. and whose endpoints, say

a and b, are such that c(a) > 1 and c(b) > 1, remove these elements

from S., and go to 10.

8) If there are any elements in S. with endpoints a and b

such that c(a) > 1 and c(b) > 1, choose one such, mark it as the key

link segment for S. (removing the mark from n.), remove all other

such from S., and go to step 9. Otherwise, choose an element of S.,

say j, for which the end points a. and b. are such that c(a.) + c(b.) =
J J J J

Max(c(a) + c(b), k £ S.). Mark j as the key link segment for S.
K. K. 1 X

(removing this mark from n.) and go to step 9.

9) Unless | S. | = 1, for each of the endpoints a of the new key

link segment for S., add one to c(a). Go to step 10.

10) Set N equal to the key link segment for S., and remove N

and all elements parallel to N from S.. Go to step 11.

11) If S. = 0, go to step 6; otherwise, choose an element of S.,
l l

call it n, and remove it from S.. Go to step 12.
l

12) Record the positions of the endpoints of n, a and b, as A

and B, respectively. If both endpoints of n have c-values of zero, go

to step 13. If both have c-values of one, go to step 14. If one has

c-value of one, and the otner, of zero, go to step 15. If one has c-

value of zero, go to step 16. Otherwise, go to step 17.

13) Rotate the link segment n around its centerpoint until it is

parallel to N (a rotation of less than 180°), keeping its length constant.

302

Go to step 18.

14) Find the two link segments n and IT ending on the two

respective endpoints, a and b, for which these endpoints were assigned

c-values of 1. It may be that either n or rL consists of two parallel

link segments from the same node, but extending in opposite directions.

If n , ITL and N are parallel, go to step 11. If either n or n is

parallel to N (say n is), and n is only a single link segment, then
a a

let c be the point of intersection of the extensions of n and TL; now,

if the slope of n with respect to a is the same as that of a, c with
a

respect to a, go to step 11, else, move b to coincide with c and go to

step 18. If either n or n is parallel to N and the parallel segment

is really two segments, go to step 11. Otherwise, find the midpoint of

line segment n, c, and the line, Q, parallel to N which passes through

c. The point at which Q intersects with the line based on the line seg-

ment n is the new position for a, and the intersection of Q with the
a

extension of n is the new position for b. Go to step 18.

15) Let c(a) be one, where a is an endpoint of n. Then let

n be the link segment for which a was assigned the c-value of one.
a

It may be that n consists of two parallel link segments from the same
a

node but extending in opposite directions. If n is parallel to N, and
a

n consists only of one link segment, reposition b so that the length of
a

n remains constant, and so that n is parallel to N (rotating b through

an arc of less than 180° around a). .If the slopes of n and the resulting
ct

303

n are opposite in sign with respect to a, go to step 18; otherwise, go

to step 11. If n is parallel to N and consists of two link segments,
a

go to step 11. In any other case, keeping the length of n constant,

rotate b around a (through an arc of less than 180°) until n is

parallel to N. Go to step 18.

16) Let a have a c-value of two or more. Keeping the length of

n constant, rotate b around a (through an arc of less than 180°) until

n is parallel to N. Go to step 18.

17) Let a have a c-value of two or more. Let n^ be the link

segment for which b was assigned a c-value of one. It may be that

rL consists of two parallel link segments from the same node but

extending in opposite directions. If n is parallel to N, go to step 11.

Otherwise, move b along the extension of n until n is parallel to

N. Go to step 18.

18) If any node or link overlaps have been caused by the move-

ment of a or b, restore a and b to the old values A and B,

respectively, and go to step 11. Otherwise, add one to c(a) and c(b)

and go to step 11.

The algorithm is illustrated in figure A4-1, where r is about

45° . Relevant changes are noted after each step number. In the algor-

ithm links which are parallel in the original layout remain parallel

and fixed. The realization of this last condition however, causes some

difficulty, in that two different sets of parallel links cannot be merged

into one set.

304

If we are willing to give up the guarantee that parallel links

remain parallel, we may remedy this by changing constraint (i) of

step 4 to read:

(i) if both m and n are recorded as being parallel to other

links, but m is not parallel to n, then we must remove the record of

the membership of m in a set of parallel links (made in step 1) if we

add m to S..
1

With this replacement, we have no guarantee that the result keeps

originally parallel links parallel.

