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ABSTRACT

A ray theory for the transmission of light across a ran-

domly rough boundary is formulated. Multiple-scatter and

shadowing effects are accounted for in a consistent way.

The illumination probabilities for the transmission prob-

lem are derived in a nontrivial extension of current shad-

owing theory. The direct transmission term and the two

main higher-order corrections are specified in complete

detail for a normally distributed boundary. The ap-

plication of transmission theory to a quantitative des-

cription of sea color is considered.
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S I. INTRODUCTION

A comprehensive study of t.io sea requires investigations in both the

microwave and optical portions of the spectrum. Thus, microwave radiometry

provides a sensitive all-weather tool for the calculation of boundary tempera-
"tures and sea states, while subsurface properties can be probed by the spectral

variation of sea color. For example, the rihlorophyll content in the ocean, 1

the depth -if coastal waters, 2 and the degree of pollution in coastal and in-
land waters all may be identifiable by their spectral signatures.

The problem of sea color is very complex. Sunlight and skylight are both
scattered by the sea surface and transmitted across the boundary into the water

medium. Some of this t'ansmitted energy is backscattered, either by molecular
and particulat3 matter in deep water or by the bottom in shallow waters, so

that a certain fractionr the upwelling sea light, is transmitted back across
the boundary Into ti,. air. Sea-color measurements must be made at angles out-

side the glitter pattern of the scattered sunlight, so the sea color is deter-
mined by the two comiponents of scattered skylight and upwelling sea light.

The actual analysis of the sea-color problem must account for surface
roughness. Thus, sunlight incident on a flat ocean surfoce will be transmittz,4

in the single direction determined by Snell's law. For the general ocean
boundary, however, Snell's law must be applied to each of the locally flat

elements compris'ng the surface. This results in an angular distribu.ion of

transmitted energl', which, of course, will produce a final component of up-
welling sea light with angular distribL;ion dependent on the surface sea state.

The scattered skylight will also have an angular radiation pattern peculiar to

the sea state. Quite clearly, if subsurface properties are of primary interest,
we want to make sea-color observations in directions where the scattered sky-
light does not dominate the upwelling sea light. Thus, experiments in this

field cannot be designed, and the data properly interpreted, without an analy-

tical description of the interaction of optical radiation with irregular surfaces.

Until recently, the theory of scattering from rough surfaces was severly

limited, even in the geometrical-optics realm appropriate to optical studies.
This was due to an incomplete treatment of the geometrical-optics description,

in which the nonlocal effects of shadowing and multiple scatter of the rays
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were neglected. This neglect was manifested in the inability of the theory to sk

conserve energy.3 An extended scattering theory now exists4 which accounts for

shadowing and double-scatter effects in a fully consistent way, i.e., energy is

conserved to a high degree of accuracy. While all the tools necessary for an

accurate determination of the scattered skylight are now at hand, there has

been no corresponding effort directed towards a theory of rough-surface trans-

mission. In this report, we present a complete geometrical-optics theory of

transmission, with shadowing and multiple-reflection effects entering the des-

cription In a natural and consistent way. There are no restrictions on incidence

or observation angles, and the full range of ocean sea states can be treated

accurately.

We treat the idealized problem of two different semi-infinite and homo-

geneous media separated by a normally distributed rough boundary. A source is

located in one medium, and the observer is located in the other. In Section II,

we define the theoretical quantities of interest, namely the transmission co-

efficient which describes the angular radiation pattern after refraction, and

the absorptivity, which gives the total fraction of incident energy entering

the observer medium. In Section III, a formal analysis of the absorptivity is

presented in terms cf the physical subprocesses into which energy may be chan-

neled. Thus, the doarinant process would be simple absorotion of an incident

ray, but, for a rough Noundary, we can also have absorption followed by re-

flection bvAow the surface, as well as multiple reflection above the surface

followed by absorption. The description is further complicated by the small,

but nonzero, p'robability that a light ray may be transmitted into an undulation

of the observer medium only to be refracted back iato the source medium. A

consistent approach to the cumulative effects of all the various higher-order
p-ocesses is presented.

Section IV contains an analogous, and very formalrepresentation of the

second theoretical quantity, the transmission coefficient, in terms of physical

subprocesses. The first actual application of the transmission theory to
random rough surfaces is carried through in Section V. Specifically, we derive

the direct transmission coefficient which describes the angular transmitted

radiation pattern in the absence of multiple-reflection contributions. Shadowing

corrections are incorporated automatically. A simple exponential model is used
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to account for propagation losses. The result is applicable to the full two

dimensional rough surface and, as such, it contains all polarization informa-

tion. Not surprisingly, the strength of the transmission at a given observation

angle is proportional to the probability density of that slope which connects

the incident and observation directions by Snell's law. It is of interest that

the direct transmission coefficient is identically zero for some ranges of ob-

servation angle, regardless of the rins surface slope.

The results of a shadowing theory tailored to the transmission problem

are merely cited in Section V, but in Section VI we present a full analytical

treatment. The illumination probabilities derived here are not trivial exten-

sions of the illumination probabilities used in scattering theory. This follows

because the source and observer are now on opposite sides of the rough boundary,

so that a high point on the surface relative to the source is a low point on

the surface relative to the observer. The results are obtained in terms of

gamma functions, which are fully tabulated.

higher-order transmission terms are formulated in Sections VII and VIII

for the mathematically tractable one dimensional rough surface (cylindrical
symmetry). Thus, a ray of sunlight may reflect from one point on the ocean

surface only to intersect the surface again at another point. There will be

transmission across the surface boundary at the second point as well as direct

transmission at the first scatter point. The angular profile due to trans-

mission at the second point fills all possible observation angles, but the total

fraction of incident energy associated with this double-scatter process is

estimated at only about 3% of the directly transmitted energy for likely ocean

roughnesses. The corresponding process, in which a directly transmitted ray

of sunlight is internally reflected by the rough boundary is also formulated.

It is expected to contribute significantly to the below-surface radiation

profile only for near-grazing incidence and the very roughest of ocean surfaces.

In Section IX, we consider the inverse problem of refraction inte the

medium of lower index (e.g., water-to-air). Fortunately, it is not necessary

to repeat the previous calculations, but instead we apply the principle of

reciprocity. This theorem relates the effects of an interchange of source and

observer, and so is ideally suited for application to the inverse problem.
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Finally, in Section X, we derive the formal relation between observed intensity
and the transmission and scattering coefficients which mi'st be used in any
analytical treatment of sea color. A homogeneous sea with flat bottom (of

zero slope) is considered as a special case.

II. PROBLEM STATEMENT AND DEFINITIONS
We consider the idealized situation of two different homogeneous and

semi-infinite media separated by an irregular boundary (Fig. 1). One of the
media contains a source, with the receiver located in the second medium. For

example, sunlight is incident on a rough ocean surface and we are interested
in tne angular distribution of transmitted radiation below the surface. We
will take the index of refraction of the source medium as unity, whereas the
second medium will be represented everywhere by a complex constant i. The
homogeneity assumption means that once clear of the surface, the refracted

rays propagate rectilinearly until completely absorbed. A simple exponential
?bsorption is associated with each ray. We will also restrict the investi-

gation to those cases where the imaginary part of the refractive index is
small, e.g., the problem of optical transmission into clear water. Then
Snell's law relates, with high accuracy, the angle of reftaction to n, the

real part of i (Appendix A).

