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FOREWARD

Under Contract No. N00OOl4-67-0181-0012 with the
Office of Naval Research, the Systems Research Laboratory
(SRL) has been conducting a research program to develop
analytic ﬁode;s of defense processes, principally the com-
bat process. A detailed description of all the research
performed on this program through June 1970 was reported
in SRL 2147 TR 70-2(U) "Development of Models for Defense
Systems Planning" dated September 1870. Additional work
related to the combat allocation process was reported in
SRL 2147 TR 71-1 (U) "Development of Optimal Strategies in
Heterogeneous Lanchester-Type Processes" dated June 1971.

The work in describtive modeling of combat processes
and the development of optimal weapon allocation strategies
assumed perfect intelligence gathering capabilities of the |

forces. For this reason some of the research effort has

A

been directed to the study of intelligence and recon-

naissance processes. A literature review of this area

(reported in SRL 2147 TR 70-1 "“A Review of Search and

RE et A

Reconnaissance Theory Literature" dated January 1970) in-
dicated the need to consider more realistically both en-
vironmental effects and search objectives (interaction 7
with the combat process) in developing descriptive struc-

tures of the search process and analysis of optimal search
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strategies. Some initial ideas in these directions were
presented in SRL 2147 TR 70-2 (U). Research to examine
one dimension of the environmental effects -- the visi-
bility process -- has been performed and is being docu-
mented in the forthcoming report SRL 2147 TR 71-3 (U)

"A Characterization of tne Visibility Process and Its
Effect on Search Policies." Research on incorporating
the effects of search objectives (called the response
process) is described in Lﬂgi report. The research ex-
plores the development of mathematical structures which
link the search and response processes, examines the
effect that the response process has on classical search

strategies, and attempts to develop some physical in-

sight into the relationsnip between the two processes. ( D
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CHAPTER 1
INTRODUCTION i

Classical search theory consists of the collec-
tion of mathematical models which are used to determine
preferred strategies for locating or finding an object
of interest. These models may be viewed as experi- 1
mentation strategy models where the experimentation |

process is modeled by a stochastic detection function

with the underlying state of the system unaltered by %

Associated with important practical search operations

the experimentation strategy. The objective of the

activity is to find the object or target of interest.

are experimentation costs. Thus, it is reasonable to

For the searcher

assume that the searcher expects to benefit by using the %
information generated by the search. a

to benefit from the search, he must be involved in some

activity which is dependent on the search outcome. i

el A

Military units search for targets to track their move-
ment, engage them in battle, or perform some other

activity which depends on first acquiring the target.

The searcher in oil explorations attempts to locate oil
deposits which would be profitable to recover and sell.

In general, the searcher searches for the object of inter-

lThis is in contrast to stochastic control theory where

the state of the process is altered by the controls
and the objective is to estimate the state of the system.

S A S

==

R
=

e oy s



. R A T Gt 'Wm;,qﬁﬁ%m%&?ﬁ MR A ’ﬂ?ﬁéﬁw:k{ Qﬂff‘
] )
]

est in order to optimize his 1nvolvement in this search |
!

related actlvity which we shall refer to as presponse ‘'

t i ' f

process. ‘

{

' The purpose of this research 18 to explore the dev-

! o { . ot

)

elopment of mathematlcal structures which llnk the search

and response processes ’ examlne the: effect that the re-

‘sponse process has on C}GSSIGGI search strategies, and
! ' n' ! 3 ' I | !
~gain some physicai insight. into the relationship between

H

the two processes.- The specific reéeerch'problehs

addressed are delineated'dn Section 1. 3 following a gen-
d i
eral characterlzat1on of search models in Sectlon l 1.

and a review of, the search theory 11terature 1n Sectlop '

1020 : ’ i | ' t
' | ! ‘

1.1 ‘Characterisation of Search Models '

' Search problems may be structured with the elehents

f i

and interactions ipdicated in Figure 1.1. 'The search-

response system consists of detectors, reésponders ahd
! i
i i
the decision maker. .The search-response environment
1 { ]

consists of targefs (objects of the’searqh),'other

elements and the response process. Interactions between
i ' !
. !
the searéhrrespoqse system and its environment are sép-

arated into two main groupings.called the search process

and the response process. The sear'ch process consists
! . 1 :

. " . . J # 0 J . y

of the information gathering interactions. The primary
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search-related interactions of interest to the decision
maker comprise the response ﬁrocess.

A target may be defined as an entity about which the
search-response system attempts to gather information. A
detector may be defined as a specialized device for collec-
ting information about targets. Detectors receive signals
which may contain desired target information, amplify
these signals and transmit them to the decision maker. In
some systems, such as radar, the detectors also provide
the physical energy for the signals.

Those system elements which participate in control-
ling the operation of a search-response system are collec-
tively called the decision maker. The decision maker
extracts information from the detector signals and other
sources and integrates this information to arrive at opera-
ting decisions for the action elements of the search-
response system. The action elements which are not detectors
are called responders. That is, an element which carries
out a non-detection function under the control of the de-
cision maker is defined to be a responder. While detectors
may be involved in the response process, responders are
the specialized elements having direct response process
participation as their primary function.

The definitions given for target, detector, decision

maker and responder are all operational in character. There-

A
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fore, there may or may not be a simple correspondence be-
tween these operational elements and specific items of
equipment for a system. Some of the elements in Figure 1.1
may be combined in one item. For example, a combat soldier
may conduct a visual search for enemy soldiers, act as
decision maker in evaluating the search information, and
then perform the role of responder by engaging the target
(enemy soldier) in a duel.

In Figure 1.1 the nature of the interactions as well
as the elements themselves may vary for different problems.
For example, radar detection systems transmit series of
electromagnetic pulses into the environment and then collect
reflected signals containing environmental information.

But, unaided human visual detection systems simply colliect
a continuous stream of general scattered light containing
environmental information.

A wide variety of problems including those of military
combat, medical diagnosis, information storage and retrieval
systems design, mineral exploration, and many others in-
volve the operation of detection systems to collect infor-
mation to aid in making basis system operating decisions.
Thus, these problems may be considered to be search-response
problems. Figure 1.2 presents a taxonomy for classifying
search-response processes based on distinctions which we
conjecture to be important in the analysis of such processes.

Each possible path from block A to block C in Figure 1.2




Target and Environment
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Figure 1.2 Search-Response Process Characterization
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represents a class of search-response sysfem process.
Within =ach class there are many types of problems depen-
diug on the detailed characteristics of the process elements
and relationships. The heavy-line paths through Figure 1.2
characterize the processes considered in this research.

The foilowing comments are intended to amplify the
meaning of certain elements in Figure 1.2:

l. In some search models the relevant target status
is described by an integer représenting the iden-
tification of the target gtatus with one of a
countable set of classifications. Such models are
said to be discrete search spacé models. When the
target status cannot be described by an integef,
the search space is said to be continuous. For
example, many medical diagnostic tests, which can
be viewed as search processes, are designed to
determine if the patient has a particular disease
condition. The corresponding "search space"
consists of the set of possible disease conditions
which can be considered countable. In contrast,
the combat soldier searching for enemy soldiers
needs to know the enemy soldier location in order
to fire his weapon (respond) optimally. Thus, his
search space is continuous.

2. In searching for a target in real space the detec-
tor may be totally ineffective for some periods
of time because of environmental obstructions such
as trees, hills, etc. When this is the case, the
target is said to be invisible. When no such
effects interfere with the detection process, the
target is said to be continuously visible.

3. Decoys are environmental items which produce ue-
tector signals similar to those produced by tar-

‘s‘
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gets. For example, civilians at the scene of an
infantry "search and destroy " operation are decoys.
‘Identifiable decoys are those which can be identi-
fied as non-target items by the application of
additional search effort.

In searching for discrete targets one assumes that
a single target is detectable and significant. For
continuous targets, however, the basic unit is suf-
ficiently small to be either undetectable or unim-
portant. Only some larger quantity, representable
by a continuous variable, is sought. An example

of a continuous target is found in oil exploration

searching.

-For an unknown target quantity model the term risk

refers to a situation in which an acceptable proba-
bilistic description for the target quantity is as=-

sumed. The term uncertainty applies to those situa-

tions for which no acceptable probabilistic descrip=-
tion for the target quantity is known. This dis-
tinction, though only a matter of what the decision
maker is willing to assume for analytic purposes,

is quite important in determining the form of the
analysis and usefulness of the results.

Active targets select their behavior (location,
movement, etc.) for the purpose of gaining advan-

‘tage in their involvement in the search-response
- process. The behavior of passive targets lacks

such purpose.

The probability distribution of effort (or time)
until a detector detects a target which is present
is called the detection function. If this proba-
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11.

12,

bility distribution is discrete, the detector is
said to be a discrete detectar. If the proba-
bility distribution is continuous, the detector
is said to be continuous.

Noisy detectors are those which transmit signals
containing false positive indications of target
information. That is, noisy detectors sometimes
trigger false "detections." In contrast,
noiseless detectors never yield unreliable or
false indications of target information.

Some detection systems alter their mode of opera-
tion when a positive indication of a target is
encountered. Such detection systems may be
called multiple mode systems. Systems which do
not switch from one mode to another may be called
single mode detection systems. |

Response processes can be classified according

to whether the time duration of the process is

important to the problem. Events are processes
which, for practical purposes, consume no time.
Continuous activities are processes which con-

sume a significant amount of time.

The control of a response process can involve
either the responder, the target or both, as
well as other environmental elements. In the
case of a duel between opposing infantry combat
patrols either unit may be able to disengecge
from the duel. Thus, both the search-responder
and the target participate in controlling the
response (duel) process.

For some search problems the response process
occurs regardless of the search outcome. In




R AT I e S A A R B

me‘f‘fm

oE
oty

i | -11-

R
r;g-g‘»;-."aid e

-
-

such cases the response process can be thought
of as scheduled. For example, in an air force L ﬁ
tactical support operation related to a ground }
batflg, bombers may be used regularly to attack

the most valuable targets identified from photo-
graphs made by reconnaissance aircraft. The

— detectors are the reconnaissance aircraft; the

- responders are the bombers. The purpose of the
] search is to improve the eff<ctiveness of the
bombing.
| For some other problems the response pro-
cess cannot operate unless a detection occurs.
| In this event the response process may he thought
of as unscheduled. The duel between opposing
i infantry patrols represents an unscheduled re-
= sponse process.
f 13. Coupling between the search and response pro-
— cess exists if either of these processes directly
o interrupts, interferes, degrades or enhances
L the other.
- 1.2 Review of Search Theory Literature |
' In this section we review some ot the important P
.J !
- !
; search theory developments which are relevant to the ;
L search models developed in this research. Emphasis is
placed on those works which are germane to the research.
-~ For a more comprehensive review of the search theory ]
literature see Dobbie (13968) and Moore (1970). 1
Analyzing World War II antisubmarine operations j
L Koopman (19u46) developed a descriptive model for com- ?
puting the detection function for a continuous search
:
'
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space, continuous detector search situation. He assumed
that the underlying detection process is a Poisson pro-
cess in time with intensity parameter, y(t), a function
only of the distance from the detector to the target.
Thus, the probability that the detector will fail to

detect the target during the interval (to, tl) is

"

t
1l

F(to, tl) = exp -f y(t)dt (1)
t

where y(t) is evaluated along the trajectory describing
the position of the target relative to the detector as a
function of time.

Equation 1 cannot be applied directly %o any search
problem because the relative trajectory of the target is
never known to a searcher. However, by making various
simplifying assumptions, useful detection models can be
derived. If the relative trajectory is a particular
straight line, (1) can be used to compute the probability
of detecting the target as a function of the minimum
distance between the dJ~tector and target (miss distance)
and the relative speea. (This function, with relative
speed fixed, is called the lateral range curve.) Given

any probability distribution of miss distances, one can

s = = =
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obtain the probability distributions of miss distances,
ranges and bearings for the targets that are detected.
Koopman considered the following search problems

l. A fixed target's position has a uniform proba-

bility distribution over a large area of size A.

2. The detector is a definite range law device. ;
That is, if r is the distance between the
detector and the target, ]

0 for O i r < Rm
o for Rm < r,

where Rm is the range of the detector.

3. The detector moves with constant speed along a
random path in A consisting of straight line
éegments which are much longer than R . Then,

by it can be shown that the detection process

0] follows the "law of random search"

| P(L) = exp | - %E 5 (2)

where

—_
-
"

length of the track covered by
the detector, and

W = the integral of the lateral range i
curve over all values of miss dis-
tance. 4

W is called the effective sweep width of the detector.

R ICCIES:
a

This development eliminates the need to know the relative

of searching time until a detection occurs (the detection

function).

l trajectory in order to predict the probability distribution

s
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Since the sssumptions:needed‘to deriye the "formula‘ '
of random search" are very reatrlctlve, an assessmént of
the posslble errors in (2) as an approximation  for real
deteqtlon processes is needed. Cons*der a deflnlte range
law detector systematically searching for a fixed target

| 1n a long strlp of width tw1ce the range (R ) of the , |
deteetor.' Assume that the target is located at random
in'thislstrtp.l If the detettor startS'at the middle of,
!one end of the strip:and travels at eonstant speed tprodgh':

, . :
the center 'of the strip, the probability of detection is

i i L ‘ . |

given by ‘
. f q 1 i
| WL A ’
. ‘ i A i for 0< L o
, P(L) = ' ' (3)
1 for .% < L, ,

]
i

where Alis the area of the strip. (End'effects have been

neglected in equation 3. Figure 1.3 shows' the corresponding

. t ! i } i : . .
"law' of random search" and systematic strip search detec-

tion functionc. The slopes .of these' detettion functions:
; ' i
are the same at/L = 0. The maximum difference between

these; two detection functions is e'l,? .368. But this

i

value occurs énly at L = W which corresponds to the end
d i

of the systematlc search of the strip. A dlfference of
! i

‘this magnltude cccurs beeause because the Systematlc

search derives the maximum p0381ble amount of information




Detection Probability

W=1, 4= 100

, : 1
‘ : [ ' ; 3

— Systematic Search ;1

I -' — 'Koopmah "Law of Random Search"

1.0

[=
-
[-,]
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Figure 1.3 Detection Functions for Koopman "Law of
Random Search" and Systematic Search
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from the negative search result early in the search while
the random search derives no information at all from a
negative result. If it is possible for the detector to
overlook the target or for the target to move from the
unsearched portion of the area to the searched portion
without being detected, the detection function will be
closer to the "formula of random search" than is the
systematic search detection function. As long as the
target cannot evade the detector, the detection function
should be bounded from below by the "law of random search."
Thus, many real search situations may be expected to be
governed by detection functions which are approximately
of the "law of random search" exponential form.
Considering both a continuous search space and detec-
tor, Koopman also addressed the problem of allocating a
limited amount of search "effort" to maximize the proba-
bility of detecting a fixed target whose location is
described by a non-uniform probability distribution. Let
A = region containing the target,

X = a point in A,

p(x) = probability density function for target
location,
w(x) = search effort density allocated to point x,

W = total amount of search effort available.
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Assume that

min p(x) = Pg > 0,
A
and

Pr(Detect target | Target is at x) = 1 - exp(-w(x)).

Then, the problem.is to
max Plw] = max p(x)[1 - exp(-w(x))ldx,
w w A
Subject to
wix) >0,  fwx)ax =W
A

Using variational arguments Koopman showed that

1n p(x) + %T[w- j;* 1n p(x)dx] for x € A%

wk(x) =
0 for x ¢ A*
where
A*={x| p(x) > b,
ln b . p(x) dx = In p(x) dx - w} :
p(x) > b p(x) > b

He noted that a series of optimal increments of effort
wl,wz,... each based on the Bayesian updated target proba-
bility distribution, given that no detection has occurred,
results in -an optimal allocation of the total search

Wy + W, + oo,
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The Koopman search optimization model is not easily
related to the Koopman descriptive search model. If the
underlying detection process is that of the descriptive
model, then the "search effort density" of the optimization

model is

t
w(x) =/ y(x, g(t)) dt,
yO '

where

(to,tl) time interval for the search,

position of the searcher at time t, and

E(t)

y(x, E(t)) = conditional detection rate at time t,
given that the target is located at =x.

The obvious, natural optimization problem is to maximize
P[{w] by selecting £(t) subject to searcher mobility con-
straints. In general, this problem is much more difficult
to solve than the Koopman optimization model in which
the decision function, w(x), is not encumbered by the
obvious consistency relations described here.

Since the Koopman search optimization model leads to
a neat, non-trivial solution, the simplification obtained
by ignoring consistency constraints on w(x) is not to be
dismissed lightly as unreal. We wish to describe con-

ditions under which this simplification is logically sound.

e
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First, if the target location probability distribution is
uniform over an area having dimensions' large compared to
the range of the detector and the searcher moves with con-
stant speed at random, the simplification is valid. But
this case assumes the optimization result as well as a
very special target location probability distribution.

For an arbitrary target location probability distribution
the consistency constraints on w(x) are of two types:
mobility and area coverage. The mobility constraints

come from limitations in the speed and accelera-ion of
the searcher. The area coverage constraint arises be-
cause at any given time the searcher is searching an area
with the séarch rate varying over the area as prescribed
by the detection rate function, y. Thus, it is not pos-
sible to concentrate the search effort density arbitrarily.
If the range of the detector is very small (compared to
the distances between points for which p(x) are signifi-
cantly different), the area coverage constraint will not
affect the solution. Further, if the amount of search
time is very large (compared to the time needed to search
the entire area), the mobility constraints will not affect
the solution. If the Koopman optimization simplification
is to be valid in the limit for arbitrary target location
probability distributions and amounts of search effort,

the range of the detector must approach zero and the




mobility characteristics (speed and acceleration) must
increase without bound. Therefore, the Koopman optimi-
zation model inherently assumes a pointwise detector with
infinite mobility.

deCuenin (1961), Zahl (1963) and Arkin (1964) have
generalized and embellished the Koopman continuous search
space, continuous detector search optimization model to
consider more general detection functions and problem
constraints. But, these generalizations retain the basic
pointwise detector characteristic. Considering the amount
of search effort as a parameter, Arkin proved that, given
an arbitrary continuous increasing detection function,
there always exists a search plan which maximizes the
probability of detecting the target for all amounts of
search effort. Such a plan then, minimizes the expected
effort needed to detect the target, assuming that no
limit exists for the amount of search effort.

Blachman and Proschan (1859), Pollock (1960), Matula
(1964), Chew (1967), Kadane (1968) and Ross (1969)
analyzed discrete search space, discrete detector search
models similar to the continuous search space, continuous
detector models discussed above. The target in these
models is located in one of a finite number of possible
locations or "boxes." The detection process consists of
a series of "looks" directed at individual boxes. On

any given look at the box containing the target there is
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a non-zero "overlook" probability (probability of not ]

[4 detecting the target). Pollock discovered that the search {

L) plan which minimizes the expected number of looks needed %

— to detect the target also maximizes the probability of {

J detecting the target for any given number of looks, given i

| that there are two boxes and that the overlook probabil- 1
} ities are independent of the number of looks. Chew

extended this result to the corresponding case with an ?
L arbitrary number of boxes. Considering a model with the
cost of looking and the reward for detecting the target
dependent on the box being searched, Ross found that the
optimal search plans failed to substantiate three intuitive i

conjectures.

Charnes and Cooper (1958) considered a discrete
search space, continuous detector search model which is a

discrete search space analog of the Koopman search opti-

L Eo e ) e

mization model. The target is in one of several boxes,

but the search process follows Koopman's "law of random

[

search" exponential time to detect form. The problem of
l allocating a limited amount of search time to maximize

N the probability of detection is reduced to a separable,
concave mathematical programming problem. The authors

characterized the solutions by applying the Kuhn-Tucker

conditions to the problem. Moore (1971) developed a
slight generalization of this model and referred to it

repeatedly as the "Standard Koopman Allocation" model.
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This generalization of the Charnes and Cooper model is
developed in Chapter 2 of this research and is referred
to as the Koopman model.

While the (Charnes and Cooper) discrete search
space model is formally identical to the analagous
Koopman continuous search space search optimization model,
these two models contain an essential difference in
assumptions regarding the underlying detection process.
The discrete search space version embodies the detection-
at-a-distance property which characterizes many detector;-
such as radar, sonar, infrared detectors, etc. That is,
if each box is itself as relatively large uniform area,
the Koopman descriptive model leads one to expect the

detection function to follow the "law of random search"
approximately.

In an experimental study Stollmack (1968) empiri-
cally determined distributions of times for stationary
experienced army personnel to visually locate a tank in
the terrain surrounding Fort Knox, Kentucky. These dis-
tributions were found to agree well with Koopman's "law
of random search." A wide range of empirical detection
rates was observed depending strongly on the background
as well as the distance between observer (detector) and
tank (target). Thus, even though the processes are
markedly different (experimental stationary visual

detection of a stationary target and moving random search)
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we have evidence of the appropriateness of an exponential
detection function modzl with detection rates significantly ‘V
dependent on the location. ?
Dobbie (1963) investigated the generality of the ‘%
Koopman result concerning the overall optimality of suc- !
cessive optimal allocations of increments of effort to g
maximize detection probability. He found that such %
incremental allocations result in an optimal allocation é

of the total effort if the optimal effort allocation is
non-decreasing in the variable available effort. For
stationary targets this holds if the detection function
is zero at zero effort density and is an increasing, con-
cave function of effort density. Of course, Arkin's
result above for continuous search space models estab- ;i
lishes that the concavity restriction is not necessary.

1

But, Arkin's result does not hold™ for the discrete

lTh@s can be seen by considering a two-box example with &
uniform target location probability distribution. Let 4
the detection functions for the two boxes be

T o 0<t; <l
g Cp 1 1<t ,
0 0<t,< i ¢
= - 2
£2(t) =4 1 L, .
2 — 2

Then, for amounts of search time, T, in the interval
(0,4) the detection probability is maximized by t;=T, E
but®’for T in the interval [%,%] the detection proba- i g

bility is maximized by t1=T-%, t°=%.
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search space models. Dobbie also argued that maximizing
the detection probability for a given amount of search
efiort may not correspond to the searcher's real motiva-
tion. He suggested that search objective functions should
2 be carefully selected on the basis of the characteristics

. of the search problem context.

; Novosad (1961) and Mela (1961) apparéntly indepen-

dently published search models showing that maximizing

.y

information gain (change in entropy) can lead to different

TR TP

search allocations than those which maximize detection

1 probability. Then, Danskin (1962) published two papers

= s = B= s/ = s E=E) |

in which information gain was taken as the search objec-

il
4

e R 5 ke e it

tive. Tognetti (1968) and Kadane (1971) considered

{

discrete search space, discrete detector models in which

the objective is to maximize the probability of either o= ;

detecting the target or correctly guessing the target RRE

location following the search.

