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ABSTRACT

A ray theory for the transmission of light across a ran-
domly rough boundary is formulated. Multiple-scatter and
shadowing effects are accounted for in a consistent way.
The illumination probabilities for the transmission prob-
1em are derived in a nontrivial extension of current shad-
owing theory. The direct transmission term and the two
main higher-order corrections are specified in complete
detail for a normaliy distributed boundary. The ap-
plication of transmission theory to a quantitative des-
cription of sea color is considered.
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E I. INTRODUCTION

A comprehensive study of t.c sea requires investigations in both the
microwave and optical portions of the spectrum. Thus, microwave radiometry
provides a sensitive all-weather tool for the calculation of boundary tempera-
tures and sea states, while subsurface properties can be probed by the spactral
variation of sea celor. For example., the rhlorophyll content 1n the ocean,1
the depth 5f coastal waters,2 and the degree of pollution in coastal and in-
land waters ail may be identifiable by their spectral signatures.

The problem of sea color is very compliex. Sunlight and skylight are both
scattered by the sea surface and transmitted acress the boundary into the water
medium. Some of this transmitted energy is backscattered. either by molecular
and particulate matter in deep water or by the bottom in shallow waters, so
that 2 certain fraction, the upwelling sea light, is transmitted back across
the boundary into tiie air. 3ea-color measurements must be made at angles out-
side the glitter pattern of the scattered sunlight, so tke sea coior is deter-
mined by the two components of scattered skylight and upwelling sea licht.

Tha actual analysis of the sea-color problem must account for surface
roughness. Thus, sunlight incident on a flat ocean surfaca will be transmittid
in the single direction determined by Snell's law. For the general ocean
boundary, however, Snell's law must be applied tc each of the locally flat
elements compris'ng the surface. This results in an angular distribution of
transmitted energ,, whick, of course, will produce a final compenent of up-
weliing sea 1ight with angular distribu_.ion dependent on the surface sea state.
The scattered skylight will also have an angular radiation pattern peculiar to
the sea state. Quite clearly, if subsurface properties are cf primary interest,
we want to make sea-color observations in directions where the scattered sky-
1ignt does not dominate the upwelling sea light. Thus, experiments in this
€ield cannot be designed, and the data properly interpreted, without an analy-
tical description of the interaction of optical radiation with irregular surfaces.

Until recently, the theory of scattering from rough surfaces was severly
limited, even in the geomeirical-optics realm appropriate te optical studies.
This was due to an incomplete treatment of the geometrical-optics description,
i’ in which the nonlocal effects of shadowing and multiple scatter of the rays




were neglected. This neglect was manifested in the inability of the theory to
conserve energy.3 An extended scattering theory now exists4 which accounts for
shadowing and double-scatter effects in a fully consistent way, i.e., energy is
conserved to a high degree of accuracy. While all the tcols necessary for an
accurate determinatior of the scattered skylight are now at hand, there has
been no corresponding effort directed towards a theory of rough-surface trans-
mission. In this report, we present a complete geometrical-optics theory of
transmission, with shadowing and multiple-reflection effects entering the des-
cription in a natural and consistent way. There are nc restrictions on incidence
or observation angles, and the full vange of ocean sea states can be treated
accurately.

We treat the idealized problem of two different semi-infinite and homc-
genecus media separated by a normaily distributed rough boundary. A source is
located in one medium, and the observer is located in the other. In Section II,
we define the thaoretical quantities of interest, namelv the transmission co-
efficient which describes the angular radiation pattern after refraction, and
the absorptivity, which gives the total fraction of incident energy entering
the cbserver medium. In Section I1I, a formal analysis of the absorptivity is
presented in terms c¢f the physical subprocesses ints which energy may be chan-
neled. Thus, the derinant process would be simple absorption of an incident
ray, but, for a rough houndary, we can also nave absorption followed by re-
flection below the surface, as well as multiple reflection above the surface
foiloved by absorption. The description is further complicated by the small,
but nonzero, probability that a Tight ray may be transmitted into an undulaticn
of the observer medium only to be refracted back into the source medium. A
consistent approach to the cumulative effects of all the various higher-order
peocesses is presented.

Section IV contains an analogous, and very formal.representation of the
second theoretical quantity, the transmission coefficient, in terms of physical
subprocesses. The first actual application of the transmission theory to
random rough surfaces is carried through in Section V. Specifically, we derive
the direct transmission coefficient which describes the angular transmitted
radiation pattern in the absence of multiple-reflection contributions. Shadowing
corrections are incorporated automatically. A simple exponential model is used
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to account for propagation losses. The result is applicable to the full two
dimensional rough surface and, as such, it contains all polarization informa-
tion. Not surprisingly, the strength of the transmission at a given observation
angle is proportional to the probability density of that slope which connects
the incident and observation directions by Snell's law. It is of interest that
the direct transmission coefficient is identically zero for some ranges of ob-
servation angle, regardless of the rins surface slope.

The results of a shadowing theory tailored te the transmission problem
are merely cited in Section V, but in Section VI we present a full analytical
treatment. The illumination probabilities derived here are not trivial exten-
sions of the illumination probabilities used in scattering theory. This follows
because the source and observer are now on opposite sides of the rough boundary,
so that a high point on the surface relative to the source is a low point on
the surface relative to the observer. The results are obtained in terms of
gamma functions, which are fully tabulated.

higher-order transmission terms are formulated in Sections VII and VIII
for the mathematically tractable one dimensional rough surface (cylindrical
symmetry). Thus, a ray of sunlight may reflect from one point on the ocean
surface only to intersect the surface again at another point. There will be
transmission across the surface boundary at the second point as well as direct
transmission at the first scatter point. The angular profile due to trans-
mission at the second point fills all possible observation angles, but the total
fraction of incident energy associated with this double-scatter process is
estimated at only about 3% of the directly transmitted energy for likely ocean
roughnesses. The corresponding process, in which a directly transmitted ray
of sunlight is internally reflected by the rough boundary is also formulated.

It is expected to contribute significantly to the below-surface radiation
profile only for near-grazing incidence and the very roughest of ocean surfaces.

In Section IX, we consider the inverse problem of refraction intc the
medium of lower index (e.g., water-to-air). Fortunately, it is not necessary
to repeat the previous calculations, but instead we apply the principle of
reciprocity. This theorem relates the effects of an interchange of source and
observer, and so is ideally suited for application to the inverse problem.
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Finally, in Section X, we derive the formal relation between observed intensity
and the transmission and scattering coefficients which must be used in any
analytical treatment of sea color. A homogeneous sea with flat bottom (of
zero slope) is considered as a special case.

I1. PROBLEM STATEMENT AND DEFINITIONS

We consider the idealized situation of two different homogeneous and
semi-infinite media separated by an irregular boundary (Fig. 1). One of the
media contains a source, with the receiver located in the second medium. For
example, sunlight is incident on a rough ocean surface and we are interested
in the anguler distribution of transmitted radiation below the surface. We
will take the index of refraction of the source medium as unity, whereas the
second medium will be represented everywhere by a complex constant n. The
homogeneity assumption means that once clear of the surface, the refracted
rays propagaxe rectilinearly until compietely absorbed. A simple exponential
absorption is associated with each ray. We will also restrict the investi-
gation to tliose cases where the imaginary part of the refractive index is
small, e.g., the problem of optical transmission into clear water. Then
Snell's law relates, with high accuracy, the angle of refraction to n, the
real part of n (Appendix A).

There are two theoretical quantities of interest to us. The first is
the absorptivity, defined as the fraction of incident energy which is not
scattered. The absorptivity is a function only of the angle of incidence.
Now, energy crossing the boundary must propagate some distance into the medium
(of index n) before it is absorbed. This view leads immediately to the second
theoretical quantity, the transmission coefficient, which determines the frac-
tion of incident energy observed at some angle relative to the (-z) axis and
at a depth 2. Thus, the transmission coefficient describes the angular spread-
ing, due to surface roughness, of the refracted radiation, and it also accounts
for propagation losses. If we desigrate a(eo,¢°) as the absorptivity due to a
source at (eo,¢o), and if t(8,9; 050t Ke) is the transmission coefficient
for an observer at (6,¢) and at depth £ in a medium with absorption coefficient
K, then

a{3,:0,) = [dR t{6,4; 8,.0,5 Ke=0) , (2.1)
where the integration is over the Tower hemispher2 {all possibie refracted angles).
4
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I1I. PARTIAL-SURFACE REPRESENTATION FOR ABSOKPTIVITY

Radiation incident on a perfectly flat surface is refracted according o
Snell's law. For a rough ocean surface and optical radiation, we can apply Snell's
Taw to each of the locally flat surface elements comprising the boundary. Optical
wavelengths will be small compared with even capillary structure on the ocean sur-
face, so a ray theory of transmission can be expected to qive very accurate results.