(a)

D
(c)

step:

1 c(l) = c(2) =c(3) =c(4) =0
2,3,4 i = 1

Si = {1-2, 3-4)
i = 2
S2= {2-3,4-1}

5,6 Si = Si
7,8 j = l-2
9 c(l)=c(2) = l
10 N= 1-2, Sj = {3-4}
11 n = 3-4, Sx =0
12 a = 3, b =4

A = p(3), B = p(4) in (a)
13 result shown in (b)
18 c(3) = c(4) = 1
6 Si = s2

7,8 j=2-3
9 c(2) = c(3) = 2
10 N = 2-3, S2 - {4-1}
11 n = 4-l, S2 = 0
12 a = l, b=4

A=p(l), B=p(4) in (b)
14 na = 1"2> nb = 3"4

result shown in (c)
18 c(l) = c(4) = 2
11,6 terminate

Figure A4-1

305

Appendix 5

DETAILS OF THE MOD SYSTEM

Most of the details of the system are straightforward and will

not be reported on here. A few details of interest, however, will be

discussed here. These include the internal representation of graph

layouts, the basic structure of the system, and finally, the method

used to determine which nodes and pins are indicated by the closed

figures used for the move and copy operations.

INTERNAL REPRESENTATION

Three lists are used for representing graph layouts in the

MOD system:

1) NLST - node and link storage - 7 word entries .

2) RSLST - relative line, shape, and line storage - 3 word

entries.

3) PNTST - point storage - 3 word entries.

The representation of each entity in these lists is described below.

Each list is originally empty (entries are all zeroes). There is room

for 50 NLST entries, 46 RSLST entries, and 50 PNTST entries. The

entries are used as follows:

word bits

NODES
1 0-2 1 - indicates that this is a node

3-17 pointer to point occupied by node

306

2
3
4
5
6
7

LINK
1

2
3
4
5
6
7

0-17 pointer to shape of node
0-17 1
0-17 J
0-17
0-17
0-17

0-2
3-17
0-17
0-17
0-17
0-17
0-17
0-17

RELIN
1 0

1-2
3-17

2
3

3-17
3-17

6 character name of node

pointer to first outgoing link of node
pointer to first incoming link of node
(no permanent use)

2 - indicates that this is a link
pointer to node at which link starts
pointer to node at which link ends
pointer to next link starting at node in word 1
pointer to next link ending at node in word 2
pointer to first line segment for link
pointer to ADP (relin) for link
pointer to EP (relin) for link

(relative line - used for ADP's, EP's, and shapes)
1 if this is a visible line of a shape; 0 otherwise
1 - indicates that this is a relin
pointer to next relin for shape line, next ADP, or
next EP depending on what this relin is

j for ADP's and EP's these are positions relative
AY

to node center; for shape lines this is x and y
increment for this line

LINE
1 0-2

3-17
2 0-17
3 0-17

SHAPE
1 0-2

3-17
2 0-2

3-17
3 0-2

3-17

(link segments only)
2 - indicates that this is a line
pointer to point at which line starts
pointer to point at which line ends
pointer to next line in link

3 - indicates that this is a shape
pointer to first line of shape as relin
first digit of function number for shape
pointer to first ADP of shape as relin
second digit of function number for shape
pointer to first EP of shape as relin

307

POINT
1 0-2 1 - indicates that this is a point

3-17 pointer to node if this is a node position, or to the line
which ends at this position if this is a bend point

2 0-17 x-coordinate of point
3 0-17 y-coordinate of point

Note that where a word in an entry is not appropriate for a particular

entity, the word is zero. For example, if a node has no outgoing links,

the fifth word is zero, or, if an ADP is the last in a shape definition,

bits 3-17 of word 1 are zero.

Thus, for example, the shape in figure A5-la has the internal

representation depicted in A5-lb. The node in figure A5-2a has the

structure shown in an abbreviated manner in figure A5-2b. The lists

NLST, RSLST, and PNTST reflect the current graph layout and defined

shapes. When a new graph layout is read in on paper tape, the informa-

tion is placed in these lists, and any previous information is destroyed.

When an operation is initiated which would cause any of the three lists

to be exceeded, the operation is aborted.

BASIC STRUCTURE

After initialization of any of the three systems, the control of

the program is essentially determined by the interrupts received from

the Rand tablet. A "main'1 program (MODMN for Input and Frame-

maker, MODMN2 for Output) directs initialization and receives inter-

rupts. Once interrupts are received, they are, in general, processed

by an interrupt handling routine (LMNFRM for Input, LMNFR2 for

308

(a)

SHAPE: LINES:

ADP's:
3
0
5

(b)

Figure A5-1

Output, and FMNFRM for Framemaker). These routines decode the

type of action indicated by the pen movement and call routines to per-

form that action. For example, LMNFRM determines whether a label

in the menu is being pointed at, and, if so, calls the routine to perform

the action indicated by this label. LMNFRM also decides if part of the

graph layout has been encircled. If so, it waits for the next pen move-

ment, to decide whether it should move or copy what has been enclosed.

309

Q-

NODE 1 J5-

B—/—
I

i
500,300

(a)

NODE:

LINK

310

There are a few exceptions to this basic interrupt handling

pattern. If, in Input or Framemaker, the DEFINE label is pointed at,

a routine, GETDEF, is called which puts the define frame on the scope.