Smith (1969) first introduced false detections ex- L ;
plicitly in a discrete search space, discrete detector %
model similar to those of Pollock and Chew. That is, L

in addition to the overlook probability, he assumed a {}

nonzero probability of "detection" on a look when, in

i
TPy A WORNLY e Eaee

fact, the target is not present in the box being searched. i

Using Bayes' formula he derived the sequential search pro-

cedure which maximizes the probability that the first Lf
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"detection" is a true detection. This optimal procedure
consists of always allocating the next look to a box
having the highest Bayesian updated probability of con-
taining the target. This optimal search is shown to
minimize the expected number of looks until a "detection"
occurs,

Stone and Stanshine (1971) considered a continuous
search space, continuous detection process search model
involving false detections. The false detections are
assumed to result from the detection of faise te 'gets
which cannot be distinguished from the real target by the
basic search system. These false targets can, however, be
identified by interrupting the basic search and employing

special methods to identify the contact as either target

or false target. In terms of our taxonomy this contact

investigation may be regarded as the response process.

The model is characterized by a repeated, continuous
activity response process coupled with the (basic) search
process by some interference mechanism which requires that
the basic search cease while a contact is being investi-
gated. In this model the target location is characterized
by the probability density function, f(x). The false
targets are described by their collective "false target
density function," 8§(x), which expresses the number and

location probability distribution of the false targets.
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5 The contact process 1s governed by a contact function ; S §
! . i
i ' analogous to the detectlon functlon of the Koopman @odel. , = 1
i )
i , That is'if either the target or a fa;se target is 1ocated ‘ j 3
E ; ! | i ! :
E . at point x and effort density m(x,s) is expended at x, ! §
] . i i . e 1
i the probability of contacting the target or false target ‘ .
, : i

' isfb(m(r,s)). Assume that : , 5 l
' | .y
(i), b(0) = 0, 1lim Bd(z) = 1, '

; . ' 200 / ' :

! i 2 ’ 3 =
i ) L ! | f J

¢ii) b', the derivative of'b, iis a continuous 1

‘ . posit;ve,ldecreasing function , | ' | K 118
ee ]
| 'mgx,s) | search effort density . allocated to point x . , : é
, when s units of basic searoh time have been ;
| , - expended. T ' ' 0 |

+The constraints on m are ; '
, .

{ . .
(i) - m(xgs)'z_ 0.’ f | ! g ; -

t P . i 1 . . o AN i
.o (1i1) m is non-decreasing in the second argument

i for each x, and
. ! i f i
(iii) ]h(x,s)fdx = Us. o 1
i [ ‘ f : ‘
The probability of, K contacting the target by basic search : .
i ' ' : i ; g r
; time s is Bl f . f ' ' i - ”*
' ) 2 : i . ; : _J ]
P(m,s) = [ff(x) bm(x,s)) dx. | | |
i ’ ' . 4 ’j,f
’ The time needed.to investigate a false'target is 'assumed i %
i P c g A ‘ : ' i 11
, to be a random variable, T(x), which depends on the loca- ' i
! ] !
: i ) L !
‘ tion of the false target. : - : : ’ ]
o : i d ! i l !
£(s) = fo(x) bim(x,s)) dx -
. I ' [ O '! 1
' l i 1 b
a ! 1
, 1 [ : ! . ;
. | . L |
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l;s the qxpectéd number of false contacts by basic search
{

time s. If all contacts are investigated immediately,

o w ) d
the expected time spend in identifying false contacts

before basic search time s is

i : ! i

T(x)8(x)bim(x,s)) dx.
-' ', ! ' : s
Immediate contact investigation is shown to be optimal

J g
'if the contact investigation phase cannot be interrupted
L |

to :switch back to the basic search phase. It is shown
{ H

. that no éearch-identification plan can maximize the proba-
:bility of contactiné gnd igentifyiné the target before
ever;-amount of total search and identification time. A
Ne&min-?eargon fypelof‘allocation is shown to minimize the
expected total seérch‘and identification time needed to

' 1oqate'thé»tafge;. The resultiﬁg optimal allocation pat-
'"tern for aiéimble exa@ple is éhown to be closely related
to the corresponding Koopman optimal allocation model with
no faise’targets.=

Tﬁis;false de%eqtion moéel;inVOlves a curious mixture
4of‘a fixed basic seafch plén which_ig never altered in
reqpoﬁse to éhe Butcope ?f the search and opportunistic

exploration of the contacts which occur. By adhering to

this fixed basic search plan the model avoids detailed

0
i

rconsideration of the source of false targets and the

effect.bf the identification of false targetz on the under-
/

lying probability distribution structure.  ‘'hat is, the

1
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model lacks sufficient definition to permit the computa-
tion and use of false probability distributions of the
number and locations of uncontacted false targets via
Bayes' formula.

Pollock (1971) considered the nature of the overall
problem setting of search theory. He suggested that
search models have too often oversimplified or ignored
the detection theory and decision theory aspects of the
problems being addressed. Search-related Jetection and
decision models involving significant search modeling
are similarly lacking in the literature. .He argued that
separate modeling of these three parts of search processes
has lead to interface problems. The difficulties encountered
by this fragmented modeling appear to constitute an excel-
lent example of the suboptimization syndrome pointed to by
Hitch and McKean (1960).

Compared to the apparent complexity and variety of
practical search problems as reflected in the taxonomy of
Section 1.1, current search theory models are distinguished
by their simplicity. The search literature is dominated
by models incorporating essentially generalizations of
Koopman's original search optimization model. A few
authors have noted that the detection probability maximi-
zation of these models may be misleading as a guide for

allocating search resources in many search problems. Yet,
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only recently have researchers begun to consider search‘
problems from a more comprehensive point of view and to
investigé¢.te other possible objective functions for search

optimization.

1.3 Area of Research

In Section 1.1 we presented a rather complicated
taxonomy for classifying search-response models. This
taxonomy represents an intuitive conjecture of which dis-
tinctions are fundamental to the analysis of the vast
variety of practical problems involving search-response
processes. Of paramount importance in this taxonomy is
the notion that the search results represent intermediate
states in the overall system operation rather than the
essential motivation for conducting search activities.
Thus, we regard the response process as the primary
activity of interest to the searcher.

The ' importance and effect of the response process can
be considered in context of many combinations of model
characteristics noted in the taxonomy of Section 1.1. Al-
though it is felt that analysis of many of these structures
will be necessary to fully understand the relationship
between response and search processes of necessity this
research has focussed on but a few dimensions to develop

some preliminary understanding of their dependency.
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Because, a priori, we expect the analysis of search-re-
sponse problems to depend strongly on false detection
effects, noisy detectors are examined. The analysis is
performed in conjunction with the principle discussion of
scheduled and unscheduled response processes. Discrete
search space, continuous detector search models similar
to that analyzed by Charnes and Cooper are used in the
analysis.

Detection events are inherently decisions. Therefore,
the "detection" rate can be changed by changing the cri-
terion used for making a positive detection decision.

But, changing the criterion for the detection decisicn
changes the false detection rate as well as the overall
detection rate. Thus, there exists a technical tradeoff
relationship between the detection (decision) rate and the
false detection rate. This relationship is called the
receiver operating characteristic curve. An important
practical question in the design and operation of de-
tectors is the selection of an operating point on the re-
ceiver operating characteristic curve. Although our models
can be used in analyzing this operating point selection
problem we have concentrated attention on analyzing the
search allocation problems with the operating point
assumed fixed.

As previously noted, the purpose of this research is

to (a) develop structures which link the search and re-
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sponse processes and (b) use these to examine the effect
that the response process has on classical search strate-
gies and gain some physical insight into the relationship
between the two processes. Hypothetical'search-response
system models with false detections are developed and com-
pared with corresponding classical search optimizatioﬁ
models. - Such comparisons provide guidelines regarding the
robustness of the classical models as guides for search
decision makers and develop insight regarding the impor-
tance of the response process and false-detection model
elements. A modified version of the claésical Koopman
model is used in these comparisons since most efforts in
search theory have been essentially embellishments of it,
and accofdingly, it is felt that results would apply to 1

other more sophisticated search optimization models. 1

Sieins

Emphasis in the research is on the relationship

between model assumptions and results. Therefore, tedious

i

technical detailed developments are presented in appen-

dices rather than in the main body of the report. Chapter
2 considers an unscheduled response process search model.
Chapter 3 considers three closely related scheduled re-
sponse process search models. Chapter 4 summarizes the

major results of the analyses and discusses directions

for future research. !




CHAPTER 2
SEARCH MODELS WITH UNSCHEDULED
RESPONSE PROCESSES '

In this chapter we develop and analyze two models of
unscheduled response-search processes. The first model is
the discrete search space version of Koopman's original
search allocation model. Hence, we call this model the
Koopman model. As previously noted, it has been throughly
studied and embellished by other researchers. We include
the Koopman model as the primary model examined in the 1lit-

erature with which succeeding models are to be compared.

1 of the

The other model represents a simple extension
Koopman model including explicit treatment of the response
process and false detection effects.

The models of this chapter consider only two possible
target locations or "boxes." The generalization of these
models to consider an arbitrary number of boxes has been
performed and follows directly from the two box case.
There were two main reasons for limiting this discussion

to the two boxes version of these models:

1. The models of Chapter 3 with which we wish to

lwe have developed several models similar to this exten-
sion of the Koopman model. The specific one included in
the analysis illustrates the basic character of these
models and their implications.

-32-
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compare results are not easily generalized to
the corresponding models considering arbitrary
numbers of boxes.

2. The two boxes versions embody the significant
conceptual results we wish to illustrate. Thus,
the symbolism and graphical complications assoc-
iated with discussing the multiple boxes versions
simply detract from the effects we want to
emphasize.

2.1 The Koopman Search Model
Exactly one stationary target is located in one of
two boxes with

p; = Pr(Target is in box i).

The detection process for searching in the box which con-
tains the target follows Koopman's formula of random
search. That is, the conditional search time-to-detection,

given that the target is in box i, is characterized by1

-.ka t
e 1 = Pr(Target is not detected | Target is in

box i Ys

following a search of duration t in box i. The searcher

allocates a limited amount of available searching time,

lUse of an exponential detection law in this analysis is

based in part on the functions mathematical simplicity
which facilitates interpretation of the results and its
.origin, occurring axiomatically in random search processes
and empirically in visual detection processes (Stollmack,
1968). ‘
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T, between the two boxes to maximize the prébability of
detecting the target.
Let

T, = amount of available time allocated to

searching box i.
Then the Koopman search allocation problem is to select

Tl and T2 which

Max DP = MaxE pi(l-e )

i=1
(%)

subject to Tl’ T, 2 0 and T1 *T,< T,

Note that pl, Py kl’ k2 and T are necessérily non-neg-
ative. If any of these parameters are zero, the problem
is trivial. Therefore, we assume that these parameters
are all pogitive. |

Appendix A uses the Kuhn-Tucker conditions to de-
velop a solution algorithm for a generalization of this
Koopman search allocation problem. Applied to the Koop-
man problem, (4), this algoritnm yields thé following:
Let indices be assigned such that plkl > p2k2. Also,
let (T{, T#) denote an optimal allocation and DP* the
corresponding target detection probability.

1. (T*,Tg) is unique with Tf + Tg = T for any

0 < T< =,
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2. The solution can be expressed analytically in
terms of the problem parameters and

If W< T,

-35-

p.k
1, Pk
w:—ln >0.
k)T Pky =

If0< T<W,

(T4, T = (T,0).

k
2
? W+ W(T-W) and

._].
%
"

.kl
(T-W) .
2 " kK,

-3
»
5

3. The corresponding optimal target detection

probability is

DP#*

-

for 0 < T < W

-k, T

ko W-T

l-p2 1+FI expl—T—T for W< T.

+
] K%,

The trace of an optimal allocation plan, (TI, T%)

as a function of T, is shown in Figure 2.la.
such traces optimal trajectories. Koopman model optimal
trajectories are piecewise linear, monotonic non-decreasing

in form. For small amounts of available searching time,

the optimal search is concentrated entirely in box 1.

We will call
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p; = 0.5, k; = 0.10

pz = o‘sl k2 = 0'05 o 5 “;
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Figure 2.la Optimal Koopman Search Plan
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For larger amounts of available searching time, the al-
location is shared with constant marginal allocations of
available searching time to each of the two boxes. These
marginal allocations depend on the detection rates but
not on the prior target location probability distribution.
The non-decreasing character of the optimal trajec-
tories implies that the search decision maker need not
know the amount of available searching time, T, in order
to search optimally. Therefore, the Koopman model optimal
search ailocations are also good search plans for the

corresponding problems in which the scarcity of search

effort enters through a search cost function which increases
as the search progresses. Thus, the Koopgfp.gearch plan
minimizes ‘no expected cost of detecting the targe't.1

Figure 2.1b shows the optimal detection probability,
DP*, as a function of available searching time, T, for the
optimal search shown in Figure 2.la. This optimal detection
probability function consists of portions of two exponen-
tial "charging" functions: one for 0 < T < W and the other
for W< T. The slopes of these two sections of DP* are
the same at W so that the marginal return is coﬁtipuously

decreasing over the entire interval (0, =).

1

Dobbie (1963) proved that non-decreasing search allocation
plans to maximize detection probability also minimize the
expected time to detect the target. The extension of this
- result to the case of arbitrarily increasing cost as a
function of search time is trivial.
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! ‘ 2.2 An Unsoheduled Response (UR) Search Model

!
' In this section we analyze :a search model involving
f

| false detectiohns ahd an unscheduled response process. The
.'|‘ ' | : i i ‘
1] kinds of real problem situations which motivate this UR
{ | ;
~'J search model are illustrated by the following scenario: In

. a ground war one force sends a scout patrol to search for
¢ ! !

——

an enemy combat ‘unit. The enemy unit maintains a guard

o detail wnich searches for scout patrols. When either the

guard'détail or 'the scout patrol detects the other, an
i i ' i

) : { . s Q
engagement between these two units ensues with surprise

I

advantage for the unit which made'the detection. Assume

bt that if an adversary is present any erroneous attempt to

i
i

o =

— - —————initiate an’ engageméﬁm CWhéﬁ”the adversary has not, in fact,

[ ' ' been detected) exposes the "attacker" to certain detection.

’[ | ; 4 The.key eiaments in this’problem are:
| ' I"i. The primary interest of the searcher is in

, ] _ A b . ‘" the response process which ensues if and

— ?nlyiif a:detection occurs.
1 LF : , ii. The detection system is necessarily imper-

- , | fect so that false detections may occur.

,{ | We want to investigate the effacts of these characteristics
- f of search éroblems on the bptimal saarch allocations.
s | Therefore, we‘consider a specific search model having

theae characteristics.
— ! ' , t Exactly one stationary'target is located in one of
: two boxes with
Li } ' p; = Pr(Target is in box 1i).

r=_
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The detection system produces "contacts" or positive . ]

~

¥ decisions that the target has been found. These are

characterized by random times-to-contact with

-k.t - :
e ' = Pr(No contact in box i | Target is in box i)

‘A T i e < el e 2 i

for a search duration t in box i. Contact events may be
ﬁ of two types: "false contacts" and "true detections."
False contacts lead to unfavorable expected response pro-

cess results while true detections lead to favorable ex- |

pected response process results. The false contacts

occur independently of the search times-to-contact with I

3 11
] B; = Pr(False contact|Contact in box i, Target is in box i) [l ‘

Any contact event terminates the search and initiates ]
the response process. If the response is initiated as

the result of a false contact, the searcher expects un- f

WA T e
]

favorable results from the response process. The purpose

e . B

of the search is to attempt to detect the target, initi- 1

ating the response process under conditions favorable to L

the searcher. Since the utility of the response is dif-

ferent under these types of contacts we let [

di = Expected utility from the response process
given a true detection in box i, ;
fi = Expected utility from the response process ' ;

given a false contact in box i containing L

the target. . 4

Assume that the response process so intimately involves
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interactions between the searcher and the target that nc
response can occur in the box that does not contain the
target. The expected utility parameters, di and fi’ are
relative to the search-response outcome in which no
response occurs. Additionally, in the scenario we let

Pr(Patrol survives | Patrol initiates duel),

Q;

q; = Pr(Patrol survives | Enemy unit initiates duel).

Suppose that the searcher's utility structure is

U PS - vPE ’

wihere

U = searcier's utility
Po - .r(Patrol survives)

P = Pr(Enemy unit survives)

a parameter expressing the relative utility of
patrol and enemy unit survival.

Applying the definitions of di and fi to scenario 2,

d.
1

Qi = V(l‘Qi) Y

and

We assume that false contacts by one searcher (scout
patrol or guard detail) expose tne erronecus "attacker"
to certain counter-detection if and only if the two
adversaries are in tne same box. Suppose that both
searchers operate exponential detections (Koopman

"formula of random searcin" detectors) i.e.,
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-rot
e 1 = Pr(Patrol fails to contact | Patrol and
enemy are in box i for t time units)
-r!t :
e * = Pr(Enemy fails to contact | Patrol and
enemy are in box i for t time units),
Y = Pr(False contact | Contact by patrol in box i),
yi'= Pr(False contact | Contact by enemy in box 1i).

We wish to compute the corresponding overall contact rates,
k;, and false contact probabilities, Bi’ as viewed by the
scout patrol. There are two cases to consider.

Case 1 Suppose that the searching times-to-contact for
the two searchers are independent. Then

e ‘e = Pr(No contact by either | Patrol and

enemy search for t units in box i).
The joint contact rate is simply the sum of the two

individual contact rates, i.e.,

k. =D, & pd,
i i ry

The false contact parameters, Bi’ are the probabilities
that the enemy will initiate the real duel following a
contact in box i given that the enemy is in box i. To
compute this let us first use Bayes' formula to compute

Pr(Contact by patrol | Enemy is in box i, A contact
occurs in box 1i)

-kit
-7 !
e ridt(l ridt) r

|

(5)

>

dt”’°+;-kit[ dt(l-r!dt)+r!dt(l-r.dt)]

N ———
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Then, o .
= 1l 1
Bi = i i + E;(I-Y:!L). (6)

That is, the false contacts of the model come from two
sources: erroneous interpretations of detector data by
the patrdl and true detections by the enemy.

Case 2 Sﬁppose that the searching times-to-contact for
the two searchers are not independent. Then, to compute
the joint contact rate one must explicitly treat the
dependency that is involved. The joint contact rate is

not necessarily the sum of the contact rates of the two

searchers. And, neither is the probability that the first

contact .is made by the first searcher necessarily given
by (5). That is, determining the ki and Bi parameters
for a two-sided correlated search requires modeling of
the physical details of the search situation involved.
The UR model of this chapter was first developed
incorporating the independent two-sided search assumption
of Case 1 above. This assumption was removed from the
main development because we think that the dependency
involved in many, if not most, real two-sided search
situations is significant. We assert that a significant
positive correlation should be expected for two searchers
randomly searching a large area using range dependent

detectors with the detector ranges small compared to the
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dimensions of the area.
The reason for this expected correlation rests on

the fact that for most of the searching time in any par-

ticular realization of the random search, neither searcher

can possibly detect the other because they are separated
by a distance greater than the range of their detectors.
Consider the extreme example in which the two searchers
operate identical definite range law detectors which
instantaneously detect with probability 6ne any target
which comes within the range of the detectors. Koopman
has shown that the exponential law of random search is a
reasonable approximation to the probability distribution
of times-to-detect for such a detector as either the de-
tectof or target, or both, move at constant speed more or
less randomly in the search area spending approximately
the same amount of time in sub-search areas of the same
size. But, in the two sided version of this search the
two searchers always detect one another at the same time.
The joint contact rate is the same as the contact rate of
either searcher -- not the sum of the contact rates of
the two searchers. And the race to contact the other
searcher before one is detected always ends in a draw,

an outcome which occurs with probability zero for the

corresponding independent two-sided search.

While the definite range law example cited is extreme,

SRR | TSNS S

t
N
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the effect of similar range dependence of the detector
capabilities can be expected to lead to a positive cor-
relation between the times-to-contact for the two
searchers, joint contact rate less than the sum of the
individual: searchers' contact rates, and some relationship
of unknown form in place of (6).

If the times-to-contact for the two searchers are
approximately independent, the joint contact rate and
probability that any response is unfavorable are easily
determined in terms of possible experimental data for the
individual detectors. But, if the two contact processes
are not approximately independent, one must develop thecry
appropriate to the situation being considered to determine
the joint contact rate and probability that any response
is unfavorable from the individual detector's characteris-
tics.

In the search allocation problem the search decisicn
maker has a limited amount of available searching time, T,
to allocate between the two boxes to maximize the expected
utility from the response process. If the target is in

box i, the expected utility is

c
fe
"

[ -kiTi
1-e ][(I—Bi)di + Bifi] ,

3
n

amount of time allocated to searching box i.
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Therefore, the search decision maker's allocation problem

can be expressed as

~k.T.
Maximuze U = Max Bi(l-e * 1)
j=y

(7)

subject to Tl’ T2 >0, Tl + T2 < T,

where

B, = [(l-Bi)di + Bifi]pi.

2.2.1 Compqrison of UR and Koopman Models

The decision maker's allocation problem in the UR
model is identical in form to the Koopman model allocation
problem. The Bi parameters of the UR model replace the
corresponding prior target location probabilities, P;» of
the Koopman model. But, while the target location proba-
bilities are non-negative, the Bi parameters may be

negative as well as positive or zero. If Bi < 0, clearly

Tg = 0 in any optimal solution. And if By 0, the
objective function is independent of T, so Tg = 0 is optimal
for any T. These immediate results may be used to modify
the solution of ‘ne Koopman allocation problem to obtain

the solution for the UR allocation problem. Assigning

indices such that B,k, > B,k, we have:

H
(e

|

C
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1. Bi < 0 implies that Tg = 0.

2. If there exists i such that B, > 0,'T§ + Tg = T,

‘\\ If B1 < 0 and B2 <0, (Tf,Tg) = (0,0) is optimal.
= 3. IfB, >0 amd B, <0, (T4,T§) = (T,0).
J 4, If 82 > 0, there exists
i
| L : B,k
i, WE = nsesatis 0 (8)
% ‘ Ky 272
? - such that:
| . i. IfTg W, (T#,TH = (T,0).
ii. IfwWw< T,
. k,
Tf = W + W(T-W) and
172
h
® = ="
T2 E?_-E-;(T W).
The optimal objective function is
-k, T
Bl[l -e * for 0 < T< W
Ut =
L
5.+8, |1~ [+=2expl =T | for w < T |
| 12 73 M hupe Y - 1
i Ky Ry

o —
§

o
[ = S—




‘The solution of the’UR search allocation problem is

very similar to that for the related Kdopman allocation |
problem. The expected utilities given that a contact is
made in the correct boxfcombine simply with the prioe
probabilities to yield the rélevaqt By values. Each B, ,
value may be 1nterpreted as the expected utility assocria
with an unllmlted search in box i. If one con31ders'tﬂe ‘
Koopman allocatien problem as e simple.expected utility ,
model with the expected utlllty of finding the target the

same for the two boxes, the prlor prooabllltles, P;

can also be’ 1nterpneted as the expected utilities associated

with unlimited searches .in each of the two boxes. The

0 l 0 i

major difference is that B; values can be negative so ‘that

searching the box i may be harmful rather than useful

The k for the UR problem, which play the same role

!

in the solution as the detection rates for the Koopman

model, are not reai detection ratee. :Rather, these ki
represent’' contact retes including the false as well ‘as the
true detections. The true detection rates are!(l-B.)k.
Except for thlS difference in meanlng for the "detectlon"
rates the dependence on deteetlon rates is the;samelfor
the Koopman and UR problems. ‘ | |
T
The potentlal lmportance of the dlfference between

the Koopman and UR models as guides for search decision

makers is 111ustrated.by the following comparison:

it ) e s e ek £ 0L B M e v dalt ! P
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f ; : Suppose  the real search problem corfesponds to the UR ]
1 { i i
T model,but‘the.dec;sion maker plans his search based on f

the corresponding Koopman model. Assume that the detec-

tion rates used in the Koopman model are the total con-

ay ; tact,rates,'ki, of the UR model. Table 2.1 lists the

parameter'values'for this cohparison of the two models.