A ray theory of transmission for an irregular surface is actually the sum of
many processes. The most important are illustrated by Figs. 2-4. Every incident ray
contributes to the direct transmission process, E64E1T’ (Fig. 2). Figure 3 illus-
trates an additional transmission contribution, Eb*EI*KZT’ arising from the reflec-
tion of the incident iay at point 1 and a subsequent intersection with the surface
at point 2. The importance of this process iicrcases with increasing rms surface
slope. The associated process of a transmiftted ray which undergoes a subsequent
reflection (below the surface) at point 2, Kd*tlf;KZR’ is shown in Fig. 4. A cor-
rect theory of transmission must account for all such diagrams.

In this section we will restrict the quantitative discussion to the special
one-dimensional rough surface (cylindrical symmetry) in order to emphasize the
physical picture; cross polarization complications are introduced in Section V.
Thus, we consider radiation of unit intensity and beam width So incident on an ir-
regular surface described by z = g{x,y) = z(x). The incident, transmitted, and
scattered rays are all contained in the x=z plane. The optical wavelength is
small compared to all surface parameters. The scattering and transmission pro-
cesses are incoherent in this geometrical-optics realm as each surface element
simply obeys Snell's law, independent of any other surface element.

We imagine a ray trace for each surface element, and we will include
that element in one of a number of classes, depending on the scattering char-
acter of that trace. Specificaliy, we divide the total surface into two parts,
= 9+Q', where every surface element in Q is visible to the incident beam
with direction Ko' The elements in Q' are shielded from the incident beam,
and as their contributions are multiplied by zero incident intensity, their ray
traces have zero weight. The illuminated subset is now split into two parts,
Q= 21+Qi, where every element in 2 is characterized by a speculariy scattered
ray k1 which does not intersect the surface elsewhere (Fig. 2). For every
element of the subset Qi = 92+Qé: the ray Fl does intersect the surface




follow-up ray k2 does not intersect the surface elsewhere (Fig. 3). Me con- ~
~ tinue this bockkeeping until we ach1eve an empty subset say QW (a maximum ;
of m surface scatterings) , '

‘ ,’ x N Co “« .
¢ Q = Ql" . ‘ \ . r = ' (3.1)

"The %ncident power intercepted by a surface element dS1 in @ is unit in-
tensity times the' elemental area projected onto the incident wave front, i.e.,
(-K -nlbdsl The initial polar1zat1on 1s taken as either vert1ca1 or hori-
zontal, and the scattered or transmitted radiation will rcta1n this po]arlzat1on
because of the cylindr1ca1 symmetry. If the reflectivity at surface po1nt i,
is r, (for either vertical or horizontal polar1zatvon) then (1-r, ) is the : ,
fractlon of energy incident at this point which is transm1tted We are now in
a position to write down the quantity . T(e ), def1ned as the total fraction of
energy 1ne1dent from k wiiich, s refracted across the boundary

|
I again, but now 92 is defined as a sma]ler subset with the property that th %

] : SOT((-)O) So . Z Ti(eo) Co ‘ ; o

3 : ; : ] i=1, ’ ' : '@
| ' | ‘ = [dSl(cosal)[i-rlgcosaljl ' ,

- Y , .

1]

. . + {dsl(cosal)rl(eosal)[l-ré(cosdz)] ' . ,
o | | o
o f?Sl(cosql)rlrz X LSSPY G T B (3.2)

Qm-l '

. where (-ﬁo-ﬁl) = €080, (-El-ﬁz) 7 COSay, and an obvious abbreviation for the
arguments of the reflectivities is introduced in the m'th term. Each inte-
gration is taken over the 1nd1Cated subset of the total surface Equation
(3.2) accounts for all orders of multiple reflection in the source medium.

For example, the contribution to T(eo) at point 1 in Fig. 3 is contained 1n‘
the first term, while the energy crossing the boundary at point 2 of the same '
diagram is accounted fqr in the second term. Note, the quantity S 1§ Ehe

" normalization factor, for when r = 0 and T = 1, we must have o

{
s, - JdSl(-kml) . (3.3)

Q i

'
{ { ! 1 6 !
'
.
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' The absorptivity is defined as the fraction of incident energy which is not
scattered.' Unfortunately, the quantity T(eo) is not the absorptivity. This
follows because energy refracted across a rough-surface interface can be re-
fragted back'into the source medium, there to scatter and refract again. Figure
4 contains an illustration of this point. Thus, an incident ray refracts at
point 1, then propagates internally to point 2 where it reflects and may refract

(dépending on the slope at point 2) back into the source medium. The doubly

refracted ray IZTT is always directed towards the surface, so it will be re-
flected and refracted again at point 3. The double transmission plus reflection
procass augments the scattered radiation pattern. Therefore, T is greater than
the absorptivity by an additional scatter contribution 5(90):

T(éo) = a(eo) + 6(90) . (3.4)

In order to obtain a partial-surface expansion for a(eo) alone, we must expand
each of the Ty in Eq. (3.2) - 1 a partial-surface representation. We will simply
state in ‘passing that, while T(eo) is not strictly the fundamental quantity of
interest, it may be Bounded in value from both above and below. As 6(60) is
expected to be very small in magnitude, this can be an important advantage in
numerical computations of the absorptivity.

{

We now expand T1 in a bartia]-surface series which accounts for all the
possible processes the ray may undergoe after refraction at point 1. We have,
explicitly,

| SeT1(0g) = [asy cosey(iory) (3.5)
| Q
and we define
Q = a8
n} = SZTR+Q.;-R. (3.6)

Here, QT conta1ns those surface elements in Q such that the refracted ray le
does not intersect the surface again {Fig. 2), whereas the ray le does inter-
sect the surface again for elements of surface in the subset QT (Fig. 4).

The further decomposition of QT depends on whether the ray reflected from
point 2 in Fig. 4 clears the surface (QTR) or intercepts it again (QTR).

t
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We can write, with these definitions,

SoTl(eo) = deI(COSal)Ql-rl) + J?SI(COSGI)(I-PI)[r2+(1-r2)]

f

So[al(eo) + alR(eo) + Al(eo)]

where
Soal(eo) stl(cosml)(1~r1) .
QT
Soalk(eo) = stl(cosal)(l-rl)r2 R
frp
SoAl(eo) J?Sl(cosal)(l-rl)r2 + I?51C°S“1(1'r1)(1'r2)
r %

"'.\
<)
.
~3

s

(3.8)

(3.9)

(3.10)

The quantities a; and a;q are true contributions to the absorptivity, for Q
and QTR were constructed such that le and kZR’ respectively, do not intercept
the surface again. On the other hand, L) contains higher-order absorption

processes as well as contributions to the scattering diagram.

For example,

the second term in Eq. (3.10) is the double refraction process illustrated in
Fig. 4; some of the energy associated with this term goes into absorption and

some into scattering.

A most important aspect to the expansion of Eq. (3.5) is that the value

of the residue term, Al(eo), can be calculated indirectly. This is true because

Tl(eo) js nothing more than the direct emissivity

5

of the rough surface.

Thus,

a computer program already exists for the evaluation of Tl(eo). Some results
are listed in Tables I and II for a rough water surface and incident radiation

of wavelength 0.7u. In addition, both 3y and a,p Can be calculated numericaily
(atthough we have not yet done this), so we can solve for A, by use of Eq. (3.7).

Alternatively, we can limit numerical computations to T, and ay and solve for
the value of (a1R+A1). This will ordinarily be sufficient as AR is surely
negligible compared to a, save for near grazing incidence and very rough sur-

faces (Section VIII).

e




932‘%% e - O,

Table I

The quantities T](eo) and Tz(eo), evaluated for a rough
water surface of 15° rms slope and horizontally polarized incident
radiation of wavelength 0.7y.

EQ. [Tl(eo)] x 293 [TZ(eo)] X 293 T,/T; x 100
30° 283.C 0.47 0.17
50 271.4 3.03 1.1
65 252.4 7.32 2.90
75 235.0 7.24 3.08
80 225.5 7.36 3.26
85 215.4 4.1 1.91
Table II

The quantities T](eo) and Tz(eo), evaluated as in Table I,
but for vertically polarized incident radiation.

