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tpa-te desi od- vore generstor for the Hilo Harbor modell, during the

per~od !-ovember 1963-may 1964, in the Water Waves Branch, Htydraulics Divi-

sion, WES, under the dir-ection of Mr. E. P. Fortson, Jr. , Chief of the

ifypisulics Division, and Mr. R. Y. Hudson, Chief of the Water Waves Branch.

7he Fortran program for the nimerical solution of equations 93, 94, and 95
w•s orked out by 17-1r. Michael Dorl of the Hydraulic Analysis Branch. This

freport waz prepared by Dr. Keulegan.

D Directors of-the ;.-eS -luring the conduct of this investigation and

preai-at4ion cf- this report were Col. Alex G. Sutton, Jr., CE, and
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GIOSSARY

t Pneumatic generator and channel

D Depth of nozzle throat

h Wave height, surge or oscillatory wave

hm Maximum wave height in oscillatory wave

H Maximum height the water is raised by suction in chamber

S 1HB Base height of the prismatic portion of channel

H Depth of water in channel downstream of wave front

HT Height of generator ceiling measured from channel bottom

k Wave number; k = 23T/X

SLength of pneumatic chamber

i t Length of nozzle

Q Volume or area of oscillatory wave in channel of unit width,

positive or negative poition

t Time

t Characteristic time; gee equation 81
0

T Period

V Value of air gap during wave generation; V = i(b + a) i

V0 Initial value of air gap; V0 = 1A • I

6 Fall of water surface in chamber during wave generation

A Initial air gap in generator; H = H + A

T
vii



V, io• :i ies 2 2

q Absolute velocity; q2 = + v

u Horizontal ,:omronent of velocity or particle velocity in wave
mot ion

u Maximum particle velocity in oscillatory wave

u2 Particle velocity in sirges from generator

v iercl-al component of velocity

V Velocity in the direction of the normal to a surface

v, Fall velocity of water surface in 2hamber

v W!ave velocity in surges

Pressures

A Semiamplitude of the pressure variations

1l-k Constants to describe the fall of pressure in the pneumatic
chamber for surges or long waves; 6p = (I -k - 2k~t)/0

Atmospheric pressure

P Pressure in chamber measured relative to atmospheric pressure

P0. Pressurc in water at nozzle mouth measured relative to atmospheric
pressure

Ap Air suction pressure: in chamber during wave generation

. Air suction pressure in chamber during the start of waves

,6mL A positive quantity; represents the additional pressure difference
to overcome the friction resistance through the air nozzle

4)0 A'- suction pressure to raise water to elevation f ;

S= Pg(H - IT )

Energies

E Total energy; E T + V

viii



SEQ Internal kinetic energy of air in the vessel

E, Rate of dissipation of kinetic energy from the surfaýc o- ,:onta.t

g Constant of gravity

Ic An expression equal to Vl- - l) -- dt

M A numerical factor in -the e pressicn relating the kinetic energy
of liquid in the chamber and the nozzle to h and H0 ; see
equation 33

14 A numerical factor in the expression relating the kinetic energy
of liquid in the chamber and the nozzle to vi and I ; seeS~equation 86 "

Nt A numerical factor in the expression relating the kinetic energy
of liquid in ithe nozzle to u2  and 1O ; see equation 26

T Kinetic energy of moving liquids

TN Kinetic energy in the lower part -)f the pneumatic chamber

T2 Total energy, T2  T2 1 + T22

T21 Kinetic energy in pneumatic chamber and the nozzle below

T22 Kinetic energy in-the wave in the channel

V Potential energy of liquids

W Work done by pressurec

ZZ Differance in energies of a portion of liquid for the inst-ints
t and

f Gravitational potential: = v

?low of air into receiving vessels

2a Cross-sictional area of orifice; a Atd A

cO Velocity of solmd in the air outside vessel

SCOC Initial and later discharge coefficients, respectively, real or
apparent, of orifice

C Specific heat at constant pressure

Cv Specific heat at constant volume; Cp = Cv + R

ix



d D½w.rneter of ail orif'tee

F K Nlimerical defined by K 71/ G7

nm Mass of gas in receiving chamber

•M0 Iomentu' of liquid erfterirg the orifice

n A constant

N Numerical defined by N =

Po Pressure of outside air

P1 Pressure at vena contracta of the orifice

p Pressure inside rec.iving vessel

-q Velocity of air at the vena contracta

R Gas constant; pv = Re

v Specific volume; v = I/0

V. Volume occupied by air jet

VO Initial volume of receiving chamuer

X. Length of air jet

SA positive -coistant

7 Ratio of specific heats; = Cp/Cv

A Initial a!- 4.p between the water surface and the chamber ueiling

E Internal energy of gas per utlit mass; or a numerical which depends
on the circumstances of the filling and which can be a variable
-hanging with time

GAbsolute temperature

0 Temperature in degrees Rankine corresponding to 32 F

P Density

P Density of air outside

p• Density of air ac vena contracta

_x



Pi Density of' air iraide

C C1ros-sectional area of vena contracta

Geometrical .auntities

1,m Directional cosines of normal drawn inward of S

s Length of curve, closed or open

S Surface area

x Longitudinal coordinate

y,z Vertical coordinates

DiLuensionless var-ameters

N 1 ih

Nozzle coeffidient of resistance; see equation 143

I 8H/A
I Nozzle factor of resistance; see equation 52

S[I~
H

Sxi
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After a brief discuss'on of the genesis of oscillatory waves ty the
!,_o etod, the reauired pressure condition for the genesis of long

.su!ge's with 2onstaut xave heights is inqui-red into. Reasoning from the
e.er•" point of vie., it is seen that the suim of the pcessure head in the

pneumati z 0hamber and the -.Aater elevation therein should remain constant
during the Issuance of the wave from the gener-ator.

SE;:perien-Me ndicates that this condition would be realized for the
operation where, subseauent to the raising of water into tne chamber, one
allows the outside air to enter the chamber through an aperture. Because
of the Inertia of -water, marked pressure osci2llations occur in the chamber
at. the instant of aperture otoening. These oscillations last for a short
*'me, and soon the :ali of t.ater surface and the increase of pressure,

both, are uniform. These aspects of the generator behavior are amenable
to analy-s is.

The design of a pneuwu,;ic generator f( long surges may be effected
-solely on t:.e basis of lattei manifestations of the generator action. Pro-
:edures for th- design of a pneumatic generator for lonQ waves are. otlined

and are applied for the generator used in the Hilo Harbor model used to
study the problems o" protection against tsunamis.

II
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THE APPROXIMATE THEORIES OF PNEUMATIC WAVE GENERATORS

Iydraulic Laboratory Investigation

PART I: INTRDU710TiO

1. The first phase of the Hilo Bay model investigation will comprise

examination of the effectiveness of various protective structures against

tsuna is using a singular positive wave of translation of great length with

large and uniform heights entering the bay. Such a wave can be created in

a model by suddenly releasing the impounded waters o' a reservoir, by uni-

forldy displacing a bulkhead through a distance, or by using a pneumatic

wave generator of considerable capacity. The elementar-j aspects of the

theory relating to the latter will be discussed herein.

2. Theori"ginal Idea of a pneumatic wave generator goes back to the

-1 late Professor R. T. Knapp, California Institute of Technology', who used

such a machine, in .a model to study the long wave conditions of Apra Harbor,

Guam. Professor Knai-p was well known for his ingenious and original ideas

-' in mechaxical devices, and the air-ýoperated machine unquestionably is a

4 fIrm testimoniD to his inventive genius. In an unpublished paper Knapp

-briefly touched upon the theory of the machine that was used for the Apra

Harbor model. In kindly transmitting a copy of the paper to this writer,

Mri. j. 1M4 Caldwell of the U. S. Coastal Engineering Research Center added

remarks to the effect that there is difficulty in following the arguments

of the paper. The brevity of the treatment and possible typographical

errors could be the reasons for this difficulty. The explanations of Knapp

purport to deal with the machines for the purpose of -enerating oscillatory

translation waves. In the following, before entering into the discussion

of air machines to generate singular waves, it would be -nstructive to con-

sider first the matter of the generator for long oscillatory wave,. This

is done for the purpose of developing a feeling about the all-round aspects

of the problrm.

* Raised numerals refer to similarly numbered items in the Lliterature
Cited at end of text.

1



'When a pntŽurnat.- generater is provided with an exit nozzle. and

Sthls seems to bp necssary for the genesis of oscillatory shallow-watcr

waves of long length, the flow of water from the pneumatic chamber into the

Shannei outside is one of deflection. Owing to the latter condition, it

,rould appear that the mechanics of flow are more readily treated by resort-

-,ng to enep.j considerations rather than to the momentum principle. The

cnerji; relation can be expressed in-two wa•ys, one representing the

Lagrangian point of' view and the other the -Bulerian point of view. In the

rev'ew of Knapp's problem, both forms of the energy relation were used.

This was su.c-essful, and accordingly the same approach was incorporated in I
the probiem of a pneumatic wav:2 generator to produce a singular impulse of

"-wrave of great length and of constant height moving over water of constant

depth and -idth.

4. The-prese.'it report is not meant to be a systematic treatment of

lpneumatic generators. It merely presents the original tinking that guided

the conduct of experiments on a few shapes of generators. The order of the

material shown here does represent the progress of analysis running parallel!

with the tests. The aim was to develop certain basic relations that by

themselves were sufficient for design of the generator which could -be

used Ln the Hilo Bay model. These relati. 3 are shown in the section

dealing with design.

5. For the interpretation of the various theoretical results in the

paper, reference is -made to some of the experimental results with various

shapes of neumatic generators. Test procedures leading to these data are

fully explained by M.r. C. C. Shen in a separate report.

2



FART II: THEORY OF PNFUMATIC GOENEBRATOR8 NR OSCILLATORY WAVES

Kinermat i Relations

6. Definitions of symbols for wave height and particle velocity

(translation waves) are as foll;.•s:

h W,•ve elevation measured from undisturbed surface

h Semiamplitude of wave height , maximum value

HO Depth of undisturbed water in channel

T Period

u Uniform palticle velooity in a section i

u Semiamplitude of particle velocityi maximum value

x Distance measured from moutn of nozzle
X Wave length"--

The mouth of the nozzle is that opening where the mean depth of water dur-
ing a complete oscillation equals 0. It is asstumeu that

h =h sin (cr- kx); o= 29/T

and

U Ur sin. (at -kx);, k =21%/2

The relation between h and u is determined from the condition c '
M. M

continuity

oh cos (at - k)- u .cos (at - = o

h
a m

m k HO

or

U M

in(I
0 0

3



7. Let Q bc the area of the elevated portion of the wave or the

dep'.'sedportion in channel of unit width. See fig. la. For t = 0

h =h s- n kx
m

Q = -h sin kx dx

2h h A
-m m (2)
k (2)

8. Under the action af sinusoidally varying pressure P , the sur-

"rface of water in the pneumatic chamber during a complete cycle is forced

from level A to level B -and then is pulled back to the initial level A

The average level is in the same plane as the undisturbed water surface in

the outside channel. Let the displacement 6 of the water surface in the

chamber be measured from the undisturbed level. By storage conditions,

where 2 is the chamber length,

2 d- = -ulldt 0

Swhere u is now the particle velocity at the-mouth of the nozzle, that is

at x = 0 . As u is sinusoidal, assume that 6 is also sinusoidal and,

as 6 raries from 5 to -5 , then

86 cos at
Zm

At the nozzle mouth, that is, at section x ý 0 , the particle velocities

u = u sin at

This and the st3rage equation yield

umHoT h1 k
2;5 =....

28 mm



or

216 ~ (3)m

Accordingly, the pneumatic chamber will require a storage of only Q

9. To produce waves of specified wave heights 2hm , the pressure P

of the pneumatic chamber needs to be properly controlled. To determine the

relation of P to h , resort may be made to the equation of enerjy to be

discussed below.