For each subsequent interrupt received in MODMN, until "input" is

pressed, interrupts are processed in GETDEF and appropriate action

taken there. Once "input" is pressed, the normal mode of operation

is continued. Similarly, in Framemaker, when "output" is pressed,

FMNFRM calls a routine FOUTPT. FOUTPT then receives the next

interrupt which is typewriter input, rather than tablet input, and takes

the appropriate action. After one operation has been performed, how-

ever, the normal mode of operation is resumed.

Thus it is quite easy to see how additional layout modification

algorithms might be added to MOD Output. The appropriate label

must be added to those displayed in the menu of the main frame (this is

done by adding a label to the permanent display file INFIL2). A routine

must be written to perform the desired algorithm on the internal repre-

sentation of the layout. And, instructions must be added to LMNFR2

to determine when this new label is being pointed at and, when it is, to

call the routine to perform the algorithm. In the current implementa-

tion of MOD, unfortunately, due to the limited size of the PDP-1 used,

little space remains for additional algorithms. A larger computer

would be necessary for extension of the system.

311

METHOD FOR ENCLOSURE DETERMINATION

As a final note, a description is included of the method which

is used to determine the contents of an enclosure made with the pen

on part of the graph layout. This method is based on the following

observation:

Given the interior region, A, defined by a closed curve, C,

within a surface with boundary, B, a point, x, on the surface has the

following properties:

(1) If x lies in A, any line drawn from x to any point on B

will cross C an odd number of times.

(2) If x lies outside A, any line drawn from x to any point

B will cross C an even number of times.

Observation (1) is supported by the fact that, if x is in A, for

every crossing of C, the line passes alternately out of and into the

region A. Since B is always outside A, the total number of crossings

must be odd. A similar argument holds for (2).

Using this observation, then, once a closed curve (represented

internally by a series of straight line segments) is drawn, we simply

count, for each node and pin, x, the number of times a line from x to

some point on the boundary of the main frame box crosses the enclosure.

If the number is odd, x is in the enclosure and will be moved or copied;

if the number is even, x remains unaffected.

312

REFERENCES

1. Allport, F. H. , Theories of Perception and the Concept of
Structure, Wiley, New York, 1955.

2. Anger, A. L. , "An Algorithm for the Genus of a Graph, "
Ph.D. Thesis, Harvard University, October, 1965.

3. Attneave, F. and Arnoult, M. D. , "The Quantitative Study of
Shape and Pattern Perception, " in Pattern Recognition,
L. Uhr, Ed., Wiley, New York, 1966.

4. Baecker, R. M. , "Planar Representation of Complex Graphs, "
Technical Note, 1967-1, Lincoln Laboratory, February, 1967.

5. Berge, C. , The Theory of Graphs and Its Applications, Wiley,
New York, 1962.

6. Birkhoff, G. D. , Aesthetic Measure, Harvard University
Press, Cambridge, 1933.

7. Boring, E. G. , Sensation and Perception in the History of
Experimental Psychology, Appleton-Century-Crofts, New
York, 1942.

8. Breuer, M. A. , "The Formulation of Some Allocation and Con-
nection Problems as Integer Programs, " Naval Research
Logistics Quarterly, Volume 13, Number 1, March, 1966.

9. Breuer, M. A. , "General Survey of Design Automation of
Digital Computers, " Proc. IEEE, Volume 54, December, 1966.

10. Busaker, R. G. and Saaty, T. L. , Finite Graphs and Networks,
McGraw Hill, New York, 1965.

11. Case, P. W. , Graff, H. H. , Griffith, L. E. , Leclercq, A. R. ,
Murley, W. B. , and Spence, T. M. , "Solid Logic Design Auto-
mation for IBM System/360, " IBM J. Res. and Devel. , Volume
8, April, 1964.

12. Di Giulio, H. A. and Tuan, P. L. , "A Graph Manipulator for
On-Line Network Picture Processing, " AFIPS Conf. Proc. ,
Volume 35, 1969.

313

13. Even, S. , Lempel, A., and Cederbaum, I., "An Algorithm
for Planarity Testing of Graphs, " unpublished.

14. Fary, I. , "On Straight Line Representation of Planar Graphs, "
Acta Sci. Math., Volume 11, Number 4, 1948.

15. Flood, M. M. , "The Traveling-Salesman Problem, " Opera-
tions Research, 1956, pp. 61-75.

16. Gamblin, R. L. , Jacobs, M. Q. , and Tunis, C. J. , "Auto-
matic Packaging of Miniaturized Circuits, " in Advances in
Electronic Circuit Packaging, Volume 2, G. A. Walker, Ed. ,
Plenum Press, New York, 1962.

17. Hake, H. W. , "Form Discrimination and the Invariance of
Form, " in Pattern Recognition. L. Uhr, Ed. , Wiley, New
York, 1966.