Parameter'Values for Koopman and UR

' , , ' , Model Example Comparison
t f

The optihal Koopman search plan is (T*,Tg) = (,5T, .5T).

'Since Bl is negative‘ﬁnd B, is positive, the optimal UR

l i

search plan is (T*,Tg) = (0,T) for all 0 < T < ». Figure

2.2 sﬁows the values of thé'UR'objective function for

these two search plans. The yalues of UR objective

Y . ; ' funct;onfattained by the Koopman search plan are always

‘negative. That is, it is better not.to search at all tha-

. . " . . . . . .
' : to maximize the "detection probability." Thus, optimizing
the' wrong objective function, in this case, fails to lead :

g ! . ! K3 i . -
to a reasonable first approximation to the real optimal

allocation.

b : /
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? Disasterous consequences such as those depicted by
Figure 2.2 are not characteristic of the results of
using the Koopman search plan for any UR search problem

situation. If Bl and B, are both positive, any allocation

SO TN | e e ¥

of large T with both lel >> 1 and k,T, >> 1 will yield

an objective function value of approximately Bl+B2. Thus,

{

if searching both boxes is worthwhile for large T, the
Koopman search plan is approximately optimal for large T.
Consequently, except for cases in which the searcher has
overlooked overriding danger, the Koopman search plan is
significantly inferior to the optimal UR search plan only

5 ! for small- and moderate amounts of available searching

time, T.

The Koopman search allocation may constitute a good
lJ search plan for small T as well. Consider a UR search

problem with Bl = 82, dl = d2 and f1 = f2. Then, the Bi g

o .
e

parameters are proportional to the prior target location

probabilities, P;- Consequently, either no search is 3

e
L

1 worthwhile (if BysB, < 0) or the Koopman search is optimal.

Another relation among parameters which also leads to the

fr——e

Koopman search plan being optimal is dl =d, = fl = f2.

This condition may be expressed as: The expected response

utility is the same for all contacts. For such problems

the objective function is independent of the false detec-

tion parameters, Bl and 82.
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2.2.2 Sensitivity of UR Model Results

The false detection effects enter the UR model for-
mulation only through the Bi parameters, which represent
expected utilities associated with unlimited searching in
each of the two boxes. The Bi parameters (except when
neither Bl or B2 is positive) affect tne allocation in a
significant way only for small T. With the contact rates,
k;, the B, parameters determine the point at which the
optimal trajectory departs from the Tl axis. This point
depends on the logarithm of the ratio Bl/B2 as shown by
(8). Thus the position of the optimal trajectory line
for large T is relatively insensitive to the model para-
meters (assuming that B, > 0). The slope of the optimal
trajectory line for large T depends only on the detection

rates.

Consider the sensitivity of the objective function,

U, to T, along the "budget" line Tl + T2 = T. Along this

1

line

du_ _ au_ _ 3u
aT; * 9T; ~ T

"
w
~
(1]

!
w

N
=
o

Thus, 1If lel >> 1 and sz2 > 1, dU/dTl is small even if

P ]

e 50 AR

|
!
1
i
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(Tl’TZ) is far from the optimal trajectory. Also, con-
sider the marginal expected value, dU/dT, along a line
Parallel to the optimal trajectory line for large T.

Along such a line

du _au_ %t1, au 902
dT 5Tl dT 8T2 dT
|
klk2
= Cexp -WT ’

for some positive, C.
l Next let us consider the sensitivity of the upper

bound for the expected utility as T grows without bound.

L Let
U = 1lim U*,
T+
Clearly,
T = Ul + U2 (%a)
é where
U, = max{o,Bi} , fori=1,2. (3b)

There exists a threshold value

i




such that

(1) if sii'B'i " Bi_<_0,

(ii) 1if B < E& » B; > 0.

If f, is non-negative, Ei > 1 and, therefore, B; > 0
for all 0 < B, < 1. If f; is negative, 0 g_E& < 1 and,
therefore B, > 0 only for 0 ¢ B; < Ei < 1. Because

Tg = 0 is optimal if Bi < 0, the results are insensitive

to B, for B; > Ei. Let us examine the sensitivity to By

in the interval 0 < Bi < min{Fi, 1}. In this interval

i 3, aBi

- i
B4 B 98, B B4
(10)
= -Pi(di-fi)

That is, U is linearly decreasing in Bl and B,.
The sensitivity of U to By and B, may be illustrated
by plotting iso-U curves in the (Bl, 32) plane. Figures

[ ' 2.3a to 2.3d depict such iso-U contours for sets of param-

: eters which illustrate the basic characteristics of the

dependence of U on By and 8,. From (7) and (3) we can i
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Figure 2.3a UR Model Iso-U Curves in (8,, B,) Plane
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obtain the following relation for the portions of the

iso-U curves having B, and B, pusitive:
Pl(dl-fl)gl + p2(d2-f2)32 = pldl + pZdZ-U'

The iso-U curves are horizontal for By > El and vertical
for By > §2 since the optimal search allocates no search

time to box i if g; > Ei'

Consider the next sensitivity of U to the expected

utility parameters, di and fi‘ As lcng as Bi < B.

1
50 _ 9B
3d. s 3a. = Pi(l"Bi) Gl )
1 1
and
31 9B.
aU 1
S 2 e p.B.. (12)
afi afi i1

To illustrate the interaction of these expected utility
parameters with the false detection parameters, B;» assume
that By = By, = B dl = d2 = d, and fl = f2 = f. Then as

> 0

long as Bl’ B2

U = (1-8)d + gf. (13)

If f is fized, this equation can be used to describe the

tradeoff between B and d. If d is fixed it describes the

 adihat 4 od - 'q'"mr"'ﬂ.—‘
¥
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tradeoff between B and'f. F;gurgs 2.4%a and 2.4b depict

these tradeoff cyrves for U = .5. These f;guresAexhibit '

[

decreasing marginal returns for the 8 vs d tradeoff and
increasing marginal returns for the B vs f tradeoff

]
That is, the increase in d needed to compensate for a

¢ [i 0 i
given inqrement in B is an increasing function of B while
the corresponding decrease in f needed to compensate for
y : ! ! !
: L
an increment in B is a decreasing function of. 8. '

t

‘
{
| T

. '
t !

2.2.3 Discussion of UR Model Implications

The introduction of the possibility of unfavorable

response process outcomes shifts the optimal allocation

from :the: Koopman model results, but the basic linear in-

!

creasing .character of 'the optimal allocation pattern re-
t H
mains. The effect of the unfavorable response outcomes

is to mﬁltiply_thq térget location probabilities, P> by

correction factors. If the expected utility associated

with searching in box i islnegative (Bi < 0), the optimal
search allocation‘avoi@s searching box i.' If the Koop-

man search allocatién is used for a problem with B, < 0,

!
1

the expected response results may be disasterous as in’
i |

the case of Figure 2.2. However, if,BliB2 > 0, such dis-

asterous results cannot be attained by any allocation.

As long as Bi,Bi > 0 the Koopman allocation yields nearly

optimal expected utility 'values for amounts of available

search time which are large compared to the expected i

{
i

e e o
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time to contact the target.

There exist cases for which the Koopman allocations
are optimal for the UR allocation problem for any amount
of available search time. If (l-Bl)dl F Blfl z (1-82)d2 +
62f2’ this is the case. That is, the Koopman allocation
is optimal if the conditional expected response utility,
given that the target is contacted in box i, is the same
for both boxes. Obviously, if the false detection and
response process parameters for the two boxes are identical,
this relation holds. This relation alsc holds if the
expected utility associated with all possible contacts
which result in searcher-target response interactions are
the same (d; = d, = f; = f,). For this case the optimal
allocation and the optimal objective function are inde-
pendent of the false detection parameters. For this
situation the searcher is motivated to increase his con-
tact rates, ki’ as high as is practical without being
very concerned about keeping his false contact rates, Bi’

low.

CarATET o

&

There exists a multidimensional continuum of
sets between the extreme cases in which the Koopmar a._.-
cation is either optimal or disastrous. The combinaz!.
of moderate parameter values which approach the di:a:.-
terous result of Figure 2.2 represent cases involvin:
high potential risk (Bi nigh, fi negative) and only =

modest potential gain (di small). On the other hand,

et P At et BdoEm
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combinations of moderate parameter values lead to sit-
uations for which the optimal trajectory is nearly the
same as the Koopman search plan. Thus, for large amounts
of available search time, the inclusion of the false de-
tection and response process phenomena in the model results
in a large improvement in expected utility over that
achievable using the Koopman model only in situations for
which the Koopman model neglects obviously basic problem
elements. That is, the main contribution of the more de-
tailed UR model is in analyzing problems in which the
available search time is quite limited.

If the false detection parameter, Bi, is sufficiently
large that searching box i is harmful rather than helpful,
the optimal search allocates no search time to box i.
Therefore, the model results are completely insensitive
to B; if 8, > Ei' But, if searching in box i is desirable
(B; < Ei)’ the limiting optimal expected utility, U, for
large amounts of search time is a linearly decreasing
function of B, Therefore, if the 8, values are adjustable
with some tradeoff constraint relating achievable pairs cf
B, and B,, equation 10 and the tradeoff constraint can be
used to select the (B,,B,) pair which maximize U. Note
that (10) expresses the marginal value of decreasing B; as
a function of the prior probability distribution and re-

sponse process parameters of the problem. Thus, if the




i

choice of the (61,82) pair must be made before the problem

parameters are known, one needs to know the probability

distribution of problem parameters as well to maximize

' the expected utility attainable by selecting (31,32).

\’ The d vs B and the f vs B iso-U tradeoff relations

(Figures 2.4a and 2.4b) provide a rational basis for allo-

cating resources to obtain either search equipment quality

B AL s B i e e i 1

(low Bi) or response system effectiveness (high d; and/or

fi)' Equation 13 can be used with the relevant descrip-

tion of the attainable combinations of g, d, and f to

define optimal search-response systems. That is, assume
\: that the set of efficient1 combinations of 8, d, and f
1 parameters is expressed Dy c(g, d, £) = 0. Then, optimal

‘ choices of B, d, and f can be found by solving the mathe-

matical programming problem

: Maximize U = (1-8)d + Bf
f. ; subject to C(®, d, f) = 0.
selection

3 Note that, unlike the corresponding g, Vs B,

problem, this problem does not involve the target locazicr

lA set is efficient if one parameter cannot be made m<. .
desirable (lower for & higher for d and f) except &t
the expense of at jeast one other parameter.

R i 4
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probability distributionl. Thus, the problem definition
is more susceptible to quantification at the broader
B vs d vs f level than the Bl vs 62 level.

For real systems we hypothesize that the cost assoc-
iated with changing B alone rises very rapidly as
approaches zero while the marginal costs assqciated with
increasing d and f rise as d and f become large. If
this is so, tﬁe increasing marginal benefit of reduéI;E'
B exhibited by tie f vs B iso-U curve is of no great
importancez. If these cost effects are very pronounced

for very small B and large d and f, the optimal search-

response system has 0 < B < 1.

lone could consider each box separately integrating (10),
(11) and (12) to obtain this same sort of optimization
problem independent of the target location probability
distribution.

21f costs were linear, this increasing marginal benefit

characteristic would imply a "corner solution" --
B =0 or 1.

[Ny
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CHAPTER

SEARCH MODELS WITH SCHEDULED RESPONSE (SR) PROCLSSES

The previous chapter considered unscheduled response
(UR) process search models. In this chapter we discuss
similar models with scheduled response processes. For
the UR model the response process only occurs following
a contact event. In the SR models of this chapter we
assume that the response process will occur following the
search process regardless of the search outcome. After
the search ends the decision maker guesses the target
locatic and selects the respconse option which is condi-
tionally optimal, given that his target location guess
is correct. Then, the decision maker obtains a fixed
reward from the ensuing response process if and only if
the target location guess is correct.

The kinds of real problems which motivate the SR
search models are illustrated by two scenarios:

Scenario 1 While playing unattended a small child is

bitten by a dog. The dog escapes after being casually
observed by several children. A significant percentage

of stray dogs in the area are believed to have rabies.
Thus, exposure to rabies is considered to be a threat to
the small child's life. Since a rabid animal can be posi-

tively diagnosed before it is necessary to begin the risky

—Eg-




& ke

T TTIRRY PP ST E T e

YT ATy

-68-

treatment indicated for a person who has been bitten by

a rabid animal, a search for the dog is conducted before
treatment is initiated. Of course, the child could be
treated for exposure to rabies even if the dog is not
found. But, the treatment itself could endanger the
child's life if the child has not been exposed to rabies.
Scenario 2 In a war a defector presents convincing evi-
dence that his homeland's army has brought a small number
of nuclear weapons into the war zone for use at some
designated time in the near future. But the defector
does not know where the nuclear weapons are stored. The
army which is threatened by this imminent nuclear attack
diverts a substantial amount of its aerial reconnaissance
effort to searching for information which would indicate
which of his opponent's installations hides the nuclear
weapons. If the location of the nuclear weapons is dis-
covered, a maximum-effort conventional attiack on this lo-
cation has a substantial probability of destroying the

nuclear weapons before they can be used.

The key elements of these problems are:

(i) The prime concern of the decision maker is in
a response process which is not directly
dependent on the search process.

(ii) False detections are an inevitable possibility
for any reasonable search information proces-

sing system.

e
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We consider three similar SR search optimization
models which differ only in certain details. Each of
these models concerns the use of Kcopman "formula of ran-
dom search" (exponential) type detectors to gather infor-
mation regarding the location of a single target which can

be in one of two locations or boxes. As in the UR models

of Chapter 2 let

Pr(Target is in box i),

yo)
|
"

e T ' = Pr(No contact in box i | Target is in box i),

Amount of time allocated to searching in box 1i.

=)
"

For the UR model the contact event represents a
decision to behave as if the target had been found. That
is, when a contact occurred, an attempt was made to ini-
tiate the response process. For the SR models we will
assume that contact events terminate the search process
for the box in which the contact is made. But, the
search process can continue in the other box. Only after
the searches in both boxes are completed must the decisicn
maker guess the target location. Thus, contacts can take
place in both boxes.

False contacts in the SR models ditfer fundamentally

from those of the UR model of Chapter 2. In this UR model

vt ek i »
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a false contact represented an initiation of the response

process under unfavorable circumstances. 8ince the response
process required the presence of the target, the UR model -
false contacts could only occur in the box containing thne l- ;
target. But, in the SR models false contacts represent i
detector data-processing "errors" which tend to cause the - ;
decision maker to guess tne wrong target location. Thus, .

although noisy s8ignale can occur, false contacts are impos-

sible in the box containing the target. The false contacts
of the SR models are associated exclusively with the box

which does not contain the target. We assume that search-

ing in the box which does not contain the target will pro-

duce an exponentially distributed random tine-to-contact,

i-eo’ s
~ByksTy
e = Pr(No contact in box i | Target is not
in box i) :
Thus, B, is the ratio of the contact rates without and - 3
with the target present in box i. (We assume that bi D)
Further, the times-to-contact for tne two boxes are condi- l;
tinally independent, given the target location. . i
t After the search is completed the decision maker {}
¥

guesses the target location and selects tne corresponding ‘.

guess is correct, he obtains an expected utility reward Ii

l conditionally optimal response behavior pattern. If his =
t of d units. If his guess is incorrect, he obtains no

reward. !
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The decision maker of this model makes two decisions:
a search decision and a response decision. He first allo-
cates the available searching time between two boxes. Then,
after the search has been conducted, he selects his target
location guess. Since the decision maker obtains utility
only in the response process, the objective for the search
allocation decision must be to maximize the resulting ex-
pected utility from the response process. The response
(target location guess) decision is a simple decision prob-
lem involving risk. Given any possible search and search
outcome, the decision maker can use Bayes' theorem to
combine the prior target location probability distribution.
Then, since the reward for correctly guessing the target
location is the same for both boxes, it is optimal to
guess that the target is in the box having the nigher pos-
terior probability of containing the target.

The three SR search models of this chapter differ
in the assumptions made regarding the search outcome.
The search outcome is described by the amounts of search
time used in each box and the amounts of time allocated
to these boxes. For a single reconnaissance plane taking
aerial photographs continuously, the search time at which
each picture was made is easily established. Thus, if a
single picture provides tne evidence on which the contact
is based, the times-to-contact are available for use in

making the target location guess decision. But, if the
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,‘whichfof’the two boxes yielded contacts.
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contact represents an interpretation of the whole series
! i i f
of pictures with no single picture playing a dominant role

in the 1nterpretatlon» then the search times-to-contact

have llttle meanlng in terms of ea51ly measured data.

Therefore, it‘may'be'necessary‘to make the target location.

i : ,
' ! |

i
guess decision based only on the search,allocation and

1

t
{

For aerialzphoto reconnaissance, the interpretation
] . . ot i .
of the search data follows the search. In contrast, for

a visual seardh by ,an ohserver in atlight plame} the ob-
f

server contlnuously lnterprets the data as' the search is

conducted. Thus, such a search system may be able to re-
plan a search based on the prellmlnary search results as

the search progresses. We analyze a version of ;our SR

model with searchlng tlmes to- contact unavailablé for

i i
i

making the target location guess and a 'version with' adap-

q ' q : - 4 : q Qg
tive search replanning as well as the basic version with
f ! i

searching times-to-contact dvailable but no adaptive

search replanning.
!

3.1 Limited Search Infarmation‘(LSf) SR Model ;

First, let us analyze the decision maker's search

i

allocation problem assuming that the only 1nformat10n de-

1

rlved from.the search is the numbers of. contacts whdich

occur in each of the boxes. For i = 1,2 let

’
'
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| n, = Number of contacts in box i, '(Note that n; =

;'i ‘ . l OOI‘I lo)’; |
} ‘ (nl,nz) = Seafch oytcome véc;or,
) ' ‘ ' 1
'P(mpn) = Pr(Search outcome is (m,n)), ]

i i

’j. Lk P(m,n | i)
A o box i), and

] 5 ) '

| pj(myn) = Pr(Tapget’ié in box i | Search outcome is (m,n)).

Pr(Search outcome is (m,n) | Target is in

t \

The posterior target location probabilitieg can be com-
i 7 | i

| puted using Bayes' theorem by

P(m,n | i) ‘
P(m,n

: ! !
| ..) N l J 1

pi(m,n? = p;

For the assumed search process
{

! ' Whére j = 3-i. So if the Bi are strictly ppsitivel,

..I , ' ,

.

lIt will be shown later that the use of tnese posterior
: target: location probablllty expressions leads to a cor-
' _ ‘rect statement of the problem even if Bl or 82, or both,

' are zero. i
] i ! !

i
!

{
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P -k Ty =Bok,T, |

p}(0,0) = 1’ e e , he)
|
\ p, BTy kT i
p2(0,0) * P(0,0) e e ’ (14b) l
P -k.T -8k, T |
p1(1,0) = F(‘I}—o)' [l-e 1 l] e 222 (1bc) |
g
P -8.k,T -k, T :
|

P -k, T -8.k,T
b 1 T, 2522

pi(O,l) * PO, D e [1-e ’ (1lke) N
{
Py BTy koTy |
pé(o,l) = m e l-e ’ (14£) i
P -k.T -8,k,T ,:
pi(l,l) = ﬁT:,L‘D' [1 e T 1] [1 el &4 2J 5 (1ug) [,
P -8.k.T kT =
E Pé(l,l) = PTl_?TY [l-e 11 l] [l-a 22 z (14h) ’L
E -

="




An optimal guess (response) decision is to guess that

the target is in box i* such that!l

p]!_*(m’n) . maX{p]'_(m3n)’ Pé(m’n)} ’ (15)

where the search outcome is (m,n).
The search objective is to maximize the uncondi-

tional probability of correctly guessing the target lo-

cation. That is, the objective is

Z = P(m,n) p! (myn),
o ’ i*(m,n)

Substituting from (1lu4) and (15)

-k T. -g,k,T -8,k,T, -k.T
17, 222Pe ' S 0 22}

Z ={max P e 2Py

“k,T.] -B.k.T 8.k, T.7 -k.T
. max{pl[l_e 1 1]e 222 2 [1-e 1% 1]e 2 2}
-k T -8k T ~8.Kk,T -k, T
+ max{ple 1 l[l-e 272 ], p2e 11 [l-e 2 2]}

-k T -8,k,T
+ max{pl[i—e 1 l][i-e 6 2] 5 (1lo)

-8.k.T ~k,T.
b, [l-e i l][l-e 2 z]}

The extension to consider separate rewards for each box
follows directly with no complications.
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The search allocation problem is to maximize Z given (16)

subject to Tl’ T2 > 0, T1 + T2 < T.

Solution for Bl = BQ =0

Let us denote the objective function for the special

case 8, = B, = 0 by Z°. Then from (16) we obtain
-k.,T -k,T
Z° = maxgple Sl s Pye e 2}
-kT] -k, T
+ pl[l-e 11], pz[l-e 2 2] : (17)

Note that the term of Z resulting from the (1,1) search
outcome, which is impossible for Bl = 62 = 0, contributes
nothing to Z°. Therefore, the expression above obtained
by substituting By = By = 0 in (16) is a correct expres-
sion of Z°., Equation 17 may be rearranged as

171 4 2

2° = 1 - min P,© » Poe

-k,T -k,T
(18)

From this expression the solution of the corresponding

search allocation problem is obvious:

 S—
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]
-k, T -k, T !
If p,e < pye s (Tf,Tg) = (T,0). ]
-le -k2T
If p,e = pye . (T{,Tg) = (T,0) or (U,T).
—le -k2T %
I Pie > p,e y (Ti,Tg) = (0,T) i

Important characteristics of the solution to this

PRI T RC TR P Ve R

special case of the search allocation problem are:

1. The total amount of available search time, T,
will always be allocated.

2. The optimal search is concentrated completely
in one of the two boxes.

3. Considering T as a parameter, one of three

possible cases occurs:

a. If the boxes are identical (pl =Py and
k, = k2), it is optimal to search entirely
in either box (TI,T%) = (T,0) or (G,T)

for any T > 0.

k. or
]
0 is

i
= . 4 % = %

Py = Py» Ky > Ky, TH = T, T8

optimal for any T > 0.

bo Let j = 3-ic If pi< Pj’ k.

n jv

¢. If neither case a nor case b obtains,
there exists i, j = 3-i, and

P.
lnp—l

™% = et > 0
j i
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such tnat:
. 1fT<Te,Tg=T,T§=0.
iin If T =1, (T§,T4) = (T,0) or (0,T).
iii. IfT>Te,T;=o,Tg=T.