Energy Equations

10. For the case of two-dimensional flow, the equations of motion are

given as

du 1 6k d2
t * ax ox

where d/dt -denotes differentiation along a-particle path, that is

d C

x ()

wheze u and v are the velocity components in the coordinate axis x and

y . The physical meaning of 01 is that it denotes the potential energy,

per unit mass, at the point x,y in respect to gravitational forces.3 As

both p , the pressure, and -Q , the gravitational potential, enter into

the equation as rates, the resulting motions are not altered if the value

of p is reduced by one constant and Q by aaother ciustant. This allows

us, when dealing with gravitational wave motion, to put atmospheric pres-

sure equal to zero. The mathematical expression for PI is gy if y is

drawgn vertical. Nod y may be measured from any horizontal plane. For

the problems -tt hand, y will be measured from the channel bottom.

U. The derivation of the energy equation on the basis of flow

equations is given by Lamb.3 For incompressible flow in two

5



'mneu,,ýioas, the equation reduces to

7 (T + V) = (fu + mv) ds(

:.l'*Lh applies to the body of liquid enclosed in a cylinder of unit length

"e the z direction and having s as the ,ircumi'erential boundary curve.

H,2re i and m are the directional cosines of an inwardly directed normal

to the bounding curve element ds or the bounding surface of area

dA = 1 - s . The quantities T and V refer to kinetic and potential
energies of t'. liquid bounded-by s and are determined from

T = af(u2 + v2 )dS ; dS = dx dy

and S

V = ofQ dS ; dS = dx dy
S

Multiplying the two sides of equation 5 by dt and integrating between two

instants t 1  and t 2 yields

(T V 2 ( +V) 1 =f:2 (iu + mv)p ds dt(6(T + ) - (r + (6)

The interpretation is that the total iacrease in energy, potential arid

kinetic, of the same portion of liquid in its path of 'iizplacement is equal

to the work done by the pressures on its surface. This is stated by Lamb.

See fig. 2a. SKice the expression in equation 6 gives the change in the

energies of the same portion of liquid in its path of displacement for the

tim'es t, and t 2 , this expression may be referred to as the Lagrangian

form of the equation of energy.

12. An alternate form of the equation of energy is

42 f U + mv) (E q, -. C~a + p) (r)

£ 2 2

.where a = u + 7 and s represents a curve drawn in the field of ve-

io -'ty and S is the area enclosed by the curve. The interpretation is

-tnat the change in kineti, energy in a region delineated in tne flow field

r 6



by a closed curve is due to the inflow and outi'low oi" potential energy and

M
4' ki np+I.i% P np-nrr inv~rs r.nn snwPr -P're-s t~hp- jnn~nne rn- ~nn ,i-ne +. hp. 'jrnk

done by the pressures on the body of liquid in the delineated area. See

fig. 2b. Since the expression in equation 7 gives the changes in the

energies in the fixed area, this expression may be referred to as the

Eulerian form of the equation of energy. The proof of the expression in

equation 7 will be given in the Addendum.

13. In the ordinaay application of the energy relations., usually the i
flow is through passages with rigid walls,, far which at the walls- v. and

r vanish.

Pneumatic Pressures

14. Use may now be made of equation 6 to examine thoý increase in

ware energy with time in the channel downstream of the nozzle mouth. See

fg. lb. It is assumed that at time t < 0 the liquid in the channel is

at rest; the wave motion commdnies at time t = 0 ; and dui-ing time % = t I
the front, a node point, has traversed the distance x = x0 •
As

* he disposition of the surface of the wave is

"- h sih (kx- k);0< x-<
m 0 X

and

h. o; 0 > (9)

15. Consider the area under the wa-e bounded by the wave surface.,

the -.erbical AB' at x = 0 , the vertical CD at x = % , and the bot-

tom segment B'D . Call this the final area 0 2 The liq1uid of this area

initially, that is at time t = 0 , was contained in the area of the rec-

tangle bounded by the vertical AB at x = -Ax , the straight line AC_,

the vertical CD at x = x0 , and the bottom segment BD . Call this the

initial area S Since the liouid is incompressible, S1 and are1~~~ ~ inopS2il, n
equal and

7



H ax 0•o h dx

The potential energy in S2 , when referred to the channel bottom, is
hx -~•

V2 =0 2+
0

the kinetic energy, since u = gh2,4t , is

XO = gxO

-2 dx i - dx2 2
L0 0

and the total energy is

(v K) 2 = 0 f- h21? + h H 2

In S3 , the potential energy is

V_= 0P9 (,o + , )

or ± 2u-~~ -d÷
and, as -u =0 for the instant -t =0, 0 he kinetic energy L is-zero.

Denoting the-Inczease inithe energies by-

- E2  (V + K)2 -(V + K)1

from the above

E2 =pgf (h 2 +.h1..).

After substituting h from equation 9, integration gives

8gh
E 2 2k(cos 1) 2 k_(kxO snkxco



Pgh0I 
m (at-E - - (Cos at -) s•- (•os at) (1-

16. This energy comes from the work done by the pressure P0  pre-
vailing at the section x = 0 , on the line AB , and-the work "Is

El =fO , fO, P0 dY dt

The integral E1 will equal E. only if

P0 = oh+ Pg0- gy= Pg(Ho + h - y)()

where h is the surface displacement at x = 0 . Recalling that
u =u., s n at and h h hm sin at ,the integral for E, yields

I-

0

As Uk = l,6 see equation 1, also

E_=--l- (Cos at - 1) ,+ m (at -i at cos cr)(z)-2k 2k

The equality between and E2 , thus, is shown.

17. One recognizes, of course, that the pressure PO prevailing at

the nozzle mouth (that is, at section x = O) is made up of two parts, one
due to the wave disturbance h and the other due to the undistirbed liqtuid

oý depth H0 . Having ascertained the magnitude of PO , eqcxatlon 11, the
proper pressure P in the pneumatic chamber over the water surface may

next be evaluated after resorting to the alteymate, or the Eulerian, form
of the equation of energy, equation 7. For the present case (see fig. ic),

the bounding curve S iL made of the following parts: the segment S1

9



"-ona- is' n. o: the free z off• e the liquid in the chamber, the segment

S2  to be identified as the nozzle mouth, and the rigid boundaries of the

Tham•iber and tI'e nozzle in contact with watee'. The appropriate form of the

642 2
y y= "(.E '2 + ( i + Pd-+ + )y (7a)t"": 2 1' u2 (5 112+ ý42+ Od

A00

where v1  denotes the water surface velocity in the chamber and up the

,velocity at the mouth. The sums of the terms in the parentheses of the

individual integral.. are constant, and since

:•!v i a u2 dyJ Ja

0 =

the simplified forv- of the energy equation is

#H

L8. For the purpose of evaluating the term on the left-hand side,

measure first the vertical distances in terms of 11o and. the horizontal

distaices in the direction of wave motica in terms of )/21 . Thus,

introducing

x' = / and y' 2ny/X =

the velocity q now is expressed as the function

q = Umf(X',y') sin at

and with it the left-hand term in equat=IV 7b may be evaluated, giving

10



E P o t gh co s Ot

6t= Nt2 Urm Cos at = mt a

where Nt is a pure number, its value depending on the shape of the nozzle.

Using this result and next expressing v1  in terms of u2 = (um sin t),

the energy relation equation (b simplifies to

c t g= col " 2 + P Q P0

Introducing into the right-hand member the va.•ue of P0 from equation 11,

and also writing

P P gh1 -Co (14)

the firal form of the energy becomes

=h ,- ghi +# Ntg coIt+~ 1 ')J 2

Since h is s3ll in comparison with H0 , the last term on the right-

hand side involving u will be small in comparison with gh and, thus,

will be ignored. One now has

h.= hi +I Nt h

and accordinga the dosired ipeumatic chamber pressure should be

"g = Im sin m t G t h Cosat

This may be put *n the form

P
P---=A sin (at%.- e) (16)

11



S~ whcir-.Ž

A h I + + m
m 2

and

N t 8

tm

the ':Clu'. e: 14+ being evaluated from equation 13.
. QOne vy now suymmarize the resu•lts. The generation of long waves

of wave height 2 .hm and of period T 4ill be brought about in a practical

.ianitvr through the introduction of sinusoidally varying pressure P in the

prieumatic chamber of period T and of semiamplitude 0gA . The phase dif-

:er cýnce in the pressure variations inside and the. ave surface oscillations

outside is given by E . Pressure P denotes the excess or deficiency in

ref erence to atmospheric pressure.

20. In tie mnalysis given above and leading to the chamber pressures,
losses in th chamber and nozzle passages are ignored. The theoretical

trmatment of the losses would certainly be somewhat uncertain for nozzles of

arbitra.ry shape. To account for the losses, one may iacrease the vemnimpli-

tude of the pressure variaticns A by an timount 5A . If, in the nozzle

used, the two sides of the throat are not symetrical, losses would be of

differert -mounts for the inilow into the chamber and the outflow. As a re-

suit. wa:'s gener ated in the proximity of the chamber would contain higher

harmonizs. Perhaps this difficulty can be overcane by choosing a nozzle

having s-mall I~sses. This is a matter thaL could be examined in models.

21. Simultaneously with the develcoment of thought and the design of

pneumatic wave generr -s at CaLifornia institute f Technology, similar

developments were c ?d at the David Taylor Model Basin leading to
e.7aborate machines for the generation of deep-water waves. 4In the latter

type machines the diffuser nozzles are avoided. Under the direction of

N.r. Brownell, a system of generators with accessory controls has been

evolved which is capable of simulating a ccuposite sea state of aay speci-

fied complexity. The design criteria of the machines were established frcm

a.odels.

12
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22. In these types of machines with nozzles absent, if desired, the

mechanics o4' flow may be adequately described with results from the momen-

tur principle. A form of the tnmlysis along these lines is given by

Kergoat in a brief communication. 5  In the paper are included experimental

results which show good agreemnt with theory.

13
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PART M:T * P IM)XfATE 11=1W OW r.L~'J.%ATC GMEEMTORS FOR TM)

23. Thb feasibility of pneumatic wave generators for the purpose of

creating a singuWar positive translation wave of great length was being

examined experimentally. In this section an approximate theory of the

generator is developed to serve as a guide for the analysis of the test
data.

Wave Characteristics

24. It is desired to produce an elongated wave of constant height h
advancing with a constant velocity of propagation w iU. still water of

constant depth H . Applying the Boussinesq concept of propagation to the

present case

s e )2/2 vanishes.6 Let u.2 be te particle velocity in the wave*

constant in any vertical section. Py the continuity condition

u2 (Ho + h) = ch (18)

and hence, neglecting powers of hNP

a U ML(l%)

Eliuinating w , using equation 17,

Operation of Wave Generator

25. The generator, which consists of an air chader with a loag dif-

fuser type nozzle at the base opening into a cunnels, is ahmw in fig. 3a.



'Thig is of the tvpe to be referred to as a low generator. At the top are

two apertures, one of them connected to an aspirator and the other to out-

side air. The openings are controlled. The pressure in the pneumatic cham-

ber is changed from pO to pO - ApO , where Ap- is a positive quantity,

by opening the aperture leading to the aspirator. As water in the chamber

is raised to a level H , and water remaininZ in channel is of depth H0

PgH - gk

or
p = Pg(b - HO) (20)

At t = 0 the aspirator is disconnected, and the aperture to the outzide

is opened, allowing air to enter. At time t let the chamber relative

pressure be -= 9 6 the fall of water surface in the chamber, L the

lagth of the wave generate#, and h the height of the wave with respect

'•o the undisturbed water level.

26. If v 1 is the dovnward velocity of the falling surface,

By the condition of continuity

* i f
U A.dL (22)

f dt

where A is the loaitdmi length of the air chmb1er. Differentiating

with respect to t and since dL/dt w

v 1 = a&~ (23)

- uVAB - h) (21&)

Problem Ot Chadwer Pressure

27. From the above lownts it in ceen that a requisite for the

i1



generation of a wave of constant height h moving with a constant speed

of pr-opagation w in a channel of constant depth H0  is that the water

surface in the pneumatic chamber must fall uniformly (that is, with a con-

stant rate). This poses a restriction on the reduced pressure Ap , and

the denendence of 6p/ILp 0 on t may be determined conveniently by again

using the principle of energy.

