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FOREWARD 

Under Contract No. N0001U-67-0181-0012 with the 

Office of Naval Research, the Systems Research Laboratory 

(SRL) has been conducting a research program to develop 

analytic models of defense processes, principally the com- 

bat process. A detailed description of all the research 

performed on this program through June 1970 was reported 

in SRL 2147 TR 70-2(U) "Development of Models for Defense 

Systems Planning" dated September 1970. Additional work 

related to the combat allocation process was reported in 

SRL 2147 TR 71-1 (U) "Development of Optimal Strategies in 

Heterogeneous Lanchester-Type Processes" dated June 1971. 

The work in descriptive modeling of combat processes 

and the development of optimal weapon allocation strategies 
I 

assumed perfect intelligence gathering capabilities of the 
i 

forces.  For this reason some of the research effort has 

been directed to the study of intelligence and recon- 

naissance processes. A literature review of this area 

(reported in SRL 211+7 TR 70-1 "A Review of Search and 

Reconnaissance Theory Literature" dated January 1970) in- 

dicated the need to consider more realistically both en- 

vironmental effects and search objectives (interaction 

with the combat process) in developing descriptive struc- 

tures of the search process and analysis of optimal search 
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strategies.  Some initial ideas in these directions were 

presented in SRL 21^7  TR 70-2 (U).  Research to examine 

one dimension of the environmental effects -- the visi- 

bility process -- has been performed and is being docu- 

mented in the forthcoming report SRL 2147 TR 71-3 (U) 

"A Characterization of the Visibility Process and Its 

Effect on Search Policies." Research on incorporating 

the effects of search objectives (called the response 

process) is described in ■thfo report.  The research ex- 

plores the development of mathematical structures which 

link the search and response processes, examines the 

effect that the response process has on classical search 

strategies, and attempts to develop some physical in- 

sight into the relationship between the two processes.( > 
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CHAPTER 1 

INTRODUCTION 

Classical search theory consists of the collec- 

tion of mathematical models which are used to determine 

preferred strategies for locating or finding an object 

of interest. These models may be viewed as experi- 

mentation strategy models v;here the experimentation 

process is modeled by a stochastic detection function 

with the underlying state of the system unaltered by 

the experimentation strategy. The objective of the 

activity is to find the object or target of interest. 

Associated with important practical search operations 

are experimentation costs. Thus, it is reasonable to 

assume that the searcher expects to benefit by using the 

information generated by the search.  For the searcher 

to benefit from the search, he must be involved in some 

activity which is dependent on the search outcome. 

Military units search for targets to track their move- 

ment, engage them in battle, or perform some other 

activity which depends on first acquiring the target. 

The searcher in oil explorations attempts to locate oil 

deposits which would be profitable to recover and sell. 

In general, the searcher searches for the object of inter- 

/■;: 

■a. 

This is in contrast to stochastic control theory where 
the state of the process is altered by the controls 
and the objective is to estimate the state of the system. 

-1- 
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est in order to' optimize his involvement in this search 
'■      '    i      '   ' ' ' ' ' 

related activity which we shall refer to as response 

'   '      '    ■' '       ' '     ,    ' process. ' 

' The purpose of this research is to explore the dev- 

61opment of mathematical structures which link the search 

and respohse processes  ,  examine the effect that the re- 
. , i ... . ii 

sponse process has on classical search strategies, and 

gain some physical insight- into the Relationship between 

the two processes.'   The specific research problems i 

addressed are delineated'in Section 1.3 following a gen- 

eral characterisation of search models in Section 1.1 

and a review of. the search theory literature in Section    ' 

1.2,' ,      ■ i        ' 

i ' ' 

■ t ' ' 

I * ; ' 
1.1     Charaoterization  of Search Modele 

Search problems may be structured vrith the elements 
'       ' ,     '       '    ' 

and interactions indicated in Figure 1.1.     The search- 
t , 

response system consists of detectors,' responders ahd 
! I     I 

I I ' 

the decision maker.     The search-response environment 

consists of targets  (objects of the search),  other ' 
' '   i : '■ I 

elements and the response process.     Interactions between 

the searchpresponse system and its environment iare söp- 

arated into two main groupings, called the search process 

and the  response process.     The sear'ch process  consists 
!       : ,       ,.    .     < ' - 'i 

of the  information gathering interactions.     The  primary 
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Search-Response System Environment 

Detectors 

Instruction^ 

Signals 

Signals 

Decision 
Maker 

Instructions 

Targets 

Other 
Elements 

Responders 
Acts 

-;» 

Acts 

Response Process 

Outcome 

Figure 1.1    Search-Response System Diagram 
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search-related interactions of interest to the decision 

maker comprise the response process. 

A target may be defined as an entity about which the 

search-response system attempts to gather information. A 

detector may be defined as a specialized device for collec- 

ting information about targets. Detectors receive signals 

which may contain desired target information, amplify 

these signals and transmit them to the decision maker. In 

some systems, such as radar, the detectors also provide 

the physical energy for the signals. 

Those system elements which participate in control- 

ling the operation of a search-response system are collec- 

tively called the decision maker. The decision maker 

extracts information from the detector signals and other 

sources and integrates this information to arrive at opera- 

ting decisions for the action elements of the search- 

response system.  The action elements which are not detectors 

are called responders. That is, an element which carries 

out a non-detection function under the control of the de- 

cision maker is defined to be a responder.  While detectors 

may be involved in the response process, responders are 

the specialized elements having direct response process 

participation as their primary function. 

The definitions given for target, detector, decision 

maker and responder are all operational in character.  There- 
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fore, there may or may not be a simple correspondence be- 

tween these operational elements and specific items of 

equipment for a system.  Some of the elements in Figure 1.1 

may be combined in one item.  For example, a combat soldier 

I | may conduct a visual search for enemy soldiers, act as 

decision maker in evaluating the search information, and 

then perform the role of responder by engaging the target 

(enemy soldier) in a duel. 

In Figure 1.1 the nature of the interactions as well 

as the elements themselves may vary for different problems. 

For example, radar detection systems transmit series of 

electromagnetic pulses into the environment and then collect 

reflected signals containing environmental information. 
j 

But,  unaided human visual detection systems  simply  collect 

a continuous  stream of general scattered light containing 
i 
i 

environmental information. \ 

A wide variety of problems including those of military 

combat, medical diagnosis, information storage and retrieval 

systems design, mineral exploration, and many others in- 
1 

volve the operation of detection systems to collect infor- 

mation to aid in making basis system operating decisions. 

Thus, these problems may be considered to be search-response 

problems.  Figure 1.2 presents a taxonomy for classifying 

search-response processes based on distinctions which we 

conjecture to be important in the analysis of such processes. 

Each possible path from block A to block C in Figure 1.2 
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Decoys are environmental items which produce ue- 

tector signals similar to those produced by tar- 
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represents a class of search-response system process. 

Wlthiu oach class there are many types of problems depen- 

ding on the detailed characteristics of the process elements 

and relationships. The heavy-line paths through Figure 1.2 

characterize the processes considered in this research. 

The following comments are intended to amplify the 

meaning of certain elements in Figure 1.2: 

1. In some search models the relevant target status 

is described by an integer representing the iden- 

tification of the target status with one of a 

countable set of classifications. Such models are 

said to be discrete search space models.  When the 

target status cannot be described by an integer, 

the search space is said to be continuous.  For 

example, many medical diagnostic tests, which can 

be viewed as search processes, are designed to 

determine if the patient has a particular disease 

condition. The corresponding "search space" 

consists of the set of possible disease conditions 

which can be considered countable.  In contrast, 

the combat soldier searching for enemy soldiers | 

needs to know the enemy soldier location in order 

to fire his weapon (respond) optimally.  Thus, his        j 

search space is continuous. 

2. In searching for a target in real space the detec- 

tor may be totally ineffective for some periods 

of time because of environmental obstructions such 

as trees, hills, etc.  When this is the case, the 

target is said to be invisible. When no such 

effects interfere with the detection process, the 

target is said to be continuously visible. 

Ü 

Ü 

0 
y 

y 

i 

,„   ,  --■'■    ^—    gmmiMi^      ■lymmmm 



D 
ö 
D 
D 
IJ 

[j 

Ü 

ü 
Ö 

Ü 

0 
0 
Ü 

0 
y 
a 

-9- 

gets.  For example, civilians at the scene of an 

infantry "search and destroy " operation are decoys. 
Identifiable decoys are those which can be identi- 
fied as non-target items by the application of 
additional search effort. 

4. In searching for discrete targets one assumes that 

a single target is detectable and significant.  For 

continuous targets, however, the basic unit is suf- 

ficiently small to be either undetectable or unim- 
portant.  Only some larger quantity, representable 

by a continuous variable, is sought.  An example 
of a continuous target is found in oil exploration 

searching. 

5. For an unknown target quantity model the term risk 

refers to a situation in which an acceptable proba- 

bilistic description for the target quantity is as- 
i 

sumed. The term uncertainty applies to those situa- 
tions for which no acceptable probabilistic descrip- 

tion for the target quantity is known.  This dis- 

tinction, though only a matter of what the decision 
maker is willing to assume for analytic purposes, 

is quite important in determining the form of the 
analysis and usefulness of the results. 

6. Active targets select their behavior (location, 
movement, etc.) for the purpose of gaining advan- \ 
tage in their involvement in the search-response 
process.  The behavior of passive targets lacks 

such purpose. 
l 

7. The probability distribution of effort (or time) j 
until a detector detects a target which is present '; 

is called the detection function.  If this proba- 

■-•"■:  ^^..^J^jgj^ 
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bility distribution is discrete, the detector is 

said to be a discrete detector. If the proba- 

bility distribution is continuous, the detector 

is said to be continuous. 

8. Noisy detectors are those which transmit signals 

containing false positive indications of target 

information. That is, noisy detectors sometimes 

trigger false "detections." In contrast, 

noiseless detectors never yield unreliable or 

false indications of target information. 

9. Some detection systems alter their mode of opera- 

tion when a positive indication of a target is 

encountered. Such detection systems may be 

called multiple mode systems. Systems which do 

not switch from one mode to another may be called 

single mode detection systems. 

10. Response processes can be classified according 

to whether the time duration of the process is 

important to the problem.  Events are processes 

which, for practical purposes, consume no time. 

Continuous activities are processes which con- 

sume a significant amount of time. 

11. The control of a response process can involve 

either the responder, the target or both, as 

well as other environmental elements.  In the 

case of a duel between opposing infantry combat 

patrols either unit may be able to disengage 

from the duel.  Thus, both the search-responder 

and the target participate in controlling the 

response (duel) process. 

12. For some search problems the response process 

occurs regardless of the search outcome.  In 
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such cases the response process can be thought 

of as scheduled.  For example, in an air force 

tactical support operation related to a ground 

battle, bombers may be used regularly to attack 

the most valuable targets identified from photo- 

graphs made by reconnaissance aircraft. The 

detectors are the reconnaissance aircraft; the 

responders are the bombers. The purpose of the 

search is to improve the effectiveness of the 

bombing. 

For some other problems the response pro- 

cess cannot operate unless a detection occurs. 

In this event the response process may be thought 

of as unscheduled. The duel between opposing 

infantry patrols represents an unscheduled re- 

sponse process. 

13. Coupling between the search and response pro- 

cess exists if either of these processes directly 

interrupts, interferes, degrades or enhances 

the other. 

1.2    Review of Search Theory Literature 

In this section we review some or the important 

search theory developments which are relevant to the 

search models developed in this research.  Emphasis is 

placed on those works which are germane to the research. 

For a more comprehensive review of the search theory 

literature see Debbie (1968) and Moore (19 70). 

Analyzing World War II antisubmarine operations 

Koopman (1916) developed a descriptive model for com- 

puting the detection function for a continuous search 
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space, continuous detector search situation. He assumed 

that the underlying detection process is a Poisson pro- 

cess in time with intensity parameter» yCt), a function 

only of the distance from the detector to the target. 

Thus, the probability that the detector will fail to 

detect the target during the interval (tg, t,) is 

F(t0, t1) = exp r1 
-/   Y(t)dt (1) 

Ü 

U 

where yit)  is evaluated along the trajectory describing 

the position of the target relative to the detector as a 

function of time. 

Equation 1 cannot be applied directly to any search 

problem because the relative trajectory of the target is 

never known to a searcher. However, by making various 

simplifying assumptions, useful detection models can be 

derived.  If the relative trajectory is a particular 

straight line, (1) can be used to compute the probability 

of detecting the target as a function of the minimum 

distance between the detector and target (miss distance) 

and the relative speea.  (This function, with relative 

speed fixed, is called the lateral range curve.)  Given 

any probability distribution of miss distances, one can 
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obtain the probability distributions of miss distances, 

ranges and bearings for the targets that are detected. 

Koopman considered the following search problem« 

1. A fixed target's position has a uniform proba- 

bility distribution over a large area of size A. 

2. The detector is a definite range law device. 

That is, if r is the distance between the 

detector and the target, 

Y = 
for 0 < r < R —     m 

for R < r, m — 

where R    is the range of the detector, m 

3. The detector moves with constant speed along a 

random path in A consisting of straight line 

segments which are much longer them R . Then, 

it can be shown that the detection process 

follows the "law of random search" 

where M P(L) = exp  - p , (2) 

. -:■:.*;.*.„,.  ;,,K.: ^WtdUKV^i 

L = length of the track covered by 

the detector, and | 
I 

W s the integral of the lateral range | 
f curve over all values of miss dis- 

tance . I i W is called the effective sweep width of the detector. | 
■I 

This development eliminates the need to know the relative ;| 
i'l 

trajectory in order to predict the probability distribution 

of searching time until a detection occurs (the detection i| 

function). 
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Since th^ assumptions needed to derive the "formula 

of random search^ are very restrictive, an assessment of 

the possible errors in (2) as em approximation ifor real 

deteqtion processes is needed.  Consider a definite range, 

law detector systematically searching for a fixed target 

in a long strip of width twice the range (Rm) of the , 

detector. Assump that the target is located at random 

in this/strip.  If the detebtor starts at the middle ,of, 
; * i I 

'■ ( 

one end of the strip and travels at constant speed through 

the center of the strip,  the probability of detection is 

given by 

P(L)  = 

WL ■  for 

i   for' 

0 i L 1 W 

A <   L 

(3) 

where A is the area of the strip.. (End effects have been 

neglect(ed ifi equation 3.  Figure 1.3 shows the corresponding 

"law' of random search" and systematic strip search detec- 

tion functions.1 The slopes ,of these' detection functions 

are the same atiL = o. The maximum differenpe between 

these; two detection functions is e" . * .368.  But this 

' ^ ' A value occurs only at L = rr which corresponds to the end 

of the systematic search of the strip. A difference of 

this magnitude occurs because because the systematic 

search derives the maximum possible amount of information 

I. i 
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W =  1,  A =   100 

r 

    Systematic Search 

mm mm   Koopman  "Law of Random Search" 

J 

,- 

150 200 250 

J 

Figure 1.3    Detection Functions   for Koopman  "Law of 
Random Search"  and Systematic Search 
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from the negative search result early in the search while 

the random search derives no information at all from a 

negative result. If it is possible for the detector to 

overlook the target or for the target to move from the 

unsearched portion of the area to the searched portion 

without being detected, the detection function will be 

closer to the "formula of random search" than is the 

systematic search detection function. As long as the 

target cannot evade the detector, the detection function 

should be bounded from below by the "law of random search." 

Thus, many real search situations may be expected to be 

governed by detection functions which are approximately 

of the "law of random search" exponential form. 

Considering both a continuous search space and detec- 

tor, Koopman also addressed the problem of allocating a 

limited amount of search "effort" to maximize the proba- 

bility of detecting a fixed target whose location is 

described by a non-uniform probability distribution.  Let        || 

A = region containing the target, 

x = a point in A, 

p(x) = probability density function for target 
location, 

w(x) = search effort density allocated to point x, 

W = total amount of search effort available. 
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Assume that 

min p(x) = pn > 0, 
A        ü 

and 

Pr(Detect target | Target is at x) = 1 - exp(-w(x)) 

Then, the problem is to 

max p[w] = max f p(x)[l - exp(-w(x))]dx, 
w        w  A 

Subject to 

w(x) > 0,    / w(x) dx = W 
A 

Using variational arguments Koopman showed that 

w*(x) = 

In p( 

0 

x) + jirTw- /  In p(x)dxl  for x e A* 

for x i A* 

where 

A* = |x | p(x) > b, 

j     p(x] /  In p(x) dx - wi In b .  I  p(x) dx a 

p(x) > b p(x) £ b 

He noted that a series of optimal increments of effort 

WnjWj,... each based on the Bayesian updated target proba- 

bility distribution, given that no detection has occurred, 

results in an optimal allocation of the total search 

W, + w2 + •••. 
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The Koopraan search optimization model is not easily 

related to the Koopman descriptive search model. If the 

underlying detection process is that of the descriptive 

model, then the "search effort density" of the optimization 

model is 

Z*1 
w(x) = /   Y(

X
> S^)) dt, 

where 

(tjjjt,) = time interval for the search, 

5(t) = position of the searcher at time t, and 

Y(x, C(t)) = conditional detection rate at time t, 

given that the target is located at x. 

The obvious, natural optimization problem is to maximize 

P[w] by selecting 5(t) subject to searcher mobility con- 

straints. In general, this problem is much more difficult 

to solve than the Koopman optimization model in which 

the decision function, w(x), is not encumbered by the 

obvious consistency relations described here. 

Since the Koopman search optimization model leads to 

a neat, non-trivial solution, the simplification obtained 

by ignoring consistency constraints on w(x) is not to be 

dismissed lightly as unreal.  We wish to describe con- 

ditions under which this simplification is logically sound. 

i 

vJ 
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First, if the target location probability distribution is 

uniform over an area having dimensions large compared to 

the range of the detector and the searcher moves with con- 

stant speed at random, the simplification is valid. But 

this case assumes the optimization result as well as a 

very special target location probability distribution. 

For an arbitrary target location probability distribution 

the consistency constraints on w(x) are of two types: 

mobility and area coverage.  The mobility constraints 

come from limitations in the speed and accelera ion of 

the searcher. The area coverage constraint arises be- 

cause at any given time the searcher is searching an area 

with the search rate varying over the area as prescribed 

by the detection rate function, y.    Thus, it is not pos- 

sible to concentrate the search effort density arbitrarily. 

If the range of the detector is very small (compared to 

the distances between points for which p(x) are signifi- 

cantly different), the area coverage constraint will not 

affect the solution.  Further, if the amount of search 

time is very large (compared to the time needed to search 

the entire area), the mobility constraints will not affect 

the solution.  If the Koopman optimization simplification 

is to be valid in the limit for arbitrary target location 

probability distributions and amounts of search effort, 

the range of the detector must approach zero and the 

, ■:.^,.:*^*JlJ*,.*:. H iHll''^-1''' —- 
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D 

mobility characteristics (speed and acceleration) must 

increase without bound. Therefore, the Koopman optimi- 

zation model inherently assumes a pointwise detector with 

infinite mobility. 

deGuenin (1961), Zahl (1963) and Arkin (196H) have |! 

generalized and embellished the Koopman continuous search        , 

space, continuous detector search optimization model to ' ' 

consider more general detection functions and problem 

constraints. But, these generalizations retain the basic 

pointwise detector characteristic. Considering the amount || 

of search effort as a parameter, Arkin proved that, given 

an arbitrary continuous increasing detection function, 

there always exists a search plan which maximizes the 

probability of detecting the target for all amounts of 

search effort. Such a plan then, minimizes the expected fj 

effort needed to detect the target, assuming that no 

limit exists for the amount of search effort. 

Blachman and Proschan (1959), Pollock (1960), Matula 

(1964), Chew (1967), Kadane (1968) and Ross (1969) 

analyzed discrete search space, discrete detector search 

models similar to the continuous search space, continuous 

detector models discussed above.  The target in these U 

models is located in one of a finite number of possible 

locations or "boxes." The df.tection process consists of 

a series of "looks" directed at individual boxes.  On 

any given look at the box containing the target there is 
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a non-zero "overlook" probability (probability of not 

detecting the target).  Pollock discovered that the search 

plan which minimizes the expected number of looks needed 

to detect the target also maximizes the probability of 

detecting the target for any given number of looks, given 

that there are two boxes and that the overlook probabil- 

ities are independent of the number of looks.  Chew 

extended this result to the corresponding case with an 

arbitrary number of boxes.  Considering a model with the 

cost of looking and the reward for detecting the target 

dependent on the box being searched, Ross found that the 

optimal search plans failed to substantiate three intuitive 

conjectures. 

Charnes and Cooper (1958) considered a discrete 

search space, continuous detector search model which is a 

discrete search space analog of the Koopman search opti- 

mization model. The target is in one of several boxes, 

but the search process follows Koopman's "law of random 

search" exponential time to detect form.  The problem of 

allocating a limited amount of search time to maximize 

the probability of detection is reduced to a separable, 

concave mathematical programming problem.  The authors 

characterized the solutions by applying the Kuhn-Tucker 

conditions to the problem. Moore (1971) developed a 

slight generalization of this model and referred to it 

repeatedly as the "Standard Koopman Allocation" model. 
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This generalization of the Charnes and Cooper model is 

developed in Chapter 2 of this research and is referred 

to as the Koopman model. 

While the (Charnes and Cooper) discrete search 

space model is formally identical to the analagous 

Koopman continuous search space search optimization model, 

these two models contain an essential difference in 

assumptions regarding the underlying detection process. 

The discrete search space version embodies the detection- 

at-a-distance property which characterizes many detectors 

such as radar, sonar, infrared detectors, etc.  That is, 

if each box is itself as relatively large uniform area, 

the Koopman descriptive model leads one to expect the 

detection function to follow the "law of random search" 

approximately. 

In an experimental study Stollmack (196 8) empiri- 

cally determined distributions of times for stationary 

experienced army personnel to visually locate a tank in 

the terrain surrounding Fort Knox, Kentucky.  These dis- 

tributions were found to agree well with Koopman's "law 

of random search." A wide range of empirical detection 

rates was observed depending strongly on the background 

as well as the distance between observer (detector) and 

tank (target).  Thus, even though the processes are 

markedly different (experimental stationary visual 

detection of a stationary target and moving random search) 
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we have evidence of the appropriateness of an exponential 

detection function model with detection rates significantly 

dependent on the location. 

Dobbie (196 3) investigated the generality of the 

Koopman result concerning the overall optimality of suc- 

cessive optimal allocations of increments of effort to 

maximize detection probability. He found that such 

incremental allocations result in an optimal allocation 

of the total effort if the optimal effort allocation is 

non-decreasing in the variable available effort.  For 

stationary targets this holds if the detection function 

is zero at zero effort density and is an increasing, con- 

cave function of effort density.  Of course, Arkin's 

result above for continuous search space models estab- 

lishes that the concavity restriction is not necessary. 

But, Arkin's result does not hold for the discrete 

This can be seen by considering a two-box example with 
uniform target location probability distribution. Let 
the detection functions for the two boxes be 

f2(t2) 

0  < t-j. <_ 1 
1 < t1    , 

o < t, < i. 
- 2       2 

■i-   < t. 
2 -   -2 

Then,  for amounts  of search time, T,  in the interval 
(0,—)  the detection probability is maximized by t^T, 
but2for T in the interval [—,-] the detection proba- 

2    2 
bility is maximized by t,=T-4-,  t0=-. 

i 2 ii     2 

■^■-^4. -».... J.^1._^,^ .■-■. ^....i,-t..-,.1...^.J..~..--.....-'..-i-^..»—J^.-..!.^-».'-..--, I .» ...^..■,.... ...   .;... , ..■^.,. ■■    .^■w.. ...-.-^„^^-.-,!. .■.^........w. ..,,;.^,.   .■...-,^......,.,-.J..ij^..  jg  ^.I.,I IV-,..*; 



...,v.tiffl>S H3JISEEE taiMM———■ 

-24- I 
11 

D 
D 
0 
D 
D 
D 

search space models. Bobbie also argued that maximizing       |j 

the detection probability for a given amount of search 

effort may not correspond to the searcher's real motiva- 

tion. He suggested that search objective functions should 

be carefully selected on the basis of the characteristics 

of the search problem context. 

Novosad (1961) and Mela (1961) apparently indepen- 

dently published search models showing that maximizing 

information gain (change in entropy) can lead to different 

search allocations than those which maximize detection 

probability. Then, Danskin (1962) published two papers 

in which information gain was taken as the search objec- 

tive.  Tognetti (1968) and Kadane (1971) considered [| 

discrete search space, discrete detector models in which 

the objective is to maximize the probability of either ' 

detecting the target or correctly guessing the target           j 

location following the search. 

Smith (1969) first introduced false detections ex- 

plicitly in a discrete search space, discrete detector 

model similar to those of Pollock and Chew.  That is, Ll 

in addition to the overlook probability, he assumed a { 

nonzero probability of "detection" on a look when, in 

fact, the target is not present in the box being searched.        \ 

Using Bayes' formula he derived the sequential search pro- 

cedure which maximizes the probability that the first y 
l; 
u 

y 

----- i »   iirhiiMi---  1 ~~~~~^—~m—mf*iJmvmi—*mmäM 



mmmmtmttmmimmimmmmmmmmm 

-25- 

i 

Li 
LI 
LI 

Ü 

U 

"detection" is a true detection. This optimal procedure 

consists of always allocating the next look to a box 

having the highest Bayesian updated probability of con- 

taining the target. This optimal search is shown to 

minimize the expected number of looks until a "detection" 

occurs. 

Stone and Stanshine (1971) considered a continuous 

search space, continuous detection process search model 

involving false detections. The false detections are 

assumed to result from the detection of false ta 'gets 

which cannot be distinguished from the real target by the 

basic search system. These false targets can, however, be 

identified by interrupting the basic search and employing 

special methods to identify the contact as either target 

or false target.  In terms of our taxonomy this contact 

investigation may be regarded as the response process. 

The model is characterized by a repeated, continuous 

activity response process coupled with the (basic) search 

process by some interference mechanism which requires that 

the basic search cease while a contact is being investi- 

gated. In this model the target location is characterized 

by the probability density function, f(x). The false 

targets are described by their collective "false target 

density function," 6(x), which expresses the number and 

location probability distribution of the false targets. 
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The contact process is governed by a contact function 

analogous to the detection function qf the Koopman ijiodel. 