There are two theoretical quantities of interest to us, The first is
the absorptivity, defined as the fraction of incident energy which is not
scattered. The absorptivity is a function only of the angle of incidence.
Now, energy crossing the boundary must propagate some distance into the medium

(of index i) before it is absorbed. This view leads immediately to the second
theoretical quantity, the transmission coefficient, which determines the frac-

tion of incident energy observed at some angle relative to the (-z) axis and
at a depth 9. Thus, the transmission coefficient describes the angular spread-
ing, due to surface roughness, of the refracted radiation, and it also accounts
for propagation losses. If we designate a(eo,0 0) as the absorptivity due to a
source at (60,40), and if t(B,ý; 60,%; KX) is the transmission coefficient

for an observer at (mi) and at depth i in a medium with absorption coefficient
K, then

a(9o0 4o = fdQ tiO,ý; eo,ýo; K9,=O) , (2.1)

where the integration is over the lower hemisphere (all possible refracted angles).
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L III. PARTIAL-SURFACE REPRESENTATION FOR ABSORPTIVITY

Radiation incident on a perfectly flat surface is refracted according to

Snell's law. For a rough ocean surface and optical radiation, we can apply Snell's
law to each of the locally flat surface elements comprising the boundary. Optical

wavelengths will be small compared with eveni capillary structure on the ocean sur-

face, so a ray theory of transmission can be expected to give very accurate results.

A ray theory of transmission for an irregular surface is actually the sum of
many processes. The most important are illustrated by Figs. 2-4. Every incident ray

contributes to the direct transmission process, ko _-klT, (Fig. 2). Figure 3 illus-
trates an additional transmission contribution, 0o -k1- 42T, arising from the reflec-

tion of the incident ray at point 1 and a subsequent intersection with the surface
at point 2. The importance of this process iicreases with increasing rms surface

* slope. The associated process of a transmitted ray which undergoes a subsequent
reflection (below the surface) at point 2, o0 k1T4 2R, is shown in Fig. 4. A cor-
rect theory of transmission must account for all such diagrams.

In this section we will restrict the quantitative discussion to the special
~ one-dimensional rough surface (cylindrical symmetry) in order to emphasize the

physical picture; cross polarization complications are introduced in Section V.
Thus, we consider radiation of unit intensity and beam width So incident on an ir-

regular surface described by z = r(x,y) = ý(x). The incident, transmitted, and

scattered rays are all contained in the x=z plane. The optical wavelength is
small compared to all surface parameters. The scattering and transmission pro-
cesses are incoherent in this geometrical-optics realm as each surface element
simply obeys Snell's law, independent of any other surface element.

We imagine a ray trace for each surface element, and we will include

that element in one of a number of classes, depending on the scattering char-
acter of that trace. Specifically, we divide the total surface into two parts,
E = Q+&', where every surface element in Q is visible to the incident beam
with direction ko. The elements in 9' are shielded from the incident beam,

and as their contributions are multiplied by zero incident intensity, their ray
traces have zero weight. The illuminated subset is now split into two parts,

= Q where every element in 1 is characterized by a specularly scattered
ray kI which does not intersect the surface elsewhere (Fig. 2). For every
element of the subset Q = Q2+"2, the ray tI does intersect the surface

IS



again, but now is defined as a smaller subset with the property that rhent

follow-up ray k2 does not intersect the surface elsewhere (Fig. 3). We con-
tinue this bookkeeping until we achieve an empty subset, say a" (a maximum

of m surface scatterings): II?
In
I all (3.1)

L= 1

'The 6ncident power intercepted by a, surface element dS1 in a is unit in-
tensity times the'elenental area projected onto the incident wave front, i.e.,
(- 0 nl)dSl. The initial polarization is taken as either vertical or hori-
zontal,, and the scattered or transmitted radiation will retain this polarization
because of the cylindrical symmetry. If the reflectivity at surface point i,
is ri (for either vevtical or horizontal polarization), then (1-ri) ,is the
.fractionof energ incident at this poipt which is transmitted. We are now in
aposition to write down the quantity, T(80), defined as the total fraction of

energy incident from o vhichis refracted across the boundary:

SoT(O ) = S(00)
0 0 01

" ,, = J'dSl(cosat)E1-rl 1 cosalc]

+jdS1 (cos) )rl(cosa,1)[1-r2(cos:2) (

+ .... dSl(cosOl)r 1r 2 ... , rm.1(1-,'m) (3.2)

'm-1

where (-o.) cosCl, (-ni.n 2) F cosa 2 , and an obvious abbreviation for the
arguments Qf the reflectivities is introduced in the m'th term. Each inte-
gration is taken over, the indicated subset of the total surface. Equation
(3.2) accounts for all orders of multiple reflection in the source medium.
For example, the contribution to T(6o) at point 1 in Fig. 3 is contained in

the first tenr, while the energy crossing the boundary at point 2 of the same
diagram is accounted for in the second term. Note, 'the quantity S0 is the
normalization factor, for when r 0 and T = 1, we must have

S dSl(-ko" n1 ) ,, ' (3.3)

'6



II

The absorptivnty is defined as the fraction of incident energy which is not
scattered. Unfortunately, the quantity T(6o) is not the absorptivity. This

follows because energy refracted across a rough-surface interface can be re-
fracted back into the source medium, there to scatter and refract again. Figure

4 containsian illustration of this point. Thus, an incident ray refracts at
point 1, then propagates internally to point 2 where it reflects and may refract
,(depending on the slope at point 2) back into the source medium. The doubly
refracted ray k2TT is always directed towards the surface, so it will be re-
flected and refracted again at point 3. The double transmission plus reflection
process augments the scattered radiation pattern. Therefore, T is greater than
the absorptivity by an additional scatter contribution 6(e0):

T(o) 0 a(eo) + 6(eo) (3.4)

In order to obtain a partial-surface expansion for a(eo) alone, we must expand
each of the Ti in Eq. (3.2)- 1 a partial-surface representation. We will simply
state in passing that, while T(6o) is not strictly the fundamental quantity of
interest, it may be bounded in value from both above and below. As 6(eo ) is
expected to be very small in magnitude, this can be an important advantage in
numerical computations of the absorptivity.

We now expand TI in a partial-surface series which accounts for all the
possible processes the ray may undergo after refraction at point 1. We have,
explicitly,

*ST 1 0 0 ) fdS1 cos 1(1-r) , (3.5)

and we define

= T:" T T

T T(3.6)"T TR "TR

Here, 'T contains those surface elements in Q such that the refracted ray kint
does not intersect the surface again (Fig. 2), whereas the ray k does inter-I 1T

sect the surface again for elements of surface in the subset i2T (Fig. 4).
The further decomposition of RT depends on whether the ray reflected from
point 2 in Fig. 4 clears the surface (QTR) or intercepts it again (QTR).