28. in fig. 3a the disposition of liquid in the channel to the left

o' the limiting section A-A' , and in the pneumatic chamber for the ini-

tial time t = 0 , is shown. In fig. 3b the subsequent disposition of the

same liquid at time t is shown. The limiting section A-A' is at such a

distance from the mouth that the issuing wave has not reached it at the

•ime t . Consider the energies of the water to the left of A-A' for

these two instants, t = 0 and t = t . Since at time t = 0 the liquid

is at rest, the initial energy of the system is only potential. On the

basis of the notations of fig. 3a,

(T + V), = PA (el + HL,) (25)

"At time t The liquid has kinetic energy iade of two pars, one (T2 I) re-

lating to the water in the chamber and in the nozzle, and the other (T22)

Uelatiig to the wave in the channel. Computation will show that

n = Rv! H - " ) + R 2( 6

where Ht is a numerical constant the value of which depends on the shape

of the nozzle and the path connecting the main body of water in the chamber

with the nozzle. Between the levels of H and HB the cross section of

the pneumatic chamber remains the same. With low generators as in fig. 3,

1 is, identical with the narrow opening D of the nozzle. The expression

of N, in terms of nozzle dimensions is derived in the Addendum for two

types of pneumatic generators, the low and the elevated. AG this time the

exact numerical value of Nt is not needed. As regards the second hart

of the kinetic eneror, one has

16



2 2 =��u(% + h)L (27)

r where L is the length of the wave. Finally, the total kinetic energy,

T2 T- 1 + 22, is
V

22(t +E+ (1 +h) (28)
2 2 1 2 20 H

1 29. The potential energy of the liquid to the left of A-A' in the
chamber and in the channel for the insiant t is

Write (T + V)2 for T2 + V_ . Denote the difference of the energies for
the instants t = t and t = 0 as

M- = (T + V)2 - (T + V) 1(30)

Substituting from tht above and also making use of the continuity condition
51 = Lh , since h is constant throughoit,

I

2i For • further simplification of this expression one may first neglect v1S2

in comparison with u2 , since 1 is many times larger than . Again,

two sets of terms may be grouped separately as fol1c.z

22

where

"1 hN=I +



and
2 (33)

where

30. The simplified expression for M , equation 31, now is

ZE= g h2 L ( -H.h + 5bL (34
.W014

Since L = at and 5 = vlt , the last may be written also as

M = PhH124 + hNL - (H - %)hL + rhL] (35)

Here ZE represents the difference between the energy of the system at

time t and. that at time t = 0 . The qcuantities M ard N are inde-

pendent of time and have set values for H , , and h constant; and,,

thus, MiE is a qu&dratic algebraic function of time. The vsriation of tp

with time must be such as to account for this particular form of b

What the desired variation is, as suggested before, may be derived from the

energf relation in equation 6. If W is the work done by the pressures on

the boundaries of the liquid to the left of A-A' , by the energy principle

= w (36)

where

W = d dt (37)

Since v1  is constant along the viater surface in the pneumatic chamber

t
W = -jO vl8p dt (38)

0

Before proceeding further let us consider the physical conditions at the
instant of wiave generation. At t = 0 , the water in the pneumatic chamber

18



is at rest. At t = c and thereafter, water particles in the chamber

will be moving with constant velocity v1 , since it is assumed that for

t > e the wave is of constant height. On this basis

C t

W = - Vll dt- 4N dt (39)

Here vi. de1ote'3 the surface velocity of water in the chamber for times

less than 1 . We mai write also

C t

W "Jl 4P dt- Avj '8 dt
'• lf VllV, JO

or
C t

W -Iibpo V-1 1) 42- t ý- dtl

and if we put

IE
-I4E , t (40

W -ty po (i, + 6k- dt. (1)
0 40

Using one of the forms of the condition of continuity, equation 24, and

introducing the value of bp , equation 20, yields

W =-u 2 (H0  h)P~j(H - HL0) (IC +j P d
£.t)

or

W -pmh(H 'If) ICdt)(42)

31. For t > e , we suppose that the pressures are given as

19



1=• k- , -2k 2 t (43)

and if we denote by Ap. the pressure that would exist at t = 0

=p (1 -k•)AVo (44)

and hence

Now

dt = (1i k)t - k2t 2

and this makes

W = -P&&(H - I) [-.C + (1- kj)t - k 2 ] (46)

which like b. , equation 35, is an algebraic quadratic function of t

Comparing terms in the two expressions, equations 35 and 46, not involving

t one finds

pg(H - HO)IE =1h (47)

Accordingly, since M is a positive number, I is also a positive number.

The suggestion is that there should be a relatively sudden increase of

pressure which then after a short period of time falls to bpi . Further

discussion as regards the transient pressure nay be omitted here. Initial

conditions will be discussed later.

32. Coruparing the coefficients of t in the expressions of A. and

W , equations 35 and 46, one finds

-" (" - Ho) = -(1 - k)(H - o)

or (:!)

hN = (H - Ho)

20



hO 1 h (49)

This expression enables one to determine 1 in terms of the wave height

h and the elevation of the vater surface in the pneumatic chamber H at

the time the wave starts. From k one next obtains the value of the

pressure in the chamber to generate the wave of the desired height, h
2

33. Comparing the coefficients of t in the expressions of a,

and W , equations 35 and 46, one finds thut

-1•• (H - HO)k 2 (50)

From the continuity relation

ThL above yields

2k2 .9 H~f (H) H) (51)

which determines what the rate of fall of pressure in the pneumatic ý!I-mber

should be in order to maintain a constant -wave height with time in the gen-

erated wave. Here k2 is determined in terms of h , H , and 1 , the

latter being the dimension of the tank in the longitudinal direction.
34. Equation 50 may be written in another form. Since vI db/dt

aud 2k =-d(,6l/Ao)Idt,

(H - %)• a-)o

Ap Pg(H - HO)

and hence

-21



dR U- dt (50a)

indicating that the rate of fall of water surface in the clamber equals the

rate of increase of chamber pressure.

35. The relation, equation 49, connecting h with k- is for the1.

condition that in the flow of tiater through the nozzle there is no loss o0

energy from friction associated -with turbulence and deflected motions.

Since in the best desined nozzle some loss is expected to occur, a provi-

sion must be made to account for the effect of the loss. The frictional

loss reduces the energy available to create the wave. Let this loss be

ZZ , and write

,Lt = Xpgh %IL (52)

as discussed in the Addendum. This means that in the energy expression

, equation 37, in the placp of pgh•L one must now write (0 + 10)pgh IL.

Proceeding as before one now has

We may refer to I as the nozzle friction lacto .

36. Examining the two expressions, equations 51 and 53, it is seen

that the quantities k, and X L-e not independent but are related.

Comparing these equat-ions with each other, it is found that

2Y2  1

so that, if the friction factor is known, che ratio 2k2AL can be evalu-

ated from the assumed values of h und Ho and the chamber size A .

Conversely, if 2 and kc1 are observed, the relation is utilized to

compute X , since

1 + I+. (55)2k2~ 1 h
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-Experimental Evidence

37. The preceding analysis dealing with the generation of an elon-
gatod wave of constant height suggests that this kind of wave would be more

readily and easily generated if the pneumatic chamber is elevated. If the

chamber is elevated, the total fall of water surface therein would be a

smaller fraction of the initial height H , and accordingly the pressures

could be conveniently prodLu-ed without a variable control of the air open-
ing. To examine the feasibility of the idea, experiments were conducted

with a generator as shown in fig. 4. The relations shown in equations 51
and 53 still hold. The only modification would be in regard to the coef-
ficient M , equa ion 47, which changes with the type of generator adopted.

This is not important since transient pressure effects at the time of wave

issuance will be ignored.

33. For the present, the important observation data to be examined

are: the wave height at the mouth of the nozzle as a function of time, the

pressure variation in tie chamber, and the fall of water surface inside the
chamber. An example of a tracing from an electronic record is shown in

t fig. 5. The lower curv! shows the variation in wave height in the vizinity
of thf. noz:le mouth. Note that for a long time the wave height remains
constant. The middle curve shows the increase with time of the pressure in

r the chamber and in the area above the water. If one ignores the oscilia-

tion of pressure in the short dura~ion following the instant that the air

passage is opened, the increase of the pressure with time is linear. It

would be adequate to represent the pressure course by a single straight

line for all instants. Note that the intersection of tne pressure line

with the zero time axis is indicated by 6pi . For the present the reason

for the pressure oscillations for small t values will not be di -issed.
The matter will be taken up in another section. The upper curve shows the

fall of the water surface in the chamber with time. The rate of fall is
constant, and its absolute value equals the rate of rise of the pneumatic

pressure. These results are in accordance with theory. The data obtained

from this and a few other records are presented in table 1.

39. The data will be examined to compar ý the theoretical results
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with the observed results. The quantities involved are

which is the expression for the partticle velocity in the wave;

2k2  1 h+ (51 bis)

which is the expression f',r the rate of increase of pressure in the pneu-

matic tank and time; and

which is the expression that determines the required (effective!) pressure

in the tank at the time when the wave conmuences to issue from the nozzle.

40. The constants k, and I appear in the last equation, and thus

it would serve to determine X , the nozzle resistane. factor, in terms of

h and k, as observed quantities. Another way to determine I is from

kl4, + 1 .
l + = -(55 bis)

41. It is helpful to mention that the quantities k1  and k2 are

not observed but are derived fr'm the obse 'ved quantities 'L6Ip, dp/pg
and d/dt • Ap/og , using the definitions

2 dt

and
k - 1 - APA/%o (see equations I3 and 45.)

42. The computed values are shown in the lower part of table 1.

There is a fair degree of agreement between the observed and the _oimiputed

values of u2  and k2 . There are two determinations of X , and ar ex-

pected, there are considerable variations from one run to another.
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PART IV: THE MECHANICS OF PORESWE BJUIDUP IN PNELMATIC CIL44BEPZ

43. It was shown in Part III that the mere raising of the level of

the water in the chamber and allowing the outside air to enter through ani

aperture without the assistance of additional controls is sufficient to

cause the pressure to fall at a constant rate. The fall is as required by

the theory of long waves of constant height. This behavior of the gener-

ator needs to be explained on the basis of the mechanics of air flow into
S~the chamber.

Mass Rate of Air Inflow

44. As a first step in the analysis, consider the closed vessel

shown in fig. 6 which has an opening in the form of a circular orifice of

area a . Let the volume of the vessel be V0 . When the pressure inside

is below atmospheric there is a mass rate of flcw inward. Let the condi-

tions outside be given by po and P0  and those of the interior (that is,

at the vena contracta) p1  and .l . Let a, be the area of the vena con-

tracta. Assume an adiabatic flow. For the mass rate of flow one has from

ILaud 1/
cop= 2 7+1

- .) /-(I
where ql is the velocity of air at the vena contracta, c is the veloc-

t ity of sound in Aube air outside, that is

CO= P = (7ReO)lp (57)

and 7 is the ratio of the specific heats at constant pressure and con-

stant volume. For air 7 = 1.408 , and for standard atmosphere
C0 = 1089 ft/se- ; 00 is the temperature in degrees Rankine corresponding

to 32 F.

45. In our applications the difference between Po and P1  is

small. Denoting the difference by Ap , pl/p0 = 1 -APpO
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2 + 1
L!

~VP0  sP O 7 P

Wi-th taiese approximations the expression of mass rate of flow, equation 56,,
reduces to

dm 21/2
71

Introducing the value of cl0 from above equation 57. yields
dm 1211 oi24" 6

dt0
and puttin

finally yields

Co cAa 4~(59)

One may refer to C as the coefficient of discharge, since it Is a dimen-

siovless quantity.

46. To coeffiCient C one my ascribe a meaning mre general than

that implied by equation 58. Equation 59 may be used also in the cases
where there is dissipation in the flow reaching the vena contracta or the

jassage may be thrmuh a tube of any kind. The formula serves to relute
the mass flow of air to the pressure in the closed chember. In such cases
C may be thought to depend on Reynolds number Re = • I , d being the

diameter of the tube.