EQ. [Tl(eo)] x 293 [TZ(OO)] x 293 To/Ty x 100
30° 288.3 0.12 0.04
50 287.6 1.53 0.53
65 279.9 5.23 1.87
75 270.1 6.47 2.40
80 264.2 7.14 2.70
85 256 .9 4,29 1.67

EEa
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We simply write down the analogous results for Tz(eo):

SoTZ(eo) = j?sl(cosal)rl(l-rz)
9]

1
So[az(eo) + Az(eo)] . (3.11)
where
Soaz(eo) = I?Sl(cosal) rl(l-rz) R (3.12)
(QI)T

and the residue term, Az(e ), contains higher-order absorption and scatter
processes. The subset Qlen has been further subdivided, 91 = (91)T + (91) N
such that the ray k2T either clears the surface [(9 )T] or strikes the surface
again {\91) ]. The quantity Tz(eo) is the emission plus reflection term® in
the lower-bound calculation of rough-surface emissivity and, again, a computer
program is available for its evaluation (Tables I and II). The quantity
az(eo) is a contribution to the absorptivity, by construction, and it can be
calculated numerically. Thus Az(eo) can be calcuiated from Eq. (3.11). We
neglect the remaining terms Tgs oo T relative to T and Tos this is a valid

approximation for the rms surface slopes.appropriate to the ocean surface,

In summary, we note that Tl’TZ’ cen Tm can be thought of as channels
through which the incident energy is funneled into an infinite number of pro-
cesses. For example, the double transmission process of Fig. 4 is funded by
the energy budget associated with Tl' It is not necessary to evaluate the
magnitude of these higher-order processes on an individual basis, but, instead,
it is meaningful to lump them together in the Ai' For =2xample, the fraction
of the incident energy funneled into channels T1 and T2 can be calculated, so
A1 and A, can be determined. We will simply assume huzre that the higher-order
absorption processes in 8ys By (and Tgs oo Tm) are negligible compared tu the
smallest of (al’alR’aZ) for the rms slopes associated with the ocean surface.
Then, a meaningful expansion for the absorptivity 1is

a(ey) = apfe)) +aple ) +a(e)+ ... , (3.13)

10
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with (al,alR,az) defined formally by Eqs. (3.8), (3.9), and (3.12) respectively.

in passing, we note that every term in the T equation is positive. The
technique of this section was to further subdivide each of the Ti into a series
of positive terms, some of the elements to be grouped under a(eo) and the rest
under 6(90) (Eq.(3.4)]. The net result is that each term on the right-hand side
of Eq. (3.13) is positive. Thus, by taking just the first m terms as an approxi-
mation, we have a lower bound to the absorptivity.

IV.  PARTIAL-SURFACE REPRESENTATION FOR THE TRANSMISSION COEFFICIENT

The absorptivity provides no knowledge of the angular distribution of
transmitted energy. We define the transmissivity,dQ t(k 4 ,2) as the fraction
of energy incident from k which is refracted into solid angle dQ about the ob-
server direction k for an observer at depth & (measured from the mean surface
height). It is conventional to deal simply with t, the transmission coefficient.
As with the absorptivity, there is a partial-surface expansion for t. Indeed,
as a consequence of ray theory, the partial transmission coefficients, tl, th,
t2 are, at least formally, simple extensions of the corre:ponding a1, Aps 3
of Section III.

We will first detail the derivation of the direct transmission coefficient,
tl’ for a one dimensional rough surface. The appropriate partial surface is
Q3 i.e., every surface element dS1 in QT is visible to the source and to the
observer. The pow~r incident on dS1 is (c05a1)d51, and the fraction transmitted
is dSl(COSal)[l-rl(COSal)]. Since dS,eQy, every refracted ray clears the (under)
surface. We account for the absorption along the propagation path of the ray by
a multiplicative exponential absorption factor, exp[-K(2+21)secelT], where K is
the absorption coefficient, 24 is the surface height of point 1, and elT is the
angle of propagation for the refracted ray. We must also multiply by the proba-
bility that the ray reaches the observer stationed at angle 6; because of the
ray optics and the assumed homogeneity of the medium, the probability density
is simply a delta function 6(9-91T . Finally, we sum over all dSleQT.

Sotl(e,eo) = stl(cosal)[1—r1(c05a1)]exp[-K(2+zl)secelT]6(e-elT) , (4.1)
9]
T

where So’ defined in Eq.(3.3), is included on the left-hand side for normalization.

11
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E The analogous expression for the direct transmission coefficient app

to a general, two dimersional, random rough surface is ‘

S t’J(k ko) = st (cosay ) (r J)expi -K{2+21)sec;116(8-0,1)8(0-¢17) . (4.2)
S

Here, the superscripts reflect the polarization character of the problem. Speci-
fica]]y, the quantity tlJ(k k ) deterwines the fraction of the incident radiation
from ko’ in polarization state i, which is transmitted intc an infinitesimal solid
angle about observation direction k with final polarization state j. The fraction
of incident power, with polarization state i, transmitted across an arbitrarily
oriented plane surface into final polarization state j is represented by 113 for
1 cylindrical symmetry the incident polarization is retained after refraction and 79
‘ reduces to (1-r )613. The general form of T 1 is derived in Appendix B. Equation
(4.2) will usually be the major component of the exact transmission coefficient.
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We will simply state the results for th and ty, and we will restrict
consideration to one dimensional roughness:

t1(6:8,) = stl(cosal)(1-r1)exp[-K(zl-zz)secelT] @
R
X Ty exp[-K(z+22)seceZR]

X G(G-GZR) . (4.3)

Sotz(e,eo) = Idsl(cosul)rl(l-rz) exp[-K(2+zz)sec62T]

(@)
X 6(6'921') (4.4)

The series for the transmission coefficient has a form analogous to Eq. (3.13):

= )
t(e,e,) t,(8,8,) + t10(8,8,) + t5(6,8,) + ... (4.5)

Each term in Eq. (4.5) is positive, so the retention of the first m terms pro-
vides a lower bound to t(e,eo). ‘ﬁ
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v. DIRECT TRANSMISSION COEFFICIENT FOR RANDOM ROUGH SURFACES

The formalism of Section IV i~ especially suitable for application to a
random rough surface. Thus, we will view z(x,y) as one of an ensemble of possible
surfaces generated by a stationary random process and calculate the ensemble
average of the transmission coefficient. The averaging process replaces the deter-
ministic surface classes by known probability functions, and it also provides for
an integration over the delta-function factors.

We will consider cnly the direct transmission contribution tij(i,Fo) in
this section. We can convert the integration over 0 into an integration over
the entire surface £ by defining two functions which take on oriy the values of
zero and unity. Thus, we define an illumination function e(x,y; k n)s which has
value unity if the surface point at {x,y) is illuminated from direction k and
which has value zerc if that point is shadowed. In addition, we define
v(x,y,xlT) o have value unity if the transmitted ray which leaves point (x,y) in
direction le jntersects the surface at some other point, whereas 1t has value
zero if le does not intersect the surface again. With these definitions,

Eq. (4.2) becomes

i . ..
SotiJ(k,ko) = IdSl(cosml)-r"J exp[-K(z+zl)secelT]
2 -+

>
X e(x,y;ko)ll-v(x,y;le)]

X a(e-en) 6(¢-¢1T) . (5.1)

Now, the coordinates of the transmitted'ray for surface element dS1 are
(eIT,¢1T), and by Snell's law we have 6, = elT(eo’slx’Sly) and
017 * ¢1T(eo’slx’slv) Here, (slx,s1 ) are the components of surface siope at
point 1. The surface element is dS1 = (1+s§x + Sly)% dxldyl, and cosay and 79
depend only on (xl,yl) through the slope (Slx’sly) Therefore, the integrand in
Eg. (5.1) depends on (x ,yl) only through Zl(xl’yl)’ slx(xl,yl), sly(xl,yl),
e(xl.yl), v(x ,yl) For any stationary random process, there are no preferred
points, so the appropriate probability distribution is independent of (xl,yl)
Thus, the averaging procedure leaves a trivial coordinate integration:

13




WY

mﬂ

Sy

STORTI T P

1j-’+ -

5, (1 (kiky)) = J J“hﬁﬁpsnrsw "1 P(z)481:51y251Y1)
x ey(1-v)f13(s1,05,)
X exp[-K(£+zl)secelT)l

X 6(9'611')6(¢'¢1T)

-+ -+
= {2L)(2L') dzl[:sle:sly P[zl,slx,sly,el(ko) = I,vl(le) = 0]

-0 - 0O - 00

X fl1j exp{-K(z+zl)secelT]6(e-elT)6(¢-¢lT) N
(5.2)

where

. % .
fiJ(slx,sly) = (1+s§x+s§y) (cosal) riJ(slx,sly) . (5.3)

The segments along the x and y axes cut out by the incident beam are taken
here as 2L and 2L', rESpectively. so that, in these terms, S_ = (2L)(2L' )cose ).
Also, we note that the ray le must intersect the surface 1f 817 > /2 {Fig. 2)
For °1T < m/2, the probability that the ray le does not intersect the surface
elsewhere is equivalent mathematically to the probability that the point (xl,yl)
is illuminated (by an imaginary source below the surface) from the direction

le On the basis of these remarks, Eq. (5.2) can be expressed in the following

form:

14
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+ =
(Sec"o)ﬁﬁﬁslxﬁsw Plzp:siosyys €xlkgokyp) = 1)

-C0 ~00

X “(“/2‘91T) f}j(slx,sly)
X exp[-K(2+zl)seceIT]
X G(G'GIT)5(¢'¢IT) ) (5~4)

where u is a step function with value unity for positive argument and value zero
for negative argument.