7rI



We can write, with these definitions,

soTT1( 0 ) = fdS1 (cosa,1 )%1-rl) + fdS1 (cosa,)(1-rl)[r 2+(1-r 2 )]

= S0[al(eo) + alR(oo) + AI(0o)] , (3.7)

where

s al(e = fdSl(cosct)(!-rl) (3.8)

SoaiR(6o = dSl(COSal)(1-rl)r2 (39

STR

SoA1(8o) = JdSl(cosal)(1-rl)r 2 + JdSlcosal(1-rl)(1-r 2) (3.10)

TR T

The quantities a1 and alR are true contributions to the absorptivity, for o

and fTR were constructed such that klT and k2 R, respectively, do not intercept

the surface again. On the other hand, A1 contains higher-order absorption

processes as well as contributions to the scattering diagram. For example,

the second term in Eq. (3.10) is the double refraction process illustrated in

Fig. 4; some of the energy associated with this term goes into absorption and

some into scattering.

A most important aspect to the expansion of Eq. (3.5) is that the value

of the residue term, A1 (80 ), can be calculated indirectly. This is true because

TI(0o) is nothing more than the direct emissivity5 of the rough surface. Thus,

a computer program already exists for the evaluation of T1 (00). Some results
are listed in Tables I and II for a rough water surface and incident radiation

of wavelength O.711. In addition, both al and aiR can be calculated numerically

(although we have not yet done this), so we can solve for A1 by use of Eq. (3.7).

Alternatively, we can limit numerical computations to T, and a1 and solve for

the value of (alR+A1). This will ordinarily be sufficient as alR is surely

negligible compared to a1 save for near grazing incidence and very rough sur-

faces (Section VIII).

8



Table I

The quantities Tl(eo) and T2 (eo), evaluated for a rough
water surface of 150 rms slope and horizontally polarized incident

radiation of wavelength 0.7p.

0 0 [Tl(eo)] x 293 [T2 (eo)] x 293 T2 /Tl x 100

300 283.0 0.47 0.17

50 271.4 3.03 Eli

65 252.4 7.32 2.90

75 235.0 7.24 3.08

80 225.5 7.36 3.26

85 215.4 4.11 1.91

Table II

The quantities TY(eo) and T2 (oo), evaluated as in Table I,

but for vertically polarized incident radiation.

00 [T1 (eo)] x 293 [T2 (eo)] x 293 T2/T1 x 100

300 288.3 0.12 0.04
50 287.6 1.53 0.53

65 279.9 5.23 1.87

75 270.1 6.47 2.40

80 264.2 7.14 2.70

85 256,9 4.29 1.67

9
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II

We simply write down the analogous results for T2 (eo):

S0T2 (6o) = JdSl(cosa,)rl(l-r 2 )

= So[a 2 (0o) + A o)] , (3.11)

where

Soa 2 (%o) = I,1 1r 1(1"r 2) ,(.2

Saeo = dSi(cosai) ,ilr (3.12)

(IT

and the residue term, A2 (0o), contains higher-order absorption and scatter

processes. The subset a'el has been further subdivided, II = (SlT + (Q,)T,
n T ( to

such that the ray k2 T either clears the surface [(QI)T] or strikes the surface
again [IT.The quantity T2(o is the emission plus reflection term5 in

the lower-bound calculation of rough-surface emissivity and, again, a computer

program is available for its evaluation (Tables I and II). The quantity

a2 (eo) is a contribution to the absorptivity, by construction, and it can be W

calculated numerically. Thus A2 (eo) can be calculated from Eq. (3.11). We

neglect the remaining terms T3 , ... Tm relative to T, and T2 ; this is a valid

approximation for the rms surface slopes.appropriate to the ocean surface.

In summary, we note that TI,T 2, ... Tm can be thought of as channels

through which the incident energy is funneled into an infinite number of pro-

cesses. For example, the double transmission process of Fig. 4 is funded by

the energy budget associated with T1 . It is not necessary to evaluate the

magnitude of these higher-order processes on an individual basis, but, instead,

it is meaningful to lump them together in the Ai. For example, the fraction

of the incident energy funneled into channels TI and T2 can be calculated, so

A1 and A2 can be determined. We will simply assume hlre that the higher-order

absorption processes in A1 , A2 (and i3. ... Tm) are iegligible compared to the

smallest of (al,alR,a 2 ) for the rms slopes associated with the ocean surface.

Then, a meaningful expansion for the absorptivity -is

a(eo) = a1('o) + 1R(eo) + a2 (eo) + .... , (3.13)



1 with (al,alR,a 2) defined formally by Eqs. (3.8), (3.9), and (3.12) respectively.

in passing, we note that every term in the T equation is positive. The

technique of this section was to further subdivide each of the Ti into a series

of positive terms, some of the elements to be grouped under a(eo) and the rest

under 6(0o) (Eq.(3.4)]. The net result is that each term on the right-hand side

of Eq. (3.13) is positive. Thus, by taking just the first m terms as an approxi-

mation, we have a lower bound to the absorptivity.

IV. PARTIAL-SURFACE REPRESENTATION FOR THE TRANSMISSION COEFFICIENT

The absorptivity provides no knowledge of the angular distribution of

transmitted energy. We define the transmissivity,do t(k,ko;X) as the fraction
of energy incident from ko which is refracted in;to solid angle do about the ob-

0
server direction t, for an observer at depth Z (measured from the mean surface
height). It is conventional to deal simply with t, the transmission coefficient,

As with the absorptivity, there is a partial-surface expansion for t. Indeed,

as a consequence of ray theory, the partial transmission coefficients, t1, tlR,

t 2 are, at least formally, simple extensions of the corre:ponding a1 , alR, a2

of Section III.

We will first detail the derivation of the direct transmission coefficient,

t1, for a one dimensional rough surface. The appropriate partial surface is

RT; i.e., every surface element dS1 in OT is visible to the source and to the
observer. The pow-r incident on dSI is (coscl)dS1 , and the fraction transmitted

is dS1 (cosa 1 )[1-r 1 (cosa 1 )]. Since dSle'2T, every refracted ray clears the (under)

surface. We account for the absorption along the propagation path of the ray by
a multiplicative exponential absorption factor, exp[-K(Z+zl)seceiT], where K is

the absorption coefficient, z1 is the surface height of point 1, and 91T is the

angle of propagation for the refracted ray. We must also multiply by the proba-

bility that the ray reaches the observer stationed at angle 0; because of the

ray optics and the assumed homogeneity of the medium, the probability density

is simply a delta function S(O-BIT). Finally, we sum over all dSlrf2T:

S0t 1 (Y,o0 ) = JdSl(cosal)(1-rl(cosal)]exp[-K(.+zl)seceiT]6(e-6iT) , (4.1)
0 T

where So, defined in Eq.(3.3), is included on the left-hand side for normalization.