That is'if either the target or a false target is located 

at point x and effort density, m(x,s) jis expended at x, 
•  ''   '       ' .    ' 

the probability of contacting the target or false tabget 

is b(m(x,s)). Assume that 
f     ,      , ■ I 

I 

(i) ,  b(0) =0,  lim b(z) =1, 

Cii)  b', the derivative,of b, is a continuous  , 

positive, decreasing function , i 

Let     ' 
.i •        i 

m(x,s) a search effort density allocated to point x 
when s units of b^sic search' time have been 
expended. 

'The constraints on m are i '    ', 
i 

(i) nKxjS)1 :>   0, , , 

(ii)  m is non-decreasing in the second argument 

for each x, and 

m(x,s) dx = Us. 
i ... 

The probability of, contacting the target by basic search 

time  s  is • ; i 

P(m,s)  =    ff(x)  b(m(x,s)) dx. 

i ' ' ■: The time needed.to investigate a false  target  is assumed 

to be  a random variable,  T(x), which depends   on the loca- 

tibn of the false target. 

C(s)  =   /6(x)  bXm(x,s))  dx 

i 
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i,8 the expected number of false contacts by basic search 

time s.    If all contacts are investigated immediately, 

the expected time spend in identifying false contacts 

before basic search time s is 

T(x)6(x)b(m(x,s))  dx. 

Immediate contact investigation is, shown to be optimal 

if the contact investigation phase cannot be interrupted 

to .switch back to the basic search phase. It is shown 

that no search-identification plan can maximize the proba- 

bility of contacting and identifying the target before 

every amount of total search and identification time.  A 

Neyman-fearson type, of allocation is shown to minimize the 

expected total search and identification time needed to 

locate the target. The resulting optimal allocation pat- 

' tern for a simple example is shown to be closely related 

■£o the corresponding Koopman optimal allocation model with 

no false targets. 

This,false detection model involves a curious mixture 

of a fixed basic search plan which is never altered in 

response to the outcome of the search and opportunistic 

exploration of the contacts which occur. By adhering to 

this fixed basic search plan the model avoids detailed 

consideration of the source of false targets and the 

effect of the; identification of false targets on the under- 
i 

lying probability distribution structure,  .hat is, the 

i 
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model lacks sufficient definition to permit the computa- 

tion and use of false probability distributions of the 

number and locations of uncontacted false targets via 

Bayes'   formula. 

Pollock (1971)  considered the nature of the overall 

problem setting of search theory.    He suggested that 

search models have too often oversimplified or ignored 

the detection theory and decision theory aspects of the 

problems being addressed.    Search-related detection and 

decision models involving significant search modeling 

are similarly lacking in the literature.    He argued that 

separate modeling of these three parts of search processes 

has lead to interface problems.    The difficulties encountered 

by this fragmented modeling appear to constitute an excel- 

lent example of the  suboptimization syndrome pointed to by 

Hitch and McKean  (1960). 

Compared to the apparent complexity and variety of 

practical search problems as reflected in the taxonomy of 

Section 1.1,  current search theory models  are distinguished 

by  their simplicity.     The search literature  is dominated 

by models incorporating essentially generalizations of 

Koopman's original  search optimization model.     A few 

authors have noted  that  the detection probability maximi- 

zation of these models  may be misleading as  a guide  for 

allocating search resources in many search problems.     Yet, 
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only recently have researchers begun to consider search 

problems from a more comprehensive point of view and to 

investigate other possible objective functions for search 

optimization. 

1,8 Area of Reeearoh 

In Section 1.1 we presented a rather complicated 

taxonomy for classifying search-response models.     This 

taxonomy represents an intuitive conjecture of which dis- 

tinctions are fundamental to the analysis of the vast 

variety of practical problems involving search-response 

processes.     Of paramount importance in this taxonomy is 

the notion that the search results represent intermediate 

states in the overall system operation rather than the 

essential motivation for conducting search activities. 

Thus, we regard the response process as the primary 

activity of interest to the searcher. 

The importance and effect of the response process  can 

be considered in context of many combinations of model 

characteristics noted in the taxonomy of Section 1.1,     Al- 

though it is  felt that analysis of many of these structures 

will be necessary to fully understand the relationship 

between response and search processes of necessity this 

research has  focussed on but a few dimensions  to develop 

some preliminary understanding of their dependency. 

, 

I 

—""■-••"■'"■■'■■■■ ■"-""" VMäiMu ■ ..-.-..- ..'■■■■i  ..■■■^  ^^—^-  .-.,.„,, ■■ iir  ,,   ,   |  .^ ■  -MHiin inn          , J...^---,.,■.,--^Ma||M ^gm 



--, __^_;;li__: __;  

-30- 

Because, a priori, we expect the analysis of search-re- 

sponse problems to depend strongly on false detection 

effects, noisy detectors are examined. The analysis is 

performed in conjunction with the principle discussion of 

scheduled and unscheduled response processes. Discrete 

search space, continuous detector search models similar 

to that analyzed by Charnes and Cooper are used in the 

analysis. 

Detection events are inherently decisions. Therefore, 

the "detection" rate can be changed by changing the cri- 

terion used for making a positive detection decision. 

But, changing the criterion for the detection decision 

changes the false detection rate as well as the overall 

detection rate.  Thus, there exists a technical tradeoff 

relationship between the detection (decision) rate and the 

false detection rate'. This relationship is called the 

receiver operating characteristic curve. An important 

practical question in the design and operation of de- 

tectors is the selection of an operating point on the re- 

ceiver- operating characteristic curve. Although our models 

can be used in analyzing this operating point selection 

problem we have concentrated attention on analyzing the 

search allocation problems with the operating point 

assumed fixed. 

As previously noted, the purpose of this research is 

to (a) develop structures which link the search and re- 

L 
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sponse processes and (b)  use these to examine the effect 

that the response process has on classical search strate- 

gies  and gain some physical insight into the relationship 

between the two processes.    Hypothetical search-response 

system models with false detections are developed and com- 

pared with corresponding classical search optimization 

models.    Such comparisons provide guidelines regarding the 

robustness of the classical models as guides for search 

decision makers and develop insight regarding the impor- 

tance of the response process and false-detectxon model 

elements.    A modified version of the classical Koopman 

model is used in these comparisons since most efforts in 

search theory have been essentially embellishments of it, 

U and accordingly, it is felt that results would apply to 

j i other more sophisticated search optimization models. 

Emphasis in the research is on the relationship 

j between model assumptions and results.    Therefore, tedious 

technical detailed developments are presented in appen- 

dices rather than in the main body of the report.     Chapter 

2 considers an unscheduled response process search model. 

Chapter 3 considers three closely related scheduled re- 
i 
I sponse process search models.  Chapter 4 summarizes the 

major results of the analyses and discusses directions 

for future research. 
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CHAPTER 2 

SEARCH MODELS WITH UNSCHEDULED 

RESPONSE PROCESSES 

The other model represents a simple extension  of the 

Koopman model including explicit treatment of the response 

process and false detection effects. 

The models of this chapter consider only two possible 

target locations or "boxes." The generalization of these 

models to consider an arbitrary number of boxes has been 

performed and follows directly from the two box case. 

There were two main reasons for limiting this discussion 

to the two boxes version of these models: 

1.  The models of Chapter 3 with which we wish to 

We have developed several models similar to this exten- 
sion of the Koopman model.  The specific one included in 
the analysis illustrates the basic character of these 
models and their implications. 
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In this chapter we develop and analyze two models of 

unscheduled response-search processes. The first model is 

the discrete search space version of Koopman*s original 

search allocation model. Hence, we call this model the 

Koopman model. As previously noted, it has been throughly 

studied and embellished by other researchers. We include 

the Koopman model as the primary model examined in the lit-     | | 

erature with which succeeding models are to be compared. 
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compare results are not easily generalized to 

the corresponding models considering arbitrary 

numbers of boxes. 

2.  The two boxes versions embody the significant 

conceptual results we wish to illustrate. Thus, 

the symbolism and graphical complications assoc- 

iated with discussing the multiple boxes versions 

simply detract from the effects we want to 

emphasize. 

2.2     The Koopman Search  Model 

Exactly one stationary target is located in one of 

two boxes with 

p. = Pr(Target is in box i). 

The detection process for searching in the box which con- 

tains the target follows Koopman's formula of random 

h 
U search.  That is, the conditional search time-to-detection, 

1 given that the target is in box i, is characterized by' 

-k.t 
e    = Pr(Target is not detected | Target is in 

box i      ), 

following a search of duration t in box i.  The searcher 

allocates a limited amount of available searching time, 

Use of an exponential detection law in this analysis is 
based in part on the functions mathematical simplicity 
which facilitates interpretation of the results and its 
-origin, occurring axiomatically in random search processes 
and empirically in visual detection processes (Stollmack, 
1968). 

■- — - 

,.-,■^^,^■^„^^.■■^^■^^...■.....^-■^^111-^^ ■'■■■■  --•- '■    - .....--^.^-^-—— ,.......■:..JJ ■.^:.-^.,^^-;,^.^.^a^^,   .^ii- *U.^ ■ „u^UmLäiLMmimi^t 



-31*- 

T, between the two boxes to maximize the probability of 

detecting the target. 

Let 

T. 3 amount of available time allocated to 

searching box i. 

D 
fl 
11 

Then the Koopman search allocation problem is to select 

T, and T, which 

Max DP = Max 
^nz        -k.T. 
<>,   Pid-e 1 1 
^^i=l 1 ) 

(4) 

subject to T1, T2 > 0 and ^ + T2 <_ T, 

Note that p,, p«» k,, k2 and  T are necessarily non-neg- 

ative.  If any of these parameters are zero, the problem 

is trivial.  Therefore, we assume that these parameters 

are all positive. 

Appendix A uses the Kuhn-Tucker conditions to de- 

velop a solution algorithm for a generalization of this 

Koopman search allocation problem. Applied to the Koop- 

man problem, C1!), this algorithm yields the following: 

Let indices be assigned such that P-ik, >_  Pjkj. Also, 

let (TJ, TJ) denote an optimal allocation and DP* the 

corresponding target detection probability. 

1.  (T*,T*) is unique with T* + Tj = T for any 

0 < T < ». 
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2. the solution can be expressed analytically in 

terms of the problem parameters and 

n i piki 

i.  If 0 < T <_ W, 

(T*, TJ) = (T,0). 

ii.   If W < T, 

TJ = 1^(T-W)- 

M 3. The corresponding optimal target detection 

probability is 

('-■v) 
for 0 < T < W 

for W < T. 

The trace of an optimal allocation plan, (T?, It) 

as a function of T, is shown in Figure 2.1a. We will call 

such traces optimal trajectories. Koopman model optimal 

trajectories are piecewise linear, monotonio non-decreasing 

in form. For small amounts of available searching time, 

the optimal search is concentrated entirely in box 1. 
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p1 ■ 0.5,  k1 ■ 0.10 

p2 = 0.5,  k2 « 0.05 
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Figure  2.1a    Optimal Koopman Search Plan 
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For larger amounts of available searching time, the al- 

location is shared with constant marginal allocations of 

available searching time to each of the two boxes. These 

marginal allocations depend on the detection rates but 

not on the prior target location probability distribution. 

The non-decreasing character of the optimal trajec- 

tories implies that the search decision maker need not 

know the amount of available searching time, T, in order 

to search optimally. Therefore, the Koopman model optimal 

search allocations are also good search plans for the 

corresponding problems in which the scarcity of search 

effort enters through a search cost function which increases 

as the search progresses. Thus, the Koopman search plan 

minimize:; tuo expected cost of detecting the target. 

Figure 2.1b shows the optimal detection probability, 

DP*, as a function of available searching time, T, for the 
i i 
U optimal search shown in Figure 2.1a. This optimal detection 

j 1 probability function consists of portions of two exponen- 

tial "charging" functions: one for 0 < T <_ W and the other 

j j for W < T.  The slopes of these two sections of DP* are 

the same at W so that the marginal return is coitt4.nuously 

U decreasing over the entire interval (0, <»). 
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1.1 

Dobbie (1963) proved that non-decreasing search allocation 
plans to maximize detection probability also minimize the 
expected time to detect the target.  The extension of this 
result to the case of arbitrarily increasing cost as a 
function of search time is trivial. 
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1 
Pj^ - 0.5, kj^ - 0.10 

p2 - 0.5, k2 - 0.05 
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Figure 2.1b    Koopman Model Optimal Detection Probability 
vs Available Search Time 

L 

—        -      - ■—      . ■.^—,......- ^.^^„^^i.- 



D 
D 
0 
D 

y 

y 

11 U 

i 
i 

-39- 

2.2    An  Unaoheduled Reaponee   (MR)   Öearok Model 
i 

i 

In this, section we analyze a search model involving 

false detections ahd em unscheduled response process.  The 

kinds of real problem situations which motivate this UR 

search model are illustrated by the following scenario: In 

a ground war qne force sends a scout patrol to search for 

an enemy combat unit. The enemy unit maintains a guard 

detail wnich searches for scout patrols. When either the 

guard'detail or'the scout patrol detects the other, an 

engagement between these tjwo units ensues with surprise 

advantage for the unit which made1 the detection. Assume 

that if an adversary is present any erroneous attempt to 

iivitiate an eivgageme:^ has not, in fact, 

been detected) exposes the "attacker" to certain detection. 

The key elements in this problem are: 

i.  The primary interest of the searcher is in 

the response process which ensues if and 

only if a detection occurs. 

| ii.  The detection system is necessarily imper- 

fect to  that false detections may occur. 

We want to investigate the effects of these characteristics 

of search problems on the optimal search allocations. 

Therefore, we consider a specific search model having 

these characteristics. 

1 Exactly one stationary target is located in one of 

two boxes with 

p. = PrCTarget is in box i). 
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The detection system produces "contacts" or positive 

decisions that the target has been found.  These are 

characterized by random times-to-contact with 

-k.t 
e 1 = Pr(No contact in box i | Target is in box i) 

for a search duration t in box i.  Contact events may be 

of two types: "false contacts" and "true detections." 

False contacts lead to unfavorable expected response pro- 

cess results while true detections lead to favorable ex- 

pected response process results.  The false contacts 

occur independently of the search times-to-contact with 

3. a Pr(False contact | Contact in box i, Target is in box i). 

Any  contact event terminates the search and initiates 

the response process.  If the response is initiated as 

the result of a false contact, the searcher expects un- 

favorable results from the response process.  The purpose 

of the search is to attempt to detect the target, initi- 

ating the response process under conditions favorable to 

the searcher.  Since the utility of the response is dif- 

ferent under these types of contacts we let 

d. = Expected utility from the response process 

given a true detection in box i, 

f. = Expected utility from the response process 

given a false contact in box i containing 

the target. 

Assume that the response process so intimately involves 
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interactions between the searcher and the target that no 

response can occur in the box that does not contain the 

target.  The expected utility parameters, d. and f., are 

relative to the search-response outcome in which no 

response occurs. Additionally, in the scenario we let 

Q. = PrCPatrol survives j Patrol initiates duel) , 

q. = Pr(Patrol survives | Enemy unit initiates duel). 

Suppose that the searcher's utility structure is 

U = Ps - vPE , 

•yhere 

U = searcier's utility 

Pp ' .r(Patrol survives) 

PE = PrCEnemy unit survives) 

v = a parameter expressing the relative utility of 

patrol and enemy unit survival. 

Applying the definitions of d. and f. to scenario 2, 

and 

di = Qi - v(l-Qi), 

f., = qi - vd-q^ 

We assume that false contacts by one searcher (scout 

patrol or guard detail) expose the erroneous "attacker" 

to certain counter-detection if and only if the two 

adversaries are in the same box.  Suppose that both 

searchers operate exponential detections (Koopman 

"formula of random search" detectors) i.e., 

u 
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-r.t 
e ^^ = Pr( Patrol fails to contact | Patrol and 

enemy are in box i for t time units) 
-r!t 

e    = Pr(Enemy fails to contact | Patrol and 

enemy are in box i for t time units), 

•y. = Pr(False contact | Contact by patrol in box i), 

y! = Pr(False contact | Contact by enemy in box i). 

We wish to compute the corresponding overall contact rates, 

k., and false contact probabilities, ß^, as viewed by the 

scout patrol. There are two cases to consider. 

Case 1 Suppose that the searching times-to-contact for 

the two searchers are independent. Then 

-r-t  -r!t 
i . e ^^ = Pr(No contact by either j Patrol and 

enemy search for t units in box i). 

The joint contact rate is simply the sum of the two 

individual contact rates, i.e., 

ki = ri + ri- 

The false contact parameters, (3. , are the probabilities 

that the enemy will initiate the real duel following a 

contact in box i given that the enemy is in box i.  To 

compute this let us first use Bayes' formula to compute 

Pr(Contact by patrol j Enemy is in box i, A contact 

occurs in box i) 

-k.t 
e ^  r.dt(l-r!dt) r. 

14»«                     11                      —   1 im +__k t £-. 
dt■,'0 e :L [ridt(l-rjdt)+r|dt(l-ridt)]    

:L 

(5) 
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Then, 

ßi = E^i*^1-^' (6) 

r! 

That is, the false contacts of the model come from two 

sources:  erroneous interpretations of detector data by 

[ i the patrol and true detections by the enemy. 

Case 2 Suppose that the searching times-to-contact for 

I the two searchers are not independent. Then, to compute 

the joint contact rate one must explicitly treat the 

fl U dependency that is involved.  The joint contact rate is 

n not necessarily the sum of the contact rates of the two 

searchers.  And, neither is the probability that the first 

contact is made by the first searcher necessarily given 

by (5).  That is, determining the k. and ß. parameters 

for a two-sided correlated search requires modeling of 

the physical details of the search situation involved. 

The UR model of this chapter was first developed 

incorporating the independent two-sided search assumption 

of Case 1 above.  This assumption was removed from the 
1 
J main development because we think that the dependency 

involved in many, if not most, real two-sided search 
_J 

situations  is  significant.     We  assert  that  a significant 

positive  correlation should be  expected for two searchers 

randomly searching a large  area using range  dependent 
1 
Li detectors with the detector ranges small compared to the 

ik^,. 
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dimensions of the area« 

The reason for this expected correlation rests on 

the fact that for most of the searching time In any par- 

ticular realization of the random search, neither searcher 

can possibly detect the other because they are separated 

by a distance greater than the range of their detectors. 

Consider the extreme example in which the two searchers 

operate identical definite range law detectors which 

instantaneously detect with probability one any target 

which comes within the range of the detectors. Koopman 

has shown that the exponential law of random search is a 

reasonable approximation to the probability distribution 

of times-to-detect for such a detector as either the de- 

tector or target, or both, move at constant speed more or 

less randomly in the search area spending approximately 

the same amount of time in sub-search areas of the same 

size.  But, in the two sided version of this search the 

two searchers always detect one another at the same time. 

The joint contact rate is the same as the contact rate of 

either searcher — not the sum of the contact rates of 

the two searchers. And the race to contact the other 

searcher before one is detected always ends in a draw, 

an outcome which occurs with probability zero for the 

corresponding independent two-sided search. 

While the definite range law example cited is extreme, 
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the effect of similar range dependence of the detector 

capabilities can be expected to lead to a positive  cor- 

relation between the times-to-contact for the two 

searchers,  joint contact rate less than the sum of the 

individual-searchers'   contact rates,  and some relationship 

of unknown form in place of (6). 

If the times-to-contact for the two searchers  are 

approximately independent,  the joint contact rate and 

probability that any response is unfavorable are easily 

determined in terms of possible experimental data for the 

individual detectors.     But,  if the two contact processes 

are not approximately independent, one must develop theory 

appropriate to the situation being considered to determine 

the joint contact rate and probability that any response 

is unfavorable from the individual detector's  characteris- 

tics. 

In the search allocation problem the search decision 

maker has a limited amount of available searching time,  T, 

to allocate between the two boxes to maximize  the expected 

utility from the response process.     If the  target is  in 

box i,  the expected utility is 

-k.T 
U1 =   [l-e' i ^[d-f^d.   +  ß.f.]   , 

where 

T. = amount of time allocated to searching box i. 
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Therefore, the search decision maker's allocation problem 

can be expressed as 

2        -k.T. 
Maximuze U = MaxV7  Bi(l-e ^ 1] 

subject to   T,, T2 ^ 0,   T1 + T2 <_ T, 

(7) 

where 

B. = [(l-ßi)di + ßifJPi 

2.2.1    Comparison of UR and Koopman Modele 

The decision maker's allocation problem in the UR 

model is identical in form to the Koopman model allocation 

problem.  The B. parameters of the UR model replace the 

corresponding prior target location probabilities, p., of 

the Koopman model. But, while the target location proba- 

bilities are non-negative, the B. parameters may be 

negative as well as positive or zero.  If B. < 0, clearly 

T* = 0 in any optimal solution.  And if B. = 0, the 

objective function is independent of T. so T* = 0 is optimal 

for any T.  These immediate results may be used to modify 

the solution of tne Koopman allocation problem to obtain 

the solution for the UR allocation problem.  Assigning 

indices such that B.k, >^ ^0^2 we ^ave: 
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Ü 

1. B. < 0 implies that T* = 0. 

2. If there exi.its i such that Bi > 0, T* + T* = T. 

x If B, <_ 0 and B2 <_ 0, (T*,T*) = (0,0) is optimal, 

3. If B1 > 0 amd B2 £0, (T*,T*) = (T,0). 

»♦. If B« > 0, there exists 

i 

Li 

i  Biki W = r^ In gi^i > 0 (8) 

D 
D 

such that: 

i.  If T <_ W, (T*,T*) = (T,Ü). 

ii.  If W < T, 

n T* = W +  — 
1      kl+k2 

(T-W)  and 

U 

T5 = V^(T-W)- 

The optimal objective function is 

u u* 

sjl  - e"kiT] 

B  +B ßl     2 ^Hm kl  k2 

for 0 <   T <  W 

for W <  T 
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The solution of the UR search allocation problem is 

very similar to that for the related Koopman allocation 

problem.     The expected utilities  given that  a contact is 

made  in the  correct box combine  simply with the prior 

probabilities to yield the relevant  B.   values.     Each B. 

value may be  interpreted as  the  expected utility associated 
' > l : 

i 

with an unlimited search in box i.     If one considers   the 

Koopman allocation problem as  a simple expected utility 

model with  the  expected utility  of finding the target the 

same for the two boxes,   the prior probabilities,  p., 

can also be' interpreted as  the  expected utilities  associated 

with unlimited searches  in each  of the two boxes.     The 

major difference  is that BJ   values  can be negative  so that 

searching  the box i may be harmful rather than useful. 

Th^ k.   for  the UR problem,  which play the same  role 

in the  solution  as  the detection rates  for the Koopman 

model,   are  not  real detection rates.    .Rather,  these  k.   . 

represent  contact rates  including the  false as well 'as  the 

true detections.     The true  detection   rates are  (l-fl.)k.. 
ii i 

Except  for  this   difference in meaning for the."detection" 

rates  the  dependence on detection rates  is  the same  for 

the  Koopman  and  UR problems. . 

The potential importance of the difference between 

the  Koppman  and  UR models  as  guides   for search decision i 

makers   is   illustrated by'the  following comparison: 

i: 

!. 

. 
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I   1 ! 

Suppose the real search problem corresponds to the UR 

model but the decision maker plans his search based on 

the corresponding Koopman model.  Assume that the detev 

tion rates used in the Koopman model are the total con- 

tact ^ates , k . , of the UR model.  Table 2.1 lists the 

parameter values for this comparison of the two models. 

Table 2.1 

k. 
i ß. 

i 

.2 

.2 

f. 
i 

B. 
l 

1 

2 

.5 

.5 

1 

1 

.5 

.1 

-.6 ' -.10 

-.4   .07 

Parameter'Values   for Koopman  and UR 
; / 

Model Example  Comparison 

The optimal Koopman  search plan  is   (T*,T*)   =   (.5T,   .5T). 
! ■■'■ 

Since B. is negative and B- is positive, the optimal UR 

search plan is (T*,T*) = (0,T) for all 0 < T < ".  Figure 

2.2 shows the values Of the UR objective function for 

these two search plans.  The values, of UR objective 

function.' attained by the, Koopman search plan are always 

negative.  That is, it is better not to search at all thar. 

to maximize the "detection probability."  Thus, optimizing 

the'wrong objective function, in this case, fails to lead 

to a reasonable first approximation to the real optimal 

allocation. 
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Figure 2.2  UR Objective Function for Koopman and 
Optimal Search Plans 
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Disasterous consequences such as those depicted by 

Figure 2.2 are not characteristic of the results of 

using the Koopman search plan for any UR search problem 

situation.  If B, and E„ are both positive, any allocation 

of large T with both k^ >> 1 and k2T2 >> 1 will yield 

an objective function value of approximately B^B«.  Thus, 

if searching both boxes is worthwhile for large T, the 

Koopman search plan is approximately optimal for large T. 

Consequently, except for cases in which the searcher has 

overlooked overriding danger, the Koopman search plan is 

significantly inferior to the optimal UR search plan only 

for small and moderate amounts of available searching 

time, T. 

The Koopman search allocation may constitute a good 

search plan for small T as well.  Consider a UR search 

problem with &-I = ^2» dl = d2 and fl = f2' Then» the Bi 

parameters are proportional to the prior target location 

probabilities, p..  Consequently, either no search is 

worthwhile (if B, ,B9 f_ 0) or the Koopman search is optimal. 

Another relation among parameters which also leads to the 

Koopman search plan being optimal is d, = d2 = f, = f„. 

This condition may be expressed as :  The expected response 

utility is the same for all contacts.  For such problems 

the objective function is independent of the false detec- 

tion parameters, 3-i and 39« 
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2.2.2    Sensitivity   of UR Model Reaulta 

The false detection effects enter the UR model for- 

mulation only through the B. parameters, which represent 

expected utilities associated with unlimited searching in 

each of the two boxes.  The B. parameters (except when 

neither B, or B2 is positive) affect the allocation in a 

significant way only for small T.  With the contact raxes, 

k., the B. parameters determine the point at which the 

optimal trajectory departs from the T, axis.  This point 

depends on the logarithm of the ratio 8-1/62 as shown by 

(8).  Thus the position of the optimal trajectory line 

for large T is relatively insensitive to the model para- 

meters (assuming that B- > 0). The slope of the optimal 

trajectory line for large T depends only on the detection 

rates. 

Consider the sensitivity of the objective function, 

U, to ^ along the "budget" line T1 + T2 = T.  Along this 

line 

11 

dU 
dT, 

3U 
3T. 

3U_ 

B k^e -L ■L - B2k2e 

Thus, if k^T, >> 1 and k2T2 >> 1, dU/dT, is small even if 
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(T-JTJ) is far from the optimal trajectory.  Also, con- 

sider the marginal expected value, dU/dT, along a line 

parallel to the optimal trajectory line for large T. 

