THE PREDICTION OF CIVIL ENGINEERING PROBLEMS IN THE ARCTIC BY MEANS OF DUAL-CHANNEL I-R JCANNING AND AEROCHROME INFRARED PHOTOGRAPHY

by

AL CAP

Leonard A. LeSchack, Frederick H. Morse, Wm. R. Brinley, Jr. Nancy G. Ryan and Robert B. Ryan

Semi-Annual Technical Report #1

November 1971

DEVELOPMENT AND RESOURCES TRANSPORTATION CO.

1111 UNIVERSITY BLVD. WEST, SUITE G-7 SILVER SPRING, MARYLAND 20902, U.S.A TELEPHONE 001-649-1670

11.3

Sponsored by Advanced Research Projects Age cy ARPA Order No. 1722 dated 31 March 1971 Program Code #11/10

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, or the Advanced Research Projects Agency or the U. S. Government. Reproduction in whole or in part is permitted for any purposes of the United States Government.

DISTRUBUTION STATEMENT A

Approved for public release; Distribution Delimited

NATIONAL TECHNICAL INFORMATION SERVICE Springheid, Va 22151

375

33

2

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE. COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

THE PREDICTION OF CIVIL ENGINEERING PROBLEMS IN THE ARCTIC BY MEANS OF DUAL-CHANNEL I-R SCANNING AND AEROCHROME INFRACED PHOTOGRAPHY

by

Leonard A. LeSchack, Frederick H. Morse, Wm. R. Brinley, Jr. Nancy G. Ryan and Robert B. Ryan

Semi-Annual Technical Report #1

November 1971

DEVELOPMENT AND RESOURCES TRANSPORTATION CO.

1111 UNIVERSITY BLVD. WEST, SUITE G-7

SILVER SPRING, MARYLAND 20902, U.S.A TELEPHONE 301-649-1670

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by ONR under Contract No. N00014-71-C-0396

Principal Investigator: Leonard A. LeSchack

Scientific Officer: Director, Arctic Program Earth Sciences Division Office of Naval Research Department of the Navy 800 North Quincy Street Arlington, Virginia 22217

Short Title of Work: Subsurface I-R Imagery Effective Date of Contract: 15 April 1971 Contract Expiration Date: 14 April 1972 Amount of Contract: \$110,932.00

Security Classification			
DOCUME) (Security classification of title, body of abstract an	A Indexine exponention must	- R&D	
ORIGINATING ACTIVITY (Corporate author)		20. REPORT SECURITY CLASSIFICATION	
Development & Resources Transpo	ortation Co.	Unclassified	
Silver Spring Manuland 20002		25 GROUP	
REPORT TITLE		<u>N/A</u>	
The Prediction of Civil Engineerin	a Problems in th	a Arctic by Moans of	
Dual-Channel I-R Scanning and A	erochrome Infrar	ed Photography	
Semi-Annual Technical Report, 15	April-31 Octobe	er 1971	
5. AUTHOR(3) (Last name, first name, initial)			
Le Schack, Leonard A., Morse, I	Frederick H., E	Brinley, Wm. R., Jr.,	
Ryan, Nancy G. and Ryan, Rober	rt B.		
NOVEMONT 1971	78. TOTAL NO.	OF PAGES 76 NO. OF REFS	
	38 + 4 4	Appendices ¹⁰	
I. CONTRACT OF GRANT NO. N00014-71-C-0396	D&RTCO.	R'S REPORT NUMB世纪(5) ,井7	
A PROJECT NO			
NR 307-339			
$c_{\rm c}$ ARPA Order #1772(31 Mar 71)	95. OTHER REP this report)	ORT NG(S) (Any other numbers that may be assigne	
• Program Code 1N10	None		
10. AVAILABILITY/LIMITATION NOTICES			
Qualified sile sectors was abtain a		ant from DDC	
- Oudlined requestors may obtain c	opies of this rep	Dort from DDD.	
Qualified requestors may obtain c	opies of this rep	bort from DD5.	
Qualified requestors may obtain c	Opies of this rep	B MILITARY ACTIVITY	
Office of Naval Research	opies of this rep 12. sponsoning Advance	d Research Project Agency	
Office of Naval Research Arctic Program (Code 415)	opies of this rep 12 sponsoning Advance 1400 Wi	d Research Project Agency Ison Boulevard	
Qualified requestors may obtain continued requestors may obtain continued by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217	Advance 1400 Wi Arlingtor	d Research Project Agency Ison Boulevard N. Virginia 22209	
Qualified requestors may obtain continued requestors may obtain continued by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217	12 SPONSORING Advance 1400 Wi Arlingtor	d Research Project Agency lson Boulevard N. Virdinia 22209	
Qualified requestors may obtain constraints of the second	e ice in permafr	a MILITARY ACTIVITY d Research Project Agency lson Boulevard n. Virginia 22209 rost by sensing the associated	
Qualified requestors may obtain constraint of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Arlington, Virginia 22217 Aestract The feasibility of detecting massive surface thermal anomalies with an (L-R) line agaptor is discussed in the feasibility of the second statement of th	opies of this rep 12 sponsoning Advance 1400 Wi Arlingtor re ice in permafr airborne <u>synchr</u>	d Research Project Agency lson Boulevard Virdinia 22209 rost by sensing the associated onous dual-channel infrared	
Qualified requestors may obtain control of the search Arctic Program (Code 415) Arlington, Virginia 22217 Arlington, Virginia 22217 The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the d	ve ice in permafi airborne <u>synchr</u> this first semi-a	d Research Project Agency lson Boulevard Virginia 22209 rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas	
Qualified requestors may obtain constraints of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Arctic Program (Code 415) Arlington, Virginia 22217 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the detection and ground truth the second second truth the second second truth the second second second truth the second second second truth the second second second second truth the second seco	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>N Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful	
Qualified requestors may obtain constraints of the search and the search arctic Program (Code 415) Arlington, Virginia 22217 The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the detecting any thermal anomalies in detecting any thermal anomalies in the search are involved in the search and ground truth the search and ground truth the search and thermal anomalies are the search and ground truth the search are the search anomalies are the search are the search are the search anomalies are the search are the search anomalies are the search a	ve ice in permafr airborne <u>synchr</u> this first semi-a field studies of	a MILITARY ACTIVITY d Research Project Agency lson Boulevard virginia 22209 rost by sensing the associated onous dual-channel infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful	
Qualified requestors may obtain constraints of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Arctic Program (Code 415) Arlington, Virginia 22217 BABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the dimatical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of the	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R	bort from DDC. B MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>n. Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful <u>surface ice in permafrost</u> , scanner to synchronously sense	
Qualified requestors may obtain of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 ABSTRACT The feasibility of detecting massiv surface thermal anomalies with an (I-R) line scanner is discussed in of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8-	A Research Project Agency lson Boulevard <u>In Virginia 22209</u> Fost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense	
Qualified requestors may obtain constraints of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 3. ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the detecting and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the record standard of th	ve ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded informati	A Research Project Agency lson Boulevard by Sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and produc	
Qualified requestors may obtain constraints of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 3 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the d matical modeling and ground truth the in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the requirements of the record radiation detection of the record radiation emitted in the processing electronically of the record radiation of the record radiation detection of the record radiation emitted in the processing electronically of the record radiation detection of the record radiation detection of the record radiation emitted in the processing electronically of the record radiation detection de	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information mal anomalies s	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>n. Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful r surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and produce ought. As was originally propose	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the re- imagery used to delineate the therm by the Development & Resources The state of the standard of the re-	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded informati nal anomalies s ransportation Co	d Research Project Agency lson Boulevard <u>N Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and produc ought. As was originally propos	
Qualified requestors may obtain constraints of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 3. ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the redimagery used to delineate the thermal by the Development & Resources The imagery which approaches an emis	ve ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded informati mal anomalies s ransportation Co sivity ratio map	A swas originally production with the ratio signal, by producting the ratio signal, by producting the ratio significantly the ratio significantly the ratio significantly the ratio significantly the ratio signal, by producting the ratio significantly the ratio significantly the ratio signal, by producting the ratio significantly	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 BABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the d matical modeling and ground truth the in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the res- imagery used to delineate the therm by the Development & Resources The imagery which approaches an emis- in differentiating effects due to term	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded informati mal anomalies s ransportation Co sivity ratio map mperature from t	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>1. Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. /As was originally propos b., the ratio signal, by production , appears to assist significantly hose due to emissivityinser-	
Qualified requestors may obtain constraints of supplementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Arctic Program (Code 415) Arlington, Virginia 22217 Aestract The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in for research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the regimagery used to delineate the thermal by the Development & Resources The imagery which approaches an emiss in differentiating effects due to termarable in conventional "thermal" magery "the termal" magery magers and the termal anomalies (a) and the termate the thermal approaches an emiss in differentiating effects due to termarable in conventional "thermal" magers and the termate termate the termatematematematematematematematematemate	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information nal anomalies s ransportation Co sivity ratio map nperature from t happing. Compa	A Research Project Agency lson Boulevard <u>In Vircinia 22209</u> Fost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. As was originally propos b., the ratio signal, by producin , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an	
Qualified requestors may obtain constrained requestors may obtain constrained by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Arington, Virginia 22217 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in a of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard and record radiation emitted in the processing electronically of the rea- imagery used to delineate the therm by the Development & Resources The imagery which approaches an emiss in differentiating effects due to ter arable in conventional "thermal" m area with the thermal maps in the 4	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information mal anomalies s ransportation Co sivity ratio map mperature from t happing. Compa 4.5-5.5 and 8-1	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>1. Virtinia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful r surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. As was originally propose b., the ratio signal, by production , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an 2 micron bands, and especially	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard and record radiation emitted in the processing electronically of the re- imagery used to delineate the therm by the Development & Resources The imagery which approaches an emiss in differentiating effects due to ter arable in conventional "thermal" m area with the thermal maps in the 4 with the product imagery map, dist	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information mal anomalies s ransportation Co sivity ratio map mperature from t happing. Compa 4.5-5.5 and 8-1 cinguishes anom	d Research Project Agency lson Boulevard <u>N Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. As was originally propos b., the ratio signal, by producin , appears to assist significantly hose due to emissivityinser- rison of the ratio map of an 2 micron bands, and especially alous regions due primarily to	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Aestract The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in for of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the re- imagery used to delineate the therr by the Development & Resources The imagery which approaches an emiss in differentiating effects due to ter arable in conventional "thermal" m area with the thermal maps in the 4 with the product imagery map, dist temperature. Field ground truth st	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information nal anomalies s ransportation Co sivity ratio map mperature from t happing. Compa 4.5-5.5 and 8-1 cinguishes anom udies, including	d Research Project Agency lson Boulevard <u>I Vircinia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. As was originally propos b., the ratio signal, by producin , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an 2 micron bands, and especially alous regions due primarily to g extensive permafrost probing	
Qualified requestors may obtain complete stores may obtain complete stores and obtain complete stores and obtain complete stores and obtain complete stores and comple	re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information mal anomalies s ransportation Co sivity ratio map mperature from t happing. Compa 4.5-5.5 and 8-1 cinguishes anom udies, including surements taken	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>1. Virginia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. /As was originally propos b., the ratio signal, by producin , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an 2 micron bands, and especially alous regions due primarily to g extensive permafrost probing at hourly intervals over several	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 Aestract The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in for of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the re- imagery used to delineate the therr by the Development & Resources The imagery which approaches an emiss in differentiating effects due to ter arable in conventional "thermal" m area with the thermal maps in the 4 with the product imagery map, dist temperature. Field ground truth str and near-surface temperature meass days, were conducted for correlat.	12 SPONSORING Advance 1400 Wi Arlinitor re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information nal anomalies s ransportation Co sivity ratio map mperature from t apping. Compa 4.5-5.5 and 8-1 cinguishes anom udies, including purements taken	A MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>1 Vircinia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. As was originally propos b., the ratio signal, by producin , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an 2 micron bands, and especially alous regions due primarily to g extensive permafrost probing at hourly intervals over several porne imagery. Drilling of one	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in for of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the res- imagery used to delineate the therm by the Development & Resources The imagery which approaches an emiss in differentiating effects due to ter arable in conventional "thermal" m area with the thermal maps in the 4 with the product imagery map, dist temperature. Field ground truth str and near-surface temperature meas days, were conducted for correlat (Continued on	12 SPONSORING Advance 1400 Wi Arlington re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information mal anomalies s ransportation Co sivity ratio map nperature from t happing. Compa 4.5-5.5 and 8-1 cinguishes anom udies, including urements taken ion with the airl supplement)	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>1. Virtinia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and product ought. /As was originally propose b., the ratio signal, by producing , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an 2 micron bands, and especially alous regions due primarily to g extensive permafrost probing at hourly intervals over several porne imagery. Drilling of one	
Qualified requestors may obtain complementary notes Monitored by Office of Naval Research Arctic Program (Code 415) Arlington, Virginia 22217 ABSTRACT The feasibility of detecting massive surface thermal anomalies with an (I-R) line scanner is discussed in the of research are involved: (a) the d matical modeling and ground truth in detecting any thermal anomalies (b) the modification of a standard of and record radiation emitted in the processing electronically of the re- imagery used to delineate the therr by the Development & Resources The imagery which approaches an emiss in differentiating effects due to ter arable in conventional "thermal" m area with the thermal maps in the 4 with the product imagery map, dist temperature. Field ground truth sta and near-surface temperature meass days, were conducted for correlat. (Continued on 1975)	12 SPONSORING Advance 1400 Wi Arlington re ice in permafr airborne <u>synchr</u> this first semi-a letermination an field studies of caused by near quantitative I-R 4.5-5.5 and 8- corded information mal anomalies s ransportation Co sivity ratio map mperature from t apping. Compa 4.5-5.5 and 8-1 cinguishes anom udies, including purements taken ion with the airl supplement)	bort from DDC. MILITARY ACTIVITY d Research Project Agency lson Boulevard <u>1. Virdinia 22209</u> rost by sensing the associated <u>onous dual-channel</u> infrared annual report. Three broad areas d quantification by both mathe- significant parameters useful surface ice in permafrost, scanner to synchronously sense 12 micron bands, and (c) the on to obtain the ratio and produce ought. As was originally propose b., the ratio signal, by producing , appears to assist significantly hose due to emissivityinsep- rison of the ratio map of an 2 micron bands, and especially alous regions due primarily to g extensive permafrost probing at hourly intervals over several DOTELASSIFIED	

ľ

DD Form 1473

#13, Abstract, Continued

ridge-shaped permafrost structure, located by probing in an area corresponding to a polygonal structure seen on the imagery, revealed more ice in the cores than would have been anticipated by random drilling. It is believed that these structures are the sides of ice polygons seen on the I-R imagery but not observable in standard aerial photography. Further analyses of these data are needed before conclusive statements can be made; however, both the dualchannel scanner and the discussed approach to detection of ice within the permafrost appear to be useful tools for arctic engineering and warrant further study.

UNCLASSIFIED Security Classification

		LIN	KA	LIN	КВ	LIN	ĸc
KEY WORDS		ROLE	WT	ROLE	WT	ROLE	WT
Arctic Civil Engineering Airborne Remote Sensing - Alaska Permafrost - Alaska Infrared Imagery - Alaska, High Resolution, I Aerochrome Infrared Photography - Alaska Ice-Polygonal, wedges, lenses Imagery Enhancement - Thermal I-R Ratio and Product Imagery - Thermal I-R Airborne Line Scanner-Synchronous Dual Cha	Large Sca annel I -R	le					
INSTRU	JCTIONS						
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fence activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Reatricted Dats" is included. Marking is to be in accord- ance with appropriate security regulations. GROUP: Automstic downgrading is specified in DoD Di- rective 5200. i0 and Armed Forces Industrial Manual. Enter the group number. Also, when splicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summsry, snnual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter theme(s) of suthor(s) as shown on or in the report. Enter tast name, first name, middle initisl. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. NUMBER OF REFERENCES: Enter the total number of references cited in the report. CONTRACT OR GRANT NUMBER: It appropriste, enter the applicable number of the contract or grant under which the report number, system numbers, task number, etc. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- cis	imposed by such ss: (1) (4) (2) (4) (2) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (6) (4) (4) (4) (6) (4) (4) (4) (6) (4) (4) (4) (4) (6) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	y security Qualified port from Foreign a port by D U. S. Gov is report vers shall U. S. mili port direct hall distri- ied DDC report has Departmen act snd e LEMENT SU: iNG I mental pre- e research SU: iNG I mental pre- e research d. ighly des ified. Es on of the n the part is no lim uggested VORDS: 1 rases that so that no ss equip e nsme, g will be fo sssignment	classific requeste DDC." innouncem DC is no ernment i directly if request tsry sgen ctly from st throug bution of users sha been fur it of Com to f Com the p ARY NOT All JTAR' Ajec? offic a snd dev cater sn s insble tha icch paragi military is sgraph, re itstion on length is Key words t charscts alcong the security of ment mode cographi llowed by at of links	cation, us rs may ob- hent and of t authoriz sgencies from DDC through cies msy DDC. Ot h this repo Il reques nished to merce, fo rice, if k TES: Use K ACTIVI ce or Isbo elopment. bstract g lostive of in the bo required, : t the sbs rsph of th security of presented the leng from 150 s sre tech relassifica el design: c location s, rules, :	ing stand tain copi dissemina red." msy obtain obtsin co her qualif rt is cont t through the Offic r sile to nown. c for sddif (TY: Ent rstory sp Include iving s bi the repo body of the s continu- tract of cc c solarso classifica d ss (TS) th of the to 225 w nicelly m port and r Key wo tion is re stion, tra h, msy be stion of t	lard state es of this ation of the in copies qualified 1 opies of t fied users rolled. Q consoring sodress. tional exp er the nation onsoring sodress. tief and fi rt, even t t technics stion shell itssified t t shill er tion of th , (S), (C), abstract. ords. may be us required. I de name, used ssified t technics is optimised to the state of	ments of DDC

.

UNCLASSIFIED Security Classification L

-16

0.6

å.

1

4.

Ţ

I

L

L

1

1

1

FOREWORD

This first Semi-Annual Technical Report under Office of Naval Research Contract N00014-71-C-0396, ARPA Order #1722 dated 31 March 1971, covers research conducted by the Development and Resources Transportation Co. (D&RTCo)from the signing of the contract (10 June 1971) to date. The program objective has been to investigate the feasibility of using dual-channel infrared (I-R) scanning with Aerochrome Infrared photography to detect massive ice within the permafrost in Alaska. The major efforts during the reporting period were devoted to identifying the significant parameters for measurement in the field; determining what their expected magnitudes would be and how best to measure them. In the field phase, using projected data values, these measurements were made at several locations in Alaska. Accordingly, this report will be devoted primarily to a discussion of the methodologies used in the conduct of the field program and of the types of data collected. Additionally, some preliminary analysis of the data is is presented.

ACKNOWLEDGEMENT

The authors wish to gratefully acknowledge the help of the following persons who assisted in the program:

Messrs. Ralph Migliaccio and Ray Krieg of R&M Engineering and Geological Consultants, Fairbanks; Frank Whaley, Jr., Alaskan bush pilot extraordinaire, who piloted our instrumented aircraft; and Carl Miller, Executive Vice President of Daedalus Enterprises, Inc., who operated the scanner system and field-processed imagery for use by the ground party.

We would also like to acknowledge the assistance of Dr. David F. Murray, Curator of the University of Alaska Herbarium, and Barbara Murray, who assisted us in plant identification; Messrs. George England of Daedalus Enterprises, Inc., who helped process our data to obtain ratio and product imagery; Paul Sellmann of U.S. Army CRREL, for his insight into our program and the assistance he provided at his office in obtaining pertinent data; Robert I. Lewellen, Arctic geologist, who assisted the Principal Investigator at Barrow in choosing the most appropriate flight lines; Eugene Stroup, NASA Goddard Space Flight Center, and Bernard Goldberg, Smithsonian Institute Radiation Riology Laboratory, who loaned us special field equipment. Special thanks go to Professor Robert T. Merritt, Department of Electrical Engineering, University of Alaska, for the use of laboratory facilities for repair of equipment during the field program, and to Mr. Gordon W. Greene of the U.S. Geological Survey, Menlo Park, California, for providing us with copies of that office's Aerochrome Infrared photography and I-R imagery of the pipeline route for study early in the project. DEVELOPMENT AND RESOURCES TRANSPORTATION CO.

1111 UNIVERSITY BLVD. WEST, SUITE G-7

SILVER SPRING, MARYLAND 20902, U.S.A

THE PREDICTION OF CIVIL ENGINEERING PROBLEMS IN THE ARCTIC BY MEANS OF DUAL-CHANNEL I-R SCANNING AND AEROCHROME INFRARED PHOTOGRAPHY

TELEPHONE 301-649-1670

by

Leonard A. LeSchack, Frederick H. Morse, Wm. R. Brinley, Jr. Nancy G. Ryan and Robert B. Ryan

November 1971

SUMMARY

PURPOSE OF THE RESEARCH PROGRAM

Background - The Problem

Engineering construction in areas underlain by permanently frozen ground (permafrost) has long been a problem in the Arctic. The USSR has found this to be one of their most severe constraints in Arctic engineering construction; the United States and Canada encountered similar problems, particularly in the building of the DEWLINE stations. Currently, civil engineers are faced with route selection problems, over extensive zones of continuous and discontinuous permafrost, prior to construction of a large diameter pipeline from Prudhoe Bay to Valdez, Alaska.

In connection with initial surveys for the proposed pipeline, an extensive core-drilling program was essential to determine the engineering characteristics of the subsurface and the ability of the ground to support the pipeline and its associated facilities. The fact that the line was to traverse extensive regions of permafrost was known--the nature of the underlying permafrost was not. R&M Engineering and Geological Consultants of Fairbanks (R&M), under contract to the pipeline consortium is currently conducting the core-drilling program. The services of R&M were also retained by the Development and Resources Transportation Company (D&RTCo.) for the program described herein. As coredrilling progressed, engineers were disturbed to note that many of the cores contained substantial thicknesses of ice. The ice appeared at apparently random borehole locations as lenses, wedges, and other forms of varying thickness. Construction in areas where permafrost has a substantial ice content is almost predestined to fail as the ice responds to disruption of the thermal regime. A method is needed, therefore, to locate and delineate such areas of massive

ice without an extensive and expensive program of core drilling required literally every few meters. Remote sensing techniques appear to offer a potential solution, and warrant further investigation.

Standard and Conventional Photo-Interpretation

The extensive literature, published in the US, the USSR, and Canada shows a consensus that the phenomenon of the ice-wedge polygon is an important key to determine the presence (or absence) of massive ice in permafrost. In areas with shallow depths to permafrost (such as the North Slope of the Brooks Range) conventional aerial photography clearly identifies polygonal structures and Aerochrome Infrared photography has also proven to be a boon in such applications. In areas other than on the North Slope or where patterned ground is not clearly visible, conventional photographic interpretation techniques are insufficient to determine the presence of such ice with the degree of certainty and resolution required. A more positive method of determining such phenomena in near-realtime is needed.

I-R Scanning in the Arctic

Based upon records of previous experiments with standard I-R scanning in the Arctic, the D&RTCo. proposed a potential solution to the problem described above. Although the majority of previous I-R work in this area employed single channel scanners, D&RTCo. proposed to use a <u>synchronous dual-channel scanner</u> in which two wavebands of I-R radiation could be examined simultaneously. D&RTCo. studies, conducted in late 1970, concluded that a dual-channel scanner had excellent promise as a tool by which massive ice inclusions in permafrost might be detected. A proposal was made to the Director, Advanced Engineering, ARPA in which field experiments were to be conducted employing these techniques. An ARPA Order was issued in March 1971, and the Contract was signed in June.