The above multiple integral is quite complicated because of the integration
over height Zy. It is sensible to approximate the factor zZy in the exponential
argument by the average value of the "illuminated" surface height, %9 defined by

<> ->
ll(eogelT) = deZI 21 P[leel(kog-le) = 1] 'Y (5.5)
where the probability density of heights is conditional on the illumination of
-
point 1 from both the ko and 'EIT directions. The gross effect of absorption is
therefore retained while the analysis is greatly simplified. The presence of

the delta function permits us to replace 8y7 by 6, so

<;;j(f,fo)> = (seceo)exp[-K(2+21)sece}

-> >
X f:zlfzslezslyp[Zl’slx’sly’el(ko"le) = 1]

- 0O

X fij(slx,sly)u(n/g-elT)

X 6(6‘91T)6(¢'¢1T) [}

15
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<§1J(Z,EO)> = (seceo)exp[-K(2+x1)sec6]

0 > >
X Idsle:sly P[slx,sly,el(ko,-le) = llu(n/ZnelT)

=00 -00

X fij(slx’sly)a(e‘elT)5(¢'¢1T) ’ (5.6)

where the last step foilows from the assumed normalization of the probability
density. :

The remaining integrations can be carried out by a change of variables from
(Slx’sly) 0 (elT,¢1T). The equations of transformation are, from-Appendix C,

(sineo- n sinechos¢1T)

S = I3
ix (n coselT~ cosed)
- n sinG,+ sing
1T 1T
S, = (5.7)
ly {n cos6, ;- coseo) ?
and the Jacobian of the transformation is
nzsine [n-(ﬁ -E )1
1T o 17 (5.8)

J(G 0 ) =
17717 (n cosen-coseo)3

Here, n is the real part of the index of refraction. One must be very careful
at this stage because the integration 1imits on the (elT’¢1T) integrals are not
simplv & < 8,+ < /2, 0 < o7 < 2n. This follows because the orientation of a
plane surface which connects the desired direction for transmission with the
given direct:nn of incidence may not be allowed on physical grounds. More
specifically, “"2re are two conditions on (elT’¢1T) whichAfollow from physical
constraints on this problem. First, we reguire that Ny z> 0 everywhere, i.e.,
the angle between any surface normal and the z direction must be less than 90°.
This restriction arises because we are assuming a single-valued normally dis~
tributed surface, a property of whirh is finite slopes everywhere. But, from

16
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2 Appendix C, we see that this condition implies

cost,,
cosbyy > —— . (5.9)

A second condition is the illumination requirement (-ﬁo- 31) > 0; i.e., a surface
point cannot be illuminated by the incident ray unless the angle between the
normal to the point and the direction of illumination is less than 90°. This
obviots condition imposes a very severe restriction on (elT,¢1T):

~

~ 1
ko ¢ K117 1

(5.10)

The simple way to incorporate these two restrictigggeon the transmitted direction
is by use of two more step fuactions, u(cose1T - ¢

) and u(k6 le - %); i.e.,

n
o /2 27 cos8
dslxﬁsly u(n/2 - &y7) > fdelTJd"’lT 20p7sbyy) ulcoser —=)
-® = Y 0 ~ A
¥ x uky kg - 7] - (5.11)

The step functions automatically impose the proper integration ranges.

The application of Eqs.(5.7), (5.8), and (5.11) to Eq.(5.6) yields
13 > >
t}J(k,ko) = (seceo) epr-K(2+21)sec9]
m/2 (2m A o~ i
X fdelTJd¢1T J(elT,¢1T) u(ncoselT- coseo)u(ko- le-~ﬁ

0 o
> g

o 10 8(8-017)8(6-0y7),

which simplifies imediately to
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(sece,) {exp[-K(%+zi)sec9]}f13(sgx,sgy)

EHRE)

AUl

X u(ncos@-cose )u(E ck- 35

rin-(; 0} [ | (&, K) - (5.12)
‘ X , p s9 ,s s € =1 , 5.
"{ncos9-coso )° ;x ly* 1 .

i

i
{ t

where we have used the properties of the delta function and the normalization

m/2 | | | |
fdenjdqan sme1T §(0-0,r)8(¢- ¢1T) = 1

r 0o 0

TN I VI 2] Y Ty ey 2, TR

Geometr1ca1 quant1t1es in Eq. (5 12) which need to be 1dent1f1ed explicitly are

(sine -ns1necos¢)

i !

whence, after some algebra, 3
A, A 2
2 2% Inl-2n(k k)]
(1+s5 +s s
Ix “ly {ncosé-cosd )

(5.i5)

. ! A LA 1-
i n[(k ‘k)' ""]
COSG? 0 n

"

— . (5.16)
[nP+1-2n(k -k)1

. From Appendix B, the <raction of energy transm1tted across the proper]y :
~oriented plane .surface; t j(sgu,sly), is a function of al, b?, ‘1, tH, tg, vOSa?
and cosai(s?,,sgy). The follcwing list specifies each of these quantities in

terms of known factors:

!

So = {
( 1x (ncose-uoseg) ’ o | ,
0 _ _-nsin@sing - ‘ ' :
Sly - (ncosé-cosé ) = - * S (5.13).
‘ and ' ‘ | -
!
| £13(s9 ,s9) = (i +s 2 25L (cosa?) 1J(s 27y . (5 14)
1 1X’ ly 1x 1)' ay/7 xSy -4
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1.0 0 _
c05ql(slx,sly) = = . (5.17)
“i;',;; A A
‘ ad = —2 s h o=y (5.18)
| Dok xk| 0
' ‘ ‘ 0
‘bo _ ~k7v0 R . )
e | l: X ﬁl 3 Vg © -coseo X + sineoz . (5.19)
0
1 . ~(Kx K)e(k x 2)
0o _ [s]
) ! cl = A A A ~ ’ (5.20)
(Ikox k|)(]k x Z|)
Ca(kox K)e[2-(k-2)K]
o _ 0
G = I A (5.21)
(1kx k1) (1k x z|)
ty = 1+ Ry (cosa?) . (5.22)
| o 1+Rv_(cosa‘1’) : {5.23)

/ Lo ' v n
The prébability density has the form
o .0 By . o _0 _ o _0
P[SIX’Sly’ ;l(xo,-k) =1] = p(slx,sly)P{el(Eo,JE) = llslx’sly] , (5.24)

where, for the principal direcfions, the probability density of slopes is
o -3 2 ¢
0 0y _ 1 2\ /2 _1 x
PGSy = 7 (GO exp{ 7(@+@%_>)] : (5.25)
S Lo X Y

and, from Eq. (6.11) of the following section, the probability of illumination
conditional on the slope value is

(5.26)

, ' ' r(1+2B )r{1+28)
: AT 0o 0 - 1 0
p[gl(ko, k) = 1 (s7,,89,)] 28 78)] F1v2(3_18)]
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The quantities I'(x) are Gamma functions of argument x, and

-1
[4(n)2)  [exp(-V2) - (n)% V(1-erf V)] (5.27)

(=]
1

with
v o= cote - (5.28)
[2(<t§>cosz¢+<;§>sin2¢)}

The quantity B follows from B by replacement of (9,¢) by (e°,¢o = 0). Equations
(5.13) - (5.28) specify all quantities in Eq. {5.12) except %1» the average il-
luminated height in the exponential absorption factor. This factor is easily
derived from the shadowing theory of Section VI:

> > (B,(6,) - B(8,4)]
= 10\ % 0' 0

(5.29)

where ¢ is the rms height for the surface.

The numerous factors which we have just listed must not be allowed to
obscure the overall simplicity o Eq. (5.12). Thus, there are no integrations
to carry out; instead, the direct transmission is simply proportional to the
probability density of that particular slope which connects I and Eo by Snell's
lav  The probability that this characteristic siope is visible to both source
and observer also enters. An additional feature of interest is the product of
the two step functions, which can yield zero for some combinations of K and Eo'
Thus, it is not always possible to connect a direction of transmission with a
given direction of incidence by any physically allowed plane-surface element.
This is most easily demonstrated for the special case of the one dimensional
rough surface. Then, the allowed range for the transmission angle @ is easily
shown to be

cos6
. (5.30)

eo - [n/z-sin'l(%dl <8 < n/Z-sin'l( - 9

For example, if the angle of incidence is eo = 20°, then there is no direct
transmission for 8 < 21° and 6 > 45°. Of course, the higher-order processes,
tip and t,, will contribute something to these "null" ranges.