11



Ii The analogous expression for the direct transmissicn coefficient applILca-DIe

to a general, two dimernsional, random rough surface is

i ~Sot'J(kko) = dSl(COSaXl) (•iJ)expL-K(Z+z1)sece1T6(-,) €€T (4.2)

Here, the superscripts reflect the polarization character of the problem. Speci-
IL fically, the quantity t ( ) deteriines the fraction of the incident radiationfromi in poariztion

from to, in polarization state i, which is transmitted into an infinitesimal solid
angle about observation direction i, with final polarization state j. The fraction

of incident power, with polarization state i, transmitted across an arbitrarily
oriented plane surface into final polarization state j is represented by Tij; for
cylindrical symmetry the incident polarization is retained after refraction and T"

reduces to (1-r')6ij. The general form of T'i is derived in Appendix B. Equation
(4.2) will usually be the major component of the exact transmission coefficient.

We will simply state the results for tlR and t 2 , and we will restrictF consideration to one dimensional roughness:

SotlR(O,O) = JdSl(cosatl)(1-rl)exp[-K(zl-z 2 )secOiT]

I 
TR x r 2 exp[-K(t+z2)sec62R]

x 6(6-0 2R) (4.3)

S 0t2 ele0 =d ds (cosal)rl(i-r) exp[-K(L+z 2 )secO2T]

x 6(6-0 2T) (4.4)

The series for the transmission coefficient has a form analogous to Eq. (3.13):

t(o,eo) = t 1(9,60 ) + tlR(e,eo) + t 2(0o6) + ... (4.5)

Each term in Eq. (4.5) is positive, so the retention of the first m terms pro-
vides a lower bound to t(o,6e).

12



V. DIRECT TRANSMISSION COEFFICIENT FOR RANDOM ROUGH SURFACES

The formalism of Section IV i especially suitable for application to a

random rough surface. Thus, we will view 4(xy) as one of an ensemble of possible

surfaces generated by a stationary random process and calculate the ensemble

average of the transmission coefficient. The averaging process replaces the deter-

ministic surface classes by known probability functions, and it also provides for

an integration over the delta-function factors.
We will consider only the direct transmission contribution tI(ki • ) in

this section. We can convert the integration overQT into an integration over

the entire surface £ by defining two functions which take on only the values of

zero and unity. Thus, we define an illumination function c(x,y;kn), which has

value unity If the surface point at (xy) is illuminated from direction k and

which has value zero if that point is shadowed. In addition, we define

V(x,y;kiT) to have value unity if the transmitted ray which leaves point (xy) in

direction 1T intersects the surface at some other point, whereas it has value

zero if klT does not intersect the surface again. With these definitions,

Eq. (4.2) becomes

S tij(kfko dS(cos) exp[-K(k+zl)seceiT]

Sx E(xly; ko)[1-v(xY; kIT)]

x 6(0-61T) 6("-€1T) • (5.1)

Now, the coordinates of the transmitted ray for surface element dS 1 are

(01T,I1T), and by Snell's law we have 1T = G1T(eoS1x,1Sy) and

€1T = .T(eo'S1x'S1y). Here, (Sl,s ) are the components of surface slope at
point 1. The surface element is dS 1 = (l+slx + S1y)½ dxldyl, and cosc 1 and T

depend only on (xl,yl) through the slope (Slx,Sly). Therefore, the integrand in

Eq. (5.1) depends on (xl,yI) only through Zl(Xl,Yl), Slx(xl,yl), Sly(xl,Yj),

£(xl,yl), v(xl,yl). For any stationary random process, there are no preferred

points, so the appropriate probability distribution is independent of (xl,Yl).

Thus, the averaging procedure leaves a trivial coordinate integration:
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I

1 1so -.4. -x,,,

-L -1'®.o l- O • v=O

x El(1-Vl)f•j (SixSly)

x exp[-K(Z+z1 )sece1 T)]

x 6(e-e0T)6(,-*lT)

(21)(2L') J'dzjfs 1x4~sjy PEZjSjXSji.ci(k) 1,Vl1( IT) 0'
-00 -00 -00

IFr x f lj exp[-K(t.+zl)secelTI6(6-OlT)6(¢-*lT)

Sh(5.2)
where

1s+s) (cosc 1) . (5.3)
f•J(Slxly) (1+Six +S ly)(os, Ti(slkSly)(53

The segments along the x and y axes cut out by the incident beam are taken

here as 2L and 2L', respectively, so that, in these terms, So = (2L)(2L')coseo)
P. 0

Also, we note that the ray kiT must intersect the surface if e8T > ir/2 (Fig. 2).

For 01T < ir/2, the probability that the ray klT does not intersect the surface

elsewhere is equivalent mathematically to the probability that the point (xl,Y1 )

is Illuminated (by an imaginary source below the surface) from the direction

"-11T" On the basis of these remarks, Eq. (5.2) can be expressed in the following
S~form:
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tij=k~ (sece )FdzlJdsxFdsl, P[Z1:51x , S 1y lko0,- kl)=1
0 0 -00 -W- -00,xl T

x u(7T/2-OIT) f1J(slxsly

x expf-K(2.+zl)sec6iTI

X 6(0-6IT)•(¢-ýIT) , (5.4)

where u is a step function with value unity for positive argument and value zero

for negative argument.

The above multiple integral is quite complicated because of the integration
over height z1 . It is sensible to approximate the factor z1 in the exponential

argument by the average value of the "illuminated" surface height, .11 defined by

I f'dzI zI P[Zll•l(ko,-lT) = I], (5.5)

where the probability density of heights is conditional on the illumination of

point 1 from both the k and -klT directions. The gross effect of absorption is
therefore retained while the analysis is greatly simplified. The presence of

the delta function permits us to replace 61T by e, so

(tj (ýSk0)) =(sece%)exp[-K(k+Zj)sscE)1
x zI lT= 1]

x •(6-6 I )•( /- IT)e,
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I
I

(k~ko) (sec~o)exp-Kz.,see

x dslx fJs ly E 51y SS 1y,(kko,-klT) = I)u('Ir/2 T)
-f co

x f(i(s, sIeT)A ( -IT) (5.6)

where the last step follows from the assumed normalization of the probability

density.

The remaining integrations can be carried out by a change of variables from

(SIx'Sly) to (6IT,1IT). The equations of transformation are, from-Appendix C,

(sine0- n sinelTCOS1T)

1x (n cos lT- coseo) '

- n sinelT sinoiT
Sly = (n coselT- coso)

and the Jacobian of the transformation is

J(e n sineT[n-(kO k1T)] (5.8)
(n cose T-coseo) 3

Here, n is the real part of the index of refraction. One must be very careful

at this stage because the integration limits on the (eIT,1IT) integrals are not

simpy 0 < all < 7T/2, 0 < 01T < 21r. This follows because the orientation of a
plane surface which connects the desired direction for transmission with the

given directain oF incidence may not be allowed on physical grounds. More

specifically, "2re are two conditions on (eBT,1T) which follow from physical

constraints on this problem. First, we require that n1 . z > 0 everywhere, i.e.,

the angle between any surface normal and the z direction must be less than 90.

