
R«preduc»d by
NATIONAL TECHNICAL
INFORMATION SERVICE

SpringflcM, V». 23151 I

D DC

DEC 8 1971

EI5ED D EÜU

TM-4790/OOO/OO

THE ASSISTANT MATHEMATICAN

23 September 1971

33

UNCLASSIFIED
S»cunly CU»ufic»toi>

DOCUMENT CONTROL DATA RAO
litciour <l»tnlitMim* •! ml». *mdr »' ahtimti mnJ mlmmmg mneimu** mvi ht »«■I««»J »»»«■ m* ■•»»«ail ftgi'» ** ^m**tlt»4l

i oa<6iMft rims *c Ti»i T» rCa«p*r*«* «uiMarj

System Development Corporation
Santa Monica, California

Unclassified
ak cwou»»

The Assistant Mathematician (TAM)

4 of »C<»IP " vi NO ret <Tfp» »I ttpmt an« Intlucl» At»«;

Terhniral Bppnrt - 13
kuTHoniti frwif naiM, ■>•■• Mil i kuTHoniti fFIiit naiM, inlMt» inlllal, iaMiiaaw)

Joan Bebb

• ntPOaT 0*TI

23 September 1971

»•. TOTAL NO OF P*«lt

-äi.

Jb NO O' MCFf

*• CONTH4C T OH ««»NT NO

DAHC15-67-C-0149
» »nojtc i NO

I ARp^ order #1327, Amendment #3, Program
Code //1D30, and IP 10

»in

TM-A790/000/00

OTMtn mtromr NOIII (Any oihtt numbtn ttml mmr »• m*»l0fd

None

Approved for public release; distribution unlimited.

I> luPPLCMCNTaHTNOT*« ia t'ONtoniNC MILI ^ «nv «CTIVIT«

II * n% rMAC T

TAM is an Interactive program which performs arithmetic computations on constants,
variables, and one- or two-dimensional arrays. TAM operates from two-
dimensional, hand-written Input and generates two-dimensional output.

TAM is fundamentally a "one statement at a time" system. Each statement is
accepted and, if legal, executed before the next statement is requested. However,
statements can modify the TAM environment so that subsequent statements are
affected. The program can recall and re-execute previous statements and has a
powerful editing capability.

Wherever possible, TAM frees the user from explicit or ordered declaration.
Storage Is acquired through usage; unknown quantities are requested when needed.

TAM Incorporates a powerful set of arithmetic operators on constants, variables,
and one- and two-dimensional arrays. It also provides looping facilities,
single statement functions, and user-defined input and output.

Some built-in functions, such as logarithm, and some built-in constants, such
as TT and e, are provided.

DD 'r.,1473 UNCLASSIFIED
Secuntv CUaiidcation

TM 4790 /000/00

r

mum
m

^cy

(TM Series)

The work reported herein was supported by the Advanced
Research Projects Agency of the Department of Defense
under Contract DAHC15-67-C-0149, ARPA Order No. 1327,
Amendment No. 3, Program Code No. 1D30, and 1P10, also
supported by MASA Contract NAS12'-526.

THE ASSISTANT MATHEMATICIAN

by

Joan Bebb

23 September 1971

SYSTEM

DEVELOPMENT

CORPORATION •

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

90406

The views and conclusions contained in this
document are those of the authors and should
not be interpreted as necessarily repre-
senting the official policies, either
expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Distribution of this document is unlimited.

A I 154 5 6SI

23 September 1971
System Development Corporation

TM-4790/000/00

TABLE OF CONTENTS

Section

1.

2.

2. 1

2. 2

3.

3. 1

3. 2

3. 3

4.
/

4. 1. 1

4. 1. 2

4. 2

4. 2. 1

4. 2. 2

4. 3

4. 3. 1

4. 3. 2

4. ,4

4. ,4. 1

4. ,4. 2

4, ,5

4. ,5. ,1

4. ,5. ,1. 1

4, ,5. ,1. 2

4, ,5, ,1. 3

4, .5, ,2

4. .6

Page

INTRODUCTION 1

TAM ENTITIES 1

Quantities 1

Identifiers 2

TAM OPERATORS 2

Operators 2

Operational Hierarchy 3

Operator Definition 3

TAM STATEMENTS 4

Assignment Statement 5

Form 3

Use 5

Function Definition Statement 6

Form 6

Use 7

Input Statement 7

Form 7

Use 8

Output Statement 8

Form 8

Use 8

Loop Control 9

Forms 9

Form 1 9

Form 2 9

Form 3 9

Use 10

Built-in Functions 10

23 September 1971 11
System Development Corporation

TM-''« 790/000/00

TABLE OF CONTENTS (cont'd)

Section

5.