• •

i ,

.

GENERAL METHODLOGY, CHRONOLOGY AND DESCRIPTION OF ACTIVITIES

The D&RTCo. Program is divided into three major phases. These are:

- Literature search, instrumentation preparation, field site selection, establishment of a field operational plan, thermal modelling - PHASE I
- Field program PHASE II
- Data reduction, data analyses, and documentation PHASE III

This summary and the first Semi-Annual Technical Report accompanying it discuss the first two phases of the program.

PHASE I - Methodology

19. Nite

-

nije 1 nate

I

Phase I consisted of the following activities:

- Review of studies in the areas of permafrost and Arctic engineering problems including visits to CRREL, the Willow Run Laboratories and the CRREL permafrost tunnel at Fairbanks.
- Development of appropriate techniques for implementation of dual-channel I-R scanning and giving appropriate guidance to the instrument contractor for the construction of the specialized I-R scanning equipment.
- Development of a thermal model to describe the anomalies being sought.
- Detailed examination of the borehole logs, prepared by R&M, to determine areas for more concentrated study in the field.
- Design and fabrication of special equipment required for the ground truth data collection portion of the field program.
- Development of a field program to obtain the required data prior to the onset of snow.

PHASE I - Chronology

Phase I was completed in late July 1971 and included field reconaissance by the Principal Investigator of candidate sites in Alaska, and the detailed examination of borehole data prepared by R&M from boreholes at the sites. On the basis of the field reconaissance, examination of Aerochrome Infrared aerial photography made available by the United States Geological Survey, and detailed plotting of core-logs, four major sites were selected for the field program. These were at Sourdough, Shaw Creek Flats, Hess Creek, and Barrow.

Daedalus Enterprises, Inc. (DEI) modified and tested the dual-channel I-R Scanner. Special field instrumentation was designed, fabricated and tested at D&RTCo. and high-accuracy radiation measurement instruments were acquired.

Close coordination was maintained during this phase with the Willow Run Laboratories of the University of Michigan. This organization had done extensive work in the areas of I-R scanning and thermal modeling, and therefore was chosen to perform the thermal modeling for this program.

PHASE II - The Field Program

The field program was divided into two major operations.

- Airborne operation
- Ground operation

Both of these operations were closely coordinated, and were, of necessity, carried on simultaneously. They are separately described in the paragraphs that follow.

<u>Airborne Operations</u>: A Piper "Aztec" was fitted with the airborne scanner on 19 August and immediately dispatched to the Sourdough area. Two sites, referred to as "Sourdough North" and "Sourdough South" were overflown under varying conditions of weather and time of day. The aircraft was based nearby, permitting immediate processing and examination of the imagery for information that would be of value to the ground party. At the conclusion of the operations in the Sourdough area, the aircraft proceeded to the site of special DOD research activities in the Pt. Barrow Area. Overflights were made of a series of arctic research activities in the region including several CRREL sites, the sites of the ARPA Surface Effect Vehicle Test Program and the IBP Tundra Biome Program. At the conclusion of these activities, the aircraft returned to the ground party, which, having completed its work in the Sourdough area, had proceeded to the Shaw Creek Flats Site.

The data gathered at the Shaw Creek Flats Site indicated that this should be the area for investigation in depth by both ground and air means. The Hess Creek Site was excluded from investigations during this phase of the program due to logistic and time limitations. In addition to the employment of the I-R scanner, selected aerial photography was taken of all the sites of interest to the program. Low-level Kodacolor photography taken of the Shaw Creek Flats Site by helicoper proved a valuable bridge between the activities of the ground party and Phase III data analyses.

<u>Ground Operations:</u> At both the Sourdough and Shaw Creek Flats Sites the ground party carried out similar activities. At the latter site, additional data were gathered. Basic ground truth collection procedures were as follows:

- Locating previously identified boreholes which had significant ice content and marking the holes with high-visibility signal panels for ease of identification on airborne imagery.
- 'Establishing navigational "check points" to guide the overflights.
- Establishing appropriate ground control. Area is poorly mapped, and "benchmarks" are few. Control had to be established independent of existing geodetic data.
- Describing significant elements of the vegetation by species and size.

After the decision was made to concentrate the field investigations at the Shaw Creek Flats Site, the following additional activities were carried out.

- Detailed ground control was established, based upon compass bearings. NW/SE and NE/SW "transects" were made
- A probe of depth to top of frozen ground layer was made along each transect at 1/2 meter intervals and logged with appropriate environmental data.
- 21-element thermistor arrays were established at two sites, their location guided by rapid interpretation of both airborne imagery and ground probe data, and continuous environmental readings were made at critical times of day and night.
- Detailed (1/2m spacing) probe activities were carried out in areas at which imagery indicated likelihood of polygonal formations.
- An experimental core-drilling operation was conducted at one point of interest, at which a polygon ridge anomaly had been identified; this resulted in finding segregated ice at depths of 50 and 100 cm.

The ground party concluded its field activity on 11 September 1971.

PRELIMINARY CONCLUSIONS

9 19 4

> The field program was concentrated at the Shaw Creek area and conclusions presented below represent a preliminary analysis of both the airborne imagery and associated ground data from that area.

- The dual-channel I-R scanner has near-real-time capability of providing assistance to engineers in the field. In the test area, polygonal structures were identified, based upon rapid processing, using a field processing unit. Pre-dawn imagery appeared to have the greatest significant information. Polygons undetected by conventional reconaissance means, are, on the basis of these limited experiments, apparently detected by use of this technique. The authors believe that the existence of polygons, with their associated ice-wedges, may be determined with greater confidence in areas of discontinuous permafrost or in areas where there is no visible surface expression, with the techniques described in the report.
- On the basis of initial imagery examination it is evident that the dual-channel system offers considerable promise for identifying ice wedge polygons. Applying contemporary image- enhancing techniques to the D&RTCo. data appear to offer only limited

v ·

capabilities in the identification of polygons. D&RTCo. has offered an 'alternative technique, which, even in these early stages of study appears to present marked advantages over the techniques commonly employed in I-R image enhancement for other purposes. The D&RTCo. procedure involves a comparison of the ratio and product of the twochannel imagery. The procedure has, to date, shown a remarkable capability for identifying ice-wedge polygons that appear undetectable by other means. The potential of this imagery processing tool appears to be very significant and has just begun to be realized.

IMPLICATIONS TO THE DEPARTMENT OF DEFENSE

The Department of Defense has, of recent years, shown increasing interest in the Arctic, as evidenced by their sponsorship of the Arctic Surface Effect Vehicle Program, their recent overview study of DOD-sponsored arctic research programs, and their sponsorship of CRREL and ONR research in the North. The program reported upon herein is in a position to support ongoing and planned DOD activities in the Land Arctic, particularly in areas underlain by permafrost. The program has demonstrated that:

- The use of I-R scanning has a significant, but undeveloped potential to locate and identify massive ice in permafrost. The availability of this capability to engineers who must engage in a ctic construction in such areas is considered to be of value.
- Dual-channel I-R scanning offers even greater capabilities of identifying such ice masses. At present, image enhancement techniques that will imake the greatest use of this capability are confined to the laboratory. It is, however, preeminently feasible to adapt such capability to the field; thus giving the user vital data concerning the engineering characteristics of permafrost in near-real-time.
- It appears that contemporary, conventional image-enhancement techniques, although suited to other interpretations, are less suited to the identification of ice-wedge polygons in permafrost than the "ratio-product" methodology now under study by the D&RTCo.

FURTHER RESEARCH IMPLICATIONS

The role of civil engineering in the Arctic is expected to grow with greater DOD and civil interests in the area. In addition, the Corps of Engineers maintains both a civil and military role in Alaska--an area in which civil and military functions have typically been closely inter-related. With increased interest in both the Land and Ocean Arctic Regions, the requirements for facilities construction is also expected to grow. It is vital that the civil engineer operating in the Arctic be fitted with the best tools of the trade. To date, permafrost engineering has been a costly, "learn by experience" activity. The techniques initiated in this program offer the potential to take some of the guesswork out of engineering operations there. The techniques discussed have not been subjected to detailed, analytical examination, however, and therefore represent only a limited sampling of employment of instrumentation, correlation with ground truth, and analyses. Such limitations are inherent to the extremely limited time afforded by the short Alaskan field season. Before the promise of the techniques initiated in this feasibility study may be implemented with fullest confidence, a more comprehensive research program should be undertaken.

vii

ABSTRACT

The feasibility of detecting massive ice in permafrost by sensing the associated surface thermal anomalies with an airborne synchronous <u>dual-channel infrared (I-R) line scanner</u> is discussed in this first semiannual report. Three broad areas of research are involved: (a) the determination and quantification by both mathematical modeling and ground truth field studies of significant parameters useful in detecting any thermal anomalies caused by near surface ice in permafrost, (b) the modification of a standard quantitative I-R scanner to synchronously sense and record radiation emitted in the 4.5-5.5 and 8-12 micron bands, and (c) the processing electronically of the recorded information to obtain the ratio and product imagery used to delineate the thermal anomalies sought. As was originally proposed by the Development & Resources Transportation Co., the ratio signal, by producing imagery which approaches an emissivity ratio map, appears to assist significantly in differentiating effects due to temperature from those due to emissivity--inseparable in conventional "thermal" mapping. Comparison of the ratio map of an area with the thermal maps in the 4.5-5.5 and 8-12 micron bands, and especially with the product imagery map, distinguishes anomalous regions due primarily to temperature. Field ground truth studies, including extensive permafrost probing and near-surface temperature measurements taken at hourly intervals over several days, were conducted for correlation with the airborne imagery. Drilling of one ridge-shaped permafrost structure, located by probing in an area corresponding to a polygonal structure seen on the imagery, revealed more ice in the cores than would have been anticipated by random drilling. It is believed that these structures are the sides of ice polygons seen on the I-R imagery but not observable in standard aerial photography. Further analyses of these data are needed before conclusive statements can be made; however, both the dual-channel scanner and the discussed approach to detection of ice within the permafrost appear to be useful tools for arctic engineering and warrant further study,

TABLE OF CONTENTS

е е -

Page
I UUU

1. INTRODUCTION AND RATIONALE FOR RESEARCH	1
1.1 Standard Photo-Interpretation	2
1.2 Standard I-R Scanning in the Arctic	3
1.3 The Dual-Channel I-R Scanner	3
1.4 Preliminary Thermal Modelling	5
1.5 <u>Research Plan</u>	9
2. INSTRUMENTATION	11
2.1 <u>The Dual-Channel Scanner</u>	11
2.2 The Signal Conditioner/Readout Device	12
3. <u>THERMAL MODELLING</u>	13
4. <u>FIELD PROGRAM</u>	15
4.1 Preliminary Site Investigation	15
4.2 <u>Airborne Program</u>	17
4.3 <u>Ground Program</u>	17
4.4 Description of Shaw Creek Flats Environment	19
4.5 Discussion of Field Data Acquisition	23
5. DISCUSSION OF DATA	25
5.1 <u>Preliminary Analysis</u>	25
5.2 Continuing Data Analysis	26

ix

Table of Contents (Continued

6. <u>POTI</u> <u>OF P</u>	ENTIAL ENGINEERING SIGNIFICANCE PROGRAM	27
7. <u>REFE</u>	RENCES	35
8. <u>GLO</u>	SSARY	37
APPENDIX A: Theory	and Discussion of Daedalus Quantitative	Scanner
APPENDIX B: Discus	sion of Thermal Model	
APPENDIX C: Flight	Log	

Page

ъ. н.

1

Ì

19 mg

APPENDIX D: Vegetation, Shaw Creek Flats Site

THE PREDICTION OF CIVIL ENGINEERING PROBLEMS IN THE ARCTIC BY MEANS OF DUAL-CHANNEL I-R SCANNING AND AEROCHROME INFRARED PHOTOGRAPHY

by

Leonard A. LeSchack, Frederick H. Morse, Wm. R. Brinley, Jr. Nancy G. Ryan and Robert B. Ryan

1. INTRODUCTION AND RATIONALE FOR RESEARCH

One of the most extensive civil engineering projects planned in Alaska is the construction of a pipeline from Prudhoe Bay on the North Coast to Valdez on the South Coast. A massive preliminary survey effort was conducted within the past few years by the Trans-Alaska Pipeline System (now Alyeska Pipeline Service Co.) and one of their contractors, R & M Engineering & Geological Consultants (R&M) of Fairbanks, to determine the nearsurface geology of the proposed route and to locate the extent of permafrost in the discontinuous region. This survey involved preparing an aerial photo mosaic of the route using the available black and white photography taken at a scale of 1:47,350 and obtaining geological ground truth by drilling along this route. The drilling program was, and continues to be, an extensive and costly effort; hundred of boreholes are being sunk to bedrock or gravel beds to determine the nature of the "active" layer and the potentially unstable permafrost layer. Boreholes were spaced an average of two miles apart along the trail, with some occasional clustering in areas of special interest.

A drilling program of this nature is the usual precursor to the final survey for a road or pipeline project, and this Alaskan survey was considerably more costly than a similar program in the temperate zone, owing to higher logistic costs. A prime purpose of any such survey is to determine the capability of the subsurface structure to bear, without shifting, contracting or expanding, the weight of a roadway or structure emplaced along the survey route. It was, therefore, very disturbing to the contracting engineers to discover, at apparently random drill sites, substantial thicknesses of ice in the drill core sections. The ice is formed in lenses, strata, wedges and other shapes. It is commonly found in the Arctic and has been described in the literature (1, 2, 3, 4). These masses are significant to engineers because, being nearly pure ice, they respond to temperature changes by relatively rapid, large scale volumetric changes. Temperature changes may be caused by seasonal changes in incident solar energy; extensive changes in the vegetation cover such as due to land clearing; or by the construction of a roadbed or structure above the ice body. Such large scale volumetric changes in the near-surface geologic column could easily precipitate an engineering catastrophe.

1.

. .

- 1 -

The Alyeska experience is perhaps the most recent and largest scale example of the extensive engineering problems encountered in construction projects in the Arctic. The problem of near-surface ice structures is important to all arctic military construction whether it be large projects such as airstrips, roadways or pipelines, or small projects such as radar sites or buildings. It seems obvious that a point by point drilling survey, while providing positive information on the presence or absence of massive ice at each drill site, is too costly for use in a continuous survey. As a possible alternative, the Development and Resources Transportation Co. (D&RTCo.) proposed that by airborne remote sensing techniques, large areas could be efficiently surveyed and the presence of ice in engineeringly significant amounts could be determined. This report presents the progress to date on this research.

1.1 <u>Standard Photo-Interpretation</u>

The engineers conducting the Alyeska survey⁽⁵⁾ observed that:

"Due to photo age, photo quality and scale, as well as a near total lack of ground truth data in many areas, variation between actual ground conditions and those conditions thought to exist based on photo interpretation will occur. One example is massive ground ice, particularly lenses. In several cases this ice form, where known to exist based on drill hole data, showed no surface expression whatever. Thus, it is not possible to pin-point all massive ice forms based on photo interpretation alone. In other instances, where polygonal ground patterns are visible, the presence of massive ground ice (wedges) can generally be predicted with a high degree of accuracy. It is also pointed out that in some instances the presence of permafrost can effectively mask the normal relationships between soil types and surface expression."

It should be observed that these engineers were hampered by the age and small scale of the photography available to them. Large scale Aerochrome Infrared* photography would have helped their interpretation effort considerably, although the authors believed at the time that appropriate infrared scanning (I-R) techniques would provide much more useful engineering information.

- 2 -

^{*}Formerly known as Ektachrome Infrared Aero film (type 8443).

1.2 Standard I-R Scanning in the Arctic

Several experiments have been conducted in Alaska to determine the value of standard I-R imagery for examining the tundra. Horvath and Lowe⁽⁶⁾ showed, for example, that I-R scanning in the 8-14 micron range was very useful for detecting frozen and dry bed lakes on the tundra, both of which were barely visible on standard aerial photography owing to snow cover, and certainly not distinguishable one from another. Unfortunately, the emitted radiation, (Q), is a function of not only the absolute temperature (T) of a given point on the ground, which is the parameter of greatest interest, but also of the emissivity (ϵ) of the material at that point. This emissivity too, could be a useful engineering parameter as recently demonstrated by Vincent⁽⁷⁾. However, I-R scanners detect a signal which is a complex combination of these two variables, thus complicating the interpretation. Currently used procedures of assuming values for ϵ can produce significant interpretation errors as pointed out by several workers in this field⁸, 9, 10.

1.3 The Dual-Channel I-R Scanner

In late 1970, the D&RTCo. conducted preliminary studies that suggested that considerable value would accrue to interpretation of I-R scanning imagery obtained in the Arctic if two wavelength channels were scanned simultaneously. In this technique, a given point in space is sensed simultaneously in two different wavelength bands. Present I-R scanning equipment generally is sensitive to radiation either in the 2-5 micron or 8-14 micron range, depending on the sensor utilized. The radiation received at the sensor is the sum of the energy emitted from the surface, the sky radiance reflected by the surface, both modified by atmospheric absorption, and the energy emitted by the atmosphere between the sensor and the surface. Under certain conditions assumed by the authors, the dominant energy received at the sensor is that emitted from the surface, which may be represented as

$$Q = \mathbf{\epsilon} F_{\boldsymbol{\lambda}_1 - \boldsymbol{\lambda}_2}(T)$$

where $F_{\lambda_1} - \lambda_{\lambda_2}(T)$ is the fraction of the total emissive power that is emitted in the wavelength interval $\lambda_1 - \lambda_2$. If two channels are recorded simultaneously, one such equation is produced for each band:

> $\dot{Q}_{4-5} = \epsilon_{4-5} F_{4-5} (T)$ $\dot{Q}_{8-12} = \epsilon_{8-12} F_{8-12} (T)$

> > - 3 -

FIGURE 1: An Example of Several Drill Cores in the General Area of Fairbanks, Alaska, Taken Along the Pipeline Route. Note the Significant Thickness of Ice in Hole T.H. 5-460. Locations of the Boreholes are Shown in Figure 2.

- 4 -

1.4

i p

The subscripts indicate the nominal wavelength range of each channel. The emissivity varies as a function of wavelength for each material scanned (for example see Buettner and Kern¹¹); the function F is also wavelength dependent. The absolute temperature (T) in both equations would be the same for any given point simultaneously scanned. A ratio of the two signals \dot{Q}_{4-5} and \dot{Q}_{8-12} would, for this simplified model, equal the ratio $\epsilon_{4-5}/\epsilon_{8-12}$ and, over the temperature range of interest, this emissivity ratio is a function essentially of the material scanned and not the local temperature. If the ratio signal, rather than either single channel signal is now plotted, a map of surface emissivity ratios is produced. These data can be color-enhanced for contour emphasis. This, in itself could have engineering significance if adequate ground truth studies were made and emissivity ratios known. Of major significance, how ever, is the separation of the effect of the emissivity of the surface material from the overall radiation response. If the emissivity ratio map is now compared with a colorcontoured map obtained by processing the 8-12 micron signal alone, regions of different surface temperature can be identified and theoretically be related to the presence of ice lenses.

A dual-channel scanner that can simultaneously produce the above two functions was constructed for D&RTCo, by Daedalus Enterprises, Inc., a leading manufacturer of I-R scanning equipment, for the discussed research. A description of the equipment is given in Section 2.2 and in greater detail in Appendix A.

1.4 Preliminary Thermal Modelling

Figure 1 shows several drill cores obtained by Alyeska, in the Fairbanks area, during their survey. The locations of these drill holes are shown in Figure 2. Examination of the cores shows the diversity of materials encountered in a relatively small area and particularly, a typical hole at which a substantial ice lens was found. When this ground surface is subjected to a significant increase in net solar energy input over a relatively short time interval, the response of the surface temperatures will reflect the local var'ations in subsurface composition. There are two types of solar energy increases; these correspond to sunrise (on a daily scale) and springtime (on an annual scale). The response of surface temperatures in the Arctic to daily changes is influenced by a thin sub-surface layer ranging in thickness from a few centimeters to approximately a meter, depending on the nature of the material. This temperature response has been studied by Weedfall at Ogoturuk Valley, Alaska⁽¹²⁾: Figure 3 from his study, shows that maximum and minimum diurnal temperature changes do not propagate downward sufficiently far to produce measurable effects at the surface of anomalies of interest in this study. It can be seen, however, from Figure 4, taken from the same study, that where temperature maxima and minima are recorded monthly from April to August, the warming effect resulting from the onset of springtime can be felt to a considerably greater depth (e.g. from this

- 5 -

FIGURE 2: Map of Anchorage-Fairbanks Area Showing Locations of Borehole Data Shown in Figure 1.

1

- ĉ -

-

Ĩ

「日本」

the second se

FIGURE 3: (Above) Temperature Profiles Showing Average Maxima and Minima for Swampy, Sandy and Rocky Soil in the Arctic. (After Weedfall, Ref. 12).

FIGURE 4: (At Left) Maximum and Minimum Averages of 13 Stations in Ogotoruk Valley, Alaska. (After Weedfall, Ref. 12).

- 7 -

SUMACE TEMPERATURE (NC) ا و-

2900 2000 1900 1900 900 NET RADIATION (Ioules cm⁻²) COVER (1) 100

Alinia

T

Figure, a maximum thermal pen etration depth of 2.5 m was extrapolated). This suggests that ice anomalies, which from the Alyeska drill hole data appear to be found at depths of 0.5-2.5 m, could be expected to influence the temperature profile. It therefore appears that any anomaly of interest in this work must be examined with respect to its response to the <u>seasonal</u> increase in net insolation rather than a diurnal increase. A typical insolation increase and its effect on the surface, air and sub-surface temperatures is shown in Figure 5, based on studies conducted at Barrow, Alaska by Kelley and Weaver (13).

Figure 6 shows the temperature-time response of a uniform media (frozen ground in winter) and that of the same material that includes an ice lens. Initially, after the relatively large solar energy input flux, the increase in the ground temperature in both cases propagates downward at the same rate as the ground thaws. At a time t* the temperature disturbance reaches the depth corresponding to the top of the ice lens. For all subsequent times the temperature profiles in the two cases will differ. The surface temperature of the uniform media would then rise above the temperature of the surface over the ice lens. The time-dependent surface temperature difference is represented in Figure 7. The time at which the temperature disturbance first reaches the ice lens, t*, depends on the depth of the lens, as well as the composition of the material above it. Preliminary calculations indicated that t* would typically range from 38 days to 85 days, and the maximum surface temperature difference would occur shortly after the onset of Fall. The maximum surface temperature difference depends primarily on the convective heat transfer rate at the surface as well as the depth of the ice lens and the composition of the overlying material. The preliminary calculations indicated that anomalies ranging from $4C^{\circ}$ to $0.4C^{\circ}$ could be expected. Temperature differences of this magnitude would be readily sensed by the I-R scanning system intended for this project.

1.5 <u>Research Plan</u>

Using the above theory as a guide, the below outlined program was implemented:

1.5.1 <u>Close examination was made of infrared imagery and Aero-</u> chrome Infrared photography taken by the U.S.G.S. along certain sections of the pipeline route.

1.5.2 <u>A Daedalus Enterprises, Inc Model DEI 110 airborne I-R</u> scanner was modified so that dual-channel, synchronous imagery within the <u>4.5-5.5 and 8-12 micron band was obtained</u>. Appropriate mixing and processing of these signals was expected to separate the emissivity function from the surface temperature patterns being sought.

- 9 -

FIGURE 7: Surface Temperature as a Function of Time After onset of Springtime Solar Radiation Increase.