This restriction arises because we are assuming a single-valued normally d~s-

tributed surface, a property of whirh is finite slopes everywhere. But, from

16



Appendix C, we see that this condition implies

coselT > coseo0IT -n

A second condition is the illumination requirement (-ko- nl) > 0; i.e., a surface

point cannot be illuminated by the incident ray unless the angle between the

normal to the point and the direction of illumination is less than 900. This

obvioi's condition imposes a very severe restriction on (01T,I1T):

ko "klIT n (5.10)

The simple way to incorporate these two restricti 2oneon the transmitted direction

is by use of two more step functions, ulcosOIT - and u(k kiT- 1;i.e.,

CM 7r/2 r2 r cosO

dsx U(i/2- TIT) + fdeIT d•IT J(eIT,11T) u(cos IT- n )
W• -00 0 0

x k:•;x u( ko. IlT .

The step functions automatically impose the proper integration ranges.

The application of Eqs.(5.7), (5.8), and (5.11) to Eq.(5.6) yields

t IJ(ko 0 = (seceo) exp[-K(Z+k 1)sece]
7r/2 2r2

x JdeiTfd~lT ,J(OITIT) u(ncoselT- cOSOO)U(ko kIT-n)

0 0

'X P[Slx(O1T,1IT), sly(eiT,0lT), PI(ko,-kIT) = 1]
.•'•, ~f•J 6(0-IT6(O¢T

which simplifies immediately to
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ti kk ('seco0) {expE -K(Z+Zj)seceiifl3 (so),,sl )

0 1

x u(ncosO-cos o 0)u(ko.- ok

An
n2[(n-.(k6" k)]

xs P[" so o (5
3ncose-cose X lxSly, 1 = (5.12)

where we have used the properties of the delta function and the normalization

f 7/2 f 27 
,r

d01T #11' sinlIT 6(e-e1T)6("-.lT) = 1
S 0 0

[ Geometrical quantities in Eq.(5.12) which need to be identified explicitly are

(sineo-nsinecosý)1x (ncosGO-co 0S-) '

o Sy -nsinesitn
y (n, oseO (5.13).

and

ij O O - + 0~2 02, (C1-2!jO•r

ii(S0 S (I+s 0+S (Co O) ij s 0 S'SSly) = +ly) ( ix,S (5.1)

whence, after some algebra, 2

o 2 ½ fn2+.1-2n(k 4k)'](l+Sox+SOy = (no•c~o 5.15)

cosctO = n[(k°'k)- ' (5116)
t2 2A

in +1-2n(ko. k)1]

From Appendix B' the fraction of energy trpnsmitted across the properly
orinte 0 0 10,0 0 0 0 0oriented plane surface, t (sl,Sly), is a function of a 1 b1 , elH, t V, .Cos•

and cosct1lS 0so). The following list specifies each of these quantities in

terms of known factors:*
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2_ 2,½
cosax'(so so) = [(n -1)+Cos ci](5.17)

A A

,Sly = k-h0A(5.18)

1 ^^A ASa 1  = ^ ^x ; ho =y ,(5. 18)
I ko Xkj

AA

-k.v
bo = 10 0
1 IkoX kI vo -coseo x + sin oz (5.19)

. -(Ox ^k).(k x z) (5.20)

Cl (Ikox ki)(Ik x Z1)

0 -(kx k[z z k]cz = -(Il- oX k1)(1•k x 2-I)( .1

to = 1 + R4(cosct) (5.22)

0 1+Rv(cosctl) (5.23)
tv n

The probability density has the form

P[Sl -lk I ,-i1 ) = 1] = o op[Cllo,.t) = llso _o 1 (5.24)

where, for the principal directions, the probability density of slopes is

- ½- S 2 s 2 ) ]( 
. 5

P(SlxSly) = ( ý;2<y2)) exp_ 7 Cxx9 (5.25)

and, from Eq. (6.11) of the following section, the probability of illumination
conditional on the slope value is

P[C (k -k) II(s so )] r(1+2Bo)r(1+2B) (5.26)

0  Slx, ly = [I+2(Bo+B)1 P[1+2(Bo+B)]
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The quantities I(x) are Gamma functions of argument x, and

B =[4(7)½V-1 [exp(-V 2 ) - (7)½ V(1-erf V)] , (5.27)

with
cote (5.28)

[ 2(KCos F+(lý)bsin2 l

The quantity Bo follows from B by replacement of (0,O) by (6o,04 = 0). Equations

(5.13) - (5.28) specify all quantities in Eq. (5.12) except £,1 the average il-
luminated height in the exponential absorption factor. This factor is easily

derived from the shadowing theory of Section VI:

÷. . [BW(ON) - B(o,o)]
(k,k (,•2½ (I+B2+B) (5.29)

where a is the rms height for the surface.

The numerous factors which we have just listed must not be allowed to

obscure the overall simplicity oi Eq. (5.12). Thus, there are no integrations
to carry out; instead, the direct transmission is simply proportional to the
probability density of that particular slope which connects k and ko by Snell's

law, The probability that this characteristic slope is visible to both source
-and observer also enters. An additional feature of interest is the product of

the two step functions, which can yield zero for some combinations of t• and ko.

Thus, it is not always possible to connect a direction of transmission with a

given direction of incidence by any physically allowed plane-surface element.

This is most easily demonstrated for the special case of the one dimensional

rough surface. Then, the allowed range for the transmission angle @ is easily

shown to be

- [7T/2-sin"1,)] < 6 < w/2-sin (5.30)

0 n In

For example, if the angle of incidence is 60 = 200, then there is no direct

transmission for 0 < 210 and 6 > 450. Of course, the higher-order processes,

tlR and t 2 , will contribute something to these "null" ranges.
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VI. SHADOWING PROBABILITIES

An element of surface has only a certain probability of being illuminated
by radiation incident from directions other than normal. For example, the angle

between the surface normal and the direction of incidence may exceed 900, so

that the slope of the element totally rules out illumination. Or, the topography

of the intervening surface may simply cast its shadow on the test element. The

probability that a point on a surface is illuminated depends on the angle of in-

cidence as well as the height and slope of the surface point.

In its application to scattering theory, the appropriate shadowing formal-

ism6 was found to depend on both the angles of incidence and observation. The

application to tra'nsmission theory will be bistatic as well. The shadowing

theory for transmission differs substantially from that for scattering, however,

Thus, a surface high point is more likely to be illuminated by the incident ray
than a surface low point, but the surface high point is less likely to be visible

to an arbitrarily oriented observer below the surface than the corresponding low

point (Fig. 1).