5.1

5.2

6.

6.1

6.2

6.3

6.3.1

6.3.2

7.

7.1

7.2

7.3

APPENDIX A

APPENDIX B

APPENDIX C

INPUTTING AND EDITING TAM STATEMENTS

Overview

Pushbuttons

UNCONSTRAINED TAM

Minimum Declaration

Demand Input

Natural Expression of Operation

Implicit Multiplication

Imbedded Exponentiation

ERROR CONDITIONS

User Errors

Interpreter Errors

Capacity-Overload Errors

BUILDING A TAM DICTIONARY

CHARACTER CODES - STRING-PARSER-GENERATED CHARACTERS

CHARACTER CODES - LEGAL USER CHARACTERS

Page

11

11

12

14

14

15

15

16

16

17

17

19

20

22-26

27

28-30

System Development Corporation
23 September 1971 1 TM-4790/000/00

1. INTRODUCTION

TAM is an Interactive program which performs arithmetic computations on con-

stants, stored variables, and one- or two-dimensional arrays. TAM operates

from two-dimensional, hand-written input and generates two-dimensional output.

TAM is fundamentally a "one statement at a time" system. Each statement is

accepted and, if legal, executed before the next statement is requested. How-

ever, statements can modify the TAM environment so that subsequent statements

are affected. The program can recall and re-execute previous statements and

has a powerful editing capability.

Wherever possible, TAM frees the user from explicit or ordered declaration.

Storage is acquired through usage; unknown quantities are requested when needed.

TAM Incorporates a powerful set of arithmetic operators on constants, variables,

and one- and two-dimensional arrays. It also providt3 looping facilities, sin-

gle statement functions, and user-defined input and output.

Some built-in functions, such as logarithm, and some built-in constants, such

as if and e, are provided.

2. TAM ENTITIES

2.1 QUANTITIES

Quantities in TAM are either positive or negative, integral or mixed numbers.

Internally, mixed numbers are carried in double-precision, floating-point

form; integers are carried in one IBM/360 word (A bytes). Therefore, effective

precision is that defined for the IBM/360. Quantities may be contained in

variables or arrays or expressed as constants. Most storage declaration is

Implied by usage. Arrays are dimensioned either Impllctly or explicitly.

23 September 1971
System Development Corporation

TM-4790/000/00

Examples: 5.7 1.0 2

,45

-.37

2.2 IDENTIFIERS

Variables and array identifiers are single-letter names. The legal alphabet

of TAM consists of Greek and Roman uppercase and lowercase letters. An

identifier may be made unique through the use of overscoring or underscoring.

Legal overscore and underscore characters are:

-u A

Examples of legal identifiers are;

3.

a A a

A A a

TAM OPERATORS

3.1 OPERATORS

Quantities may be manipulated through the use of operators as follows;

addition

subtraction

multiplication

division

exponentiation

n root >/~~ ■> v

factorial

absolute value

a + b

a - b

ab,a.b,a*b

a
b, a/b

xY

$r-

j

t 1

System Development Corporation
23 September 1971 3 TM-4790/000/00

{» ceiling

{ » floor

n
!!

1-m
product

n
t
i-m

summation

+b,-b unary slgi

T transpose transpose (two-dimensional arrays only)

Note that implicit multiplication is allowed because all Identifiers are single

letters (possibly qua.1 if led). A special operator, V, is used in conjunction

with setting arrays and is explained subsequently.

3.2 OPERATIONAL HIERARCHY

Parentheslzation is allowed to control the parsing hierarchy. In the absence

of parentheslzation, the hierarchy of operation is (from least to most bine! .ng):

Z summation

n product

+,- addition, subtraction

*,/ multiplication, division

+,- unary plus, unary minus

! factorial

{ },{ i,Ln,t) »V^/.T floor, ceiling, function call, absolute value,

root, exponentiation, transpose

3.3 OPERATOR DEFINITION

Each operator is usable when meaningful. With few exceptions (for example,

transpose applies to matrices only; (-3)! is signaled as an error), all opera-

tors are usable to manipulate single constants or variables. The operators

23 September 1971
System Development Corporation

TM-4790/000/00

are legal when applied to arrays where an acceptable matrix or vector operation

Is defined. For example.

["]
1/3

is defined if the matrix is square;

is not defined;

1.3 4 J 1.3 AJ * [? sj

iiii

-i
is defined if the divisor is a

square matrix and the interior

dimensions of the two matrices

are the same;

and

1 5

7 9

is not defined.