20
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VI. SHADOWING PROBABILITIES

An element of surface has only a certain probability of being illuminated
by radiation incident from directions other than normal. For example, the angle
between the surface normal and the direction of incidence may exceed 90°, so
that the slope of the element totally rules out illumination. Or, the topography
of the intervening surface may simply cast its shadow on the test element. The
probability that a point on a surface is illuminated depends on the angle of in-
cidence as well as the height and slope of the surface point.

In its application to scattering theory, the appropriate shadowing formal-
ism6 was found to depend on both the angles of incidence and observation. The
application to traasmission theory will be bistatic as well. The shadewing
theory for fransmission differs substantially from that for scattering, however,
Thus, a surface high point is more likely to be illuminated by the incident ray
than a surface Tow point, but the surface high point is less likely to be visible
to an arbitrarily oriented observer below the surface than the corresponding low
point (Fig. 1).

We consider the incident ray k located in the x-z plane, and the arbitrary
observer direction le, defined as 1n Fig. 2. From Sancer,7 the probability that
surface point 1 is illuminated from k given its height and slope, is

S(°o|21’s1x’51y) = u(-k -f;) [(Herf 2%)] ’ (6.1)
(26%)
where
_ Lo (-1 2 L .
3, = (%) ep(-v2) ~(my (1-erf V)] (6.2)
COteo
Vo = ———x - (6.3)

[26ex)

Again, the quantity u in Eq. (6.1) is a step function, which is unity i{ the
argument is positive and which is zero if the argument is negative. Thc quastity
Bo varies from zers to infinity as 8o varies between normal and grazing iatidence.
Also, the height dependent factor in Eq. (6.1) varies from zero to unity (for

21




nonnormal incidence) as Zy varies from mirus to plus infinity. This is the
desired behavior for the incident direction, but for the transmitted {observed)
direction we want the inverse variation; i.e., as Z, varies from plus to minus
infinity, the probability of illumination should increase from zero to unity.
By use of the same analysis applied to the derivation of Eq. (6.1), we conclude
that

217
- v ‘A 1 Zl 6 4)
20

and BlT follows from BO by replacement of V0 by VlT’ where

coté
Voo = 17 . (6.5)

1T G
[2(<?i>°°52¢17 * <?§>Si"2¢1Tﬂ

The desireg quantity is the bistatic probability of illumination. Fortu-
-
nately, because k0 and le are associated with different quadrants of space, we
can assume statistical independence:

> > .
S(kgokypl20a81y08yy) = S(84121589,559,)5(011:817121551,05,,)

= u(-Eo-nl)u(‘le-nl) 5| 1rerf %) z{l-erf %)] .
(26%) (20%)

(6.6)

Equation (6.6) provides more information than we need, as the transmission co-
efficient formalism of Section V requires only the probability of illunination,
conditional on the slope value. Therefore, we simply average Eq. (6.6) over
heights. For a normally distributed surface, the expression is

o > > >
S(ko,k1T|Slx,SIy) = JZZIP(ZI)S(kO’leIzl’SIX’Sly) . (6-7)

-0
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By means of the substitution

and the property

d/dz erf[ z ;} = 2P(z) ,

2
(20%)
we have
S(ko’lelslx’Sl_y) = u(-ko'nl)u(-le-nl)fdyy (1-y) (6.8)
0
i u(-ko-nl)u(~k1T-n1) F(1+280)P(1+281T) (6.9)
[1+2(B°+BIT)] fIl+2(B°+Blf7]

The quantities I' are Gamma functions,7 and the integral in Eq. (6.8) is, of

course, the standard representation for the Beta function (Bo’BlT > 0).

It needs to be emphasized here that Eq. (6.9) is valid for any arbitrary
EIT' In the application to the transmission problem, nowever, KIT is not an
independent vector, but it is related to ko and tne surface normal ﬁl by
Eq. (C.4); i.e.,

~ ~ A ~ !/
n(-le-n ) = ("ko'"l) + {[n2-1+cosza1]2-cosa1} . (6.10)

1
It is easily seen from this relation that if (-EO-HI) > 0, then (-EIT-RI) > 0 as
well. Therefore, for the transmission problem, we can set u(-k,T-nl) equal to unity
without loss of generality. In addition, we have already incorporated the step func-
tion u(-ko'nlf in the transmission theory of Section V in the context of the change
of variables frem (slx’sly) to (elT’¢1T)' Thus, the slope coordinates (sgx,sgy)

in Eq. (5.12) can be assumed to be physically allowed. Therefore, we now convert
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Eq. (6.9) to the notation of Section V in order to obtain Q
Rg _'f - - >0 0
Ple,(kysok) llslx’sly] = S(Ko,ktslx,sly)
r(1+28_)r(1+28)
- 1 0 i (6.11)

l1+2(Bo+B)] r[1+2(Bo+B)]

VII. REFLECTION FOLLOWED BY TRANSMISSION

Radiation incident on a rough surface will undergo multiple scatter due to

that roughness. At each point of contact between ray and surface, there will be
a contribution to the transmission of energy across the boundary. The coefficient

1) of Section V accounts only for the transmission into the medium at the
1n|t1a1 point of contact [the ray le in Fig. (3)]. In this section, we will
write down the coeff1c1ent <t2> appropriate to transmission at the secona point
of contact [the ray k2T in Fig. (3)]. Only multiple-scatter ray diagrams of
order two and higher will contribute to this term. A good estimate of the im- ‘:}
portance of this process can be obtained from Section I1II where a numerical
evaluation of the quantities Tl(eo) and Tz(eo) has been carried through. From
Tables I and II, we see that the ratio (TZ/TI) has a broad maximum of roughiy
3% at the large angles of incidence.

The partial-surface representation of tz(e,eo) is given by Eq. (4.4).
Because of the cumbersome mathematics involved, we will restrict the details to
the one dimensional rough surface, z(x,y) = z(x). Also, the averaging process
is greatly simplified if we assume points 1 and 2 to be statistically inde-
pendent. This appears to be an excellent approximation because the slopes at
points 1 and 2 will usually be appreciably different in value, the characteristic
of a separation distance larger than the correlation length. By use of techniques
similar to those employed in Section V, we have
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(ty(0,60)) = (secs,)[dsy[ds, Plsysy1y(85).115(01),Ty80)]

=00 -00

X u(n/2-|62T|)f2(sl,sz)

x expi ~K[2+22(61)]sece}
; X 6[6-92T(e°,sl,52)] . (7.1)
%I where
{>E £, ) = (1+ 2)%( )yl (s4)1{1-r,lcosa,(s4,5,)1} :
‘l 2,(8¢) = I:zz ZZP[ZZIII(GO)’ I5(81),1,(8)1 . (7.3)

=00

The quantity P is a joint probability density on slope and i1lumination for each
,— of the two scattei points. The symbol 112(91) denotes the 1ikelihood that the
intermediate ray k1 actually intersects the surface again at point 2; it must be
included as a fifth random variable in any consistent theory for double scatter.

As the argument of the delta function depends on 6ot rather than Sos it is
clearly advisable to change variables from (51’52) to (Sl’e?T)' The equation of
transformation can be deduced from Appendix C:

PLY

(nsing,+sing,)
s, = - e L, (7.4)
(nc0562T+cosel)
where
3, = -9 -2tan"ls (7.5)
1 o~ 1 VO
3 or, inversely,
1 6 _+&
j S; = -tan(—gi—l . (7.6)
4
X
| O
25




| cakautdabad Lt if Rogs i buteafa, o by S

Ty ea v s ST F SR VI S SN Y SR AR A TRTRR I T SV Sy b o~

o
e >
ap el

. e e emee—— - - e-

The Jacobian of the transformation is (h}
nir+cos(6,706,)]}
sy = Sl (7.7)
(cosel+ncosazT)

a function of By7 and, implicitly, of Sy As was the case with the cirect trans-
mission coefficient (Section V), the ~ange of integration for 8,; is restricted

by the illumination condition, (- Ky- n2) > 0, and by the condition (nz-z) > 0,

the latter a consequence of single- valued normally distributed surfaces. An
additional complication arises because some values of Sy lead only to values of
|92T| larger than /2 {(e.q., the vector kZT in Fig. 3). The following expression
for <t2) accounts for the change of variables, the resulting integration over 0o1s
and the imposition of the preceding restrictions:

(ty(0,8)) = (seco, jdsl JsJu(-xk-8)F(s4.59)

sin- (—J <9 < m/2

+ [dsy a(sputemdut-x§-0)eis;,59)
8,>m/2

+ st1 J(sl)u(e-x%)F(sl,sg)
-n/2<61<-sin-1(%)

r .
* [dsy Aspule-xpulxj-0)F(s sp) | (7.8)
6,<-m/2

where the integration ranges for the slope integrals are given in terms of equi-

velent ranges for the angle 61 £q. 7.6). The quantities xk, Xg in the step-

function arguments are defined as
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coso
x| = /2 + sin'z( - 1) , (7.9)
L - .-111 1n)
xj = (m=]8y]) - [m2-sin" ()] : (7.10)

The quantity F(sl,sg) is

F(s;s9) = Pls;,s,15(80), 195(87),1,(8)1F,(s;,55)

x exp{-Kl2+2,(6,)Isece} (7.11)

where

(sin61+nsine)

- ————— s (7.12)
(cos;+ncos6)

e
S2

and f, is given by Eq. (7.2}, evaluated at s, = sg. The arguments of the re-
flection coefficients can be expressed most usefully as

-
%)

cosal(sl) = (1+s (cose0 -slsineo) . (7.13)

-3
2 .
c05a2(sl,sg) = -[1+(sg) ] (cosel-sgs1nel) . (7.14)

The fifth-order probability density can be written as the product of five
probability functions:

P[sl,sg,ll(eo), 1,,(81),1,(8)1 = P(5{)PP,PoP, (7.15)

where
Py = P (8 )]sy (7.16)
P, = PLI ,(8))]s,14(8)0] (7.17)
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P, = D[sg|s1,11(eo), (6001 {7.18)

Py = PLI,(0)]s;,59,15(6,),1,,(80)) . (7.19)
The probabiiity density P(sl) is the probability density of slopes for a normally
distributed surface. The mathematical relaticns for Pl’PZ’ and P3 can be found
in the iiterature.4 The remaining P4 asks for the probability that an observer
in the medium, oriented at ang’e 6, receives the refracted ray, given the values
of slope at points 1 and 2 and given the facts of iilumination specified by
Il(eo) and 112(61). The analytical results for Py are

i ,
P, = , l6,] < m/2
4 (1+28) 1
1) L r(1+231)r(1+2!i)
\1+28 (1+2(8)+8)} Tl1+2 (B,+B)]
- . legl > w2, (7.20)
28,
(""‘uzta1

where the B's have the functional dependence given by Eq. (5.27) and V,V, are
given by

Vv = __cote /

r_-z-'_l/z' ’ \7.21)

262

Vv, = leotln-6p)} COt(MiH (7.22)
242

The only remaining quantity to be specified is 22(61), the average illum-
inated height of point 2. The results are
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-8 ("/2)Lz o R |91| < w2
= {14B)

by
no
-——a
<D
]
S
]

(8,-B)

B 1 .

(2428 *2B)+ rzh—ggy [(1428 )r(zms)]

= ~(‘ﬂ'/’2)20' ﬁ-{:rg, ' i 1+ ' s
[r(2+28,+28) - r(1+231)r(2+23)]

8,1 > 2 . (7.23)

VIII. TRANSMISSION FOLLOWED BY RtFLECTION

The partial transmission coefficients t1 and t2 describe a transmitted ray
which travels directly to a hypothetical observer; i.e., the transmitted ray does
not intersect the surface again. Howaver, Fig. 4 demonstrates a higher-order
process with transmission at point 1 followed by a surface reflection at point 2
(the ray EZR)' In this section we derive the average transmission coefficient
<%1R> asseciated with this process. This effect is included only for completeness
as ts contribution to the transmitted radiation pattern is expected to be quite
small. This follows because, as Fig. 4 implies, the angle eiT(elT < 1/2) tust be
quite large f the ray is to have much chance of intersectiing the surface again.
But it is easy to show that a large value of €7 requires a combination of large
angle of incidence and an eiement of surface with steep slope. Thus, <t1R> can
contribute significantiy only for near-grazing incidence and the very roughest
of ocean surfaces. We restrict the details in the following to the one dimensionai
rougn surtace, z{x,y) = z(x).

The partial-surface representatior for th(e,eo) is given by Eq. (4.3).
The assumptiorn that points 1 and 2 are statistically indeper Jent again appears to
be an excellent one, for the slope values at the two points must be very different.
Tnis implies a separation distance gt ater than the correlation length. The
average value of th follcws by the techniques of Section V:
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- (seco ) [ds. [ds. P ' BV
Ciplo:0g)) = (secay)d[ds, Plsy sty (09) L paloy0) plop)] %

!

X u(1r/2-|'62R|)f1R(sl,‘52)
N |
x exp{-Kln3(0,1)-2,(8,1) Iset0) 1}

X exp[-K(2+5;4)sece]

. |
X G[G-BZR(OO,SI,SZ)] . (8.1)
where . ‘ ‘ Do
2 ;é ¢ : ~ o) | B :
flR(sl,sz) = \i+sl) (cosal)[1-r1$c0§u1)}r2(klf-n2) B (8.2)
H ‘ ! ' A 4
gy = Jaz; 2y Playl1ye))s 1ip(80)) : (8.3)
' 2,(8,7) = r;z z, Plz,|1,,(8,7), 1,(6 )] | (8.4) B
4\"17) T | 9%2 %2 PREzIR2\ 0T 2\ 2R N :
" and ,
~ ";5
tosa;. = (I+sy) (cos® ) -s;sinb ) . (8.5)
A ~ . ';ﬁ , | .
Kypeny, = -(1+52) (cose”'-szsinen) .‘ e (8.8)
The quantity P is the joint probability density associated with this process.
" We, now change variables from (51,52) to (elT,GZR).' The equations of trans-
formation are (from Appendix C aad Reference 4) o
{
i a"




, "~ (sin@_-nsind,.)
| s, = - 0 i, (8.7)
‘(coseo-ncoselT)

[("791T'62R1
2

s, = tan (8.8)
The Jacobian of the transformation is
!
. In-cos(6_-08,1) (7=61~~6np)
3(017:8,5) = g.[ Bl a ]2 Secz{ 17-%R (6.9)
: (coseo-ncoselT) 2
A ]itt]e'geometry shows that the allowed range of 6,p is -Iel Bap < |61T1.

Thus, since 16;;| is always less than m/2, we have jo,p| < m/2, nd the step
function in Eq. (8.1) is always unity. The range of 8y7 i3 determined by the now
familiar conditions (61-2) > 0 and (-Eo-ﬁ,) > 0. The result is xL <87 < xU,

whgre

' cost
X = w2 - sin! ( - °) , (8.10)
;-1
X = 8y - [ﬂ(2-81n (%)] : (8.11)

By use of the transformation equations, the final form for <t1R> can now be written

.down:

| U
X
, (tiR(e,eo)> = ,\Seceo)fielT J(elT,e)u(|el1|-|eDfiR[sl(elT),sz(elT,e)]
. X

i

{
X eXp{—K[23(GIT)-14]SQC81T}

( X exp[-K(2+£4)sece] . (8.12)
where

(7-8,,~8)1
SS(GIT,B) = tan[—~——%l———J . (8.13)
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The probability density P can be written as the product of five probability (:}

functions:
Ps1,59,11(80),15,(800),1,(0)] = P(sq)PPoPsPs (8.14)
where
Py = PlI(e )]sy (7.16)
Py = Pl ,(8)]s515(80)] (8.15)
Py = Pls,ls;sI(6,),15,(8,1)1 (8.16)
Py = P[Iz(e)Isl,sz,ll(eo),llz(elT)] . (8.17)

The mathematical relations for these probabilities are

1 ° (Ti%ﬁ_) u(coteo-sl) R (8.18) §
0

Q>

$(85,01715))

1

(8.19)

o
N -

[}
")

where the bistatic shadowing probability is given by Eq. (6.9);

v 2 .
P3 = \I-—e—r-f—‘v—-—) U(az-COtGIT)P(SZ) s 0<91T<1T/2
1T
_ 2
= {——————ﬂ——) u(cotelT-sz)P(sz) R 61T<0 R (8.20)
I-erf VlT
T e (8.21)
1+28B

The quantities B and B are given by Egs. (5.27) and (6.2), while

coto
V1T = -l—g——-ilglé- . (8.22)

2]
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The remaining quantities which must he specified are Lq and Lgs the average
i1luminated heights of points 1 ard 2 for ‘his process. The results are

[ Bo ' (Bo'BlT) ,
. (ITiﬁgpr(z*ZBo+2B1r' - Tiiﬁgiﬁg;i'P(1*231T)r(z*230)