We consider the incident ray k0, located in the x-z plane, and the arbitrary
4. 7observer direction klT, defined as in Fig. 2. From Sancer, the probability that

surface point I is illuminated from ko, given its height and slope, is

erf 21 B0S(OZllxly =u(-ko'nl 1½+erf Zl_ V.(6.1)

s~olzi~six'siy) 0 1 2) 61
(2a2)

where

Bo = (4(r)½Vo)'l[exp(-V2 ) -(7)½Vo(1-erf Vo)] 1(6.2)

vto = ce (6.3)
[2(d2)]

Again, the quantity u in Eq. (6.1) is a step function, which is unity ii the

argument is positive and which is zero if the argument is negative. Thc nj.,jtity
B varies from zero to infinity as 00 varies between normal and grazing 1a:iderce,

Also, the height dependent factor in Eq. (6.1) varies from zero to unity (for
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t

I ;
nonnormal incidence) as z varies from minus to plus infinity. This is the

desired behavior for the incident direction, but for the transmitted (observed)

direction we want the inverse variation; i.e., as zI varies from plus to minus

infinity, the probability of illumination should increase from zero to unity.

By 6se of the same analysis applied to the derivation of Eq. (6.1), we conclude

that

SITIT lx ly) -u(-klTn1 (-erf ) (6.4)

and BIT follows from B by replacement ol V0 by VIT, where

VlT - ~ cotOIT(65

VT [2 ( o2x ,iT + K•y2sin2¢iT)]½

The desired quantity is the bistatic probability of illumination. Fortu-

nately, because ko and kiT are associated with different quadrants of space, we

can assume statistical independence:

S(i0o,klTlIz , sly) = S(oolz1,slx,sly)S(elT,1TIzl,slxssly)

T 1 B I1).+rfZ-erf _
U( 2o n (u- 2'2 n]-2a

(6.6)

Equation (6.6) provides more information than we need, as the transmission co-

efficient formalism of Section V requires only the probability of illunination,

conditional on the slope value. Therefore, we simply average Eq. (6.6) over

heights. For a normally distributed surface, the expression is

S(kokIT Is xSy) -- z ZP(Z1)S(ko•klTlZlSlxlsy) . (6.7)
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By means of the substitution

y = l+erf

and the property

d/dz erf z 2 P(z)

we have

A A A 1 2B 2B 1T
S(koklTISlxSly) = u(-koonl)u(-klTOnI)Jdy y 0 (1-y) (6.8)

0

o,(-kolun kT1nI kITO n O ,l\LIT' (6.9)[1+2(Bo+BIT)] rMl+2(Bo+BI)]
TE[+2(B +B

The quantities r are Gamma functions, 7 and the integral in Eq. (6.8) is, of

course, the standard representation for the Beta function (Bo,B1T > 0)0

It needs to be emphasized here that Eq. (6.9) is valid for any arbitrary

klT. In the application to the transmission problem, however, klT is not anSA
independent vector, but it is related to k and tle surface normal n1 by

Eq. (C.4); i.e.,

A A 2 [n_~o2 1]2
n(-klT n = (-ko-nI) + {1n _1+cos a -1 costi} . (6.10)

It is easily seen from this relation that if (-ko.n 1 ) > 0, then (-klT. nl) > 0 as

well. Therefore, for the transmission problem, we can set u(-klT.nI) equal to unity

without loss of generality. In addition, we have already incorporated the step func-

tion u(-ko0 ni) in the transmission theory of Section V in the context of the change

of variables fro.m (sSi ) to (61T,¢IT). Thus, the slope coordinates (s0xS 0

in Eq. (5.12) can be assumed to be physically allowed. Therefore, we now convert
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Eq. (6.9) to the notation of Section V in order to obtain

P[•-lktko,-_) = lSlxSly S(to~kSloxS0y

1 r(1+2B0 )r(1+2B) (6.11)

L[+2(Bo +B)] ril+2(Bo+B)]

VII. REFLECTION FOLLOWED BY TRANSMISSION

Radiation incident on a rough surface will undergo multiple scatter due tor that roughness. At each point of contact between ray and surface, there will be
a contribution to the transmission of energy across the boundary. The coefficient

L •tj) of Section V accounts only for the transmission into the medium at the
initial point of contact [the ray kiT in Fig. (3)]. In this section, we will

write down the coefficient t 2 ) appropriate to transmission at the secono pointr of cnc et

of contact [the ray k2T in Fig. (3)]. Only multiple-scatter ray diagrams of
order two and higher will contribute to this term. A good estimate of the im-

portance of this process can be obtained from Section III where a numerical

evaluation of the quantities T1 (0o) and T2 (e.) has been carried through. From

Tables I and II, we see that the ratio (T2/TI) has a broad maximum of roughly
3% at the large angles of incidence.

The partial-surface representation of t 2(e,eo) is given by Eq. (4.4).
Because of the cumbersome mathematics involved, we will restrict the details to
the one dimensional rough surface, C(x,y) = ý(x). Also, the averaging process
is greatly simplified if we assume points 1 and 2 to be statistically inde-

pendent. This appears to be an excellent approximation because the slopes at

points 1 and 2 will usually be appreciably different in value, the characteristic

of a separation distance larger than the correlation length. By use of techniques

similar to those employed in Section V, we have
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0 (t 2(eo),% = (seceo) ds1f s 2 PIs1,s 2 ,11(6o), 12 (O1),1I 2 (e 2T)]
-00 -00

x u(ir/2-I02TI)Y2 (sls 2 )

x expi -K[R+1 2 (e 1 )]secO}

x S[e-e 2T(OoSls 2 )] , (7,1)

where

f2(sl,s)-( 1 (cosa 1)r 1Ecosa1 (s1 )]{1-r2 (cosc2(S1 ,S2)l} (7.2)

I1) =dz 2 z2P(z2111(Oo)I 112(61)1,2(6)3 . (7.3)

The quantity P is a joint probability density on slope and illumination for each

of the two scatter points. The symbol 112(01) denotes the likelihood that the

intermediate ray k1 actually intersects the surface again at point 2; it must be
included as a fifth random variable in any consistent theory for double scatter.

As the argument of the delta function depends on d2T rather than s2, it is

clearly advisable to change variables from (SlS2) to (Sl,e2T). The equation of

transformation can be deduced from Appendix C:

(nsinO2 T+sinl)s2 = - ,(7.4)
(ncose 2 T+COSol) (7

where

91 = "0 o-2tan'lsl 1 7.5)

or, inversely,

-0+81) (7.6)

J 25



The Jacobian of the transformation is -

J(s) =n[n+cos(2T1)
n~sI) = (cose1+rncos6 2 T)2 (7.7)

a function of 62T and, implicitly, of s A s was the case with the direct trans-
mission coefficient (Section V), the -ange of integration for 02T is restricted
by the illumination condition, (-kl:n) >0, and by the condition (n2.z)>,

the latter a consequence of single-valued normally distributed surfaces. An
additional complication arises because some values of s lead only to values of

I02TI larger than /2 (e.g., the vector k Fig. 3).
for Nt2 ) accounts for the change of variables, the resulting integration over e2T,
and the imposition of the preceding restrictions:

(t 2 (Yee0)}- (seceo{JdsI J(sl)u(-X'-e)F(slS )

sin-'(-) < e < 7/2 C
S 1J(s)u(8, L+ds j~l O+Xl )u ( -X1- 0) Sl,So)

Jd1  1 1'22
1>>r/2

+jds, J(sl)u(O- )Lx-)F(s i s" ) .(78- w/2<0 <-sin " (1)

where the integration ranges for the slope integrals are given in terms of equi-
L U.valent ranges for the angle 61 (E•q. 7.6). The quantities X1 9 X, in the step-

function arguments are defined as
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U = 72 + sin"i(cos8l (7.9)

L -11,1

•= (rr-IGI) - [•/2-sin (~)j (7.10)

The quantity F(sl,So) is

e F(SlS) = P[SlS•,I 1 (6o), I 12 (e 1 ),I 2 (e)]f 2 (sL,s2)

x exp{-K[2.+k2 (e 1)]sece} (7.11)II i•e re

2 (sinl+nsln) (7.12)
(cosel+ncoso)

and f 2 is given by Eq. (7.2), evaluated at s2 = S.The arguments of the re-

flection coefficients can be expressed most usefully as

cosl(sl) = (l+s2) (h -slsineo) (7.13)

4-

cosa 2 (s 1 ,s) 2 -[l+(s)2 o -ssi ) (7.14)

The fifth-order probability density can be written as the product of five

probability functions:

P[lS2 (), 1 12(61),I2(o)] = P(S1)PIP 2 P3 P4  , (7.15)

where

P1 = P[I(Oo)jS1] 9 (7.16)

P2 = P[I 12(e 1 )Is 1 'I 1( 0o)] 1 (7.17)

U
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P2 = P1(o),' 12('1)3 (7.18) (-

P4  P[I 2(O)ISI'S 1 I (7.19)

= • . ,Ii('o),"12('1)3

The probability density P(s 1 ) is the probability density of slopes for a normally

distributed surface. The mathematical relations for P1 ,P2 , and P3 can be found
;n the literature.4 The remaining P4 asks for the probability that an observer
in the medium, oriented at angle &, receives the refracted ray, given the values

of slope at points 1 and 2 and given the facts of illumination specified by
ii(6o) and 112(e1). The analytical results for P4 are

P4  = (I+2B) ' loIi < 7T/2

1 12B ) / 1 r(1+2B)pr(1+2B)l

1+2BI 1:-2 (B 1+B)] r11+2 (B1 +B) l , ll > •12 (7.20)

(2B1  '

where the B's have the functional dependence given by Eq. (5.27) and V,V1 are

given by

V = cote 17.21)

V1 = 2t7)1N (7.22)

The only remaining quantity to be specified is Y.2(61), the average illum-
inated height of point 2. The results are

2c
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r"W

S( ) lell < f/2
(1+B)

_$r(2+2Bl2B)+ (BI-B) , ), 2-j

½ r(2+2B1+2B) - r(1+2BI)r(2+2B

loll > ff/2 (7.23)

VIII. TRANSMISSION FOLLOWED BY REFLECTION

The partial transmission coefficients tI and t 2 describe a transmitted ray

which travels directly to a hypothetical observer; i.e., the transmitted ray does

not intersect the surface again. However, Fig. 4 demonstrates a higher-order

process with transmission at point 1 followed by a surface reflection at point 2

(the ray k2 R). In this section we derive the average transmission coefficient

(tlR -associated with this process. This effect is included only for completeness

as its contribution to the transmitted radiation pattern is expected to be quite

small. This follows because, as Fig. 4 implies, the angle a1T(eIT < w/2) must be

quite large f the ray is to have much chance of intersectinq the surface again.

But it is easy to show that a large value of IT requires a combination of large

angle of incidence and an element of surface with steep slope. Thus, tlR) can

contribute significantly only for near-grazing incidence and the very roughest

of ocean surfaces. We restrict the details in the following to the one dimensional

rougn surface, ý(x,y) = ý(x).

The partial-surface representation for tlR(Oeo) is given by Eq. (4.3).

The assumption that points 1 and 2 are statistically indepetient again appears to

be an excellent one, for the slope values at the two points must be very different.

This implies a separation distance gi Ater than the correlation length. The

average value of tlR follows by the techniques of Section V:
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1tR( 0O) (sc 0)J Js2  tss 2 9Il(OoO),l2j(6JT),12(e2R)] x

x u(ir/2-je 2Rl)flR(sls 2)

x expl-K I A3(elT)-f'.4(lT) ]sed8lT'l

x exp(-K(k+2Z4)seco3

x 616-0eZR(eoO~slts2)] (8.1)

where

f(IPsi)(cosl)[1..rl(cosa~l)r2(klTofl 2  (8.2)

Y3(1T) F& f Z1 z Pf[zlJIl(6o),l 12(e1T).] (8.3)

£4(IT) CO .d2 z2 P21112(OIT)I, 12('20)](84

and
1 - 2_

Cosat (1+s') (Cose0 -s sine) (8.5)

k,,-n.= -(1+s2) -½(coselT-s2sinelT) (8.6)

The quantity P Iis the joii~t probability density associated with this process.

We, now charige valyiab~les from (s~2 to (elTIe2R)*' The equationý of trans-

formation are (from Appendix C aad Reference 4)
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() (sineo-nsinOIT) (8.7)
(coseo-ncoseIT)

= tan [(•"01T0'2R)] (8.8)

The Jacobian of the transformation is

i 6 nn-cos(oo-01T)i sec 2 ("'lIT-'2R) (8.9)
J(IT' 2R) = 7 (So- n s~T2 1 2 (89

(cOse0-ncos1T)2

A little geometry, shows that the allowed range of 62R is -101 IR < leIT!"
Thus, since :010 is always less than ir/2, we have Iu2RI < 7r/2. nd the step

function in Eq.' (8.1) is always unity. The range of O1T is determined by the now

familiar conditions (n1.-) > 0 and (-1) > 0. The result is XL < 0 1T < XU,
where

xU = r/2 - si (coso) , (8.10)

XL e00- [7T/2-sin'On--)] . (8.11)

By use of the transformation equations, the final form for (tlR) can now be written

down:

U
KtiR(Veo)) = LseCeOfoIT J(0IT,1)u(I1o V1-IRI)f1R[Sl(OIT),s2(0IT,())]

xL
x P[sI(1kT),s2(iT,0) ,11(eo),12(eIT),12(0)]

x exp{-Kt203 (iT)-_kiseceiT}

x exp[-K(k+k4)sec6) (8.12)

where
- o~ IT ('O~lT')

S2(oIT'e tan 2~~r) (8.13)
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The probability density P can be written as the product of five probability

functions:

PIs1,s2, 1 1(Oo),I12('iT),I2(O)] -- P(Sl)PPY PPN (8.14)

where

P1  = P[II(eo)IS1 ] , (7.16)

Pý = PHIi 2 (elT)Isl,Ii(oo)] , (8.15)