One-dimensional arrays are stored and treated as row vectors, with one exception.

In multiplication, if one or both operands are vectors, tha operand on the left

(if a one-dimensional array) is treated as a row vector and the operand on the

right (if a one-dimensional array)»is treated as a column vector. The multi-

plication performed is the dot product. Therefore,

[123,,[i] 14

4. TAM STATEMENTS

There are five distinct TAM statements:

output, and loop.

assignment, function definition, input.

)

System Development Corporation
23 September 1971 TM-4790/000/00

A.l ASSIGNMENT STATEMENT

The assignment statement Is used to set Identifiable variables or arrays,

presumably for use In subsequent statements.

4.1.1 Form

Identifier -•- expression

The expression may consist of any legal manipulation of quantities.

4.1.2 Use

For example:

A •»- 3 Set variable A to 3. (1)

1.4 5 6J

Set array B to the given matrix (also (2)

dimension B as 2, 3). Each element

of the matrix B may be any legal

expression that yields a single numeric

value.

♦• V 0 Set all elements of array C to 0 (3)

dimension C 3, 5.

D, ♦• 25.5 Set first element of array D to (4)

25.5. The dimensionality of D is

unknown as yet.

Ä
-1 B, . Set X to minus the sum of the (5)

1

j-i '-J A
elements of the first row (A-3) of B.

System Development Corporation
23 September 1971 6 TM-4790/OOO/OO

(6) Y - D 'X + (X) ^B. 2 Set Y to the sum of D1 to the -X
th

power and the product of the absolute

value of X and the square root of B. ».

The third example Illustrates the use of the special operator V> It is used

to declare, dimension, and preset an array (of one or two dimensions). The

form of the operator is:

where s and t are dimensions (t and the preceding comma are optional) and p

(also optional) is the prasettlng value. P may be any legal expression that

yields a single numeric value.

4.2 FUNCTION DEFINITION STATEMENT

The TAM user may define frequently used arithmetic expressions as functions;

he may then call upon these functions when necessary. Functions, of course,

return values. The function definition and call may contain parameters. Both

the function expression and the actual parameters of the call may contain calls

to other functions.

4.2.1 Form

f (PuPif'P) " expression
nit m

where f is a legal identifier, n is an optional alphabetic or numeric qualifier,

and the p. are optional parameters. The expression may involve any legal

manipulation of quantities. The identifier f, once it has been used as a

function name, defines a class of functions f and cannot be later used as a

variable or array identifier. The various functions in class f are dis-

tinguished from one another through the use of the qualifier n. For example

G (X) - X and GAX) - X are two functions In class G; G - 3 is an Illegal

statement. 8 and G are not in class G. As many function classes as de red 4^

)

System Development Corporation
23 September 1971 7 TM-4790/000/00

may be defined. The optional parameters, p., must be legal identifiers. The

same identifier may be used as a parameter in many function definitions and also

as a variable or array name or as a function class.

4.2.2 Use

An example of a function definition and call:

Function definition:

a3U.b) - Ul

Function call:

0*1 3/27.2.AY«

To exponentiate the value returned by a function, it is permissible to write

(for function a, parameters b,c, exponent 2):

a2(b.c)

or

a(b.c)2

A.3 INPUT STATEMENT

Because TAM requests values for undefined quantities as they are encountered,

user-directed input is seldom necessary. However, an input statement is pro-

vided so that the user may guide the order of quantity setting in a direct

fashion and so that he may reset quantities easily.

4.3.1 Form

G - list

where the list consists of legal identifiers of simple variables or arrays

separated by commas.

23 September 1971
System Development Corporation

TM-4790/000/00

4.3.2 , Use

The statement results in,a request for input(s) from the user. A value for

each element in the list is requested in turn. For example:

'U * n,a
results In the user being prompted with: |

Hopefully, the user will then respond with a value for ft.

TAM will then request a value for a by writing:

Ghee again, the user is expected to input a value for a.

4.4 OUTPUT STATEMENT

4.4.1 Form

list

where the list consists of expressions or identifiers separated by commas.

4.4.2 Use

The statement:

B, 3 + 5

results in the output

[:::]
8

assuming B has been defined as the given matrix. If B has not yet been

defihed, the following, rather unusual, result occurs. The user is first

asked to input a value for B by the prompt:

1 B «-
t

After receiving B, TAM ouputs it. ' if

•
, 23 Septellber 1971

4. 5 LOOP CONTROL

9
System Development Corporation

TM-4790/000/00

An assisnment statement, input statement, or output statement may be iterated

by following the statement with loop-control information.