- 10 -

1.5.3 <u>Site Location and surveying was conducted of chosen</u> <u>Alaskan test sites for subsequent overflights with the modified scanner</u>. The test sites were selected with the assistance of R & M Engineering & Geological Consultants of Fairbanks, the company that conducted the original boring survey. The sites ideally included both "textbook" examples of ice lenses beneath a single, homogeneous surface layer with no plant cover as well as the more common situations with more complicated geology and plant cover.

1.5.4 <u>Mathematical thermal modelling studies were made of several</u> <u>typical geologic sections under a variety of solar, surface temperature and</u> <u>surface wind inputs</u>. Such a computer model has been developed at the University of Michigan and was used in an attempt to determine the magnitudes of the expected thermal anomalies under various ambient conditions and for various typical surface compositions.

1.5.5 <u>Field Survey</u>. The chosen areas in Alaska, both along the proposed pipeline route and at the Tundra Biome project near Barrow, were surveyed so that both surface geology and vegetation maps could be correlated with the airborne imagery of these sites. Surface weather observations and surface temperature measurements were made at the time of overflight.

2. INSTRUMENTATION

Two major instrumentation systems were developed for the field phase of this research: (a) an airborne I-R line scanner modified by the manufacturer (Daedalus Enterprises, Inc.) for the airborne phase of the operation. Modification was carried out according to D&RTCo.'s specifications for obtaining high resolution dual-channel thermal imagery. (b) A portable, compact, signal conditioner/readout device was designed and fabricated by D&RTCo. for use in the acquisition of thermal ground truth data.

2.1 The Dual-Channel Scanner

ļ.,

- -

Antimical de la companya de la company

-

The major requirements for the line scanner were that it provide <u>synchronous</u>, dual channel I-R imagery and be able to resolve temperature differences of less than $0.3C^{\circ}$ with a spatial resolution of 3 milliradians or less. Daedalus Enterprises, Inc., under subcontract to D&RTCo., modified their Quantitative Scanning Radiometer, Model DEI110, by inserting a dichroic mirror in the path between the scanning mirror and the original detector and adding a second detector. The incoming energy was thus separated in such a manner that, by transmission through the mirror, the 8-12 micron detector received more than 90% of the incident energy in its wavelength interval, while by reflection, the 4-5 micron detector

received essentially all of the incident energy in its wavelength interval.

The scanner output is recorded on magnetic tape thus permitting the collection of the complete dynamic range of signals (including the two internal reference "black body" signals) for later playback and subsequent enhancement. The operating characteristics are listed in Table 1.

TABLE 1: Operating Characteristics of the Daedalus Enterprises, Inc. Dual-Channel Quantitative Scanning Radiometer System.

Operating Wavelengths Aperture	4.5-5.5 and 8-12 Microns
Focal Length	6-inch
Optical Aperture (effective)	f/2
Scan Rate	80 scans/second
Total Field of View	77° 20'
Instantaneous Field of View	2.5 Milliradians
Temperature Resolution	0.10 ⁰
V/H	0.2
Roll Correction	<u>+</u> 5 ⁰
Reference Source	2 controllable thermal
Deference Dance	DIACKDODIES
Reference Range	respect to scan-head
	heat sink
Sensor Indicator Range	-10°C to +50°C

2.2 <u>The Signal Conditioner/Readout Device</u>

The signal conditioner/readout was designed specifically to display temperature variations as sensed by thermistor arrays. It not only had to meet the requirement for portability and small size, but have a low power consumption, and a non-ambiguous readout with resolution to four significant figures. With the above constraints, a Hewlett-Packard Digital Panel Meter, Model 3431A, factory assembled to operate within a range of 8.8 to 15.2 DCV, was chosen as the readout device. The meter has overload and under range indicators, variable sample rate, BCD output, annunciators, and hold and trigger capabilities along with a reliable LED display. . .

For obtaining surface and subsurface temperatures for correlation with the airborne data, a system with resolution and accuracy comparable to or better than that of the airborne system was required. Yellow Springs Instrument Co. (YSI) 700 Series Thermistor Probes and "Thermivolt" signal conditioner met these requirements. YSI fabricated, on special order, a quantity

- 12 -

of probes with leads 27 meters in length. These were to be used, along with standard lead length YSI probes, in various array configurations during field operations. The "Thermivolt" signal conditioner was modified to operate from a common power supply, a rechargable nickle-cadmium battery on loan to D&RTCo. from NASA-Goddard Space Flight Center.

The system (Figure 8) accepts up to twelve inputs, any one selectable for signal conditioning and subsequent readout by low contact resistance, push button, leaf switches. The type of signal conditioning, amplifier, gain, etc., is selected by a series of rocker switches. The system also contains a chopper stabilized operational amplifier for conditioning the output of an Eppley precision spectral pyranometer.

3. THERMAL MODELLING

It has become increasingly apparent that a qualitative interpretation of the processes leading to a particular thermal image is, at best, able to provide just a general understanding of the surface under investigation. Simplistic, qualitative.concepts, such as hot-spot detection, have only limited utility in describing natural processes, since much of the significant information of causative thermal relationships is too complex for an unsophisticated study to disclose. Full utilization of the potential of thermalinfrared remote sensing requires both qualitative and quantitative understanding of the interaction of the surface under study and the associated environment. The qualitative understanding is based on geological, botanical and topographical features, while the quantitative understanding can be obtained through the application of realistic theoretical modeling techniques in which each significant form of thermal interaction is described and the parametric effects of each factor can be investigated. Such a thermal model has been developed by the Willow Run Laboratories of the University of Michigan (U. of M). This model was modified in an attempt to verify the surface thermal anomalies previously estimated by a less-detailed analysis and discussed in the introduction.

Preliminary examination of the output of this model, which displays temperature of each layer as a function of time, indicated that, at the surface, the temperature anomalies being sought were significant. However, careful examination of the vertical temperature profiles generated by this model showed that they were sufficiently different from typical measured profiles to indicate that a realistic model has not yet been developed. It appears that the U. of M. model as presently written can not appropriately account for the energy requirements associated with the phase change of water during freezing and thawing. A discussion of the model used is contained in Appendix B.

- 13 -

I

T

1

-

FIGURE 8: Pictured Above is the Signal Conditioner/Readout Device (at left) Connected to the Thermistor Array, at the Shaw Creek Flats Site. At Right is the Barnes PRT-5 Precision Radiation Thermometer, Provided Courtesy of Daedalus Enterprises Inc.

- 14 -

4. FIELD PROGRAM

4.1 Preliminary Site Investigation

Four potential sites for the field program, in addition to the wellstudied sites at Barrow, were chosen by the Principal Investigator with the assistance of R & M Engineering & Geological Consultants. R & M is the firm that conducted the borehole survey for Alyeska and thus has considerable knowledge of the near-surface geology along the pipeline route. The sites picked were selected since they have a large number of boreholes already in place, are "textbook" examples of uncomplicated near-surface geology with substantial quantities of ice in the permafrost, and for logistical convenience. The sites were as follows:

4.1.1 <u>Sourdough North</u>: there were 21 boreholes in a 1 by 3 km area at the point where the pipeline is presently planned to cross the Gulkana River. The site is 1.6 km northwest of Sourdough along the Richardson Highway. The site included a well-drained gravel outwash area, some lower flatlands with notable thermokarst features and some forested areas. Of the 21 boreholes in the area, four had significant ice at depths less than 3m.

4.1.2 <u>Sourdough South</u>: there were 48 boreholes in a 2 by 3 km area where the pipeline was originally expected to cross the Gulkana River, before the route was changed to Sourdough North. The site is 4.3 km southsouthwest of Sourdough on the Richardson Highway. The area has gently rolling hills, is forested and is well drained. Of the 48 boreholes in the area, 10 had significant ice within 3 m of the surface. Both Sourdough Sites are approximately 30 km north of Gulkana (See Figure 9).

4.1.3 <u>Shaw Creek Flats</u>: this site, located at mile 281 on the Richardson Highway, has very little tree cover. The vegetation is primarily muskeg. At one point along the planned pipeline route, four boreholes were sunk within a radius of 10 m. This was done, according to the boring log, to investigate a freeze polygon. Of the four holes drilled, two had significant ice at less than 3 m from the surface and two had none. The Shaw Creek Flats Site is approximately 30 km northwest of Big Delta (See Figure 9).

4.1.4 <u>Hess Creek</u>: Along the proposed pipeline, extending 4 km south of the point at which it crosses Hess Creek, are 12 boreholes where massive ice varying from 10 m to 15 m thick has been found. The area is heavily wooded and very hilly. The site was included in the preliminary site selection study because such large thickness of essentially pure ice were encountered with no observable surface expression. The site is approximately 125 km northwest of Fairbanks.

- 15 -

11

...

....

.

4

FIGURE 10: The Flight Lines at the Sourdough Sites are Shown. (Gulkana Quadrangle). See Appendix C for Details.

16a

4.e

-
FIGURE 11: The Flight Lines at the Barrow Site are Shown (Barrow, Alaska). The Flight Lines Cover Several CRREL Sites (Lines 1,2,8), the IBP Tundra Biome Site (Lines 1,2) and the SEV Sites (Lines 5,6).

FIGURE 12: The Flight Lines at the Shaw Creek Flats Site are Shown (Big Delta Quadrangle). The "X" Marks the Area Where the Major Portion of the Field Work at this Site was Conducted. See Appendix C for Details

16 e

4.2 Airborne Program

Figures 10, 11 and 12 show maps of the areas where airborne dualchannel I-R imagery was flown. The flight lines are drawn on the maps and are keyed for easy reference to the Flight Log (Appendix C).

4.3 Ground Program

The ground truth data gathering effort was almost entirely spent at the Shaw Creek Flats Site and consisted of the following measurements:

• Two distinct thermistor arrays were emplaced. The first array was established to measure temperature as a function of time of the surface vegetation and organic mat within a radius of 10 m. A few of the thermistors at one location of this array consistently indicated lower temperatures than would have been expected when compared with other thermistor measurements from another portion of the array, suggesting that the array which was randomly placed, may have been established across a thermal anomaly. Measurements at this array were taken every hour for a period of 3 days.

• The second array was "L" shaped and located so as to straddle the supposed anomaly. All thermistor elements were buried to a depth of 10 cm.

• A Barnes PRT-5 portable radiometer was used to determine both sky radiation at the times of overflight, and to collect ground surface radiation over the permafrost profile transects and thermistor arrays for correlation with these data, respectively.

• Surface weather observations were taken at each site at the times of overflight. The observations made were wet and dry bulb air temperatures and wind speed. Standard weather observations reported by the airfield closest to the site under study, and taken during the period of overflights, were also obtained.

• Selected transects were surveyed and permafrost probes were made at half-meter intervals. The probe, a calibrated aluminum rod with a point at one end, was pushed through the relatively soft, unfrozen ground or "active layer" until it stopped at the permanently frozen ground, which, at this location, varies between 0.2m and 1.5 m, beneath the surface. This depth of active layer, is, in late August when the measurements were made, close or equal to the depth to permafrost. The profiles so produced do vary considerably and certain peaks were believed to be associated with massive ice in the permafrost.

- 17 -

NOT REPRODUCIBLE

FIGURE 13: Oblique Aerial Photograph (Approximate Altitude = 100m) of the Strangmoor Area of Shaw Creek Flats Where Preliminary Studies were Conducted. (Note the Hummocky Surface of the Terrain). TrackedVehicle Trails Made by the Drillers are Clearly Seen. A Cluster of Three Boreholes was Made at the Area Seen in the Center of the Photograph.

18

4.4 Description of Shaw Creek Flats Environment--Taiga Biome-Type

In Delta (Illinoian) time, broad gravel plains extended northward into the Shaw Creek Flats over which the braided Tanana River and associated outwash streams meandered. In late Quaternary (Wisconsin) time, the Donnelly Glaciation occurred in the area and some sand dune formation developed at the southeast edge of the flats. Wind-blown silt (loess) was abundant and deposited over the sand dunes and moraine. In post-Wisconsin time additional loess was deposited over the dunes of Wisconsin age resulting in the loess covering of 0.3 to 1.5 m presently found.

Old channels and meander scars similar to those described by Johnson and Vogel,^{U9} are imprinted in the vegetation of Shaw Creek Flats.

Bog species dominate extensive areas of muskeg and tend to segregate along a moisture gradient. On older flood plains no longer subject to flooding, changes in micro-topography occur (which either reflect the original flood plain surface or differential peat deposition) that cause a moisture gradient. In the strangmoor area of Shaw Creek Flats (Figure 13), abrupt hummocks or sinuous peaty ridges rise above the surrounding bog and, as determined by R & M borehole data, are ice-cored or contain ice-rich silt.

Much of the rese "ch was conducted in an area approximately 300 meters north of mile 281. At that location in May 1970, R & M drilled holes TH 8-2, 8-3, 8-4 and 8-5 on the borders and within a "freeze polygon". The positioning of these boreholes is shown in Figure 14a; Figure 14b shows the subsurface section with ice inclusions assuggested by these data (Figure 14c). It is believed that this type of near-surface geology exists throughout the area.

No polygonal struct ures were visible in existing (1:12000) aerial photography of the areas east of Shaw Creek though some visible structures occur in areas west of Shaw Creek. The U.S.G.S. has classified the surficial geology of the Flats as perennially frozen silt, undifferentiated and of Quaternary age (Figure 15). Although massive ice wedges are known to be present in this type of silty soil overlying gravel, generally little to no visible ice was found in the silt deposits and no visible ice was encountered in gravels by R & M boring crews⁽¹⁶⁾.

The area of Shaw Creek Flats north of mile 285 on the Richardson Highway is poorly drained and underlain by permafrost at shallow depths as described by Péwé (1965)⁽¹⁷⁾. Along the southern boundary of the area are extensive stands of larch (Larix laricina). The center of the Flats, which Pewe describes as appearing to be a stabilized strangmoor, or string bog (See Figure 13), is clearly evident in existing small scale photography. The area does contain more vegetation than indicated by Péwé i.e., sedge tussock, (Eriophorum sp) and sedges (Carex sp), as well as some "quaking"

(a) POLYGON As Reconstructed From R&M Logs of Test Borings.

(b) Section Of Subsurface Structure As Suggested By R&M Logs.

FIGURE 14: A Cluster of Boreholes was Sunk in 1970 by R & M Within a Visible "Freeze Polygon". The Polygon was Reconstructed in (a) from Field Notes of R & M Geologists. Examination of the Borehole Logs Suggested the Near-Surface Geologic Section Sketched in (b). The Cores are Shown in (c) Opposite. It is Seen that Significant Quantities of Ice are Found at the Border of the Polygon. This Area is the Center of the Shaw Creek Flats Site Surveyed by D&RT Co.

(c)

- 21 -

FIGURE 15: U. S. Ceological Survey Open File Map of the Surface Geology Along the Proposed Pipeline Route at the Shaw Creek Flats Site (Big Delta Quadrangle.

- 22 -

bogs". Not only were dwarf birch (<u>Betula glandulosa</u>) present on ridges in the center of the Flats, but also white spruce (<u>Picea glauca</u>), black spruce (<u>Picea mariana</u>) and incidents of white birch (<u>Betula papyrifera</u>) and willow (<u>Salix sp.</u>).

Of the two areas, the former appears to be somewhat higher in elevation than much of the latter and therefore presents a better drained, more solid substrate which is reflected by the vegetation found there. See Appendix D.

Subsurface temperatures encountered were generally on the order of -7° C to 0° C with the majority of the readings being close to 0° C. Because of this proximity to the phase boundary of water, the permafrost should be considered sensitive to changes in the thermal environment. According to Alyeska reports^[18]...in the Shaw Creek Flats area ice wedges were found in the silts that overlie the frozen gravels. Polygonal ground is present throughout the flats. Localized massive ice was encountered in the low rolling hills between Shaw Creek and the Salcha River. Some of this ice was found in the lower and generally shaded parts of the valleys; however, there were no good surface indicators for the presence of massive ice. The majority of the ice in the fine grained soils falls in the category of well bonded with no excessive ice. However, visible ice, in the form of pore ice (visible crystals), veins and veinlets was common. Both vertical and horizontal orientation of the veins occurs and generally the thickness is on the order of 1/4 inch or less....

...the entire section between the Tanana and Salcha Rivers is generally frozen with only a few exceptions. ...Approximately nine miles of the proposed route crosses Shaw Creek Flats where ice wedges are present. North of Shaw Creek and to the Salcha River, the low rolling hills have numerous areas where massive ice is found...."

4.5 Discussion of Field Data Acquisition

The sites actually studied during the field phase of the research were chosen from among the preliminary four sites primarily according to favorable logistic and weather conditions existing at the outset of the field program. With the installation of the I-R scanner and camera in the aircraft completed on19 August 1971, the nearest sites with favorable weather were Sourdough North and South. Seven missions were flown over both these sites, which are only a few kilometers apart. Surface weather and sky radiation temperature measurements were made during several of the overflights. Between 20-22 August, two predawn missions were flown a day apart and four consecutive missions at approximately six-hour intervals were flown, all over the same flight lines, at altitudes varying from 230 m to 1200m. Both panchromatic and Aerochrome Infrared coverage were taken during daylight hours.

- 23 -

On 22 August, the weather at Barrow, which had been bad for airborne operations for the previous week, had moderated. Since, typically, breaks in Barrow weather do not last long during this season, it was decided to fly there then and begin operations immediately. A day was lost returning to Anchorage for aircraft repairs, and then, on 23 August, the aircraft was flown to Barrow. Two missions were flown there before the weather once again began to deteriorate; these were flown over the same flight lines, between 0206 and 0309 hrs and 1724 and 1843 hrs on 24 August at altitudes of 300 m and 150 m respectively. Panchromatic photography was taken during the daylight mission. Since the imagery was flown over sites where significant ground truth studies were or are being conducted, i.e., several CRREL sites, the IBP Tundra Biome Site, the pipeline site and the SEV Test Track (See Figure 12), the D&RTCo. ground party did not conduct ground Site truth studies of its own at Barrow but continued working at the Sourdough and Shaw Creek Flats Sites.

During the period that the aircraft was at Barrow, the ground party began field investigations at the Shaw Creek Flats Site. The aircraft was then flown back to this site from Barrow and, based at the Big Delta Airfield, began missions on 26 August. Five missions were flown over the same flight lines at 2148-2250 hrs on 26 August and at 0432-0505 hrs, 1054-1224 hrs, 2131-2209 hrs on 27 August. Flights were made at altitudes of 230 m, 600 m and 1200 m. Aerochrome Infrared coverage was obtained during a daylight flight. (See Figure 11). The Flight Log for the above missions is included as Appendix C.

. .

The typical ground program at each field site included the following activities designed to guarantee close ground control with the subsequent airborne survey:

• Locating several closely spaced boreholes showing both large as well as small quantities of ice in the permafrost.

• Marking these boreholes or nearby control points with large panels easily visible from the air.

• Conducting a general geological and botanical survey of the area and flagging significant areas and points.

• Probing at close intervals along surveyed lines for depth to permafrost.

• Emplacing thermistor arrays (21 elements) at and below the surface to obtain direct measurement of temperature patterns and their time variations (completed only at Shaw Creek Flats Site).

- 24 -

The ground party, in addition to making surface weather observations and sky radiance measurements concurrently with the overflights, also conducted the program described above. As work at this site progressed and field-processed imagery was made available it became clear that this site, of the four, was least complicated geologically and botanically, and the study of the feasibility of the concept being tested should be concentrated here. Accordingly, it was decided that the Hess Creek Site, although having the most massive subsurface ice, was too logistically difficult to reach to spend any further effort on during this present field season. Thus, the remainder of the field program was spent conducting ground truth studies at the Shaw Creek Flats Site. At the close of the field program, a helicopter was used for taking very low level (50m, 100m and 200m) color photography of the site. This provides a high resolution record of this site useful in pinpointing locations of thermistor arrays, marker panels, boreholes and permafrost transects

5. DISCUSSION OF DATA

5.1. Preliminary Analysis

Because of the decision to concentrate the major field effort at the Shaw Creek Flats area, the preliminary analysis of the airborne imagery and associated ground truth has also been focused on this area. The field party had the advantage of having essentially immediate access to the 8-12 micron imagery of the site owing to the utilization of a portable field imagery processing unit. This imagery was taken to the site and used to guide the investigators to features of interest for ground-image correlation. There were adequate geographic and man-made landmarks visible on the imagery to allow this. The most significant patterns observed on the pre-dawn imagery of this site were polygonal structures on the ground which were otherwise not visible from available aerial photography or from the ground. Since in normal engineering practice, when polygonal structure is clearly seen, and not hidden by vegetation as it was at the Shaw Creek Flats Site, it is usually assumed that ice wedges with their associated engineering problems, exist in the permafrost.

At this site, two distinct polygon types were observed on the predawn imagory: (a) warm anomalies associated with narrow channels (approximately 15 cm) of standing water and (b) cool anomalies associates with similar sized water channels lying just below the surface in the organic mat. The difference in the polygonal anomalies is attributed to the different amounts of solar energy absorption by the water associated with each type of anomaly; the exposed water absorbs more energy during the daylight hours and due to its thermal inertia, continues to re-radiate this energy into the pre-dawn hours while the subsurface water is both effectively insulated from the solar radiation and, being associated with polygonal ice, is, and remains, basically cooler than the surrounding terrain.

Guided by the imagery, an easily accessible "cool" polygon was located and a series of permafrost probes were conducted along transects spanning the indicated area. By definition, the top of the permafrost layer is the equilibrium surface between frozen and unfrozen ground at its deepest average penetration. At the time that these probes were made, the depth of the active layer actually measured, was very close, if not equal to the depth to permafrost. Since this depth measured is an isothermal surface, significant variations of it, not attributable to visible surface causes, could be attributed to ice within the permafrost. Thus when a significant change in depth to permafrost was observed on transect profiles, and the depth anomaly had a ridge-like form located at the area indicated by the imagery, it was believed that massive ice could be found immediately adjacent to this ridge. Although a drilling program was not planned during the recent field phase of the research, a small portable power auger was briefly made available to the field party and the ridge anomaly was drilled to a depth of 1 m. In spite of considerable melting of the cores during the course of this drilling, significant veins of ice were found at the 50 cm. and 100 cm. levels. From their orientation, it appeared that this ice was either horizontal segregations or part of a feeder network leading to deeper massive ice, similar to that found within 100 m of this site at Alyeska Test Hole 8-45A. (Figure 16). Since within a radius of 10 m of 8-45A, three other holes were sunk and of these, one more had significant ice while two others did not, (Figure 14), it is believed that had other borings been made during the course of the present research, away from the flanks of the above-mentioned permafrost anomaly, no ice would have been found there either.

5.2 Continuing Data Analysis

The above discussion has been based on cursory examination of the I-R imagery taken at the Shaw Creek Flats Site. In the interval between the return from the field and the preparation of this report, little time has been available for the detailed study of all the ground truth data collected at that site for correlation with the imagery, and essentially no examination has been made of data obtained at the other sites. It is intended to continue this correlation with the greatest emphasis being placed on the Shaw Creek Flats site.

With the completion by Daedalus Enterprises, Inc. of the specialized playback equipment needed to electronically produce ratio, product and difference signals between the two channels synchronously scanned, it has been possible to begin intensive study of the value of dual-channel imagery. It appears clear at this point, however, that significant value accrues to an imagery display which presents a mapping of two simultaneously related parameters over that produced by one. As seen in Figures 17a-d, the ratio

- 26 -

imagery does appear to map areas of equal emissivity essentially independent of temperature effects and, when compared to the single channel imagery, and especially when compared with the product imagery of the same area, effects due to temperature anomalies are outlined. The imagery has been color-enhanced to outline differences in the mapped values when either of the single channel imagery types is compared with the ratio or product signals. Figure 17e shows Aerochrome Infrared photography of most of the area covered by this imagery and Figure 18 is a Stereo-pair of the area.