47. It is advantageous to express the relation in equation 59 in a
dimensionless form. Omitting the steps of transformation the expression is

d=C C 0 (C9)

To illustrate we now cousider the Flieganer formula cited by Prandtl.7
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Polzon et al.8 have shown the mldidity of tile formula. In metri, units

0 .76a- 4Tl 2)2TlT

In the terms of this paper and if tLp is small with respect to po ,

g dm = O76a p

One has, omitting the steps of transformation,

dm__ R1/2 _ 1 0

since R/g = meters per degree. Accordingly, C = 1.31 and the vena

contracta occupies the entire area of the opening.

Determination of Coefficient of Discharge

148. In the applications to be made eventually, it will be necessary

to know the value of the discharge coefficient. A method to determine it

would be to ascertain the rate of increase of the pressure inside the ves-

sel with an initial difference of tIe pressure Ap0 . If the volume V0

is large enough the filling may be regarded as an adiabatic process. Then,

the pressure and density in the vessel are those at the vena contracta.

k 1&9. In this hypotbesis one uses

S• m = 0lY0

and

TT = - Vo (60)

since V0  remains constant. Now for adiabatic conditions

-o = 0) (61)
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or

1
0

'0  -r

S'n-e AD is a small quantity

0

PO 7 PO

and dif'ferentiatiring with respe(ýt to time

po dpl 1 _- p
o0 dt 7 dt

In"troducirg the sound velocity c , 2

'1 _ d•
dt 2 dt

C0

and from equation 60

t- 2 dt

Equating this to the mass rate of entry from outside, equation 59,

LP •1/22 at 00 % •4
coa

C 0

or

C 2 1/2
d .0 '0

dt Apo V, f ,a

or

-KCa (62)

-anere

J./2 co PO

0 0,
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The solution is

50. An experimental determination of C .,as carried out by not ing

the filling rates of a rectangular box 2 ft high and with a cross sr-t'on

of 1 by 2 ft. In the upper plate (0.485 in. thick) numerous -iru!." a:'-

tures with varying diameters were drilled. The edges of th. a.-tu:;

sharp. Taking an aperture at a time when the air pressu. e in thc vs-sel

was reduced by an amount "p0 , the aperture was next opened to the air

outside, and the increase of the pressure within the vessel was noted.

Fig. 7 is an example of a plot showing the linear ,rariation of

with time. This is in agreement with the theoretical form in eqmtion 63.

Thus, if m is the slaoe, the coefficient is

C = 2m/Ka

The values of C for orifices of various diameters are showam in table 2.

The coefficient of Aischarge is praztically independent of the diameters

except that the coefficient shows a slight increase in vilue when the ratio

of plate thickness to orifice diameter is increased. The constant value is
C = 0.71.

'1 51. The tests were continued with vessel volumes V0  smaller th-an

4.03 ft. These lesser vclumes were conveniently obtained by filling the

original vessel with water. Th& results of the tests are sho-n in table 3.

It is seen that C when determined by equation 63 decreases with VO . In

the routine tests on wave generation it was observed that owing to inertia

the water surface in the chamber remains still for a short time followingr

the instant when the chamber is opened to outside air. This would mean

that for the initial period the air is flowing into a closed vessel o': tiu-

varying volume. In figs. 8 and 9 the initial increase of pressuzre with
time for the two types of generators is shown. The air openings J;erc in

the form of circular orifices. Since the manner of the increase is "n

agreement with equation 63, C may be computed by this for-mula. Thc
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results of the reductions are shown in table 4.

52. It will be shown in the Addendum that the effective values of

C (that is, the values computed on the basis of equation 63) may be depen-

dent on the volume V. occupied by the air jet and the length X. of the
J

jet, provided that a short distance below the air opening the jet is de-

flected laterally over the suri-ace of the water. This would suggest that

C could be a function of V -i/VO and Xj/A where A is the initial air

gap between the water surface and the chamber ceiling. In fig. 10 the

effective discharge coefficient is plotted against X./A . There is a fair

congruency of the points with the curve drawn. For the cases considered,

the effect of the ratio V.ANO on C is negligible. The meanings of X.

and V. are discussed in the Addendum.

53. In a more general sense, as previor•sly mentioned, C will be

interpreted to be a proportionate factor in the empirical formula, equation

5,, connect inf the mass rate of flow of air with the pressure in a receiv-

ing chamber. The air passage may be of any form. In the first runs of

pneumatic wave generation the chambers were connected to the aspirator and

to the aii outside by means of a so-called three-way valve. In fig. 11 are

shown the initial rises of pressures and these also yield smaller discharge

coefficients.

54. The present study on the discharge coefficients unfortunately is

very incomplete. It would have been the better procedure to base the eval-

uation of C on the direct measurement of the mass rate of flow as deter-

mined by the simultaneous temperature and pressure measurements in the

receiving vessel as function of time. It was the intention to follow the

procedure in an extended study2, but due to the lack of a sensitive tran-

sistor for the temperature measurements at that time, the idea was aban-

doned. Another precaution in the conduct of tests would have been the

measurements of the pressures in various locales, one ilmporant place being

the vicinity of the orifice. There was only one pressure-measuring element

user in the tests made, and thic definitely was not sufficient. Again, for

a more reliable :!ontrol of the tests, it would have been dcsirable to con-

ne2t the re2eiv-ing vessel to a very l&rge discharging vessel to replace the

outside air. In this arrangement there would be an additional means to
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determine the mass rate of flow of the air.
55. The main assumption of the above analysis leading to equation 63

was that

P0
O 7 Po

Now suppose that in an actual situation the relation between the pressure

and the density of the air in the receiving vessel is

where e is a numerical, the value depending on the circumstances ol" the

filling; it can be a variable, changing with time. If the process is to

approximate isothermal adjustment, it may be a number close to y • Re-

peating the analysis one now obtains, in the place of equation 62, the

relation

where K has the same meaning as bef Jre. When information relating to

is lacking, owing to the insufficiency of observation, +lhe solution of

equation 6I4 is uncertain.

56. In any case one may revert to equation 62 or to equation 63 as a

convention, and C determined in this manner would be referred to as the

effective coefficient of discharge.

Pressure Buildup in Pneumatic Chambers

57. In computing the pressure changes in pneumatic chambers open to

air, due consideration must be given to the fact that during the generation

Sof an elongated wave of constant depth the air volume in the chamber would
be changing. The change is measured in terms of the fall of the water sur-

face inside. Ideally. the fall must be uniform; that is, if V is the air

volume at time t and V. the initial value
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v/v =1 + nt (65)

where n is a constant. Simultaneously the pressure buildup in the 2ham-

ber must conform to the expression

1/Ao = 1 - k - 2k2 t (43 bis)

especially in the -ater stages of the wave formation. The bearing of the

quantities kI and k2  upon the vave height h and the water depth in

the channel H. has been shown previously through equations 51 and 53.

58. The rate n here is proportional to 2k2 . Denoting the eleva-

tion of the chambjr ceiling from the channel bottom by HT

Vo = (H- H)-

and

V = (HT - H + 5)l

Hence,
v 1 +_6 (66)vo A

where

A: HT~ - H (67)

Comparing this with equation 65

1 d5(•n (68)

or

n =V1/

and from equation 50
H-o

n H HO 2 k2

or

n _ 2k2 (69)

59. In the experiments of pneumatic wave generators of the type
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I ~ considered here. the xiassage from t~he nnell-fic 4haUbe to4-.A -. ot I -ea

consisted either of a short tube or a rubber hose leading from the short

tube or a circular orifice. In all these cases, once the water was sucked

to level H and the passage was opened to air outside, the fall of the

water surface inside and the subsequrent increase of pressure in the caber

took place uniformly without ftrther control of the air passage. This

matter deserves an analytical examination, and it will be supposed that the

air aperture is in the form of an orifice, since the coefficient of dis-

charge of this type aperture is known.

O6a. We take the general problem of flow of air into a vessel of

varying internal vrlume. The mass of air in the chamber is Vp1  and using

equation 66

IM = V0 ( I + )P, (70)

Differentiating with respect to time

dm Vo 1l+z R -dp V dt

or

dm P ( + L~d i 2llda (71)

Assuming an. adiabatic process and remembering thnt the pressure inside the

chamber differs but little from the outside atmospheric pressure,

POo 7-Po

Substituting this information in equation 70,

+ )1 4+ (1 1 ds1
Tf• =%v -OV +A ap t "7 4oo ftj

or

dm = '6 (1+ d) -p-+(0_lo
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Since Au is small in comparison with YPo ; the latter equation may be

simplified, ignoring p/14po , to

dm AP [ + d A p , 1 F (72)

where

N5p = O(73)

61. It will be recalled that the mass rate of air flow from outside

into a vessel will be expressed by

din= 1/2 Ca(.o)l/2 (59 bis)

or writing

it= ziZ/t• 0

da 1ca(12 ) 1/2 :/2

Here, C and a are the coeffi'ient of discharge amd the area of the ori-

fice, respectively. Eliminating dm/dt between equations 59 bis and 72

-and making some simple transformations, the result is

+i ~ + RD d . aJ/

where
o 71/2 1/2

N = 7-z and K = - (
Th's is the general equation for the buildup, of tae pressnre in a vessel

whose internal -tolume V = VO(l + 6/A) changes with time. To specialize,

put

and introduce this in equation '74; since n will be taken to be a ronstant,

the r.sult is
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1 + nt) -- + N n = K(a' 2

The dimensions of the product KCa are the inverse of time. Introduce

t = (KCa)Y1

= t/tO

m=n- 0

With these, equation 75 takes the dimensionless form

-(1 + mr) d+ = Al/2 (76)dV + p

This is the differential equation that should apply for the pressure build-

up in the pneumatic chamber when the water surface is falling uniformly.

The differential equation with m a constant permits an exact solution.

For the purpose at hand, however, it would be better to consider a series

solution in. the ascending powers of T .

(d1d) i- d12 1r

I = T + (d" + (i " +... (7 )

where the 0 subscript outside of a parenthesis indicates that the quan-

tity is to be evaluated for T = 0 . Assuming that C is independent of

time, and this would be the case if the coefficient of discharge were not

affected by the volume of air in the pneumatic chamber, one will obtain the

following sequence for the coefficients appearing in 'quation 77 by refer-

ring to equation 76 and those obtained by the success.ve differentiation of

the latter with time. The sequenze is:

rio =1- k1

) =- (78)

M +
di 0
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Thc iuaitities in the first parenthetical term on the right-hand side of

the last equation axe positive, and therefore the second time derivative of

v does not vanish. The meaning is that the curve of i versus time is

not a straight line but is curved slightly. The solution of equation 76

does not exactly reproduce the linear variation of the pressure in accor-

dance with equation 43. It is, however, expected that the time variation

of il as given by the second line in equation 78 would be sufficiently cor-
rect. Identifying (dn/d¶)o with -2k t and supposing that k is small

0 ~ 2 0
in comparison with unity, the second equation in equation 78, after revert-

ing to the original varial'les, yields

Nk N Nn - KCa

Introducing n from equation 69, remembering that N" - yplAo and

simplifying., one has

2k2 =KCa
"1 + 'H- H p0

Since po/L~po is a large number, the above may be written next as

SKca

2k2 -- YH H -% o (79)

where

K CY112(PO 1/2
": o \po)

Equatji 'n 79 purports to connect the rate of increase of air pressure in the

pneumatic chamber with the area of the orifice opening. From the tests on

the orifices one suspects that C is close to unity. Fairly reliable

values of C may be obtained, it is believed, on the basis of equation 79,

using data of the quantities appearing in this equation. The pertinent

data are ;how.n in table 5, together with the computed values of C
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For the four tests the mean value of C is 0.95.