4.5.1 ~
Loop control may be specified in three forms. Loops may be nested to any

level, but each loop variable in the nest must be unique.

4.5.1.1 Loop Control, Form l

Statement: 1-m, . .. , n

where ia the loop variable (an identifier of a simple variable whose value

will be incremented by one for each iteration of the statement), m is the

initial valu~ for i, and n is the terminal value. m and n may be any legal

expreaaions that yield single numeric values. The iteration is complete

when 1 exceeds n. The stateMent iterated may, but need not, contain references

to 1.

4.5.1.2 Loop control, Form 2

Statement: 1-m
1

,m2,. • .,n

where ia the loop variable, m
1

and m2 are the first two values for i as

the a,tatl!lllent is iterated, m
2
-m

1
defines the loop increment (or decrement),

and n ia the terminal ·~lue. m
1

,m
2

and n may be any legal expressions which

yi~ld single numeric valuea. The iteration is complete when i exceeds (or

becomes less than) n. The statement iterated may, but need not, contain

references to i.

4.5.1.3 Loop Control, Form 3

Stateoent: i-m1 ,m2,m3 ,oa4 , • • .mn

where i is the loop variable and the mj are successive settings for i each time

the atatement is iterated. The elipsis (•••) &hown is not a part of the

I
'

'

'

~

23 September 1971 - 10 Syatem Development Corporation
TM-4790/000/00

loop-control fo~, aa it is in the two previous forms, but is included to

indicate that the list •j is of uaer-determined length. The loop terminates

after the statement haa bean executed for i-mn. The statement may, but need

not, contain references to 1.

4.5.2 !!!!.
For exuple:

x
1

.J .. v~:t·l, ... ,5: j•2,4, ••• ,8

is an inatance of a two-level neat of loop control. The level of nesting

proceeds from right to left, i.e., j is the outer control variable, i is the

inner control variable.

Another ex•ple:

A-A+B:a-86,~4. 7 ,i+j

B as•-• the valuea 86,~4.7,1+j for aucce .. ive iteration• of the loop.

The final value for A ia the sum of these values plua the original contenta

of A.

4.6 BUILT-IN FUNCTIONS

TAM include& a aet of built-in functions that the uaer can activate by in­

cluding one of the naaea aiven below (along with an appropriate par..eter) with­

in any context in which a function call is permisaible. (In expres~ing the

naae, any combination of uppercase and lowercase Roman letter• is permiaaible;

e.g., Ln'ln:LN.). The available function& are:

Naae and Par ... ter

ain(x)

coa(x)

tan(x)

cot(x)

arctan(x)

tan-1(x)

ln(x)

Definition

dne(x)

coaine(x)

tangent (x)

cotangent(x)

arctangent(x)

arctangent (x)

natural logarithm(x)

The argument& are in radians for the trignometric functions.

..... ...

;

System Development Corporation
23 September 1971 11 TM-4790/000/00

5. INPUTTING AND EDITING TAM STATEMENTS

5.1 OVERVIEW

TAM statements are input in hand-written two-dimensional form through a RAND-

Tablet display device. TAM uses a previously constructed dictionary of

patterns describing the user's individual handwriting characteristics and

defining the recognizable character set (see Appendix A).

Once active at the terminal, TAM asks for a file description of this

dictionary:

OLD DICTIONARY -

The user then responds with the appropriate file description.

TAM then displays a set of "pushbuttons" (e.g., the words "Exit" and "Erase")

that allow the user to direct subsequent operations. The TAM pushbuttons

and their meanings are given in Section 5.2.

To start operating, the user writes a TAM statement on the face of the

display. The line will be parsed as recognized and an encoded form of the

line will appear (see Appendix B for encoding characters). The user can

then operate on his statement through use of the pushbuttons. As TAM operates,

a history display is built of the last four legal lines and any associated

output. Any of the last four lines entered can be recalled for editing and/or

reoperation.

23 September 1971 12
System Development Corporation

TM-4790/000/00

5.2 PUSHBUTTONS

Figure 1. TAM Pushbuttons

^ i

Button

Erase

Function

The most recently Input user characters, their related parsed

display, and any associated record In the Interpreter Interface

are deleted. A new or recalled line Is now expected.

Move The designated user characters are moved as specified by the

editing stroke(s). The move operations and how they are

Indicated are:

Open-up—a single horizontal line drawn on or between pre-

viously scripted characters. A space equal to the length of

the line is made between the selected characters. The Initial

point of the line determines the location of the space and the

direction of the line determines the direction in which the

affected characters are moved.