Along such a line 

dU _ 3U ^1 . 3U_ dT2 
dT " ZT^  dT   3T2 dT~ 

c exp|-iqTk7T 

for some positive,  C. 

Next let us  consider the  sensitivity of the upper 

bound for the  expected utility as  T  grows without bound. 

Let 

Ü =  lim    U*. 
T-H» 

Clearly, 

CT = ^  + ü2 (9a) 

where 

Ui  =  maxjO^J    ,       for i  =   1,2. (9b) 

There exists  a threshold value 
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h-T^r: 

such that 

(i)       if (J,   >  f.   ,   B. 1 0, 

(ii)    if &i<   3i   ,  Bi > 0. 

If f.   is non-negative,     3J; ^. 1 and,  therefore,  B^ >  0 

for all 0 <_ 3. <   1.     If f.  is negative,   0 <_ fL <   1 and, 

therefore B.   >  0 only for 0 <_ 3i <   3£ <   !•     Because 

T*  =  0 is optimal  if B. <_ 0, the results are insensitive 

to 3.   for 3.   > F-•     Let us examine the sensitivity to 3^ 

in the interval 0 <   3;^ <   mini^, 1).     In this interval 

3U_ 
33. 

3^       36^^ 

337 =   337 
(10) 

-PiCd.-f.) 

That is, Ü is linearly decreasing in 3^^ and 32« 

The sensitivity of Ü to 31 and 32 may be illustrated 

by plotting iso-U curves in the (3,, ß2) plane.  Figures 

2.3a to 2,3d depict such iso-U contours for sets of param- 

eters which illustrate the basic characteristics of the 

dependence of Ü on g., and 32.  From (7) and (9) we can 
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Figure  2.3a    UR Model  Iso-U Curves  in   (3, ,   32)   Plane 
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p1  =  0.2,   ^ '  1,   f1 

p2  =  0.8,  d2 » 1,  f2 

■     0,  ^ =    1 

.-.5,  F2  = 2/3 
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U=.7 

0.0 0.2 0.4 0.6 0.8 1.0 

1 . 

i. 

Figure  2.3b     UR Model Iso-U Curves  in   (3-,,  3,)   Plane 
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Figure  2.3c    UR Model  Iso-U Curves  in   (3,,   ß2)   Plane 
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Pj^ =  0.2,   d1 = 1,   f1 = -.5, F1 =  2/3 

p2 =  0.8,  d2 = 1,   f2 = -.5,  ß2 = 2/3 
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Figure  2.3d    UR Model Iso-U Curves  in   (S,,  ßj^   plane 
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obtain the following relation for the portions of the 

iso-U curves having B, and B2 positive: 

P1(d1-f1)ßL + p2(d2-f2)32 = p1d1 + p2d2-Ü. 

The iso-U curves are horizontal for 3, > 3", and vertical 

for ß2 > ß2 since the optimal search allocates no search 

time to box i if g. > 3".. 

Consider the next sensitivity of Ü to the expected 

utility parameters, d. and f..  As long as 3. < J. 

far = S: = pi(1'-3i) (11) 

and 

lii_ =  * = D ft 
3f.   9^  pißi- (12) 

To illustrate the interaction of these expected utility 

parameters with the false detection parameters, 3., assume 

that 31 = 32 = 3,  d = d2 = d, and f, = f2 = f.  Then as 

long as B,, B2 > 0 

U = (l-3)d + 3f. (13) 

If f is fixed, this equation can be used to describe the 

tradeoff between 3 and d.  If d is fixed it describes the 

1 -''- ■^--■'—'■■ -—---■ 
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tradeoff between ß and f. Figures 2.4a and 2.Hb depict 

these tradeoff curves for U = .5. These figures exhibit 

decreasing marginal returns for the ß vs d tradeoff and 

increasing marginal returns for the $ vs f tradepff 

That is, the increase in d needed to compensate for a 

given increment in 3 is an increasing function of ß while 

the corresponding decrease in f needed to compensate for 

an increment in ß is a decreasing function of ß. 

i ' '       i      , 

l ! 

| ' I 

2,2.3    Diaauasion of UR Model  Implioßtione 

The introduction of the possibility of unfavorably ' 

response process outcomes shifts the optimal allocation 

from the-Koopm^n model results, but the basic linear in- 

creasing charactel,, of the optimal allocation pattern re- 

mains.  The effect of the unfavorable response outcomes 

is to multiply the} target location probabilities, p», by 

correction factors.  If the expected utility associated 
i 

i 

with searching in box i is negative (B. < 0), the optimal 

search allocation'avoids searching bok i.  If the Koop- i 

man search allocation is used for a problem with B- <, 0, 

the expected response results may be disasteroüs as1 in' 

the case of Figure 2.2. However, if .B^B» > 0, such dis- 

asteroüs results cannot be attained by any allocation. 

As long as B1,B2 > 0 the Koopman allocation yields nearly 

optimal expected utility values for amounts of available? 

search time which are large compared to the expected 
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Figure 2.4a    UR Mo<3el Iso-U Curves  in   (3,  d)   Plane 
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Figure  2.4b    UR Model  Iso-U Curves  in  (f,   3)   Plane 
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U 

time to contact the target. 

There exist cases for which the Koopman allocations 

are optimal for the UR allocation problem for any amount 

of available search time.  If (l-ß^c^ + ß^ = (l-ß2)d  + 

ß^fj, this is the case. That is, the Koopman allocation 

is optimal if the conditional expected response utility, 

given that the target is contacted in box i, is the same 

for both boxes.  Obviously, if the false detection and 

response process parameters for the two boxes are identical, 

this relation holds.  This relation also holds if the 

expected utility associated with all possible contacts 

which result in searcher-target response interactions are 

the same (d, = d2 = f, = fj)»  For this case the optimal 

allocation and the optimal objective function are inde- 

pendent of the false detection parameters.  For this 

situation the searcher is motivated to increase his con- 

tact rates, k., as high as is practical without being 

very concerned about keeping his false contact rates, |3.. , 

low. 

There exists a multidimensional continuum of :aiir..f-.. 

sets between the extreme cases in which the Koopmar a-_.- 

cation is either optimal or disastrous.  The combine.-.; 

of moderate parameter values which approach the di-ap- 

terous result of Figure 2.2 represent cases involving 

high potential risk (ß. high, f. negative) and only ;. 

modest potential gain (d. small).  On the other hand,   
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combinations of moderate parameter values lead to sit- 

uations for which the optimal trajectory is nearly the 

same as the Koopman search plan. Thus, for large amounts 

of available search time, the inclusion of the false de- 

tection and response process phenomena in the model results 

in a large improvement in expected utility over that 

achievable using the Koopman model only in situations for 

which the Koopman model neglects obviously basic problem 

elements. That is, the main contribution of the more de- 

tailed UR model is in analyzing problems in which the 

available search time is quite limited. 

If the false detection parameter, ß., is sufficiently 

large that searching box i is harmful rather than helpful, 

the optimal search allocates no search time to box i. 

Therefore, the model results are completely insensitive 

to $. if ß. > (T-•  But, if searching in box i is desirable 

(3. < F-), the limiting optimal expected utility, U, for 

large amounts of search time is a linearly decreasing 

function of ß..  Therefore, if  the $. values are adjustable 

with some tradeoff constraint relating achievable pairs cf 

ß, and fj?, equation 10 and the tradeoff constraint can be 

used to select the (ß,,ß2) pair which maximize U. Note 

that (10) expresses the marginal value of decreasing ß. as 

a function of the prior probability distribution and re- 

sponse process parameters of the problem.  Thus, if the L 

i  i 
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choice of the (ß1,32^ pair must be made before the problem 

parameters are known, one needs to know the probability 

distribution of problem parameters as well to maximize 

the expected utility attainable by selecting (3^32^ 

The d vs 3 and the f vs 3 iso-U tradeoff relations 

(Figures 2.4a and 2.4b) provide a rational basis for allo- 

cating resources to obtain either search equipment quality 

(low 3•) or response system effectiveness (high di and/or 

f.). Equation 13 can be used with the relevant descrip- 

tion of the attainable combinations of 3, d, and f to 

define optimal search-response systems.  That is, assume 

that the set of efficient combinations of 3, d, and f 

parameters is expressed by C(3, d, f) = 0. Then, optimal 

choices of 3, d, and f can be found by solving the mathe- 

matical programming problem 

Maximize Ü = (1-3 )d + ßf 

subject to C(3 , d, f) =0. 

Note that, unlike the corresponding 3-, vs 3 2 selection 

problem, this problem does not involve the target locatic 

A set is efficient if one parameter cannot be made mc 
desirable (lower for fs higher for d and f) except e.: 
the expense of at least one other parameter. 
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probability distribution . Thus, the problem definition 

is more susceptible to quantification at the broader 

ß vs d vs f level than the $, vs ß2 level. 

For real systems we hypothesize that the cost assoc- 

iated with changing ß alone rises very rapidly as 

approaches zero while the marginal costs associated with 

increasing d and f rise as d and f become large.  If 

this is so, the increasing marginal benefit of reducing 

ß exhibited by t^e f vs ß iso-U curve is of no great 

2 
importance .  If these cost effects are very pronounced 

for very small ß and large d and f, the optimal search- 

response system has 0 < ß < 1. 

One could consider each box separately integrating (10), 
(11) and (12) to obtain this same sort of optimization 
problem independent of the target location probability 
distribution. 

'If costs were linear, this increasing marginal benefit 
characteristic would imply a "corner solution" — 
ß = 0 or 1. 
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CHAPTER 3 

SEARCH MODELS WITH SCHEDULED RESPONSE (SR) PROCESSES 

The previous chapter considered unscheduled response 

(UR) process search models.  In this chapter we discuss 

similar models with scheduled response processes.  For 

the UR model the response process only occurs following 

a contact event.  In the SR models of this chapter we 

assume that the response process will occur following the 

search process regardless of the search outco;ue.  After 

the search ends the decision maker guesses the target 

locatic and selects the response option which is condi- 

tionally optimal, given that his target location guess 

is correct.  Then, the decision maker obtains a fixed 

reward from the ensuing response process if and only if 

the target location guess is correct. 

The kinds of real problems which motivate the SR 

search models are illustrated by two scenarios: 

Scenario 1 While playing unattended a small child is 

bitten by a dog. The dog escapes after being casually 

observed by several children.  A significant percentage 

of stray dogs in the area are believed to have rabies. 

Thus, exposure to rabies is considered to be a threat to 

the small child's life.  Since a rabid animal can be posi- 

tively diagnosed before it is necessary to begin the risky 

-67- 
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treatment indicated for a person who has been bitten by 

a rabid animal, a search for the dog is conducted before 

treatment is initiated. Of course, the child could be 

treated for exposure to rabies even if the dog is not 

found. But, the treatment itself could endanger the 

child's life if the child has not been exposed to rabies. 

Scenario 2 In a war a defector presents convincing evi- 

dence that his homeland's army has brought a small number 

of nuclear weapons into the war zone for use at some 

designated time in the near future.  But the defector 

does not know where the nuclear weapons are stored. The 

army which is threatened by this imminent nuclear attack 

diverts a substantial amount of its aerial reconnaissance 

effort to searching for information which would indicate 

which of his opponent's installations hides the nuclear 

weapons.  If the location of the nuclear weapons is dis- 

covered, a maximum-effort conventional attack on this lo- 

cation has a substantial probability of destroying the 

nuclear weapons before they can be used. 

L 

ü 

The key elements  of these problems  are: 

(i)       The  prime concern of the  decision maker is  in 
a response process which  is  not directly 
dependent on the  search process. 

(ii)    False  detections are an inevitable possibility 
for  any reasonable search  information proces- 
sing  system. 

Ü 
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1J 

We consider three similar SR search optimization 

models which differ only in certain details.  Each of 

these models concerns the use of Kcopman "formula of ran- 

dom search" (exponential) type detectors to gather infor- 

mation regarding the location of a single target which can 

be in one of two locations or boxes. As in the UR models 

of Chapter 2 let 

p. = Pr(Target is in box i), 

-k.T. 
e ^ x *  Pr(No contact in box i I Target is in box i), 

T. = Amount of time allocated to searching in box i. 
i 

u 
u 
Ü 

0 

0 

For the UR model the contact event represents a 

decision to behave as if the target had been found.  That 

is, when a contact occurred, an attempt was made to ini- 

tiate the response process.  For the SR models we will 

assume that contact events terminate the search process 

for the box in which the contact is made.  But, the 

search process can continue in the other box.  Only after 

the searches in both boxes are completed must the decision 

maker guess the target location.  Thus, contacts can take 

place in both boxes. 

False contacts in the SR models differ fundamentally 

from those of the UR model of Chapter 2.  In this UR model 

L, 

^ Jtf ^ ..■- .-. -. ^ . .»—.^ ...■ ,, !■■■ _-,__^__ _ ^ 

■'-   ^--t-l-— .-, .ji i 
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a false contact represented an initiation of the response 

process under unfavorable circumstances. Since the response 

process required the presence of the target, the UR model 

false contacts could only occur in the box containing the 

target.  But, in the SR models false contacts represent 

detector data-processing "errors" which tend to cause the 

decision maker to guess the wrong target location.  Thus, 

although noisy  signals  can  occur., false contacts  are impos- 

sible in the box containing the target.  The false contacts 

of the SR models are associated exclusively with the DOX 

which does not contain the target.  We assume that search- 

ing in the box which does not contain the target will pro- 

duce an exponentially distributed random tine-to-contact, 

i.e. , 
-3.k.T. 

e :L 1  = Pr(No contact in box i | Target is not 
in box i) 

Thus,  ß. is the ratio of tne contact rates without and 

with the target present in box i.  (We assume that (3. < 1.) 

Further, the times-to-contact for tne two boxes are ccndi- 

tinally independent, given the target location. 

After the search is completed the decision maker 

guesses the target location and selects tne corresponding 

conditionally optimal response behavior pattern.  If his 

guess is correct, he obtains an expected utility reward 

of d units.  If his guess is incorrect, he obtains no 

reward. 

J 

U 

i. 
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The decision maker of this model makes two decisions: 

a search decision and a response decision.  He first allo- 

cates the available searching time between two boxes.  Then, 

after the search has been conducted, he selects his target 

location guess.  Since the decision maker obtains utility 

only in the response process, the objective for the search 

allocation decision must be to maximize the resulting ex- 

pected utility from the response process.  The response 

(target location guess) decision is a simple decision prob- 

lem involving risk.  Given any possible search and search 

outcome, the decision maker can use Bayes' theorem to 

combine the prior target location probability distribution. 

Then, since the reward for correctly guessing the target 

location is the same for both boxes, it is optimal to 

guess that the target is in the box having the higher pos- 

terior probability of containing the target. 

The three SR search models of this chapter differ 

in the assumptions made regarding the search outcome. 

The search outcome is described by the amounts of search 

time used in each box and the amounts of time allocated 

to these boxes.  For a single reconnaissance plane taking 

aerial photographs continuously, the search time at which 

each picture was made is easily established.  Thus, if a 

single picture provides the evidence on which the contact 

is based, the times-to-contact are available for use in 

making the target location guess decision.  But, if the 

tt. .,.,.^-, .^.i.^........ -'Li r n  • 
in iiiriiiir'"" -""•'-"-—-^■'-'■■■-' 
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contact represents  an interpretation of the whole series 

of pictures with no ßir^gle picture playing a dominant ro^e 

in the  interpretation,  thefi the search times-to-contact 

have little meaning in terms of easily measured data. 

Therefore,   it may be1 riecessary to make the target location 

guess  decision based only on the search, allocation and 
■i 

which !of thß two boxes yielded contacts. 

For aerial photo reconnaissance, the interpretation 
. '     ,        i ■' ■ , 

of the search data follows the. search.  In contrast, for 

a visual seardh by,an observer in a light plane, the ob- 
i 

server continuously interprets the'datja as'the .search is 
1      ' i     '     ' 

conducted.  Thus, such a search system may be able to re- 

plan a search based «pn the preliminary slearch results as 

the search' progresses. We analyze a version of (Our SR 

model with searching times-to-contact unavailable for 

making the target: location guess and a version with adap- 
i 

tive search replanninj* as  well  as  the basic version with 

searching times-to-contact available but no adaptive 

search replanning. 
i ! ! i 

i . '      ' ' 

1 ' f 

3.1     Limited Search  Information   (LSI)  Stf Model 

First, let us analyze the decision maker's' search  ( 

allocation problem assuming that the only information de- 

rived from; the search is the numbers of, contacts which 

occur in each of the boxes.  For i = 1,2 let 

1. 

LI 

Ü 

Lf 
[ 

i 

■ '■ ■.:»..^. .......  . ■■  '  - -■  ■   ■■■  ^-■■■"- :--*>.■■. ■■.O...J...^^^.....JLIV^ ..w. ■.■^■..^^|^.^^^^;at^tf||   ■ ^^.^ 



mmmmmm m^f^mm^ i ^,wmm"fm'W"W''nii*'f"iMmv'\'W^m^ 

-73- 

I I 

n. = Number of contacts in box i, (Note that n. = 

0 or 1.), 

(n1,n2) = Seiarch outcome vector, 

P(in,n) f  Pr(Search outcome is (m,n)), 

P(m,n | i) = Pr(Search outcome is (m,n) | Target is in 

box, i), and 

p!(m,i)) = PrCTarget is in box i | Search outcome is (m,n)) 

The posterior target, location probabilities can be com- 

puted using Bayes' theorem by 

rs t *■ m  « <>  -  rs    P(m,n  |   i] 

Pi(m'n) " Pi P(mVn) 

For the assumed search process 

PC 
>      r-M-V""^  -k.T."|ni 

ni^2 i ^ = Le    J    L1-6    J 

.[e  ^ ^J  J[l-e  3 J DJ ]  , 

where j = 3-i.  So if the 3- are strictly positive , 

"It will be shown lateri that the use of tfiese posterior 
targetilocation probability expressions leads to a cor- 
rect statement of the problem even if 3-1 or &7,  or both. 
are zero. 

J.„.....„-.—^t,^.--t.u.. ;.,..,.i ,. ....J...^,1,,„, ..., .■.^..,..^.,.,...,„,t..^,—Lin^M^Ja^tjA.^,uiM^aj^Mjtty^i»ii^i^a, -- -~- --^•-■'-'■--' --...-.■.:..-^--..^—.-.i l.-ta. 
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Pl(0'0)  = RWe 
P. "Vl     ■ß2k2T2 

P2(0»0) = nö^Te 
P2       .^iVl  .-k2T2 

p'(l,0)   = p^ 
,    r    -kiTn  -fJ2k2T2 v [>••-] 

P2 r  -ßikiTii P^l.O)  =FrIfö7[l-e J "k2T2 

p, -k,T 

P^0'^ = p^7ITe 
1*1 [x-e-W*]     . 

P^0'^ s PTÖTT7 
P2       _-ßlklTl I ,   --k2T2| [l-e"^]      , 

?{(!,!)  = p ̂ T [.^] [U^\ 

P^l 
P2   r   -ßikiTil T   ■k2T2l 

(lUa) 

(14b) 

(lUc) 

(md) 

(14e) 

(14f) 

(14g) 

(14h) 

li 

l. 

Ü 
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An optimal guess (response) decision is to guess that 

the target is in box i* such that 

p|#(m,n) = max{p|(m,n), p^(m,n)} (15) 

where  the search  outcome  is   (m,n). 

The search objective is  to maximize the  uncondi- 

tional probability of correctly guessing the  target  lo- 

cation.     That  is,   the objective  is 

Z  =   £   P(m,n)  p!*(m$n)(m,n). 

Substituting  from (14)  and  (15) 

Z  ^max p1e     ^ xe    '  '  ^p2e     1 1  h    2  2| 

+ max- {^[l-e-^e-W^pJ^-W^-^ 

+ max <D, e {p.e-^t-e^^^.p^^lVx^-^^J 

+ max K l-e 

1-e 
-3 

1 llT     -32k2T ' 
l-e (16) 

''The extension  to  consider separate  rewards  for each box 
follows  directly with no complications. 

--■*"■•-"'-■'■—- ■■■■-■■ ■..■-.■il.. -^'■,■■■-. ■ - ,.....;-..- .^    .........l.,^^^....-^^.^ .. ■■  ■■ . 
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The search allocation problem is to maximize Z given  (16) 

subject to T1,  T2 ^ 0,  Tj^ + T2 <_ T. 

Solution for ß,   =  3«  =  0 

Let us denote the objective function  for the special 

case ß1 =  ß2  =  0 by Z0.    Then from (16) we obtain 

i-k,T, -k^T« 
p^ , p2e i 

t Jx-e-^O t pjx-e-^^ (17) 

Note that the term of Z resulting from the (1,1) search 

outcome, which is impossible for 3-i = ß? s  ^» contributes 

nothing to Z0. Therefore, the expression above obtained 

by substituting 3-, = 32 = 0 in (16) is a correct expres- 

sion of Z0.  Equation 17 may be rearranged as 

I-k-T,     "^?^? 
ple     ' p2e (18) 

From this  expression  the solution of the  corresponding 

search allocation problem is obvious: 

J 

L 

I: 
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-k T     -k T 
If p-e  1 < p9e  

2   ,   (T* T*) = (T,0). 

•W'- 

l'^' 

-k T     -k T 
If p-je  1 = p2e  

2   ,   (T*,T*) = (T,0) or (0,T) 

-k^     -k9T 
If p^  ■L > p2e  ^   ,   (T*,T*) = (0,T) 

Important characteristics of the solution to this 

special case of the search allocation problem are: 

1. The total amount of available search time, T, 

will always be allocated. 

2. The optimal search is concentrated completely 

in one of the two boxes. 

3. Considering T as a parameter, one of three 

possible cases occurs: 

a. If the boxes are identical (p, = p„ and 

k, = kj), it is optimal to search entirely 

in either box (T*,T*) = (T,0) or (0,T) 

for any T > 0. 

b. Let j = 3-i.  If p. < p., k. > k. or 

p. = p., k. > k., T* = T, T* = 0 is 

optimal for any T > 0. 

Li c.  If neither case a nor case b obtains, 

there exists i, j = 3-i, and 

T6   =   r P-   >    0 k.-k. 
3     i 
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such tnat: 

ii. 

iii, 

If T < Tw , TJ = T , T« = 0. 

If T = r , (T{,TJ) = (T,0) or (0,T) 

If T > Te , TJ = 0 , T« = T. 0 , T« 

This SR model optimal allocation is quite different 

from the Koopman allocation. For large T the Koopman 

allocations to the two boxes are approximately inversely 

proportional to their contact rates.  But for the SR- 

LSI model with ß, = ßj s 0 ^no false contacts) the 

optimal allocation is to concentrate the search in one 

box. While the Koopman allocation to each box is non- 

decreasing as a function of T, the SR-LSI optimal allo- 

cation may switch from (Tj,T*) = (T,0) to (T*,T*) = (0,T), 

Solution for ß,, ß2 > 0 

Consider next the case in which ß, and ß« are 

positive. Equation 16 defines the objective function 

in a piecewise fashion. The objective function is con- 

tinuous and differentiable except at the boundaries 

between the pieces.  But the number of pieces comprising 

the objective function and the boundaries between pieces 

are only implicitly specified by (16) — they depend on 

the parameters of the problem. Therefore, a direct so- 

lution of the problem based on marginal methods is 

complicated by non-differentiability problems.  We shall 

D 
fi 

D 
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Ü 
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II 
Ü 

simplify the expression of the problem before solving 

it. 

The source of the difficulties we wish to elimin- 

ate from the problem is that p!Ä(m,n) is defined as 

the maximum of two functions. Corresponding to each 

of these maximization operations is the optimal condi- 

tional guess plan, given a particular search outcome. 

To remove the troublesome maximization operations we 

consider the set of allocation problems corresponding 

to each possible guess plan.  Let S and R be the search 

outcome and response guess spaces (sets), i.e., 

S = {(0,0), (0,1), (1,0), (1,1)}, 

R = {1,2} 

Each guess plan corresponds to a function mapping S 

into R.  Let G be the set of all such functions, i.e., 

G =   {g  |   g:   S -»■ R}. 

Ü 

U 

u 

For any g in G,  s in S  let g(s)  denote the  image  of 

s  corresponding to the  function g.     The response  guess 

plan corresponding to g is  to guess  that the  target is 

in box g(s) whenever the search outcome is  s.     If re- 

sponse guess plan g is  selected,   the probability of 

MUM  a    i i irr ' ■■■--"-^^—■^i" 
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correctly guessing the target location is 

Z«  = 
s  in S 

p(s> Pg(s)(s) (19) 

Consider the relationship between the set 

fg {Z6  g is in G} and the objective function, Z.  For 

any particular set of parameters, B., k. , p., and any 

allocation, (T,,T2), there is at least one g in G such 

that zg(T1,T2) = Z(T1,T2).  That is, some guess plan 

must be optimal for any particular allocation. There- 

fore, corresponding to the optimal solution, (T*,T$), 
nit 

there is an optimal guess plan, g*, such that Z8 (T?,T$) = 

Z(T*,TJ).  Let (T| ,T| ) be an optimal solution to the 

guess-plan constrained allocation problem with Z6 re- 

placing Z as the objective function. Then, since the 

feasible regions for this related problem and the de- 

cision maker's allocation problem are identical, 

Zg*(TS*,T|*)   >   Zg*(T*,T*)   =   Z(T*,T*). 

c* But,  by the  definitions of Z6    and  Z 

r*        a* *.    «yft      a*. 
Z(Tg   ,Tg   )   >  Zg  (Tg   ,Tg   ), 

L 
and by the  definition of  (T*,T*) 

 . ,        -- —   -'•■"———»-^-.-^.--.—..  ■ ■-'- I '■■-'- '-- IM ^MIM^rfltt 



>vf.f^.   wjmmummmm mmmmmmm  * 'xmmvmiiimmim''*iiiii>mimmii-*mmvw — 

II 

LI 
U 
U 

-81- 

Z(T|*,T8*)  <_ Z(T*,T*). 

Therefore, Z(T^ ,T| ) = Z(T*,T*) and (T| »T! ) is optimal 

for the decision maker's problem.  Clearly all solutions 

to the decision maker's problem can be obtained by 

computing all solutions to each related guess-plan con- 

strained problem and selecting those solutions which 

yield Zg(Tf,Tf) = max  { Z^T^rf)}, where (T^rf) is 
1 Z   h in G    l    Z 1 ^ 

any optimal solution to the related guess-plan constrained 

allocation problem corresponding to function h in G. 