62. Because of the manner of derivation tne values of C .ust rn-

ferred to apply for srall T or small water displacement in the pneumaticeSchamber-. What the values may be for subsequent times or greater displace-

ment can be obtained from equation 74 inserting in it the observed values

of dn/dt , db/dt , it , and b . The values of C that were evaluated in

this manner are presented in table 6. It was mentioned previously that

* during the action of the pneumatic generators the water in the chambcr re-

mains immobile for a few seconds after the orifice is opened to outside

air. Thus, for this initial period db/dt is zero. Accordingly, a spe-

cific value C may be computed from equation 74, putting db/dt equal to

zero. Values thus obtained, see figs. 8 and 9, are also included in

table 6. Now C is a discontinuous function of T or 6 , so that if

equation 74 is chosen as a basis for tue analytical treatment of generator

action, this discontinuity must be borne in mind. This may be accomplished

in the following manner. Let C0 be the effective coefficient for the

initial peiiod or for the times when db/dt vanishes and C the effective

coefficient for the later times. Denote the ratio of C to C by r

C rC 0

Insert this in equation 74 and write in the resulting equation

This gives

-(ld+e +H dG KCar/ 2  (
dt19 p dt 0

Note that the dimensions of KC a are that of time inverse; accordingly,

put

to = (KCa)" (81)

and introduce the dimensionless time variable
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= t/t 0

in the above equation. The result is

-(l+ e) d,+ de 1/2 (82)

Now, f-hen di/dT does not vanish, the first term on the left-hand side of

equation 82 is insignificant with respect to the second term, N is ap
large number, and the above equation for larger times may be replaced by

_ + e) +(83)
d¶ rd

63. In the example of a numerical analysis of the pneumatic gener-

ator action th2 above form of the equation will be used to represent the

flow of air into the pneumatic chamber.

3
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PART V: INITIAL CONDITIONS OF CHAN4GIN1G PRESSURES

General Relations in Air and Water Flows

64. The discussions given in the preceding sectiorz refer to the

later stages of the pressure builduo in the pneu1matic chamber, after the

chamber has been opened to the air outside. For these later times the in-

crease of pressure is uniform, and the accompanying fall of water surface

in the chamber is also uniform. For the initial times, just after the

chamber is opened to air outside, the pressure change within the chamber

is undulatory. First, there is an increase of pressure of considerable

magnitude, and next, a pressure fall. These are followed by cyclic changes
of gradually decreasing magnitudes.

65. Consider once more the curve in fig. 5. Note that the wave

does not emerge from the chaber immediately after it is opened to air,

but about 0.3 or 0.4 see later. During this period of time the eleva-

tion of water in the chamber remains the same; that is, during this time

interval V is maintained. As a consequence, there is a large increase0
of pressure owing to entering air, over what it would have been if the

water surface had started to fail immediately after the chamber was

opened. The large increase of pressure forces the water out of the

char•er almost suddenly and at a rate that has the effect of producing

a vacuum, a depression of pressure. Similar effects are reproduced in

the sequence but with lesser severity. The explanation is that the

inertia of water is the underlying cause cf the initial oscillations of

the air pressure.

66. IL a mathematical treatment dealing with the initial condition
it is necessary to determine the flow from the chamber into the channel.

The expression for the flow may be obtained from equation 7a. In this,

write g(H - 5) in the place of D1 , -Ap in place of P , gy in place

of and p(H + h- y) in place of P0 . Assume that vI is

independent of * and u2  independent of y . Thus, the energy equa-
tion is

39



- u•(•i + 11) °z(Ho + ,) +(8] )

/ •.-. :10ow th.ou-:; tne nozzle rs',isted be.ausp of friction, then Z

.tD b, ,'eula-ed by A, + •1.. whre A , a positive quan•tity, repre-

,.nts tnonl a,,-,•s-Lu',, Jif:'erenie to over ome the resistance. In-

L!-odu L -i•:, - th.at, vj = u2(10 + h) , the result may be

~ ~ ~ 4-4- t + og(H ifH) ogli - g6 A- - ~ (5

in-v za'•. ut

-' -(86
:- 't v ".• = pv 7!--(,6

". -s a d'mensionless quantity, the value of which depends on the
orm af" the onetunat' ch•mber and the nozzle The determination of it is

d r:s dn the Addendum. In view of this latter relation, equation 85
d ' O; --uss - .In 4 .4 5
may no-.: D* ~;eas

'"" :2 2 2q' i ;i 2U, + Cg(H - it - gh - cgb 6P
dit 2 'l L~

D*ridhng by z.(H - JO) or by its -quivalent /p0  and remembering that

-1 = do/(it

2 2
601 .H ) UI - if h 5

L 4P (87)

~r~l* wz oz~tb:~ illshow that

H 22H

ow( - o) z.o
A.-•:' . Jr 'ratt! .~-: !! ho-= ha

0toT(-t L
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[ , or wtith a Su~f'i"uent d 0gree o:' apnvox':: on

2I '2~~-- I2 ' - % (:A

And also, ac it is zho.n ir the Ad,.n4iin,

0c.(I- H0) 1 7i,0  R(c) 1

so thbt

2 2V
2 1•AP-v1  if _

2 g(H - ) + (H - H 1----+ I + 2 D

Substituting these in the ener.rv equation the latter be-om,-

- 2h14g(H -'Ho dt2 H - Ho H - Ho H -- +[ 2 D I- o

Introducing the dimensionless variables

= hJ/Io

, • = p/Arpo

= t/tO

where t is a characteristic time, see equation 81, the ener~r equation
0

becomes

A,(]. ,be .. A '2 (8v)
dt

where

g(H -Ht

H-H1 0
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SH 2o

The relati on betwp ,n b and h results from the continuity condition

Vl1 = u2 (0 + h)

That I s,

d~~ 3. / h\

2t ~ gH0  He 0 O

In terms of dimensionless variables

d0 "0 " Hoto 3

Inverting

AZ (dO) 2T1 -ý - A6\-/ (91)
5 di 6 d

-.here

LA

2nd

67. Equations 88 and 89 describe the flow of water out of the cham-

ber. To these one must now add the equation describing the flow of air

"ntu the Thamber; that is,

-(l + ) r1 + A8 d&e A,/2 (92)
dT di

h:h , in conformity w:ith equation 83, Yields
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V 68. Our study of the flow of air into the -pneumatic chamber wa, not

siufficiently complete to formulate a theoretical basis for determining A8

S and A a priori. In the numerical analysis to be showm subsequently, the

values of A8 and A7  will be inferred from te.t records that enable one

to give n and 0 as functions of I

69. Equations 90, 91, and 92 are the basic relations describing A,

& , and T as functions of ' . The desired solution may be from the ap-

propriate difference equabions sho-dr below, using the technique of

-omputers.

L Initial conditions:

e=0, =0, f=i, ¶ = A (93)

Differences: T nAT

n

0 + (94)
n+1L n \dr

'Tn1 Tj + dl)AT

Sn+l n

Relations at t = nr: !

Sd•n= A5 d• A26 A A452IddC 2

11 nr(d) =d n _A•, A8(•.)n]. ( + •
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An Examplt of Iumerical Evaluation

70. To see whether th,- celations developed in the previous section

arc suffi,-ient to •escribe the act, ns of a *neumatic ý,ecerator, the case

of Run Ai1_2 trill be considered. The graphs of the fall of water surface,

theŽ increase of internal pressuri, and the height of the issuing wave were

-ho.-.F in fig. 5. Firt., th, characteristic time tO as defined by equa-

tion 81 needs to be established by noting the variation of pressure 'n the

-hambcr with time prior to the emergencu of the wave from the generator.

Lie data are shown in fi•g 12, and the straight line drawn implies that

1t KCa = 1.65 per see2

and hence

;O , 0.3 sec and T = 3.3t

To complete th- listing of the pertinent quantities of the run, the

following ones are added:

H0 = 0.319 ft pWpg = 34.1 ft

H = 2.419 -ft Vpg = 1.094 ft

Aq = 1. 8 8 5 ft 7 = 1.4o8

A =0.466 ft 0 = 66 F

S=2ft = • .66

= 6.99

The generator is of the elevated type, and the appropriate values of t

and RM are dis-ussed in the Addendum. With the above, the constants ap-

pea-ing in equations 89 and 91 are:

A, = 2.06 A4 = 0.682

A2 = 0.424 A5 = 3.1U

A3 = 0.284 A6 = 7.28
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71. NeAt must be indicated the values of the constants A aid A8

in equation 92. The connections to outside air and to aspirator wert, nado

through a so-called three-way vaLve. The characteristics of the air passage

are not known. However, the limiting values of A. and A8 can be estab-

lished on the basis of equation 92 by inserting in it the limiting vwlues of

dif/dT and de/a- . The data of the observations are shown in fig. 13 in

terms of the dimensionless variables. It is seen that de/d¶ and dn/dT

are practically constant for large values of T . For T = 10 , one has

o=.656

o= o.676

dO/dT = 0.0624

-dan/dT 0.02514

Substituting these in equation 94 yields

0 .822 :0.0121, + o.o624 A8

a linear equation in the constants A7 and A8P. If it is desired that

equation 92 yield the pressure increases observed during the initial portion

Sof the times, one must have

+ •=1

and hence

=1207

72. It would be instructive to inquir- 4 f there are differences be-

tween the values of A8 for the moderate-% .,,, of 'I and the limiting
value Just given. Since A = -% , any variatiuv in A8 would indicate a

8 r
corresponding variation in r ; that is, the ratio oi' the effective coef-

ficient U t• its initial value .0 . Through equation 90, expressing

dOAdT in ter=s of 1 , one has from equation 92

J12 + (1 + (96)
AS A A5 -1( + TI- Tr96
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'he values of A8 .=mputed on this ba2is are given In flg. 13. The

straight line drawn in the figure shows the limiting value of A8 =2.7.

The value of A8  for moderste t oscillates about the limitilg Alue.

This fact will be ignored, and the numerical aaalysis will be attempted

assuxming that A8  is a constant throughout.

73. A Fort-an program for the numerical solution of equations 93,
94, and 95 is shown in table 7. The numerical results are plotted in

fig. 14 gand may be compared with the observational values. The initial and

final Nalues of 9 are correctly computed, except that for the moderate

times there is a difference in the oscillat.1on periods. This is due jri-

marnly to the circumstance that in reality -A8  is not a constant luantity

as assumed for the computation. The finnal vlues of 71 anri 6 are also

reproduced nearly correctly. There ar_, howevers, •-;ked- differences be-

tween the observed and com-pted valueq -for the initial portion of time.

This suggests that the relation between q and d0/dt implied in equation

90 or equation 91 although valid for large values of CA is not suffiiently

-alid for the instant that. the wave is emer"ing from the generator and ac-

cordingly for the rigor of the analysis the necessary modification needs to

be introduced.

74. The above example of the analysis shows that in essence the i
mathematical formulation put forward is quite adequate to describe the

mechanical action of pneumatie gencrators for surges. I. better knowledge

of the orifice or the air passage chgracteristics can lead to a more faith-

ful represcntation of the actions transpiring. The analysis employed by

2
Shen, from the point of view of mechanics, is- equivalen to the present

analysis, There are, however. differences in the mathemtical details

arising from the ftct that in establishing the f-lou equations Shen con-

sidered tkee particle velocity at the nozzle mouth whereas the present

analysis coneidered the wave height.