2'3(91'[) = (n/2)% ¢ ’ (’3.23)

[r(2+250+231T) i r(1+ZBlT)F(Z+ZB°)]
4(6a0) = 2, =B (n/2)%0 (8.24)
4\v1T 4 TI+BY ‘ Ce

IX.  RECIPROCITY, AND TRANSMISSION INTO A LESS REFRACTIVE MLDIUM

In the previous sections, our investigations were ccncerned with th2 trans-
mission of light from a medium of index unity into a medium of refractive index
n>1. We are, of coursz, interested in the reverse problem of transmission into
the less refractive meditm. Thus, for the sike of argument, we could consider a
source located at depth z = -2, with plane radiation emitted into direction Es
towards the surface. Th~ strength of the radiation refracted into the air and
traveling ir direction E‘ away from the surface is then of interest. Therefore,
we want to derive (f,'j(_!z;-l:s)> .

n-+1

It is expected that the solutioa of the {n+1) transmission problem will
follow from the aiready derived (1»n) transmission coefficients. This follows
because the transmission coefficient rust have a reciprocity property associated
with it which relates tc _.c interchange of source and observer. Reciprocity is
a general statement of the dynamical reversibility of the system, so its math-
ematical expression must be independert of the shape of the surface. Thevefare,
we will derive the reciprocity theorem for a plane surface and then simply infer
its form for the general rough surface. We will also assume n to be real, which
is quite valid for the optical transmission problem.

Consider plane-wave radiation in:ident on a flat surface with normal in the
direction of the z axis. We choose this orientation because the transmission and
scattering properties of any stationarv random rough surface must reduce in the
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long-wavelength limit to the transmission and scattering results for this plane
surface. We will initially restrict the incident polarization tn be either hori-
zontal or vertical relative to the local plane of incidence; this will provide a
reciprrcity relation for one dimensional surfaces. The transmission coefficients
of interest can be written down by inspection for the plane surface:

> >
(ko)

sind
[l-r(coseo)]G[O-Sin'l(—-T;Jal] s (9.1)

tp(’kos‘

K) = [l-F(cose)la[eo-sin'l(nsine)] . (9.2)
where the reflectivities are those appropriate to either horizontal or vertical
pslarization. For example, Eq. (9.1) states tnat the transmission coefficient

is zero unless the angle of observation coincides with the angle of refraction
for a plane surface as calculated by Snell's Taw. The bar on the reflectivity

in Eq. (9.2) is a reminder that for the (1+n) process, we have, €.g.,

9
, \ cosd, - [nz-sinzeo]2
ficosto) = cose  + [nz-sinze K ’ 9.3)
0 cJ
but for the (n+1) process,
1 . 27%
cos6 - Wi sin o6
ﬁh(cose) = Al T . (9.4)
1 . 2472
coso + =, = sin 0
n
We now use the relatiov
*
sif(e)] = S(&€) , (9.5)
£ (6%)]
where
£(o) = eo-sin'l(nsine) , (9.6)
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and e* is the solution to

f(6*) = 0 (9.7)
The root 8% is easily seen to be
siné
o* = sin"l( °’ . (9.8)
n
and, since,
[£'(0)] = —Des® (9.9)
2.:.2.4°
(1-n“sin“e)
we have, by use of the property of the delta function,
L
2. 2.%\2
L - * %y (1-n°sin“g")
tp(-ko,—k) = [1-F(cos6™)18(6-6%) ~=—=—7 (9.10)
But it is easily shown that
r(cose*) = r(cose,) , (9.11)
(1-n%sin?0*)® = cose, . (9.12)
SO
N cosd, .
tp(-ko,-k) = 2558 [1-r(coseo)]6(e-e )
- -»> COSGO > 2>
tp(-ko,-k) = (ncose) tp(k,ko) . (9.13)

This is not the most general form of the reciprocity relation, for the t's
are defined "per unit sector of angle,” and angular widths are not invariant in
the transmission process. In order to extend Eq. (9.13), we again illuminate the
flat plane with radiation of constant intensity but now with a narrow sector deo
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of illumination angles about the angle ©

o From Snell's law, sineo = nsing, the

angular width of the corresponding refracted radiation is

coso
do = 0 do

ncose o ) (9.14)

The substitution of this result intec Eq. (9.13) yields
> > > <>
de tp(k,ko) = deo tp(-ko,-k)

The left-hand side of Eq.

(9.15) is the fraction of the incident e
transmitted.

enargy which is
This is evidently equal to the fraction transmitted in the recipro-
cal process, i.e., with the source in the medium and radiation of width d6 about
direction -E incident at the intertace.

The value of Eq. (9.15) is that we can generalize to “two dimensional”

results by simply replacing angular sectors by solid angles and by introducing
polarization notation in the usual way; i.e.,

(d¢desine)tgi(E,Eo) = (dp,do sine ) t;j(-i?o,-'lz) (9.16)

Since the incident ray, the normal, and the refracted ray ali lie in the sae
plane, we have d¢ = d¢°. Then, by use of Snell's law and Eq. (9.14),

.. e

i, > cos ji

t (k. ,-k) = t (k [1 ) . (9.17)
P 0 nzcose P

Because of the general nature of the reciprocity principle, we expect that the
coefficients for the general random rough surface satisfy

(k) = ( 0 )(*J‘u(

(9.18)
n cose
> > +> >
Finally, we replace -h-k, -kd+k' to obtain
R R = ( cosd’ )tJ’( % ,-k") (9.19)
< S > n2cose < S >
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We can ncw substitute the results of Sections V, VII, and VIII into the right-
hand side of Eq. (9.19) to obtain the corresponding partial transmission coef-
ficients for refraction from water into air.

X, INTENSITY RELATION FOR UPWELLING RADIATION

Upweiling radiation from beneath the surface is an important component of
sea color. Such radiation originates from the backscattering of transmitted sun-
light by both molecular and particulate matter or, in shallow water, by the sea
bottom. Some of this scattered radiation is reflected back intn the medium by
the sea surface, but a certain fraction will be transmitted into the atmosphere.
The intensity reaching an observer above the surface in direction i will depend
on the original intensity, the transmission coefficients for the (rough) air-
water and water-air interfaces, and on the scattering coefficient defined as

y’J(EZ,EI) = fraction of incident (El) radiation, with
polarization i, which is scattered into
direction Ez, in polarization state j.

The expression for the intensity of the upwelling radiation, in polarization state
n, is clearly

. 2 2 .
ingy 1 mr,d oy Jmes 7
G- A Jan, [an, [aa, eMER )Gk K

ij> i,
x t (kt,ko)(coseo)lo(kc) (10.1)

s >
where Ié(ko) is the initial intensity, in polarization state i.

Strictly speaking, the transmission coefficients for the physical-ocean
medium will differ from those derived in the previous sections on the basis of an
idealized semi-infinite homogeneous medium. The physical medium has a fluctuating
index of refraction which makes the description of propagation much more compli-
cated than the exponential absorption model adopted here. Hevertheless, the tij
of this report should be sufficiently accurate for clear waters. Also, we will
assume that the distance to the bottom is large compared with the absorption length
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so that any radiation scattered off the bottom and subsequently scattered back (:}
into the medium by the surface will be of negligible intensity as compared to the
direct transmission component,

The simplest application of Eq. (10.1) is to a homogeneous (but absorbing)
medium with a plane bottom (of zero slope). Then, the scattering coefficient is

Sm.> > A ~ 3 ~ ~

me(kS,kt) = rj(kt-z)sma(ks-k;) , (10.2)
where

A* ~ A A A

kg = ke-2(kgoz)z (10.3)

Here, r. is the reflectivity of the bottom for radiation in polarization state j.
We also assume a plane wave for the incident radiation, so

i _'iAAt
Io(k Y = Ioé(ko-ko) . (10.4)

o

Then, the substitution of Eqs. (10.2) and (10.4) into Eq. (10.1) yields

cos8'} . 2 . A
e = ._..__.._.0 1 Jn.’-** AoA 1‘]-' )
« (k) (cose )IO jzl Idﬂt t (k,ks)rj(kt z)t (kt,ko) . (10.5)
A1l quantities in this equation are known, with the transmission coefficients
available from Sections V and IX.