Since it is possible to get two different surfaces whose emissivity ratios are similar, as in the case of Figure 19, the comparison of ratio imagery with difference imagery of the same area points out the emissivity differences.

In the course of analyzing these data at the Daedalus facilities, their personnel employed contemporary image enhancing techniques. However, for distinguishing polygons, these various edge enhancement techniques (which produce imagery analogous to the first derivative maps familiar to exploration geophysicists) were less successful than the comparison of the ratio and product imagery under investigation by D&RTCo and described above.

It appears clear from the above discussion that the potential of this imagery processing tool has just begun to be realized, especially in relation to the arctic engineering problem to which it is being applied, and considerable further analysis is required. A significant portion of the continuing work will be devoted toward this end.

6. POTENTIAL ENGINEERING SIGNIFICANCE OF PROGRAM

During the course of the field work in Alaska, contractor engineers as well as engineers at the University of Alaska who were aware of this project, pointed out continually the advantages of knowing locations and depths to permafrost in areas of discontinuous permafrost, and locations of ice wedges, lenses etc. in permafrost wherever found, prior to embarking on cors truction projects in these areas. If further research shows that, particularly in areas of discontinuous permafrost, polygonal patterns not otherwise seen by means of conventional airborne techniques can now be delineated, then engineers planning projects in these areas can be forewarned of the likelihood of encountering significant amounts of near-surface ice.

- 27 -

TH 8-45A

(from field rotes of R&M geologist)

FIGURE 16: A Large Diameter Auger Hole (Bucket Auger) was Made at One Corner of the Polygon Illustrated in Figure 14(A). A Geologist Lowered into the Borehole Made a Drawing and Notes, Part of Which are Reproduced in the Figure. This Figure Illustrates the Large Quantity of Ice Found Associated with Polygonal Structures at Shaw Creek Flats.

- 28 -

Ŧ

FIGURE 17 (a-d at Right; e, Below): Compared in This Figure Are Color-Enhanced Sections of The Shaw Creek Flats Imagery Taken at 0450 Hrs. on 28 August 1971 From an Altitude of 230 m. (Flight Line 2). (a) and (b) are Standard Color-Enhanced 4.5-5.5 and 8-12 Micron Imagery, Respectively, Obtained With a Quantitative Scanner. (c) and (d) are the Color-Enhanced Ratio and Product Imagery, Respectively, Produced by D&RTCo. for this Study. For the Purpose of This Comparison, Open Water, Because its Emissivity is Essentially Constant Across the Two Bands, Was Used as a Datum, i.e., The Signal Levels Over the Water for Both the (a) and (b) Outputs Were Made Equal. It is Clear From Examination of (c) That the Ratio Signal Does Reduce Substantially the Effect of Purely Thermal Anomalies as Can be Seen in the Large Expanse of Magenta Associated With Areas of Essentially Similar Emissivities. When This is Compared with Either (a) or (b) Imagery, or Especially with the Product Imagery (d), Anomalies Due Primarily to Thermal Differences are Revealed. Partial Polygonal Structures, for example, Are Obvious in the Product Imagery Whereas on the Aerochrome Infrared Photography (e) They Are Not. The Strip of Three Photographs Was Taken of the Same Area from the Same Altitude on 27 August 1971 at 1200 Hrs. (Flight Line 2). (Scale 1:5000)

(a)

(b)

(c)

(d)

Į

T

I

I

1

1

.

FIGURE 18: An Aerochrome Infrared Stereo-Pair of the Shaw Creek Flats Area Taken From an Altitude of 1200m on 27 August 1971 at 1200 hrs. (Scale 1:10,500)

Preceding page blank

- 33 -

Figure 19: Ratio Imagery (Top) Shows a Relatively Constant Signal Value For The Islands Seen in The Tanana River (River is Light Area). In Reality These Islands Have Both Bare Gravel And Vegetation Visible. The Difference Imagery (Bottom) Delineates These Areas And Eliminates The Ambiguity. The Imagery Was Taken at 0424 Hrs on 28 August 1971 From an Altitude of 1200 m.

- 34 -

7. <u>REFERENCES</u>

- (1) Drew, J. V. and Tedrow, J.C.F., Arctic Soil Classification and Patterned Ground, <u>Arctic</u>, June 1962.
- (2) Lewis, C.R., Icing Mound on Sadlerochit River, Alaska, Arctic, June 1962.
- (3) Burns, J.J., Pingos in the Yukon-Kuskokwim Delta, Alaska: Their Plant Succession and Use by Mink, <u>Arctic</u>, Sept. 1964.
- (4) Hussey, K. M. and Michelson, R. W., Tundra Relief Features Near Point Barrow, Alaska, <u>Arctic</u>, June 1966.
- (5) Soil Maps and Soil Borings Data, from Valdez to Prudhoe Bay, R & M Engineering & Geological Consultants, Fairbanks, Alaska, for Alyeska Pipeline Service Co., Nov. 1969.
- (6) Horvath, R. and Lowe, D. S., Multispectral Survey in the Alaskan Arctic, <u>Proc. 5th Symposium on Remote Sensing of Environment</u>, Univ. of Michigan, April 1968.
- (7) Vincent, R. K., Horvath, R., Thomson, F. and Work, E. A., Remote Sensing Data-Analysis Projects Associated with the NASA Earth Resources Spectral Information System, I-R & Optics Lab., Willow Run Labs, Univ. of Michigan, Rpt. 3165-26-T NASA Contract NAS-9-9784, April, 1971.
- (8) Myers, V. I., Thermal Infrared Image, / Interpretation as Influenced by the Environment <u>IEEE 2nd Int'l Geoscience Electronics Symp</u>. April 1970.
- (9) Van Lopik, J., Infrared Mapping: Basic Technology and Geoscience Applications, <u>GeoScience</u> News, Jan-Feb 1968.
- (10) Kondratyev, K. Ya., Problems of Infrared Atmospheric Spectroscopy Related to the Satellite Determination of Temperature of Underlying Surface, <u>Fiz Atmosfery i Okeana</u>, V. 5, No. 6, 1969, p. 616-630.
- (11) Buettner, K.J.K. and Kern, C.D., The Determination of Infrared Emissivities of Terrestrial Surfaces, <u>J. Geophys Res.</u>, March 15, 1965.

- 35 -

- (12) Weedfall, R.O., Variation of Soil Temperatures in Ogotoruk Valley, Alaska, <u>Arctic</u>, Sept. 1963.
- (13) Kelley, J. J. Jr. and Weaver, D.F., Physical Processes at the Surface of the Arctic Tundra, <u>Arctic</u>, Dec. 1969.
- (14) Kersten, Miles S. Thermal Properties of Soils, Bull. No. 28, Univ. of Minn., Inst. of Technology, Eng. Exp. Sta., Vol. L11, #21, June 1, 1949.
- (15) Johnson, Philip L. and Vogel, Theodore C., Vegetation of the Yukon Flats Region, Alaska, Res. Rpt. 209, U.S.A. Cold Regions Research & Engineering Laboratory, Hanover, N. H., Nov. 1966.
- (16) Alyeska Pipeline Service Co., Soil Investigations, Hogan Hill to Little Salcha River, Alaska, by R & M Engineering & Geological Consultants, pp. B41-B44, Dec. 1970.
- (17) Péwé, Troy L., Int'l Assoc. for Quaternary Research, VIIth Congress Guidebook for Field Conf. F, Central & S. Central Alaska, Nebr. Acad. Scis., 1965.
- (18) Alyeska Pipeline Service Co., Foreword, Soil Investigations, Hogan Hill to Little Salcha River, Alaska, by R & M Engineering & Geological Consultants, Dec. 1970.

4 5

. .

8. <u>GLOSSARY</u>

BCD Binary coded decimal, a format used in data collection and processing. DCV Direct current, volts. Delta (Illinoian) Time Mid-Pleistocene epoch. Dichroic Mirror A mirror which transmits one wavelength band and reflects a second band. Edge Enhancement Process of signal filtering and phase modification which sharply delineates boundaries. A polygonal structure outlined by frozen Freeze Polygon melt water during winter periods when there is little vegetation cover. Insolation Solar radiation received over a given area. LED Light emitting diode--a rugged, high visibility, solid state light source used as indicators and in alphanumeric displays. Organic Mat A layer of undecayed organic matter such as moss, leaves, etc., prevalent in cold regions. Polygonal ground In this case, due to active, inactive, or fossil ice wedges, a patterning of the surface in the form of various, usually irregular, polygons. Imagery produced by electronic analog Product Imagery multiplication of the analog signal of one I-R band by the analog signal of the other I-R band. Quaking Bogs A phenomenon in plant succession where a vegetation mat covers a body of water and which quakes when walked upon.

-

1

10 AL

-10 - 21

- 37 -

<u>Glossary</u> (Continued)

Quaternary (Wisconsin) Time

Ratio Imagery

Thermokarst features

38 -

Late Pleistocene epoch.

Imagery produced by electronic analog division of the analog signal of one I-R band by the analog signal of the other I-R band.

Term used to describe "Karst" or sinkhole and mound phenomena occurring in permafrost areas--due to melting of subsurface ice structures and caused by disturbance of thermal regime.

APPENDIX A

Excerpts from the Daedalus Enterprises, Inc. Model DEI 110 Operating Handbook.

Pages 18 and 19 of this excerpt have been excluded by the authors.

AIRBORNE LINE SCANNER THEORY OF OPERATION

This section discusses the basic concepts of airborne line scan systems. The quantitative scanner described in the subsequent sections is a special version of a line scanner from which quantitative thermal information can be derived.

2.1. SCANNING GEOMETRY

Figure 1 is a diagram of a simple scanning optical system. Radiation from the terrain, either emitted or reflected solar energy, is reflected by the scanning mirror to the primary mirror which focuses this radiation into the image plane. A detector element is positioned on the image plane and is usually centered on the optical axis. The detector transduces the radiation into an electrical signal. Several types and configurations of detectors are available for use in line scanners; usually either a photovoltaic or photoconductive quantum detector is selected because of their inherent high sensitivity and fast response. For this discussion, we will assume a single element circular detector of diameter (d) inches.

The instantaneous field of view (IFV) is the basic information element in the line scanning system. It is defined as:

$$IFV = \frac{d}{FL}$$
(1)

where d = linear dimension of detector element FL = focal length of primary mirror.

A 2

 \sim_{2}

A3

The dimensions are radians. IFV is commonly labeled a.

Considering the static optical condition of figure 1, IFV relates to ground spot size as follows:

$$W_{\alpha} = \alpha S$$
 (2)

$$L_{r} = \alpha S \sec \theta$$
 (3)

where $\theta = look$ angle with respect to true vertical

S = H sec θ

H = altitude above terrain.

In the dynamic optical condition, the total ground coverage swath width is calculated from the operating altitude, total scan angle (FOV), and IFV.

Referring again to figure 1,

$$C = 2 \left[H \tan \left(\frac{FOV}{2} \right) + \frac{\alpha}{2} H \sec^2 \left(\frac{FOV}{2} \right) \right]$$
(4)

For all practical considerations, this is reduced to:

$$C = 2 \left[H \tan \left(\frac{FOV}{2} \right) \right]$$
 (5)

To aid in visualizing the foregoing discussion, it may be helpful to consider the scanner as a projection lens with finite conjugates which is projecting an image of the detector element onto a flat earth.

Two additional parameters critical to airborne line scanning systems are V/H and $(V/H)_{max}$. V/H (velocity to height ratio) is

A 4

II

I

I

a quantity relating specific aircraft operating parameters to final film format. The units are radians/sec. V is aircraft velocity in ft/sec and H is aircraft terrain clearance altitude in feet. $(V/H)_{max}$ is a boundary specification related to the scanning system which specifies the combination of maximum speed and minimum altitude at which continuous ground coverage can be maintained by a given scanning system

$$(V/H)_{max} = \alpha \text{ scan rate}$$
 (3)

with the dimensions in radians/sec.

It will be noted that the concept of a in this formula is slightly different than a = IFV = Radians. If this value is put in (6) along with a scan rate in scans/sec., the resultant units are radian scans/sec. There is no contradiction if a concept of a dynamic a is understood. In this concept, a is considered to be the angular width of the scan line and a now has units of radiane/ scan. Using this in (6) now gives the proper units.

The scan rate of the simple optical system is defined as:

Scan Rate =
$$\frac{\omega}{2\pi} \cdot N$$
 (7)

where $\omega =$ angular velocity in radians/sec.

N = number of faces on scanning mirror.

The selection of ω and N is a design problem involving mechanics, optics, and electronics and is beyond the scope of this discussion.

It can be seen by restating the formula that

 V_{max} (ft/sec) = H(ft) α (rads/scan) x S(scans/sec) (3)

A 5

and that with a fixed value of α and S, H must increase as V increases or for each V there is a minimum H.

2.2. ANALOG SIGNAL GENERATION

The thermal image which is the final output of the airborne line scanning system is built up from a series of data lines generated by the rotation of the scanning mirror and the forward movement of the aircraft. This action causes the detector to receive a continuously changing level of radiation as its field of view is directed toward different areas on the ground. The detector element then transduces this energy level into a voltage analog whose amplitude is proportional to the energy level. Looking again at the static optical system, the detector element is receiving radiation from an area of the terrain within the IFV. The detector element integrates the various energy levels within this area and outputs a voltage proportional to the integrated value of energy. If the scanning mirror is moved, a different area of terrain is within a and a different voltage level is output from the detector. Looking at the dynamic scanner the energy level on the detector element is constantly changing as a is swept through the FOV. The resulting electrical signal from the detector is amplitude variant with time.

The quantities of spatial resolution, thermal resolution, electronic bandwidth, and detector response time are all related to the generation of the analog voltage signal, and are all interrelated in a complex manner. It is beyond the scope of this discussion to treat this in detail. The contribution of each will be

H 6

[]

U

superficially treated and only some very general expressions will be developed.

Spatial resolution of a scanning system is generally specified as α . This is true for bar targets of angular width 2α /line pair and whose energy difference is equal to the thermal resolution capability. Actually, a modulation transfer function (MTF) curve would show signal modulation between 1 line pair = 2α to 1 line pair = α , at which point there is no modulation. The amount of usable signal in this region is a function of the target contract and the system temperature sensitivity, providing the detector time constant or the system electronic bandwidth are not limiting factors.

The required system frequency response is a function of a and a as they are defined in section 2.1. Assuming the bar chart target with 1 line pair (1 cycle) = 2α , then

$$FREQ = \frac{\omega}{2\alpha} .$$

This gives sine wave response and assumes detector response time is infinitely small. To extend the sine wave response to 0 modulation on the MTF curve

$$FREQ = \frac{\omega}{\alpha}$$

To approach square wave response, a factor of 1 to 3 is used as a multiplier. In special cases, this factor may be a function of the detector time constant; but for fast detectors, 3 is usually used. Therefore,

$$FREQ = \frac{3\omega}{\alpha}$$

A 7

2.3. DATA RECORDING

Several techniques of data processing and recording are utilized with airborne line scanner data, but film printout is the most common and is the subject of the following discussion.

The two techniques of film recording most commonly associated with line scanning systems are the glow modulator tube with coupled optics, and the intensity modulated CRT. The end results of both systems are essentially identical, but there are some advantages in both techniques.

The glow modulator printer is the simpler of the two systems to implement. In this system a glow modulator tube is driven by the scanner video signal such that its brightness is proportional to the amplitude of the video signal. An image of the glow tube is focused on the film as a very small spot (typically a few thousandths of an inch in diameter) by a microscope objective lens. This lens is spun by a shaft in synchronism with the scanning mirror such that the glow tube image is swept across the film which is moving proportional to the aircraft V/H. Although the synchronization between the glow tube optics and the scanning mirror can be accomplished with a synchro loop, it is usually accomplished by using a common shaft. This reduces the scanner and recording system to a single unit, and achieves perfect synchronization between data collection and data recording.

In the CRT recording systems, synchronization pulses must be generated by the scanning system to synchronize the CRT sweep with the scanning mirror. These signals along with the scanner video signal are fed to the CRT recording system. The synchronization

A e

B

1

I

I

11

signals trigger a sweep waveform generated by the CRT system which moves the CRT beam on a single line across the CRT face at an angular rate equal to the angular rate of the scanning mirror. This line is swept repetitively for each scan. As the beam is moving across the CRT, its brightness is modulated by the video signal to be proportional to the video signal amplitude. A camera is placed in front of the CRT which images the line transverse to a strip of film being moved proportional to the aircraft V/H.

Several important options are available with this type of recording. By recording the scanner output signals on magnetic tape, a time delay can be introduced between collection and recording. This also gives multiple access to the original data for applying a variety of special processing techniques. A second option is the capability for removing the distortions in the data printout which result from scanning a flat earth at a constant angular rate and then recording the data with a linear sweep waveform. If the CRT beam is swept with a tangent function waveform which is generated from values of the tangent from - FOV/2 to + FOV/2, and the beam brightness is modulated by the derivative of this function, the scan distortions are removed and the density across the film is held constants.

2.4. THE CALIBRATED SCANNER

The typical airborne infrared line scanning system generates data which indicates relative power differences between objects scanned. It is true that the experienced observer can look at the thermal map produced by the average system and say that point A has greater apparent temperature than point B. However, the temperature

A 9

of a given area or the relationship of two temperatures in the same area can only be estimated. To be able to actually make apparent temperature measurements, a system for relating the input energy to output voltage must be devised.

To achieve this situation several initial conditions must be met. First, the video electronics must have DC response. Secondly, all radiation received by the detector must come from the scanning mirror and hence from the area of interest. Finally, the complete electronic chain from detector through final recording must be drift stabilized such that the system responsivity, V/W, (volts output/ watts input) is constant. If these conditions are met, the system output can be related to the input.

The output video signal of a quantized scanner bears not only a constant relationship, but also a known relationship to input energy such that the data can be readily converted to energy units and then to apparent blackbody temperature. One approach to achieving this is to calibrate the responsivity of a scanner that meets the above conditions in the laboratory against blackbody standards. Although this approach is feasible, it is not very practical. The vagaries of electronic circuits and infrared detectors make it extremely difficult if not impossible to achieve the stated conditions.

The only practical approach to the quantitative scanner provides two energy reference sources within the scanner optical system so that the unknown radiation collected by the scanner is continuously compared against these reference sources.

The operating sequence and signal flow within the quantitative scanner is as follows. Initially, the operator selects a temperature

A 10

T

range of interest and adjusts the temperatures of the two reference sources so that one is near the lower end and one near the upper end of the temperature range being investigated. These sources are positioned in the optical system so that they are within the scanner field of view, one being imaged before and one after the scan across the terrain. The gain of the video electronics is adjusted so that the signal difference between the signals of the two sources is some pre-established ΔV , typically 3-4 volts. Since the electronics have been designed to be extremely stable in gain, this ΔV is maintained constant.

To compensate for electronic and detector drift in the quantitative scanner, a reference level feedback is used as follows. During the scan across each reference source, the signal levels are sampled and held in separate circuits. After one complete scan, both source signal levels are stored. These levels are averaged and this average is inverted and fedback to the first video amplifier stage. Within this stage a zero DC level is established for the video at the signal level equal to the average of the reference source signal. This now establishes the reference source signals at - $\Delta V/2$ and + $\Delta V/2$, and further establishes that any signal in the video equal to these levels is the result of the same energy level on the detector. This continuous feedback also nulls any signal voltage level drift; and since the sample is updated each scan, a very rapid drift compensation response is achieved. Setting the gain of the system with respect to the two reference sources establishes AV/AW. From this dV/dW can be readily established with the system responsivity curve.

A 11

The accuracy of measurements made by the quantitative scanner of radiation at the scanner aperture is a function of the accuracy with which the temperatures of the reference sources can be determined, as well as their emissivity and uniformity.

A rough estimate of effects of temperature uniformity and emissivity of the reference source can be obtained from the equation for total radiated energy:

(9)

/ (10)

H = 12

where W = total energy

or

- c = emissivity
- δ = Stefan-Boltzman constant
- T = absolute temperature.

Assuming small incremental changes in energy and temperature, from , W_{O} to W_{O} + ΔW and from T_{O} to T_{O} + ΔT , respectively, the ratio of the two equations is:

$$\frac{W_{O} + \Delta W}{W_{O}} = \frac{\varepsilon \delta}{\varepsilon \delta} \cdot \frac{(T_{O} + \Delta T)^{4}}{T_{O}^{4}}$$

If $\Delta T/T_{o}$ is small, then $(1 + \Delta T/T_{o})^{4} \simeq 1 + 4 (\Delta T/T_{o})$ and

$$1 + \left(\frac{\Delta W}{W_{o}}\right) \simeq 1 + 4 \left(\frac{\Delta T}{T_{o}}\right)$$

$$\Delta \mathbf{T} \simeq \left(\frac{\mathbf{T}_{O}}{4}\right) \left(\underline{\Delta \mathbf{W}}{\mathbf{W}_{O}}\right)^{-1}$$
Equation (10) indicates that 1% change in total energy at 300°K represents 0.75°C change in temperature. Similarly, a 1% change in emissivity yields the same magnitude of apparent temperature change. This error magnitude changes linearly with temperature and also varies slightly depending upon the system spectral response, but it represents a satisfactory first approximation.

If temperature of the reference surface is non-uniform, the total emitted energy differs from what it would be with a uniform surface. If 10% of the reference surface is 1° C above nominal and 10% is 1° C below nominal, the energy change is only about 10^{-4} watts which represent less than 0.01° C temperature error.

Due to the self calibration feature of the quantitative scanner, changes in optical efficiency or detector sensitivity other than changes in the responsivity appear as a neutral density filter and are compensated for by the initial gain adjustment. Within certain limitations the effects of some types of electronic instability are self calibrated and can be compensated for with elaborate procedures.

2.5. TEMPERATURE INTERPOLATION

With a reference source voltage output at each end of a quantitative scanner temperature range, it is natural to use a linear interpolation to relate other scanner output voltages to other temperatures within this range. For example, if a -2V DC and +2V DC correspond to '0°C and 40°C reference source temperatures, it is tempting to assume 0V DC represents a 20°C apparent temperature. Such an assumption is, of course, in error since the quantitative

A 13

scanner measures energy within a limited spectral region whereas the total emitted energy is proportional to T^4 . The magnitude of the error in a linear interpolation depends somewhat upon the temperature of interest, but it depends to a greater degree upon the temperature range of the interpolation and on the spectral region of the measurements.

Figure 2 shows radiated energy vs. temperature for blackbody reference sources in the 3-5 µm and 8-14 µm regions. These curves assume uniform 100% detector response over the particular wavelength region and no response outside the region. Source emissivity is 1.0 and the detector voltage responsivity is assumed to be linear. A linear interpolation between two temperatures is equivalent to drawing a straight line between those two temperatures on figure 2 as shown. The maximum error occurs about midway between the two temperatures and is such that a linear voltage (energy) to temperature interpolation always results in an interpolated temperature lower than the actual temperature which would produce that energy level.

Figure 3 shows the errors for linear interpolation plotted vs. temperature range for the 3-5 μ m region as determined graphically from figure 2. Errors for the 8-14 μ m range are too small to be determined from figure 2, but they should be around 20-30% of those for 3-5 μ m.

A 14

Î

[]

1

[]

Π

×

A 15

ERRORS OF LINEAR INTERPOLATION IN 3-5 µm REGION FIGURE 3

A 16

[

[]

0

I

U

GENERAL DESCRIPTION

The quantitative airborne line scanner is a special purpose instrument designed to both image and measure the thermal radiation from targets of interest. The scanner system consists of the scan head, the control console, the power junction box, and the two-channel temperature controller (see figure 4). Normally, a vertical gyro would be added to the system for aircraft roll compensation, as well as a wideband FM tape recorder for data recording.