4.6
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PART VIM fl-91MI O'W 1TINIMA1 Tc!. TAW WiR~ -~n~1

75. The preeeding discuzsion of experinento and alzo of theory has

show.n that pneamtie tanks would serve •.•w.! fb-r the generation of eloa.gated

S surges moving with constant heights tnd constant depths. The r-,.quired ý__ eon-

trols and manipulations are t•ay simple. The channi-I waters a&-: raised to

prescribed heights in the chamber by suction, and the chamber air suction

pressure is reduced by allowing the air Ifsroz outside to enter the chamber

through an aperture, preiez.:iy ae circular orifie, the ape.rture opening

remaining the same du.ring the filling. In this process marked ose-llMation

-ocecus both in the air pressure in the chamber and in the penerated -ave,

due to inertia effect, This oscillation is of shoet duration, and soon

steady conditions are established, The pressure increases uniformly in

association with the wave generation of the required form. It is more sim-

ple to base the pneuatit tank design with reference to these later condi- -

tions. With this understanding the relationz needed for the design are the

following:

2k_ (B)

- , U.. - (a)

2k-
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.h (J)

".•• Ter=- -and .m 'bols, aj athno-;7 defined in the Glossary.. are re-

~~~~c ... ,•h.-." ---. y reference. See ^ig. 15.

a Arv--% of orl:f*1ee py'orated Der foot of chamber width., ft•-

A t of.! area of' openings; B, section width. a = /B

C Ce:'iei.%tof discharge for apertures

C v.--ocitv; of sound for outside air. ft see, 491-1
CO0•temp)erature in degree:s Ra~n}inc- = 4160 + O

D Dý-Tut}. of- Vic narrowest part, o;'- the deflecting nozzle, ft •

'Constan.tn oi" gtwvlty, ft/sec-C

h Wave height, at- the nozzle raouth., ft :

H{ Elevation of "water in the pneumatic c~hamber at-the star,,t of the
wa•ve, ft A

H01 Undis':urted depth of water at nozzle mouth, ft

Fl- £ieatiOn of pnei~atie fc-hamber ceiling,f

i La--,nof' :'.h"-ber in the!orngituainal d*,-eetion..f

:0 ,•o ~ý....-zpesur•- outtside of (thanfer, _•)un-dals!f

~~~~-z -;,-,,:" .. " v-Al'ty at nozzle foth -A';/e

V. o:f÷ ad . . -of'." in -h-mber pe foot of chtbGl r lengtyh, atr
V, 0;(Q Q o ncd - o

VR�lo-it of soeunfi- hoarZ. For air Y 1.4 0



tp 8uction pressarc In c- hber d, rini the subszeuent wave rtion,
p oundals.,ftr_

4p, Slcto pres-sur in chaabm" at the begimning of wave i)tUon,

4o "/0 Initial suction pressure in chamber to raise water to height ff,

poumdals-ift-2 (Note: 4% is a, positive quantity)

P Friztbin i'actor of nozzles

P Density pf wamter, lb/at3

w d Wave velocity, ft/sec

77. Once the design wave height h is selected for a given depth of

channel -dater H0 , eqtmtion A is the relation to determine tne height H

to which thMe water in the chamber must be raised. For the evaluation, kI

iv, aspamed, and the resixtance factor X is assigned a very likely value

computed by the relation

I--Ao. 8 3k D~ H0

discussed in the Addendum. Here D is the depth of the narrowest part 6f
the deflecting nozzle. A good selection for k1 would be a value of 0.07
up to .0.10 or 0.12. .

IE 78. The significance of k, is found from equation D which gives

the: law of variation of pressure in the pneumatic chamber air space for the
generE!tion of an elongated wave of constant depth. The effective suctior

i pressure at the start of wave motion is 6•pi , a quantity less than L.p0 ,

the suction peessure to raise the water to a height H . Equation E:

gives the Suction pressure 5po in terms of H and H0 . Now

AP (I - kl)ApP0 . The multiplier 2k 2  gives the rate of ch.nge of

dpressure in the pneumatic chamber air space and represents the quantIty
-n/p0 , wiere L~p is the suction pressure during formation or the

-wave. Equation C gives the value of the ratio 2k in terms of the

wave height and the length of the generator in the longitudinal direction.
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79. Equation F shows that the -mlue of 2!• is dependent on the

area of the atertures that allow air tu enter the pneumatic chamber. Be-

Mause of' this relation one has a certain latitude in selecting the value of

k! . Unfortunately, relation F is not. immediately applicable to pneumtic

"wve ;eneraters of a typce where entrance of air into the chsmber is through

tortuous valves rather than through a circular or" fice as in some of the

"laboratory tests. For such cases the form of equation F, although q-al ita-

tively correct, is not applicable quantitatively, since the appropriate

value of C is not known. This means that each pneumatic chamber utiliz-

ing various forms of valvcs needs to be individually calibrated. Thiz will

c ause no difficulty if in the design of the valves provisions are made to

a.ange the valve opening areas :'reely and arbitrarily.
:•. Such f'actors as particle velocity, wave celerity, dis-ish~ges,

and discharge rates may be directly obtained from equations H, I, and J if

desired. I
8i. Wh-en designing the pneumatic generator to be used in the 1iloe

Bay tsunami model the above procedure was used. A sketch of the generator j
as originally designed is shown in fig. 16. Assuming that the limiting

wave heights in the cent:-al portion of the bay shall never exceed 50 ft,

and that the depth of wmter at the bay mouth is about 300 ft, one has

h/10 =0.167. In the model H0 = 1.5 ft, and therefore the design wave

height is h =0.25 ft . The base of the model is 80 ft, and the super- H
ficial area 1600 ft-. The volume of the wave -would be 5 ft-, prorated per

foot- of length of the mouth.

82. The depth of the nozzle throat was chosen as 1 ft. Applying i

equation 1h3. x = 0.31 . ! lwas noted during the experimental study that 3

k tad a value close to 0.075 for the better runs made with the elevated
generators. We shall accept this value. Placing k,1 = 0.075 ,

ni. = C9.1-7 , and X = 0.31 , equation A yields H = 6.0 ft . This

is the height the wa;ater -an be r.ised in the chamber. As a reasonable

;-alue, it ..as put equal to 4. 5. Since the ma:ximum storage -will be

(0H - H ) and since this equals 5 ft', the re circd chamber length would

be I =6ft . The air gap is arbitrary arid therefore was acsigned the
alue of & = 2 ft -:hich makes H, = b8 ft, the height of the generator. _
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Tlhe nozzle was 3.5 ft in leng'h and was .,ecessed in order to have & compact

generator. A curved surface was introduced behind the nozzle to reduce the

losses if defleUtion.

83. To know approximately what size circular aperture might be

ne-eded for the passage to outtside air, rezort may be made to equations F

and G. First2 one must determine 2k• . From equation B, 2k, = 0.071;
1.2.

Shence 2]./k.A = 0.95, which is in agreement with equation C. In view of

the quantities 0 7.5 , c 112G ft/see , V0 = 12 ft 3 , equa-tion .

yields K = 363 per se•. ft2.* Retuning to equation F, the required apýr-

ture area is 0.0048 ft2, the value prorated per foot of chamber width'; If

the chamber width is 10 ft and only one aperture is used, the area of the

aperture would be 0.045 ft 2 .

84. It is discussed in the Addendum that the influence of the air

jet from the orifice impinging upon the surface of water would be quite

insignificant, if the air gap is about ter, tires the diameter of the cir-

cular aperture. Tor the above value the diameter is 0.24 ft; thus the

air gap selected is satisfactory.

* Another way of expressing this wouli be X" = 0.00276 sec ft.
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ADDENDUM

This Adidendum iresent5 a few results of general nature, especiallY in

regi'-d to the treatment of ,fhws (gas and liquid). which maV prove to be

o'" assistaflC(~ in c an a yjr' tLe numezO's app3ic~tlons made in the main text.

i. Rulerian. :orm oi energy e aation. The Ruler-an form of energy

e'uat-on (that is, the t'orm applicablj, in an area within a fIxed boundary

not moving with the liquid) pay be obtained from the Lagrangian form (that

is, the fo!-. applicable to the same liquid portion in motion). Lamb3 gives

the derivation for the latter. However, there is some interest if the

derivatiol -is made in another manner. Consider the equations of moticn for

a two-dimensional field:

6 u + (97)

Tt* ox 77a

Together with these one also has the condition of continuity

S(Pu) + (P-") 0 (99)-

or.

&+ uL +v =0(IO
3t- 0--x 0)Y 67

Imagine that in the velocity field o61 fig. 2b one takes a closed

curve s z ixed in space and of area S • Since the field is two-

dimensiofnal, the flow is into and out of a cylindrical surface which is

-no:mal to the plane of the flow lines. The-_curve s is the intersection

oif the ylhiuder with the plane z 0O. Take the length of the cylinder to

be unity. Multiply equation 97 by pu , equation _08 by pv , and add.

Hence,

1 ~ 2 1 2 2 P (41)
o °C -- • + vp -ou V - v

2 bt 2 c-x D2 67 x oy Ox

5"



where

q2 U 2 +v2a = u +iv (IOi)

The last equation may be -wn-itten also as

21 1 2 a) 2)+•(o~u O

to oyq' !Pq +,- U+02 i .9 _0_ . Y2 dx

ox (Pg()) +, 3
-(up) --(vp) ox +-

OOy Cy

which in view of the continuity relation, -equation 100, simplifies to

2 2 2 6 2q(01a) (Pvo

(up) - .-- (•) + p O-• oy

Multiply the two sides of this equation by dx dy and integrate over the

surface S delineated by the currve s . EIfect the integration using the

Green's theorem:.

fU U+ mds ( + dS

wnere i and m are the directional cosines of the normal drawn inward to

the curve s , and U and V each are functions of x and y . One has

;r :q + "z• -L_ Q (.gu + mv)ds

citi
u + 6v)dS (102)

S C

If the liquid is incompressible, • = 0 and the above relation simplifies

to
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iI
2 2

.- hiere

V =iu+mvn

This is 'he Eulerian form of energy equation for inccmpressible liquids.

The interpretation is that the rate of change of k"netic energy in a

bounded region is equal to the difference in the potential and kinet2-c

energies of the liquids entering and leaving the boundary and the rate ofi

work done by the pressure on the periphery.

2. Internal enera of gases. Denote the internal energy if gas per

unit mass by e . Thermodynamics suggests two processes by whiclh the in-

ternal energy of a gas may be determined. In the first, the gas is made to

expand without the inflow or atfVlow of heat. Thus,

p dv + 6C =0 ; v

Hence,

_p fpdp (104)

and utilizing the adiabatic relation

pp = constant

one has

- (105)

Ln the second prccess heat is aAded while the volume is kept constat.

Thus,
dQ = de |

Now,

dQ = CvdO
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-where Ci LS the L~pecific heat -at constant voi1.ue anad 40 is the change -

1Pn the absoluate temperature. Accordingly

For aperfect gs 0 p/(RP),o% =R+c.~, ,and 7CV ~C And

accordingly the expressions in cquations 99 and 100 are ejuivalealt -to each -

-other. Directly from equation 98

aU -o

for gssi
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ci (ps )

fx - )y

S- Us~~n•- %..Ž -.o~t 'nu.tv equat'5on,--equatiocn 99, and-;;hl lhorem of G:'.eeu

-+ )(0e)dS + (u mv)PC &.

t-ein this result in equation 102, one has

"(cz+O + a 2<fC -~ ) va J2 a 18
2 2•.--E - •(• .. •+ C;)d •• + 140 + 60d •s + pv n s (1o8)

Sin this oz is ziegligible in compa:ison with oc . Consider the expres-
- sion

which is the ratio of potentisl. energy of gas at a point per unit mass to

the internal energy of the same mass. As •2 may be measured from any hor-

izontal level, let the plane of reference be the pla.e passing through the

center of the vessel containing the gas and let Y be -the maximum dis-

placement of a gas molecule fOrom this plane. Accordingly, a1 is gWf and

- - gym
7=C

- (,-1i) gym my

or •1 gy 
-

2 - -•¢

co

..hr- 2o is the velocity of sound for the gas. Since orM/c2 is a very

zrall quantity. It is obvious that 12 is .iegligible in comparison with

W.ith this understandlng e-uation 108 reduces to
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(2a + (CdZ P + ) +jv . 1)

-
-IX 

f

wb4eh Is the Eulerian form o.f enarg• equation for gases. Te interw-cta-

tion is that the change in the kinetic and internal energy of a gas in a

fixed volume S.1 is equal to the work done by the pressures on the boundary

and the difference in the inflow and the outflow of internal and kinetic

energies through the boundary of area s.

It is shown in the above That the statement of' energies is consistent

with the equations of motion in the absence of viscous dissipation or of

turbulence and also when there is no heat flow through the solid boundaries.

Similar derivations may be repeated for the caaes involving viscorus dissi-

patioil or turbulence. Hotiever. for the problem at hand it is just as well

U_ that the statement of the energies-is excepted a priori.

14. Energy method -to determine the flow of air into a closed ve.sel.

The pre-%iot~s deri•ation leading to equation 62 was based on th- condition

of continuity-of mass assuming a definite relation between the density and

the pressure of air in the vessel.- One may examine the flow of' air into

the same vessel using the method of energy. This may provide new informia-

tion on the relation between density-and pressure.