This SR model optimal allocation is quite different
from the Koopman allocation. For large T the Koopman
allocations to the two boxes are approximately inversély
proportional to their contact rates. But for the SR-
LSI model with By = B8, =0 (no false contacts) the
optimal allocation is to concentrate the search in one
box. While the Koopman allocation to each box is non-
decreasing as a function of T, the SR-LSI optimal allo-

cation may switch from (T{,Tg) = (T,0) to (T*,Tg) = (05T

Solution for Bl, 62 >0

Consider next the case in which B, and B, are
positive. Equation 16 defines the objective function
in a piecewise fashion. The objective function is con-
tinuous and differentiable except at the boundaries
between the pieces. But the number of pieces comprising
the objective function and the boundaries between pieces
are only implicitly specified by (16) -- they depend on
the parameters of the problem. Therefore, a direct so-
lution of the problem based on marginal methods is

complicated by non-differentiability problems. We shall

po—

Pome—- |
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simplify the expression of the problem before solving

|| e,
The source of the difficulties we wish to elimin-
ate from the problem is that pi*(m,n) is defined as
l the maximum of two functions. Corresponding to each

of these maximization operations is the optimal condi-

i P e A € 3 b A LA

; tional guess plan, given a particular search outcome.
4 .

F To remove the troublesome maximization operations we
consider the set of allocation problems corresponding

to each possible guess plan. Let S and R be the search i

E outcome and response guess spaces (sets), i.e., ]
L |

s = {(0,0), (0,1), (1,0), (1,1)}, ?
i || R = {1,2}

o Wk

Each guess plan corresponds to a function mapping S

into R. Let G be the set of all such functions, i.e.,

| G ={g | g S+ R}

For any g in G, s in S let g(s) denote the image of i
s corresponding to the function g. The response guess
plan corresponding to g is to guess that the target is

Sl in box g(s) whenever the search outcome is s. If re-

sponse guess plan g is selected, the probability of

O
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correctly guessing the target location is

28 = S§S P(s) Pé(s)(S)' (19)
Consider the relationship between the set
{z8 g is in G} and the objective function, Z. For
any particular set of parameters, Bi’ ki’ Pis and any
allocation, (Tl,T2), there is at least one g in G such
that zg(Tl,Tz) = Z(Tl’Tz)' That is, some guess plan
must be optimal for any particular allocation. There-
fore, corresponding to the optimal solution, (T*,Tg),
there is an optimal guess plan, g*, such that Zg*(T*,Tg) =
Z(Tf,Tg). Let (T%*,Tgﬁ) be an optimal solution to the
guess-plan constrained allocation problem with Zg* re-
placing Z as the objective function. Then, since the
feasible regions for this related problem and the de-
cision maker's allocation problem are identical,

% # % &
287187, > 28T (e, TH) = (T

*
But, by the definitions of 28" and z

] % ® t 3
2(18",78") > 28 (18", 10),

and by the definition of (Tf,Tg)
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8 ]=

y % ]
Z(T% ,TS7) < Z(T#,TH).

, k ok % ?

Therefore, 2(T8 ,Tg ) = Z(T%,T%) and (T8 ,Tg“) is optimal ]

1 2 1°2 1 2 .

for the decisior maker's problem. Clearly all solutions i

to the decision maker's problem can be obtained by |

computing all solutions to each related guess-plan con-
strained problem and selecting those solutions which

yield z8(T8,18) = max {z™(TP,T)}, where (TP, ™) is
P 1272 1°71

any optimal solution to the related guess-plan constrained
allocation problem corresponding to function n in G.

The set of possible guess plans, G, contains 16
members. We wish to avoid having to solve the 16 cor-
responding guess-plan constrained allocation problems
in order to find the solutions to the decision maker's

problem. Most of the possible guess plans can be elimin-

ated as potential optimal guess-plans without solving
the corresponding guess-plan constrained allocation %

problems. If (14) and (15) are substituted into (19)

for all 16 possible guess plans one can use the relationl g
l-e 1 _-(1-B)x . ]
—Bx B B for 0 < B< 1, 0< x :

l-e

lDerived in Appendix B
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to eliminate 10 guess plans as being nowhere optimal.
Further, if we seek an optimal solution, rather than
all optimal solutions, four of the remaining six guess
plans can be eliminated from consideration as follows:
Suppose that for every feasible (Tl’TZ) there exists a

feasible (Ti,Té) such that
Zh¢Tr,Tey) > 28(T.,T.)
1°°27 =~ N

Then, guess plan g is weakly dominated by guess plan h;
hence, plan g can be eliminated from consideration.
The two remaining candidate optimal guess plans are:

I Guess that the target is in box 1 unless
search outcome is (0,1).

II Guess that the target is in box 2 unless
search outcome is (1,0).

The objective function corresponding to plan I above is

-k, T -8, k,T -8,k T -k, T
Z:p, - pe 11[1_e 222]+p2e 11 [1_e- 22].

Since candidate optimal guess plan II is of the same

form as plan I with the roles of the boxes interchanged,
the objective function corresponding to plan II is of the
same form as (20) with the subscripts interchanged.

Consequently, we have two similar guess-plan constrained

(20)

—




search allocation problems which we need to solve to

——y

solve the decision maker's allocation problem.

]; An efficient numerical a}gorithm for solving these

two "guess plan constrained searcn allocation problems" f
is described in Appendix B. This algorithm is based on

the following (necessary) geometric conditions which are

equivalent to the applicable Kuhn-Tucker conditions:

1z If an interior point of the feasible region
is optimal, the gradient of the objective
function must be the null vector at this

solution point.

ii. If a boundary point of the feasible region is
optimal, either the gradient of the objective
function is the null vector or this gradient
vector is an outward normal to a support line
of the feasible region at the solution point.

The numerical algorithm uses the following results

for the particular form of feasible region and objective

- function for guess plan I:

; . ] + :
1. There is a unique point, (Tl,T;), above thne
Tl axis at which the gradient of the objective
function is the null vector. The coordinates

1= of this point may be expressed in terms of the
root of a continuous monotomic function.

2, If the point (TI,T;) is feasible, the second

| ‘ order marginal conditions for a relative max-
imum hold and (T;,T;) solves the guess plan

| constrained search allocation problem. |

- =,

P D
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If the point (Tl,T ) is not fea81b1e, the
solutlon is ‘on the boundary of . the feasible
region. There exists Tg such that the .
gradient 'of the objective function is in the
negative T, direction for all (T' 0) with !

0 0
Tl < Tl ; LE Tl > T, all points (Tl,O) such

'that 0 < T, < T solve the guess-plan i search !

allocatlonlproblem and yleld an optlmal objec-
tive function value Z* = P, If T0 < T,

there exists a unique boundary polnt, (T ,T )5
w1th Tg >0 'whlch satlsfles the marglnal i
necessary condition for a boundary solution
and which yields a value of the obgectlve S
function which is greater than p,. (T S T% ),
then, 1s the  unique solutién to the guess-plan
I search allocation problem. The coordlnates

of this solution p01nt may be ' computed by

;flndlng the root of one of two contlnuous

monotonlc functlons.

i
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8.1.1 (omparison of SR-LSI and Koopman Model Results

Based on the solution algorithm developed in Appendix
| : .
B for the two guess-plan constrained search allocation

problems, a FORTRAN IV computér program was coded for
i AR i

the MTS IBM 360 to compute abproximafe numerical solu-

tions to the LSI versicn pf!the decision maker's allo-
° I '
cation problem.
i f .

Figures 3.la to 3.1 d depict fepresentative optimal

{

'allocatfons as functions of 'the amount of available

search time, T. These allocation functions are repre-

sented by traces of the solution point, (Tf,Tg), which

we call optimai tréjectoﬁies., For any positive value cI

!

T, the optimal allocation is given by the point on the’

f : . ,

optimal trajectory having thle maximum (T1+T2) value not

exceeding T. These optimal trajectories consist of al-
} { i !

ternating segments of conditionally optimal trajectories

corresponding to the two candidate optimal response
guess plans used as tne basis of the computational scheme.
! : i '

We use the terms‘"conditionalvtrajectqry I" and "con-

ditional frajéctory II" to refer to the conditionally

. optimal trajectories corresponding to guess plans I and

. I ¥ .
II. These conditional trajectories are indicated by the
i ; {
designations I and II in Figure 3.1. ‘' Lacn of the condi-
tiqnal‘trajecﬁorieslis continuous consisting of one or

both of two segments: The first segment 1is a portion of

one of the axes from the origin to some' positive value;
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the second segment is a bounded arc having continuous
monotonic slope. Since the two conditional trajectories
(and hence the optimal trajectory) are bounded, the
amount of available searcn time allocated by the optimal
search as T increases is bounded by an upper limit, T.

Unless the false contact parameters, Bi, are both
near one, T is large compared to the expected time to
contact the target using the Koopman search plan. Fur-
ther, for cases with moderate parameter values, the Koop-
man search plan trajectory for 0 < T < T lies in the
region bounded by the two conditional trajectories. Thus,
the Koopman search allocations are usually in the same
general region of the (Tl’TZ) plane as are the optimal
allocations.

The optimal trajectory switches from one conditional
trajectory to the other at points where the conditionally
optimal objective function for one conditional trajectory
overtakes that for the other conditional trajectory. The
switch times corresponding to such optimal trajectory
discontinuities can be determined numerically to any
accuracy desired by computing the conditional trajectory
points for values of T near these switch times. The com-
puter program developed does not contain a search routine
for isolating these switching times. The switching times
used for plotting Figures 3.la to 3.1d were obtained by

graphic linear interpolation between the nearest points

I

|

e
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for which computations were done. Computational exper-
ience has revealed that from zero to three switches be-
tween conditional trajectories can occur depending on
the parameter values. Consider the interval between 0
and T (the amount of available searching time) as being
divided roughly into four segments: small, moderate,
moderately large and large. The following lexicographic
rule correctly predicts the switching behavior observed
for most of the cases examined with Bi’ ki and P; par-
ameters comparable for the two boxes:

245 For small T the optimal allocation is on the
plan i conditional trajectory, where P; > « 5%

ii. For moderate T the optimal allocation is on
the plan i conditional trajectory, where

ki < kj sy J = 3-1.

iii. For moderately large T the optimal alloca-
tion is on the plan i conditional trajectory,
where Bi > Bj’ j = 3-1i.

iv. For large T the optimal allocation is on the
plan i conditional trajectory, where B; 2 Bj’
j = 3-i.
In the event that the equality condition obtains for one
of these conditions, the optimal allocation is indicated
by one of the adajacent conditions. Condition i holds
without exception. Conditions ii and iii hold for about

90% of the cases examined. Condition iv holds for about

60% of all the cases examined and for about 85% of the
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cases examined with the prior probabilities the same
order of magnitude (.3 < pl/p2 < 3).

Because optimal trajectories may switch between two
conditional trajectories, the optimal allocations
(Ti and Tg) may be non-increasing functions of T. There-
fore, to determine an optimal search plan one needs to
know the amount of search time which is available as well
as the other parameter values. Hence, if T is not limited
by some known bound, the optimal search plan may differ
from both the Koopman and the UR model allocations.

For the same cases as Figures 3.la to 3.l1d, Figures
3.2a to 3.2d depict the SR-LSI expected utility values,
ZL’ as functions of available search time, T, for both
the optimal (SR-LSI) search allocation and the Koopman
allocation. The ordinate scales in these plots are nor-
malized so that the value at T = 0 is zero and the value
corresponding to correctly guessing the target location
with probability one is one. The difference between the
SR-LSI curves and the Koopman curves represents the ex-~
pected utility loss which would accompany the use of the
Koopman model instead of the more complicated SR-LSI
model. Also plotted in Figures 3.2a to 3.2d are the cor-
responding "perfect detector" expected utility functions --
those attainable with contact rates (l-Bi)ki with no false
contacts. The difference between the optimal objective
function curves and the perfect detector curves represents

the loss attributable to the false contacts. Depending

(.

T
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on the model paramefers, poth the Koopman model expected

] ! l

utility loss and the expected utility loss die to false con-
tacts vary from zero up to Yalues of the same order of mag-
:nitud; as fhé optimal expected utility. 'The loss due to
fal@e_contaéts is incfeasihg in T for most cases. (In a

few cases. such as that shown in Figure 3.2b there exists an
' ‘ ! i

interval in which this loss decreases as T increases.)

For large T the loss due to false contacts is of the same

1 i

order of magnitude as the false‘coﬁtact parameters Bl and

82. ;‘ ! i ‘ '

The loss from using'the Koopman model is usually
small for both small T and values of T apbnoximately three
to four t{mes the expeéted,search time to contact the tar-

gFt for the Koopman search plan. For practical systems

the most important réngg of available search times is

 probably roughly from one-half to twice the expected time

to contact. In this range, the loss from using the Koop-
mén seaFch plan is a compiex function of the model param-
eters. For eﬁémple, comparing Figufes 3.2b and 3.2c we
see that fpr T =1 increasinlgle1 And kl whi;e decreasing
B,y résults;inﬂan inéreaée inlthé Koopman search normalized
loss from almost nothing to about 20%. Also, comparing
Figures B.éc and:3.2d we see thgt increasing 82 from 5%

to 50% .produced no npticéble increase in the Koopman

. search loss. For'small T, the Koopman loss is zero pro-

{

'vided that the Kcopman and the SR-LSI optimal search allo-

]3]

cations begin in the same box.

!

This occurs if P;ks > p:ik.,

il 5
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where i = 3-i and P; < pj. If ki/kj is sufficiently large

that the interval for which the Koopman allocation is con-

fined to box i is of the same order of magnitude as the
Koopman search expected time to contact the target, the
Koopman loss is relatively small for all values of T. On
the other hand, if pi/ki ‘3'pj/k,j with P; ?’pj, the Koopman
search loss is relatively large for small and moderate
values of T.

The optimal SR-LSI expected utility values as func-
tions of available search time, T, increase continuously ;
from zero to their maximum attainable values at finite
times, T. At the times for which the optimal trajectory |1
switches from one conditional trajectory to the other, "

the slope of the optimal expected utility increases discon-

tinuously. If the decision maker must pay a constant

il
price, Cps per unit of planned (available) search time, ?

| U
Ty

the optimal amount of search time can be obtained by l
finding the point or points where support lines of slope ' :

C

T touch the SR-LSI expected utility curves of Figure 3.2.

Clearly, the corresponding optimal amounts of planned |

] search time are non-increasing functions of Cro with dis-
continuities skipping each of the switch times. That is,

there exist uneconomic available searching time intervals

Ce o

containing the switching times such that no time in these
uneconomic intervals would be selected (optimal) for any

value of Crpe

L o i e i ORRT PPN’ i e Ak e it i kil




3.1.2 Sensitivity of SR-LSI Results

i
3 | | Behavior for Small T

[l The solution for small T can be computedl by replacing
the objective functions by Taylor series expansions and

solving the resulting mathematical programming problems.

e L
[
o —

This analysis leads to the following results:

R Let i = 1’2 and j = 3-io

37 Case 1 By pj > Py (Prior target location distribution

oa dominates guess decision for small
1)

For small T, any feasible solution is optimal, and the

i ] optimal objective function value is Z*% = pj.
i ) Case 2 Bi Pj £ Ps (Borderline case between cases 1
1 and 3)

The unique optimal allocation for small T is

[ ———
[ S———
-

t

]

T
. 2 2

[ Y
o ]

Té¢ = T - T¥
J 1

 dm—

And the corresponding optimal objective function value is

[
[ ———

lSee Appendix C for details.

[
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k.
-~ 2 1
3 3 - E
Z pj + [ ( Bipj iji)ijg (pi Bipj)TT;t]kiTg .

Case 23 B; Ps

5 < P;> iji < Pj’ P; < pj (Search outcome con-

tributes to guess de-
cision for all optimal
allocations of posi-
tive T.)

The unique optimal allocation for amall T is
T$=T, T4 =0,

and the corresponding optimal objective function value is

-~
-
-

Z* = p.

Case 4 p, = pj (Search outcome contributes to guess
decision for any allocation.)

If (l'sj)kj > (1-g;)k;, the optimal allocation of small

T is

TH=0, T =T,

and the corresponding optimal objective function value is

z* T .5[1 + (1-gs)ky T]. (22)

: a 2..2 2.2
If (1-8))k; = (1-8,)k, and (1-g)kj < (1-85)kj,

. e el

oo e M a2 B s

e W il s ¥
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the optimal allocation of small T is

T¢ =T, T$ =0,

and the corresponding optimal objective function value is

7k T .5[1 + (1-8)k,T - %—(1—32)1{1’2] , (23)

= 2502 = 2 Sl
If (l-Bl)kl = (1-82)k2 and (l-Bl)kl = (1-82)k2 s

the parameters for the two boxes are identical. The

optimal allocations of small T arve

Tf =T, T¥ =0

and

T# =0, T4 =T,

and the corresponding optimal objective function value is

given by (23) with i = 1 or i = 2,

These results for small T may be summarized as follows:

i. If no possible search outcome for any feasible
search provides sufficiently strong evidence
for changing the pre-search optimal guess (Case
1), any feasible search is optimal, but no
possible search produces a positive increment i

in expected utility.

o S If searching in only one of the boxes can pro-
duce sufficiently strong evidence to change the ?
pre-search optimal guess (Cases 3 and 4), the (
optimal allocation of small T is confined to
one box and the corresponding optimal objective




Lol i R i sl St o st s L1 s e i

—

-102-

—
s o

function value is approximately linearly in-

® e

creasing in T,

iii. For the intermediate condition between (i) .
and (ii) above (Case 2), the optimal allocation !
of small T is to allocate constant fractions of
T (independent of T) to each of the two boxes. f'
The corresponding optimal objective function
value is quadratic in T with zero deriative at

T = 0.

e

3
From (21), (22) and (23) it is clear that if (ii) obtains, ﬂ

the marginal contribution of small search effort with the

B; and ki parameters fixed is maximized over all target
location probability distributions by Py = Py In con- [
trast, the absolute magnitude of the optimal objective |
function is.maximized by p; = 0 or 1. Thus, if the prior l

target location probability distribution contains little

information, the search can contribute significantly by
collecting target information. But, the state of prior
target location knowledge which leads to the highest ex-
pected utility is that of perfect information which ren- |
1 ders the search useless. Little prior information implies
relatively high values associated with searching but I

relatively low attainable expected utility values.

Behavior for large T

If 8; = 0, a contact in box i is known with cer- L :

tainty to be a detection. Thecefore, as the search time -

grows w.:hout bound the probability of finding or infering

Y P g
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the target location approaches one. In contrast, if

both Bl and 82 are positive, the true target location can
never be known with certainty. Thus, the possibility of
false contacts imposes a limit on the maximum attainable
value of the expected utility even if the available

amount of searching time is unconstrained. The sensi=-
tivity of this reduction in objective functicn value for
large T to marginal changes in Bl and B, is examined below.

A computer program was developed to compute the co-
ordinates of points in the (61,82) plane along curves
having constant (normalized) values of the SR-LSI optimal :
expected utility for large T, ZL' Figures 3.3a to 3.3c 3
show such iso-'Z'L curves for different values of the ratic
pl/P2’ the only relevant parameter in determining these
curves.

These iso-'Z_L curves exhibit the familiar "diminishing
marginal utility" property. The extent of this effect,
which is indicated by the ratner sharp L-shaped character
of these curves, is surprising. Since searching in a box 1

having Bi = 1 is useless, we associate each end point of

N btk

these iso-'Z-L curves with a search concentrated completely

&k

in one of the boxes. The strongly diminishing marginal

returns property of the iso-Z, curves comes from the effec-

L
tiveness of one box searches. That is, for large T the

better of the two one-box searches usually achieves a value
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Figure 3.3c
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of expected utility which is close to the optimal value.

This phenomenon is particularly apparent when one of the
false contact parameters, Bi’ is very small.

A comparison of the sets of iso-fL curves reveals a
dramatic shift toward the axes as the ratio pl/p2 in-

creases from 1. The shift toward the Bl axis is more ex~-

tensive than toward the B, axis. Figure 3.4a illustrates

this shift for the 30% iso-ZL curves. Figures 3.4b and
3.4c show the shift in end points of these iso-Z'L curves
as functions of the ratio pl/pz.

This phencmenon can be explained as follows: Lower
Bs values correspord to more reliable or better quality
search systems. for any set of search system parameters,
the (normalized) TL value is maximized by the prior proba-
bility distrihuticn P, = p,. That is, any search system
can attain a higher normalized expected utility value for
P, = Py than for any other distribution. The dramatic
shift in iso-'Z-L curves expresses a marked drop in the
attainable normalized expected utility as the probability
distribution departs from Py = Py Or, as the probability
distribution departs from Py ¥ Pys the search system
quality needed to attain any given normalized iso—?":L
level rises dramatically. That is, searching is more val-
uable if the state of pre-search target location knowledge

is that of complete ignorance.

The cause of this dramatic change is embedded in the

Bl o
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way a search increases the expected utility. If the pos-
terior target location probability distribution results in
the same target location guess as that implied by the prior
distribution, the expected utility remains constant, which
is zero on the normalized scale. That is, only search
outcomes which change the target location guess increase
the expected utility. If P, =P, = .5, any single contact
results in pi* > .5 for the indicated target location
guess, i¥*, If P, > Py only those search outcomes yielding
pé > P contribute toward increasing the expected utility.
As Py increases from a starting value of .5 such a shift
rapidly requires increasing informaticn quality.

The effect of deficiencies in search information can
be offset by more effective response systems. This is
seen by examining the tradeoff between these effects as
represented by the parameters Bi and d for the SR-LSI
model. Assume that Bl s 82 = 8. A computer program was
developed to compute iso-ZL curves in the (8,d) plane.
Since the expected utility is proportional to d, only one
curve is computed for each_prior prchability distribution.
The curves computed are those which yield absolute ZL

values of .5. The d value corresponding to a given B value

for any other value of ZL is

d = 2 ZL d.S(B)’
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where d 5(B) is the ordinate of the ZL =1 .5 iso-fL

curve at B.