The quantitative scanner contains two independent referencetemperature calibration sources physically located within the scanner housing as shown in figure 5. Energy from each of these sources completely fills the scanner aperture for several fields of view of the detector once during each scan line. The reference sources are adjusted, within their range of capability, to correspond to the high and low ends of the temperature range of interest. Sample-hold circuitry automatically maintains a constant system zero level at the average of the two temperature reference signal levels. Since the detector is included in the video system, output shifts due to bias level drift and changing environmental conditions are continuously compensated for.

A functional block diagram of the system is shown in figure 6; an outline drawing with clearance dimensions and mounting points is provided in Appendix II.

Pages 18 and 19 of this excerpt have been excluded by the authors.

A 17

FUNCTIONAL BLOCK DIAGRAM OF THE SCANNING RADIOMETER FIGURE 6

A 20

3.1. SCAN HEAD

The scan head (refer to figure 4) contains the detector mount, the focusing optics, the rotating assembly consisting of the scanning mirror, sync generator slugs and drive motor, and the energy reference sources. These elements are held rigidly in place by a unique frame construction which also provides a mount for the sync generator magnetic pickups. The electronic module which constitutes the detector preamplifier plugs into the top mounting surface. These various scan head subsystems are described in detail in separate sections below.

3.1.1. OPTICAL SYSTEM

The optical system consists of a classic Newtonian telescope whose field of view is traversed by a rotating 45° mirror. The optical system is shown schematically in figure 7 and pictorially in figure 5.

The parabolic primary mirror has a 5-inch diameter clear aperture and a focal length of 6-inches. It has a flat annulus ground on the face normal to the optic axis with the back being ground parallel to this surface. The edge is ground parallel to and concentric with the optic axis. As a result of this finishing, no optical alignment procedure is required other than an initial focus adjustment.

The flat secondary mirror is constructed of pyrex and is shaped to be slightly larger than the conic section it slices from the cone of rays being focused by the parabola. This mirror is permanently cemented to an aluminum block which mounts to the flange face of the scanning mirror shaft.

A 21

A 22

ŧ.

[

0

B

0

[]

[]

IJ

Π

The scanning mirror is a classic axe blade design; an aluminum cylinder with two 45° inclined faces separated by 180° of rotation. One of these faces has been blackened with a high emissivity coating while the other has been plated with electroless nickel, optically polished and coated with evaporated aluminum to produce a highly reflective surface. The surface is further overcoated with a protective layer of silicon monoxide.

The scanning mirror rotates about its axis on two integral bearings on a fixed shaft. It is driven by a 3600 RPM AC synchronous motor which is powered from a crystal oscillator controlled power supply.

The focal ratio (F) of the scanner optical system is determined by the aperture of the scanning mirror. F is defined by:

$$F = \frac{FL}{D_{eff}}$$

where FL = focal length of primary mirror

 D_{eff} = the effective diameter of the entrance aperture.

 D_{eff} in the quantitative scanner is the equivalent diameter of the area of scanning mirror minus the area of all other obscurations in the optical system. Additional obscurations in this system are limited to the secondary mirror spider shown in figure '8. D_{eff} is given by:

$$D_{eff} = 2\sqrt{\frac{\pi R^2 - \pi h^2}{2} - A_m}$$

A 23

where R

R = radius of scanning mirror = 2.500 in.

r = radius of scanning mirror bore = 1.187 in.

 A_m = area of lower portion of secondary mirror spider.

, m	5 33	1.54 V	
where:	R _m =	2.500	n g thian a
	r _m =	1.187	ng san e in
	θ _l =	18 ⁰ =	.l radians
	θ2 =	36 ⁰ 40	- o.t

Π

0

1

A 24

FIGURE 8. SECONDARY MIRROR SPIDER

It will be noted that the radiation collected by the scanning mirror and subsequently reflected to the parabola, impinges on different areas of the parabola as the scanning mirror rotates. This does not create any problem as the high degree of uniformity of the coatings on the parabola and the flat secondary mirror obviates the possibility of any significant energy difference at the detector.

APPENDIX B

In this Appendix the University of Michigan Thermal Modeling Program is Described, and the Modifications Made to Account for Phase Change are Discussed.

A LAND

1000

APPENDIX B

THERMAL MODELING

1.1 Program Description

The thermal model is based on the one-dimensional heat transfer equation

where T is the spatially and temporally varying temperature, X is the vertical distance below the surface, t is time, and \propto is the thermal diffusivity of the medium through which the heat propagates. The thermal diffusivity is related to the thermal conductivity k, heat capacity, C, and the density, ρ of the medium as

The one-dimensional model is based on the assumption that the most significant heat fluxes are vertical, and that transverse heat flow is negligible. This one-dimensional model adequately describes a geologic section which is uniformly illuminated, has an essentially horizontal surface, and with a horizontal spatial extent significantly greater than the depth of penetration of the annual cycle. In addition, the properties of the media are considered to be homogeneous in its transverse dimension.

Equation (1) may be used to describe the temperature distribution in multi-layered media by considering the media to be composed of stacked horizontal layers, each of arbitrary thermal properties and arbitrary thicknesses. Each layer is then subjected to two boundary conditions. Across the boundaries between the layers, the temperature profile is required to be continuous. The boundary condition at the bottom of the deepest layer is usually taken to be some temperature realistic for that point. If the point is at a depth below the annual thermal wave penetration, the assignment of a constant temperature is guite appropriate.

While the bottom and intermediate boundary conditions are simple, the upper boundary condition is a statement of the very complicated natural meteorological driving functions which act on the exposed surface. For noncovered surfaces, there are six essential heat-transfer processes which

must be accounted for:

- 'conduction'
- solar energy absorption
- net thermal radiation
- convection
- rain ,
- evaporation

An additional transpiration term must be considered for surfaces with vegetation. All of these processes depend on directly measurable meteorological parameters, such as ambient air temperature, horizontal wind velocity, relative humidity, cloud cover, and cloud type, which, in general, are time-dependent. A brief description of each process as treated in the U of M.program follows:

<u>Conduction</u>. This term accounts for the heat flow between the upper surface and the interior region. It depends on the thermal conductivity of the near-surface material and the temperature gradient in the material evaluated at the surface.

<u>Solar Energy Absorption</u>. This term accounts for the albedo of the surface. It is the sum of the direct and diffuse solar irradiance multiplied by the total solar absorptivity of the surface.

<u>Net Thermal Radiation</u>. The net thermal radiation is specified as the difference between the instantaneous total grey body radiation emitted by the surface and the absorbed energy from a radiating atmosphere. The mean total emittance of the atmosphere is an analytical function of the cloud cover', cloud type , relative humidity, and air temperature. In addition the thermal emissivity of the surface must be known.

<u>Convection</u>. Thermal transfer by the convection process can vary over several orders of magnitude, from a very small value for stable, no-wind conditions to a very large rate for unstable atmospheric conditions and high wind. The convective energy transfer process is described by a semiempirical, analytical expression involving air temperature, wind speed, and an aerodynamic roughness height for the modeled surface.

<u>Rain</u>. The intensity and temperature of rain falling on the surface may alter the surface temperature by causing the surface temperature to attempt to equilibrate with the rain.

<u>Evaporation</u>. A certain portion of the rainfall (remaining after runoff) is susceptible to evaporation. In computing the rate of heat transfer resulting from evaporation, an analytical formulation was used which accounts for the

effects of wind turbulent mixing and diffusion in the immediate atmosphere. This term depends on the wind speed, the relative humidity and air temperature, and the surface (water) temperature.

In addition to the boundary conditions, the solution of the thermal diffusion equation requires that the spatial-temperature distribution be specified at some time t_o . This temperature distribution is the cumula-tive result of the effect of the thermal phenomena prevailing prior to t_o . Thus the response of the media to thermal input occurring after t_o will be influenced by the spatial distribution at t_o . However, this influence decreases in time and finally becomes negligible after an interval comparable to the time constant of the system (a year for this particular situation).

The computer program uses as input data the time dependent insolation, horizontal wind speed, ambient air temperature, relative humidity, percent cloud cover and cloud type for many annual cycles. Several of these cycles are used to obtain the initial temperature distribution for the start of the subsequent cycle of interest.

1.2 <u>Thermal Properties</u>

The determination of surface temperature requires the knowledge of the thermal properties of each of the layers of the multi-layered medium. The required thermal properties are thermal conductivity, specific heat and density. These properties vary with temperature, moisture, density and composition. The R & M geologists use the following soil descriptions to describe the cores of their pipeline borings made across the entire State of Alaska:

- organics
- silt
- sand
- clay
- gravel

The thermal properties for these five soil materials were taken from Kersten's study of the thermal properties of Alaskan soils⁽¹⁾. The particular soils selected for the computer analysis are shown in Table 1. The thermal properties were evaluated at the temperature and moisture content appropriate to the particular case under study.

In addition to the above five soils, essentially pure ice was found in the cores from the Alyeska boreholes. The thermal properties of ice are therefore required.

TABLE 1 - SOILS FOR THERMAL MODEL

I

T

SOIL DESCRIPTION	SOIL NO.	SOIL DESIGNATION
Organics	P4707	Fairbanks Peát
Silt	P4602	Fairbanks Silt Loam
Sand	P4709	Fairbanks Sand
Clay	P4708	Healy Clay
Gravel	P4601 (Chena River Grave I

1.3 Atmospheric Data

The computer program required the following atmospheric data, averaged on a monthly basis:

- total solar radiation, langleys/day
- əir temperature, ^OF
- relative humidity, percent
- wind speed, mph
- sky cover, tenths

In addition, the monthly total precipitation (water equivalent) in inches, is required. The Fairbanks weather data were used for all computer calculations. The monthly average and monthly total values are shown in Tables 2-7.

1.4 Geological Data

The computer analysis required the specification of the various layers comprising the media under study. Since the thermal modeling was to be completed prior to the field program, a variety of multilayered media were selected for study. The particular multilayered samples were selected from the Alyeska boring logs. These logs give the location and subsurface geology of sites along the proposed pipeline route. Seven multilayered samples were selected, five in the area between Fort Yukon and Fairbanks and two near Prudhoe Bay. The requirement for selection was the presence of massive ice at a site, close to which another site or sites showed no significant ice and for which the layers were otherwise similar. It is quite reasonable to assume that the meterological inputs at these close sites were the same. Therefore, comparison of the predicted surface temperatures for these close sites should indicate the presence of the ice beneath the surface of one of the sites. The test cases are described in Table 8.

1.5 <u>Sample Calculation</u>

The annual variation of surface temperature for the test cases, subject to known metereological conditions, was computed using the University of Michigan Thermal Modeling Computer Program?. The time interval used for this computation was six days. The U of M.computer program was not set up to account for the phase change of the water, that is, for the energy requirements associated with the melting and freezing of the interstitial water in the active layer. While the governing equation remains unchanged, a new boundary condition is required at the moving phase change interface. This boundary condition must account for the energy required for or released by the phase change process. Since alteration of the computer program was beyond the scope of this project, approximate techniques were developed to

TABLE 2

PATRBANKE

MONTHLY AVERAGE, SOLAR RADIATION . LANGLEYS/DAY										
٠	1970	1969	1968	1967						
JAN	24	14	6	23						
FEB	66	75	61	76						
MAR	195	223	251	212						
APR	354	423	411	382						
MAY	521	513	401	527						
JUN	490	518	552	627						
JUL	465	404	566	465						
AUG	321	468	365	322						
SEP	199	278	252	204						
OCT	86	103	62	95						
NOV	32	29	24	26						
DEC	6	. 7	7	4						

*Total Solar Radiation (Direct and Indirect) received on a horizontal surface during each month, divided by number of days in that month.

TOTAL ANNUAL SOLAR RADIATION, LANGLEYS

1970	·	85,752	
1969		90,132	
1968		91,639	
1967		90,821	

TABLE 3

FAIRBANKS MONTHLY AVERAGE AIR TEMPERATURE. ^O F.										
<u>1971</u>	1970	1969	1968	1967						
-31.7	-16.2	26.7	-11.0	-15.3						
- 4.6	8.0	-7.3	-5.0	-6,9						
-0.4	20.9	10.1	12.8	9.6						
26.7	32.0	36.3	29.2	31.7						
47.3	51.8	49.4	47.6	45.7						
	58.0	64.9	. 59.5	. 61.6						
	62.4	59.4	65.6	59.6						
	56.9	49.6	56.5	58.3						
	40.6	49.1	42.6	46.6						
	16.9	34.0	22.1	24.8						
	10.7	· 1.2	2.3	9.5						
	-9.6	4.0	-17.7	-1.6						
	1971 -31.7 - 4.6 -0.4 26.7 47.3	MONTHLY AVER 1971 1970 -31.7 -16.2 -4.6 8.0 -0.4 20.9 26.7 32.0 47.3 51.8 58.0 62.4 56.9 40.6 16.9 10.7 -9.6 -9.6	FAIRBANKS MONTHLY AVERAGE AIR TEMPER 1971 1970 1959 -31.7 -16.2 -26.7 - 4.6 8.0 -7.3 -0.4 20.9 10.1 26.7 32.0 36.3 47.3 51.8 49.4 58.0 64.9 62.4 59.4 56.9 49.6 40.6 49.1 16.9 34.0 10.7 1.2 -9.6 4.0	FAIRBANKS MONTHLY AVERAGE AIR TEMPERATURE. ⁰ 7. 1971 1970 1969 1969 -31.7 -18.2 -26.7 -11.0 - 4.6 8.0 -7.3 -5.0 -0.4 20.9 10.1 12.8 26.7 32.0 36.3 29.2 47.3 51.8 49.4 47.6 58.0 64.9 59.5 52.4 56.9 49.6 56.5 40.6 40.6 49.1 42.6 16.9 34.0 22.1 10.7 1.2 2.3 -9.6 4.0 -17.7						

B-6

L

Ľ.

_

T

A.

Π

	1	TABLE 4		•
MO	NTHLY AVERAGE	FAIRBANKS RELATIVE HUM	DITY. PERCENT	•
1971	1970	1969	1968	1967
64.4	57.9	64.4	76.9	59.5
62.1	57.1	55.6	65.5	52.0
47.4	50.6	47.9	52.5	64.5
50.1	46,3	40.5	44.5	. 72.3
47.4	38.5	44.8	44.6	55.0
	50.9	48.1	61.0	54.1
	61.5	71.3	56.5	70.1
	69,1	64.0	73.1	74.3
	65.5	\$7.5	65.8	66.9
•	73.8	64.5	75.9	75.3
	67.9	67.4	73.0	79.5
	63.4	62.9	63.3	76.3
	<u>MO</u> 1971 64.4 62.1 47.4 50.1 47.4	MONTHLY AVERAGE 1971 1970 64.4 57.9 62.1 57.1 47.4 50.6 50.1 46.3 47.4 38.5 50.9 61.5 69.1 65.5 73.0 67.9 63.4	TABLE 4 FATREANTS MONTHLY AVERAGE RELATIVE HUM 1971 1970 1959 64.4 57.9 64.4 62.1 57.1 55.6 47.4 50.6 47.9 50.1 46.3 40.5 47.4 38.5 44.8 50.9 40.1 61.5 71.3 69.1 64.0 65.5 57.5 73.8 64.5 67.9 67.4 63.4 62.9	TABLE 4 FAIRBANKS MONTHLY AVERAGE RELATIVE HUMIDITY. PERCENT 1971 1970 1959 1966 64.4 57.9 64.4 76.9 62.1 57.1 55.6 65.5 47.4 50.6 47.9 52.5 50.1 46.3 40.5 44.5 47.4 38.5 44.8 44.6 50.9 48.1 61.0 61.5 71.3 56.5 69.1 64.0 73.1 65.5 57.5 65.8 73.8 64.5 75.9 67.9 67.4 73.0 63.4 62.9 63.3

.

I

-

I

I

I

T

I

I

I

ľ

TABLE 5

.

		MONTHLY A	FAIRBANKS VERAGE WIND SP	eed, Mph	
	<u>1971</u>	<u>1970</u>	1969	1968	1967
JAN	2.3	4.5	1.1	2.9	1.1
FEB	4.5	6.2	. 3.4	4.6	2.7
MAR	7.2	7.1	4.5	4.3	4.2
APR	8.3	0.1	6.6	5.9	6.3
MAY	9.1	9.9	9.0	8,9	7.5
JUN		0.0	6.8	7.1	7.3
JUL		7.3	. 6.8	6.1	6.5
AUG		7.0	8.2	5.7	5.9
SEP		7.6	6.5	6.2	5.9
OCT		5.5	5.3	4.9	5.9
NOV		6.5	4.7	4.5	4.6
DEC		5.3	4.0	3,3	2.8

B-7

.

				5	FA BLE	6				
	1 <u>5 to 5</u>	1967 <u>5 to 5 M to M</u> *								
JAN	6.9	6.7	4.0	4.0	. 6.6	6.4	7.0	6.5	6.0	5.9
FEB	8.2	8.1	7.9	7.6	6.1	5.5	6.4	6.5	7.9	6.9
MAR	5.4	5.1	7.1	7.1	6.2	6.0	4.8	4.5	6.6	6.2
APR	7.2	7.1	8.0	7.7	6.7	6.5	7.4	7.1	7.9	7.9
MAY	8.2	8.3	7.4	7.2	7.0	6.7	7.0	7.2	7.3	.7.2
JUN	٠		8.4	6.4	7.0	7.0	7.7	7.7	6.6	6.8
JUL			8.4	8.4	8.3	8.2	6.1	6.2	8.9	8.8
AUG			8.6	8.7	7.2	7.2	6.2	6.0	7.4	7.5
SEP			8.2	8.0	4.7	4.3	5,4	6.3	7.3	6.6
OCT			7,9	8.4	6.7	6.4	8.3	7.8	7.4	7.0
NOV			7.0	6.7	7.4	7.3	7.9	6.6	7.4	7.3
DEC			7.2	7.3	7.3	6.7	6.4	5.6	8.0	7.8

P

I

I

Ι

I

I

I

I

Ţ

]]

Ū

•

*S to S = Sunrise to Sunset *M to M = Midnight to Midnight

TABLE	7
-------	---

	FAIRBANKS MONTHLY TOTAL PRECIPITATION, WATER EQUIVALENT, INCHES										
	1971	1970	1969	1968	<u>1967</u>						
IAN	0.33	0.10	0.55	1.19	0.40						
FES	0.63	0.32	0.10	0.15	0.25						
MAR	0.20	0.25	0.60	0	1.90						
APR	0.11	0.45	0	0.29	0.84						
MAY	0.16	0.42	0.95	0.67	0.43						
JUN		2.57	0.39	1.52	1.13						
IUL		1.81	1.33	0.84	3.34						
AUG		1.98	2.04	0.96	6.20						
SEP		0.65	0.28	0.15	0.25						
ост		1.84	0.10	0.31	0.32						
NOV		3.32	0.54	0.27	0.93						
DEC		2.29	0	1.38	1.34						

TABLE 8 - TEST CASES

THICKNESS	-1- -0- 	1' 22'	0.2' 7.8' 10'	1. 17	0.5 8.5 8	2.5' 20.5'	2' 9' 5.5' 15.5'
COMPOSITION	Organics Sand Ice	Organics Sand	Organics Silt Ice	Organics Silt	Organics Silt Ice Silt	Silt Gravel	Silt Ice Silt Gravel
LAYER	3 2 1	O	3 2 1	2 1	- 0 0 4	1	- 0 0 4
TEST CASE	IA	IB	IIA	IIB	IIC	IIIA	IIIB

B-9

I

I

Ĩ

[]

[]

Ū

0

account for the phase change.

In the initial modification only the change in the thermal properties of the interstitial water due to freezing and melting was considered. It was assumed that from 1 December to 30 June of each year the interstitial water in the active layer was solid and from 1 July to 30 January of each year the interstitial water in the active layer was liquid*. The active layer was taken to be 1-1/2 feet. The bottom of the lowest layer was at a depth of 23 feet; this depth represents the deepest auger penetration for the test cases. Ground temperature measurements were available from the Fort Yukon test station⁽³⁾ (Figure 1). At a depth of 22.5 ft., the bottom of the test hole, temperatures of $30^{\circ}F \pm 1^{\circ}F$ were observed. Therefore, the temperature of the bottom of the lowest layer was assumed to be constant at $30^{\circ}F$. The annual variation of surface temperature for the seven test cases was computed.

In the second modification, the first four annual cycles (years 1967-1970) for test cases IA and IB were computed as above. Because of the lengthier computer calculations required, only two test cases were used. Upon computing the temperature distribution at the end of the fourth freeze period (June 30, 1970), the amount of energy required to thaw the known amount of water in each strata within the active layer was calculated and the pre-thaw temperature profile within the active layer was reduced accordingly, subject to the condition of unchanged surface and active layer interface temperatures. The time interval was then changed from 6 days to 10 minutes and the phase-change profile, representing the removal of all of the phase change energy as a step function, was allowed, over a 5-day period, to equilibrate. At the end of the five day equil ibration interval the resulting profile was used to represent the July 1 post-thaw profile and the basic program continued. At the end of the thawed season (Nov. 30, 1970) the program was interrupted again to account for freezing of the active layer, The amount of energy removal required to freeze the known amount of water in each strata of the active layer was calculated and the pre-freeze temperature profile within the active layer was increased accordingly, subject to the conditions that the surface temperature and the active layer interface temperatures remain unchanged. The time interval reverted to 10 minutes and the phase change profile (representing the addition of all of the phase change energy as a step function) was allowed, over a five day interval, to equilibrate. At the end of this five day equilibration interval the resulting profile was used to represent the December 1 postfreeze profile and the basic program continued. In such a manner the surface temperature for two of the seven cases was obtained for the period of interest, the thawed interval, July 1 to Nov. 30, 1971.

*For ease of computation each month was assumed to have thirty days.

B-11

e ** e j - ***

* * * (• i

FIGURE 2: The Temperature Profiles for February and August as Predicted by The U. of M. Model Are Shown. Although The Surface Temperatures Appear Reasonable, the Profiles at Depth Do Not, Suggesting The Present Inadequacy of This Model (See Text of Appendix B).

1.6 Conclusions

Two modifications of the University of Michigan Thermal Modeling Program were made in an attempt to account for the phase change occurring in the active layer. In the first modification only the change in the therma'l properties resulting from the change in the state of the water in the active layer was considered. Although the surface temperature values seemed reasonable, the associated temperature profiles did not. Figure 2 shows the predicted temperature profiles for February and August (essentially the minimum and maximum surface temperatures) for test case IA. Shown in Figure 1 are the measured temperature profiles from the Fort Yukon station⁽³⁾. It can be seen that the predicted profile does not have the same sharp decay towards the undisturbed value that the measured profiles did; for the model to be realistic, the profile should be similar. The differences however, between the media at Fort Yukon and for case IA are not sufficient to account for this observed dissimilarity.

The second modification was described in the preceding section. The energy required for or released by the phase change was used to adjust the pre-thaw or pre-freeze temperature profile as a step function. Once again the surface temperatures seemed reasonable but the profiles, although more similar to the measured profiles than before, were still not realistic. The August profile, based on the step phase change modification, is shown also in Figure 2. It is likely, therefore, that the step change thaw or freeze is an inadequate representation of the continuous phase change process.

It seems apparent at this point that further computational modifications of the University of Michigan program would not result in a model capable of producing realistic temperature profiles. Instead, the program itself should be modified by introducing the phase change phenomena as a boundary condition at the moving phase change interface.