Let E be the total-energy of the air, kinetic and intrinsic, con-
tained in a vessel of volume V6 at tinee _t I.- Ln the absence of flow of
heat through the solid boundaries

' - + N ( no+
-E 1 E 2  .(110)

where E1 is the rate at which work is being done on the .opening by the

pressures and E -is the rate of convection of total energy across the

boundaries and in this instance through the opening. This is in accordance
with the general result in, equation 109. Let pO and pO be the pressure

and derisity of air outside, p. and p1  the pressure and density inside,

1l1 the velocity at. the entrance, and ul the crose-sectional area of the

vena contracta. Now,

1 = pUly
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12 2- 1 !u

-or2%

Asskim-ng that the flow of' air i-nto the vessel is adiabatic

2 2y? p

P -tp p0  L /T and assume tha-%t, the square oti-/0 isnggb3e

cop1 son with unity with thisaroitOY

2 /

`p0

s ub st t at ng in eq2uationl11.

h: + E-,~ 1I~
SI ince &LP/r,%) is negLigibla in comparlson w~ith-uni.ty, fl-mily



N --

1 2 i-Xý 1 v'' -I P0

Introducin3 the app-rx'Imate value o0 u, from equation 112

Since

2

'The je -Pf- ir entering into the -vess '.rost immediately downstreamI of the opening undergoes a turbulent expanzion. This circumstance intro-

duces an uncertaixiy -in the estimate of internal energy inside if the vol-

<une occupied by the expanding jet is comparable to the -volume of the yes-

seI. On th'! other hand, If the vessel volume is many times larger than the

-volume occupied by the exranding jet, the errors in th- energy-estimate ,e

will be small. The uncOrtainty cores about by one's inability to accou.mnt

prdperl, for the kibetic energy in the expanding jet. This can be broken

into tWO pyrts, the kinetic energy of the mean flow at a point and the

kinetic energy of the turbulent fluctuations. As the letter energy goes

into heat, one should be concerned with the kinetic energy of the mean

flow. This will be neglected if the volume V. of the jet is ' small

fraction of V0 , the volume of the vessel. Thus E =-Ei , where E.

denotez the intrinsic energy of the air contained in the vessel. Now

and since

-4

E1l= ' o , :r-
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Vo

0 R11

But

R&,PI P" PO "Ap

VO•i= • (Po "AP) (114)

1 -I er ji tiati-g with time

dE V 15
dtT - 1 dt

Substituting equations 113 and 115 in equation 110 and dividing the result-

ing equation by VoAP0 , the result is

co71/2 1r /2

dt0 i-po - 1 A n

Writing

a

y1/2 1/2
K =

and neglecting the small fraction in the last set of parentheses of the

rig it-hand side

dKCa (116)

and this is the same equation as the one previously derived, equation 62.

The implication is that the densisty relation assumed in the first deriva-

t6on

60



is in accordance with the principle of energy where the volume occupied by

the jet, V. , is very small in comparison with V0 the volume of vessel.

If the volume of the receiving vessel is small, account must be made

for the internal kinetic e:,ergy. This may be done as follows. Let u' be

the velocity of air at any point. The internal kinetic energy now is

V2
KJ~Jv 

-

where dV0  is a volume element. If ulO is the initial entrance velocity,

one may express the air velocities inside in terms of this initial velocity.

Thus,

Kx "iVP U10) V0

ignoring the small differences between PO and p1 " Since 2ulo = apo'

a more usefu-l expression of E. is

EK = AP•o (17)

where

Ut2 dY!,,~ ( \To/) Vo

Accordingly, for the condition the total internal energy is

V.
E= 7

2  (p - Ap +Cq6%) (118)

and, hence,

dE V0 Ida~~Y\(9
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Prok-eeding as before and omi-ting steps that are obvious, on,: now has

d + K A (120)"dtAo 27=KA

whic-h shows the effect of internal kinetic energy on the pressure changes

in the filling of' a receiving vessel. The quantity a remaining unknown

the solution of the equation cann.ot be worked out. Speculate for a moment
that

a = -"P/APo 
(121)

where P is a positive constant. In this it is tacitly taken that a in-

creases with time whereas AŽp decreases with time. Inserting this in the

pressure equation above, one finds

-aroo I+3 A
which accords with the experimental results that the effective coefficient

of discharge in the cases of the vessel of small volumes is less than the

values obtained with larger volumes.

A somewhat different situation arises when the lower part of the

closed vessel contains water instead of a rigid base. In the case where

the sur-face of water is close to the air opening at the top, the entering

air in the form of a jet would be impinging on the water and then would be

deflected. In this encounter work is done against water primarily by vis-

cous tractions and also possibly by normal tractions. Let the energy con-

sumed in this manner be of the rate EV . In our inability to appraise the

loss numerically, let it be supposed that it is proportional to the work

done by the entering jet and the energy entering in; that is,

EV = a 2 (- 1 +. Ed (123)g

Accordingly, the energy balance equation is

S=( - )5+ E) (O--
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in place of the one shown by equation 110. Repeating the anulysis and

3 omitting the steps of the transformations, one has

l " =m - a2)
dt ~p t 2 j 125)

and adding that a -.- p/kp 0 , finally

y r a2 (126)

Thus, in these adopted views the effective coefficient o: discharge depends

on the volume of the vessel and the part of the surface of the water in the

vessel-in contact with the air jet.

5. Energy method to determine the flow of air into a vessel of

changing volumes. Let V0 be the volume at time to and V the volume
at time t . V =V0 +2 Z. Placing AV = 025 , where '2 is the area of
tie lower moving surface, the velocity of the surface is v = db/dt . In

agreement with equation 109 the energy relation is

IN ("l + E2 )1 - (E1 "+ " 2 ) 2  (7)

where the second term on the right-hard side represents the rate of work

done by the gas on the moving surface and the flow of energy, intrinsic and

kinetic, associated with this motion. The terms E1, + E2  and ; have

the same mearing and the same values as in the previous section except that

V0 will be replaced by V.

The work done by the air in the vessel on the moving surface is

and the outward flux of energies, kinetic and intrinsic, is

2~~ 1 ,db

Since the kinetic part is small il comparison with the intrinsic,
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Y dV
(F. I + E 2)2 : E12 -s22 = -1 dt

E nzation 127 now may be written as

idt --- 1p1 d

D-1%'iding by VoAIP0 ,and writing V = +• VA 0 o, oe has

+ L + d- A p A

E = K1a

and `0 PO /2
K :ýA
K~V (40

This is the relation for the rate of increase of pressure in a vessel of

changing volumes. It is of the same form as equation 74, which was derived

by assuning that the pressure and density relation is

0o 7 P

One may modify this result according to the conditions that the vol-

ume of the receiving vessel is small and the moving surface is in the form

of a water surface falling loim. Introducing the corrections to take

a:ccount of the internal kinetic energy EK and the rate of dissipation

from the surface :ontact E and repeating the steps of analysis as was

done in theŽ cease of a closed vessel, and omitting details, one obtains

A•z7umirg as before that ý-I -PAp/AP0
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S1 po 1 +--- P ACa -75

In view of the fact that X2  and P are not known, it would be

desirable to adopt tha relation

-(1 + L 2 +Ca (18bis)
A dt Ao Lpo

to describe the variation of pressure in the receiving vessel with its vol-

ume changing with time, with the understanding that C , the effective dis-

charge coefficient, could be a function of tinme-.

6. Turbulent expansion of air jets. It was assumed in the develop-

ment of the two preceding sections, that if the volume of the expanding jet

is small in comparison with the volume of the vessel receiving the jet,

then the internal energy of the air in the vessel is essentially intrinsic.

What the jet size is, longitudinally and laterally, will now be dis(cussed.

It is known that in a one-dimensional jet issuing from a slit, or in

an axial jet issuing from a circular orifice, the width increases linearly

with distance from the opening. The result from F6rthmaa9 on the width 2b
of the expanding jet, the jet issuing from a slit, is given in fig. 17.

Axial di-tance x is measured from a point upstrEam of the entrance and at

a distance three times the width of the slit. Roughly, now,

b O.158 x (129)

The distributions of the velocities in the various normal sections are sim-

ilar to each other. If u is the longitudinal component of the velocities

at a point of distance y from the median plane, and um the velocity at

the axis itself, then

u

At the edges of the jet u vanishes and also the derivative du/dy

Subject to these conditions, one may adopt the expression
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u +• 1 cos •y (130)

as a first approximation of the actual velocities. Since the variation of

b with distance x is known, one may utilize the velocity expression to

determine the value of u on the basis of momentum. It will be assumed

that the results obtained for a one-dimensional jet apply also to an axial

jet. Since the pressure is constant everywhere, t-he momentum of the liquid

traversing a normal cross section should equal the momentum M0 of the

liquid entering the orifice. Accordingly,

= 2AuYd

Introducing the value of the velocities from equation 130

M 0  u2b2  2

Since the area of the vena contracta is half the area of the orifice and

uI is the entrance velocity,

MO 2 ir 2

where d is the diameter of the orifice. Equating to each other

2 2 32 It 4A

arid in view of equation 12i9

- 1- •13

In the pneumatic chamber, let the distance of the water surface from

the orifice be x. The jet is deflected laterally after reaching the

water surf.ace. The pressure of impact at the axial point is denoted by

u2

2
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anid, thus,2

4 1.13 2

Introducing ul from equation 112, the difference PO "P is small,- and

itAm/A 1.13d2 /x2 (131)

where Ap is the air pressure prevailing outside the jet and this is also

tae pressvre in the vena contracta for a pneumatic chamber or large dimen-

sions. The distance below the orifice such that Ap will be equal to

0.O1p may be taken as the effective length Xj of the jet. Thus, the-

length of the jet on this basis is

x. i o.6d (2-3)

And the volume of the jet,

V. 31.2d3iT (133)

If d is 1 in., for example, the jet length X is 10.6 ia., and the vol-
ume of jet Vj is 0.018 ft3 If, on the other hand, 6~P, is chosen to • >..

ecpxl 0.0029 4 then • _•-

-. _-21-.2d -• _A and
V 250d3

The above results are for an isnthermaly flowing air. If /Ap/p0  is

small the results may be applied also to a case of adiabatically moving air

as in the pneumatic chamber since the errors in the application can be

ignored.

7. Kinetic energy of liquid in chamber and nozzle. Previously in

discussing the kinetic energ T2 1  in the pneumatic chamber and the
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nozzle below, The einergy was expressed as

= 2 (11 - ) + 2 (26 )

in which tkhe first term on the right-baii side represents the kinetic

i.er..r iri the upper part of the cihamber, prismatic in shape, and therefore

of constant cross section, and the second term represents the kinetic

eneriDr in the lower part of' the chamber aad the nozzle exteilsion of it.

Liat the kinetic± energy of the lower part be denoted by T% ; that is,

k . __ (13k)

where N' is a numerical constant, its value being dependent on the shape
t

of the nozzle and the tyrpe of the pneumatic generator, either low or ele-

vated. For these t-c types the evaluation of N, is carried out

di fferently.