XI.  CONCLUSIONS

A ray theory which describes the transmission of light across a random rough
boundary has been formilated. The approach uses & complete geometrical-optics
treatment in that multiple-scatter and shadowing effects are retained. The mair
results of the analysis are as follows:

1) A theory of shadowing for the transmission problem ras been derived;
j.e., the probability that a surface point is visible to a souice above the sur-
face as well as to an observer below the surface (or vice versa) is now available
in closed form.
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2) The transmission coefficient, which determines the angular profile of
transmitted energy, is expressed as an expansion in terms of the number of ray
intersections with the surface. All terms in the expansion are positive, so
the retention of, say, ithe first m terms yields a lower bound to the true value
of the transmission coefficient. The leading term, the direct transmission coef-
ficient, is corrected for shadowing but contains no multiple-scatter information.
As expected, it is proportional to the probability density of that slope which
connects the incident and observer directions by Snell's law. The direct trans-
mission coefficient is derived for the general two dimensional random rough sur-
face, and it therefore contains polarization information. Expressions for both
air-to-water and water-to-air transmission are available, the latter by a reci-
procity argument.

3) Higher-order transmission terms were formulated only for the mathemati-
cally tractable one dimensicnal rough surface (cylindrical symmetry). Thus, a
ray of sunlight may reflect from one point on the ocean surface only to intersect
the surface again at a second psint. The angular profile due to transmission of
energy at the second point has been derived; the total fraction of incident energy
associated with this double-scatter process is about 3% of the directly trans-
mitted energy for likely ocean roughnesses. The corresponding process in which
a transmitted ray of sunlight is reflected by the under-sea surface was also
formulated. I. is expected to contribute significantly to ithe below~surface
radiation profile only for near-grazing incidence and the very roughest of >cean
surfaces.
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APPENDIX A

v L/
We consider the general case of a medium with comples inuex of refraction n,
whers
LY .
n o= n+in, . (A.1)
Snell” - nas the familiar form for radiation incident on a plane surface at
angle by
" sing
sinfy = —— . (A.2)
n
but since & is complex, the quantity ET is also complex and no longer has the
simple significance of the angie of refraction. The angle that is significant,
eT, relates the direction of propagation of the surfaces of constant real phase
with the normal to the boundary. From Born and WO]f,a we have
) sineo
sirg; = 5 . (A.3)
where n .
_ . 2 22 LR YA
D = [§1n 8,+1"q (cosy - ﬁ—-s1ny) ], (A.4) £
and q and y are real numbers defined by
’\' .
cosé; = q exp(iy)
For optical radiation in the blue-green band, the actenuation length for
clear water ranges up to about 30 meters, so at the peak K = kn, = 3x10'4cm"1,
and ", is a few times 10'9. When ni/n << 1, the quantity D reduces to
"21 . 2 \
B ~n|l- ;1->1n 60) . (A.5)
Since the correction term is oniy of the order of 10’18 for the optical (blue-
grzen) transmission problem {n = 1.33), Eq. (A.3] takes the form
sineo
sing. = — . (A.6)
A
40
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APPENDIX B

We are concerned here with refraction across an arbitrarily oriented plane
surface (Fig. 5). First, let us consider the incident plane wave to be hori-
zontally polarized, i.e., the electric field vector is orthogonal to the (EO—Q)

plane of incidence:

inc

Ere = 9 emlik? by = st - coso,?
. = y exp(i o‘r) : o = -sin6yx - cosf z

0

We now transform to the local (ko-ﬁl) plane of incidence:

y 7 agvptbghg,
where
: (kox "1)
ll - o) A 3
[ky X0y
VI = -kox hl 'Y
and, after simplification,
X
al = ?_——T__ ]
Ik, xn,|
61'/\}0 A A . PN
bl = e H Vo = - coseox + s1neoz .

[k x ny]

The incident field now has the canonical form

(B.1)

(B.2)

(8.3)

(B.4)

(8.7)




so the refracted field is

EH

and the superscript on the’refracted field indicates the initiaf polarization
The quant1t1es tv and tH are determined ﬁn the usua] way by requiring

state,

refr =~

- 1
1 , |

ety el s it e e A it 4
Y

g N

R
‘ ile'r '
ltv VlT e f bltth ¢ . (B.8) |

Vi = by vk s - c B !

continuity of the targent1a1 electric and magnet1c f1eld components at tne

surface

cr

ty

where, as usual,‘cosa1 =

(-k §

!

1+ RH(cosal) R

(8.10)
Eigv(cosal) o ' ‘ (B.11}
N

nl).

Equation (B.8) is not in useful form for V1T and n1 are polarization vectors

for the local plane, wh11e we requ1re the polarization vectors ftor the (le—z‘

plane of obserVat1on

N
pv=

-

(Q X ;) . : ,
A, (8.12)
|klT X z|

~ > I [

ki xly - (8.13)

Thus, ng and 31 can be expanded in terms of these unit vectors:

!

17T

h

L

. > '
iy - Py

5 R
CyPy + CoPy g (?.14)
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with
i cl = hl.EH s (B.15)
cé = ﬁl-EV . (B.16)

Equation (B.8) now takes tiie form

- o Tkyper
Erefr = (3161ty + bycoty) py e
> >
1k1T'r

>

¥ >
'The time averaged Poynting vector, N = %-Re(g x H*), can now be used o
find the fraction of enefgy incident on the plane surface, in polarization state

H; which is refracted into final poiarization state H or V. We designate these
fractions as THH and THV :

' I%H | .
N cosa,
dH o refr ( 1) (B.18]
, ™ cosa
, Ninc| 1
2 Cosai
L cosay
" and, similarly,
1 { cose!
' HV _ 2 COOQ’]
, T = nlalcltV + blc2 4 ( , (B.20)
| ' Cosoy |
wheire, bty Snell's law,
L
v 2 2. 1
ncosa, = [(n -1) + cos “l]
The ulternate quantities TVH‘and TVV, corresponding to verticaliy polarized in-

cident vadiation, follow from Eqs. (B.19) and (B.20) by the replacement a

-+b

| S
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cosa
VH 2 1

—

b -

T = nfagcyty - bity| (cosa

) . (B.22)
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b
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APPENDIX C

Snell‘s law relates the angle of refracticn to the angle of incidence on a
plane surface, but the angles are defined relative to the surface normal. For
an irregular boundary, we must apply Snell's law to each of the locally flat and
arbitrarily oriented elements comprising the surface. Then it is convenient to
talk about the angles of incidence and refraction defined relative to a single
coordinate system.

For isotropic media, the incident ray, the refracted ray, and the normal to
th2 surface all lie in the same plane (Fig. 6). We want to derive the vector
relation between the direction of the refracted ray and the directions of the
incident ray and surface normal. One triplet of unit vectors is

~ (kxk ~
-ko,S;Q——;lIl » and V, where
lkox kygl
N k.x k R
v - Stam g (c.1)
lkox Kyl
Then, the application of vector algebra leads to
31 = c05a(-Eo) + sina V (C.2)
_ 1 . , ~ . A
= st Lsina kg - (sinadkg] (c.3)
By use of Snell's law, sinx = nsina', Eq. (C.3) simplifies to
A A 2 2 -]fg ~
nkyp = kg - {[(r°-1)+cos“al - cosaln; . (C.4)

We now apply the general vector relation, Eq. (C.4), to the coordinate
system of Fig. 5. The components of ko and le are

kg = =-sing, x - cosd, z (C.5)
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k;p = - (sinechos¢1T X + sinBy;sing, ¥ + €0sByp z) , (C.6)

where the minus sign in Eq. (C.3) arises because kyp is defined relative to the -z
direction (Fig. 2). In addition, we make use of the geometrical relation between
the directinn of the normal to a surface point and the slope componenis at that

point:
A (-s X - s 9 + Q)
n, = —H (c.7)
2,..2
(1+Slx+sly)

The substitution of Eqs. (C.5)-(C.7) into Eq. (C.4) yields expressions for
(Slx’sly) in terms of the incident and refracted argles:
(sineo-nsinechos¢1T)

= R {(c.8)
(ncoselT-coseo)

Slx

nsing,-sing
51 = - 1T 17T . (C.g)
Y (ncoselT-coseo) )

In Section V, it is necessary to transform integrations over slope vari-
ables into integrals over the angles (elT,¢1T). The corresponding limits of
integration for the angle variables are not simply arrived at for the general
rough surface. We see, from Eq. (C.4), that, for fixed k and n, the direction
le varies with the normal n1 R Herice restrictions on the surface norma: are
equivalent to restrictions on le The first restriction is nl-z > 0. From Eq.
(C.4)-(C.6), we see that this condition is equivalent to

(ncose1T - coseo)
T >0
{[(n2-1)+cosza] -cosz}

or, because the denominator is always greater than zero,

ncoséy; > cosB . (c.10)
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The second condition is ('ﬁJ 31) > 0. The substitution of Eqs. (C.5) and (C.7)
into this condition yields

S1x < coteo . (c.11)

We now substitute Eq. (C.8) into the left-hand side of the inequality. After
algebra, the condition reduces to

k. -k >;1‘- . (C.12)

Since n'1 = 3/4 for water, this latter condition is a severe one.
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