1.7 References

l. Kersten, Miles S., Thermal Properties of Soils, Bull. No. 28, U. of Minn., Inst. of Technology, Eng. Exp. Sta., Vol. Lll, No. 21, June 1, 1949.

2. Bornemeier, D., Bennet, R., and Norman, R., Target Temperature Modeling, Rept. No. 1588-5-F, RADC TR 69-404, Dec. 1969.

[']3. Ground Temperature Observations, Fort Yukon, Alaska, U. S. Army C.R.R.F.L., Technical Rept. #100, July 1962.

APPENDIX C ł

Flight Logs. ı

. 1

	DATE 8/1 FLIGRT NO OPERATING RA PROJECT	9/71 TAKE OFF	09145		_ (113 	35)							CHANNEL
RUR	TAPE RECORD	TARGET	19660	ALTITUD	E READING	CBLL-FILTER	DER REC	TAPED	CELL-PILTER	THE MEC	TAPED	TAPE NUMBE	REMARKS
	1			1	1		Π	Π		T	Γ		
	1			†─	┨╴┈─		┢	Н		┢	t.		
							┢	Π		T	Γ		
_	<u> </u>							Π		T	Γ		
	1						Γ	П		Ţ	Γ		
_		FERRY 1 ANCHOR	TO TO	ULKA	NA								
_													
_													
_				Ľ.				Ц			L	_	
				<u> </u>			L				L		
	1												
	<u>_</u>							Ц					
			1	ļ	· ·		L	Ц					ļ
-			4	 		ļ		L					
				<u> </u>		ļ			•		-		
-	ļ								,				
	1	1	1	L.	1	ļ							
			6.10										CHANNE L
	DATE	2 TAKE OPP1	7150		(1140)	5 011	d	Ov	ercast		1		
3	PERATING RAS	E GULK D. 6R. T.				Ligh	t	Ra	1 n		5		
	TAPE RECORDE	R			1		εĪ.	Т		۶ľ.	j.	TAPE	
RUN	ON OFF	TARGET	SPEED	ALTITUDE	HEADING	CELL-PILTER			CELL-PILTER	-		O HERE P	REMARKS
1		Enroute Site						Ť		1	T	1	
2	16:27	GULK 11	100	1300	305		1	t		1	t	231	Pan Photo #1, 8 frame:
			I T				1	1		+	t	, -	

лу (** 1).,

U

I

L

1	APE RECORDE	R					¥	e.		ĕ	2	TAPE	
UN	TIME OFF	TARGET	SPEED	ALTITUDE	READING	CELL-FILTER		TAPE	CELL-FILTER	B	IAM		REMARKS
1		Enroute Site								Π		1	
2	16:27	GULK #1	100	1300	305		L			Ц		2A1	Pan Photo #1, 8 frame
3	16:31	#5			290		L	L	<u>></u>	Ц		272	7 frame
4	16:36	# 6			250		L	Ц		Ц		2 x 3	8 frame
5	16:38	#2	-		310			Ц		Ц		274	9 frame
٤	16:52	13			160			Ц		\square	4	285	13 frame
7	16:56	13	<u> </u>		355			Ц		\square	∔	286	17 frame
8	16:59				165					Ц	1	27	13 frame
9	17:11	<u>¢7</u>			360					Ц	┦	288	14 frame
0	17:18	8	4		025		Ц	Ц		Ц	1	289	Pan Film Out, 6 frames
ᅬ	17:21				300			\square		Ц	ŀ	2A10	Pan Cassette #2, 6 fram
2	17:24			750	300		Ц	\square		Ц	4	2811	No Photo
.3	17129	\$7		750	180		Н	H		┝╂	÷	2812	No Photo
-							Η	H		H	╋		
-}											╋		
7										H	T		

	DATE8/2	0/71 TABE OFF	15:30											CHANN 2	F. L.		-
	FLIGHT NO	GULK	17:35		(2:05)	Over Spri	ca: nk'	st Iin	a			۰ ۱					
	PROJECT	D.SR.T.			-	- Print			7			•		•			
	TAPE RECORDS	IR					Ē	m		L	T -	TAPE	1				
-	TIME		-	r		CELL-FILTER	Ĭ	E	CELL-FILTER	Ĭ	E	NUMBER				<u>.</u>	_
-	ON OFT	TARGET	SPEED	ALTITUDE	NEADING		ā	Ľ		Ĩ	F			REI	ARES		
_1	15:48	GULK #7	100	2000	360	-						3A1	Pan	Photo	2,	7 fr	mes
_2	15:51	48	_		210					L	L	372			1	7 fr	ames
-3	15:56				120		L			L	L	373				5 fri	ame s
4	16:03	134			170		Ĺ	Ц		L		374			1	3 fr	me
_5	16:09	134			350		L			L		372				9 fre	ame
6	16:13	115		•	120		\mathbb{H}				H	<u>376</u>		•	1	<u>l fr</u>	<u>Ame</u>
7	16:19	\$ 7	90	750	355							37	No	Photo			
	16:25	48			205							388	_				
9	16:30	49			120							3B1					
<u>10</u>	16:39	#1	_		290							3B2					
<u>11</u>	16:43	12	_		110						_	3B3					
12	16150	63	-		355							3B4			.		
11	16157		-	-	350			+			-	385	- 1				
-							Η	+			-	_					`
ļ								1		1					.		
_								Τ									
_								T			I	T					

The second second

T

Ï

]

I

T.

A SHE

....

a an index of a second s

-

	-						٠						CHANNEL
	DATE 14/21	71 TALE OFF	05:15	·	- ი	i) Over	ca	at				1	
	OFERATING BAS	GULK	VELAS		_ (1111	.,	, va					<u> </u>	
	-	D. SR. T.	_		-							,	
	TAPE RECORDS	·			- 1		Ŀ	6		Ľ		TAPE	in and degr
RUN	TIME	TANGET	SPEED	ALTITUDE	NEADING	CELL-FILTER		LAPE	CELL-PILTER	l	LAPE		REMARKS
-							Ť	Ê		F	F	6.1	-
_	04:15	GULK #7	90	750	360		╋	-		H	┝	JAI	
_2	04:19	8			205		1	L				582	
3	04:25	49			120		L					583	
	04:29	49			120		Г					524	
			-		200		t	П		Г			
	04137	1			300	-	+-	Н		Н	-	242	
_	04:30	<u>#2</u>	¥		120		┢	ŀ		Н	4	576	
	04:46	13	1	I	160						-	5A7	
. 8	04:52				160							588	
	04.56	442			160		Τ		·	Π		581	
					100		t	Η		Η		501	
_							┢	Н		Н			
_				1			1	Ц		Ц			
						•	Γ	Π		Π			
				1			t	Н		H	Η	-	
_							+	Н		Η	Η		
-							╀	L.		Ц	_		
_													
					1 1		E						
-							T	П		Π	Ī		
-			-			·····	┢	Η		Н	-		
	•	8	I	I			•						•
													• •
4	DATE 8/2	1/71TAKE OFF1	10:12					-			1		CHANNEL
1	DATE 8/2	1/71 TAKE OFF 1	10:12 11:27		(1+15)	Broke	en/	Sci	attered		13		CHANNEL
1	DATE 8/2	1/71 TAKE OFF 1 5 LANDONO 1 5 GULK D. 6R. T.	L0:12 L1:27		(1+15)	Broke	en/	Sci	attered		1 3 8		CHANNEL 8
	DATE PERATING RAN PROJECT TAPE RECORDED	1/71 TAKE OFF 1 6 LANDERG 1 6 GULK 0.6R.T.	10:12		(1115) [) Broke	in/	'Sc:	attered		1 3 8 7	TAPE	CHANNEL 2 4 6
	DATE 8/2: PLIGAT NO PERATING BASI PROJECT TAPE RECORDER TIME	1/71 TAKE OFF 1 	10:12		(1+15)	Broke CELL-PILTER	n∕	Sci	attered CELL-FILTER		1 3 5 7	TAPE	CHANNEL 2
	DATE 8/2: 	1/71 TAKE OFF 1 6 LANDING 1 7 GULK D. 6R. T. TANGET	10:12 11:27 speco	ALTITUDE	(1+15) READING	Broke CELL-PILTER		Sci	attered CELL-PILTER	COM NEC	TAPED 2 5 1	TAPE	CHANNEL 2
RVB 1	DATE 8/2: LIGAT NO	1/71 TAKE OFF 1 6 LANDING 1 7 GULK D. 6R. T. TARGET GULK \$7	10:12 11:27 speco 90	ALTITUDE 750	(1115) AEADIMO 360	Broke CELL-FILTER		2C	CELL-FILTER	CUA HEC	TAPED 2 8 1	TAPE NUMBER	CHANNEL 3
RV7 1 2	DATE 8/2: DEGRT HO	1/71 TAKE OFF 1 6 LANDRO 1 8 GULK D. 6R. T. TARGET GULK \$7 \$8	10:12 11:27 speco 90	ALTITUDE 750	(1+15) READING 360 205	Broke CELL-MLTER	Upan and	Sci	ettered CELL-PILTER	CIA HEC	TAPED 2 8 2	TAPE NUMBER 571 572	CHANNEL 2
	0478 8/2: DEGRT NO DEGRATING RAIL PROJECT TIME ON 077 10:27 10:27 10:32 10:38	1/71 TAKE OFF 1 6 LANDERG 1 7 GULK D.6R.T. TARGET GULK \$7 \$8 \$9	10:12 11:27 spece 90	AL TITUDE 750	(1:15) BEADING 360 205 120	Broke CELL-FILTER		Sci	CELL-FILTER	COM RECC	TAPED 2 5 1	Таре ни маер 5 а 1 6 а 2 5 а 3	CHANNEL 2 4 6 REMARKS
RUH 1 2 3	0478 8/2. DEGRATING RAL PERATING RAL PROJECT	1/71 TARE OVF 1 6 LANDERG 1 7 GULK D. 6R. T. TABOET GULK \$7 \$8 \$9	10:12 11:27 \$PEED 90	ALTITUDE 750	(1+15) BEADING 360 205 120	Broke CELL-MLTER		Sci	CELL-FILTER	COIN REC	1 3 8 7 034V1 4 6	TAPE NUMBER 5A1 5A2 5A3	CHANNEL 2 4 6 REMARKS
	DATE 8/2. LEGRT NO	1/71	10:12 11:27 speco 90	AL 1117UDE 750	(1+15) BEADINO 360 205 120 160	Broke		Sci	attered CELL-FILTER	Colon mecc		TAPE NUMBER 5A1 5A2 5A3 5A4	CHANNEL 2 4 6 REMARKS
	B/2 CLUBRT NO. SPERATING RALING RALING RALING RECORDER CM CM CM TIME OF 10:27 10:32 10:38 30:43 31:48	1/711 61 71 7	10:12 11:27 \$PEED 90	AL TITUDE 750	(1+15) AE ADINO 360 205 120 160 120	CELL-PILTER		Sci	CELL-FILTER	DIA REC		TAPE NUMAEP	CHANNEL3
	B/2 CLORT NO. PERATING RASI PERATING RASI CON CON TIME OFF 10:27 10:32 10:38 .0:43 1.1:48 10:53	1/71 TARE OFF 1 5 LANDERO 1 GULK D. 6R. To TARGET GULK \$7 \$8 \$9 \$4 \$2 \$1	10:12 11:27 sree 90	ALTITUDE 750	(1+15) aradino 360 205 120 160 120 300	CELL-MLTER		Sc.	CELL-FILTER			TAPE NUMBER 5A1 5A2 5A3 5A3 5A4 5A5 5A6	CHANNEL
	онте 8/2: 	1/71 TAKE OVF 1 6 LANDERG 1 7 GULK D.6R.T. 7 ARGET GULK \$7 \$8 \$9 \$4 \$4 \$2 \$3	10:12 11:27 \$PEED 90	750	(1:15) aradino 360 205 120 160 120 160	Broke CELL-MLTER			CELL-FILTER			TAPE NUMAEP	CHANNEL 2 4 6 REMARKS
	B/2 CLIDAT NO. OPERATING BASE PROFECT APE RECORDER ON TIME OFF 10:27 10:32 10:38 .0:43 1.':48 10:59	1/711 6ARE OVF1 6ARE OVF1 7 GULK 6 GULK \$7 \$8 \$9 \$4 \$4 \$2 \$3	10:12 11:27 ямко 90 	AL TITUDE 750	(1+15) BEADING 360 205 120 160 120 160	CELL-MLTER			CELL-FILTER			TAPE NUMBER 53.1 53.2 53.3 53.4 53.5 53.4 53.5 53.6 53.6 53.7	CHANNEL 2 4 6 REMARKS
	DATE 8/2. PERATING RAI PERATING RAI POPERT	1/711 6ARE OFF1 6ARE OFF1 7 GULK 6 GULK \$7 8 8 9 9 44 4 4 42 41 63	10:12 11:27 5PEED 90	ALTITUDE 750	(1+15) BEADINO 360 205 120 160 120 300 160	CELL-FILTER			attered CELL-FILTER			TAPE NUMBEP 5A1 5A2 5A3 5A4 5A5 5A6 5A5 5A6 5A7	CHANNEL
	B/2 CLUBRT NO. PERATING RALING RALING RALING RECORDER CM CM CM CM TIME OFF 10:27 10:32 10:38 30:43 31:148 10:59	1/711 6ANDERO1 71 7 GULK #7 6 GULK #7 #8 #9 #4 #4 #2 #1 #3	10:12 11:27 \$PEED 90	AL 1117UDE 750	(1+15) 360 205 120 160 120 300	Broke			attered CELL-FILTER			TAPE NUMBER 5A1 5A2 5A3 5A4 5A5 5A6 5A5 5A6 5A7	CHANNEL3
	OATE PERATING RAL PERATING PERATING RAL PERATING PERATING PERATING RAL PERATING PERATING PE	1/711 6ANDERO1 71 7 7	10:12 11:27 \$PEED 90	AL TITUDE 750	(1+15) 360 205 120 160 160	Broke			CELL-PILTER			TAPE NUMBER 5A1 5A2 5A3 5A4 5A5 5A6 5A6 5A7	CHANNEL3
	CHI CHARTE PERATING RAL PERATING RECORDER PERATING R	1/711 6AMDBHO 	90 	750	(1:15) aradino 360 205 120 160 120 160	Broke			ettered cell-Pilter			TAPE NUMAEP	CHANNEL33
	OATE PERATING RAL PERATING RECORDER PERATING RECORDER PERATING PERATING RAL PERATING PERATING RAL PERATING PERATING RAL PERATING PERATING PERATING RAL PERATING PERATING	1/71 TARE OFF 1 6 LANDERO 1 GULK 07 0 6 R. T. 7 1 GULK 17 18 19 14 12 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14	10:12 11:27 	AL.TITUDE 750	(1+15) 82 ADBHO 360 205 120 160 120 160	Broke			CELL-PILTER			TAPE NUMBER 53.1 53.2 53.3 53.4 53.5 53.4 53.5 53.6 53.7	CHANNEL
	DATE 8/2 CLEATING RAIN PERATING RAIN PROFECT	1/711 6ARE OVF1 6ARE OVF1 7 GULK 6 GULK \$7 88 89 89 84 82 83 83 83	SPEED 90	AL TITUDE 750	(1+15) 360 205 120 160 120 300 160	Broke			CELL-FILTER			TAPE NUMBEP	CHANNEL
	DATE 8/2 LEGRT NO	1/711 6ARE OFF1 6ARE OFF1 7 GULK 6 GULK \$7 \$8 \$9 \$9 \$4 \$4 \$2 \$3 \$3	10:12 11:27 90 90	AL TITUDE 750	(1+15) BEADINO 360 205 120 160 120 300 160 160 100 100 100 100 100 1	Broke			attered CELL-FILTER			TAPE NUMBEP	CHANNEL
	DATE 8/2 LIDAT NO	1/711 61 	10:12 11:27 90 90	AL 11TUDE 750	(1+15) 360 205 120 160 120 300 160	Broke			attered CELL-FILTER			TAPE NUMBREP 5A1 5A2 5A3 5A4 5A5 5A6 5A6 5A7	CHANNEL
	DATE PERATING RAL PERATING RECORDER PERATING RAL PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RAL PERATING RAL PERATING RAL PERATING RAL PERATING PERATING RAL PERATING PERATING RAL PERATING PERATING PERATING RAL PERATING PERATING PER	1/711 6ANDERO1 7 7 GULK 6 GULK \$7 \$8 \$9 \$4 \$2 \$3 \$3	10:12 11:27 90 90	AL TITUDE 750	(1+15) 360 205 120 160 120 300 160	Broke			attered CELL-PILTER			TAPE NUMBLE 5A1 5A2 5A3 5A4 5A5 5A6 5A5 5A6 5A7	CHANNEL3
	DATE PERATING RAL PERATING RECORDER PERATING RAL PERATING RAL PERATING RAL PERATING RECORDER PERATING RECORDE	1/711 6ANDERO 	10:12 11:27 90 90	AL TITUDE 750	(1+15) 360 205 120 160 120 300 160	CELL-MLTER			CELL-PILTER			TAPE NUMBER 5A1 5A2 5A3 5A4 5A5 5A6 5A6 5A7	CHANNEL3
	DATE PERATING RAL PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING RECORDER PERATING PERATING RAL PERATING PERATING RAL PERATING PERATING RAL PERATING PERATING PERATING RAL PERATING PERATING PERAT	1/711 6ANDERO 	10:12 11:27 эреко 90 	AL TITUDE 750	(1+15) BEADING 360 205 120 160 120 300 160	CELL-MLTER			attered CELL-FILTER			TAP2 NUMAEP	CHANNEL
	DATE 8/2 LEDAT HO	1/711 6ARE OVF1 6ARE OVF1 6 GULK 7 TARGET GULK \$7 \$8 \$9 \$4 \$2 \$1 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	SPEED 90	AL TITUDE 750	(1+15) 360 205 120 160 160 160	CELL-PILTER			attered CELL-FILTER			TAP2 NUMBEP	CHANNEL
	DATE 8/2 LEDAT NO	1/711 6ANDERC GULK TARGET GULK \$7 \$8 \$9 \$4 \$2 \$1 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	10:12 11:27 5PEED 90 	AL TITUPE 750	(1+15) BEADINO 360 205 120 160 160 160 160 160 160 160 16	CELL-FILTER			attered CELL-FILTER			TAPE NUMBEP	CHANNEL

1

 $\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right]$

[].

U

	DATE 8/2	2/71 TAKE OFF 0	4:05		_								CHANNEL
	FLIGHT NO		5:40		(1:3	5)					:	3	
	PROJECT	D. GR. T.			- . -						;	s 7	•
	TAPE RECORDE	IR					٤	c		ដ្ឋ		TAPE	
RUN	TIME OFF	TARGET	SPEED	ALTITUDE	NEADING	CELL-PILTER	5	TAPE	CELL-FILTER	E HID	TAPE		REMARKS
	04:16	Gulk 17	100	4K	360							781	
2	04.22	#B			205					L		782	
_3	04.30	#9			120					L		7\\3	
_	.04136	43k			170		Ш	_				784	
5	04:42	#14			300		Ц			L		7\\.5	
_6	04150	47	90	750	360		Ц	_		Ц		786	
	04156	₿		ļ	205			_		Ц		781	······································
_8	05:00	89	-		120		Ll	_				7B2	· · · · · · · · · · · · · · · · · · ·
9	05:03	#3		ļ	170			_		Ц		783	
_ 1 0	05:08			· · · · ·	120							7B4	
11	05112	A1			300		Ц	_				7B5	
12	05:17				170		\square	_				786	
_			-	L						Ц			
				ļ			Ц	_		Ц			
_		•	_	ļ			Ц	_		Ц			
_			-	1			Ц	_		Ц			
					ļ				and the second	Ц			
_			_	ļ	<u> </u>		Ц	-			_		
		l	1	I									
	DATE 8/22	/71	1:25				•					•	CHANNF.L
	DATE <u>B/22</u> FLIGNT NO	/71	1:25 2:30		(1:0	5)	•				1		CHANNEL 8
	DATE <u>B/22</u> VINGNT NO OPERATING BAS PROJECT	/71	1:25 2:30		(1:0	5) Weather	: E	Irc	oken		1 3		CHANNEL 3 4 6
	DATE <u>B/22</u> VIGNT NO. <u>D</u> DPERATING BAS PROJECT <u>S</u> TAPE RECORDED	/71	1:25 2:30		(1:0)	5) Weather	. 19	ero e	ken	2	3		CHANNEL 8 4 6
RUM	DATE <u>B/22</u> VIGHT NO. <u>DPERATING BAS</u> PROJECT <u>TAPE RECORDER</u> TIME OFF	/71	1:25 2:30	ALTITUDE	(1:0	5) Weather CELL-FILTER		TAMED	cell-filter Frame No.	DUR REC	TAPED 2 2 2 4	TAPE	CHANNEL 3 4 6 REMARKS
aun 1	DATE <u>B/22</u> PLIGHT NO. <u>DEERATING BAS</u> PROJECT <u>TAPE RECORDER</u> TIME CON OFF	/71	1:25 2:30 :PEED 120	ALTITUDE 3K	(1:0	5) Weather CELL-FILTER		TAPED	CELL-FILTER Frame NO.	DUR REC	TAPED 2 6 1	TAPE	CHANNEL
RU#	DATE PROJECT PROJECT TAPE RECORDER THE OFF 111 + 38	/71	1225 2130 speed 120	ALTITUDE 3K	(1 : 0) NEADING 360	5) Weather CELL-FILTER		TAPED	CELL-FILTER Prame No.	DIR REC	1 2 2 7 C 24V1	TAPE	CHANNEL
RUH 1 2 3	DATE DERATING BAS PROJECT TAPE RECORDER TIME CN 11:38 11:52	/71	1 2 25 2 : 30 speed 1 20	ALTITUDE 3K	(1:0) NEADING 360 205	5) Weather CELL-FILTER		TAPED	CELL-FILTER Prame No. 11 15 14	this nec	3 3 7 034V1	TAPE	CHANNEL 34 44 64 64 77 77 77 77 77 77 7
RUN 1 7 7 4	DATE PIGHT NO DPERATING BAS PROJECT TAPE RECORDER TIME OH 11:38 11:52 11:57	/71	1225 2130 speco 120	ALTITUDE 3K	(1:0) HE ADDING 360 205 360	5) Weather CELL-FILTER		TAPED	cell-filter Prame No. 11 15 14 20	DIA REC	- 3 3 7 034V1	TAPE	CHANNEL 2 4 8 REMARKS Photo EKTA(IR) ROLL #1 1/250 # f/5.6 Mag Malfunction 1/250 # f/4.0 Roll #2
RUR 1	DATE DERATING BAS PROJECT TAPE RECORDER TIME CN 11:38 11:52 11:57 12:02	/71	1 2 25 2 : 30 speed 1 20	ALTITUDE 3K	(1:0) NEADING 360 205 360	5) Weather CELL-FILTER		TAPED	CELL-FILTER Frame No. 1 15 14 20 30	TOTAL ARC	1 3 3 7 034V1	ТАРЕ НИМВЕР	CHANNEL 34 44 64 84 84 9 model and a state of the state
	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER TIME OH 11 + 38 11 + 52 11 = 57 12 + 02 12 + 06	/71	1225 2130 speco 120	ALTITUDE 3K	(1:0) HEADING 360 205 360 170	5) Weather CELL-FILTER		TAPED	CELL-FILTER Prame No. 1 7 11 15 14 20 30 12 40	DATE REC	- 3 3 7 034V1	ТАРЕ НИМВЕР	CHANNEL 24 44 84 REMARKS Photo EKTA(IR) ROLL #1 1/250 @ f/5.6 Mag Malfunction 1/250 @ f/4.0 Roll #2
	DATE DPERATING BAS PROJECT TAPE RECORDER 11:38 11:38 11:52 11:57 12:02 12:06 12:12	/71	1 2 25 2 : 30 speed 1 20	ALTITUDE 3K	(1:0) NEADING 360 205 360 170 120	5) Weather CELL-FILTER		TAPED	CELL-FILTER Frame No. 1 15 14 20 30 12 40 52	DUR REC	- 7 7 7 C34V1	TAPE NUMBEP	CHANNEL 2
	DATE DERATING BAS PROJECT TAPE RECORDER TIME ON 11 + 38 11 + 52 11 + 57 12 + 02 12 + 06 12 + 12	/71	1225 2130 IPEED 120	ALTITUDE 3K	(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER		taten	CELL-FILTER Prame No. 1 7 15 14 20 30 12 40 52	DAR REC	1 3 3 7 034V1	TAPE HUMBEP	CHANNEL
	DATE DIGNT NO DPERATING BAS PROJECT TAPE RECORDER TIME OFF 11:38 11:52 11:57 12:02 12:02 12:12	/711 81 g1 0_06R.a.T.a. 7 TARGET Abort \$7 \$8 \$7 \$8 \$7 \$8 \$7 \$8 \$7 \$8 \$7 \$8 \$1 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4	1 2 25 2 1 30	ALTITUDE 3R	(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER		TAPED	CELL-FILTER Frame No. 1 15 14 20 30 12 40 52	DIA NEC	1 3 3 7 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ТАРЕ ИШМВЕР	CHANNEL
	DATE DERATING BAS PROJECT TAPE RECORDER TIME OFF 11 + 38 11 + 52 11 + 57 12 + 02 12 + 02	/711 8ANDORC1 8ANDORC1 8 0.00000000000000000000000000000	1 2 25 2 1 30 1 8PEED 1 20	ALTITUDE 3K	(1:0) NEADING 360 205 360 170 120	5) Weather CELL-FILTER		TAPED	CELL-FILTER Frame No. 1 7 15 14 20 30 12 40 52	COM REC		TAPE HUMBEP	CHANNEL
	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER THE OFF 11:38 11:52 11:57 12:02 12:02	/711 81 g1 D_0 & R_a T_a 7 TARGET Abort \$7 \$8 \$7 \$8 \$7 \$9 \$34 \$14	1 2 2 5 2 1 30	ALTITUDE 3R	(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Prame No. 1 7 15 14 20 30 52 40 52			ТАРЕ НИМБЕР	CHANNEL
	DATE _ B/22 PIGNT NO DPERATING BAS PROJECT TAPE RECORDER CN OFF 0 07 11:52 11:57 12:02 12:06 12:12	/711 81 g g	1 2 25 2 1 30 1 20 1 20	ALTITUDE 3K	(1:0) NEADENG 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Frame No. 1 15 14 20 30 12 40 52			TAPE HUMBEP	CHANNEL
3 4 4 4 7 3 3 3 3 3 3 3 3 3	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER THE OFF 11:38 11:52 11:57 12:02 12:02 12:12	/711 81 g1 0 7 7	1 2 2 5 2 1 30	ALTITUDE 3K	(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Prame No, 1 7 11 15 14 20 30 12 40 52				CHANNEL
	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER THE OFF 11:38 11:52 11:57 12:02 12:102 12:112	/711 81 g g	1 2 2 5 2 1 3 0	ALTITUDE 3K	(1:0) NEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Frame No. 1 15 14 20 30 52 40 52				CHANNEL
	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER TIME OFF 11 + 38 11 + 52 11 + 52 12 + 02 12 + 02 12 + 12 	/711 81 g1 p 	1 2 25 2 1 30	ALTITUDE 3K	(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Prame No, 1 7 15 14 20 30 72 40 52				CHANNEL
	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER TIME OFF 11:38 11:52 11:57 12:02 12:102 12:12	/711 81 g1 D_0 & R.a.T.a	1 2 2 5 2 1 30	ALTITUDE 3R	(1:0) NEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Prame No. 1 7 11 15 14 20 30 52 40 52				CHANNEL
	DATE DIGNT NO DPERATING BAS PROJECT TAPE RECORDER THE OFF 11:38 11:52 11:57 12:02 12:102 12:12 	/711 81 g GULK D_\$&RaT. 7 48 47 48 47 49 434 414	1 2 2 5 2 1 30		(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Frame No. 1 15 14 20 30 12 40 52				CHANNEL
薬 → → → → → → 1 	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER THE OFF 11:38 11:52 11:57 12:102 12:102 12:12 	/711 81 2 GULX D_0 & R.a.T.a. 7 7 48 47 48 47 48 47 49 434 414 414	1 2 2 5 2 1 30	ALTITUDE 3R	(1:0) HEADING 360 205 360 170 120	5) Weather CELL-FILTER			CELL-FILTER Prame No, 1 7 11 15 14 20 30 12 40 52				CHANNEL 2
	DATE DIGHT NO DPERATING BAS PROJECT TAPE RECORDER 0 TIME 0	/711 81 g g	1 2 2 5 2 1 3 0	ALTITUDE 3K	(1:0) NEADING 360 205 360 170 120	5) Weather CELL-FILTER		Provide statements and statem	CELL-FILTER Frame No. 1 15 14 20 30 12 40 52				CHANNEL