Consider first a low generator as in fig. 18 a. The areas for which
thkinet, ener- TN is to be evaluated consist of the area (1) and the

area (2). Let c denote the velocity at a point in these areas,
2 2 2 it suffices to write for a rpoint in area

v n are (1)

Sv Vly/ and u = vlxi!-

and for a point in area (2)

u =qoo/b d b =D (H01- D)x!nt

where D is the depth of the nozzle throatý Ho the depth of the nozzle

mouth, 1. is the lenrg+th of the nozzle and qO the velocity at the nozzle"t

mouth. Rlow,

P

,'here dA ic an elea±entary area and A is the combined area of (1) and
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t2). Introducing vne above values ori the velocity components, integrating,

zA•i.n n tho r.4mlit m-_•.,-', iep of thp ennt½iit.v c,,nditinn

one obtajais

SSince vL = u2 (H0 + h) , also

Comparing with equation 135, then,. 7or P low pneumatic chamber

-n 4 (1÷ x (1136)

where

it HC D-

For an- elevated pneumat~. c.chamber the e irc.i on of Nt is done best

-by the method of gra.hics. Consideri--fg. 18. Let s be the median curve

of the adeflector 41nd b the section ý-ith. Obviously

S- :J 2b ds

Ai T- -

SI-nce qb Q%-

S--- - ods

In view of qOO-uLt(HO + h) , one has finally

h-f ds (-7

69

Xi



Comparing this with equation 135, then, for an elevated pneumatic chamber

w.lere It= It

ds
It.=jo -w

For the elevated pneumatic chamber used in the tests it is found that,

It = 6.72

In the treatment of the initial condition of chaaging pressures it was con-

venient to introduce a numerical factor M in equation 86 of the meaning

that

.=M~- 41 2 l 2H 2H
2 v1

Since u2 (110 + h) = vl• , the -last relation can be written also as

2• - - +t

Hence,
--H -HB 

+Z= 2 +

and for brevity

where

"•0 1-- + It

load

During the emergence of the wave from the generator the numerical
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factor M decreases with 5 (that is, with the fall of the water Surface

in the chamber). For the elevated chambers the term containing 6 may be

ignored. To illustrate this we now evaluate R for the pneumatic chamber

used in the tests and for the specific run AIO 2  that was selected for

the numerical analysis previously discussed. The pertinent data as seen in

table 1 are:

HO = 0 .319ft 0B .872 f

H = 1.41 -Lt HTu= 1. 8 8 5 ft

12=2ft Ao.4,66 f.t

Equation 139 yields

6.99(1 - 0.032 5/A) (14O)

which shows that even when the fali of the water surface is twice the ini-

tial air ga9 the error in neglecting the b/A term is only 6 percent.

8. Nozzle coefficient of friction. In dealing with the problem of

chamber pressures, it became necessary to introduce in the energy equation

a term to represent the total loss of vnergy ML during the time a wave

having the lehgth L and the height h is produced. As a matter of

convenience, the loss was expressed in' the form

K = ogh~n.,(52 bis)

that is, as a fractional part of the energy of the wave produced. The pro-

portionality factor X was referred to as the nozzle friction factor. If

the losses are fron viscosity, X would be a constant independent of the

wave height h . However, as it is readily understood, the losses origi-

nate from Aturbulence-and for this reason X would be dependent also on

wave height. This is a matter that requires some elucidation.
From above, since L = wt , the rate of loss to be associated with

the pneumatic chamber nozzle area is of the foim

7t 12a)

71



S•ma' the loss In ýhe rr-gion arises from two sources, the deflection and

th,- mubs-qu-.uat expansion, -ne rate of' loss may be expressed also as

AL
a- = APu D
At Lm

where u is velocity In the narrow part of the throat, D the depth of

the throat, and APL the dif'f-rential energy head associated with the com-

bined losses. It is -ustomary to write

L 2LP= •.um

".,here C 7s the loss coeff-iient. In this relation • is constant, its

value depending on the form of the rassages. Hence,

From the condition o*' continuity u D = " 0o

Comparing -this with equation .2a,

.Xpghw ~ n2 D (142)

Ignoring secondary quantitie:,

and

u2 /g4. h/•,i0

mid hene eauation 142 reduces to

S=\-) ho (143)
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which connects the loss coefficient • with the reslst.anco fa-tcor X

Tablo 8 presents the values of X for diT'fererit runs with the elc-

vated tank together with the wave height of the run and the water depth.

The individual values for every run are the averages from two ways of eval-

uating X . See tables 1 and 5. in the last column of table 8 are given
the values of t/2 reduced from X using equation 143. The average value

for • is

= 1.66

which 's quite reasonable. Since the nozzle of the generator used is of

low flare, thq expansion losses would be small and the substantial part o•f

the loss should be to the flow deflection through the throat bend. In 'his

respect the bend action is similar to that in an elbow flow and for which

the usually indicated coefficient is • = 1.13

An alternate expression for LPT in terms o. u2  is
L 'J

= ) (H+2h -)u2

which may be put in the form
S2

____ H 22
Lg( ',a .o I I-H0  (lI4h)

a result which was nsed in the section dealing with the general relations

governing the flow of air into the pneumatic chamber and the flow of water

out of the chamber.
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Table 1

nal'ysis of Elevated Pnetuatic Generator Data

-(Cmber connection to air tnrough three-way valve)

Chamber width, I ft; lenaggh, 2 Ct; flume width, 0.995 ft;

pOPg = 34 -t

Run Run Run Run Run Run Run Run
A'0-1 A2. 0 -2  A- A10-- A1 1  A1 -2  An11 2-3

Observed

h 0.052 0.051 0.o48 0.042 0.052. 0.050 0.052 0.053
H0 0.308 0.319 0.338 0.364 0.303 0.303 0.302 0.305

H 1.500 1.419 1.3i7 1.19 1.470 1.470 1.469 1.490

bpV/g 1.193 1.o94 0.976 0.754 1.167 1.167 i.165 1.167

1pi/pg 1.109 1.021 0.917 0.704 1.085 i.0 9 4 1.091 1.089

d/dtkP4/g 0.102 0.0 3 0.092 0.079 0.106 0.103 0.104 0.108

d4/dt 0.!01 O.097 0.094 0.080 0.lO4 O.104 0.106 0.108

k 0.071 0.O67 0.061 O.066 0.070 0.063 0.063 0.067

2k2 0.085 0.084 0.091 0.111 0.093 0.088 0.090 0.093I 0.547 0.512 0.477 0.390 0.571 0.570 0.583 0.586

'T 1.385 1.885 1.885 1.885 1.885 1.885 1.885 1.885

Computed

2k 2  0.074 0.082 0.090 0.091 0.076 0.073 0.073 0.079

u2 0.5o8 0.490 0.1445 0.382 0.500 0.492 0.512 0.518

o .43 o.4o o.14 0.08 0.31 0.22 0.18 0.24

1 0.56 0.54 0.18 0.30 0.54 o.41 0.37 0.h3

A



.LW.LLe 2

Determination of Discharge Coefficient C

4.03 ft-;-= 34.1 ft, 0= 66 F, co 1125 ft/secVog

C V /V 0
0= 2.9 ft 3 x/A

d,in. tid U p9g t Mean x 1o

1.467 0.33 0.670 0.690 0.680 109.5 1.32

1.002 0.43 0.700 0.T71 0.m06 36.1 0.4)

0.706 o.68 0.722 0.741 0.732 Ali.9 0.62

o.6o8 0.79 0.701 0.739 0.720 8.0 0.54

0.501 0.97 0.714 0.750 0.732 4.5 0.44

o.437 1.11 0.691 0.711 0.701 3.0 0.41

0.36o 1.34 0.792 -- 0.792 1.7 0.33
0.257 1.88 0.768 0.833 0.801 0.6 0.23

Table 3

Decrease of Discharge Coefficient with Volume

PO 4
j-= 34.1 ft, 1 ft

d =1.002 in. d= 0.3 I6n.
VVo VVo

ft 3  C xx 103 C x 103

4ý03 0.720 0.90 36.1 0.820 0.32 1.66

3.05 0.672 1.19 47.8 0.743 0.43 2.20

2.00 0.592 1.81 73.2 0.696 0.66 3.35

1.46 0.551 2.49 10.0 0.564 0.90 4.59

0.92 0.383 4.o9 15.9 o.482 1.48 7.00



Table 4

Determination of Discharge Coefficient

from the Wave Data; Pneumatic Generator Tests

Low Taxik Elevated Tara
Run Run Run Run

A14-7 A 14-5 A 16-2 A16-3

% (ft) 0.297 0.291 0.298 0.300

H(ft) 1.070 1.o76 1.471 1.469

lyft) 1.609 1.609 1.885 1.885

C(ft) 4.75 4.75 2.0o 2.00

Svo(ft 2.58 2.53 0.825 0o.832
:•a(f2 2.73Xi03 .6 x 10-3 1.36 x 10-3 2.81 x 10-3

""PpO4/g(ft) 0.771 0.775 1.171 1.168

K 3430 3480 8670 8600

"KCa 3.06 1.80 6.1 13.5

Ka 9.28 4.70 11.80 24.20

C 0.332 0.383 0.516 0.556

d(in.) 0.706 0.500 0.500 0.717

A(in.) 2.5 2.5 5 5

5.96 4.22 2.12 3.04Sx/

V,/V0 x 103 23.4 7.11 21.9 76.8



Table 9

Analysis of Pnevmatic Generator Data

(Chamber connection to air through circular orifice)

p0/g = 34f t; = 66 F

Low Chamber Elevated Chamber
Run Run Run Run

A14 7  A14 -5  A1 6 -2  A 1 6 -3

Observed

h 0.097 o.r64 0.066 0.120

Ho 0.297 0.291 0.298 0.300

H 1.070 1.076 1.471 1.469

1IT 1.609 1.6o9 1.885 1.885

4.75 4.75 2.00 2.00

vo 2.58 2.58 0.825 0.825

-3 -3a 2.737 x 10 1.36 x 10- 1.36 x 10-3 2.81 x 10-

0.7o/071 0.775 1.171 1.168

Pxi/Pg 0.680 o.724 1.081 0.875

0t--/g o.o68 o.040 0.112 0.208

dS/dt 0.075 0.045 0.Ii0 0.209

k0 0.170 0.090 0.077 o.184

2k o.o89 0.052 0.095 0.217

K 3.43 x 103  3.48 x 10 3  8.67 x 103  8.60 x 103

Computed

X 0.42 0.16 o.46 0.49

0.25 0.08 0.29 o.62

C 0.85 1.01 0.92 1.01



Table 6

Effeetive Coefficient of Discharge of the

Experimental Pneumatic Chambers

Low Chamber Elevated Chamber
Run Run Ruin Run

A{t, see 14-5 A16-2

0 0.85 1.01 0.92 1.01

1 1.06 1.19 1.03 1.12

2 1.14 1.27 L.09 1.39

3 1.25 1.39 1.17 1.91

0* 0.33 0.38 0.52 0.56

* Determined for the initial instant of f114 prior to the issuance of
wave from chamber. The table -indicates the discontinut7 in value of
-the effective discharge coefficient in the action of the chamber.



T--tble 7
:Fortran Programi for nium~atli,- Chamber Analysis

PIRThT 5"
F1ItT(iIH 1,l10X,.ý'-L.hffl.,!E. uIl 0X5~ A,13KX2PI,1XHIA)

E1lA = 0 .0

?l-i1 .0
RE--AD 50,DEJAUAU ,F.rT.N7TAU,A-1,A2,A3,A4,A5,A6,A7,A8

50 FORMATE ( 10F-7.
PRrlFP 51, T.AU,TFE,P1,MTA

51 F0R-1L4T k(4i,', 5.4)
1:R (TAu-FjoT..Vu) 2,,44
YRFAD 50,I)LT.AtJ,FllhTAU,Al,AI',A3,A4,A5,A6,A'Y,A8
IF (DEI5TAU) 9),ý99,2

2 AD~F,
D:ThEi!>i y ( '.0-A_ Tt-EA*LL-4*T*EA.I

TfhE -HE4DfTHEB*DnTTAU
PlPI+DPI*D-f.TTAU
DTHE--DTHB4D'2nIF*DElnrDU
TAU:--TAU+DEMTAU
CO TO 3z

-99 Q-Top
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Talc 13

Resistance Coefficient C for Elevated Chamber Nozzle Flow

D C.209 ft

RunhfX

A 0.052 0.308 0.145
10-1

A1 0 2  0.051 0.319 o.47 1.22

A10-3  0.04.3 0. 338 o.16 0.4i

A10-5 0.O42 0.364 0.1,9 0.50

Al_ 0.051 0.303 0.42

0A!.2 0.050 0.303 0.31 0.86

0.052 0.302 0.28 0.75
All-3

A 0.053 C.305 0.34 0.92
11-5

A16 - 2  0.066 0..2" 0.38.

A16 3  0.120 O. 300 0.51 0.59

- ean 0.3
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