The set of possible guess plans, G, contains 16 

members, We wish to avoid having to solve the 16 cor- 

responding guess-plan constrained allocation problems 

in order to find the solutions to the decision maker's 

problem.  Most of the possible guess plans can be elimin- 

ated as potential optimal guess-plans without solving 

the corresponding guess-plan constrained allocation 

problems.  If (14) and (15) are substituted into (19) 

for all 16 possible guess plans one can use the relation 

l-e-X > 1 e-(l-3)x     for 0 < ß < 1, 0 < x 
i l-e-ßx  ^ 

L 

Derived in Appendix  B 
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to eliminate 10 guess plans as being nowhere optimal. 

Further, if we seek an  optimal solution, rather than 

all  optimal solutions, four of the remaining six guess 

plans can be eliminated from consideration as follows: 

Suppose that for every feasible (I'jT«) there exists a 

feasible (T^,Tp such that 

i i 

g/ Z"(TJ,T£) > ZSCT-^Tg) 

Then, guess plan g is weakly dominated by guess plan h; 

hence, plan g can be eliminated from consideration. 

The two remaining candidate optimal guess plans are: 

I Guess that the target is in box 1 unless 

search outcome is (0,1). 

II Guess that the target is in box 2 unless 

search outcome is (1,0). 

The objective function corresponding to plan I above is 

-k.T 

Pi " Ple 
{l-e-^^p/Wl^-V^ "k2T2 (20) 

Since candidate optimal guess plan II is of the same 

form as plan I with the roles of the boxes interchanged, 

the objective function corresponding to plan II is of the 

same form as (20) with the subscripts interchanged. 

Consequently, we have two similar guess-plan constrained 

y 
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search allocation problems which we need to solve to 

solve the decision maker's allocation problem. 

An efficient numerical algorithm for solving these 

two "guess plan constrained searcn allocation problems" 

is described in Appendix B.  This algorithm is based on 

the following (necessary) geometric conditions which are 

equivalent to the applicable Kuhn-Tucker conditions: 

i.  If an interior point of the feasible region 

is optimal, the gradient of the objective 

function must be the null vector at this 

solution point. 

ii.  If a boundary point of the feasible region is 

optimal, either the gradient of the objective 

function is the null vector or this gradient 

vector is an outward normal to a support line 

of the feasible region at the solution point. 

The numerical algorithm uses the following results 

for the particular form of feasible region and objective 

function for guess plan I: 

1. There is a unique point, (T,,!„), above the 

T. axis at which the gradient of the objective 

function is the null vector.  The coordinates 

of this point may be expressed in terms of the 

root of a continuous monotomic function. 

2. If the point (T,,!-) is feasible, the second 

order marginal conditions for a relative max- 

imum hold and (T,,^) solves the guess plan 

constrained search allocation problem. 

Ü 
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If the point (^.Tg) is not feasible, the 

solution is on the boundary of the feasible 

region. Inhere existä T? such th^t the' 

gradient of the objective 'function is in the 

negative T2 direction for all (T^O) with 

1^ < TJ.  If TJ > T, all points (1^,0) such 

tliat 0 <_ T ' ^ T solve the guess-plan I search 

allocation problem and yield an optimal objec- 

tive function value Z* 'r If T][ < T, 
there exists a unique boundary point, (T*,TA), 

with T* > 0, which satisfies the marginal   , 

necessary condition for a bound&ry solution 

and which yields a value of the objective    i 

function, which is greater than p,.  (T$,T$), 

then, is the, unique solution to the guess-rplan 

I search allocation problem. The coordinates 

of this solution point may be'computed by 

finding the root of one of two continuous 

monotonic functions. 

II 
II 
D 
D 
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11 
11 
n 

D 

3.1.1     fompariaon   of SR-LSI and Koopman  Model Results 

Based on the solution algorithm developed in Appendix 

B for the two guesis-plan constrained search allocation 

problems,1 a FORTRAN IV computer program was coded for 

the MTS IBM 360 to compute approximate numerical solu- 

tions to the LSI version of the decision maker's allo- 

cation problem. 

Figures 3.1a to 3.1 d depict representative optimal 

allocations as functions of the amount of available 

search time, T.  These allocation functions are repre- 

sented by traces of the solution point, (T|,T$), which 

we call optimal trajectories.  For any positive value of 

T, tne optimal allocation is given by the point on the' 

optimal trajectpry having the maximum (T-,+T_) value not 
( 

exceeding T.  These optimal trajectories, consist of al- 

ternating segments of conditionally optimal trajectories 

corresponding to the two candidate optimal response 

guess plans used as tne basis of the computational scheme. 
} ' ' ■ 

We use the terms '"conditional trajectory I" and "con- 

ditional trajectory II" to refer to the conditionally 

optimal trajectories corresponding -^o guess plans I and 

II. These1 conditional trajectories are indicated by the 

designations I and II in Figure 3.1. Lacn of  the condi- 

tional trajectories is continuous consisting of one or 

both of two segments:  The, first segment is a portion of 

one of the axes from the origin to some positive value; 
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&1 - 0.1,  ^ = 1,  p1 - 0.8 

ß2 - 0.3,  k2 - 1,  p2 - 0.2 

"""•     SR-LSI Optimal Trajectory 
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Figure 3.1a    SR-LSI Model and Koopman Optimal 
Trajectories 
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ß,   « 0.01,  k,   =   .5,   p,   =   .47368 

ß2 = 0.10,  k2  =  1   ,  p2  =  .52632 
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Figure  3.1b    SR-LSI Model and Koopman Optimal 
Trajectories 
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t1 - 0.10, kj^ - lf  p1 -   .47368 

ß,  - 0.05,  k, - 2,  p, -   .52632 
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Figure  3.1c    SR-LSI Model and Koopman Optimal 
Trajectories 
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&1 -  0.1,  k1 ■  1,  Pj^ 0.5 

0.5,   k0  =  1,   p, = 0.5 
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the second segment is a bounded arc having continuous 

monotonic slope.  Since the two conditional trajectories 

(and hence the optimal trajectory) are bounded, the 

amount of available search time allocated by the optimal 

search as T Increases Is bounded by an upper limit, T. 

Unless the false contact parameters, ß., are both 

near one, T Is large compared to the expected time to 

contact the target using the Koopman search plan.  Fur- 

ther, for cases with moderate parameter values, the Koop- 

man search plan trajectory for 0 < T < T lies In the 

region bounded by the two conditional trajectories. Thus, 

the Koopman search allocations are usually In the same 

general region of the (T,,!-) plane as are the optimal 

allocations. 

The optimal trajectory switches from one conditional 

trajectory to the other at points where the conditionally 

optimal objective function for one conditional trajectory 

overtakes that for the other conditional trajectory.  The 

switch times corresponding to such optimal trajectory 

discontinuities can be determined numerically to any 

accuracy desired by computing the conditional trajectory 

points for values of T near these switch times.  The ccr.- 

puter program developed does not contain a search routine 

for isolating these switching times.  The switching times 

used for plotting Figures 3.1a to 3.Id were obtained by 

graphic linear interpolation between the nearest points 
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0 
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for which computations were done.     Computational exper- 

ience has revealed that from zero to three switches be- 

tween conditional trajectories can occur depending on 

the parameter values.     Consider the interval between 0 

and T (the amount of available searching time)  as being 

divided roughly into four segments:    small, moderate, 

moderately large and large.     The following lexicographic 

rule correctly predicts the switching behavior observed 

for most of the cases examined with ß., k.   and p.  par- 

ameters  comparable for the two boxes: 

i. 

ii. 

in, 

IV, 

For small T the optimal allocation is on the 

plan i conditional trajectory, where P^ ^ •&• 

For moderate T the optimal allocation is on 

the plan i conditional trajectory, where 

k. < k. , j = 3-i. 

For moderately large T the optimal alloca- 

tion is on the plan i conditional trajectory, 

where P^ ^. ß^» j = 3-i» 

For large T the optimal allocation is on the 

plan i conditional trajectory, where ß. £ ß., 

j = 3-i. 

In the event that the equality condition obtains for one 

of these conditions, the optimal allocation is indicated 

by one of the adajacent conditions.  Condition i holds 

without exception.  Conditions ii and iii hold for about 

90% of the cases examined.  Condition iv holds for about 

60% of all the cases examined and for about 85% of the 

y 

I    iin 
  ■■ ■ - ■  ■ ■ 

'"' "Ii '   n 
"-""-•-""" ■■' urn mm 



IHpi|||(|l,i|»i»,".>n'
,"T^R"P- 

>,40*IWVm<mrm**j*,*M w 

-92- 

cases examined with the prior probabilities the same 

order of magnitude (.3 £ PT/PO .1 ^ 

Because optimal trajectories may switch between two 

conditional trajectories, the optimal allocations 

(TJ and TJ) may be non-increasing functions of T. Tnere- 

fore, to determine an optimal search plan one needs to 

know the amount of search time which is available as well 

as the other parameter values. Hence, if T is not limited 

by some known bound, the optimal search plan may differ 

from both the Koopman and the UR model allocations. 

For the same cases as Figures 3.1a to 3.Id, Figures 

3.2a to 3.2d depict the SR-LSI expected utility values, 

Z., as functions of available search time, T, for both 

the optimal (SR-LSI) search allocation and the Koopman 

allocation.  The ordinate scales in these plots are nor- 

malized so that the value at T = 0 is zero and the value 

corresponding to correctly guessing the target location 

with probability one is one. The difference between the 

SR-LSI curves and the Koopman curves represents the ex- 

pected utility loss which would accompany the use of the 

Koopman model instead of the more complicated SR-LSI 

model. Also plotted in Figures 3.2a to 3.2d are the cor- 

responding "perfect detector" expected utility functions — 

those attainable with contact rates (1-3.)k. with no false 

contacts.  The difference between the optimal objective 

function curves and the perfect detector curves represents 

the loss attributable to the false contacts.  Depending 
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Figure  3.2a    Normalized SR-LSI Model Expected Utility 
vs Available Search Time 
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&1  ■ 0.01, kj^ - 0.5, pj^ « .47368 

ß2 - 0.10f k2 « 1.0, p2 = .52632 
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Figure  3.2b    Normalized SR-LSI Model Expected Utility 
vs Available Search  Time 
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ß1  = 0.10, k1 = 1,  pj^ =   .47368 

32  = 0.05,  k2  = 1,  p2  =   .52632 

Perfect Detector Expected Utility 

For Optimal SR-LSI Allocation 
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Figure 3.2c    Normalized SR-LSI Model Expected Utility 
vs Available Search Time 

i........ -^-''■■iiiaMmiTii-'-'iiriii ir i-hur' '■■■.^■■^--^■■■''■^^■^^-'•^*^'^>*^"- .    -^, ..   ...v.^.-     . .;.,,...:      .     ...   ...,.  ■■..-    .,-...   tfHUUt    .v..    *~:i  



)M.»n.-, wuraww^i.TWT^.-^i mßymwi.l -r—m-7,.~.,.,^„.„.r.w*.„., <^i«n»ni>wirTWWwi|l^Mlli|ljjiij^)|l*ui..|iii;>.^n>l|i|li>.illiriUM>ni"1>.|i|''>i<>a<p>i<.>i   •m>w«PK>li<n|i"MiTiiiT!-<l>u<iwi]i   ",,,„,,,,,„,,,„i.,,nf,wt,TO|,1.iTrpl,i.,,.,,i.,.,|,„,|ji,— 

' 
■•.wv^vrnm^ ir**^ rr,*r*i» i««'---*it.wi;'«> VAW».« ■■ w»«wfl«*a«» 

-96- 

0.1,  kj^ « 1,  pj^ =, 0.5 

0.5,  k2 » 1,  p2 -  0.5 
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Figure  3.2d   Normalized SR-LSI Model Expected Utility 
vs Available Search Time 
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on the model parameters, ooth the Koopman model expected 

utility loss and the expected utility loss die to false con- 

tacts vary from' zero up to values of the same order of mag- 

nitude as the optimal expected utility.  The loss due to 

false contacts is increasing in T for most cases.  (In a 

few cases such as that shown,in Figure 3.2b there exists an 

interval in which this loss decreases as T increases.) 

For large T the loss due to false contacts is of the same 

order of magnitude as the false contact parameters 3, and 

The loss from usin'g the Koopman model is usually 

small for hpth  small T and values of T approximately three 

to four times the expected, search time to contact the tar- 

get for the Köopman search plan.  For practical systems 

the most important range of available search times is 

i probably roughly from one-half to twice the expected time 

to contact.  In this range, the loss from using the Koop- 

man search plan is a complex function of the model param- 

eters.  For example, comparing Figures 3.2b and 3.2c we 

see that for T = 1 increasing 3- and k1 while decreasing 

32 results in an increase in the Koopman search normalized 

loss from almost nothing to about 20%.  Also, comparing 

Figures 3.2c and 3.2d we see that increasing 32 from 5% 

to 50% produced no noticable increase in the Koopman 

search losä.  For small T, the Koopman loss is zero pro- 

vided that the Koopman and the SR-LSI optimal search allo- 

cations be^in in the same box.  This occurs if p.k. > p.k.. 
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where i = 3-i and Pi < p^. If k^k.  is sufficiently large 

that the interval for which the Koopman allocation is con- 

fined to box i is of the same order of magnitude as the 

Koopman search expected time to contact the target, the 

Koopman loss is relatively small for all values of T.  On 

the other hand, if P-j/J^ * p./k. with pi T p. , the Koopman 

search loss is relatively large for small and moderate 

values of T. 

The optimal SR-LSI expected utility values as func- 

tions of available search time, T, increase continuously 

from zero to their maximum attainable values at finite 

times , T. At the times for which the optimal trajectory 

switches from one conditional trajectory to the other, 

the slope of the optimal expected utility increases discon- 

tinuously. If the decision maker must pay a constant 

price, c-, per unit of planned (available) search time, 

the optimal amount of search time can be obtained by 

finding the point or points where support lines of slope 

c-, touch the SR-LSI expected utility curves of Figure 3.2. 

Clearly, the corresponding optimal amounts of planned 

search time are non-increasing functions of c™ with dis- 

continuities skipping each of the switch times.  That is, 

there exist uneconomic available searching time intervals 

containing the switching times such that no time in these 

uneconomic intervals would be selected (optimal) for any 

value of cT. 
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3.1.2    Sensitivity of SR-LSI Reaults 

Behavior for Small T 

The solution for small T can be computed by replacing 

the objective functions by Taylor series expansions and 

solving the resulting mathematical programming problems. 

This analysis leads to the following results: 

Let i = 1,2 and j = 3-i. 

Case 1    ß. p. > p. (Prior target location distribution 

dominates guess decision for small 

T.) 

For small T, any feasible solution is optimal, and the 

optimal objective function value is Z* = p.. 

Case 2 ^i ^i   = ^i  ^orderline  case between  cases   1 
and  3) 

The unique optimal allocation for small T is 

11 
T* = 

(ß.p.-ß.p.)k. 

2(3ipj-ß.pi)k.+(pi-3fpj)ki 
T , 

T* = T - T*  • 

Ü 
And the corresponding optimal objective function value is 

i i 

1 I 
See Appendix C for details. 
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Z*rp.   +[(ßipj-ßjPi)kjTj -   (Pi-ßiPj^TjJk.T* 

Case  3   &p.   < pi,  3.pi < P^» Pj^ < P^   (Search outcome con- 
tributes to guess de- 

cision for all optimal 

allocations of posi- 
tive T.) 

The  unique optimal  allocation for amall T is 

T* = T,  T« =  0, 

and the corresponding optimal objective  function value  is 

(21) Z* rp.   +   (pi-3ipj)ki T. 

Case  1    p.   = p.   (Search outcome contributes  to guess 

decision  for any allocation.) 

If  (l-ß.)k.   >   (l-3.)k.,  the optimal allocation of small 

T is 

T* =  0,  T*  =  T, 

and the corresponding optimal objective   function value is 

Z* ^.5  1  +   (l-ß.)k.   T  . (22) 

If Cl-ß1)k1 =  (l-a2)k2 and (l-ß?)k? <   (l-ß^k?, 

D 
ll 
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the optimal allocation of small T is 

TJ  =  T,   Tt = 0, 

and the corresponding optimal objective function value  is 

Z* 'S" .5[l +  (l-(J1)k1T - j(l-ß?)k?T2]   . (23) 

If (l-ß1)k1 =   (l-ß2)k2 and  (l-ß^)kj =  (l-ß2)^   , 

the parameters for the two boxes are identical.  The 

optimal allocations of small T are 

and 

T* = T, T* = 0 

T* = 0, T* = T, 

I and the corresponding optimal objective function value is 

given by (23) with i = 1 or i = 2. 

These results for small T may be summarized as follows: 

j , i.   If no possible search outcome for any feasible 

search provides sufficiently strong evidence 

I i for changing the pre-search optimal guess (Case 

L 1), any feasible search is optimal, but no 

, possible search produces a positive increment 

L in expected utility. 

ii.   If searching in only one of the boxes can pro- 

L duce sufficiently strong evidence to change the 

pre-search optimal guess (Cases 3 and 4), the 

optimal allocation of small T is confined to 

one box and the corresponding optimal objective 

Ü 
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function value is approximately linearly in- 

creasing in T. 

iii. For the intermediate condition between (i) 

and (ii) above (Case 2), the optimal allocation 

of small T is to allocate constant fractions of 

T (independent of T) to each of the two boxes. 

The corresponding optimal objective function 

value is quadratic in T with zero deriative at 

T = 0. 

Ii 

ii 

From (21),   (22)   and  (23)  it is clear that  if (ii)  obtains, 

the marginal contribution of small search effort with the 

3.  and k.  parameters fixed is maximized over all target 

location probability distributions by p,   = p«.    In con- 

trast,  the absolute magnitude of the optimal objective 

function is maximized by p,   =  0  or 1.     Thus,  if the prior 

target location probability distribution contains  little 

information, the search can contribute significantly by 

collecting target information.     But,  the state of prior 

target  location knowledge which leads  to the highest ex- 

pected utility  is  that of perfect  information which ren- 

ders the search useless.     Little prior information implies 

relatively high  values associated with searching but 

relatively low  attainable expected utility values. 

Behavior for large  T 

If ß.   = 0,  a contact in box i is known with cer- 

tainty  to be  a detection.    Therefore,  as  the search time 

grows w.L.;houT bound  the probability  of finding or infpring 

1 
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the target location approaches one. In contrast, if 

both (i- and 3« are positive, the true target location can 

never be known with certainty. Thus, the possibility of 

false contacts imposes a limit on the maximum attainable 

value of the expected utility even if the available 

amount of searching time is unconstrained.  The sensi- 

tivity of this reduction in objective function value for 

large T to marginal changes in B-,  and 3- is examined below. 

A computer program was developed to compute the co- 

ordinates of points in the (0, ^^ plane along curves 

having constant (normalized) values of the SR-LSI optimal 

expected utility for large T, Z,.  Figures 3.3a to 3.3c 

show such iso-Z, curves for different values of the ratic 

p-,/P2 » the only relevant parameter in determining these 

curves. 

These iso-Z, curves exhibit the familiar "diminishing 

marginal utility" property.  The extent of this effect, 

which is indicated by the ratner sharp L-shaped character 

of these curves, is surprising.  Since searching in a box 

having fc- = 1 is useless, we associate each end point of 

these iso-Z, curves with a search concentrated completely 

in one of the boxes.  The strongly diminishing marginal 

returns property of the iso-Z. curves comes from the effec- 

tiveness of one box searches.  That is, for large T the 

better of the two one-box searches usually achieves a value 
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Figure   3.3a    SR-LSI Model Iso-Zj.   Curves  in   (3^   Sj)   Plane 
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Figure  3.3b    SR-LSI Model Iso-ZL Curves  in   (ß^  32)   Plane 

—-  —■■■ in -——-~—-—-——.-~^.    ■   i liilinr  i«i[ -  ~^^—■—^-. 



I.IJ,iPHP,IHftHWP,i||»W"'      ... . ■lHIDf^.|ll..li|,li»'l"""i"i"'"l«'J,il^li  ,.1111,1 Lin■»<■■■■»   nimilip •"•■■—•""    '       ■•'   " l1||lflWP;ll].*l_1l),Wl«Wl<l!l-,"l'"!Hl..l1JM.,fWW...fW,..rr Nnpn 

-106- 1! 

=  1.4 

1.0    r 

0.0 Ü 

Figure 3.3c    SR-1SI Model Iso-Z^ Curves in  (S1,  B2)   Plane 
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of expected utility which is close to the optimal value. 

This phenomenon is particularly apparent when one of the 

false contact parameters, $., is very small. 

A comparison of the sets of iso-Z, curves reveals a 

dramatic shift toward the axes as the ratio Pi^ in" 

creases from 1. The shift toward the &, axis is more ex- 

tensive than toward the ß2 axis.  Figure 3.4a illustrates 

this shift for the 30% iso-2. curves.  Figures 3.4b and 

3.4c show the shift in end points of these iso-Z, curves 

as functions of the ratio p^/pj« 

This phencmenon can be explained as follows:  Lower 

3- values correspond to more reliable or better quality 

search systems,  for any set of search system parameters, 

the (normalized) Z. value is maximized by the prior proba- 

bility distributicn p, = p2. That is, any search system 

can attain a higher normalized expected utility value for 

p, = p» than for any other distribution.  The dramatic 

shift in iso-Z, curves expresses a marked drop in the 

attainable normalized expected utility as the probability 

distribution departs from PT = Po*  0r' as the probability 

distribution departs from p, = p«, the search system 

quality needed to attain any given normalized iso-Z, 

level rises dramatically.  That is, searching is more val- 

uable if the state of pre-search target location knowledge 

is that of complete ignorance. 

The cause of this dramatic change is embedded in the 
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Figure   3.4a    Dependence of SR-LSI' Model  30%  Iso-ZL Curves 
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P2 

Figure  3.4b    Dependence of SR-LSI Model 3, = 1  Iso-ZL 

Curve Endpoints on Pi/Po 
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Figure  3.4c    Dependence of SR-LSI Model  ß,   =  1 Iso-Z 

Curve Endpoints on PT/P? -.     i 
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way a search increases the expected utility.  If the pos- 

terior target location probability distribution results in 

the same target location guess as that implied by the prior 

distribution, the expected utility remains constant, which 

is zero on the normalized scale.  That is, only search 

outcomes which change the target location guess increase 

the expected utility.  If p, = p2 = .5, any single contact 

results in p!^ > .5 for the indicated target location 

guess, i*.  If p, > P2» only those search outcomes yielding 

pi > p, contribute toward increasing the expected utility. 

As p, increases from a starting value of .5 such a shift 

rapidly requires increasing information quality. 

The effect of deficiencies in search information can 

be offset by more effective response systems.  This is 

seen by examining the tradeoff between these effects as 

represented by the parameters 3- and d for the SR-LSI 

model. Assume that ß, = ^ :: ^* ^ computer program was 

developed to compute iso-Z. curves in the (3,d) plane. 

Since the expected utility is proportional to d, only one 

curve is computed for each prior probability distribution. 

The curves computed are those which yield absolute Z, 

values of .5.  The d value corresponding to a given 3 value 

for any other value of Z, is 

2  7L d>5(ß), 
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where d c(3) is the ordinate of the Z, = .5 iso-Z, 

curve at 3. 

Figure 3.5 shows these Z, = .5 curves in the (ß,d) 

plane for several values of p,.  The striking character- 

istic of these curves is that they exhibit increasing mar- 

ginal utility. That is, better search systems (lower tf) 

are accompanied by higher marginal savings in response 

effectiveness, d, pQ.r unit improvement in search system 

effectiveness, ß, co attain the same expected utility 

value.  This increasing marginal returns characteristic 

depends on the scales for the 3 and d parameters.  If one 

is interested in economic tradeoffs, the relevant scales 

for measurement are the cost functions associated with 3 

and d.  Since 3=0 represents perfect reliability of the 

detector output (contacts), we presume that the cost assoc- 

iated with 3 increases with infinite slope as 3 approaches 

0.  Thus, the cost function of 3 is probably sufficiently 

nonlinear to dominate the increasing marginal utility 

property of the 3 vs d iso-Z, curves.  That is, an economic 

joint selection of 3 and d probably would not be a corner 

solution (3 = 0 or 3 = 1) as is generally implied by in- 

creasing marginal utility tradeoff relationships. 

Suppose that a search is planned on an intuitive basis 

without the benefit of a mathematical search allocation 

model.  Then, the expected utility from the response pro- 

L 
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ßi » ß2 = 3 

ZL  = 0.5 

Figure  3.5    SR-LSI Model  Iso-ZL Curves in   (ß,   d)   Plane 
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cess will be sub-optimal by an amount which depends on the 

allocation. We investigate the robustness of the SR-LSI 

expected utility. A computer program was developed to ex- 

amine the sensitivity of the SR-LSI expected utility to the 

allocation, (T,,!^), with T^ + T2 = T fixed.  Figures 3.6a 

to 3.6c show representative normalized Z, values as func- 

tions of T, for Ti + ^2 = T, the maximum amount of avail- 

able search time used by an optimal allocation.  Figure 

3.6d shows Z, as a function of T1 (with T +T2 = T) for 

different values of T.  These plots reflect moderate to 

extreme sensitivity depending on the parameters.  For suf- 

ficiently large T the expected utility decreases dramatic- 

ally near T, = 0 or T2 = 0.  This sharp drop can be ex- 

plained by considering the optimal target location guess 

plan for searches which are restricted to one box.  The 

optimal guess plan is always of the form:  Guess that the 

target is in box i unless a contact occurs in box (3-i). 

For large amounts of search time, the contact probability 

is high regardless of whether the target is in the box 

searched.  Thus, the search provides negligible target lo- 

cation information for very high amounts of search time in 

one box.  Hence, the normalized expected utility is zero 

for long duration searches confined to one box. 