Figure 3.5 shows these 7L = .5 curves in the (g,d)

plane for several values of Py- The striking character-

istic of these curves is that they exhibit increasing mar-
ginal utility. That is, better search systems (lower g)

are accompanied by higher marginal savings in response

effectiveness, d, pe2r unit improvement in search system
effectiveness, B, co attain the same expected utility
value. This increasing marginal returns characteristic
depends on the scales for the B and d parameters. If one
is interested in economic tradeoffs, the relevant scales
for measurement are the cost functions associated with B8
and d. Since B = 0 represents perfect reliability of the
detector output (contacts), we presume that the cost assoc-
iated with B increases with infinite slope as B approaches
0. Thus, the cost function of g8 is probably sufficiently
nonlinear to dominate the increasing marginal utility
property of the B vs d iso-ZL curves. That is, an eccnomic
joint selection of B and d probably would not be a corner *
solution (B =0 or B = 1) as is generally implied by in-

i
. 3 h |
creasing marginal utility tradeoff relationships. i

Suppose that a search is planned on an intuitive basis

without the benefit of a mathematical search allocation

model. Then, the expected utility from the response pro- T




T T O

0.2

Figure 3.5

SR-LSI Model Iso-fL Curves in (B, d) Plane

e e e e i e




Bl i Bl L e sl L R 2k g 2o 2 cuciiadd IRRAC S el dvatcar s Lo T PRTCRT Y T

LB o i LEGRUG L i ot e slf i i L 00 BV T i s i itk i e PR 1 6 L M i 04 il Sddac i ol TETALN LY 7 VY Ty L r?
» £
“ c 'J

i
-114- l ;

cess will be sub-optimal by an amount which depends on the

allocation. We investigate the robustness of the SR-LSI

expected utility. A computer program was developed to ex-

amine the sensitivity of the SR-LSI expected utility to the
allocation, (Tl’TZ)’ with Tl + T2 = T fixed. TFigures 3.6a ;
to 3.6c show representative normalized Z, values as func-
tions of T, for T, + T, = T, the maximum amount of avail-
able search time used by an optimal allocation. Figure 1
3.6d shows Z; as a function of Tl (with T +T, = T) for
different values of T. These plots reflect moderate to %
extreme sensitivity depending on the parameters. For suf- H

ficiently large T the expected utility decreases dramatic- é

ally near Tl = 0 or T2 = 0. This sharp drop can be ex-

plained by considering the optimal target location guess ‘
plan for searches which are restricted to one box. The
optimal guess plan is always of the form: Guess that the
target is in box i unless a contact occurs in box (3-1i).
For large amounts of search time, the contact probability
is high regardless of whether the target is in the box
searched. Thus, the search provides negligible target lo-
cation information for very high amounts of search time in
one box. Hence, the normalized expected utility is zero

for long duration searches confined to one box. |
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3.1.3 Summary of SR-LSI Results and Implications

SR-LSI optimal allocations as function of available
search time, T, follow complicated optimal trajectories
which may switch between two conditional trajectories as
many as three times. As the available search time grows
without bound both conditional trajectories terminate.
Therefore, the optimal allocations, Tf and Tg, are bounded
functions of the available search time (unless Bl or 82 is
zero). The optimal allocations may be non-increasing
functions of T with discontinuities at the switch times.
This non-increasing character of the optimal allocations,f
T{ and Tg, implies that the.optimal search plan can be
cémputed only if T is known. |

The optimal trajectories usually begin (for small T)
along the coordinate axis corresponding to the box having
the lower prior target location probabilityl. That is,
for small T the optimal search is concentrated in the box
where the target is least expected to be located. For
moderate values of T the optimal allocation is usually

along the conditional trajectory which is nearer to the T,

axis, where ki > kj’ j = 3-i. For larger values of T the

1This fails to hold only if the prior target location prob-

ability distribution completely determines the optimal
guess for small T, i.e., there exist i and i = 3-i such
that Bipj > Py-




optimal allocation is usually along the conditional tra-
jectory which is nearer to the T, axis with Bi < Bj.

And for most cases as T approaches T the optimal alloca-
tion is along the conditional trajectory which is nearer
to the Tj axis with Bi < Bj.

For most cases examined the available search time is
not shared approximately evenly (T{ = Tg) for any amount
of available search time, T. In par?icular, if the param-
eters for the two boxes are identical, T{ = Tg is never
optimal. The ratio T{/Tg for a wide variety of identical
box cases was never found to be between 0.37 and 2.69.
Thus, in the event that the decision maker does not know
the parameter values preciselyl, he probably should avoid
any impulse to deal with his uncertainty by allocating
equal amounts of time to each of the two boxes.

The decrease in attainable expected utility value

attributable to the false contacts (false contact loss)

increases as a function of T for small T. This increasing

lSince the SR-LSI expected utility is linear in Py 1.5

one has a prior probability distribution for the prior
probability Py with the other parameteirs known, the op-
timal allocation is found by using the expected value of
Py in the solution given in Appendix B. If the ratios
pl/p2 and kl/kZ are approximately one, the ratios Tf/Tg
have been found to be significantly different from one

for the cases examined.
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character of the false contact loss may continue for mod-
erate and large values of T or the false contact loss
may exhibit alternating intervals for which it first in-
creases and then decreases as a function of T. Such com-
plex increasing then decreasing character stems directly
from the discontinuities in the optimal expected utility
slope associated with the switching of the optimal trajec-
tory between the two conditional trajectories. Also assoc-
iated with these objective function slope discontinuities
are intervals of planned search time, T, which cannot be
optimal if there is a fixed charge proportional to the
planned search time.

The decrease in SR-LSI expected utility from using
a Koopman model rather than the optimal allocation (the
Koopman loss) is a complicated function of T. For most
cases the Koopman loss grows with increasing'T for small
T. For T approximately three to four times the expected
time to contact for the Koopman allocation, the Koopman
loss reaches a relative minimum which is usually small.
For moderate T the Koopman loss may alternate from in-
creasing to decreasing due to the discontinuities in +*he
optimal SR-LSI objective function slope. For large T, the
Koopman loss increases monotonically approaching the nor-
malizad value ZL asymptotically as T grows without

bound. This implies that the search should be limited to
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a modest upper bound on the total planned searching time.
The contribution of the search to the SR-LSI ex-
pected utility is greatest if P; = Py- But, the absolute

value of the optimal expected utility is maximized by

P © 0 or 1. In fact, the optimal expected utility for
small T is minimized by P; = Py From the computations
performed it appears that the optimal expected utility is
minimized by P, = P for any amount of available search
time. That is, the search contribution is greatest when
the prior target location probability distribution is that
of complete ignorance (maximum entropy).

If Bl = 62 = 0 (no false contacts), the optimal
search is concentrated in one of the two boxes. For the
cases with Bl and 62 positive, however, the optimal search
may require that positive amounts of search time be allo-
cated to both boxes. For all cases examined there exists
a "one box" search allocation with either Tl = 0 or T2 =0
which yields values of SR-LSI expected utility which are
nearly optimal. That is, for practical purposes, it is

unnecessary to split the search between the two boxes.

3.2 Complete Search Information (SCI) SR Model
The LSI version analysis of the decision maker's

search allocation problem is appropriate only if the times

at which contacts were made are unavailable as inputs to
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the target location guess decision. If the contact times
are available, the guess decision can profitably include

this data as well as the number of contacts in each box.

In Appendix D we discuss an algorithm for solving the de-
cision maker's search allocation problem given the times=-
to-contact. This algorithm was derived to solve the

following CSI formulation of the problem:

Let
ti = amount of search time used in box i when
either a contact occurs or the search is
terminated for lack of additional search
time,
Ti = amount of available search time allocated to

box i,
t = the vector (tl’t2)’

T = the vector (Tl’TZ)’

pj(t,T) = Pr(Target is in box i NS T
D
WED * FED
6(t,I) = {g | pg(t,T) = max{p} (t,T)}}.
1

T is the search plan; t is the search outcome.

Clearly, the optimal target location guess policy is given

by:1

lThis follows from the symmetry of the reward for correctly

guessing the target location. The extension to an assym-
metric structure is straightforward.

|




SR-LSI model.

-124-

If u(t,T) > 1, G(t,T) = {1},
if u(t,T) = 1, 6(t,T) = {1,2},
if u(t,T) <1, a(t,T) = {2}.
And the following
theorem.
-(l-al)lel
(t,1) = 227 for t
u = or
== '(1'82)k2T2
Po€
-(1-8,)k.T
1l
p,e 171
=(i-8,0k,T, fort
277272
B,P,e
B,p,e
=z 271 for t
-(1-8,0k, T,
P,€
; -(l-Bl)lel
_ . PaPs®
¥ : EpK,T, fort
] B.p,e
T 172

function for t is

1,

l’

A

A

T

T

T

T

are immediate consequences of Bayes'

2.

(24a)

(24b)

(24c¢)

(24d)

The case with Bl and 82 zero may be ignored since the so-
lution for this special case is identical to that of the

The complementary probability distribution

?
l
|

s




-—e

-125-

"kyty=Bakoty  -Bykityok,t

P, P,e = for 0 <t <T
F(t) = (250
- 0 for t £ T
Therefore, the constrained search allocation problem is
Maximize 2 = ff max {pj(t,T)} dF(D) "
T 0 df<T i1,
(26)

Subject to Tl’ T2 >0, Tl + T2 < T.

Solution for 8,, B, > 0

In Appendix D this problem is solved by comparing the

objective function, Z, to the corresponding function, Z(=),

with T) = T, = =, Let
H(T) = Z(=) - Z.

It is shown in Appendix D that H(T) is minimized over

T, +T, =T by some point between two straight lines,

which we will call lines b and c,

P
z = 7
s (T) in 5.0, b, (Z)
and
B, P

s(T) = 1n 271 . c. (28)
where

s(T) = (l'el)lel'(l'Bz)k2T2‘
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Lines b and ¢ for a representative case are shown in
Figure 3.7. Along any line s(T) = e with ¢ < e < b, H(T)
is a non-increasing function of T,+T,. Further, for large

T, + T H(i) decreases exponentially to zero along the

L o2l
line s(T) = e with the rate parameter of the exponential
form independent of e. Therefore, the optimal allocation,
(Ti,Tg), for large T lies along a straight line s(T) .= e
with T3+T3 =Tas T + =,

The optimal trajectory (plot of (T*,Tg) with T as a
parameter) consists of alternating segments of two candi-
date conditional trajectories. The coordinates of points
along these two conditional trajectories can be computed
as functions of roots of the functions which express the
first order marginal conditions for minimizing H(T) along
T1+T2 = T.

3.2.1 Comparison of SR-CSI Model with SR-LSI and Koopman
Models

Based on the analysis described in Appendix D, a
Fortran IV computer program was coded for the Pentagon IBM
7094 to compute approximate numerical solutions to the CSI
version of the decision maker's search allocation problem.

Figures 3.8a to 3.8 d depict the CSI optimal trajec-
tories for the same cases as depicted by Figures 3.la to
3.1d for the LSI version of tne SR model. For small T,
the optimal allocations are identical for the LSI and CSI

versions of the SR model This is the case because for
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Bl = 0.1, kl =1, pl = 9.5
By = 0.5, ky =1, p, = 0.5

Line

Non-optimal Line
Region

Non-optimal

Region
5

Figure 3.7 Bounds for SR-CSI Model Optimal Allocation
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optimal CSI allocations of small T, the optimal target lo- 1

cation guess, given any possible search outcome (t), is
the same as the optimal guess based only on the numbers of
contacts for the two boxes. That is, for small T the num-

bers of contacts for the two boxes are sufficient to make

DN DNEINLCIPIE W NI SRR SRe V-

the target location guess decision.

.

e

As T increases the SR-CSI optimal trajectory may

T emen

switch between two conditional trajectories in a manner

AT Rty S

similar to the SR-LSI optimal trajectory switching. For

ey e e

most of the cases examined the number of switches in the
F SR-CSI optimal trajectory has been one less than the num- $=.

ber of switches in the corresponding SR-LSI optimal tra-

jectory. Exceptions to this relationship have been cases ls'

in which both the SR-LSI and SR-CSI optimal trajectories ' '

contained either one switch or no switches. Because most

el S e b s b b

of the SR-CSI optimal trajectories contain fewer switches

than the SR-LSI optimal trajectories, the amount of infor-

Rk T oo
-

mation regarding the value of T needed to determine an
SR-CSI optimal search plan is frequently less than that
required to determine the corresponding SR-LSI optimal L

search plan.

Y

In contrast to the SR-LSI conditional trajectories,
the two SR-CSI conditional trajectories are unbounded {
] lying along straight lines of the same positive slope as

T increases without bound. The portions of the SR-CSI I




conditional trajectories wnich connect tne terminal
straight line portions with the origin coincide with the
corresponding portions of the SR-LSI conditional models.
This coincidence of initial portions of SR-LSI and SR-CSI
l conditional trajectories stems directly from the suffi- 3
] ciency of the numbers of contacts in the two boxes for

?! the target location guess decision. The unboundedness of

the SR-CSI conditional trajectories implies that the op-

timal SR-CSI search is unbounded as T increases without

Ii bound. Thus, the optimal SR-CSI search plan always al-
locates all of the available search time to the two boxes.

'l Corresponding to the cases depicted in Figures 3.8a
to 3.8d, Figures 3.9a to 3.9d show the normalized SR-CSI

!I expected utility values, ZC, as functions of T for the
optimal SR-CSI search allocation and the Koopman alloca-
tion. Also shown in these figures are the "perfect de-

tector" expected utility functions which could be achieved

‘by a "perfect detector" system having the same true de-

: tection rates as implied by the parareter values (ki'siki)’

‘ but no false contacts. The optimal SR-CSI expected utility
curves coincide with the corresponding optimal SR~LSI ex-
pected utility curves for the initial intervals for which

the SR-LSI and SR-CSI optimal trajectories coincide.

These initial intervals have been found to be the same

order of magnitude as the expected time-to-contact for
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Figure 3.9a Normalized SR-CSI Model Expected Utility
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B, = 0.10, k; = 1, p, = .47368
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Figure 3.9c¢ Normalized SR-CSI Model Expected Utility
vs Available Search Time

T = e T P T R TR, Gay L TP

P

!
]
3

T ST e




| 13-

| By = 0.1, k; =1, p; = 0.5

' '4
]’ 32=0.5, k2=l,p2=0.5
| | :s
s Perfect Detector Expected Utility i
i
] “ == For Optimal SR-CSI Allocation g
' (] === For Koopman Allocation '
“ LN j
E |
L
[
| 1
1L 1
1
L ] 1
0 2 4 6 8 10 '
T
i Figure 3.9d Normalized SR-CSI Model Expected Utility
=y vs Available Search Time
|
{




b Gl ot bl i i au e Ui Y PP RTR T TR T

-138~-

the Koopman model. Although the SR-CSI optimal expected

utility values are higher than the corresponding SR-LSI

optimal expected utility values for larger values of T,

the difference between these two curves has been rathner
small (less than three percentage points on the normalized
SR expected utility scale) for all cases examined for all
T. Thus, the use of search contact times in making the
target location guess decision permits at most a small
gain in optimal expected utility compared with basing the
guess on the numbers of contacts in the two boxes.

Since the optimal SR-CSI expected utility curves are
substantially the same as the SR-LSI curves, the expected

utility cost of the false contacts is substantially the

same for the SR-CSI and SR-LSI models. In contrast, the
expected utility cost associated with the use of the Koop-
man search plan is not the same for these two models.

For small and moderate values of T these sets of curves are
substantially identical. But as T grows large the SR-CSI
expected utility curves for the Koopman search allocaticns
asymptotically approach the optimal objective function
curves while the SR-LSI curves for the Koopman allocations
drop asymptotically to the normalized expected utility {m
value zero. That is, if the contact times are used in !
making the target location guess decision, there is no

danger of planning to use too much search time.
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3.2.2 Sensitivity of SR-CSI Results

Behavior for Small T

Since the LSI and (¢SI versions yield identical re-
sults for small T, the sensitivity results derived in
Section 3.1.2 for the LSI version for small T hold for

the CSI version as well.

Behavior for Large T

A computer program was developed to compute traces
in the (31,32) plane corresponding to constant limiting
normalized values of the SR-CSI expected utility, ZC’ as
T increases. Figures 3.10a to 3.10c show these iso-Zb
curves for the same cases as depicted in Figures 3.3a to
3.3c for the SR-LSI version. These two families of curves
are similar having identical endpoints and general shape.
But the CSI curves are more gently curved. Thus, if
neither B; is approximately equal to one, the CSI version
achieves a moderately higher value of EC than the ZL of
the LSI version. Thus the best one box search yields ex-
pected utility values for large T which are lower than the
optimal expected utility by amounts which are slightly
greater than the corresponding expected utility loss for
the best one box search for the SR-LSI model.

To investigate the tradeoff between search system and

response system parameters, assume that Bl = 62 = R.
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Equations D.5a and D.S5b in Appendix D can then be used to

express the tradeoff as

(1+B)‘ZC

8
. p,|T-B
pz(l B)+pl(l-8) 5;

where p, < p,. Figure 3.11 shows the SR-CSI EC e .5
curves in the (B,d) plane for several values of P,. The
coordinates of points on other iso-fC curves can be found
from these curves in the same manner as for the SR-LSI
iso-fL curves. These curves are quite similar to the cor-
responding SR-LSI ZL = .5 curves. The two families of
curves have the same end points. But the CSI curves are
slightly more gently curved. This reflects the inherent
marginal value of having the contact times available in.
making the target location guess decision.

To investigate the robustness of the SR-CSI expected
utility, a computer program was developed to examine the
sensitivity of the SR-CSI expected utility to the allo-
cation along T1 + T2 = T. Figures 3.12a to 3.12c show nor-
malized CSI expected utility values as functions of T,
along with the corresponding expected utility functions
shown in Figures 3.6a to 3.6c. The sets of curves are

somewhat similar, but the CSI version curves show less
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sensitivity to allocations than do the LSI curves. Thus,

the use of the more sophisticated CSI model eliminates ;

cuue of the sensitivity of expected utility to the alloca-

tion. That is, for large T the importance of allocating | ;
the search resources nearly optimally is greater for the | 1
LSI version than for the CSI version. Figure 3.13 shows
the sensitivity of the SR-CSI expected utility té the

allocations for series of values of T. g

3.2.3 Summary of SR-CSI Results and Implications

The similarity of the CSI and LSI versions of the SR
model leads to many similarities in results for these A
models. Therefore, most of the comments of section 3.1.3 I

apply to the CSI version as well as the LSI version. In

this section we discuss the important qualitative dif-

ferences between the results for these two models.
Optimal SR-CSI allocations follow optimal trajec-

tories which coincide with the corresponding SR-LSI optimal

trajectories for small and moderate values of T. But,

for large T the CSI version optimal trajectories are un-

bounded lying along straight lines of positive slope in

the (Tl’Tz) plane. Also, the CSI optimal trajectories I
lack the final switch between conditional trajectories .

which usually characterize the LSI optimal trajectories.

The optimal SR-CSI expected utility values are iden- [

tical to the corresponding SR-LSI expected utility values
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for small and moderate values of T; for large T the op-

timal SR-CSI expected utilities are slightly larger. The
important difference between the SR-CSI and SR-LSI ex-
pected utility functions is in their sensitivity to changes

in the alloéation, Tl and T2, for large T. For the LSI

Qersion the expected utility decreases as a function of T,
(or T2 or Tl and T2 along a line of positive slope) if

the amouﬂt of time allocated is large. But, the CSI ex-
pected utility function is non-decreasing in T, and T, for
all possible allocations. For the CSI version any pos-
sible allocation of large T with’T1 >> 0 and T, >> 0 will
yield an expected utility which is roughly the same mag-
nituce as the optimal expected utility. Thus, if the
contact times are used in making the target location guess
decision, the expected utility loss for a non-optimal
search allocation is less for large T than if only the
numbers of contacts in the two boxes are used for making

the target location guess.

3.3 Adaptive Compiete Search Information (ACSI) SR Model
For both the LSI and CSI versions of the SR model the

available time for searching in each box is fixed,

indepenaent of the search outcome. Thus if a contact

occurs in one of the boxes before the planned search of

the box is finished, the unused portion of the planned




search is not reallocated to the other box. Rather, this
unused available searching time is wasted. For the adap-

tive complete search information version of the SR model

let us assume that when the first contact is made this un-

used searching time is reallocated to the other box. In
Appendix D the SR-CSI search model is modﬁfied to include
such adaptive reallocation of the search resource.

The analysis of this AR-ACSI model is very similar
to that for the unadaptive SR-CSI model. The only dif-
ference in the definition of the problem comes in the

probability distribution of t. Equation 25 becomes

kyiti=Bokaty  =Bikyty-koty

ple tpye for Tttt <T

2

0 for t,+t >T.

1 2

And equation 26 becomes

Maximize 2Z = max {p'(t T) }dF(t)

T 0<t +t,<T 1i=1,2

Subject to T,,T

12T, 20, T +T,c<T.

1 2 -

The two conditional trajectories become the positive
portions of the lines b and c together with the segments
of the Tl and T2 axes connecting these two lines to the

origin as shown in Figure 3.7. However, all points in

the non-negative quadrant above line ¢ along T1+T2 =T

Pa—

ron i ke D T
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15 yield the same values of the SR-ACSI expected utility as

i

il the point on line ¢ having T,+T, = T. Similarly, all o ’ ' ,;
| points in the non-negative quadrant below line b aloné |
Q N T1+T2 = T yield the same values of SR-ACSI exﬁected util= = ! f .?
ity as the point on line b having T1+T2 = T. .[Therefore,

é solutions to the ACSI version of the model are unique only
for small T. 1In fact, for any T there exists an optimal ; ,
allocation with all of the available search time alloca-

ii ted to one of the boxes.

G s o

3.3.1 Comparison of SR-ACSI Model with SR-CSI gnd SR-
LSI Models |

erical solutions for the SR-CSI model also computes numer-

ical solutions for the ACSI version. Figures 3.lha to

3.14d present the ACSI version optimal trajectories for

E 41 The computer program which computes approximate num-
L the same cases depicted by Figures 3.la and 3.1d for the

LSI version. The SR-ACSI optimal trajectories consist of

{

alternating segments of two conditional trajectories sim-

ilar to those of the SR-CSI model. The two SR-ACSI con-
ditional frajectories consist of the portions 6f lines b
and ¢ in the positive quadrant arnd the segments of thé CO=~: :
ordinate axes connecting these rays with the origin. The :

same number of switches between conditional trajectories

was found for the SR-CSI and SR-ACSI model optimal tra-

jectories for all cases examined. The same critefia hold

[
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for the determining which conditional trajectory is op-
timal for the small, moderate and large ranges of T. But,
the switch times for the SR-ACSI model were always found
to be higher than the corresponding SR-CSI switch times.
LSI conditional trajectories coincide with the correspon-
ding CSI conditional trajectories for small T, depart from
the CSI conditional trajectories for intermediate values
of T and end on the corresponding ACSI conditional trajec-
tories.

Figures 3.15a to 3.15d depict the SR-ACSI version
optimal expected utility values, ZA’ as functions of T for
the same cases depicted by Figures 3.2a to 3.2d for the
LLSI version and by Figures 3.9a to 3.9d for the CSI ver-
sion. The ACSI curves differ from the CSI curves only
in minor detail -- the contribution of the adaptive re-
allocation of search time as the search progresses to the

optimal objective function is of minor value.

3.3.2 GSensitivity of SR-ACSI Results

Behavior for Small T

The optimal SR-ACSI allocations for small T are icen-
tical to those for the LSI and CSI versions of the nod=21l.
And the optimal ACSI expected utility functions are only
infinitessimally nhigher for small T than for these two

more primitive related models. Therefore, the sensitivity’
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results derived for the LSI version hold for the ACSI

version also.

Behavior for Large T

The ACSI and CSI versions of the SR model yield iden-
tical optimal expected utility values in the limit as
T - », Therefore, the iso-zC curves computed for the CSI
version (Figures 3.10 and 3.11) also hold for the ACSI

version.

The computer program which computes the sensitivity
of the CSI expected utility to the allocation along T +T, =
T also computes the ACSI version expected utility. Fig-
ures 3.16a to 3.16e show the normalized ACSI expected
utility values as well as the CSI and LSI version ex-
pected utility values as functions of Tl for the cases de-
picted in Figures 3.6, 3.12 and 3.13. These curves show
that the objective function for the ACSI version is much
less sensitive to the allocation than are objective func-
tions of the LSI and CSI versions. Thus, for large T the
chief benefit to be gained from using the ACSI model is
that the expected utility is less sensitive to the allo-

cation than is the case for the simpler LSI and CSI models.