Close-up—two horizontal lines, similar to an equal sign, drawn

in a space between previously scripted characters. The

' »

-:

23 September 1971 13

System Development Corporation
TM-4790/000/00

Button Function

Move (cont'd) characters to the right of the editing strokes are moved to

the left a distance equal to the length of the longest of

the editing stroke pair.

Move character—a circle or a rectangle, drawn as one stroke,

followed by a single line. The characters enclosed by the circle

or rectangle are moved the length and direction of the line.

Context This button may be used in conjunction with the Move-character

operation and the character scrub (the latter consists of rubbing

out characters with the pen). If the Context button is pushed

immediately prior to the scrub action, any characters logically

attached to the scrubbed character, such as a superscript, are

erased. If the Context button is used in place of the Move

button, any characters logically attached to a character enclosed

by the first stroke of the move character are also moved.

TAM The current user characters are processed by the interpreter.

If no characters exist, the action is taken as a cancel signal.

When the current line becomes the history display, the program

is ready for new input. The interpreter's output, if not an

error message, is Joined with the parsed representation of the

user's scripted input and added to the history display, and the

previous entry in the history display is deleted. An Internal

program history pointer is set to the most recent history entry.

Latest The user characters In the history display are regenerated and

displayed.

J

System Development Corporation
23 September 1971 14 TM-4790/000/00

^ *•-

x /r

Button Function

Backward The history pointer Is moved from Its current position to the

next older entry. The entry's user characters are then

regenerated and displayed.

Forward The history pointer Is moved from Its current position to the

next more recent entry. The entry's user characters are then

regenerated and displayed.

Quit Terminate TAM.

6. UHCOWmAINED TAM

6.1 MINIMUM DECLARATION

One of the important design goals of TAM is that the user be freed from

unnecessary or ordered declaration of storage, quantities, or functions. One

manifestation of this freedom is that an array of elements need not be

explicitly dimensioned until the user wishes to operate with the array as an

entity, i.e., as a matrix or vector; so long as the user deals with his

array element by element, no explicit dimensioning is necessary. Before the

array is first used as a whole, the user must dimension it. Then, when the

array is used, the user is asked to set elements that do not yet have values.

In setting array values, the user may either override or maintain existing

values.

TAM gives the user this freedom by incorporating the following techniques.

An identifier—a single-letter name along with any overscore and/or under-

score characters expressed with the letter—is classified into one of two

classes, function or variable, on the basis of its first usage. That is,

the four distinct identifiers

A Ä A Ä

will be separately classified according to how t

■ ■

23 September 1971 15

System Development Corporation
TM-4790/000/00

they are first used. Subscripts used with identifiers discriminate between

class members by type. Each member of a class has associated with it a type:

list, vector, array, or function.

For example:

A. * 3 sets A to class 'variable' and A. to type 'list'.

Before A can be used as a vector, dimensioning information must be given about

A, The type of A there will be set to 'vector'. If necessary, TAM will

demand values for unset members of class A when it is used.

6.2 DEMAND INPUT

TAM further frees the user from ordered statements in that quantities to be

manipulated need have values only when used. TAM automatically provides

the necessary prompting. For example:

A «- 2 + Y

as the first TAM statement would result in the request

to which the user would be expected to respond with a value or expression.

If the user's response contains unknown quantities, TAM also requests values

for these. Once a value for £ is ascertained, TAM requests Y:

Y •"-

Once again, a value or expression is mandatory. Once all quantities are defined,

A is set to the value of the original expression Z + Y.

6.3 NATURAL EXPRESSION OF OPERATION

TAM allows the user to express standard mathematical operations in a natural

way. Two-dimensional input is TAM's outstanding facility in this regard. In

System Development Corporation
23 September 1971 16 TM-4790/000/00

addition, two features of standard notation usually disallowed in programming

languages are permitted in TAM: implicit multiplication and embedded

exponentiation in function calls.

6.3.1 Implicit Multiplication

TAM allows the user to imply the multiplication operator. The nature of TAM

identifiers sliminates contextual confusion. The following are examples of

implied multiplication:

ab -> a*b

c(de) -> c*(d*e)

5 5
e I 14 -> e* I 1*4
1-3 1-3

Note: IJI -> 1*0!)