    -     -    - -  -   -  ■-        -UMiMfliH^MitLJiJIUmiKllMI 
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ß1 » 0.01,  J^ -  1,  pj^ -  .23077 

ß2 - 0.05,  k2  - 1,  p2 «  .76923 

8.8413 
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Figure  3.6a    Normalized SR-LSI Model Expected Utility 
Sensitivity  to Allocation at T,   + T«   = T 
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S-.   = 0.01, k,   = 0.3,  p. 0.75 
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Figure  3.6b    Normalized SR-LSI Model Expected Utility 
Sensitivity  to Allocation at T,   + T-  = T 
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ßj^ ■ 0.10,   k1 = 0.3/ Pj^ =  .23077 

ß2 = 0.05,   k2  =  1.0,  p2  =   .76923 

T «  19.518 
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Figure 3.6c    Normalized SR-LSI Model Expected utility 
Sensitivity  to Allocation at 0^  + T2 = T 
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3JL =  0.01,  kl i 1,  pj^ =   .23077 

32  = 0.05,  k2 = 1,  p2 =   .76923 
i ; 

0.2 

0.0 

0.0 

L.,      I 

0.2 0.4 
Tx/T 

0.6 0.8 1.0 

Figure  3.6d    Normalized SR-LSI Model Expected Utility 
Sensitivity to Allocation Dependence on T 
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2,1.3    Summary  of SR-LSI Results  and Implications 

SR-LSI optimal allocations as function of available 

search time, T, follow complicated optimal trajectories 

which may switch between two conditional trajectories as 

many as three times. As the available search time grows 

without bound both conditional trajectories terminate. 

Therefore, the optimal allocations, T* and T*, are bounded 

functions of the available search time (unless 3-. or 3« is 

zero).  The optimal allocations may be non-increasing 

functions of T with discontinuities at the switch times. 

This non-increasing character of the optimal allocations, 

T* and T*, implies that the optimal search plan can be 

computed only if T is known. 

The optimal trajectories usually begin (for small T) 

along the coordinate axis corresponding to the box having 

the lower prior target location probability .  That is , 

for small T the optimal search is concentrated in the box 

where the target is least expected to be located.  For 

moderate values of T the optimal allocation is usually 

along the conditional trajectory which is nearer to the T. 

axis, where k. ^ k., j = 3-i.  For larger values of T the 

This fails to hold only if the prior target location prob- 
ability distribution completely determines the optimal 
guess for small T, i.e., there exist i and i = 3-i such 
that 3ip. > Pi. 
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optimal allocation is usually along the conditional tra- 

jectory which is nearer to the T. axis with 3. < ß.. 
i i — j 

And for most cases as T approaches T the optimal alloca- 

tion is along the conditional trajectory which is nearer 

to the T. axis with 3- ±  3-. 

For most cases examined the available search time is 

not shared approximately evenly (T* = T$) for any amount 

of available search time, T. In particular, if the param- 

eters for the two boxes are identical, T* = T* is never 

optimal.  The ratio T*/T* for a wide variety of identical 

box cases was never found to be between 0.37 and 2.69. 

Thus, in the event that the decision maker does not know 

the parameter values precisely , he probably should avoid 

any impulse to deal with nis uncertainty by allocating 

equal amounts of time to each of the two boxes. 

The decrease in attainable expected utility value 

attributable to the false contacts (false contact loss) 

increases as a function of T for small T.  This increasing 

Since the SR-LSI expected utility is linear in p,, if 

one has a prior probability distribution for the prior 

probability p, with the other parameters known, the op- 

timal allocation is found by using the expected value of 

p in the solution given in Appendix B.  If the ratios 

p1/p2 and k^/k« are approximately one, the ratios T*/T£ 

have been found to be significantly different from one 

for tne cases examined. 
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character of the false contact loss may continue  for mod- 

erate and large values of T or the false  contact  loss 

may exhibit alternating intervals  for which  it  first in- 

creases  and then decreases  as  a function of T.     Such  com- 

plex increasing then decreasing character stems  directly 

from the  discontinuities  in the  optimal expected utility 

slope associated with the  switching of the optimal  trajec- 

tory between the two  conditional trajectories.     Also assoc- 

iated with these objective  function slope discontinuities 

are intervals of planned search time,  T,  which cannot be 

optimal if there is a fixed charge proportional to the 

planned search time. 

The  decrease in SR-LSI expected utility  from using 

a Koopman model rather than the optimal allocation   (the 

Koopman  loss)  is a complicated function of T.     For most 

cases the Koopman loss grows with increasing T for small 

T.     For T approximately three  to four times the expected 

time  to contact for the Koopman allocation,  the Koopman 

loss  reaches  a relative minimum which is  usually small. 

For moderate T the Koopman loss may alternate  from in- 

creasing to decreasing due to the discontinuities  in the 

optimal  SR-LSI objective  function  slope.     For large  T,   the 

Koopman  loss  increases monotonically approaching the  nor- 

malized value  ZL asymptotically  as T grows without 

bound.     This  implies  that the  search should be  limited to 
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a modest upper bound on the total planned searching time. 

The contribution of the search to the SR-LSI ex- 

pected utility is greatest if p, = p2.  But, the absolute 

value of the optimal expected utility is maximized by 

p, s 0 or 1.  In fact, the optimal expected utility for 

small T is minimized by Pi s Po*  From the computations 

performed it appears that the optimal expected utility is 

minimized by p, = P2 for any amount of available search 

time. That is, the search contribution is greatest when 

the prior target location probability distribution is that 

of complete ignorance (maximum entropy). 

If 3, = 37 = 0 (no false contacts), the optimal 

search is concentrated in one of the two boxes.  For the 

cases with ß, and 37 positive, however, the optimal search 

may require that positive amounts of search time be allo- 

cated to both boxes.  For all cases examined there exists 

a "one box" search allocation with either T, = 0 or T« = 0 

which yields values of SR-LSI expected utility which are 

nearly optimal.  That is, for practical purposes, it is 

unnecessary to split the search between the two boxeo. 

3,2    Complete  Search Information   (SCI)   SR Model 

The LSI version analysis of the decision maker's 

search allocation problem is appropriate only if the times 

at which contacts were made are unavailable as inputs to 

0 

ü 
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the  target location guess  decision.     If the  contact times 

are  available,  the guess  decision can profitably  include 

this  data as well as  the number of contacts  in each box. 

In Appendix D we  discuss  an algorithm for solving the de- 

cision maker's  search allocation problem given the times- 

to-contact.    This  algorithm was derived to solve  the 

following CSI formulation of the problem: 

Let 

t.   =  amount of search time used in box i when 
i 

either a contact occurs or the search is 

terminated for lack of additional search 

time, 

T. = amount of available search time allocated to 

box i, 

t = the vector (t^t-), 

T = the vector (l^,!^), 

p!(t,T) = PrCTarget is in box i | t,T), 
i — 

p'(t,T) 

^'^ = p'(t,T)  ' 2^'i' 

G(t,T) = (g | p'(t,T) = max{p!(t,T)}}. 

T is the search plan; t is the search outcome. 

Clearly, the optimal target location guess policy is given 

,  1 by: 

This follows from the symmetry of the reward for correctly 
guessing the target location. The extension to an assym- 
metric structure is straightforward. 
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If u(t,T) > 1, G(t,T) = {1}, 

if u(t,T) = 1, G(t,T) = {1,2}, 

if u(t,T) < 1, G(t,T) = {2}. 

And the following are immediate consequences of Bayes' 

theorem. 

-(l-e^k^ 

u(t,T) = 
p.e 

Po« 
-(l-ß2)k2T2 

for tj^ = Tv  t2 = T2 (24a) 

p.e 
-(]-ß1)k1T1 

3^26 
-a-ß2)k2T2  

for h <  Tl' ^ = T2 (2l|b) 

ß2Pie 
-(l-ß1)k1T1 

P2 

-(l-32)k2T2 
e 

for t1 = T:v  t2 < T2  (2Uc) 

ß2Ple 
-(l-ß1)k1T1 

ßlP2e 
-(i-ß2)k2t2    

for h < Ti' h < T2. (2l+d) 

ü 

The case with ß, and ß2 zero may be ignored since the so- 

lution for this special case is identical to that of the 

SR-LSI model.  The complementary probability distribution 

function for t is 
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F(t)   = 

-k1tn-ßokot0 -e-k-.t-.-k-t 

0 

^n ^2-2^2+e 1^1 wl    2W2 for 0  < t < T 

for t / T 
(25) 

Therefore,  the  constrained search allocation problem is 

// Maximize Z  = /   / max     (pHt.T)}   dF(t) 
T 0  <  t  < T      i=l,2       1 

il 

(26) 
Subject to T^   T2  >  0, Tj^ + T2  < T. 

Solution for ß^,,   ß2  > 0 

In Appendix D this  problem is  solved by  comparing the 

objective function,   Z,  to the corresponding function,  Z(<»), 

with T;L =  T2   = <»,     Let 

H(T)  =  Z(«>)   -  Z. 

It is shown in Appendix D that H(T) is minimized over 

T, + T9 = T by some point between two straight lines, 

which we will call lines b and c. 

and 

sCT) = m^Eb, 

ß2pl s(T) = In-—- =  c. 

(27) 

(28) 

where 

s(T) = (l-ß1)k1T1-(l-32)k2T2. 
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Lines b and c for a representative case are shown in 

Figure 3.7. Along any line s(T) = e with c £ e j< b, H(T) 

is a non-increasing function of T,*!«. Further, for large 

T, + T2, H(T) decreases exponentially to zero along the 

line s(T> = e with the rate parameter of the exponential 

form independent of e. Therefore, the optimal allocation, 

(T*,T*), for large T lies along a straight line s(T) •= e 

with T*+T* = T as T -> <». 

The optimal trajectory (plot of (T*,T*) with T as a 

parameter) consists of alternating segments of two candi- 

date conditional trajectories.  The coordinates of points 

along these two conditional trajectories can be computed 

as functions of roots of the functions which express the 

first order marginal conditions for minimizing H(T) along 

T1+T2 = T. 

3.2.1     Compariaon of SR-CSI Model with SR-LSI and Koopman 

Modele 

Based on the analysis described in Appendix D, a 

Fortran IV computer program was coded for the Pentagon IBM 

7091 to compute approximate numerical solutions to the CSI 

version of the decision maker's search allocation problem. 

Figures 3,8a to 3.8 d depict the CSI optimal trajec- 

tories for the same cases as depicted by Figures 3.1a to 

3. Id for the LSI version of the SR model. For small T, 

the optimal allocations are identical for the LSI and CSI 

versions of the SR model  This is the case because for 
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&1 -  O'1'  k1 =  1,   p1  =  0.5 

^2  * 0-5/  J«2  =  1,   p2  =  0#5 

Non-optimal 
Region 

Figure  3.7    Bounds  for SR-CSI Model Optimal Allocation 
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ß1 - 0.1,  k1 » 1, p1 = 0.8 

ß2 = 0.3,  k2 = 1, p2 = 0.2 

■■   SR-CSI Optimal Trajectory 
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Figure  3.8a    SR-CSI Model and Koopman Optimal 
Trajectories 
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3,  - 0.01, k1 - 0.5, Pj^ =  .47368 
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Figure  3.8b    SR-CSI Model  and Koopman Optimal 
Trajectories 
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ß1 = 0.10/ k^ » 1, P! -.47368 

ß     «  0.05,   k2 -  1,  P2 -.52632 
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Figure 3.8c    SR-CSI Model and Koopman Optional 
Trajectories 
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Figure 3.8d    SR-CSI Model and Koopman Optimal 
Trajectories 

jjaaaiMttBi ■"-— 11 ■■•--t'—^-liiiinittHiii — -..-■-■v.>^^-^-—'■—■—■^. ■.■.i.~f.u....lj.,..«^~^... 
—- ' - - J ^-^■.   ^*» 



<mmmi^~ m      IIIPII—^.i   i    i    mmm »rm^mm**^^mifm Hi^lHiil.HIIIIHl ppWWPW   I ■■■.»■■"I wm^fm 

-132- 

optimal CSI allocations of small T, the optimal target lo- 

cation guess, given any possible search outcome (t), is 

the same as the optimal guess based only on the numbers of 

contacts for the two boxes.  That is, for small T the num- 

bers of contacts for the two boxes are sufficient to make 

the target location guess decision. 

As T increases the SR-CSI optimal trajectory may 

switch between two conditional trajectories in a manner 

similar to the SR-LSI optimal trajectory switching. For 

most of the cases examined the number of switches in the 

SR-CSI optimal trajectory has been one less than the num- 

ber of switches in the corresponding SR-LSI optimal tra- 

jectory.  Exceptions to this relationship have been cases 

in which both the SR-LSI and SR-CSI optimal trajectories 

contained either one switch or no switches.  Because most 

of the SR-CSI optimal trajectories contain fewer switches 

than the SR-LSI optimal trajectories, the amount of infor- 

mation regarding the value of T needed to determine an 

SR-CSI optimal search plan is frequently less than that 

required to determine the corresponding SR-LSI optimal 

search plan. 

In contrast to the SR-LSI conditional trajectories, 

the two SR-CSI conditional trajectories are unbounded 

lying along straight lines of the same positive slope as 

T increases without bound. The portions of the SR-CSI 

0 
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i! 
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conditional trajectories wnich connect the terminal 

straight line portions with the origin coincide with the 

corresponding portions of the SR-LSI conditional models. 

This coincidence of initial portions of SR-LSI and SR-CSI 

conditional trajectories stems directly from the suffi- 

ciency of the numbers of contacts in the two boxes for 

the target location guess decision. The unboundedness of 

the SR-CSI conditional trajectories implies that the op- 

timal SR-CSI search is unbounded as T increases without 

bound.  Thus, the optimal SR-CSI search plan always al- 

locates all of the available search time to the two boxes. 

Corresponding to the cases depicted in Figures 3.8a 

to 3.8d, Figures 3.9a to 3.9d show the normalized SR-CSI 

expected utility values, Zc, as functions of T for the 

optimal SR-CSI search allocation and the Koopman alloca- 

tion.  Also shown in these figures are the "perfect de- 

tector" expected utility functions which could be achieved 

by a "perfect detector" system having the same true de- 

tection rates as implied by the parameter values (k.-3'k.), 

but no false contacts.  The optimal SR-CSI expected utility 

curves coincide with the corresponding optimal SR-LSI ex- 

pected utility curves for the initial intervals for which 

the SR-LSI and SR-CSI optimal trajectories coincide. 

These initial intervals have been found to be the same 

order of magnitude as the expected time-to-contact for 
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Figure  3.9a    Normalized SR-CSI Model Expected Utility 
vs Available Search Time 
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&l - 0.10,  ^ »  1, p1 -  .47368 
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Figure 3.9c    Normalized SR-CSI Model Expected Utility 
vs Available Search Time 
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Figure 3.9d    Normalized SR-CSI Model Expected Utility 
vs Available Search Time 
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the Koopman model. Although the SR-CSI optimal expected 

utility values are higher than the corresponding SR-LSI 

optimal expected utility values for larger values of T, 

the difference between these two curves has been rather 

small (less than three percentage points on the normalized 

SR expected utility scale) for all cases examined for all 

T.  Thus, the use of search contact times in making the 

target location guess decision permits at most a small 

gain in optimal expected utility compared with basing the 

guess on the numbers of contacts in the two boxes. 

Since the optimal SR-CSI expected utility curves are 

substantially the same as the SR-LSI curves, the expected 

utility cost of the false contacts is substantially the 

same for the SR-CSI and SR-LSI models.  In contrast, the 

expected utility cost associated with the use of the Koop- 

man search plan is not the same for these two models. 

For small and moderate values of T these sets of curves are 

substantially identical.  But as T grows large the SR-CSI 

expected utility curves for the Koopman search allocaticr.s 

asymptotically approach the optimal objective function 

curves while the SR-LSI curves for the Koopman allocations 

drop asymptotically to the normalized expected utility 

value zero.  That is, if the contact times are used in 

making the target location guess decision, there is no 

danger of planning to use too much search time. 
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3.2.2    Sensitivity  of SR-CSI Resulta 

Behavior for Small T 

Since the LSI and CSI versions yield identical re- 

sults for small T, the sensitivity results derived in 

Section 3.1.2 for the LSI version for small T hold for 

the CSI version as well. 

Behavior for Large T 

A computer program was developed to compute traces 

in the (3 ,3-) plane corresponding to constant limiting 

normalized values of the SR-CSI expected utility, Z«, as 

T increases.  Figures 3.10a to 3.10c show these iso-Zp 

curves for the same cases as depicted in Figures 3.3a to 

3.3c for the SR-LSI version.  These two families of curves 

are similar having identical endpoints and general shape. 

But the CSI curves are more gently curved.  Thus, if 

neither 3. is approximately equal to one, the CSI version 

achieves a moderately higher value of Z-, than the T of 

the LSI version.  Thus the best one box search yields ex- 

pected utility values for large T which are lower than the 

optimal expected utility by amounts which are slightly 

greater than the corresponding expected utility loss for 

the best one box search for the SR-LSI model. 

To investigate the tradeoff between search system and 

response system parameters, assume that |3, = 0» = 0. 
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Figure  3.10b     SR-CSI Model Iso-Zc Curves  in   {fr^,   &2)   Plane 

—-■ ■ ■ ■—■■■ ■ ■ -    - -  -■ —- -■ - — —  -•■- ' -" •'■'-'- ■ '-' -'■—'■■■'—UM i aajgi 



"«vwrfnv1»!.. ■' y" t IJI mpjiii i|i||ipi|JnMP>  »IWPM'I mimMwimm»''W>>iyi.V'*,m""'vv'K^m.^^''W"w'^m'™^r^^-™"^^^ 

-m,2- 

_u -T- 

( I 

li 
[i 

FI'1-4 

i 

Figure  3.10c    SJR-CSI Modql IsoiZc  Curves  in   (3^   82)   Plane 

 .-..-i... a  --.:■-   :.. ■- i  -   ■ .-..—.^......,.■=. ■   - | iüa m ■ -■ gj/jjia.—m—^^ 



""""""""'' 'W^iw   PWPWWWW   ■»'»■»iwJ'WiiiiiM iiiiiiiiiJiPiiiiiimwwwwff^Biiiiiiiiiiim.ii  im   i.   i i——  

11 
0 

ii 

u 

u 

-ms- 

Equations D.5a and D.5b in Appendix D can then be used to 

express the tradeoff as 

(i+ß)zc 

p?(l+ß)+p1(l-ß) 

- ß 
1-ß 

where p1 £ p«- Figure 3.11 shows the SR-CSI Zc = .5 

curves in the (ß,d) plane for several values of p,.  The 

,    coordinates of points on other iso-Zp curves can be found 

from these curves in the same manner as for the SR-LSI 

iso-Z, curves.  These curves are quite similar to the cor- 

responding SR-LSI Z", = .5 curves.  The two families of 

curves have the same end points.  But the CSI curves are 

slightly more gently curved.  This reflects the inherent 

marginal value of having the contact times available in 

making the target location guess decision. 

To investigate the robustness of the SR-CSI expected 

utility, a computer program was developed to examine the 

sensitivity of the SR-CSI expected utility to the allo- 

cation along T, + T2 = T.  Figures 3.12a to 3.12c show nor- 

malized CSI expected utility values as functions of T, 

along with the corresponding expected utility functions 

■   l shown in Figures 3.6a to 3.6c.  The sets of curves are 

somewhat similar, but the CSI version curves show less 
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Figure 3.11 SR-CSI Model Iso-Z_ Curves in (ß, d) Plane 
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Figure  3.12a    Normalized SR-CSI Model Expected Utility 
Sensitivity  to Allocation  at T,   + T2 = T 

■ •"■■■ Lafl maa 



i.pjiu.wwiiiiup m        Miiinmipiii      Liiii.ijunw^       i iiiiiLjiii.ipiiiavmHPr m^mmm mmm 

-me- 

ii 
&^ - 0.01,   k1  ■ 0.3,  pj^ 

g2 - 0.05,   k2  =  1.0,  p2 

0.75 

0.25 

SR-CSI Expected Utility 

SR-LSI Expected Utility 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

10 15 20 25 

J 

Figure  3.12b    Normalized SR-CSI Model Expected Utility 
Sensitivity  to Allocation at T,   + T2  = T 
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sensitivity to allocations than do the  LSI curves.     Thus, 

the use of the more sophisticated CSI model eliminates 

:--.owe of the sensitivity of expected utility to the alloca- 

tion.     That is,  for large T the importance of allocating 

the search resources nearly optimally is greater for the 

LSI version than for the CSI  version.    Figure  3.13 shows 

the sensitivity of the SR-CSI expected utility to the 

allocations  for series of values of T. 

3.2.3    Summary of SR-CSI Reeulte and Implioatione 

The similarity of the CSI and LSI versions of the SR 

model leads  to many similarities  in results for these 

models.     Therefore, most of the comments of section 3.1.3 

apply to the CSI version as well as the LSI version.     In 

this section we discuss the important qualitative dif- 

ferences between the results  for these two models. 

Optimal SR-CSI allocations  follow optimal  trajec- 

tories  which  coincide with the  corresponding SR-LSI  optimal 

trajectories  for small and moderate values of T.     But, 

for large T the CSI version optimal trajectories  are un- 

bounded lying along straight lines of positive slope in 

the   (T1,T2)   plane.    Also,  the   CSI optimal trajectories 

lack the final switch between  conditional trajectories 

which  usually characterize  the  LSI  optimal trajectories. 

The optimal SR-CSI expected utility values  are  iden- 

tical  to the  corresponding  SR-LSI expected utility  values 
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for small and moderate values of T; for large T the op- 

timal SR-CSI expected utilities are slightly larger.  The 

important difference between the SR-CSI and SR-LSI ex- 

pected utility functions is in their sensitivity to changes 

in the allocation, T, and T2, for large T.  For the LSI 

version the expected utility decreases as a function of T, 

(or T2 or T.. and T2 along a line of positive slope) if 

the amount of time allocated is large.  But, the CSI ex- 

pected utility function is non-decreasing in T, and T^ for 

all possible allocations.  For the CSI version any pos- 

sible allocation of large T with T, >> 0 and T2 >> 0 will 

yield an expected utility which is roughly the same mag- 

nitude as the optimal expected utility.  Thus, if the 

contact times are used in making the target location guess 

decision, the expected utility loss for a non-optimal 

search allocation is less for large T than if only the 

numbers of contacts in the two boxes are used for making 

the target location guess. 

3.5 Adaptive   Complete Search Information   (ACS!)   SR Model 

For both the LSI and CSI versions of the SR model the 

available time for searching in each box is fixed, 

independent of the search outcome.  Thus if a contact 

occurs in one of the boxes before the planned search of 

the box is finished, the unused portion of the planned 
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search is not reallocated to the other- box.  Rather, this 

unused available searching time is wasted.  For the adap- 

tive complete search information version of the SR model 

let us assume that when the first contact is made this un- 

used searching time is reallocated to the other box. In 

Appendix D the SR-CSI search model is modified to include 

such adaptive reallocation of the search resource. 

The analysis of this AR-ACSI model is very similar 

to that for tne unadaptive SR-C3I model.  The only dif- 

ference in the definition of the problem comes in the 

probability distribution of t.  Equation 2 5 becomes 

F(t) 
0 

-k,t,—p«k„t7   -p,k,t,-knt« 
+?2e        1 ■L       for l^+t^T 

li 

D 
0 
D 
!: 

for T^+t^T. 

And equation 26 becomes 

// Maximize Z =  J   J max {p!(t,T)}dF(t) 
T        0lti+t2lT i=l»2  1 

Subject to  T
1>
T2 i 0»  T + T. <_ T. 

The two conditional trajectories become the positive 

portions of the lines b and c together with the segments 

of the T, and T- axes connecting these two lines to the 

origin as shown in Figure 3.7.  However, all points in 

the non-negative quadrant above line c along T,+T9 = T 

u 
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yield the same values of the SR-ACSl expected utility as 

the point on line c having T1+T2 = T. Similarly, all 

points in the non-negative quadrant below line b along 

I^+Tg = T yield the same values of SR-ACSI expected util- 

ity as the point on line b having T.+l^ = T. Therefore, 

solutions to the ACSI version of the model are unique only 

for small T.  In fact, for any T there exists an optional 
i 

allocation with all of the available search time alloca- 

ted to one of the boxes. 

3.3.3 Comparison of SR-ACSI Model with SR-CSI and SR- 
LSI Models , 

The computer program which computes approximate num- 

erical solutions for the SR-CSI model also computes numer- 

ical solutions for the ACSI version.  Figures S.lUa to 

3.14d present the ACSI version optimal trajectories for 

the same cases depicted by Figures 3.1a and 3.Id for the 

LSI version.  The SR-ACSI optimal trajectories consist of 

alternating segments of two conditional trajectories sim- 

ilar to those of the SR-CSI model.  The two SR-ACSI con- 

ditional trajectories consist of the portions of lines b 

and c in the positive quadrant and the segments of the co-r. 

ordinate axes connecting these rays with the origin.  The 

same number of switches between conditional trajectories 

was found for the SR-CSI and SR-ACSI model optimal tra- '■ 

jectories for all cases examined.  The same criteria hold 

-   - - —  «■I !■ 11*1 \    »I 
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Figure  3.14a    SR-ACSI Model  and Koopman Optimal 
Trajectories 
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3^^ = 0.01,   k,   = 0.5,   p1 =   .47368 

32 =  0.10,  k2  =  1.0,  p2 =   .52632 

Mw««.   SR-ACSI Optimal Trajectory 

— —   Koopman Optimal Trajectory 
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Figure  3.14b    SR-ACSI Model  and Koopman Optimal 
Trajectories 
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&1  = 0.10, k1  = 1, pj^ = .47368 

ß2 = 0.05, k2 = 1, p2 = .52632 
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Figure 3.14c    SR-ACSI Model  and Koopman Optimal 
Trajectories 
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31 = 0.1,  ^ =!»?! = 0-5 
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Figure 3.14d    SR-ACSI Model and Koopman Optimal 
Trajectories 
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for the determining which conditional trajectory is op- 

timal for the small, moderate and large ranges of T.  But, 

the switch times for the SR-ACSI model were always found 

to be nigher than the corresponding SR-CSI switch times. 

LSI conditional trajectories coincide with the correspon- 

ding CSI conditional trajectories for small T, depart from 

the CSI conditional trajectories for intermediate values 

of T and end on the corresponding ACSI conditional trajec- 

tories. 

Figures 3.15a to 3.15d depict the SR-ACSI version 

optimal expected utility values, Z., as functions of T for 

the same cases depicted by Figures 3.2a to 3.2d for the 

LSI version and by Figures 3.9a to 3.9d for the CSI ver- 

sion.  The ACSI curves differ from the CSI curves only 

in minor detail -- the contribution of the adaptive re- 

allocation of search time as the search progresses to the 

optimal objective function is of minor value. 

3.3.2     Sensitivity   of SR-ACSI Results 

Behavior for Small T 

The optimal SR-ACSI allocations for small T are iden- 

tical to those for the LSI and CSI versions of the ;:.ocel. 