3.3.3 Summary of SR-ACSI Results and Implications

Optimal SR-ACSI allocations can be described witn the

use of optimal trajectories which are very similar in
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general appearance to the SR-CSI optimal trajectories.
But, the relationship between optimal trajectories and the
optimal allocation patterns for the SR-ACSI model are dif-
ferent from the corresponding SR-CSI relationship. In
the SR-CSI model, only points on the optimal trajectory
can be optimal. But, in the SR-ACSI model, for any given
value of T all feasible points along T1+T2 = T on one side
of the optimal trajectory are also optimal. Thus, for any
T there exists an optimal search plan which concentrates
all search effort in one of the two boxes until either a
contact is made or the available search time is exhausted.
The box in which this optimal one box search begins de-
pends on the amount of available search time, T, as well
as the model parameters. For small T the optimal search
begins in the box having the lower prior target location
probability. For intermediate values of T the optimal one
box search allocation is usually1 to the box having the
higher contact rate. For large values of T the optimal one
box search allocation is usuallyl to the box having the

lower false contact parameter.

For all T the optimal SR-ACSI expected utility values

are either the same as or only slightly higher than the ccr-

responding optimal SR-CSI expected utility values. There-

lAbout 10% of the cases examined violate this rule.
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fore, the ability to reallocate unused search time when
the first contact is made contributes only marginally at

best to the attainable expected utility.
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CHAPTER 4

SUMMARY AND FUTURE RESEARCH

4.1 Summary of Results
4.1.1 UR Model

The distinction between favorable and unfavcrable
response process initiation with the corresponding false
detection modeling affects the indicated search allocation
by altering the expected utilities associated with unlim-
ited searching in each of the two boxes. While these
limiting expected utilities are necessarily positive for
the Koopman model, either or both of the relevant limiting
expected utilities can be negative for the UR model with
false detections. Therefore, searching may be harmful in
one or both boxes.

If searching is harmful in one or both boxes, the
Koopman search allocation plan may lead to disasterous re-
sults as shown in Figure 2.2. However, if searching is
useful (has positive expected utility) in both boxes, the
Koopman search allocation yields expected utility values
which approach the optimal values as the amount of avail-
able search time increases without bound. For cases in
which the false detection and response process parameters
are the same for the two boxes, the Koopman search is op-

timal for any amount of available search time.

-171-
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Searching in one of the boxes is harmful only in ‘ |

cases involving high potential risk (B, high, f. negative) |
i i

and low potential gain (dl low). The Koopman search model I' !
is obviously inappropriate for such cases. For cases in o i
which the Koopman model is reasonable, the Koopman alloca-
tions are close to the optimal UR allocations. The re-

sulting expected utility loss from using the Koopman model

i Lt

rather than the UR model is moderate, approaching zero as
the available search time grows large. Thus, the UR model
can contribute significantly mainly in the analysis of , g
search problems with low to moderate limits on the available :

search time. L

4.1.2 SR Models } ‘

The optimal allocations for the SR search models are

more complex than those for the Koopman and UR models.

s it

Even without false contacts (8, = 8, = 0) the optimal tra-

-

jectories may be non-increasing in T, and T,. With false

oY) P

contacts present (Bl and Bsy positive) the complexity of
: the optimal allocations increases. Multiple switching be-

4 tween two conditional trajectories becomes the usual cp=-

-

timal trajectory pattern. If By = 62 = 0, the atility ¢

guess the target location eliminates the need to search in

=

botn boxes to optimize the SR objective. That is,

guessing shifts the preferred allocation from . line of

=550

positive slope for the UR model to one of the axes. The




P

Lsmmmm kit

intrcduction of false contacts in the SR models moder-
ates this shift. But, even with false detections present
(Bi positive) there always exists a "one box" search (with
T, or T, equal to zero) which attains a value of expected
utility close to the optimal value. That is, for practical
purposes it is never necessary to search in both boxes.
For the SR-ACSI model there exists an undesirable
strip between lines b and c (given by (27) and (28)). A
point within this strip can be optimal only if it is alsc t
‘»ﬂ

on one of the axes. For sufficiently large T all feasible

points on one side of the undesirable strip having

Tl + T2 = T are optimal solutionsl. The location of the

undesirable strip is determined by the prior target loca-
tion probabilities, P;» and the false contact parameters,
Bi. The width and slope of the undesirable strip depend
on the false contac! parameters and the contact rates, ki’
Higher B; values imply a narrower strip. For many moder-

ate sets of parameter values, the optimal trajectory for

the UR model lies within the undesirable strip.

The switching of the vuptimal SR trajectories from cne

side to the other of the undesirable regions usuaily follows

the following pattern:

1For the SR-LSI and SR-CSI models undesirable regions

similar to the SR-ACSI undesirable strip exist. But

for these models only points on the boundaries of the
undesirable regions or on an axis can be optimal.
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15 For small T the optimal allocation is concen-
trated in the box having the ower prior prob-
ability of containing the target.

1% For moderate T the optimal allocation is
usually along the conditional trajectory which

]
is nearer to the axis corresponding to the i |
higher total contact rate. '

o R Ses

iii. For larger T the optimal allocation is usually
along the conditional trajectory nearer to the | ]
axis corresponding to the lower false contact
parameter, Bi.

iv. As T approaches T for the SR-LSI model, the |
optimal SR-LSI allocation usually lies along
the conditional trajectory which is nearer |
to the axis corresponding to the higher false Lt
contact parameter. | i

That is, as T increases, the dominant role in determining :
which of the two conditional trajectories is optimal ‘
usually shifts from the prior probabilities to the total
contact rates to the false contact parameters.

Because the optimal allocations, Tf and T¥, are not
necessarily non-decreasing functions of T (amount of avail-
able search time), tne value of T may be needed to compute L.

the optimal search plan. Further, these optimai searon

plans are not related in any obvious way to optimal or

desirable search plans for the corresponding problems with

-

T unknown.
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For the SR-LSI model the amount of available search
time which is allocated to the two boxes is bounded
(assuming that the false contuct parameters are positive).
But, the optimal allocations for the SR-CSI and SR-ACSI
models are unbounded as T increases without bound. The
SR-CSI optimal allocations for large T lies along straight
lines of the same slope as the corresponding Koopman and
UR allocations with the same true detection rates. Sim=-
ilar linearly increasing allocations of large T are also
optimal for the SR-ACSI model. But, all allocations with
T1+T2 = T between the SR-ACSI optimal trajectory and one
of the axes are also optimal. Thus, there always exists
an optimal SR-ACSI allocation concentrated in one of the
two boxes.

Only in rare cases is an optimal allocation approxi-
mately evenly shared. The corresponding parameter values

for the two boxes are quite different for those cases in

which approximately even allocations may be optimal. Thus,

the search decision maker probably should avoid any impulse

toward equal allocations to the two boxes in situations
involving uncertainty.

The increased complexity of the optimal allocation
patterns for the SR models compared to the koopman and
UR models leads to correspondingly more comnlex optimal

expected utility structures. First, on an absolute scale

ga .3 ket B

W
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the optimal SR expected utility for T = 0 is positive (at

least half of Z) compared to zero for the UR model. While :

the optiinal UR expected utility as a function of T is g. ‘j

smooth and convex, the optimal SR expected utility may be

PR § ——

neither smooth nor convex. The slope of this optimal SR
expected utility function may be discontinuous having
positive jumps at the points where the optimal trajectories
switch between the two conditional trajectories. i
The SR-LSI, SR-CSI and SR-ACSI version optimal expec-
ted utility functions of available search time are sub-
stantially identical for small and moderate amounts of
available search time. For large (Tl+T2) the SR-LSI
optimal expected utility decreases asymptotically to the o
normalized value of zero as T increases without bound. é
In contrast, the SR-CSI and SR-ACSI optimal expected util-
ity functions are strictly increasing functions approaching

the same upper bound for large T.

The major difference in the SR-LSI, SR-CSI and SR-
ACSI expected utility functions for small and moderate T
is in their sensitivity. Particularly for moderate and j
large T the SR-ACSI expected utility functions show less
sensitivity to Tl with T, = T—Tl than do the SR-(CSI exrs:o:zel
utilities. Similarly, the SR-CSI expected utilities ex-

R e

SR U PO

nibit less sensitivity to T, than do the SP-LSI expectel

1

utilities. The decreased sensitivity for the SR-CS1 and
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SR-ACSI expected utilities results from their ability to
discriminate on the basis of when contacts occur between
different search outcomes having the same numbers of con-
tacts for the two boxes. The SR-ACSI decrease in expected
utility sensitivity compared to that of SR-CS1l model re-

sults from the increased flexibility of the ACSI search ' }

which adjusts the amounts cf time allocated to the boxes

whenever the first contact is made. F .

st o o i

;, i} 4.1.3 LR vond SR Model Comparison i
; . For small T the optimal UR (and Koopman) allocatioﬁé | ; A
E; i! are conzentrated in the box having the higher Biki value,’
3f ii wheso B o= [(l-Bi)di+sifi]pi. But, the optimaf 53 allg- | | 'ii
- cations begin in the box having the lower P: value. The ' . ;
?f corresponding marginal expected utility functions at;T = U ‘ ;
for the UR and SR models are | ’ ?
du | ]

[(1-8,)d; + 8,f,dp ik,

ar (Pi-sipj)kid ’ ‘

where

- - SIS
(1 By)d, + Blfl]plkl > [(1-B,0d, + 8.0.1, , |

Nk
- - -
i

Pif_Pja ] =3~ 1.




LA ol e Skl i LG b vl sl v o i oA g L i d oy it s -\).\J.la’/""( pAA e G b ai e o itan o duie ik b Mot afaco a8 ahged L) Sl 2 L0 8 Gt Lk et
!

! : . ;l7p_ ' f i

i
! 0 |

Thus, —T is maxlmlzed by pl = 1 while %& is maximized by

pl =Py .5. That 15, the search contrlbutlons for these

!
I

‘ two types of models are greatest;under circumstances, which

are exactly opposite in character. The UR search contri-

' bution is maximized by a state of perfect knowledge of the

1
i

target location; the SR seapch contrlbutlon is max1m12ed

by the state of maximum uncertainty (entropy) regarding
i o U ‘

the target location. This difference reflects the dif-
!
1 {

ferent purposes for search;ng'for these two types of models. ,

In the SR models,the purpose of the search is to discover
'
or infer the target location. P in the UR model knowl-
edge of the target iocation is insufficiept to serve the
dec&sion maker's;purposes. The searcher ﬁust find the
target to obtaln favorable response process results. |,
ThlS dlfference in search purpose is' accompanled by

a fundamental dlfference in the nature of false contacts

| for the two types: of models. For both types of models we

define contacts as 1rrever51ble p081t1ve dec1blons that

i
i 1

‘the .target has apparently been found. Thus, contactb ter-
’ 8 [

minate the search'in the box of‘contact for both types of

models. For the UR model detectlons lead 1mmed1atelv tQ ’

04

favorable response process 1n1t1atlon Falsefcontact
_those detection decisions whlch lead to unfavorable re- c .
. sponse process initiation. , In contrast, contact events in

!

' the SR models do not initiate the response process. The

. response process occurs only after the search has been , ‘
: : ’ : 1
i A
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completed in both boxes. For the SR models any contact

in the box containing the target tends to cause the de-
cision maker to correctly guess the target location and,
hence, obtain favorable response process results. That is,
there are no false contacts associated with the box con-
taining the target. Rather, the false contact phenomenon
takes expression through the contact process in the box
which does not contain the target. The SR false contact
parameters are the ratios of intensity parameters for the
conditional contact processes with and without the target

present.

4.2 Future Research

The taxonomy of search problems given in Chapter 1
represents a conjectural view of what problem character-
isties might be important to the analysis of search prob-
lems. The research has demonstrated that at least a small
part of this conjectural view is productive in that con-
sideration of response processes and false alarm phenomenon
have marked effects on search strategies and returns. Wwe
have shown that these features can be implemented using
rather straightforward mathematical techniques, and that
the relationship between search and response processes 1s
of central importance in the analysis of search problemns

with false contacts. These results suggest that research

L T e T
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should continue to explore the relationship between the
search and response processes which will, of necessity,
include the false alarm phenomenon. Other search and re-
sponse features cited in the taxonomy should be inves-
tigated in conjunction with this direction. Sketches of
three useful extensions of the research described in this
report are given below.

The methods used in Chapter 3 can be generalized to
deal with models having more than two boxes only at con-
siderable computational expense. The sensitivity of our
results to the two box assumption is of interest. Some
insight into the character of corresponding multiple box
model results can be found from sketching part of the
solution to the special case with no false detections

(B, = 0). Corresponding to equation 18 we have

al
-kiTi N -k.T.
Z2° = 1 + max p;e - 2: p.e 33,
i=1,N j=1 3
Therefore, the solution for any T is identical to the
Koopman allccation confined to searching some subset of
N-1 boxes. For small T this subset is all boxes except
the one having the highest prior target locaticn proba-

bility, P;- For large T this subset is all boxes except

4

ki
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the one having the lowest detection ratel, ki' Thus, the
switching phenomenon persists as N increases. If false
detections are possible (Bi > 0), we expect the other
qualitative characteristics of the solutions for the two
box models to hold for the multiple box models as well.
But, the development of multiple box and continuous search
space models corresponding to those of this research re-
main as significant outstanding research topics.

In this research we assumed that the amount of avail-
able search time is known. This assumption seems particu-
larly arbitrary resulting more from its convenience in
the analysis than from an intuitive view of most real
search problemsz. Yet, this assumption was found to play
an essential role in the SR model results. Corresponding
models with some other treatment of the amount of available
search time, T, are of interest. Note that if one has a
probability distribution for T, the SR results of this
research cannot, in general, be used to construct optimal
search plans. Rather, one must express the expected
utility as a function of the search plan and them maxi-

mize the resulting functional over the set of admissible

lThis follows from the fact that the rate parameter of the

asymptotic exponential growth for large T is 1/ L l/ki
where S is the subset of boxes searched. ieS

2Inability of searchers to follow a prescribed strategy
exactly is one effect which suggests viewing T as a
random variable.
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search plan functions which specify non-decreasing allo-~ !
cations to each box as a function of T. Such functional i }

optimization problems are mathematically more difficult

than the mathematical programming problems encountered hi 1
in optimizing the same objective functions over the ad- 4
missable allocations for a fixed T.
e detection processes assumed in this research are

only the most rudimentary ones. The only output of the b
detection system is a single contact signal or contact
event. This contact event, then, terminates the search. i i?
Further, the contacts, which are inherently interpretations

of detector data, are made iridependent of the available tar- %‘

I

¥
get location probabilities. But, if possible, these con-

tact decisions should be made on the basis of all the
available infermation, including the initial target loca- !

tion probabilities. That is, response decisions should

result from deliberate economic choices rather than frecm I
the arbitrary application of fixed rules for interpreting

detector data independent of the operating environment.

e s A D s

Models involving more explicit treatment of the detector
data in the decision problem are needed to characterize

such optimal economic search plans.

A AR A3 AN
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APPENDIX A

AN ALGORITHM FOR SEPARABLE, STRICTLY
CONVEX PROGRAMMING PROBLEMS
WITH ONE LINEAR BOUNDING CONSTRAINT

This appendix develops an algorithm for solving allo-
cation problems like those of the UR search model problems
of Chapter 2. The form presented here is a slight gener-
alization of a similar algorithm by Charnes and Cooper
(1958) and by Moore (1971). This algorithm can easily be
modified for allocation vectors of arbitrary number of
dimensions with substantially the same results. The as-
sumptions regarding the characteristics of the objective
function could be relaxed without altering the algorithm
approach. However, to do so would clutter the development
with superfluous details.

Let (xl, x2) be an allocation vector representing
real, nonnegative quantities. Corresponding to each s
let Fi(xi) represent a return function associated with X

Suppose Fi are differentiable with

14 0 < F! < o, : (A.lay
il
ide R g=> F1(x) > Fi(y), and (A.1b)
iii, 1lim F!(x) = 0 (A.1lc)
K->+00 1
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These conditions guarantee the existence of inverse func-

tions, fi’ for each Fi. Further, these inverse functions
are continuous decreasing functions on intervals (0, Fi(O)).

Let us extend these inverse functions by defining

0 for Fi(O) < v
£f.(v) = (A.2)
* -1 ,
Fi (v) for v < Fi(O).
The Problem
Maximize Z = Fl(xl) + F2(x2) (A.3)

Subject to: X1s X, >0, X, + x, <X >0.

The Solution

The solution to the problem proceeds directly from

the Kuhn-Tucker conditions whicnh are:

Fi < v, (A.4.)
L | - .
xl(Fl v) + x2(F2 v) 0, and (A.u4b)
v(xl+x2-X) =1 d0L; (A.b4c)

Hadley (1964) shows that if (xf,xg), v® satisfy these
Kuhn-Tucker conditions and (xf,xg) is feasible for the
problem, (xf,x%) solves the problem.

Since Fi > 0, v < 0 cannot satisfy (A.4a). There-
fore, we may assume that v > 0. Then (A.4c) reduces to

Xy LI SR (A.5)

—
Y

| S——

i

k(
:
A
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Together, (A.4a) and (A.4b) imply that either
i, X; ® 0, or (A.6)
2 2 F& = v,

Condition (ii) can be expressed as

x; = £, (V). (A.7)

Suppose we treat v as an independent variable and use

(A.7) with the extended definition of fi(v) to compute

the corresponding X, values. Then, (A.4a) will hold

since F, < v when (A.7) gives x; = 0. So, if (A.hc)

holds also, the corresponding (xl, x2) solves the problem.
To find a solution to the problem from the Kuhn-

Tucker conditions, we may use any real value of v. So

we attempt to find a value of v such that (A.u4c) holds.

Let
f(v) = £ (v) + fz(v). (A.8)

If we can find v such that f(v) = X, the corresponding
(xl, x2) given by (A.7) is a solution to the problen.
Since fi(v) are continuous monotone decreasing functions

on the intervals (0, Fi(O)] with

0, and

(1]

fi(Fi(O))

©

lim fi(v)
v=+0

bJ

f(v) is a continuous monotone decreasing function on the

interval (0, max{Fi(O)}J with
i
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|

f(max Fi(O) ) = 0, and
il

lim f(V) T oo,
v+ 0

Therefore, there exists a unique value, v#*, satisfying

f(v) = X. Then i
x§ = fi(v*) (A.9)

solves the problem. (Since the Kuhn-Tucker conditions are

necessary as well as sufficient for problems in which the

feasible region has an interior point, the unique Kuhn- [ 3

.._._
L4

Tucker point is the unique solution to the problem.)

i
In performing computations based on the above it is l‘
convenient to assign indices sucn that Fi(O) > Fé(O). Then, .. é
i
the solution is: i.

i, If X < £,(F3€0)), x¥ = X, x§ = 0.

iy IE fl(Fé(O)) < X, there exists v¥* < Fé(O) such

that f(v*) = X. Then, (A.9) gives the solution.

Application to Koopman Search Problem of Chapter 2

The Koopman search allocation problem of Chapter 2 is :

-k, T -k,T
Maximize pl(l—e

Subjec¢. to T,, T, > 0, T

1’ "2 1 2 —
This is of the form of the problem analyzed above with

b i T; replacing x;,

ii, T replacing X, and

4
i
i
3
E
.

i
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-kiTi
Fi(Ti) = pikie | (A.10)

which satisfy conditions (A.la) to (A.lc). Therefore,
the algorithm applies. The extended inverse marginal re-
turn functions, fi(V)’ are

Piky 2

f (v) = (A.11)
1

p:K:
%— 1n —= if v < p.k:
i v 11

Let TS be the highest value of T for which T3 = 0. The

value of T° can be computed using (A.7) and (A.11) with
v = P2k2'
5] o \
" = fl(pzkz) + f2(p2k2) (A.12)
Rt
* % UpLk,
2 272
if T° < T,

T X T°, the optimal allocation is Tf =3 Wl

the optimal allocation has positive T% as well as Tf. To

compute the optimal allocation for T° < T we need to find

the value of v corresponding to the optimal allocation of

T. For the optimal allocation f(v) = T, or using (A.11)

Rearranging this yields

ik




(=1n v) = % ' = - g
= .

<
n
)
x
ke
]
[

Using this we can transform (A.7) and (A.1ll) into a directf ’

expre551on of the allocation in terms of T, (for T <

i !

i 3 1 k l !
iR P R Pz 2| :
' ,:T- + {
1 ' 5 ' ‘
= =0 ' W W P
Tl o %n plk1 1 (A. 14) ‘ _ |
l : e— ——

; k k ' ;
f i l , i

! [
¢ f A
M

The optimal objective function cornespondlng to this ,

solution is ro
' -k, T o

p,(1-e’ L il ' fer T=T® :
it = s b N Y . (A.15) |
, : - k N k f ! ] :
l-[}%—.ﬁ%-' exp{- i 1 T 2‘ for T°<T.
A 1 2 ,

! ! '

Two characteristics of this solution are worthy of

note: : g L d

: f -
1. The optlmal allocation follows a plecew1se llnear R
' path as T increases. 'For T° < T the marglnal

allocations are inversely proportlcnal to the rate. ’ L
! q

e s e dani

parameteré)'ki.,
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2. The optimal objective consists of piecewise

» ' ‘asymptotic exponential functions.
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APPENDIX B

AN ALGORITHM FOR THE GUESS PLAN CONSTRAINLD
SEARCH ALLOCATION PROBLEM OF CHAPTER 3

This appendix develops an efficient algorithm, suit-
able for machine computation, for solving problems of the

following type:

=B,8,.
Maximize Z = p, - p;e Li1-e 2 4

-8

-BS
= 1(l-e 2)

+ p2e

Subject to: 815 S, >0, kzsl + kls2 < 5,

where P1s Pys Bl, 62, kl, k2 and § are strictly positive.
[For the problem of Chapter 3 s. = k;T.,, S = kik,T. ]

Before proceeding with the solution to this problem,
let us establish some elementary relations which will be
needed later.

et 0 < B < 1 and

1]

R(X) e‘(l - B)X,

X
1l - e

1 - e-Bx

Q=)

And let the derivatives of tnhese functions be denoted by

R'(x) and Q'(x).

-190-
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First,
lim R(x) = R(0) = 1,
x-+0
lim R(x) = 0.
K+

And
R'(x) = =(1 - B)R(x) < 0 for all x < =,

Also, l'Hopital's rule implies that

lim Q(x) = % > 1.
x~+0
And
lim Q(x) = 1.
X»o0

Consider the monotomicity of Q(x).
differentiable function over the interval (0,«).
theorem of elementary calculus implies that either

a8 Q(x) is monotonic in the interval (0,»), or

(B.

(B.

(F,

(B.

(%

Q(x) is a continuous.

Rorle's

ii. there exists x, in (0,») such that Q'(x,) = 0.

Suppose the latter is the case.

-Xo Be'on

Q'(x,) = Q(xy) -

1-e"Xo ¢ BX%o )

Since Q(x,) > 0, this equation can hold only if the ex-
pression in brackets is zero.

we have

eP¥o _ 1 = g(e¥e - 1) .