(ij): -> (i*j):

2 2
and ab -> a*(b)

(ab)2 -> (a*b)2

6.3.2 Embedded Exponentiation

Exponentiation of the value returned by a function can be expressed in either

of two ways:

sin (a)2 -> (8ln(a))2

or

8ln2(a) -> (8ln(a))2

That is, the exponent may appear immediately after the full function call

(which includes parameters) or immediately adjacent to the function name,

before the parameters.

23 September 1971 17
System Development Corporation

TM-4790/000/00

7. ERROR CONDITIONS

TAM legality checks each statement before attempting to execute it. If an

illegality is discovered, the statement is rejected and an appropriate message

is generated.

7.1 USER ERRORS

The most frequent error message generated by TAM is:

SYNTAX ERROR AT CHARACTER XX

where XX is the relative character position (in the parsed string) of the

illegality. Other possible error messages are:

Message

TYPE ERR

Meaning

1. An identifier defined as a function

name is being used as a variable.

2. An identifier defined as a variable

or array name is being used as a

function.

3. The control variable in a loop

statement is an array or function

name.

Xl X * INTEGER > Q The factorial operator is defined for

positive integers only.

CLASS ERR 1. An identifier which is a member of a

a class of functions is being used

as a variable.

2. An identifier which is In a variable

or array class is being defined as

a function.

23 September 1971 18
System Development Corporation

TM-479C/000/00

Message

OPERATION ERR - ARRAY/VECTOR

X , X<« Y * INTEGER

Meaning

An operator is being used which Is

meaningless If one or both operands

Is an array or vector.

Y
1. X , Y Is a vector or array.

Y
2. X , Y is not an Integer, X Is an

array or vector,

3. An array or vector name Is being used
as a subscript.

For negative X, only exponentiation

to an integral power is defined.

PARAMETER ERR The number of parameters in a function

call does not match the number of para-

meters in the definition.

' COLUMNS/ROWS In a block input of an array, the columns

are of unequal length or the rows are

of unequal width.

SUBSCRIPTS MUST BE INTEGERS

SINGULAR MATRIX, NO SOLUTION An attempt to invert a singular matrix

has been made.

LOG OF - OR Q ARC RETURNS - INFINITY Ln(X), X c Q

returns a very small number.

SYMBOL OR STRING TOO LONG

W

23 September 1971 19
System Development Corporation

TM-4790/000/00

Message

MISMATCHED DIMENSIONS

Meaning

An arithmetic operation on two arrays

has been attempted. The nature of the

arrays precludes the operation.

EXPONENT OVERFLOW EXCEPTION

EXPONENT UNDERFLOW EXCEPTION

SIGNIFICANCE EXCEPTION

FLOATING DIVIDE EXCEPTION

FLOAT /-NO. An array or vector has been specified

in a context that demands a simple

variable, e.g., as a preset value for

an array or vector.

7.2 INTERPRETER ERRORS

The following messages should not, but may, appear. The program will stop.

The messages signal errors in the TAM interpreter. If one of the following

messages is encountered, a register and core dump should be taken and the

TAM maintenance personnel contacted.

AN UNDEFINED ROUTINE HAS BEEN CALLED

BAD CAR

BAD CDR

GENERATOR DOES NOT MATCH ITS PARAMETERS

ALL BOOLEANS OF AN EXPRESSION ARE FALSE

BAD CADDDR

BAD CADDDR2

System Developnent Corporation
23 September 1971 20 TM-4790/000/00 ^ >

BAD CADDDR3 i

BAD CADDR4

BAD CADDR

BAD CADDR2 ,

BAD CADDR3

BAD CADR i

BAD CADR2

BAD CADDDDR

BAD CDDDDR2

BAD CDDDDR3 ,

BAD CDDDDR4

BAD CDDDR

BAD CDDDR2

BAD CDDDR3

BAD CDDR " '.

. BAD CDDR2

X NOT A CHARACTER

BAD COMPRESS OF ATOM

BAD OUTOTJM2

ROOF x y COMPILER ERROR

BAD CONS

BAD DEF1

BAD DEF2

1 GETT x COMPILER ERROR

NOT ENOUGH SPACE

COMPILER ERROR HALT

I i

7.3 CAPACITY OVERLOAD ERRORS

The following messages signal that the capacities of JAM have; been exceeded.