And the optimal ACSI expected utility functions are only 

infinitessimally nigher for small T than for these two 

more primitive related models.  Therefore, the sensitivity" 
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Figure 3.15a    Normalized SR-ACSI Model Expected Utility 
v; Available Search Time 
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Figure  3.15b    Normalized SR-ACSI Model Expected Utility 
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Figure  3.15c    Normalized SR-ACSI  Model Expected Utility 
vs Available Search Time 
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Figure  3.15d    Normalized SR-ACSI Model Expected utility 
vs Available Search Time 
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results derived for the LSI version hold for the ACSI 

version also. 

Behavior for Large T 

The ACSI and CSI versions of the SR model yield iden- 

tical optimal expected utility values in the limit as 

T •* «>. Therefore, the iso-Zp curves computed for the CSI 

version (Figures 3.10 and 3.11) also hold for the ACSI 

version. 

The computer program which computes the sensitivity 

of the CSI expected utility to the allocation along T1+T2 = 

T also computes the ACSI version expected utility.  Fig- 

ures 3.16a to 3.16e show the normalized ACSI expected 

utility values as well as the CSI and LSI version ex- 

pected utility values as functions of T, for the cases de- 

picted in Figures 3.6, 3.12 and 3.13.  These curves show 

that the objective function for the ACSI version is much 

less sensitive to the allocation than are objective func- 

tions of the LSI and CSI versions.  Thus, for large T the 

chief benefit to be gained from using the ACSI model is 

that the expected utility is less sensitive to the allo- 

cation than is the case for the simpler LSI and CSI models, 

3.3.3 Summary   of SR-ACSI Results   and ImpLiaations 

Optimal SR-ACSI allocations can be described with the 

use of optimal trajectories which are very similar in 

Ü 
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&1  = 0.01, k1  = 1, pj^ = .23077 
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Figure   3.16d    Normalized SR-ACSI Model Expected Utility 
Sensitivity  Dependence on Available Search 
Time 
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general appearance to the SR-CSI optimal trajectories. 

But,  the relationship between optimal trajectories  and the 

optimal  allocation patterns  for the SR-ACSI model  are dif- 

ferent  from the  corresponding  SR-CSI relationship.     In 

the SR-CSI model,  only points  on the optimal  trajectory 

can be  optimal.     But,   in  the  SR-ACSI model,   for any given 

value of T all feasible points  along T1+T2   =  T on one side 

of the  optimal trajectory are  also optimal.     Thus,   for any 

T there  exists an optimal search plan which  concentrates 

all fearch effort  in one  of the two boxes   until either a 

contact  is made or the available search time  is  exhausted. 

The box  in which this  optimal one box search begins  de- 

pends  on the amount of available search time,   T,   as well 

as  the  model parameters.     For small T the  optimal search 

begins  in the box having the  lower prior target  location 

probability.     For intermediate values  of T the  optimal one 

box search allocation  is  usually    to the box having the 

higher contact rate.     For large values  of T the  optimal one 

box    search allocation is  usually    to the box having the 

lower false contact parameter. 

For all T the  optimal  SR-ACSI  expected  utility values 

are either the same as  or only slightly higher than the cor- 

responding optimal SR-CSI  expected utility  values.     There- 

about  10% of the  cases examined violate this  rule. 
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fore, the ability to reallocate unused search time when 

the first contact is made contributes only marginally at 

best to the attainable expected utility. 
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CHAPTER 4 

SUMMARY AND FUTURE RESEARCH 

4.1    Summary of Reeulta 

4.1.1     UR Mode I 

The distinction between favorable and unfavorable 

response process initiation with the corresponding false 

detection modeling affects the indicated search allocation 

by altering the expected utilities associated with unlim- 

ited searching in each of the two boxes.  While these 

limiting expected utilities are necessarily positive for 

[j the Koopman model, either or both of the relevant limiting 

expected utilities can be negative for the UR model wit;; 

false detections.  Therefore, searching may be harmful in 

one or both boxes. 

If searching is harmful in one or both boxes, the 

Koopman search allocation plan may lead to disasterous re- 

sults as shown in Figure 2.2. However, if searching is 

useful (has positive expected utility) in both boxes, the 

Koopman search allocation yields expected utility values 

which approach the optimal values as the amount of avail- 

able search time increases without bound.  For cases in 

which the false detection and response process parameters 

are the same for the two boxes, the Koopman search is op- 

timal for any amount of available search time. 
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Searching in one of the boxes is harmful only in 

cases involving high potential risk (g. high, f. negative) 

and low potential gain (d low).  The Koopman search model 

is obviously inappropriate for such cases.  For cases in 

which the Koopman model is reasonable, the Koopman alloca- 

tions are close to the optimal UR allocations.  The re- 

sulting expected utility loss from using the Koopman model 

rather than the UR model is moderate, approaching zero as 

the available search time grows large.  Thus, the UR model 

can contribute significantly mainly in the analysis of 

search problems with low to moderate limits on the available 

search time. 

11 
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li 

4.1.2     SR Models 

The optimal allocations for the SR search models are 

more complex than those for the Koopman and UR models. 

Even without false contacts (3, = 3, = 0) the optimal tra- 

jectories may be non-increasing in T. and T„.  With false 

contacts present (3-, and ßj positive) the complexity of 

the optimal allocations increases.  Multiple switching be- 

tween two conditional trajectories becomes the usual op- 

timal trajectory pattern.  If ß, = 3? = 0» "the ability zc 

guess the target location eliminates the need to search in 

botn boxes to optimize the SR objective.  That is, 

guessing shifts the preferred allocation from u line of 

positive slope for the ÜR model to one of the axes.  The 
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introduction of false contacts in the SR models moder- 

ates this shift.  But, even with false detections present 

(ß. positive) there always exists a "one box" search (with 

T, or T2 equal to zero) which attains a value of expected 

utility close to the optimal value.  That is, for practical 

purposes it is never necessary to search in both boxes. 

For the SR-ACSI model there exists an undesirable 

strip between lines b and c (given by (27) and (28)).  A 

point within this strip can be optimal only if it is also 

on one of the axes.  For sufficiently large T all feasible 

points on one side of the undesirable strip having 

T, + T2 = T are optimal solutions .  The location of the 

undesirable strip is determined by the prior target loca- 

tion probabilities, p., and the false contact parameters, 

fj. .  The width and slope of the undesirable strip depend 

on the false contact parameters  and the   contact rates,  k.. 

Higher &.   values  imply a narrower strip.     For many moder- 

ate sets of parameter values,  the optimal trajectory  for 

the UR model lies  within the undesirable strip. 

The switching of the optirnal SR trajectories  from one 

side to the other of the undesirable regions  usually  follows 

the following pattern: 

For the SR-LSI  and SR-CSI models  undesirable regions 
similar to the  SR-ACSI undesirable  strip exist.     But 
for these models   only points on the boundaries of the 
undesirable regions or on an axis   can be optimal. 

i 
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i.   For small T the optimal allocation is concen- 

trated in the box having the lower prior prob- 

ability of containing the target. 

ii.  For moderate T the optimal allocation is 

usually along the conditional trajectory which 

is nearer to the axis corresponding to the 

higher total contact rate. 

iii.  For larger T the optimal allocation is usually 

along the conditional trajectory nearer to the 

axis corresponding to the lower false contact 

parameter, B.. 

iv.  As T approaches T for the SR-LSI model, the 

optimal SR-LSI allocation usually lies along 

the conditional trajectory which is nearer 

to the axis corresponding to the higher false 

contact parameter. 

That is, as T increases, the dominant role in determining 

which of the two conditional trajectories is optimal 

usually shifts from the prior probabilities to the total 

contact rates to the false contact parameters. 

Because the optimal allocations, T* and T*, are not 

necessarily non-decreasing functions of T (amount of avail- 

able search time), tne value of T may be needed to compute 

the optimal search plan.  Further, these optir.al search 

plans are not related in any obvious way to optinidi or 

desirable search plans for the corresponding problems with 

T unknown. 
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For the SR-LSI model the amount of available search 

time which is allocated to the two boxes is bounded 

(assuming that the false contact parameters are positive). 

But, the optimal allocations for the SR-CSI and SR-ACSI 

models are unbounded as T increases without bound.  The 

SR-CSI optimal allocations for large T lies along straight 

lines of the same slope as the corresponding Koopman and 

UR allocations with the same true detection rates.  Sim- 

ilar linearly increasing allocations of large T are also 

optimal for the SR-ACSI model.  But, all allocations with 

T1+T2 = T between the SR-ACSI optimal trajectory and one 

of the axes are also optimal.  Thus, there always exists 

an optimal SR-ACSI allocation concentrated in one of the 

two boxes. 

Only in rare cases is an optimal allocation approxi- 

mately evenly shared.  The corresponding parameter values 

for the two boxes are quite different for those cases in 

which approximately even allocations may be optimal.  Thus, 

the search decision maker probably should avoid any impulse 

toward equal allocations to the two boxes in situations 

involving uncertainty. 

The increased complexity of the optimal allocation 

patterns for the SR models compared to the Koopman and 

UR models leads to correspondingly more complex optimal 

expected utility structures.  First, on an absolute scale 
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the optimal SR expected utility for T = 0 is positive (at 

least half of Z) compared to zero for the UR model.  While 

the optimal UR expected utility as a function of T is 

smooth and convex, the optimal SR expected utility may be 

neither smooth nor convex.  The slope of this optimal SR 

expected utility function may be discontinuous having 

positive jumps at the points where the optimal trajectories 

switch between the two conditional trajectories. 

The SR-LSI, SR-CSI and SR-ACSI version optimal expec- 

ted utility functions of available search time are sub- 

stantially identical for small and moderate amounts of 

available search time.  For large (T^+T^ the SR-LSI 

optimal expected utility decreases asymptotically to the 

normalized value of zero as T increases without bound. 

In contrast, the SR-CSI and SR-ACSI optimal expected util- 

ity functions are strictly increasing functions approaching 

the same upper bound for large T. 

The major difference in the SR-LSI, SR-CSI and SR- 

ACSI expected utility functions for small and moderate T 

is in their sensitivity.  Particularly for moderate and 

large T the SR-ACSI expected utility functions show less 

sensitivity to T-. with T„ = T-T, than do the SR-CSI exr-c-:^ 

utilities.  Similarly, the SR-CSI expected utilities ex- 

hibit less sensitivity to T^, than do the SR-LSI expecte.5 

utilities.  The decreased sensitivity for the SR-CSI and 

'. .  ! 
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SR-ACSI expected utilities results from their ability to 

discriminate on the basis of when contacts occur between 

different search outcomes having the same numbers of con- 

tacts for the two boxes.  The SR-ACSI decrease in expected 

utility sensitivity compared to that of SR-CS1 model re- 

sults from the increased flexibility of the ACSI search 

which adjusts the amounts of time allocated to the boxes 

whenever the first contact is made. 

;,' 4.1.3    UP end SR Model  Comparison 

For small T the optimal UR (and Koopraan) allocations 

arc  concentrated in the box having the higher B.k. value, 

| n whnu ß. = [(l-3-)d.+ß.f. ]p. .  But, the optimal SR allo- 

I -■•' I cations begin in the box having the lower p. value.  The 
■  J ! ^ " '■       ' 

corresponding marginal expected utility functions at T = U 

for the UR and SR models are 

§-'  t(l-ß1)d1 + 31f1]p1k1  , 

dZ       y \ ,    t 

where 

[(l-ß1)d1 + ßif!^!1^! i [Ci-32)d2 + 0zf2l, 

Pi 1 Pj '  j = 3 - i. 
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Thus, gwr is maximized by p^ = 1 while -*■» is maximized by 

p, = Pj = .5.  That is, the search contributions for these 

two types of models are greatest, under circumstances, which 

are exactly opposite in character.  The UR search contri- 

bution ^.s maximized by a state of perfect knowledge of the 

target location; the SR search contribution is maximized 

by the,state of maximum uncertainty (entropy) regarding 

the target location.  This difference reflects the, dif- 

ferent purposes for searching for these two types of models. 

In the SR models the purpose of the search is to discover 

6r infer the target location. p'        in the ÜR model knowl- 

'    .....     ' - 
edge of the target location is insufficient to serve the 

decisioni maker's purposes.  The searched must find  the 

target to obtain favorable response probess results. , 

This difference in search purpose is' accompanied by 

a fundamental difference in the nature of false contacts 

for the two types, of models.  For both types of models we , 

define contacts as irreversible positive decisions that 

the .target has apparently been found.  Thus ,'contacts ter- 

minate the search in the box of contact for both types of 

modelsi  For the UR model detections lead immediately tq 

favorable response process initiation.  False - contacts are 

those detection decisions which lead to unfavorable re- 

sponse process initiation. , In contrast, contact events in 

the SR models do not initiate the response process.  The 

response process occurs only after the search has been 

11 

0 
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completed in both boxes.  For the SR models any contact 

in the box containing the target tends to cause the de- 

cision maker to correctly guess the target location and, 

hence, obtain favorable response process results.  That is, 

there are no false contacts associated with the box con- 

taining the target.  Rather, the false contact phenomenon 

takes expression through the contact process in the box 

which does not contain the target.  The SR false contact 

parameters are the ratios of intensity parameters for the 

conditional contact processes with and without the target 

present. 

4.2     Future  Research 

The taxonomy of search problems given in Chapter 1 

represents a conjectural view of what problem character- 

istics might be important to the analysis of search prob- 

lems.  The research has demonstrated that at least a snail 

part of this conjectural view is productive in that con- 

sideration of response processes and false alarm phenomenon 

have marked effects on search strategies and returns.  We 

have shown that these features can be implemented using 

rather straightforward mathematical tecnniques , and that 

the relationship between search and response processes is 

of central importance in the analysis of search problems 

with false contacts.  These results suggest that research 

t"----'--"- -■ ■;'- r I  I  ■' --" —-—„-I -  "•'" I-'-- - —   - - 
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should continue to explore the relationship between the 

search and response processes which will, of necessity, 

include the false alarm phenomenon.  Other search and re- 

sponse features cited in the taxonomy should be inves- 

tigated in conjunction with this direction.  Sketches of 

three useful extensions of the research described in this 

report are given below. 

The methods used in Chapter 3 can be generalized to 

deal with models having more than two boxes only at con- 

siderable computational expense.  The sensitivity of our 

results to the two box assumption is of interest.  Some 

insight into the character of corresponding multiple box 

model results can be found from sketching part of the 

solution to the special case with no false detections 

(3. =0).  Corresponding to equation 18 we have 

= 1 + 
!-k.T.)   N    -k.T. 
P,-e ^^ 1> - E P^e 3   3 

1     )   j=l ^ 

Therefore, the solution for any T is identical to the 

Koopman allocation confined to searching some subset of 

N-l boxes.  For small T this subset is all boxes except 

the one having the highest prior target location proba- 

bility, p..  For large T this subset is all boxes except 

I! 
II 
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the one having the lowest detection rate , k..  Thus, the 

switching phenomenon persists as N increases.  If false 

detections are possible (3. > 0), we expect the other 

qualitative characteristics of the solutions for the two 

box models to hold for the multiple box models as well. 

But, the development of multiple box and continuous search 

space models corresponding to those of this research re- 

main as significant outstanding research topics. 

In this research we assumed that the amount of avail- 

able search time is known. This assumption seems particu- 

larly arbitrary resulting more from its convenience in 

the analysis than from an intuitive view of most real 

2 search problems .  Yet, this assumption was found to play 

an essential role in the SR model results.  Corresponding 

models with some other treatment of the amount of available 

search time, T, are of interest.  Note that if one has a 

probability distribution for T, the SR results of this 

research cannot, in general, be used to construct optimal 

search plans.  Rather, one must express the expected 

utility as a function of the search plan and them maxi- 

mize the resulting functional over the set of admissible 

This follows from the fact that the rate parameter of the 
asymptotic exponential growth for large T is 1/ Z 1/k. 
where S is the subset of boxes searched.      ieS 

"Inability of searchers to follow a prescribed strategy 
exactly is one effect which suggests viewing T as a 
random var i able. 

    j-   - -  ^ —• 
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search plan functions which specify non-decreasing allo- 

cations to each box as a function of T.  Such functional 

optimization problems are mathematically more difficult 

than the mathematical programming problems encountered 

in optimizing the same objective functions over the ad- 

missable allocations for a fixed T. 

The detection processes assumed in this research are 

only the most rudimentary ones.  The only output of the 

detection system is a single contact signal or contact 

event.  This contact event, then, terminates the search. 

Further, the contacts, which are inherently interpretations 

of detector data, are made independent of the available tar- 
I' ' 

get location probabilities.  But, if possible, these con- 

tact decisions should be made on the basis of all the 

available information, including the initial target loca- 

tion probabilities.  That is, response decisions should 

result from deliberate economic choices rather than from 

the arbitrary application of fixed rules for interpreting 

detector data independent of the operating environment. 

Models involving more explicit treatment of the detector 

data in the decision problem are needed to characterize 

such optimal economic search plans. 

i; 
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APPENDIX A 

AN ALGORITHM FOR SEPARABLE, STRICTLY 

CONVEX PROGRAMMING PROBLEMS 

WITH ONE LINEAR BOUNDING CONSTRAINT 

This appendix develops an algorithm for solving allo- 

cation problems like those of the UR search model problems 

of Chapter 2.  The form presented here is a slight gener- 

alization of a similar algorithm by Charnes and Cooper 

(1958) and by Moore (1971).  This algorithm can easily be 

modified for allocation vectors of arbitrary number of 

dimensions with substantially the same results.  The as- 

sumptions regarding the characteristics of the objective 

function could be relaxed without altering the algorithm 

approach.  However, to do so would clutter the development 

with superfluous details. 

Let (x,, x„) be an allocation vector representing 

real, nonnegative quantities.  Corresponding to each x. 

let F.(x.) represent a return function associated with x.. 

Suppose F. are differentiable with 

i. 0 < F! < oo, 
i 

ii.   x < y=> Fj^x) > F!(y), and 

iii.  lim F!(x) = 0 
X+oo 

(A.la) 

(A.lb) 

(A.lc) 
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0 for F!(0)   <  v 

F!'1(v) for v <  F!(0). 

(A.2) 
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These conditions guarantee the existence of inverse func- 

tions, f^, for each F!.  Further, these inverse functions 

are continuous decreasing functions on intervals (0, Ff(0)). 

Let us extend these inverse functions by defining 

f^v) 

The Problem 
  l! 

Maximize Z = ^(x^ + F2(x2) (A. 3)      U 

Subject to:  x,, X- > 0, x, + x- < X > 0. !' i    2 -       i     2 - y 

The Solution ir 

1 The solution to the problem proceeds directly from 

the Kuhn-Tucker conditions whicn are: II 

F| < v, (A.4. ) 

Xl(Fl"v) + x2(F2"v) = 0' and (A.4b) 

v(x1+x2-X) = 0. (A.4c) 

Hadley (1964) snows that if (x*,x|), vÄ satisfy these 

Kuhn-Tucker conditions and (x?,x|) is feasible for the 

i problem, (x*,x*)  solves the problem. 
"' j 

Since F! > 0, v _< 0 cannot satisfy (A. 4a).  There- , 
1. ! 

fore, we may assume that v > 0.  Then (A.4c) reduces to 

x
1  +  x2   =  ^ (A*5) 
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Together,   (A.4a)   and  (A.4b)   imply  that  either 

i. x. = 0, or (A.6) 

ii.  F'. v. 

Condition (ii) can be expressed as 

x. 
i 

f^v). (A.7) 

Suppose we treat v as an independent variable and use 

(A.7) with the extended definition of f.(v) to compute 

the corresponding x. values.  Then, (A.4a) will hold 

since F. < v when (A.7) gives x. = 0.  So, if (A.4c) 

holds also, the corresponding (x , x9) solves the problem. 

To find a solution to the problem from the Kuhn- 

Tucker conditions, we may use any real value of v.  So 

we attempt to find a value of v such that (A.He) holds. 

Let 

f(v) = f^v) + f2(v). (A.8) 

If we  can find v  such  that f(v)   =   X,   the  corresponding 

(x, ,  x»)   given by   (A.7)   is a solution  to  the  problem. 

Since f.(v)   are   continuous monotone  decreasing functions 

on the intervals   (0,   F!(0)] with 

f.-CFjCO))   =   0,   and 

lim f. (v)   =  oo, 
v+O     1 

f(v) is a continuous monotone decreasing function on the 

interval (0, max{F!(0)}] with 
i 
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f(max F!(0)   )   =  0,  and 
• X 
1 

lim f (v)   = oo. 
v->-0 

Therefore,   there exists  a unique  value,   vft,   satisfying 

f(v)   =  X.     Then 

x*  =  f.(vft) (A.9) 

solves the problem.  (Since the Kuhn-Tucker conditions are 

necessary as well as sufficient for problems in which the 

feasible region has an interior point, the unique Kuhn- 

Tucker point is the unique solution to the problem.) 

In performing computations based on the above it is 

convenient to assign indices such that F'(0) _> F'(0).  Then, 

the solution is: 

i.   If X < f;L(F^(0)), x* = X, x* = 0. 

ii.  If f-^F^CO)) < X, there exists vÄ < F^(0) such 

that f(v*) = X.  Then, (A.9) gives the solution. 

Application to Koopman Search Problem of Chapter 2 

The Koopman search allocation problem of Chapter 2 is 

-k,T, "^?T9 
Maximize p-jCl-e    ) + p2(l-e  ^ ^ = U 

Subjec'. to T,, T2 _> 0, T1 + T2 < T. 

This is of the form of the problem analyzed above with 

i.    T. replacing x., 

ii.       T replacing X,  and 
-k.T. 

iii.     F.(T.)   =  p.(l-e     1  1) 
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So 

Fj_(Ti) Pikie 
-k.T. 

(A.10) 

which satisfy conditions (A.la) to (A.lc).  Therefore, 

the algorithm applies.  The extended inverse marginal re- 

turn functions, f^v) , are 

f.(v) ={ 
1  in^1 

if p.k. < v Fi i - 

if v < piki 

(A.11) 

Let TS be the highest value of T for which T*; = 0.  The 

value of Ts can be computed using (A.7) and (A.11) with 

v = p2k2 Kr» • 

= MPoV + f2(p2k2) 
(A.12) 

1  lnPikl = T— In- 
*l     lP2k2 

If T < Ts, the optimal allocation is T* = T; if Ts < T, 

the optimal allocation has positive Tlc as well as T*.  To 

compute the optimal allocation for Ts < T we need to find 

the value of v corresponding to the optimal allocation of 

T.  For the optimal allocation f(v) = T, or using (A.11) 

k1    v    k2 

P2k2 = T| 

v 

Rearranging this yields 
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ln Plkl  ln P2k2 ] 
X+l 

or 

T - 
v = exp ( - 

In p1k1  In p2k2 
"ir;— +    k. 

[^ + y (A.;3) 

Using this we can transform (A.7) and (A.11) into a direct 

s expression of the allocation xn terms of T.(for T < T). 

In p^'  In p2k2 
T - 

T* = ^{ In' p.k. + i  ki I , ^i i 1 + 1 
kl   k2 

(A.14) 

,The  optimal objective  function  corresponding to this 

solution is ^ 
-k.T 

p1(li-e' 
1  ) 

'Z*  = 

"Lki+k2j 

T - lnPlkl - lnP2k2 

exp 
1 + 1_ 
kl   k2 

for T<T 

(A.15) 

for T.S<T. 

note; 

Two characteristics of this solution are worthy of 

1.  The' optimal allocation follow^ a piecewise linear 
'* s ■ path aö   T  increases.   ' For T     <   T  the  marginal 

allocations  are  inversely  proportional  to  the  rate, 
parameters ,' k.. , 

—  MM—»-^^^-^^^-^■M 
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2.,    The optimal  objective  consists  of piecewise 
asymptotic exponential functions. 
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APPENDIX  B 

AN  ALGORITHM  FOR THE  GUESS   PLAN   CONSTRAINED 

SEARCH ALLOCATION  PROBLEM  OF  CHAPTER  3 

This appendix develops an efficient algorithm, suit- 

able for machine computation, for solving problems of the 

following type: 

Maximize Z  =  p,   - p-^e       (1-e ) 

-ßlsl( 
-s, 

+ p.e     ' "(1-e       ) 

Subject  to:     s,,  s2 _>  0,  k-s,   +  k1s2   <_ S, 

where p,,  p2,   ß-,,  &2, k1, k2  and S  are  strictly positive. 

[For the problem of Chapter  3     si  =  k^,    S  =  k^^.l 

Before  proceeding with the  solution to this  problem, 

let us  establish  some elementary  relations which will be 

needed  later. 

Let  0   <  ß  <   1  and 

R(x)   =  e-(1  "  ß)x, 

Q(x)   = 
1-e' 

1-e -3x   ' 

And let the derivatives of these functions be denoted by 

R'Cx) and Q'Cx). 

-190- 
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First, 

liin R(x) = R(0) = 1, 
x->-0 

lim R(x) = 0. 
X-H» 

And 

R'^x) = -(1 - ß)R(x) < 0 for all x < 

Also, I'Hopital's rule implies that 

(B.la) 

(B.lb) 

(B.lc) 

u 

y 

And 

lim Q(x) = i > 1. 
x-*-0       P 

lim Q(x) = 1. 
X-K» 

(B.2d) 

(B.2b) 

Consider the monotomicity of Q(x). Q(x) is a continuous, 

differentiable function over the interval (O,«). Rol'le's 

theorem of elementary calculus implies that either 

i.  Q(x) is monotonic in the interval (0,°°), or 

ii.  there exists x0 in (0,«>) such that Q'CXQ) = 0. 

Suppose the latter is the case. 

Q'(x0) = Q(x0) 
-x. 3e-3x0 

l-e"Xo 1-e -3xc 

Since Q(x0) > 0, this equation can hold only if the ex- 

pression in brackets is zero.  Rearranging this condition, 

we have 

e3Xo   -  1  =   ß(eXo   -   1)   . 
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Lxpanding  this   in Taylor series  yields 

2 x2      3 x3 
(ti-ir)jf + (3-3 )ff + ... = 0. (B.3) 

n 
In this equation the coefficients of x0, are non-negative 

with strictly positive coefficients for n > 1.  Therefore, 

this equation has no positive roots.  This contradicts the 

hypothesis that there exists x0 in (O,
00) such that Q'CXQ) 

= 0.  Consequently, 

Q'Cx) < 0 for all 0 < x < ". (B.4) 

Also,   since  the  left member of  (B.3)   is strictly  positive 

for 0  <  x0   < «s  reversing the manipulations  leading to 

(B.3)  yields 

for  all  x >  0. (B.5) l-e-x   ,   le-(1-6,x 

1-e -3><       3 

Returning to the nonlinear programming problem at hand 

we have 

Z-.   - P..e  ^1_  2 2)   . ^p^     1  l(1_e  ^ ■3T 
'1 = Pie  1(l-e 

and 

;2 = -3^^ 
-s1-32s2 

+ p9e 
■31S1-S2 

(B.6) 

(B.7) 

where Z- denotes the partial derivative of Z with respect 

to s..  From (B.6) it is clear that Z, > 0 if and only if 
i 1 

• ■   i 

I 
[ 
I 
1 

I 
t 

r 
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s2 ?! 0, and (B.8a) 

-(l-ß,)s 
-s. 

i'wl 1-e 

Pi ,  "ß2S2 1-e 

Therefore, (B.l), (B.2) and (B.4) imply: 

(B.8b) 

U 
- 

11. 

ill. 