Rearranging this conditicon,

la)

1b)

2b)
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Expanding this in Taylor series yields i !

2 3 e ]

(5-52)’7‘% + (3-33)%+ Ce. = 0. (B.3) ~

In this equation the coefficients of xg, are non-negative
with strictly positive coefficients for n > 1. Therefore, , i

this equation has no positive roots. This contradicts the

SR

hypothesis that there exists x, in (0,») such that Q'(x,) ]

= 0. Consequently,

[ s |
1 4 [

Q'(x) < 0 for all 0 < x < o, (B.4)

el
1 1

P

Also, since the left member of (B.3) is strictly positive

for 0 < %X, < «, reversing the manipulations leading to

(B.3) yields

T e SR for all x > 0. 6B5)
1-e~Bx B

Returning to the nonlinear programming problem at hand

Pg P P ey e

* we have
. -5 -B sq -d S _Sq
Zl = ple l(l-e 2 2y Blpze 1 l(l-e 2y (B.6)
and -~
-s.=-B,s -3.8,=-8 i 1
1 7272 171 72 - L
22 = -szle t p,e o (B.7)
P

where Zi denotes the partial derivative of Z with respect
: {
to s, . From (B.6) it is clear that Z, >0 if and only if :

ML Tl im




=

by

Py

b ek T o . T

8, # 0, and (B.8a)
-s
1 -(1-8.)s, o P2 1-e 2
qe ﬁz—-——:-e—z—% ‘ (B.8b)
l-e
Therefore, (B.1), (B.2) and (B.4) imply:
i rl <22 7 <o
s —— —_— < ~ DN N
i Bl SN s 2 for all O S 3
0 <s, <= Consequently, there exists a
solution point along the sz-axis.
g P
i If 2 _Z, for any s, > 0 there exists s, >0
1 — P31 2 1
such that Z, 2 0 as s Y
1l - 1 =-"1
< >
. Es2 P2 1 =
Lids If —% < —% < >=— there exists s, > 0 such that
B, Pp Bl 2
Zl = 0 at (0,82). Zl < 0 at (Sl’ 82) for
Sq >0, 0 < s, < 32. Further for 5, > 5, there

exists El > 0 such that

>
>

vita

Z 0 as sl

1 Sll

Also, (B.2b), (B.4), (B.8) imply that Zy < 0 for all
>0 1if

52
Py

1n
ol (B.9)
1 2 1-81 3 .9

S

Finally, from (B.7) we have
>

Z, =0
<

(l-Bl)Sl = (1-82)82

as

ln ——=— . (s mlade)

Allv
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+ + : . 3
Suppose that (sl, 52)’ an interior point of the fea-

sible region (the triangle s, >0,s, >0, kZSl * kys, < S),

+

is optimal. Then, Zl 22 = 0 at (sI 2) So, from }

(B.6) we have

+ -s+ [
===€ = Bl —__*' ’ (B-.l.ld)
Py 3
l-e
and from (B.7) we have
+ +

P -(1-8,)s -(1-8,)s

1 1771, %- e 2772 (B.11b)

P,

Eliminating SI from (B.lla) and (B.1l1lb) yields

S,
+.7 - e :"l - '
F(SZ) = 6162 —W = 1. (B.12) ] I
e -1 afiEE

+y . . B .
Note that F(sz) is a continuous monotonlic increasing
function mapping the interval [0,») onto the interval
[B,,»). Therefore (B.12) has exactly one positive roct. |

. 3 + +
Corresponding to this root, Sy the value of s, can be

(=0

~ - -

computed from (B.lla) or (B.1llb). Then iy = 22 = 0 at .
+ + .
(sl, 82)‘ l

From (B.8) and (B.10) it is clear that the point

+ + : d . it 3 {
(sl, S,) is a relative maximum point for 2. Then, since (;

[

: g ] + i N, : 2 . :
Z is differentiable and (sl, 52) 1s unique, this pcint 1s

the unique global maximum point for Z. That is, (sz, S,)

is the unique solution to the problem if it is feasible.

+ +. . : ’ + +
And (bl, 52) is feasible 1if s, 2 04 k281 & kls2 < 8.




If (si, s;) is not feasible, the solution to the

problem must be on the boundary of the feasible region.

Then, the solution point may be characterized as a point

where the gradient of the objective function (the vector

(Zl’ZZ)) is either the null vector or an outward normal

to a support line of the feasible region.

e(sl,sz) = the angle between the gradient vector
22) and the positive $q axis with

positive angles representing-counter-

clockwise rotation.

Z,(8,454,)
—31—1——37 if 7. >.0
Z 2 l . 9

e(sl, 82)

1 22(81’52) sealLr
Z. (s 25 i ‘

Consider e(sl, 32) for (sl, sz) on the boundary of

thé‘fggsible region. First, by (B.8) and (B.10)

Similarly, along the positive

undefined

8(0,0) ={undefined ((Z,Z,) = (0,0)) if p, = B,p;,(B.1ka)

P

axis

v

C/(l-Bl) )
C/(l-el) 9
c/(1-847,

A
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Along the 81 axis the outward normal support 1line of the
feasible region has direction en = -90°. Therefore, a
point on the S, axis can solve the problem only if

P, < ByPy- Further, since Zl = 0 for all points on the
5, axis, all feasible points on the s, axis yield the

same objective function value, Py But this value of the

objective function can be attained in the decision maker's
real problem without searching at all or by ignoring the
search information in making the response guess decision.
Thus, if a solution to the problem lies on the S axis,
F : all feasible search allocations are optimal-for the
‘ decision maker's real problem.

Now consider the behavior of 6 along the searching
time constraint line k2s1 + kls2 = S in the positive
quadrant. We will need the second partial derivatives

of Z with respect to S5 and Sye

2 B384 =

: -s -B,s
] = 2 272 _ 2 :
? 2, = -p;e (l-e ) *+ Bip,e (l-e ©), (B.15a) 5
-s,-B,s -B.s. -5 i
E 12 e 15l e 2 4
Ly, = Bypye - Blpze ) (B.16b) L |
-s.,-B,s -8,8,-8
= o2 1 7272 fle il . i
Z,y = Byppe - pye . (B .S L

Rele 2 =7 7 G T ~n Ay .
Since By 82 < 1, le < =4y and 295 2, Therefore, for ;
L7

the region in which i, > 0 and 22 > 0 both 214 and 22? are




===

’

- be positive at any solution along the positive quadrant

negative. Suppose 219 is negative. Then, by (B.5)

p; -(1-B))s; Y 2 -
I)—— e < ﬁl “E.5 N A
2 Jia 22 1

which implies that Zl < 0 (by B.6). So Zq, is positive

while Z and 222 are negative for the region in which :1

11
and 22 are nonnegative. Along a line kzsl + k152 = S.
le i azl . azl d52
dsl asl 882 dsl
k2
= le - EI le, and (B.1ld6a)
de i 322 . 342 ds2
dsl asl 352 ds1
K
= le - EI 222. (R.16b)

Therefore, in the region where Zl and Z2 are nonnegative,

Z, is decreasing while 22 is increasing as $q increases

1
along kZSl + k152 = S. Since the support line to the

feasible region along such a line is the line itself, the

outward normal along kzsl + kls2 = S has direction
k

6o = tan-l—Z . Because 0 < 8, < 90°, both Z, and I, must
kl 1 2

segment of kZSl & kls2 = S, Therefore, there exists at

i i i 5., + SE
most one solution point with Sy1» Sy 0 on k251 kls2 S
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this point (if it exists) is characterized by

k222 = klzl' (B.17)
Finally, consider the behavior of ¢ along the 5, axis.
The outward normal to the support line of the feasible
region at (0, 82) for 0 < 54 < s/kl has direction By = 180°.

Therefore, any solution point in this interval must satisfy:

dhs Z, = 0, and (B.18a)

Tl Zl 0. (B.18b)

A

Condition (1) is

- _-¢ (B.19a)

P -
e (B.1:.0)
P T g 22

(B.1lY9a) establishes the uniqueness of possible solutiens
in the 0 < s, < S/kl segment of the S, axis.

In addition to points on the three sides of the fea-

sible region, the three corners of the feasible region
must be considered as possible boundary solutions to the
problem. The origin satisfies the marginal (normal ob-

] jective function gradient) necessary condition for solviag

the problem if B,Py > Py But, the origin only solves the

-
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decision maker's real problem if no possible search can
achieve a higher objective function value than that
achieved by not searching at all. (This case does occur
for small amounts of available searching time if B,py > pz.)
The corner point (S/k2,0) yields the same value of objec-
tive function, Py» as the origin. Thus, this point can
only be optimal when the origin is also optimal. Finally,
the support lines of the feasible region at (0,s/kl) have
normal difections, en, for each angle in the interval from
6, to 180°. Therefore, if 6(0,s/kl) is in the interval

[6,, 180°], the point (0,s/kl) satisfies the marginal neces-
sary condition for optimality.

We shall now establish that, except for the case in
which all feasible points solve the decision maker's real
problem, the solution to the problem is unique.

Suppose that there exists a potential solution point
(0, sg) with sg in the segment (0, S/kl) satisfying the
gradient necessary condition for optimality. Then (B.1l8a)
and (B.10) imply that 22 < 0 at (0, S/kl) so (0, S/kl)
cannot be a solution. Now suppose there exists an optimal
solution, (si, sg), in the positive quadrant segment of
kZSl + k152 = S. Then, since Z2 > 0 at (si, SS)’ the
point (si, sg) lies below the 22 = 0 line. And since
Zl > 0, this point lies above the Z1 = 0 curve. But the
point (O, sg) which is on the Z, = 0 line must lie below

the Zl = 0 curve, and the Zl = 0 curve lies above the




s g

.Zz = 0 line for large values of s

, solutlon, s;, of (B.12) in the p081t1vc half plane. There-

‘with s

'ness of (si,'sg),as the solution point, then, we need only

observe that ZQ > 0'at (é%; sg) so that, by (B.10), =, > 0

s, axis.

-.200- ' [

[ f :

: 1 Therefore, the 2, 30

curve must cross the 22 =0 llne at least twice at points :

where 5, > 0. Thls contradicts the unlqueness of the C y

fore, the pomnt (89 1 s°) cannot exist. To establish the

uniqueness of the solutlon point (0, sé) then, we need : |
) i ! !
only observe that by (B.10) Z, >0 for all points (0, s,) '

2 in the interval (0,:s§) so that at (0, sg) A T
; ' ! d
Now suppose that there exists a poténtial solution |

!

point (sl, S, ®) in the p051t1ve quadrant portlon segment of

k251 & kl 5 = S. Then, the reasonlng of the previous |

paragraph 1mp11es that no potential =olutlon satisfying ;
the first order marglnal necessary condltlon can exist along

the 8y axis with k2 1.+ k182 < S To establish the unique-

R

for all (si, sz):with s, in (0, sg); Therefore, at
(si, sg) Z > Py» and no solutipn point exists along Fhet

- {

To comple%e the proof that solutigns which are not
on the sl'axis are unique we need to show that corner solu-
tions (0, S{ki) are incompatible with (other) solutions

. . L ! + : * .
along tne s, axis and the line kZSl k152 Ss Fairet, 1f
(0, S/k ) satisfies the gradient necessary condltlon for

i i i i

boundary solutions, ' 22 >0 at (0, S/kl)' Then, by‘(u.IO)

[

B I T 1 | g e o v R Py Y T e R o B N, parg s e alal et
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ﬁ & O ; Z,,> 0 for all other feasible points on the s, axis. There-

fore, no other potentiél‘solution point ¢an exist on the

e S e, it Wit Sttt

szaxis. Suppose that Z, < 0 at (0, S/kl). Then, by (B.8)

1

' , ’ Zl < 0 for all,(sl, S/kl) with s, > 0. And consequently,
5 ‘ -' e
% (B.4) and (B.8) together imply that Z

< 0 for all (Sl’ 52)

< 0 for all fea-

il
|- C with s, >0, 0 <'s, < 8/k;. That is, Z

!

1
sible points. Thus, no (other) solution point along

ko84 +’k192 = 8 can exist. Now suppose that Z, > 0 at

1
(0, 8/k;). Then, (B.16a) and(B.16b) imply that § >

271 17¢

>0, 2, >'0 and, Z, > 0. Hence, no (other) poten-

S1° Sp

tial solution‘point exists along k + k.s, = S. This

251 152

g = ; -1 ! |

" ' tan 1kz/k1 for all points along k,s, *+ ks, = S having

f : establishes the uniqueness of solutions to the problem at
! i

v - hand' except when all feasible points solve the decision

i | maker's real problem. | j

by . 1
!j : The Algorithm ‘ ?
3 | The above devélopment leads to the following ilgo-

rithm for computing approximate numerical solutions to

P the problem:

s e

1. Determine if:the line 22 = 0 and the curve Zl =L 0

intersect in tne first quadrant. They fail to

LA o b

.intersect if and only if

1 i i | '52 <‘! — y and

s o e S0 St 0 e b o, St o
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i
| 1
62 | !
" [321’1]1'32 1
1P B.P :

2 J < L2 (B.20) It

1l Py i

N [szl] 1-8,
nl :
P

2a. If 22 = 0 and Zl = 0 fail to intersect in the j;
first quadrant, tne solution is r
p ‘r.
1n 5 z Tl
ot = [0, min{s/k., ——2o1 (BiaM '
= - 1 1 -8, ’ Tes *

2D. g Z, =0 and Z; = 0 intersect in the first l'
quadrant, compute tne coordinates of the point ;

. 3 +
of intersection, s , as follows: !5

(1) Compute the intercept, s}, of the line

asymptotic to Zl = 0 from
ln —— 0
BiPy a

51 7 1B 1

Then compute tne value, 35, at which
Z, = 0 crosses this intercept.

-1ln(8.8,)
e 1°2
2 = ————-_—l"bz P (B...La)

Also, compute

1 P2

S
82 0 16

= —— max{-1ns 1n ——5 .
2 { pl’ pZPlI

rm
|
3

N T N L e, e — e 0 1 TN



3a.

3b.

(2) Using s) and sy as bounds for 57 computel

2
the value of s; from (B.12).

(3) Compute the corresponding value s. from

1

Z, = 0 using (B.11lb).

If kzsI + kls; < S, the optimal solution is s* =
+ +

(Sl’ 52)'

If k281 + kls; > S, the solution lies somewhere

on the boundary of the feasible triangle.

(1) Compute 8{» the value of S which must be

v L i

attained before any search effort can be
allocated to box 2.

B,P
1in 271
s? = k,max —T—-Eg— 0 (B.23a)
l 2 -Bl 1] . .
If 0 < S < Si, the solution to the problem ;
is (si, 0) for any 0 < sf <S/k,. The ?

optimal value of the objective function,

%, is Py- 1f Si < S, the solution to ;

the problem does not lie on the s, axis.

1
(2) Compute S9, the value S must exceed if

a positive amount of search effort is to
be allocated to box 1.

a2 D L o

Py _ 2
If By > 5= go = 0. Budsls)

lSeveral numerical techniques exist for performing this

R Ry B T W

computation on a modern digital computer. Z

i
SRLY e e L g Py L L S eyt Pl B L ] o alPr et 5 f LBl | PR N e ek R e u...m‘u.l‘.m.nmmmmm
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%
If 62 <2, 89 corresponds to the point on the

Py’ 72
S, axis at which klZl = kzzz. This point can
be found by finding the root of (B.24) in the
interval
P2
F9Py

0,——T_B—2 .

P k -B,X P k .
P-Hl—i + (B e l)e 2", 205 -Eg)e X 20  (B.2W)

If 0 <s <89, (0, S/ky) solves the problem.

If Sg < S, the solution lies on the searching

time constraint line, kZSl + k152 = S.
5. Let sé 3 0 sg = S/kl be bounds on the sg, the
s, coordinate of the optimal solution point.
sg is the root of equation B.25, which expresses

kp8y + kyS, = S, kyZy = k,Z,.

Lol e e ]

|

oo

e L
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The solution to the problem is (sf, sg), where sg

o '* = - )
1s the root of (B.25) and st (s klsg)/kz.




APPENDIX C
BEHAVIOR OF SR-LSI MODEL %

FOR SMALL T

For small T approximate solutions to the SR-LSI model Lo |
can be obtained by replacing the objective function by the L
first few terms of a Taylor series expansion of the objec- ' i
tive and maximizing t.is approximate objective function 1
over the feasible set. The Taylor series expansion of the
objective function for guess plan I (the objective

function of Appendix B) is approximately

Y = py + (py=Bypy )k, Ty + (Bypy-B Py Kk, T T ' |
2 (C.1)

2 .. 2T
-(py=B,p) Yk

e

This approximation differs from the exact objective) func-

tion only in third and higher order terms. We wish fp
»

maximize Y subject to Tl’ T2 >0, Tl + T2 < T.
Tf T is small and P, 7 szl, the linear term of (C.1)

dominates the quadratic and higher order terms. There-

fore, the solution for sufficiently small T assuming

P, 7 boPy is:

2 F T? = 0,0 < Tf ool Py < BoPy: - ?

(In Appendix B we found that the objective ]

function 1is constant along the T axis.) : ;

|
|
i
1
|

-206-
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o % = % = .
il. T1 0, T2 T if P, 2 BZPl'

If T is small and P, = B,py, the linear term of (C.1l)

is zero. So the solution is determined by the quadratic

terms. (C.l) reduces to

2 5
Y P + BTlT2 - CT2 9 (C.2)
where

B = (B,Py - B1Pylkik,
1 2 .2
C = 7(p2 = BZPl)kZ "

™

1o

Since Py By | and B, < 1, B and C are both positive.

maximize Y given by (C.2) over the feasible set T, = T-T,
since %%— = B > 0. Let us substitute Tl z T-T2 in (€s2)
1

and then maximize Y as a function of one variable, T2.

Y = p, + BTT, - (B+O)T; (c.3)

2

(C.3) is the equation of a parabola having positive slope

at T, = 0. Clearly Y is maximized by

2
T# = min{T, T® such that Si— = 0} (C.4)
2 » T3 ar, .

Tg is easily found by differentation of (C.3) to be

= BT
Tg = m 3 (Cos)

Since B and C are positive, Tg < T. Therefore, (C.M) be-

comes

T

% o =
2 2 2(B+C)

=po = BT . (C.6a)

R e s it

ISR
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Therefore,

(B+2C)T (C.6b)

L =TT G atmRey

Having determined the solution of the‘guess plan con-
strained optimal search allocations for small T, let us
consider which of these two conditionally optimal alloca-
tions solves the decision maker's search problem. The
solution given above is conditionally optimal given that
the guess plan is: "Guess that the target is in box 1 un-
less a contact occurs in box 2 only." Let us call this
solution conditional solution 1 and the corresponding cpti-
mal approximate objective function Yl. The other candi-
date-optimal guess plan and its objective function are of
those same forms with the roles of boxes (subscripts in
formulas) interchanged. Therefore, conditional solution
2 is given by the above development with subscripts inter-
changed.

Let i be the number of one of the conditional solu-

tions while j is the number of the other, i.e., j = 1-3.

Case 1 There exists i such that Bipj > Py- The condi-
tional solution i is

T$=0,TH=T,

and the ccrresponding conditional optimal objective func-

tion is approximately

S

asanirtn A

SR o e




Similarly, the conditioi.al solution j is
T# = 0, 0 <T§ <T,
i -] -

and the corresponding conditional optimal objective func-

tion is approximately

Yj : * &
Py

Since Bipj > py implies that pj > pi; the solution to the
decision maker's problem for small T is conditional solu-
tion j. But this solution yields exactly the same objec-
tive function value as would be achieved without a search.
This value can be attained for any feasible search alloca-
tion by the degenerate guess plan: Guess that the target
is in box j for any possible search outcome. Thus all
feasible points are solutions to the decision maker's allo-
cation problem.

Case 2 There exists 1 such that Bipj = p;- The condi-

tional solution i is

and the corresponding conditional optimal objective

function is approximately

i
Y 0 pi + (Pj e iji)To

e e s T

;
;
|
1
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The conditional solution j is

o (Bipi - iji)kj

T
2 ]
Z(Bi?j-sjpi)kj + (pi-Bipj)ki

2
_ (Bin‘iji)kj + (pi‘Bipj)ki

T
2 ’
Z(Bipj-ejpi)kj + (pi-eipj)ki

and the corresponding conditional optimal objective func-

tion is approximately

e _ arh - Lo _p2 2ol 2
Y pj + (Bipj iji)kjkiTiTj z(pi Bipj)kiT S

Since Bipj = p., and Bi <1, Y? > Y'. That is, the con-

il
ditional solution j is optimal.

Case 3 py > ByPps Py > ByPys Py < pj. The conditional

solution i is

Ti =0, Tg =T,

and the corresponding conditional optimal objective func-

tion is approximately
Yi = p. + (p. - B.p.)k,.T.
1 ] 5 .

Sinilarly, the conditional solution j is

dalididoisaanit ket | o gl Lo i

e o oo Tt e S i A A i 5

NG TIPS




s

and the corresponding conditional optimal objective func-
tion is

yd = P

Since P; < pj, Y* < ¥J for small T. That is, conditional

solution j is optimal.

Case U4 P, = py) = .5 The conditional solution i is
T$=0,T4=T,

and the corresponding conditional optimal objective func-

tion is approximately

e
"

Lo 51+ (1 -80kT - 21 - 85Hk2r?1.
S[1+ (1 - BkT - F(1 - BKT']

Similarly, the conditional solution j is

T¢=T, T§=0,

and the corresponding conditional optimal objective func-
tion is
g - 1. 024,202
Y’ = .5[1 + (1 Bi)kiT 2(l Bi)kiT I
. _ N i 3.
i. If (1-g)ks > (1-8;)k;, Y > ¥

and conditional solution i is optimal.

.. 2., 2 i 2
ii. If (l-Bl)kl = (1-82)k2 and (l-ei)ki < (l-sj)kj,

YJ > ¥' and conditional solution j is optimal.




L

iid.

(1)
' (ii)

C(3ii)

imply that

To sée that

| . =212- ; , '
{ ) ‘ ! ’ '
: Tl T e O Y
If (1-8) )k, = (1-B,)k, and (1-B1)K] = (1-B5)h3,
' u

!
i

lthén Bl = 82 and k ="k2 so that both: conditional

1

+8olutions yield the same conditional' optimal

i i . f q '
objective functions. Hence both are optimal.

.pl ='p12s' _ ‘ ‘
) ' d . : LY
(l-Bl)kl,= (1'32?k2’ and = o
2.2 _ s 2 { - - K
(L-Bl)kl -;(l-‘th)k2 = : ‘

" . i
Bl.=:62,and k) = kzi eliminate k, and %, from

1

(ii) and (iii). This yields o |

2 2 ‘ B
(18, r | o

(1751)

1-32

i

l-Bg | ! ' . !

i

v
i
]

i

!
Numerator and denominator of 'each side have common factors

i i i i

(l»Bi). So we‘hage : 5 | ‘
' l-Bl _ 1-82 ; ; Lo
| 1+81 1+182 ’ ! | {

[
(0 i t

But the function %%% is strictly monotonic in the interval
- ' l

(o,1]. ' Therefore, B

Xields kl =

= B, Then, substituting in (ii)!

1
' : .

i !