The program will stop. If one of these messages Is encountered and the excess

seems unwarranted or 111 defined, a core and register dump should be taken

and TAM maintenance personnel (contacted. X

23 September 1971 21
System Development Corporation

TM-4790/OOO/OO

J

FULL UNDEFINED STACK

FULL BACKUP STACK

PULL ARGUMENT P^ACK

NO MORE ARRAY SPACE

NOT ENOUGH ARRAY SPACE

NOT ENOUGH LIST SPACE

NO MORE LARGE NUMBER SPACE

NO MORE REAL NUMBER SPACE

NO MORE GENSYM SPACE

NOT ENOUGH STRING SPACE

System Developaent Corporation
23 September 1971 22 TM-4790/000/00

APPENDIX A

BUILDING A TAM DICTIONARY

To operate TAM, the user must have, at some previous time, built a dictionary

of recognizable characters. This dictionary provides the Information to allow

TAM to recognize and accept the user's individual handwriting and character

set. Each character to be used with TAM must be entered into the dictionary.

A program, BUILDER, is provided for dictionary construction. The program will

either create a new dictionary or allow the user to modify and amplify an

existing one.

Using the Dictionary Builder

After signing on, the program asks:

CONTINUE W/ OLD DICT ? Y/N

A "Y" answer will cause the program to request file description information

and open an old dictionary file. An "N" arswer causes the program to assume

a new dictionary is being built.

Function pushbuttons will then appear on the display. The pushbuttons and

their functions are:

Pushbutton Function

Save Save the dictionary on disc or tape

Build Build a dictionary

Test Test the dictionary definitions

Sumry Print a summary of the dictionary contents

Print Print a detailed description of the

dictionary

Quit Quit the program ^k

(Only the Build and Save functions will be described.) ^|

I 23 September 1971 23
System Development Corporation

TM-4790/OOO/OO

Build Function

The user builds a dictionary containing stroke information and the definition

associated with the strokes. The stroke information consists of the user's

own Individual characteristics in drawing characters.

Program/
Control

Pushbuttons

Sampling Mode:

The program asks for user input by dis-

playing "INPUT" at the top of the dis-

play. The user then inputs the strokes

he wants to define. Note that the

strokes need not be similar to each

other.

Keyboard

Input strokes
Dictionary matches/no matches

Keyboard pushbuttons

Threshold pushbuttons

23 September 1971 24 System Development Corporation
TM-4790/000/00

Keyboard, keyboard pushbuttons. There are five keyboards, each consisting of

a unique set of definitions. The user selects the set containing the defini-

tions he needs by touching one of the keyboard pushbuttons: "S" for special

characters, such as the asterisk and plus sign, "G" for Greek characters, "N"

for numerals 0 through 9, "U" for upper case Roman alphabet, and "L" for lower

case Roman alphabet.

The uppercase Roman alphabet Is the first keyboard set dlspxayed; the last set

selected will be displayed at the top of the display until another set Is

selected.

Dictionary matches/no matches. Each stroke is analyzed and compared to defi-

nitions already in the dictionary. If a match has been found (matches arc

subject to threshold values described below), the character associated with

that match is displayed directly below the stroke. This character will either

belong to one of the keyboard sets or be a backward "S". The backward "S"

represents a match In the dictionary that has no character definition, i.e., is

only a part of a defined character.

If no match has been found, a backward (to distinguish It from the character

"7") question mark is displayed directly below the stroke.

These defines/undefInes are displayed about an inch below the string of input

strokes, each define/undefine aligned with its stroke, at successively lower

levels to prevent overlapping of definitions.

If the strokes are input below the bottom third of the screen, or if the layering

of defines/undefInes results in the overlapping of pushbuttons, then the defines/

undefines appear above the threshold pushbuttons in the order in which their

corresponding strokes were drawn.

23 September 1971 25 System Development Corporation

Threshold pushbuttons. These buttons appear at the bottom center of the dis-

play, "RT" for reduced thresholds and "IT" for increased thresholds. A box

appears around the threshold button last selected; the reduced thresholds are

in effect first. These thresholds are used in determining whether or not a

match exists for a given stroke/strokes.

Program/Control pushbuttons.

Redefn

Forget

Erase

Exit

Redefine button, allows the user to change a dictionary

definition.

Forget button, ignore a previous action.

Clear the display and return to the sampling mode ("INPUT"

displayed.)

Leave the Build function and return to function selecting

mode.

Defining Mode.

\ 1

o®©^-^ 7<IT

o v r T T <r T 9 <r <r
1 <r v

s

'■ 1
N j

i - 0 n

A definition is entered in the dictionary

by circling the stroke/strokes or either

end point of a stroke and touching the

corresponding character in the keyboard.

These definitions may be entered one at a

time or as many as the user wishes, subject

to program limitations.

23 September 1971 26
System Development Corporation

TM-4790/000/00

The matches/no matches appear again below

the input strokes. There may be all

matches or there may still be some fail-

ures to match, as shown at the left.