  , ^i , Z-, < 0 for all 0 - s 
ß, - p  '  1 1 ^1   ^1 

0 < s« < o0.  Consequently, there exists a 

solution point along the s^-axis. 
ß2   P2        ~ * ^ 

If yi > -i, for any s0 > 0 there exists s, > 0 
ßl " pl l   <  _ 

i 

such that Z, ^ 0 as s1 - s1 • 
<        > 

e9     P9    -, 
If -=-<-=-< i- there exists s0 > 0 such that 

ßl  pl h 2 

Z1  =   0   at   (OjS^).  Z1 < 0 at (s1, s2) for 

s, > 0, 0 < s2 _< s".  Further for s2 > s2 there 

exists s", >_ 0 such that 

Z1 - 0 as s1 7 s1. 

Also, (B.2b), (B.U), (B.8) imply that Z1 < 0 for all 

s2 > 0 if 

In 
3nP 

s-, > 1^2 
1 - l-ß- 

(B.9) 

Finally, from (B.7) we have 

Z2 _. 0 as 

>   ^2?1 
(l-31)s1 - (l-ß2)s2 - In —- (Ü.10) 

■  - ■         -  - -  -•—-"—'—--"—-—-* ■■    --■ • i - MM -:- -■■ 
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and from (B.7) we have 
+ 

'l'Jl . 1_ p1 -Cl-ßjs. -(l-ß2)s2 
(B.llb) 

Eliminating s, from (B.lla) and (B.llb) yields 

+ 

F(s2) -='*l*2 -TJTf- 
e  ^   ^-1 

=   1. (B.12) 

Suppose that  (s,,   s2),  an  interior point  of  the  fea- 

sible  region  (the triangle  s,> 0,  s2 _>  0,  l^s.   +  k1s2  <_ S), 

is  optimal.     Then,  Z,   =   Z2   =   0  at  (s,,  s2).     So,   from 

(B.6)  we have 
-s, 

Pi -(1-ßl)sl .   a     1-e     2 

P9 
=  3- 

1-e ̂ ?I ' (B.lla) 

Note that F(s?) is a continuous monotonic increasing 

function mapping the interval [O,00) onto the interval 

[ß..,«5).  Therefore (B.12) has exactly one positive root. 

Corresponding to this root, s2, the value of s, can be 

computed from (B.lla) or (B.llb).  Then 2, = Z« = Q at 

(s1, s2). 

From (B.8) and (B.10) it is clear that the point 

(s , s9) is a relative maximum point for Z.  Then, since 

Z is differentiable and (s,, s ) is unique, this point is 
1  2 

the unique global maximum point for Z.  That is, (s,, s0) 

is the unique solution to the problem if it is feasible. 

And (s,, s») is feasible if s, _> 0, ^o3! + kls2 — S' 

1. ! 

u 

Li 

Ü 

L 

U 
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If (s,, s2) is not feasible, the solution to the 

problem must be on the boundary of the feasible region. 

Then, the solution point may be characterized as a point 

where the gradient of the objective function (the vector 

(Z^Z,,)) is either the null vector or an outward normal 

to a support line of the feasible region. 

Let 

e(sT,s2)   =   the  angle between  the  gradient vector 
(Z, ,  Z-)  and the  positive s,   axis  with 
positive angles  representing counter- 
clockwise rotation. 

Then 
tan -1 

e(s1, s2) = 

-tan -1 

'J2^si's2 
Z1(S1'S2) 

Z2(S1'S2^ 
Z1(S1,S2) 

if Z1 >.0, 

if Z, < 0. 

(B.13) 

u 

\   Consider öCs,, s2) for (s,, s2) on the boundary of 

the feasible region.  First, by (B.8) and (B.10) 

xl+90o if p2 > ^l' 
9(0,0) =[ündefined ((Z;L,Z2) = (0,0)) if p2 = ß2p1,(B.14a) 

-90\ if p2 < t-Vl' 

Similarly, along the positive s, axis 

e(s1,o) 

+ 90° 

undefined 

-90° 

if s, > c/d-ß,), 

if s. c/il-Q^, 

if s, < c/d-B-j^), 

(B.lUb) 

 tjjgmnjj^mummg ||. _...  .... ■ | 
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where 

c = In 
ßoP 2^1 
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Al ong the s, axis the outward normal support line of the 

feasible region has direction 0 = -90°.  Therefore, a n 

point on the s-, axis can solve the problem only if 

p2 < BoPi*  Further, since Z, = 0 for all points on the 

s, axis, all feasible points on the s. axis yield the 

same objective function value, p,.  But this value of the 

objective function can be attained in the decision maker's 

real problem without searching at all or by ignoring the 

search information in making the response guess decision. 

Thus, if a solution to the problem lies on the s, axis, 

all feasible search allocations are optimal for the 

decision maker's real problem. 

Now consider the behavior of 6 along the searching 

time constraint line k^s, + k..s„ = S in the positive 

quadrant.  We will need the second partial derivatives 

of Z with respect to s, and s_. 

-s    -32s     2  -ß s    -s 
Zn, = -PTC  1(l-e   z) + 3;p9e 

x   ^(l-e  /), 'ii 'v 

'12 = 32ple 
s1-ß2s2 

- B-jP^ 
■ßlSl"S2 

'22 

-s1-ß2s2 
ß2p1e " Po6 

-ß1s1-s2 

(B.15a) 

(B.15b) 

(B.15c) 

Since p.; ßj < ^» 2-,, < -Z, and Z«, < -Z^.  Therefore, for 

the region in which Z, > 0 and Z« > 0 both Z,, and Z?„ are 

i: 

—    —a  

t 
.-;■&< HM^i^aH ■KI 
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negative.     Suppose  Z12  is negative.     Then, by  (B.5) 

Pi    -(l-31)s1 
-s, 

< a- l-e 

1-e 
fci2o2 

which implies  that Z1 <  0  (by B.6).     So Z12  is  positive 

while  Z,,   and Z22  are negative   for the  region in which  Z^ 

and Z    are nonnegative.    Along  a line ^2si + kls2   =   S' 

dZ1       dZ1 

ds. 3s. 

dZ1 ds2 

3sT ds. 

u 
dZ, 

ds". 

Zll " iqZ12'  and 

3Z2       3Z2  ds2 

3s7      3s2  ds" 

(B.löa) 

= Z 12 j^ ^22- 
(B.16b) 

i i 

Therefore, in the region where Z, and Z2 are nonnegative, 

Z, is decreasing while Z2 is increasing as s1 increases 

along k2s.. + k^s  = S.  Since the support line to the 

feasible region along such a line is the line itself, the 

outward normal along k^ + k-^ = S has direction 

60 = tan"1^ .  Because 0 < e0 < 90°, both Z1 and Z2 must 

be positive at any solution along the positive quadrant 

segment of k^ + k^ = S.  Therefore, there exists at 

mos t one  solution point with  s.^   s2   >   0  on k2s1  +  k1s2   =  S; 

-j •■ -■•■-"• — - -- -■  - <i 
■■■•"-• I • iMiniiiiiiiiii 
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this  point   (if it  exists)   is  characterized by 

D 
II 

k2z2 = kizr (B.17) 

Finally, consider the behavior of 6 along the Sj axis. 

The outward normal to the support line of the feasible 

region at (0, s2) for 0 < s« < s/k, has direction Q    =  180°. 

Therefore, any solution point in this interval must satisfy: 

i. Z2 = 0, and 

ii.   zi 1 0' 

Condition (i) is 

-c 

CB.18a) 

(B.18b) 

'2 " l-32 ' 

condition (ii) is 

(B.19a) 

h^2 -    ,     -e2s2 l-e 

(B.l:..) 

(B.19a) establishes the uniqueness of possible solutions 

in the 0 < s^ < S/k, segment of the s2 axis. 

In addition to points on the three sides of the fea- 

sible region, the three corners of the feasible region 

must be considered as possible boundary solutions to the 

problem.  The origin satisfies the marginal (normal ob- 

jective function gradient) necessary condition Cor solvlag 

the problem if SoP-i > po'  But, the origin only solves the 

11 
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decision maker's real problem if no possible search can 

achieve a higher objective function value than that 

achieved by not searching at all.  (This case does occur 

for small amounts of available searching time if 62?-, > Po*) 

The corner point (S/k2,0) yields the same value of objec- 

tive function, p.., as the origin.  Thus, this point can 

only be optimal when the origin is also optimal.  Finally, 

the support lines of the feasible region at (O^/k,) have 

normal directions, 6 , for each angle in the interval from n 

e0 to 180°.  Therefore, if 6(0,s/k.) is in the interval 

[eo, 180°], the point (0,s/k,) satisfies the marginal neces- 

sary condition for optimality. 

We shall now establish that, except for the case in 

which all feasible points solve the decision maker's real 

problem, the solution to the problem is unique. 

Suppose that there exists a potential solution point 

(0, Sj) with Sj in the segment (0, S/k,) satisfying the 

gradient necessary condition for optimality.  Then (B.lSa) 

and (B.10) imply that Z2 < 0 at (0, S/k^ so (0, s/k^ 

cannot be a solution.  Now suppose there exists an optimal 

solution, (s?, s°), in the positive quadrant segment of 

k2Sl + klS2 = ^  Then» since Z2 > 0 at (s°, s°), the 

point (s°, s°) lies below the Z = 0 line.  And since 

Z, > 0, this point lies above the Z = 0 curve.  But the 

point (0, s^) which is on the Z2 = 0 line must lie below 

the Z, = 0 curve, and the Z, = 0 curve lies above the 

.._ ..<*-. ,.i.„..„........, ■,,-, m, _ ._ ,,   __^ 

• - 1     it_mä 
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Z9 = 0 line for large values of s1.  Therefore, t^e Z, = 0 

curve  must cross the Z2 = 0 line at least twice at points 

where s- > 0.  This contradicts the uniqueness of the 

. solution, s2, of (B.12) in the positive half plane.  There- 

fore, the point (s°? s2) cannot exist.  To establish thÄ 
1   .    '■ ' c 
uniqueness of the solution point (0, s0) then, we need 

> '        i , 

only obserye that by (B.10) Z2 > 0 for all points (0,, s,J 

' c C ' with s0  in the interval (0, s ) so that at (0i, s,) Z  >  p . 
: '    '1 

Now suppose that there exists a potential solution 

c  c 
point (s,, s0)   in the positive quadrant portion segment of 

k^s, + ^k^^s« = S.  Then, the reasoning of the previous 

paragraph implies that no potential solution satisfying 
I i : ; 

I 

the first order marginal necessary condition can exist along 

the s2 axis with k^s, + k^s^r< S.  To establish the unique- 

c  c 
ness of (s, , ^2) ,as the solution point, then, we need only 

observe that Z^   >  0 at (s^. s^) so that, by (B.10), Z^ > 0 

for all (s?, s^);With s9 in (0, S2).  Therefore, at 

c  c i   .     .    .' 
(s,, s9) Z > p,, and no solution point exists along the 

To complete the proof that solutions which are not 

on the s, axis are unique we need to ^how that corner solu^- 

tions (0, S/k,) are incompatible with (other) solutions 
♦   1 , ■   ' 

along tne s_  axis  and the  line k2S1 +  k.s.   =  S.     First,   if 

(0,  S/k,)   satisfies   the gradient necessary  condition  for 
1   , '      ,• \ ,      1 

boundary solutions, ' Z9 > 0 at (0, s/k-,).  Then, by (B.10) 
' t       1      ii 1 

L 

 ■ m         ■■ i^i -   -   
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u 

Z2 > 0 for all other feasible points on the s„ axis.  There- 

fore, no other potential solution point can exist on the 

s2axis.  Suppose that Z, _< 0 at (0, S/k,).  Then, by (B.8) 

Zl 1 0 for a11, (s,, S/k.) with s, > 0.  And consequently, 

(B.H) and (B,8) together imply that Z, _< 0 for all (s , s2) 

with s1 > 0, 0 < s2 _< S/k1.     That is, Z-,   ± 0  for all fea- 

sible; points.  Thus, no (other) solution point along 

k2s- + k.^ = S can exist.  Now suppose that Z, > 0 at 

(0, S/k1). Then, (B.16a) and(B.16b) imply that 9 > 

-1'   ' ' ' tan k2/k1 for all points along k-s, + k.s■ = S having 

s-, s2 > 0, Z, >'0 and,Z2 > 0.  Hence, no (other) poten- 

.tial solution point exists along k_s1 + k.s, = S,  This 

establishes the uniqueness of solutions to the problem at 

hand' except when all feasible points solve the decision 

maker's real problem. 

The Algorithm 

The above development leads to the following algo- 

rithm for computing approximate numerical solutions to 

the problem: 

1.  Determine if the line Z2 = 0 and the curve Z, = 0 

intersect in tne first quadrant.  They fail to 

intersect if and only if 

tfo < —  ,    and 

la>0MMa|Maaa4 ll'll ■ ■■-''■" "''- M^^^MMHUtMllk 
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ß2 

r^Pii1-^ 

p2Pl1 ^l 

.    ßlP2 
1 

-ß2 
"      Pi 

(B.20) 

2a.   If Z2 = 0 and Z, = 0 fail to intersect in tne 

first quadrant, the solution is 

s* = (o, minjs/k^  1 ,231|1 • (5.21) 

2b.   If Z2 = 0 and Z^^ = 0 intersect in the first 

quadrant, compute tne coordinates of the point 

of intersection, s , as follows: 

(1)  Compute the intercept, s", of the line 

asymptotic to Z, = 0 from 

Pi In 

s" .. -    31P2 
'1   1-1. 

Then compute tne value, s", at which 

Z. = 0 crosses this intercept. 

sj =   ^     . (B.:2a) 

Also, compute 

It P2   ) si  =  T—T— max<-ln3,.   In T—;—}■  . vB.2:b) 
2       1-32 ' p2Pl' 

I i 

 - -»^ ■• • ';'— - -'"- -^■■■-""-"--"—'-^^-' 
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(2) Using s^ and s^' as bounds for s compute" 

tne value of s* from (B.12). 

(3) Compute the corresponding value s, from 

Z2 = 0 using (B.llb). 

3a.   If ko3! + ^i8? - S, tne  0?t^mal  solution is s5'8 

(.slt   s2). 

If ko8! + ^is2 > ^' ^^e soiu'tion lies somewhere 

on the boundary of the feasible triangle. 

(1) Compute S?, the value of S which must be 

attained before any search effort can be 

allocated to box 2. 

p2      I s° = k0max i    i   . ,  OJ . (B.23a) 

If 0 < S ^ S?, the solution to the problem 

is (s*, 0) for any 0 <_ s* <_ s/k2.  Tne 

optimal value of the objective function, 

Z*, is p,.  If S° < S, the solution to 

the problem does not lie on the s, axis. 

(2) Compute S2, the value S must exceed if 

a positive amount of search effort is to 

be allocated to box 1. 

If 39 > ^ , S° = 0. (B.23b) 
2 - p-L   2, 

Several numerical  techniques  exist  for performing  this 
computation on  a modern  digital  computer. 
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If $2  < —  , SZ  corresponds to the point on the 

s2 axis at which J^Z, k„Z ,.,^2-     This point can 

be found by finding the root of (B.214) in the 

interval 

(•■ ^) ■ 

1 -M P? 
(B.24) 

Then S°  = k,*. 

.em. 

5. 

If 0 < s < S°, (0, S/k^) solves the probl« 

If S2 < S, the solution lies on the searching 

time constraint line, k^s, + k-jS- = S. 

Let s' = 0, s" = S/k, be bounds on the si«, the 

s« coordinate of the optimal solution point, 

si* is the root of equation B.25, which expresses 

K-S, + JC,S„ = Oj K.Z-.  = Kjiini 

- k];-s2 /k2-e2s 
k2 (-^Pi

6 e  ^ + p2e 

-ß. 
h "S2 /k2 -s2 

kl ple 
^T- 

/k. 

1-e 
-32s2 

(B.25) 

-eil7-S2)/k2 
»1?2e        ' ■L    '   n-e 
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The solution to the problem is (sj, s*), where sf 

is the root of (B.25) and sj = (S - k s*)/k 

i ; 
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APPENDIX  C 

BEHAVIOR OF  SR-LSI  MODEL 

FOR  SMALL T 

For small T approximate solutions to the SR-LSI model 

can be obtained by replacing the objective function by the 

first few terms of a Taylor series expansion of the objec- 

tive and maximizing t^is approximate objective function 

over the feasible set. The Taylor series expansion of the 

objective function for guess plan I (the objective 

function of Appendix B)   is  approximately 

Y  =  p1 +   (p2-ß2p1)k2T2   +   (ß2p1-31P2)k1k2T1T2 

9 2   2 -(p2-ß2P1)k2T     . 
(C.I) 

This approximation differs from the exact objective»func- 

tion only in third and higher order terms.  We wish to 
i 

maximize Y subject to ^, T2 _> 0, T + T2 <_ T. 

If T is small and P2 t   ^2^1' t^e Ünear term  of (C.I) 

dominates the quadratic and higher order terms.  There- 

fore, the solution for sufficiently small T assuming 

p2 * |i2Pl is: 

i.   T* = 0, 0 < T* < T if p2 < ß2p1. 

(In Appendix B we found that the objective 

function is constant along the T axis.) 

-206- 
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ii.  T* = 0, T* = T if p2 > ß^. 

If T is small and p« = PJPT» the linear term of (C.I) 

is zero.  So the solution is determined by tiie quadratic 

terms.  (C.I) reduces to 

where 

Y = p1 + 31^2 - CTg , (C.2) 

B =   (ßgP-L -  ß1P2)k1k2 

C = i(p2  -  ß2Pl)k2   * 

Since p2  =  ß2   .   and ß2 <  1, B and C are both positive.     To 

maximize Y given by  (C.2)  over the  feasible set T,   =  T-T2 

since SL- =  B >  0.     Let us substitute T^  = T-T2  in  (C.2) 

and then maximize Y as a function of one variable,   T2. 

Y =  pn   +  BTT0   -  (B+C)To Pi 
(C.3) 

(C.3) is the equation of a parabola having positive slope 

at T2 = 0.  Clearly Y is maximized by 

T* = min{T, T° such that ~-  = 0} . (C.U) 

T® is easily found by differentation of (C.3) to be 

TO -  BT 
^ ' 2(B+C) * 

( C . 5 ) 

Since B and C are positive, T° < T.  Therefore, (C.U-) be- 

comes 

BT Tit    -    TO     =    . ___ 
2 2        2(B+C) 

(C.6a) 
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Therefore, 

T*   =  T-T* (B+2C)T 
2(B+C) (C.6b) 

Having determined the solution of the guess plan con- 

strained optimal search allocations for small T, let us 

consider which of these two conditionally optimal alloca- 

tions solves the decision maker's search problem. The 

solution given above is conditionally optimal given that 

the guess plan is:  "Guess that the target is in box 1 un- 

less a contact occurs in box 2 only."  Let us call this 

solution conditional solution 1 and the corresponding opti- 

mal approximate objective function Y .  The other candi- 

date-optimal guess plan and its objective function are of 

those same forms with the roles of boxes (subscripts in 

formulas) interchanged.  Therefore, conditional solution 

2 is given by the above development with subscripts inter- 

changed. 

Let i be the number of one of the conditional solu- 

tions while j is the number of the other, i.e., j = 1-3. 

Case 1 There exists i such that ß.p. > p.. The condi- 

tional solution i is 

T* = 0, T* = T , 
I'D ! 

and the corresponding conditional optimal objective func- 

tion is approximately 

^  = p.   +  (p.   - 3.pi)k.T. 

Li 

Ü 

Li 

 —irfniiiii .   . - .   .-.   -   ■^M mmmmm^mmmm mm 
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u 

Similarly, the conditioual solution j is 

T* = 0, 0 ^ T* < T , 

and the corresponding conditional optimal objective func- 

tion is approximately 

Yj = Pj. 

Since ß.p. > p. implies that p. > V-,  the solution to the 

decision maker's problem for small T is conditional solu- 

tion j. But this solution yields exactly the same objec- 

tive function value as would be achieved without a search. 

This value can be attained for any feasible search alloca- 

tion by the degenerate guess plan:  Guess that the target 

is in box j for any possible search outcome.  Thus all 

feasible points are solutions to the decision maker's allo- 

cation problem. 

Case 2  There exists i such that 3^p. = p^. The condi- 

tional solution i is 

T* = 0, T* = T  , 
I'D 

and the corresponding conditional optimal objective 

function is approximately 

Y1 = Pi + (Pj - ßjPi)T. 

tfi.rMiMi.iii.. um i I iMYuaiiiiiiiiiaMliüaiMm 
  ätM 
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The conditional solution j is 

T* +  ^J Hi—3 ^  
1  2(3ipj-ßjpi)k. + (p-ß^Pj)^ 

T , 

(ßiP^-ß^Pi)^ + (p.-ß.p^k. 

3  2(ßipj-B:.pi)kj + (Pi-gjP^Jo 

and the corresponding conditional optimal objective func- 

tion is approximately 

Y^ = p. + (ß.p.-3.p-)k.k.T*T* - i(p.-3?p.)k?TA.2 
j    i j  j 1 ]ii3   2 ri iF]  1 1 • 

Since 3.p.   =  p.   and  ß.   < 1,  Y3   > Y1.     That  is,  the  con- 

ditional solution j   is  optimal. 

Case 3      p,   >  ßnl^»  P2  > ß2pl' pi  < Pi *     The conditional 

solution i is 

T*  =   0,  T*  =  T   , 

and the corresponding conditional optimal objective func- 

tion is approximately 

Y1 = p. + (p. - ß.p.)k.T. 

Similarly, the conditional solution j is 

T<fe = T, "* = 0 , 
* J 

--'■■■ ■      ■■:■■■,     -•■'^-^ " —i- i, — —--   ■■- — ^     '■ ■■■■• >^ll-">^ 
"       -■— -^■-^•^^**M 
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I 

and the corresponding conditional optimal objective func- 

tion is 

Yj = pj + (p. - ß^l^T. 

Since p. < p., Y1 < Y3 for small T. That is, conditional 

solution j is optimal. 

Case 4 .5 The conditional solution i is 

T« = 0, T« = T , 

and the corresponding conditional optimal objective func- 

tion is approximately 

Y1 = .5[1 + (1 - ß.)k.T - |<1 - 3?)k?T2]. 

Similarly, the conditional solution j is 

T* = T, Tt = 0 , 

and the corresponding conditional optimal objective func- 

tion is 

Yj = .5[1 + (1 - ßi)kiT - i(l - ß?)k?T
2]. 

i.   If (l-ßj)k. > (l-ßi)ki, Y
1 > Yj 

and conditional solution i is optimal. 

ii.  If (l-Mk. = (l-ß0)k0 and (l-ß?)k? < (l-ß?)k2, 
■L-L '' ll Jj 

Y3   > Y1 and conditional solution  j   is  optimal. 

■M— 
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iii.  If (l-31)k1 = (l-ß2)k2 and (l-a^)k^ = U-^k2^ 

then ß, ? $2  and ^i :: k2 so that both conditional 
i 

• Solutions yield the same conditional1 optimal 

objective function^. Hence both are optimal. 

To see that 

<i)    ?! s P2»   • 

(ii)  (l-ß1)k1.= (l-ß2)k2, and   , 

(iii) ' <l-jä^)kj = (l-ß2')k2  , , ' 

(l-ß1)
2  i(l-ß2)

2 

l-ß2  , ' l-ß2 

Numerator an|d denominator of each side have conunon factors 

(1-ß.).  So we have > 

But the function YT^-
 is strictly monotonic in the interval 

[0,1^.  Therefore, 3 = &„.     Then, substituting in (ii)1 

yields k, = k0. 

Li 

imply that  $■,,=' $2 ,and ki =  ^2*  eliI,!linaJte k,   and k-   from 

(ii)  and  (iii).     This yields , 1 || 

u. 



"^^'^mimminmmm ^^^^*^miimm*mmmmmmmmiiimm**)''''m<immi>mi«m.mmrw-, i ...    ,- 

l. ! 

APPENDIX D 

,   ALGORITHMS  FQR SOLVING THE SR-CSI  AND 

SR-ACSI  SEARCH ALLOCATION  PROBLEMS 

In this appendix we develop algorithms  for both the 

(SR-CSI  and SR-ACSI  allocation problems. 

THE SR^CSI PROBLEM 

(        Connic^er first the  SR-CSI problem given by 

SR-CSI 

Maximize  Z = 
T 0 

//      max    jp. (t,T)[dF(t) 
<t<T    1=1,2 (    * ) 

(D.l) 

Subject to T1,  T2  >  0,  Tj^ +  T2 1 T, 

where 
,      u(t,T) 

Pl^»^  =  u(t,T) + l   »        ' 

P2^t,T)  = 1 -  p1(t,T), 

u(t,T)  is  giVen by  (21+)  of Chapter  3,  and 

FCt)  is given by   (25)   of Chapter  3. 