IRE
b j
li 1‘
L
3
.i’
4
il
B
i)




APPENDIX D

. ALGORITHMS FOR SOLVING THE SR-CSI AND
SR- ACSI SEARCH ALLOCATION PROBLEMS

In thls appendlx we develop algorithms for both the

{
,SR-CSI and SR~ ACSI allocatlon problems.

'
i

THE SR&-CSI PROBLEM
i Consider flrst the SR-CSI problem given by

{
o ' i i J

! Maximize 2 = ff max ’pi(E,I); dF(t)
' T 0<t<T i=1,2
SR-CSI | (D.1)
2 <
| | LSubject to Tl’ T, >0, Tl + T2 T.s
" where '

,ou(t,T)
el mEDT :

| P =1 - p (6,1,

L! | o u(t,T) is given by ‘(24) of Chapter 3, and

f(g) i;'given by (25) of Chapter 3.

& | ! - Consider tHe rééponse guess decision and the resulting

, objectlve functlon, Z(w),‘for the related search time un-

To evaluate

= 0o

* conbtralned problem with Tl = o and T2 = w,

‘the integral in (D.1) for Z(») one must evaluate the

i i f : f
,, max {pi(g,wv)} function over the t plane. From (24)
: i=1,2 - ’ -

i l S Y { -213-
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of Chapter 3 and the definition of u(t,T) clearly |

>
p;(t,®) = p,(t,») as (1
172" s (D.2a) ||
(1-8,)k,t, - (1-g,)k.t. < 1n P2P1
1715 2°%2%2 3 7 B, | |
That is, {f
{1} if s(t) < 4, [
6(t,») ={ (1,2} if s(t) = d, [
{2}  if s(t) > 4,
where
s(t) = (l--Bl)kl‘c1 - (1-62)k2t2,
¥
B,P
d = 1n 82 1
1P2

Therefore, r

Z(w) = ff pl(E,g)df(E)w‘ ff P,(t,=)dF(t) (D.3)
s(t)<d s(t)>d 2 =~

o ——
S——

£

By (24) of Chapter 3

g—
[ R

-(1-8.)k,t

ey 17kt

- 2.5 )il .

Bytiz) = -(1-8 0k T -(1-8,)k,t, ° (Dsa lj
B,p;e * B1pye

and {j

61p28

Py (t,=) = =(T-F 0K T, =(1-8,0k, 1, (D.4b) {f

B,pye * Bipye
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By (25) of Chapter 3

-k,t,=B,k,t -8,k t;=k,t
12725252 g p 1L zz)dth

dF(t) = (szle 19t

(D.u4c)
Using (D.2) and (D.4), (D.3) reduces to
B2

(1-8,)" [8,p,] T8,

Z()

By

2 i
(1-8.) B.P,|1-8
1 P [ = i] Lif Blpziﬁzpl.(D.Sb)

Py * 17878, P2 | B,p

If B,P; = ByPy> both (D.5a) and (D.5b) reduce to

p,=28,Pp
2212 4rgp,=8,p - (D.5¢c)

2(=)

P,-B3P;
Now let us analyze the SR-CSI allocation problem by
comparing the objective function with the related uncon-
strained search problem. Consider each possible uncon-
strained search outcome, t. If t < T, the constrained
search will lead to the same response guess as the uncon-
strained search. But of either t, > T1 or t2 > TZ’ the

constrained and unconstrained searches may lead to dif-
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ferent guesses. Let ,

H(T) = Z(=) - 2Z. o

Then, to solve the SR-CSI problem we need to minimize
H(T) subject to the nonnegativity and total capacity con-

straints on T. Let

T, T min{ti,Ti}. ;
Then, '
HD = [f max{p (t,»)} - p_(t,»)] aF(t), (D.6)
0% &= B .
where g is in G(1,T).
Let l, i
o
W(T) = {t | p,(tr=) < max {p.(t,=)}}, (1
g i=1,2 b
for g in 6(1,T). Then, (D.6) can be expressed as . i
H(T) = [p (t=) - Pty w)] dF(t), (D.7)
W(T) 1

where g is in G(1,T) and r = 3-g. But, [pr(E,g) - pg(;,g)]

=

is independent of T given that t is in W(T). Therefore,

(D.7) can be expressed as l,

i = JJ nwarn, (D. 8a) o
Ww(T) I




|
|
;

P,
——

p,(t,2) - P,y (ts®) if s(t) < d

h(t)

py(t,=) - pl(E,g) if s(t) > d.

Using (D.4), (D.8) becomes

H(T) = ,/f y(tl,tz)dtldt2 - f_/ y(tl,tz)dtldtz

s(t)<d s(tl)>d
in"W(T) in"W(T)
(D.9)
where
-(1-B.)k.t -(1-8,)k,t
_ _ 177171 27272
y(tl’tz) . szle ‘Blpze

Note that by (D.2b) the integrand in (D.9) is strictly
positive for all t in W(T). Therefore, if W(T+) is a
proper subset of W(T°), H(T+) < H(T°) and T° cannot solve
the problem.

To evaluate H(T) using (D.9) one must define the

wrong guess region of the t plane, W(T). From (24a) of

Eal

Chapter 3 we see that for 1 = T,

{1} if s(1) < a

i
+]}

6(1,T) ={{1,2} if s(x}
{2} if s(1) > a,

(D.8b)

(D.10a)

e i =

i
5
l
|
3
i
]
:
|
|
i
|
|
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where {:
= .

a=ln --- . |

p2 ‘ :

|

From (2u4b) of Chapter 3 for 1) <Tys 1, = T,

s

{1}  if s(1) < b

G(1,T) = § {1,2} if s(1) =D (D.10b)
{2} if s(1) > b, o
! 1*
where i
Py '
= l ]
From (2u4c) of Chapter 3 for T, 3 Ty 15 < Ty (|
{1} if s(1) < ¢ is
g
G(1,T) = {1,2} 4if s(1) = ¢ (D.10c) i
{2} if s(1) > ¢, |
where [
8, g
¢ = 1ln 271 .

And, if 1 < T, G(1,T) is given by (D.2b) with 1 replacing

t. We will refer to the lines s(t) = a, s(t) = b, s(t) = ¢ [i
and s(t) = d as lines a, b, ¢, and d respectively. .

An optimal guess plan corresponding to the uncon- tl
strained search is: "Guess that the target is in box 1 1

if t lies above line d; otherwise guess that the target is

in box 2." Therefore, if 1T = t < T, the constrained search
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yields the same guess as the unconstrained search. Hence,
no point t < T is in W(T). If 1 = T (t » 1), the con-

strained and unconstrained searches yield the same guesses

3

for those points, t, which lie above cr below line & as
T is above or below line a. Similarly, if 7, < T; and

= T, (t, < T, and t, > TZ)’ the constrained and uncon-

2 2 N1 1
strained searches yield the same guesses for those points,

t, which lie above or below line d as the point (tl,T,)

3]

lies above or below line b. If 1, = Tl and Ty < T‘(t1 >

1

and t2 < T2), the constrained and unconstrained searches
yield the same guesses for those points, t, which lie
above or below line d as the point (Tl’tz) lies above or
below line c. These conditions completely define the
region W(T). Figure D.1 shows the 10 possible W(T) region
shapes assuming that Bl < B2‘ The corresponding cases for

32 < Bl may be obtained by interchanging the roles of

tl and t2. If Bl = 82 lines a and d coincide so that cases

3 and 3' do not exist.
Since the integrand of (D.9) is strictly positive
for all t in W(T) and W(T) has measure greater than zerv
for any finite Tl + T2, H(T) is strictly positive for
T, + T, finite. But, the integrand decreases exponentially

1 2

to zero as Tl and T2 grow without bound. Therefore, {(T)
approaches zero if both Tl and T2 grow without bound.

Hence, the amount of available searching time used by any

o, et kil
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Figure D.lb SR-CSI Model W(T) for i, < B, Case 1’
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Figure D.lc SR-CSI Model W(T) for 8, < », Case 2

Figure D.ld SR-CSI Model W(T) for 8, ~ ¢, Case !
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Figure D.le SR-CSI Model W(T) for 8; < B, Case 3

Figure D.1f SR-CSI Model W(T) for B, < 6§, Case 3'
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Figure D.lg SR~CSI Model W(T) for Bl < 62 Case 4

! Figure D.lh SR-CSI Model W(T) for 5, < B, Case 4'
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optimal search must be unbounded as the available searching

" time grows without bound.

' For any séarch allocation T, let
| _ e

'Tlﬁ = the abscissa of line b at t2 = T2,

| Ty ltﬁe ordinate of line c at t) = Tp.

o T%d = the'ord%nate of line 4 at ty = Tp

' , Tld'= the abscissa:of line d at t, = Ty,
| ' -Té' = t1 intércePt of line d,
Tg = té intercept bflline d.

Also, let HQ(Tl,Tz) be the H(T) function for case Q.

; Using (D.9) and the above implicit definitions of W(T)

direct integration yields
! :

| .l 3
HLGE, 02) = BT T (D.11a)
! K é ;
T 1-8, caT1mBo*oTaa_ e‘Bllel‘szzd}
C R T TR | P 1P2
' Y (D.11b)

i

: k. T.-B,Kk.T. -8.k.T.-k.T
11177 %1 1K1T1 7k, T,
i {ple PR e } ’

L J R, I p,e

Flal I e Rl s T G
1242 1-8,5, Py -~ "Py
1

(D.11c)

. R p— - Y i !
W




1-8 -k.T.=B.k.T -8.k,T,-k,T
_ 1 2t2"P1%1%1d 2%2%27%1%14d
(D.11d)
S S I ¢ -8k, T,=k,T
272”P1%1%1 2% 27 1 0
'{Pze 'Ple }
H5(T,,T,) = H4 (T, »T)) : (D.1lle)
H1'(T,,T,) = H2'(Ty,T, ) > (D.12a)
1 1
1-8 -k, T -8k, T
' SR T I 1°d 171°d
=k, T -B8.k,T
+pe 11 (l-e & 2) (D.12b)
-8.k,T -k,T
- pye 15171 (l-e 2 2) ’
il 1
B ) e TPt JHta
et T ISEE, P2 2P1
(D.12c)
-k, T -8k, T
‘ pe 11 pye 1171

L2 -1

Ot |

y_,..._A

ot
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Hu (Tl’TZ) = 1—_-9-]-.?; le -Blpze

-k,T -8k, T
2 2(1_e i 1) (D.12d)

-8k, T -k, T
222 (1_e 1 1) ’

HS'(Tl,Tz) z Hu'(le,Tz). (D.12e)

Consider an allocation, T°, in the case 1 or 1' re-
gion. If the corresponding T2c > 0, there exist feasible
allocations, I+ = (Tl o TZC) for small positive A,
in the case 2 or 2' region for which W(If) are proper sub-
sets of W(T°). Therefore, such T° allocations cannot be
optimal. Consequently, case 1 or 1' region allocations
can only be optimal if no allocation with both T, and T,
positive in the case 2 or 2' regions is feasible. By
symmetry, case 5 or 5' region allocations can only be
optimal if no case 4 or 4' region allocation with both T1
and T2 positive is feasible. Also, since H3 and H3' are
decreasing functions of Tl independent of TZ’ case 3 or 3'
region allocations can be optimal only if T2 = 0. There-
fore, for large T the optimal allocation must be in the
case 2 or case 4 region.

Let us denote the partial derivatives of H2 with re-

spect to T1 and T2 by H2l and H22. Then,
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'lel(e'BZkZTZd_ e‘szsz)

H21 -kl{ P;e
(D.13a)

-8.k,T
17171 -k, T -k,T
-Blpze (e 2 2d_e 2 %) )

and

-k T -B,k,T, =B,k T -k,T
12T, TP 22} . S

H2, = kz{szle

It can easily be shown that both H21 and H22 are strictly
negative for (Tl’TZ) in the case 2 region. Therefore, if
we restrict (Tl’TZ) to the case 2 region and compute the
aliocation of T which minimizes H2, the resulting condi-
tionally optimal H2*(T) function will be strictly de-
creasing in T. So any optimal allocation in the case 2
region must lie along the boundary Tl + T2 = T.
Conditionally optimal points in the case 2 region are

characterized by

Tl + T2 = T, and . (D.14a)

H21 = H22. (D.14b)

Using (D.13) and eliminating Tl from (D.14) we obtain

(l-Blsz)rklx_(l— szz)e(l-Bz)(kl-szz)rx

(1-8,)e
2 1

(D.15)
k -(1-g,)(k,-B,k,)rx
248 2 2 "171
-BZ(EZ'EI - 1e

=0,

—

== =2
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where

r = .
(l-Bl)kl + (1-82)k2

Along, T1 + T2 = T in the case 2 region, H2l can be shown
to be strictly increasing while H?.2 is strictly decreasing.
Further, these two functions cross exactly once in this
interval. Therefore, (D.15) has exactlx one root in the
interval (O, TT;;E;%;) which provides the unique condi-~
tional solution in the case 2 region.

Note that (D.15) does not involve Py» Pps OT T,
Therefore, the position of the conditional solution in
the case 2 region relative to line d is independent of the
prior probabilities and the amount of available searching
time. So the case 2 region conditional solution lies along
a straight line parallel to lines a, b, ¢ and d.

The conditional solution in the case 4 region is iden-
tical to that above for the case 2 region except that the
roles of the boxes are interchanged.

In the case 3 or case 3' region %%I < 0 while %%; = 0.
Thus the conditionally optimal solution for (Tl’TZ) be-
tween lines a and d is at or as near as possible to line d.

The conditional solution for the case 2' region is

obtainable from marginal analysis similar to that for the

e s e St e S e A e i
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2 region. Corresponding to (D.15) we obtain

-k.(w=T,) -B.k,(w=T,)
e 177 gge i IRl

B k,\ “k ,wt(k.=B,k,)T
272 1l 1 7272772
-(l - -W-)e (D.16)

3

” (k2 . e-Blklw-(kz-Blkl)T2 -
2 k1 1

where

W=T-TC.

(B.16) depends on T but not on the prior probabilities.
Therefore, the trace of conditional solutions in the case
2' region is not a straight line. But the shape of this
trace is independent of the prior prbbabilities. The case

4' region conditional solution can be obtained by rever-

sing the roles of the boxes in the case 2' solution.
For small values of T the solution of the marginal

. o oH _ oH -
conditional 5TI = ET; along Tl + T2 = T (from (D.15) or
(D.16)) may violate the nonnegativity constraints Ty»

2

T, > 0. In this case %%I is monotonic in the feasible
portion of the case 2 or case 2' region (or case 4 or
case 4' region). Therefore, the conditional solution for
the case 2 or case 2' region (or case 4 or case 4' region)

i
1 is the point where T, + T, =T intersects the boundary of
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the feasible region nearest to the point where g%—-= %g—.

1 2
Consider the variation of the integrand of (D.9),

y(tl, tz), along any line s(t) = e. If

tl

1 t

1 + (l-Bz)rz,

and

k
1
' - -
Tty =, ¢t (1 Bl)E; rz,

s(ti,té) = S(tl’tZ) so that t' represents points along
s(t) = e parameterized by z. Also ti + té =ttt toz.
Direct substitution yields

T T=Fk +(1I-B Dk
y(t) = y(tde 171 2 (D.17)

Z

Therefore, the conditional optimal values of H decrease
exponentially for the case 2 and case U4 regions. Hence,
the optimal trajectory cannot switch from one conditional
trajectory to the other in the region with T sufficiently
large that the conditional trajectories lie in the case

2 and case 4 regions. Switching between conditional tra-
jectories can, however, occur for smaller values of T.

The Algorithm for the SR-CSI Model

The following algorithm for computing the conditional
trajectory corresponding to the case 2 or case 2' region
is based on the above development. The case 4 or case u4'

region conditional trajectory can b»e computed by this
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algorithm by interchanging the roles of the boxes. } ;

1. Compute the distance, x, which the case 2 region
conditional trajectory lies above line d for i
large T from (D.15). -IAB

: e 13 : 1
(x is known to lie in the interval (0, v ).) 5
(1-6,0%, |

2. Compute the initial amounts of time, ¢, which |
must be allocated to each box before the other V
box receives a positive allocation.

BoPy

- o-
a.IfOiC,Tl zT_—B-I)-ri- ,T2 0.

be If ¢ < 0, Ti = 0 and Tg is determined by the

condition 2%— = 2%— along the T, axis.

(1) If 0 < d, T9 = x.

(2) If d«<o, Tg is the root of

-8k “k,T
kl{pl(l_e 22 2)-Blp2(l-e 2 2)}
(D.18)

Bk -k, T L
272 2 272V _

in the interval (0,x).

g e
[

| o—

[ P

S

3. IfT < T° + T2, the conditional solution is

1 2.3

——e g

Tg z min{T,Tg}, for i = 1,2.

i

4, If T > T2 + T9, both T* and T¥ are positive. The

1 il 2

8H _ 8H | S R
conditional solution is determined by §T_ §T; t ;
along T1 + T2 = T. v :
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a. IleX*(T:B—;i-)-EI,
* =
T2 T2d + x and
X = T - Th
T =T - T4,
where x is the solution to (D.15) computed
in step 1.
d . s
b. IfT<x+-<-FB—TEI,TzlSthePOOtOf
(Dols), and Ti'-'T-T%o

(This root is known to lie in the interval

(0,x).)

THE SR-ACSI PROBLEM

The adaptive complete search information version
search problem can be analyzed by the same approach as .
used for the SR-CSI problem. Since the results for the
CSI and ACSI versions are very similar, only the differ-
ences in formulas and results will be included here. ACSI
version contacts occur in both boxes unless ty vty > T.
Therefore, the ACSI objective function corresponding to

(D.1) is

JJ  max {p;(t,1} dF(D). (D.19)
T+t,<T i=1,2

The "wrong guess" region for the ACSI version, W(T), are

the portions of the corresponding CSI version W(T) which

dasi Al

I T e
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are in the t, tt, > T half-plane. Figure D.2 shows the

10 possible W(T) region shapes for the ACSI version cor-

responding to the cases shown in Figure D.1 for the CSI [ j
o 4
version.
Let l‘ ?
Xip = Ti value at the intersection of line b and i 3
T, + T, =T, |
Xic = Ti value at the intersection of line ¢ and 5'
{ »
- i
Tl + T2 - T, ’.4’ 4]-{
Xid = Ti value at the intersection of line d and s» |
Tl + T2 = T.
Then, corresponding to (D.11) for the CSI version we ob- [:
{ !
| tain for the ACSI version o
= i j
Hl(T]_’TZ) H2(X1C,X2c) (D.20a)
i
(i
1 1-8 k -k, X, =gk, X
g K2(T,,T,) = | = 2 _ =L pye 1%1e7H2 0 %2¢ |
1 B1By  *17BoK '
5 - n (1S
e K e Byk1X1c7%2% ¢ {J B
1-848, Blkl-k2 1*2 .
(D.20b) LJ :
z , Bk KT8k, .
K =BKp = j

I Kopy =Bk Tk Ty

= - e T
ByaTse ’ (o
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Figure D.2a SR-ACSI Model W(T) for B8, < B, Case 1
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Figure D.2b SR-ACSI Model W(T) for B, < B, Case 1'
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constant
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Figure D.2h SR-ACSI Model W(T) for B, < B, Case 4'
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Figure D.2i SR-ACSI Model W(T) for Bl <

constant

82 Case 5
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Figure D.2j SR-ACSI Model W(T) for 8, <
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82 Case 5
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H3(T1,T2) = W E-lfg;rszle

r -
B s . | i.p. o T1¥1a742%0
1=8,8, SURS Bk
) (D.20¢)
, Py TKTymBok,T,
k) =B2k,
_ KaBiPy Bk Tyok,Ty
- ]
81Kk,
O A s B P e R T
17727 7 |1-81By  kpeBik |2
i T sp.e 22%2p7K1¥p
-8B, = B K,k |P2P1
(D.20d)
g 2iglP kyTym8yRaTy
ky=Byk1
_ Kby BakpTomkgTy
- b
Bakoky
HS(T),T,) = HU(X), ,X,,) (D.20e)
= !
HAPAT: 4T50 = TRMER 4% ) (D.20F)
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!
(1-8p?  |s,p, [t P2
L oL
. BakoPy {e'lel'BZKZTZ_e'le}
k) =B2ks
_ kP {e-elle_e-Bllel-kZTZ
Bik17k,
-6 | BaTa e
168, |P2 B2P;
, PBakoPy v, KoPp Byt
Bk Ky Bik17k,
, Jah kTl
K178k,
L e B i o
H
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8
2
Hy'(T,,T,) = P

B k,P -k,T,-B,k,T -k,T
s 21 2 {e 272 7171 1-e 2 } (D.201)

ko=BKky

kyPy {e-elle =Bk Tk, Ty
297Ky

- ] 2
HS'(Tl,T2) = Hu (le’XZb) s (D.203)

B,P;
B.p,

d 1- 1 kl

where 1

T

Note that for the case 1, case 1', case 5 and case 5'
regions H is independent of the allocation, (Tl’TZ)’ along
the constraint line Tl + T2 = T. That is, all feasible
allocations with T, + T, = T in one of these regions

yield the same value of H. Within the case 2 or case 2'

region %%— = 0 while %%— < 0. Therefore, the conditional
1 2

solution confined to the case 2 or case 2' region is at or
as near as possible to the boundary line c. Similarly,

the case 4 or case 4' conditional solution is at or as near

as possible to line b. And finally, in the case 2 or case




3' region p- < 0 while %%— = 0. Therefore, the condi-

1 2
tionally optimal solution in the case 3 region is at or

oH

as near as possible to line d.

These results may be summarized as follows:

1.

An allocation, (Tl,Tz), between lines b and ¢ can
be optimal only if

i. T is less than one >f the nonnegative inter-
cepts of lines b and c

and
3de & (Tl’T2) is on one of the axes.

That is, there exist two conditional trajectories
consisting of the positive quadrant portions of
lines b and ¢ and the segments of the axes con-
necting these half-lines to the origin. An
optimal solution can be found by considering

the intersection of these conditional trajec-
tories and the line T, + T, =T,

For Tl + T2 = T the objective function is totally
insensitive to the allocation in positive quad-
rant portion of the region above line ¢ and in
the positive quadrant portion of the region be-

low line b.

The Alggrithm for the SR-ACSI Model

Based on the above, the following algorithm computes

the case 2 or case 2' region conditional trajectory for
the ACSI version of the model. The corresponding case U4

or case 4' region conditional trajectory can be computed

W ]
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by interchanging the roles of the boxes.

1.

Determine the coordinates of the intersection of

line ¢ with the positive coordinate axes.

a.

2.

B,P
in 2p1
° = 2 o =
If p, < B,Pys T s %, TS = 0.
P
1n 2
- 3. o o P2Py
f szl < P2’ Tl bl 0’ T2 = z_T—)'rl_ 2 2 .

The conditional trajectory is

For T < O FIL©

1 2
Tg = min{T,Tg} for i = 1,2.
For Ti + Tg < T,
(1-8,)k,T + 1n 8;51

T# =
17 (1-8)k; + (1-8,)k, °

B,P
251
(l-Bl)le - 1ln 5,

T* = .
2 (1-8,0k, + (1-B,)k,

[
t
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