The user may define the strokes for which

no matches exist until all have matches

in the dictionary.

I

Note: The possible matches are done using the thresholds in effect. Increas-

ing the threshold values by touching the "IT" pushbutton may result in more

matches.

To change the current definition in the dictionary for a certain stroke or

strokes, the user should first touch the "Redefn" pushbutton and then define

the stroke or strokes in the manner described above.

When satisfied that the current set of strokes has been properly defined,

the user should touch either the "Erase" pushbutton to Input a new set of

strokes or the "Exit" pushbutton to leave the Build mode.

Save Function

To save the dictionary just built (for future use with TAM or for subsequent

amplification), the user should touch the "Save" pushbutton. The program

then requests a file identification (on the terminal). If a new file is to

be opened, 'N' must be included in the file identification. Once the

dictionary has been saved successfully, the message "DICT SAVED" appears on

the terminal.

23 September 1971 27 System Development Corporation
TM-4790/000/00

APPENDIX B

Octal

CHARACTER CODES - STRING- -PARSER-GENERATED CHARACTERS

HEX Decimal Parse
*

Symbol

Cl 301 193 t
/

\

1

Overscore; Upper Integral limit

C2 302 194 Superscript

C3 303 195 Subscript

C4 304 196 Underscore, Lower Integral limit

C5 305 197 \ Sq. Rt. index

Dl 327 209 Left Bracket

D2 322 210 Right Bracket

D3 323 211 Numerator and Denominator enclosures

D4 324 212

D5 325 213 Multiple overscore enclosures

D6 326 214

D7 327 215 Matrix enclosures

D8 330 216

D9 331 217 Combinatorial enclosures

DA 332 218

EO 340 224 Square Root Bar

FO 360 240 Matrix Element Separator

Fl 361 241 Fraction line

F2 362 242 Multiple overscore indicator

F3 363 243 Multiply cross

F4 364 244 Multiple underscore Indicator

F6 366 246 Matrix Row Separator

FD 375 253 String Start

FE 376 254 String End

J

23 September 1971 28
System Development Corporation

TM-4790/000/00 !

APPENDIX C

USER INPUT CHARACTERS

Octal Hex Character Octal Hex Character

000 00 n/a 040 20 Blank

001 01 a 041 21 i •

002 02 ß 042 22 it

003 03 a 043 23 #

004 04 6 044 24 $

005 05 e 045 25 Z

006 06 * 046 26 &

007 07 n 047 27 *

010 08 X 050 28 (

Oil 09 M 051 29 ^

012 OA Y 052 2A *

013 OB n 053 2B +

014 OC P 054 2C •

015 OD 0 055 2D -

016 OE T 056 2E •

017 OF \ 057 2F /

020 10 / OfO 30 0

021 11 — 061 31 1

022 12 > 062 32 2

023 13 i 063 33 3

024 14 1 064 34 4

025 15 V 065 35 5

026 16 A 066 36 6

027 17 e 067 37 7

030 18 n 070 38 8

031 19 X 071 39 9

032 1A n 072 3A • •

033 IB { 073 3B •
»

034 1C r- 074 3C <

035 ID } 075 3D -

036 IE / 076 3E >

037 IF ^ 077 3F ?

! f

23 September 1971 29 System Development Corporation
TM-4790/000/00

J

(Cont'd)

Octal Hex

100 40

101 41

102 42

103 43

104 44

105 45

106 46

107 47

110 48

111 49

112 4A

113 4B

114 4C

115 4D

116 4E

117 4F

120 50

121 51

122 52

123 53

124 54

125 55

126 56

127 57

130 58

131 59

132 5A

133 5B

134 5C

135 5D

136 SE

137 5F

Character

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

w

X

Y

Z

I
\

]

t

Octal Hex

140 60

141 61

142 62

143 63

144 64

145 65

146 66

147 67

150 68

151 69

152 6A

153 6B

154 6C

155 6D

156 6E

157 6F

160 70

161 71

162 72

163 73

164 74

165 75

166 76

167 77

170 78

171 79

172 7A

173 7B

174 7C

175 7D

176 7E

177 7F

Character

go

k

£

m

n

o

P

q

r

s

t

u

V

w

X

y

z

<

>

EOM

23 September 1971 m 30 System Development Corporation
TM-4790/000/00 1)

(Cont'd)

Octal Hex

200 80

201 81

202 82

203 83

204 84

205 85

206 86

207 87

210 88

211 89

212 8A

Character

reserved

A

D

V

j