Consider the response  guess decision and the resulting 

objective function,, ZC00),   for the related search time un- 

constrained problem with T,   = <» and T«   =  ".     To evaluate 

the  integral in  (D.l)   for Z(00)  one must  evaluate  the 

max   \ p.(t,00)>   function over the t plane.     From (24) 
i=l,2 ^   1 ' 

-213- 
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of Chapter 3 and the definition of u(t,T) clearly 

p;L(t,») i ?2(tt*)  as 

(l-01)k1t1 - (l-ß2)k2t2 1  in 02Pl 
BiP 1^2 

That is, 

{1} if s(t)  <  d, 

G(t,»)   =      {1,2} if s(t)   =  d, 

{2} if s(t)   >  d, 

where 

s(t)   =   (l-ß1)k1t1 -   (l-ß2)k2t2. 

d =  In 

Therefore, 

(D.2a) 

/^1\ 

\0ip2y 

fi/A P^t.^dFCt)  +     //   p  (t.«)dF(t)  (D.3) 
(t)<d s(t)>d    ^   

By  (2U)   of Chapter 3 

p1(t,oo) 
e2Ple 

-(l-ß1)k1t1 

ß2Ple 

-(l-ß1)k1t1 

+   ßlP2e 

-a-ß.)k.t. '   (D-4a) 
'2/^2t2 

and 

p2 (t,») 
S.p.e 

-(l-ß2)k2t2 

-d-ß   )k t, 
ß2Ple 1    ^ +  ßlP2e 

-(i-e2)k2t2   •   (D-4b) 

ü 
: 
; i 

I 

L 

J 

  '-——*-—•"—— —  -  ■'—  '■—i 1 ^ 
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ll 

By  (2 5)  of  Chapter  3 

/ -k1t  -32k2t2 -|älkltrk2t2\ 

Using (D.2)  and  (D.4),   (D.3)  reduces  to 

a-ß2r 
P2  +  T^JfVl 

Z(co)    = 

ßoP 2^1 
ÖTP 1^2 

^2 
I^ß". 

(i-ß,)-   rß1P2"|i-ß1 

'1       1^^-P2 [ß2pj 

(D.4c) 

if ß2Pll0lp2   (D-5a) 

if ß1P2<pP2P1.(D.5b) 

i If ß^p, = ßnPo» both (D.5a) and (D.5b) reduce to 

L 

L 

L- 

P2"2ß2PlP2 Z(oo)   =   -t |-^-i       if  3^2   =   ß2p1 (D.5c) 

Now let us analyze the SR-CSI allocation problem by 

comparing the objective function with the related uncon- 

strained search problem.  Consider each possible uncon- 

strained search outcome, t.  If t £ T, the constrained 

search will lead to the same response guess as the uncon- 

strained search.  But of either t1 > T1  or t2 > T2, the 

constrained and unconstrained searches may lead to dif- 

• —   «MflM 
— - ■ " ■MMM 
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ferent  guesses.     Let 

H(T)   =   ZC»)   -  Z. 

Then, to solve the SR-CSI problem we need to minimize 

H(T) subject to the nonnegativity and total capacity con- 

straints on T.  Let 

-^ = minlt^T^}. 

Then, 

H( KT) =  // f maxCp.Ct,»)} - p„(t,»)l dfCt),  (D.6) 
liiLi=1»2 8--j 

where g is in G(T^T). 

Let 

W(T) = {t | p^Ct,») < max £p.(t,»)}}, 
g       i=l,2  1 

for g in G(;r,T). Then, (D.6) can be expressed as 

H(T) = // fp^t,^) . Pp(t,"o)"| dF(t), 
W(T) L r        g    J 

where g is in G(T_,T) and r = 3-g.  But, jPpCt»^.) - Pg^l»^! 

is independent of T given that t is in W(T).  Therefore, 

(D.7) can be expressed as 

(D.7) 

H(T)   =    //  h(t)dF(t), 
W(T) 

(D.8a) 

fi 

M    | 

I 

■ ■'-■■   - - ■"-■■ •- 
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where 

;; 

ii 

0 

u 

u 

h(t) 

p;L(t,»)  - p2(t,^) 

p2(t,«)  - P1(t,») 

Using  (D.H),   (D.8)   becomes 

if s(t)   < d 

if  s(t)   > d. 

(D.8b) 

H(T)   = //    y(t1,t2)dt1dt2 -   //yct1.t2)dt1dt: 

1(t)<d i    ^      -L    ^       s(t)>d 
in~W(T) 

where 

yCt^t,)  =  ß.Pie •l'v2 

in"W(T) 

-(l-ß^k^t, -(l-ß2)k2t2 
i-31P2e 

(D.9) 

Note that by   (D.2b)   the integrand in  (D.9)  is strictly 

positive  for all  t  in W(T).     Therefore,   if W(T+)   is  a 

proper subset of W(T0), H(T+)   < H(T0)   and T0  cannot solve 

the problem. 

To evaluate H(T)  using  (D.9)   one must define  the 

wrong guess  region of the t plane,  W(T).     From (2 4a)   of 

Chapter  3 we  see  that for 1 =  T, 

G(T,T)   = 

{1} if S(T)   < a 

{1,2}     if S(T)   =  a 

{2} if S(T)   >  a, 

(D.lOa) 

ln^anm^j^^^fc. ■ i m^i^iigmgMjgjM -•- — "'    y..-^-.-^-!..^-..!...--': ^..■■..■■l.J,.^........... ^...—    .^.... -■-■--■>: ^..^.—^-.^-.^    .-->■.--■- ,-.,.  -" "--iiiiiiiiiiinriiiiii i  iiiiiiüi 
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where 
V. 

a =  In —   . 
P2 

From  (210)  of Chapter  3  for T,   < T,,   x^ 

I   {1} if S(T)  < b 

G(T,T)  =       {1,2}     if  S(T)   = b 

{2} if S(T)   > b, 

= T, 

where 

In 
ßiP 1^2 

From (24c) of Chapter 3 for x, = Tl' '2   < T2 

G(T,T) 

{1} if S(T) < c 

{1,2} if S(T) = c 

{2}   if S(T) > c, 

where 

c = In 
0oP 2^1 

(D.lOb) 

(D.lOc) 

And, if T_ < T, G(T,T) is given by (D.2b) with T replacing 

t.  We will refer to the lines s(t) = a, s(t) = b, s(t) = c 

and s(t) = d as lines a, b, c, and d respectively. 

An optimal guess plan corresponding to the uncon- 

strained search is:  "Guess that the target is in box 1 

if t lies above line d; otherwise guess that the target is 

in box 2." Therefore, if T = t < T, the constrained search 

fl 
D 

Ji 

|: 

Li 

y 
i; 

L 

0 
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II 

Ü 

D 
ü 

! 
i u 

yields the same guess as the unconstrained search.  Hence, 

no point t < Xis in W(T).  If 1 - I (t > T), the con- 

strained and unconstrained searches yield the same guesses 

for those points, t, which lie above cr below line d as 

T is above or below line a.  Similarly, if T-, ^ T and 

Tj = T« (t, < T, and t« _> T-), the constrained and uncon- 

strained searches yield the same guesses for those points, 

t, which lie above or below line d as the point (t, ,1\) 

lies above or below line b.  If x  = T, and T« < T,(t, ^ "l\ 

and t^ < T«), the constrained and unconstrained searches 

yield the same guesses for those points, t, which lie 

above or below line d as the point (T^t.) lies above or 

below line c.  These conditions completely define the 

region W(T).  Figure D.l shows the 10 possible W(T) region 

shapes assuming that 3, < Sj«  Tne corresponding cases for 

ß„ < ß, may be obtained by interchanging the roles of 

t, and t-.  If ß, = ß2 lines a and d coincide so that cases 

3 and 3' do not exist. 

Since the integrand of (D.9) is strictly positive 

for all t in W(T) and W(T) has measure greater than zero 

for any finite I^ + T2, H(T) is strictly positive for 

T, + T- finite.  But, the integrand decreases exponentially 

to zero as T, and T„ grow without bound.  Therefore, liCT) 

approaches zero if both T, and T„ grow without bound. 

Hence, the amount of available searching time used by any 

—..-.,:.,...w. . L.-.   - ■ir.mii.. 

■• -^    , i „irirtir--i h'.i.„iJ'a 
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Figure D.la    SR-CSI Model W(T)   for 3,   <  i^ Case ! LI 

Figure  D.lb     SR-CSI Model W{T)   for ^  <  Ü2 Case  1' 
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Figure  D.lc    SR-CSI  Model W(T)   for ß,   <   t>2   Case  2 

Figure  D.ld    SR-CSI  Model  W(T)   for 15,   -   |39   Case   2' 
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Figure D.le    SR-CSI Model W(T)   for Bj^  <  82 Case  3 
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L 

Figure  D.lf    SR-CSI Model W(T)   for ß,   <  32 Case   3' — 
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Figure D.lg    SR-CSI Model W{T)   for a,   <   \i2  Case  4 

U 

Li 
U 

i LJ 

i      I ! 

Figure D.lh    SR-CSI  Model W(T)   for  B,   <   32  Case  4' 
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Figure  D.li    SR-CSI  Model W(T)   for ß,   <  Q2 Case  5 
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Figurfe  p.lj     SR-CSI  Model W(T)   for 3,   <   32  Case  5' 
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optimal search must be unbounded as the available searching 

time grows without bound. 

For any search allocation T, let 

Tlb = the a^äcissa of line b at t2 = T2, 

l2c the Ordinate of line c at t, = T,. 

TOJ = the ordinate of line d at t, = T, , 

T,, = the abscissa of line d at t2 = T2» 

Tj : = t, intercept of line d, 

2    * T. = t2 intercept of line d. 

Also, let HQ(T ,T2) be the H(T) function for case Q. 

Using (D.9) and the above implicit definitions of W(T) 

direct integration yields 

HKT^Tg)  = H2(T1,T2c)   , (D.lla) 

.mcs^j) ±hi       -klTr32k2T2d  R -3lkiTrk2T2dl 
s i3rfc\*ie "yip2e ) 

(D.llb) 

|P1   , 

-k,Tn-ß2k2T2 -^ikiTi-k2T2 
-P2e 

). 

HSC^,^) I^ßJ {Ple -0^e 
-32k2T2d -3iVrk2T2 

"   '       -ßlP2 1 
(D.llc) 

U*.:.-Lu in—aamguBftu^, faiäm ygjyym 
^^^■i.^^^.i......^...,....i.....,,„,., ■■,■,■.,..■■■..,.,■.....,-i^^^..^.J,.U)ia 
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H4(T 
1-3!   | 

l'T2)   =  1^7 
-k2T2-ßlklTld fl -e2k2T2-klTl4 

p2e "ß2ple ) 

^i 

-k2T2-ßlklTl   -ß2k2T2-klT 

Po6 -^l6 

(D.lld) 

)' 

0 
0 

and 

HSCT^T^   =  HU(Tlb,T2)   , 

Hl'C^,^)   = H2,(T1,T2c)   , 

^l     ( -Vd , -ßlklTd) 
H2,(TrT2) = Tror-ß2Pie        + p2e 

i  /   l / 

"Vif,     -ß2k2T2l 
+ p^    ■L  ■L    1-e 

i 

- p9e 
-ölklTl  l^-^l 

H3,(T1,T2) 
1^3    (        -ßlklTd  a -Vdl 

(D.lle) 

(D.12a) 

1 i 

(D.12b) 

(D.12c) 

I 

L 

ü 

-k1T1 -31k1T1 

+ Ple " P2e 

L 
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Hif'Cr^Tg) -  ^ In ■ß2k2Td fl „ a"
k2Td, 

' \ 

+ p/^^-e-Wl) 

-ßnkjT« 
(...-'.'.) . 

(D.12d) 

L 

H5,(T1,T2) = Hi+'CT^,^) (D.12e) 

ü 

Consider an allocation, T0, in the case 1 or 1' re- 

gion.  If the corresponding T2  > 0, there exist feasible 

allocations, T = (T, + A , T„ ) for small positive A, 

in the case 2 or 2' region for which W(T ) are proper sub- 

sets of W(T0).  Therefore, such T0 allocations cannot be 

optimal. Consequently, case 1 or 1' region allocations 

can only be optimal if no allocation with both T, and T2 

positive in the case 2 or 2' regions is feasible. By 

symmetry, case 5 or 51 region allocations can only be 

optimal if no case 4 or 4' region allocation with both T. 

and T2 positive is feasible. Also, since H3 and HS' are 

decreasing functions of T, independent of T2, case 3 or 3' 

region allocations can be optimal only if Tj = 0. There- 

fore, for large T the optimal allocation must be in the 

case 2 or case 1 region. 

Let us denote the partial derivatives of H2 with re- 

spect to T-j^ and T2 by H2 and H22.  Then, 

- ■-■- — MM ■■—■'■— ■  "—-""TaiiHMiiiiiirtriiüiiiMiiiiio  —■-■-■. ■■■'■■■ ■■■•■■ -.--.■^.■..■l.- -..-... .■..-. ^-        -■■-^iMiliHrii 
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H2 1  -   ^ijPl^H 
-ß2k2T2d    -32k2T2 

-e ■) 
(D.13a) 

-ßlP2e    * * 1^e-k2T2d-e-
k2T2 

■ßlklTlL-k0T0J -k. 

and 

H2« s k« (     -kiTi "^2
k2 2    "^ 

-P2e 
lklTl'k2T2) (D.13b) 

It can easily be shown that both H21 and H22 are strictly 

negative for (T1,T2) in the case 2 region. Therefore, if 

we restrict (T,,T9) to the case 2 region and compute the 

allocation of T which minimizes H2, the resulting condi- 

tionally optimal H2*(T) function will be strictly de- 

creasing in T. So any optimal allocation in the case 2 

region must lie along the boundary T1 + T2 = T. 

Conditionally optimal points in the case 2 region are 

characterized by 

T^ + T2 = T, and 

H21 = H22. 

(D.14a) 

(D.lHb) 

Using (D.13) and eliminating 1^ from (D.14) we obtain 

(l-a-iM1*-!* 3ok.    (l-|39)(k,-09k9)rx 
1-S„)e        1 2      1 -d- 4-^)e        l      L    L  l (1-0 

(D.15) 

k0 -(l-ß-Xk^-^Tk^rx 

11 
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f ■ i ma  P ii tw.irm*  

x = T2 ' T2d, 

r S (i-ß1)k1 + (l-ß2)k2  ' 

II 

LI 

Along, T, + T« = T in the case 2 region, H21 can be shown 

to be strictly increasing while H22 is strictly decreasing. 

Further, these two functions cross exactly once in this 

interval. Therefore, (D.15) has exactly one root in the 
-Inßi 

interval (0, /..ft \t  ) which provides the unique condi- 

tional solution in the case 2 region. 

Note that (D.15) does not involve p,, p2, or T. 

Therefore, the position of the conditional solution in 

the case 2 region relative to line d is independent of the 

prior probabilities and the amount of available searching 

time. So the case 2 region conditional solution lies along 

a straight line parallel to lines a, b, c and d. 

The conditional solution in the case I region is iden- 

tical to that above for the case 2 region except that the 

roles of the boxes are interchanged. 

In the case 3 or case 3' region pj— < 0 while ■^— = 0. 

Thus the conditionally optimal solution for (T^T^ be- 

tween lines a and d is at or as near as possible to line d. 

The conditional solution for the case 2' region is 

obtainable from marginal analysis similar to that for the 

—' M ■■ ■  ' '■■"■* ■ ■--■'  •■■ ininhlilli^MüliiliiliUi_u 
-     -   -  ■ 
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2 region.  Corresponding to (D.15) we obtain 

■kl(W"T2) « a  /ßlkl(W-T2) e        -p.p^e 

32k2\ -kjW+Uj-Bjk^Tj 

ß /
k2  ß \ -

ßlklW"(k2"ßlkl 
-ßnk,w-(k0-ßnkn)T, 

0  , 

(D.16) 

0 
D 
0 
0 
11 

where 

w = T - T . c 

(B.16) depends on T but not on the prior probabilities. 

Therefore, the trace of conditional solutions in the case 

2' region is not a straight line. But the shape of this 

trace is independent of the prior probabilities. The case 

41 region conditional solution can be obtained by rever- 

sing the roles of the boxes in the case 2' solution. 

For small values of T the solution of the marginal 

conditional |!J- = |iy- along ^ + T2 = T (from (D.15) or 

(D.16)) may violate the nonnegativity constraints T-, 

T„ > 0.  In this case ~— is monotonic in the feasible 
2 — di-i 

portion of the case 2 or case 21 region (or case 4 or 

case 4' region). Therefore, the conditional solution for 

the case 2 or case 2' region (or case 4 or case 1' region) 

is the point where T, + T2 = T intersects the boundary of 

Li 

li 

!" 
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L 
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0 
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L, 

the feasible region nearest to the point where |TJI— = -Iwr—. 

Consider the variation of the integrand of (D.9), 

yCt,, t«), along any line s(t) = e. If 

and 

*! s *! + (l-ß2)rz» 

^ = ^ + (1-^rz» 

sCt^ti) s s(t,,t2) so that t
1 represents points along 

s(t) = e parameterized by z. Also ^l   + tl  = t,  +  t*  +  z, 

Direct substitution yields 

yCf) = y(t)e 

k1k2(l-ß1ß2) 

(l-ß1)k1+(l-ß2)k2 
(D.17) 

L . 

Therefore, the conditional optimal values of H decrease 

exponentially for the case 2 and case k  regions. Hence, 

the optimal trajectory cannot switch from one conditional 

trajectory to the other in the region with T sufficiently 

large that the conditional trajectories lie in the case 

2 and case H regions. Switching between conditional tra- 

jectories can, however, occur for smaller values of T. 

The Algorithm for the SR-CSI Model 

The following algorithm for computing the conditional 

trajectory corresponding to the case 2 or case 2' region 

is based on the above development.  The case H  or case U1 

region conditional trajectory can be computed by this 

 » J--^-'  i n i n  i HI 
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algorithra by interchanging the roles of the boxes. 

1. Compute the distance, x, which the case 2 region 

conditional trajectory lies above line d for 

large T from (D.15). .' 

(x is known to lie in the interval (0, M_a NV ^' ^ 

2. Compute the initial amounts of time, T9, which 

must be allocated to each box before the other 

box receives a positive allocation. 

In 
P2 a- If 01c' Tis rnqnq . T» s o. 

b. If c < 0, T° = 0 and T« is determined by the 

3H    9H 
condition wj— = -rm-  along the T- axis. 

(1) If 0' < d, T° = x. 

(2) If d < 0,  TJ is the root of 

U-*'W2)M^k2T2)\ 
(D.18) 

+  k >\*2*1 e"32*2*2-p-*2*2* .  o 

in the interval (0,x). 

I 
3.  If T < T° + T®, the conditional solution is 

T* = min{T,T9}, for i = 1,2. 

4.  If T > T° + T°, both T* and T* are positive.  The 

3H    SH 
conditional solution is determined by -rw— = -tp*- 

along Tj^  +  T2   =  T. 12 

11 

li 

li 

Ü 
i | 

I: 

0 
ii 

11 
y 

ttl  ■ -  - tialä    ■ M    ,  . .., ..., . ..a......^..-.,      „I-J        Kill "--" 



"WFI mmrmmm mm** mumwumum mrmmmiam 

fl -233- 

a-     If TiX+  (1-ß^^   » 

T* = T2d + x and 

T*  s  T - T*, 

where x is the  solution to  (D.15)   computed 

in step 1. 

b.     If T < x +  ^ ?  j^     , T* is the root of 

(D.16),  and T*  =  T - T*. 

(This root is known to lie in the interval 

(0,x).) 

Lr 

i 

L! 

THE SR-ACSI  PROBLEM 

The adaptive complete search information version 

search problem can be analyzed by the same approach as 

used for the  SR-CSI problem.     Since the results  for the 

CSI and ACSI versions are very similar,  only the differ- 

ences in formulas and results will be included here.     ACSI 

version contacts occur in both boxes unless t.  +  tj > T, 

Therefore, the ACSI objective function corresponding to 

(D.l)  is 

Z  = f f        max {p.(t,T)}  dF(t). 
tl+t2lT i=1»2 

(D.19) 

The "wrong guess" region for the ACSI version, W(T), are 

the portions of the corresponding CSI version W(T) which 

    -Mmii- ■ ,■, an^im ^mmnigm^jijii^^^ ..,,.. ^^^^^n^ 
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are in the t^ + t- > T half-plane.  Figure D.2 shows the 

10 possible W(T) region shapes for the ACSI version cor- 

responding to the cases shown in Figure D.l for the CSI 

version. 

Let 

X .w = T. value at the intersection of line b and 
ib   i 

T-L + T2 = T, 

X .  = T. value at the intersection of line c and 
ic   x 

T^ + T2 = T, 

X • , - T.   value at the intersection of line d and 
id        i 

T.,   +  T2  = T. 

Then,  corresponding to  (D.ll)   for the  CSI  version we ob- 

tain for the ACSI version 

H1(T1,T2)   =  H2(Xlc,X2c) (D.20a) 

"kiXlc"fi2k',?X2c [l-ß2 k        "I        -k 

l^-V^pe 

\±h-      ki     10 n   -h
kixi c"k2X2c 

(D.20b) 

ßi^^Pi     ~^-^-j~&2   2^2 
kl~^2 

k2P2     e-
ßlklTrk2T2 

Blkl"k2  ' 

1 «      1        'j 

ol 
0 
0' 

u 

u 

LI 

U 

i 

L 
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Figure D.2a    SR-ACSI Model W(T)   for ß^^ <  e2 Case 1 

u 

i    I Figure D.2b    SR-ACSI Model W(T)   for &1 <   &2 Case 1' 
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Figure D.2c    SR-ACSI Model W(T)   for ß1 <  3, Case 2 
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L 

Figure D.2d    SR-ACSI Model W(T)   for &1  <  ß.  Case  2' 
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Figüre D.2e    SR-ACSI Model W(T)   for 31  < Pj Case 3 
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Figure D.2f    SR-ACSI Model W(T)   for b^  <  ß^ Case  3' 
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Figure D.2g    SR-ACSI Model W(T)   for ß^^ <  ß2 Case 4 
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Figure D.2h    SR-ACSI  Model W(T)   for ^1  <   ^2  Case 4, 
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Figure D.2i    SR-ACSI Model W(T)   for 3^^  <  ß2  Case  5 

a   . d 

Figure D.2j     SR-ACSI Model W(T)   for $1 < ß2 Case  5' 
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HSC^.Tg 
r i-e2        k     1    -k^ 

) s r^ßj ' Kptpq pie 

m 

' l-ß^j  " 31k1-k2 ' 

ld"62k2X2d 

'^lklXld"k2X2d 
hp2e 

(D.20c) 

kipi e-
kiTrß2k2T2 

kl"ß2k2 

D 
0 

.  ki6iP2 -WrVa spv^6 

f.- 

HIC^,^; P2e ^l     -      k2      ' 
L-ßn^o       k2"^lkl 

"  1-0! k2      1 

' r^lI2   "  ePV^l  02Pl< 

+     ß2k2Pl     -k2T2-ßlklTl 

"k2X2b"ßlklXlb 

"ß2k2X2b"klXlb 

ve^;e 

k
lPl       -ß2k2T2-klTl 

^v^e 

H5(T
1'T2)   =  H'+(Xlb'X2b)     ' 

Hl'C^,^)   =  H2'(Xlc,X2c)     , 

(D.20d) 

(D.20e) 

(D.20f) 

u 

U 
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H2f(T1,T2) 
(i-e1)2 ßlP2 

02?! 

*1 
1-ß, 

1-0^2     pi 

6 2k2Pl (e-
klTl 

r62k2 ( 

-ß2k2T2 -K 
-e 1 (D.20g) 

k2p2   (-e^i  -e^w^ 

i-e- 
H3,(Ti'T2) s i^t 

"eiTd        -Tc 
P2e    ■ß2Ple 

+     ß2k2Pl e-T  +     k2P2       e-
ßlT 

klPl -klTl-ß2k2T2 
k1^2k2 

(D.20h) 

^^^2       -ß1k1T1-k2T2 
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Hi+,(Ti'T2) = r^-P2 

, &' 

32?! r=r2 

|AL£2 |e-
k2T2-ßlklTl_e-

k2T) 
:2"ßlkl( ) 

(D.20i) 

I! 

I! 

FJk 
1p1 ( -ß^iT "BikiW^ 

?^{e     "e 1 

H5'(T1,T2) = H4'(Xlb,X2b) , (D.20J) 

where In 
Ml 

(1-Öjk, 'l'^l 

Note that for the case 1, case 1', case 5 and case 5' 

regions H is independent of the allocation, (T,,!,,), along 

the constraint line 1^ + T2 = T. That is, all feasible 

allocations with T, + T2 = T in one of these regions 

yield the same value of H.  Within the case 2 or case 2' 

3H 3H region ^r- = 0 while ^ < 0. Therefore, the conditional 
1 "2 

solution confined to the case 2 or case 2* region is at or 

as near as possible to the boundary line c.  Similarly, 

the case 4 or case 4' conditional solution is at or as near 

as possible to line b.  And finally, in the case 3 or case 

L 
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3H 3H 
3' region |^r- < 0 while ^i- = 0. Therefore, the condi- 

tionally optimal solution in the case 3 region is at or 

as near as possible to line d. 

These results may be summarized as follows: 

1. An allocation, (T1,T2), between lines b and c can 

be optimal only if 

2. 

i. 

and 

ii. 

T is less than one of the nonnegative inter- 

cepts of lines b and c 

(T,,T2) is on one of the axes. 

That is, there exist two conditional trajectories 

consisting of the positive quadrant portions of 

lines b and c and the segments of the axes con- 

necting these half-lines to the origin.  An 

optimal solution can be found by considering 

the intersection of these conditional trajec- 

tories and the line T, + T2 = T. 

For T, + T2 = T the objective function is totally 

insensitive to the allocation in positive quad- 

rant portion of the region above line c and in 

the positive quadrant portion of the region be- 

low line b. 

The Algorithm for the SR-ACSI Model 

Based on the above, the following algorithm computes 

the case 2 or case 2' region conditional trajectory for 

the ACSI version of the model.  The corresponding case 4 

or case 4' region conditional trajectory can be computed 

—-■•• ■■--       ■ -Mi MaiaaiiaMiMiMMMB^lMtiilllMtfaMlMMMiMMtil   
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.2H«+- 

by interchanging the roles of the boxes. 

1.  Determine the coordinates of the intersection of 

line c with the positive coordinate axes. 

H 
D 
li 

In Vl 
a.  If P2 1 *2*V  Tl *  OHTTC ' T 1""1 

In 

b.  If ß2p1 < p2, T° 0' T2 = (l-6o)k 2'^2 

2.  The conditional trajectory is 

a.     For T j<  T°  + T° 

T* *  =  min{T,T9}  for i =   1,2. 
1.. 

b.     For T°  +  T°   <  T, 

(l-ß2)k2T +  In 
ßoP 2^1 

Tl  =   (l-ß1)k:|   +  (l-ß2)k2     ' 

L 

ß2Pl (l-ß^k,? -  In -^ 11 p2 
T2  ~   (l-ß1)k1 +  (l-ß2)k2     ' 

L 
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