I

I

I

I

Ι

and a set

and the

No.

Same and

2

GRT NO	9 LANDING						•									
SRATING BA	SE BULK										- 1					•
	Dear.							_		_		TABE				
			-			CELL-FILTER	THE C	8	CELL-FILTER	See	ę	NUMBER				_
ON OFF	TANGET	471	ED AL	TITUDE	READING		E	4		8	1		_		NENCAL STREET	_
						1				Ĺ						
							Т			Π						
										П			-		- · · · ·	_
			-				+			Η	÷					
·	PERRY GULK	ANA TO	ANCH	ORAG						Н	÷					
										Н					· · · · · · · · ·	_
	ļ									Ц	_					_
										Π						
										П	-					-
							+-	H	· · · · · · · · · · · · · · · · · · ·	H	Н					-
							+	\vdash	······	H	Ч					
							+			Ц						
						•						·		1.11		
			Т						-	Π						
								Π		T	Π					-
			+				+-	Η			Η					_
							_	Ц		\vdash				_		
	-	-		1												-
			_					Ц		L				_	······································	 .
							┼			L						
NTE 0/2:	2/71													CHAN	NEL	
ATE 0/2: LIGRT ING. 1(PERATING BAS	2/71TAKE OFF										1 3 3			CHAN	NEL	
ATE 0/2: LIGHT HO. 10 PERATING BAS ROJECT	2/71						- - - - - - -				1 3 5 7			CHAN 1	NEL	-
ATE 0/2: LIGRT HO. 1(PERATING BAS ROJECT APE RECORDE	2/71					CELL-FILTER		PEN	CELL-PILTER	A NEC		TAPE		CHAN	NEL	
ATE LIGHT HG PERATING BAS ROJECT APE RECORDE CH CH OFF	2/71				READING	CELL-PILTER	Dim merc	TAPER	CELL-FILTER	Die nec	14PED	TAPE		CHAN	NE L 	
ATE 0/2: LIGAT HO. 10 PERATING BAS ROJECT APE RECORDE TIND ON 0FF	2/71			TITUDE	READING	CELL-FILTER	Die BCC	TAPER	CELL-PILTER	cia nec	TAPED 4 4 4	TAPE		CHAN	NEL 	
ATE 0/2: LIGHT HO. 1(PERATING DAI ROJECT APE RECORDE TIME OFF	2/71			TITUDE	READING	CELL-PILTER	Die BCC	TAPED	CELL-FILTER	CSR REC	TAPED 4 4 4	TAPE		CHAN 11 11 11 11 	NEL 	
ATE 0/2: LIGRT NO. 11 PERATING BAS ROJECT APE RECORDE TINE ON 077	2/71			TITUDE	READING	CELL-PILTER	Die efc	TAPEN	CELL-PILTER	Sin nec	TAPED 4 4 4	TAPE		CHAN 1	NE L 	
ATE LIGHT NG PERATING BAS ROJECT APE RECORDE CH CH OFF	2/71	SPE		THTUDE	READING			Tapen	CELL-PILTER	Sin nec	TAPED	TAPE		CHAN 1	NE L 	
ATE 0/2: LIGRT HO. 1(PERATING DAI ROJECT APE RECORDE OFF	2/71	BRRY ANC		TITUDE	READING	CELL-PILTER		Tapen	CELL-FILTER	Cin nec	TAPED	TAPE		CHAN 1	NEL	
ATE 0/2: LIGRT NG. 1(PERATING BAI ROJECT APE RECORDE TINE ON 0FF	2/71	ERRY ANC 00		TITUS	READING	CELL-PILTER TIZES		Tapen	CELL-FILTER	Sin nec	TAPED 1 C	TAPE		CHAN 1 	NEL 	
ATE LIGHT HG PERATING BAS ROJECT APE RECORDE TINE GH	71 TAKE OFF 6 11 11 LANDING 11 LANDING 12 DAMDET 13 TARDET 14 FLT. 15 31	ERRY AN(00 15 15		TITUDE	READING	CELL-FILTER TLES		TAPED	CELL-PILTER	Sia nec	TAPED	TAPE		CHAN 1	NË L	
ATE	2/71 TAKE OFF E 11 LANDING F Da &RaTa R TARGET R R FLT. \$10 R Off: 12: Down: 15: J J J J	ERRY ANC 00 15 15		ni tube	READING	CELL-FILTER TLES		TAPET	CELL-FILTER		14PED 4 4 4 4	TAPE		CHAN 	NEL 	
ATE	2/71	ERRY ANG 00 15 15	ID AL1	TITUDE	READING	CELL-PILTER		Tapta	CELL-FILTER	the star nec	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAPE		CHAN 1	NEL	
ATE 0/2: LIGRT NO. 11(PERATING BAS ROJECT	2/71	ERRY AN(00 15 15		TITUDE	READING	CELL-PILTER	CUB IEEC		CELL-FILTER	Sin nec	TAPED 4 4 4	TAPE		CHAN	EMANKS	
ATE	71	ERRY AN(00 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Intrude Intrude				TAPED	CELL-PILTER	Cia nec		TAPE		CHAN 1	NE L	
ATE	2/71 TAKE OFF E 11 LANDING F Da &RaTa R TARGET FLT. #10 VIT. #11 FLT. #11	BRRY ANG 00 15 15 		HTUDE AGE	READING TO BET	CELL-FILTER TLES			CELL-FILTER		TAPED 4 6 6	TAPE NUMBEP		CHAN	NEL	
ATE	2/71	ERRY ANG 00 15 15 ERRY BET 03 43	HC RA	ITTUDE	READING TO BET				CELL-FILTER	CIR REC		TAPE		CHAN	NEL	
ATE 0/2: LIGRT NO. 11(PERATING BAI ROJECT	2/71	ERRY AN(00 15 15 2 2 2 2 3 3 3 3 3 3 3 3		TTTUDE	READING	CELL-FILTER				Cia nec		TAPE		CHAN 1	EMANKS	
ATE	2/71	ERRY AN(00 15 15 20 20 20 20 20 20 20 20 20 20 20 20 20		ITTUDE	READING	CELL-PILTER TIZES								CHAN	NEL 	
ATE	2/71 TAKE OFF 6-31 LANDING F Da & RaTa TARGET TARGET PLT. \$10 V Off: 1 15: J J: J: J: J:	ERRY ANC 00 15 15 ERRY BET 03 43 30		HTUDE AGE	READING TO BE?	CELL-FILTER TLES						TAPE NUMBEP		CHAN	NEL	
ATE	2/71 TAKE OFF E 11 LANDING F Da &RaTa F TARGET FLT. #10 VIT. #11 FLT. #11 FLT. #11 P Off: 16: DGWR: 18: 21	ERRY ANG 00 15 15 ERRY BE7 03 43 30		IIITUDE AGE	READING TO BET	CELL-FILTER TIZS						TAPE NUMBEP			NEL 	
ATE	2/71	ERRY ANG 00 15 15 ERRY BET 03 43 30		TTUDE	READING TO BET	CELL-PILTER TLES		TAPED		State and stat				CHAN 1	NEL	
ATE 0/2: LIGRT NO. 11 PERATING BAS ROJECT APE RECORDE TINE ON 077	2/71	ERRY AN(00 15 15 15 15 15 15 15 15 15 15 15 15 15		TTUDE	READING BARRO	CELL-PILTER TLES								CHAN	EMANKS	
ATE	2/71	ERRY AN(00 15 15 20 20 20 20 20 20 20 20 20 20 20 20 20		11TUDE	BARRO	CELL-PILTER TLES									NEL 	

li

[]

	PLIGHT NO	4/71 TAKE OFF 12 LANDING 5F Barrow D. 6R. T.	01:45 03:30		(114)	5)					I 3 5 7	CHANNEL
	TAPE RECORDI	IR					ž	Ę		¥ s	TAPL	,]
RUN	ON OFF	TANGET	SPEED	ALTITUDE	NEADING		8	ž	CELL-FILTER	8	·	REMARKS
1	02:05		90	1000				Ц			8A1	Radar Spikes
.2	02:11	BAR #3	_		15-12						872	Tape Batt, Off
-3-	02:15				130			L			873	Ripple fm. Batt Charges
4	02:28	16			340						884	-20.
5	02:31	48			120						8 7 5	
_6	02:47	#5			320						886	
7	02:51	654	t		130						8B7	
8	02:57	ę54			130						8B1	
9	03:02	47			340						8B2	
10	03:06	#1 (_		200-2	20				Π	8B3	
11	03:09				020-0	0					8B4	
		5										
		1 -										
_		-										
_		ę								·		
		3			•							
								Ŀ				
						65 mm						

I

I

I

I

I

T

Ĩ

l

U

Ū

-

	DATE 8/24	71 TAKE OFF	17:15		-							CHANNEL
	LIGHT NO	13 LANDING	18:45		(1:: =	10) Cve	rc	ast	: 0 800 ft.		3 <u></u> 3 <u></u> 5 <u></u>	4
•	TAPE RECORDE	R					٤	c		80		
RUN	ON OFF	TARGET	SPEED	ALTITUDE	READING	CELL-PILTER	24.8	TAPE	CELL-PILTER	TAPE		REMARKS
1	17:24	BAR #8	80	500	115	· · · ·					9A1	Pan Photo #3, 24 fram
_2	17:28	18 Repeat			115						9እ2	No Camera
3	17:35	16	<u> </u>		320					Ш.	973	13 frames
4	17:40	\$7			150					11	974	15 frames
5	17:44	#5 ½			320					11	975	21 frames
6	17:49		_							Ш.	986	5 frames
_7	17:54	45	_		130		1.	\Box		Ш	987	Pan Photo #4. 8 frame
	18:00	#5			130				. <u></u>		9B1	10_frame
9	18:03	14		ļ	320	·					9B2	9 frame
10	18:09							Ц		$\downarrow \downarrow$	9B3	18 frame
11	18:18						1	Ц		↓	984	4 frames in middle
12	18:27		_		 		1-	\square		11.	985	4 frames in middle
13	·	TEST	-				1	\downarrow			1081	
14	18:37	BAR #1					_	Ц		11	1002	7 frames & 5 frames
<u>15</u>	18143	SEV	_	ļ		•			·····	11	1013	
	 -						+	-		++		
<u> </u>							+	$\left \right $				
							+	$\left \cdot \right $		++		
	I	l		<u> </u>	<u> </u>						1	

http://25	/71	143						•	10				CH	ANNEL	
FLIGHT NO	14 LANDING 16	125	•	(314	2)					1				· · · · · · · · · · · · · · · · · · ·	
	Barroy										- ⁶ 7		v 8	6	
	D.4R.T.									7	ad i	4.		*3	
TAPE RECORDE	R	<u> </u>		•		R			¥ e	TAP	E E			94 - ×.	
TIME	TABOUT	IPEED	ALTITUDE	HEADEND	CELL-PILTER		ž	CELL-PILTED						REMARKS	
ON OF!							-		++-		-		<u></u>		
										1		Þ	-	5. 24	
												t.		-	,
						H			T	1					
			<u> </u>			┥┥			╟╋				-		
	FERRY BARROW	TO	FAIRB	NKS							_	2.3		• 1	14
									П					• 3	3
			· · ·				1	•	Ħ	1					
									₩.	1-					
•													1.6	τ	
····				-		Π			Π						
			1			+	H		++		-				
· · ·				<u> </u>		L			μ.			9			
										1		5			
[1						TT						
						+	-		╂╋	+	-				
									Ш	-			1 S		
									11						
			1						$^{++}$						
						+	Н		╂╂-	-	_				
					•										
						Т	Π		П	T					
	l								╋╋	+	-				
		1					1 1								
							Ц		μ.		_				
									┼┼	┢	_				
8/2	26/71	120			·								СК	ANNEL	
DATE	26/71 TARE OFF 14 15 LANDING 15	120 131		(1.1									СН	AXNEL 3	
DATE 8/2 PLIGHT NO.	26/71 TARE OFF 14 15 LANDRG 15 Fairbanks	120	·····	(11)	.1)			· · · ·					сн	ANNEL 2 4	
DATE 8/2 PLOST NO	26/71 TARE OFF 14 15 LANDRG 15 Fairbanks Da&R.T.	120		(11)	.1)								сн	ANNEL 2 4	
DATE 8/2 PLICIT NO. DAIL PROJECT	26/71 TARE OFF 14 15_LANDRO15 FRairbanks R	120 131		(1.1	.1)					1			сн	ANNEL 2 4 6	
DATE 8/2 PLIGHT NO. PROJECT	26/71	120 131	ALTITUDE	(11) HEADBPJ	.1) CELL-FILTER	Die BEC	TAPED	CELL-FILTER	TAPED	1 3 7 TAP			Сн	ANNEL 2 4 8 REMARKS	
DATE 8/2 PLIGHT NO. PROJECT	26/71	120 131 19880	ALTITUDE	(11) HEADRY	.1) CELL-FILTER		TAPED	CELL-FILTER	TAPED	1			Сн	ANNEL 3 4 8 REMARKS	
CRE 8/2 CLOHT NO	26/71 TARE OFF 14 15 LANDRG 15 Fairbanks Dadra T. R TARGET	120 131	ALTITUDE	(11) (11)	.1.) CELL-FILTER	Die MEC	TAPED	CELL-PILTER	- tata mec	1 3 7 TAP			СН	ANNEL 3 4 8 REMARKS	
CATE 8/2 PLIGHT HO	26/71 TARE OFF 14 15 LANDRO 15 Fairbanks DadRaT- TARGET	120 :31		(11) HEADIP3	1) CELL-FILTER	THE REC	TAPED	CELL-PILTER	- Oth REC	1 3 7 NUMB			Сн	ANNEL 2 4 8 REMARKS	
ATE 8/2 LIGHT HO	26/71 TARE OFF14 1515 15 	120 131		(11) HEADIPJ	11) CELL-FILTER		TAPED	CELL-FILTER	- tata mec	1 3 7 TAP NUME			Сн	ANNEL 2 4 6 REMARKS	
ATE 8/2 LIGHT HO. PERATING BASI PROJECT	26/71 TARE OFF14 15 LANDRAG15 Fairbanks DaARaT. R TANGET	120 131		(11) (11)	1) CELL-FILTER	Dia Rec	TAPED	CELL-ØILTER	TAPED	1 3 7 7 10040			СН	ANNEL 2 4 6 REMARKS	
ATE 8/2 LIGHT HO	26/71 TARE OFF14 151615 1515 	120 131 sPEED		(11) HEADBY3	.1) CELL-FILTER		TAPED	CELL-PILTER	TAPED	1 3 7 7 7 1 AP NUMB			СН	ANNEL 2 4 6 REMARKS	
ATE 8/2 LIGHT HO	26/71 TARE OFF 14 15 LANDAG 15 Fairbanks Da&R.T. TANGET TANGET FERRY FAIRBANKS	120 131 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALTITUDE	(1 t) HEADING DELTA	1.1.) CELL-FILTER		149ED	CELL-ØILTER		1 3 5 7 TAP			CH	ANNEL 2 4 6 REMARKS	
ATE 8/2 LIGHT HO. PPERATING BASI PROJECT	26/71 TARE OFF 14 15 LANDAG 15 Fairbanks Da&R.T. TANGET TANGET FERRY FAIRBANKS	120 131 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALTITUDE	(1 t) HEADERS DELTA	.1.) CELL-FILTER		TAPED	CELL-PILTER	TAPED	1			Сн	ANNEL 2 4 8 REMARKS	
ATE	26/71 TARE OFF14 1515 15 	120 131 SPEED	ALTITUDE	(11) HEADERS DELTA	11) CELL-FILTER			CELL-PILTER		1			Сн	ANNEL 2 4 6 REMARKS	
ATE 8/2 LIGHT NO. PREATING BALL PROJECT. CHI DECOP.OF CHI	26/71 TARE OFF14 1515 15 	120 131 SPEED TO	ALTITUDE	(1:) HEADIPS DELTA	11) CELL-FILTER		TAPEN	CELL-FILTER	1416D	1			Сн	ANNEL 2	
ATE 8/2 LIGHT NO. PPERATING BAIL POJECT CH DIECOF.OF THE OH DIFC	26/71 TARE OFF 14 15 LANDRO 15 Fairbanks D.AR.T. TARGET FERRY FAIRBANKS	120 :31	ALTITUDE	(1:) HEADIPJ DELTA	11) CELL-FILTER	Dia REC	TAPED	CELL-FILTER	- transfer	1			Сн	ANNEL 2	
ATE 8/2 PLOHT NO. PROJECT	26/71_TARE OFF14 15LANDROG15 FRAITDANKS 	120 :31	ALTITUDE	(1:) HEADIPJ DELTA	11) CELL-FILTER			CELL-FILTER	- tan mac	1			СН	ANNEL 2	
ATE 8/2 CLEART NO	C6/71_TARE OFF14 15LANDONG15 R 	120 :31 	ALTITUDE	(1:) HEADIPJ DELTA	11) CELL-FILTER			CELL-FILTER	- CER MEC	1			CH	ANNEL 3 4 8 REMARKS	
CATE 8/2 CLEART NO	26/71_TARE OFF14 1515 15 	120 121 121 121 121 121 121 121	ALTITUDE	(1:) HEADIPJ	.1) CELL-FILTER		14ME	CELL-FILTER					CH	ANNEL 2 4 REMARKS	
ATE 8/2 PATE 8/2 PERATING BASI PROJECT	C6/71_TARE OFF14 	120 131 SPEED TO TO	AL TITUDE BIG	(11) HEADIPJ	.1) CELL-FILTER			CELL-FILTER					CH	ANNEL 2 4 8 REMARKS	
CATE 8/2 PLANT NO	EC/71_TARE OFF14	120 131 SPEED TO TO	ALTITUDE	(11) NEADIPJ	.1)) CELL-FILTER			CELL-FILTER					CH	ANNEL 2 4 4 5 5 7 8 5 7 8 5 7 7 7 7 7 7 7 7 7 7 7 7	
CATE 8/2 PLANT NO	ERRY PAIRBANKS	120 131 SPEED TO TO	ALTITUDE	(1:)	.1) CELL-FILTER			CELL-FILTER					CH	ANNEL 2 4 4 5 5 7 8 EMARGS	
ATE 8/2 PLIGHT HO	ERRY PAIRBANKS	120 131 SPEED	ALTITUDE	(1:)	.1) CELL-FILTER			CELL-FILTER					Сн	ANNEL 2 4 4 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
CATE 8/2 PLIGHT HO	ERRY FAIRBANKS	120 131 SPEED	ALTITUDE	(11)	11) CELL-FILTER			CELL-FILTER					CH	ANNEL 2 4 4 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
CATE 8/2 PLIGHT HO	ERRY FAIRBANKS	120 131 SPEED TO TO	ALTITUDE	(11)	11) CELL-FILTER			CELL-FILTER					CH	ANNEL 2	
	Pairbanks Parse or	120 131 SPEED TO TO	ALTITUDE	(11)				CELL-PILTER					Сн	ANNEL 2	
ATE 8/2 ATE	Parse orr14	120 131 SPEED TO TO	ALTITUDE	(11)				CELL-ØILTER					Сн	ANNEL 2	
ATE 8/2 LIGHT HO	VE/71_TARE OFF14 15LANDRG15 	120 131 sPEED TO	ALTITUDE					CELL-PILTER					СН	ANNEL 2	
	VE/71_TARE OFF14 15LANDRG15 	120 131 sPEED TO	ALTITUDE					CELL-PILTER					СН	ANNEL 2	
	25/71_TARE OFF14 15AMDRG15 	120 131 sPEED TO	ALTITUDE										СН	ANNEL 2	