18. Hartmann, G. W. , Gestalt Psychology, Ronald Press, New
York, 1935.

19. IBM, System/360 Flowchart (360A-SE-22X), IBM Application
Program, H20-0293-1.

20. Kalish, H. M. , "Machine-Aided Preparation of Electrical
Diagrams, " Bell Lab. Record, Volume 41, Number 9,
October 1963.

21. Katz, D. , Gestalt Psychology, Ronald Press, New York,
1950.

22. Koffka, K. , Principles of Gestalt Psychology, Routledge and
Kegan Paul, London, 1935.

23. Kuhn, H. W. , "The Hungarian Method for the Assignment
Problem, " Naval Research Logistics Quarterly, Volume 2,
March-June, 1955.

24. Lee, C. Y. , "An Algorithm for Path Connections and Its
Applications, " IRE Trans, on Electronic Computers, Volume
10, September, 1961.

25. Liu, C. , Introduction to Combinatorial Mathematics, McGraw
Hill, New York, 1968.

314

26. Mamelak, J. S. , "The Placement of Computer Logic Modules, "
JACM, Volume 13, Number 4, October, 1966.

27. Miehle, "Link-Length Minimization of Networks, " Operations
Research, Volume 6, 1958, pp. 232-243.

28. Miller, G. A. , The Psychology of Communication, Penguin
Books, Baltimore, 1967.

29. Mowatt, M. H. , "Configurational Properties Considered 'Good'
by Naive Subjects, " in Readings in Perception, D. C. Beardslee
and M. Wertheimer, Ed. , Van Nostrand, Princeton, 1958.

30. Munkres, J. , "Algorithms for the Assignment and Transporta-
tion Problems, " J. SIAM, Volume 5, March, 1957.

31. Ore, O. , Graphs and Their Uses, Random House, New York,
1963.

32. Rutman, R. A. , "An Algorithm for Placement of Interconnected
Elements Based on Minimum Wire Length, " Proc. SJCC, 1964.

33. Steinberg, L. , "The Backboard Wiring Problem, A Placement
Algorithm, " SIAM Rev. , Volume 3, January, 1961.

34. Sutherland, I. , "Computer Graphics - Ten Unsolved Problems, "
Datamation, May, 1966.

35. Thompson, D. W. , On Growth and Form, Cambridge University
Press, Cambridge, 1917.

36. Tiernan, J. , "An Algorithm to Find the Elementary Circuits of
a Graph, " unpublished.

37. Vincent-Carrefaur, J. J. , "Design Optimization of Small Logic
Systems, " Proc. 23rd Nat. Conf. , ACM.

38. Wertheimer, M. , "Principles of Perceptual Organization, "
in Readings in Perception, D. C. Beardslee and M. Wertheimer,
Ed. , Van Nostrand, Princeton, 1958.

315

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body ot abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

Harvard University
Center for Research in Computing Technology
Cambridge, Massachusetts 02138

\,Za. REPORT SECURITY CLASSIFICATIOK

UNCLASSIFIED
2b. GROUP

N/A
3 REPORT TITLE

THE LAYOUT PROBLEM FOR GRAPHS

4. DESCRIPTIVE NO T ES (Type ol report and inclusive dates)

None
9 AU THORIS) (First name, middle initial, last name)

Martha Greenberg Dennis

« REPORT DATE

August 1971
71. TOTAL NO. OF PAGES

323
7b. NO. OF REFS

38
»«. CONTRACT OR GRANT NO.

FI9628-68-C-0379
6. PROJEC T NO.

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-71-344

9b. OTHER REPORT NOISI (Any other numbers that may be assigned
this report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited,

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

The layout problem for graphs, the problem of automatically generating a repre-
sentation of a graph on a two-dimensional surface, has been of interest in specific
applications for many years, although little work has been done on the general
problem. In this paper three approaches are taken towards solution of the problem.
The first approach defines general layout qualities believed to be desirable.
Means for measuring these qualities in layouts and algorithms for their realization
are developed. A graph layout building and modification system is described wmich
provides an experimental environment for such layout algorithms. The second
approach considers layout from an application dependent point of view. A classifi-
cation of layouts into types is developed according to application, and layout
algorithms for each type are discussed. In this classification, a correlation is
found between complexity of layout type and complexity of layout algorithm. An
extension of the above graph layout building system is designed, which allows for
inclusion of application dependent information in layout processing. The third
approach, that of considering the layout of modifications of graphs, rather than
layout of whole graphs, is briefly considered. It is concluded that this third
approach is the least effective for finding solutions to the layout problem.

DD FORM
I NO V 65 1473 Unclassified

Unclassified
Security Classification

KEY WO RDS

ROLE W T

Graph layout

Complexity of layout type

Complexity of layout algorithm

Application dependency

Unclassified
Security Classification