Ü

	DATE VLIGRT NO, DPERATING BA PROJECT LAPE RECORD	6/71	21:35 23:05		-	Weather:	, 	:1e	ar			, , , , , , , , , , , , , ,	CHANNEL
	-		.5			CRLL-FILTER	ž	E	CELL-PILT	E		NUMBER	
RUN	ON OFF	* TANGET	. IPEED	ALTITUD	E HEADING	C. C. D. FILLER	ä	3	CENSTIN				REMARKS
1	21:48	Abort	90	750			-					1141	
2	21:54	BD 01	4		280		Τ	Γ			T	1182	
3	22:02	Bepeat #1			100		t				T	1143	
	22.12	42	2 7		010		1-				╈		
-	22114	12			010		┢╌	H			╋	1144	
_5	22:15	(3	i .		240					\rightarrow	╀	1125	
-	p		r)		1		-			_	+		
6	22:27		90	3K	100					_		1181	Break in Tape Run
_7	22:42		- veloci		010							1182	
8	22:46	#3	10		240						Γ	1183	
	22.50	Black									T	11.0.4	
-	64120			1			H	H	,	-	t	1784	
							\mathbf{H}	Ч		-+	+		
-		5		<u> </u>			\mathbf{H}	-			╀		
_	_									\rightarrow	+		
_			-	ļ				1			L		
				_				1					
,										Т	T		
											t		
							4			-	\mathbf{t}		
											1.1		
	.rr 8/27/	/71 04	. 18	1						1			CHANNEL
D	ATE 8/27/	71 TAKE OFF 01 17 LANDENO 02 2 Big Delta D.4R.T.	4:18		(1:0)	2)		- 1		Ţ			CHANNEL 2 4
D VI D T	ATE 8/27/	71 TAKE OFF 04 7 LANDBOD 02 8 Big Delta D.6R.T.	4:18 5:20		(1:0)	2)	8					1	CHANNEL 2 4 6
D F O F	ATE 8/27/	(71	4:18 5:20	ALTITUDE	(1:0) READING	2) CELL-FILTER	DIR NGC	TAPED	CELL-VILTI		TAPED	TAPE HUMBEP	CHANNEL 2 4 6 REMARKS
D P D T	ATE 8/27/ RORT NO. 1 PERATING BAS ROVECT APE RECORDE OTHE CITIE	71	4118 5120	ALTITUDE	(1:0) READING	2) CELL-FILTER	. Gin MGC	TAPED	CELL-97LTI		TAPED	TAPE HUMBEP	CHANNEL 2 4 4 5
D P P T	ATE 8/27/ HORT NO. 1 PERATING BAS NOVECT	71 TARE OFF 04 7 LANDBOO 02 a Big Delta 0.6R.T. TARGET BD \$1	4118 5120 .Weed 120	ALTITUDE 4R	(1:0) READING 105	2) CELL-FILTER	- DIR NGC	TAPED	CELL-97LTI		TAPED	TAPE HUMBEP	CHANNEL 2 4 6
	ATE 8/27/ ROAT NO. 2 PERATING BAS ROJECT APL RECORDER ON TIME CTV 04132 04:40	(71 TAKE OFF 04 (7 LANDBHO 01 (7 LANDBHO 01 (7) LANDBHO 01	4118 5120 	ALTITUDE 4R	(1:0) READING 105 005	2) CELL-FILTER	· Dia NGC	TAPED	CELL-VILTI	n 1	TAPED	TAPE TAPE 12A1 12A2	CHANNEL 2 4 6 REMARKS
D 7 0 7 1 2 3	ATE 8/27/ ROATE NO. 2 PERATING BAS ROJECT	71	4118 5120 120 	ALTITUDE 4R	(1:0) READING 105 005 245	2) CELL-FILTER		TAPED	CELL-FFLTI	R H	TAPED	TAPE HUMBEP 12A1 12A2 12A3	CHANNEL 2 2 4 4 8 REMARS
D 0 7 1 1 2 3 4	ATE 8/27/ RORT NO. 3 PERATING BAS APE RECORDE ON TIME ON TIME ON 132 04:32 04:32 04:32 04:50	71 TARE OFF 0/ 17 LANDBHO 01 10 Big Delta 01 Do & RaTa 00 TARGET 00 00 \$1 42 \$3 \$1 \$1	4118 5120 .wetto 120	ALTITUDE 4K 750	(1:0) READING 105 005 245 105-85	2) CELL-FILTER	- 018 MBC	TAPED	CELL-WLTH		TAPED	TAPE NUMBEP 12A1 12A2 12A3 12A4	CHANNEL 2 4 6
D 7 0 7 1 2 3 4 5	ATE 8/27/ ROAT NO. 2 PERATING BAS ROJECT APL RECORDER ON TIME CTV 04:32 04:32 04:50 05:02	71 TAKE OFF 04 7 LANDBHO 0? 8 Big Delta D.4 R. T. TARGET BD #1 #2 #3 #1 #2	4118 5120 	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010	2) CELL-FILTER		TAPED	CELL-PILTI		TAPED	TAPE TAPE 12A1 12A2 12A3 12A4 12B1	CHANNEL 2 4 6 REMARKS
D D T UN 1 2 3 4 5 6	ATE 8/27/ IORT NO. 2 PERATING BAS MOJECT	71 TARE OFF 01 17 LANDBRO 01 2 Big Delta 01	4118 5120 120 120 90	ALTITUDE 4R 750	(1:0) READING 105 005 245 105-85 010 245	2) CELL-FILTER		TAPED	CELL-FILTI			Таўє нимеер 12А1 12А2 12А3 12А4 12В1 12В2	CHANNEL 2 4 4 5 REMARKS
D 7 0 7 1 2 3 4 5 6	ATE 8/27/ RORT NO. 2 PERATING BAS ROVECT APE RECORDE 01 04:32 04:32 04:32 04:43 04:43 04:50 05:02 05:05	71	4118 5120 19600 120 90	ALTITUDE 4K 750	(1:0 READING 105 245 105-85 010 245	2) CELL-FILTER	104 MGC	TAPCD	CELL-MLTI		TAPED	TAPE HUMBEP 12A1 12A2 12A3 12A3 12A4 12B1 12B2	CHANNEL 2 4 4 6
D 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ATE 8/27/ RORT NO. 3 PERATING BAS PERATING BAS APE RECORDE OUT C. 04:32 04:32 04:32 04:43 04:43 04:50 05:02 05:05	71	4118 5120 	ALTITUDE 4R 750	(1:0 READING 105 245 105-85 010 245	2) CELL-FILTER		TAPED	CELL-MLTI		dI4v1	TAPE NUMBER 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6
D 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ATE 8/27/ IGRT NO. 2 PERATING BAS ROJECT APE RECORDER ON 100 04132 04132 04132 04133 04150 05102 05105	71 TARE OFF 04 7 LANDBRO 01 8 Big Delta 01 Do & R.a.T. 1 8 41 42 43 41 42 42 43	4118 5120 	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER		TAPED			024V1	TAPE NUMBER 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6 REMARKS
D 77 0 9 7 1 2 3 4 5 6	ATE 8/27/ ROAT NO. 2 PERATINO BAS MOVECT APE RECORDER 01 132 04 132 04 132 04 143 04 143 04 150 05 102 05 105	71 TARE OFF 01 7 LANDERO 02 2 Big Delta D. 6R.T. 7ARGET BD 01 02 03 01 02 03 01 02 03 01 02 03 01 02 03 01 02 03 01 02 03 01 02 03 04 03 04 04 04 04 04 04 04 04 04 04	4118 5120 120 120 90	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER		TAPED				TAPE HUMBEP 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6 REMARS
	ATE 8/27/ ROBT NO. 2 PERATING BAS MOVECT APE RECORDE 04:32 04:32 04:32 04:43 04:43 04:50 05:02 05:02 05:05	71	4118 5120 	ALTITUDE 4K 750	(1:0 READING 105 245 010 245	2) CELL-71LTER					QZ4V1	TAPE HUMBEP 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6
D 77 0 9	ATE 8/27/ RORT NO. 3 PERATING BAS PERATING BAS APE RECORDE ON TIME ON TIME ON 132 OA: 40 O4: 43 O4: 43 O5: 102 O5: 105 O5: 105	71	4118 5120 	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER						TAPE NUMBER 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6 REMARKS
	ATE 8/27/ ROME NO. 2 PERATING BAS MOJECT APE RECORDER 01 102 04 132 04 132 04 132 04 132 04 132 04 132 05 102 05 102 05 105	71 TARE OFF 7 LANDBRO 2 Big_ Delta D. &R.T. TARGET BD #1 #3 #3 #3 #3 #3	4118 5120 120 120	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER						Таре нумеер 12А1 12А2 12А3 12А4 12В1 12В2	CHANNEL 2 4 6 REMARKS
	ATE 8/27/ RORT NO. 2 PERATING BAS MOVECT	71	4118 5120 120 120 90	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER						TAPE HUMBEP 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6
	ATE 8/27/ IRORT NO. 2 PERATING BAS MOVECT	71	4118 5120 	ALTITUDE 4K 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER						TAPE HUMBEP 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6
	ATE 8/27/ RORT NO. 3 PERATINO BAS PERATINO BAS APE RECORDE OU TIME OU 132 04:32 04:32 04:43 04:43 05:02 05:02 05:05 05:02	71	4118 5120 	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER					92441	TAPE NUMBER 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6 REMARKS
	ATE 8/27/ ROATE NO. 2 PERATING BAS MOJECT	71	118 5120 120 90	AL TITUDE 4K 750	(1:0) READING 105 005 245 010 245 010 245 010 245	2) CELL-FILTER					TAFE	TAPE NUMBER 12A1 12A2 12A3 12A4 12B1 12B2	CHANNEL 2 4 6 REMARKS
	ATE 8/27/ RORT NO. 2 PERATINO BAS MOVECT	71	4118 5120 120 120 90	ALTITUDE 4R 750	(1:0) READING 105 245 105-85 010 245	2) CELL-FILTER						TAPE NUMBEP	CHANNEL 2 4 6
	ATE 8/27/ IRORT NO. 2 PERATING BAS MOVECT	71	4118 5120 	ALTITUDE 4K 750	(1:0) READING 105 245 010 245	2) CELL-FILTER						TAPE HUMBEP	CHANNEL 2 4 6 REMARKS

I

and the second

	B/27	7/71 TAKE DFF 10	: 45		. (21	Weat	he	rı	Clear			ı	CHANNEL
•	DPERATING BAS	E Big Dulta									:)	······································
	PROJECT	D. GR.T.			-					_	_		
	TAPE RECORDE	F			-	CELLIPILTER	MEX.	9	CRLL-FILTER	REC.	e	TAPE) NUMBER	
RUN	ON OFF	TANGET	SPEED	ALTITUDE	READING		8	Υ.	Frame No.		IAI		· REMARKS
1	10:54	BD #1	120	4K	260-28	0	L		19			1371	1/250 @ £/4.0
2	11,00	#1 Repeat			105-90				- 41 -	_		1375	R
3	11:09	12			010				46		4	1383	
4	11:13	#3			245	•			53		1.01	1384	
4.	,	Camera Bun Out	Ver	TADS 1	ine			Γ	~~70		_		· · · · · · · · · · · · · · · · · · ·
- <u>10</u> -	11.25	42	210	2010	010				9			1372	EK(IR) #3
<u>ب</u> د	11.20				1.45				15			1386	
	11.22	41 False Start			105-90				20			1347	
<u>-</u>	11135	VI FAISE Start				·•		H					
8	21:40	BD #1	110	2K	105-90	·		-	46		-	1381	
9	11:49	#2	_ 90	750	010		-	-	54		-	<u>13B2</u>	Camera Malfunction
<u> </u>	11:58	#2			010		-	-	9	-	-		EK(IR) #4 No Scanner
1	12:01	#3			245			_	24	-	-	<u>1383</u>	
2	12:04	#1	90	750	260	No Company			39	_	_	13B4	Camera on twice
3	12:14	42		28	_010	Photo Only			45	_	_		No.Scarber
<u>+</u>	12:19	43			245				55		_		
ĩ	12:21								60				·
1	12:24	#1 cont.							73				
-													
										Τ			
r t	NATE 8/27	71 TAKE OFF 21 19 LANDING 22 Big Delta Delta	125		(1:	00)			· · · · · ·		1		CHANNEL
<u> </u>	тыме					CELL-FILTER	R RFC	VED	CELL-VILTER	N RC	D34	NUMBER	
	ON DFF	TARGET	SPEED	ALTITUDE	HEADING		8	1		Ę	11/		REMARKS
1	21:31	ED #2 (abort)	90	750	020	·	_	_				14A1	
2	21:34	BD #2			020		_			_		1472	· · · · · · · · · · · · · · · · · · ·
3	21:37	BD #3			245		L				-	1473	·
4	21:40	BD #1			105-95							1474	
5	21:49	BD #2	110	2X	020							1475	
6	21:56	BD #1	120	4X	105-11	5	_			_		1486	· · · · · · · · · · · · · · · · · · ·
7	22:06	BD #2			025							14B1	
8	22:09	BD #3			245							14B2	
	- ·												
								Γ					
								T			-		
					· · · ·		┝				H		
							-	\vdash			Η		
							┝	┝		-	-		
-							┝	┝					
						· · · · · · · · · · · · · · · · · · ·	-		· · · ·	_	Ц		
							L			_			······································
							_	L		_			
			1		1								

1.1

IJ

U

U

L

IJ

1

-												
OPERATING BAS	D. SR. T.											
TAPE RECORDE	R			•	r	L.			IJ	Ť	TAPE	
TIME	*				CELL-FILTER		APED	CELL-FILTER	IN RE	APE	NUMBET	BrMs Bra
ON OFF	TANGET	BPEED	ALTITODE	READING		P	F		Ē	۴		REMARKS
04:15	BD #1	120	4K.	07-97					Ц	_	15A1_	
04:24	BD #2	<u> </u>		025							1582	
04127	BD #3			245							1583	
04134	BD #2	110	28	025			Π		Π	٦	1534	
04.40	PD 41		750	110		t	H		Ħ	1	LENE	Mana Dren Outa
04.50			134				Н		11	1	1203	Tape Drop Once
04150	BU 12			025		┢			Ħ	1	T2RT	
04:54	BD 03	·		245		╉┈┤			┢	-	1 <u>582</u>	
04:56	BD #1		·	110		┢	\square	· · · · · · · · · · · · · · · · · · ·	┼┼	÷	1203	Repeat Run #5
		_	 		·				\downarrow	4		
				I		1	L		Ц	_		
									\prod			
							Π		Π	T		
<u> </u>	•			1			П		$\dagger \dagger$	1		· · · · · · · · · · · · · · · · · · ·
1			1	1					††	1		
1			<u> </u>			+	H	· · · · · · · · · · · · · · · · · · ·	╂╋	-		······
	ļ	_			<u> </u>	+	Н		╂╂	-		·····
ļ	· · · · · · · · · · · · · · · · · · ·		 	<u> </u>		╉─	┥┥		╂╌╂	-		
DATE7/2	8/71_ TARE OFF1	2130										CHANNEL'
DATE	8/71	2130		(1:35)								CHANNEL'
DATE PLIGHT NO OPERATING RAS PROJECT TAPE RECORDE	8/71_TARE OFF_1 #21_LANDONG_1 # Big Delta Big Setta	2130		(1:35)							TAPE	CHANNEL'
DATE 7/2 FLIGHT NO OPERATING BAS PROJECT TAPE RECORDE	8/71	2130		(1:35)	CELL-FILTER			CELL-FILTER			TAPE	CHANNEL'
DATE PLIGHT NO OPERATING RAS PROJECT TAPE RECORDE ON ON	8/71	2130 4105	ALTITUDE	(1:35)	CELL-FILTER	LAR REC	TAPED	CELL-FILTER	THE REC		TAPE	CHANNEL 2
DATE PLIGHT KO OPERATING RAS PROJECT TAPE RECORDE ON	8/71	2:30 4:05	ALTITUDE	(1:35) HEADING	CELL-FILTER	LAR NEC	- TAPED	CELL-FILTER	THE REC		TAPE	CHANNEL
DATE 7/2 FLIGHT NO OPERATING RAS PROJECT TAPE RECORDE TIME OH	8/71 #211 #211 Big Delta 	2130 .4105	ALTITUDE	(1:35) HEADING	CELL-FILTER	2.488 BP2	- TAPED	CELL-FILTER	THE REC		TAPE	CHANNEL
DATI PLIGHT NO OPERATING RAS PROJECT TAPE RECORDE ON ON	8/71	2130 4105	ALTITUDE	(1:35) HEADING	CELL-FILTER	TAR REC	- TAPED	CELL-PILTER	THR REC		TAPE	CHANNEL'
DATE FLIGHT NO OPERATING BAS PROJECT TAPE RECORDE ON ONOFF	8/71_TARE OFF_1 #21_LAMDONG_1 Big Delta D. &R.T. TANGET	2:30 4:05		(1:35) HEADING	CELL-FILTER	TAR REC	- TAPED	CELL-FILTER	THE REC		TAPE	CHANNEL'?44
DATE 7/2 FLIGHT NO OPERATING BAS PROJECT TAPE RECORDE ON OFF	8/71	2130 4105 speed	ALTITUDE	(1:35) HEADING	CELL-FILTER	TAM MEC	TAPED	CELL-PILTER		TAPED 4 4 4	TAPE NUMB1P	CHANNEL'
DATE PLIGHT NO: OPERATING RAS PROJECT TAPE RECORDE ON ON 01	8/71_ TARE OFF1 #21LANDENG1 # Big Delta _ D. &R. T. TANGET FERRY - BIG DE	2 : 30 4 : 05 speed :LTA_TO		(1:35) HEADING	CELL-FILTER		TAPED	CELL-FILTER			TAPE	CHANNEL' ? 4 4
DATE PLICHT NO OPERATING RAS PROJECT TAPE RECORDE TIME ON 	8/71	2:30 4:05	ALTITUDE	(1:35) HEADING	CELL-FILTER		- TAPED	CELL-FILTER			TAPE	CHANNEL 2 4 4 4 REMARXS
DATE PLIGHT NO OPERATING BAS PROJECT TAPE RECORDE ON OFF 	8/71	2130 4105	ALTITUDE	(1:35) HEADING	CELL-FILTER		- TAPED	CELL-PILTER			TAPE	CHANNEL'
DATE PLIGHT NO: OPERATING RAS PROJECT TAPE RECORDE ON ON 	8/71_ TARE OFF1 #21LANDENG1 # Big Delta 	2 : 30 4 : 05 speed :LTA_TO		(1:35) (1:35)	CELL-FILTER		TAPED	CELL-FILTER			TAPE	CHANNEL'
DATE FLIGHT KO: OPERATING RAS PROJECT TAPE RECORDE OH 0H 0FF	8/71_ TARE OFF1 @21LANDONG1 	2:30 4:05		(1:35) HEADING	CELL-FILTER		- Takh	CELL-FILTER			TAPE	CHANNEL
DATE PLIGHT NO OPERATING BAS PROJECT TAPE RECORDE ON OFF 	8/71	2130 4105	ALTITUDE	(1:35) HEADING			- TaPED				TAPE NUMB1P	CHANNEL
DATE PLIGHT NO: OPERATING RAS PROJECT TAPE RECORDE ON ON 	8/71_ TARE OFF1 #21LANDENG_ 1 # D. &R. T TANGET FERRY - BIG DE	2130 4105 speed		(1:35) (1:35)	CELL-FILTER		TAPED				TAPE	CHANNEL'
DATE PLIGHT NO OPERATING RAS PROJECT TAPE RECORDE OH OH PROJECT OFF TIME DOFF OFF OFF	8/71_ TARE OFF1 # 21LANDANG_ 1 # D. &R. T. TARGET F F F 	2 : 30 4 : 05 	ALTITUDE	(1:35)							ТАРЕ И И И И И И И И И И И И И И И И И И И	CHANNEL'??? _?
DATE 7/2 FLIGHT NO	8/71	2130 4105	ALTITUDE	(1:35)								CHANNEL
DATE PLIGHT NO: OPERATING RAS PROJECT TAPE RECORDE ON 	8/71	2130 4105		(1:35) HEADING								CHANNEL'
DATE PLIGHT NO: OPERATING RAS PROJECT TAPE RECORDE ON OFF 	8/71_ TARE OFF1 #21LANDENG_ 1 # Big Delta 	2130 4105		(1:35)								CHANNEL'
DATE PLGHT KO: OPERATING RAS PROJECT TAPE RECORDE PROJECT OFF TIME ROS OFF _	8/71_ TARE OFF1 @21LANDONG1 	2:30 4:05		(1:35)								CHANNEL 2 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7
DATE PLIGHT NO OPERATING RAS PROJECT TAPE RECORDE ON 	8/71	2130 4105		(1:35)								CHANNEL

I

I

I

I

]

1

<u>I</u>

I.

APPENDIX D

-

I

I

Vegetation at Shaw Creek Flats

.
APPENDIA D

· 135

VEGETATION; D&RTCO. TEST SITE, SHAW CREEK FLATS, ALASKA.

TREES <u>Betula papyrifera</u> Marsh <u>Larix laricina</u> (DuRoi) K.Koch <u>Picea glauca</u> (Moench) Voss <u>P. mariana</u> (Mill.) B.S.P. <u>Populus balsamnifera</u> L.

SHRUBSArctostáphylus rubra
glandulosa(Rehd.&Wilson) Fern
Betula glandulosa
Michx.
Ledum palustre groenlandicum
(Oeder) Hult.
Portentilla fruticosa
L.
Salix spp.
Vaccinium uliginosum
alpinum
(Bigel.) Hult.
V. vitis-idaes
L.

HERBS <u>Calamagrostis</u> canadensis (Michx.) Beauv.

MOSSES <u>Homalothecium hitens</u> (Hedw.) H. Robins <u>Hylocomium splendens</u> (Hedw.) B.S.G. <u>Tolytrichum juniperinum</u> (Hedw.)

LICHENS

Alectoria sp. Cetraria sp. Cladonia spp. Hypogymnia sp. Parmeleus sp. Peltegeria sp. Usnea sp.

identified by Barbara Murray Herbarium University of Alaska ALC: NO

I

FIGURE 1: (Following Page) Ground Conditions at the Shaw Creek Flats Site in the Immediate Area of Boreholes TH8-2, 8-3, 8-4,8-5, and 8-45 A&B. Photos Top to Bottom are Facing E.S.W. August 1971

D-1

I