Pý = PIs 2 1s1 ,I1(6o),1 1 2 (i 1 T)l , (8.16)

P4 = P[1 2(O)ISl,S2,1I1(o),112(OiT)] (8.17)

The mathematical relations for these probabilities are

P 12 u(cote 0-1 SO (8.18)

P 1- SOoleTISl) (8.19)

where the bistatic shadowing probability is given by Eq. (6.9);

( 2V.) u(s 2 -cotOiT)P(s 2 ) , O<O1T<Tr/ 2P3= -erf V1TIT

S(e2 1T) u(cot6IT'S 2 )P(s 2 ) ' 0 1T<0  (8.20)
1-erf V1IT

P4 = ý . (8,21)

The quantities B and B are given by Eqs. (5.27) and (6.2), while

I cote iTI
cot - (8.22)

~1T 2
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The remaining quantities which must be specified are £3 and £4' the average

illuminated heights of points 1 and 2 for this process. The rcesults are

B(Bo'Bi-)(2Bor B0  r(2-12Bo+2B (Bo+BIT) 0r(I+2BIT)r

£3(0jlT) = (/2)½ ; [(2+2Fj +2BT r(1+2B) 1T (8.23)

0( 1O+BT) (12BT)'(2+25, )]

P14(O1T) 2 '4 -B (f/2)½ a (8.24)

IX. RECIPROCITY, AND TRANSM5ISION INTO A LESS REFRACTIVE MEDIUM

In the previous sections, our investigations were concerned with thl trans-

mission of light from a medium of index unity into a medium of refractive index
n > 1. We are, of course, interested in the reverse problem of transmission into

the less refractive med1it,m. Thus, for the sake of argument, we could consider a
source 'located at depth z = -X, with plane radiation emitted into direction k

I .) towards the sdrface. "ho strength of the radiation refracted into the air and

traveling in direction k, away from the surface is then of interest. Therefore,

I ~we want to derive /t'J(k,'k5
n-*1

It is expected that the solutioi of the (n+1) transmission problem will

follow from the already derived (1-n) transmission coefficients. This follows
because the transmission c-efficient nlust have a reciprocity property associated

with it which relates t& .,e interchange of source and observer. Reciprocity is
a general statement of the dynamical reversibility of the system, so its math-
ematical expression must be independent of the shape of the surface. Therefire,

we will derive the reciprocity theorem for a plane surface and then simply infer
its form for the general rough surface. We will also assume n to be real, which
is quite valid for the optical transmi;sion problem.

Consider plane-wave radiation in,*ident on a flat surface with normal in the
direction of the z axis. We choose this orientation because the transmission and

scattering properties of any stationart random rough surface must reduce in the
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long-wavelength limit to the transmission and scattering results for this plane ••
surface. We will initially restrict the incident polarization to be either hori-

zontal er vertical relative to the local plane of incidence; this will provide a

reciprocity relation for one dimensional surfaces. The transmission coefficients

of interest can be written down by inspection for the plane surface:
÷ ÷ . r lsinlo0

tp (kko) = [1r(c°Seo)It[o'sin-1--e) (9.1)

tp (-ko,-k) = [1-F(coso)]6[eo-Sin'l(nsine)] , (9.2)

where the reflectivities are those appropriate to either horizontal or vertical

polarization. For example, Eq. (9.1) states tiat the transmission coefficient

is zero unless the angle of observation coincides with the angle of refraction

for a plane surface as calculated by Snell's 'law. The bar on the reflectivity

in Eq. (9.2) is a reminder that for the (1-n) process, we have, e.g.,

R co c°Seo [n2-sin2eo]½

HO 0' cose 0 + [n2 _sin2 e•J.

but for the (n-1) process,

RH(cose) I - '52 (9.4)

cose +-. 2 - sin2'½In6
We now use the relatio95

where

f(e) = so-Sin1 (nsine) (9.6)
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and 6 is the solution to

f*)= 0 . (9,7)

The root O* is easily seen to be

6* = s (n"1 e) (9.8)

and, since,

If'(e)I = ncosO (9.9)

(1-n2sin2e)

we have, by use of the property of the delta function,

t( - [1-r(cos") " (1-n2sin2*ncose (9.10)

OBut it is easily shown that
SF (cose*) = r(coseO) , (9.11)

(1-n 2 sin2o*)½ = cos° 0 (9.12)

so

cosO
tp(-ko,-k) = ncos- - r(c°So)]6(ee*)

tp(-iko-k) = nc--os/tp(y',o) (9.13)

This is not the most general form of the reciprocity relation, for the t's

are defined "per unit sector of angle," and angular widths are not invariant in

the transmission process. In order to extend Eq. (9.13), we again illuminate the¶ flat plane with radiation of constant intensity but now with a narrow sector dO0
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of illumination angles about the angle 0. From Snell's law, sineo nsine, the
L0

angular width of the corresponding refracted radiation is

coseo
de = no- deo , (9.14)

The substitution of this result inte Eq. (9.13) yields

do tp(k•,•) = deo t p(-ko,-k) . (9.15)

The left-hand side of Eq. (9.15) is the fraction of the incident energy which is

transmitted. This is evidently equal to the fraction transmitted in the recipro-

cal process, i.e., with the source in the medium and radiation of width do about

direction -k incident at the interface.

The value of Eq. (9.15) is that we can generalize to "two dimensional"

results by simply replacing angular sectors by solid angles and by introducing

polarization notation in the usual way; i.e.,

(dodsin)ti,) = (do0 do sin0o) t0J(-o k,) . (9.16)

Since the incident ray, the normal, and the refracted ray all lie in the same

plane, we have do = dio0. Then, by use of Snell's law and Eq. (9.14),

4 . cose 0 j
t p(4k,-)= 2 tp(k.k 0) (9.17)

n cose

Because of the general nature of the reciprocity principle, we expect that the

coefficients for the general random rough surface satisfy

4.+ cose j{i }
<t ij(-ko, -k)) 2 n~os(e ) (.8

Finally, we replace -k(ks, -ko0 -V to obtain

:i k)oe It)_ s- (9.19)
(k ) I -n coses
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~ We can new substitute the results of Sections V, VII, and VIII into the right-
hand side of Eq. (9.19) to obtain the corresponding partial transmission coef-
ficients for refraction from water into air.

x. NTENSITY RELATION FOR UPWELLING RADIATION

Upweiling radiation from beneath the surface is an important component of

sea color. Such radiation originates from the backscattering of transmitted sun-

light by both molecular and particulate matter or, in shallow water, by the sea

bottom. Some of this scattered radiation is reflected back into the medium by

the sea surface, but a certain fraction will be transmitted into the atmosphere.

The intensity reaching an observer above the surface in direction k will depend

on the original intensity, the transmission coefficients for the (rough) air-

water and water-air interfaces, and on the scattering coefficient defined as

iyj(k 2,kI) = fraction of incident (kI) radiation, with

polarization i, which is scattered into

0 direction k2, in polarization state J.

The expression for the intensity of the upwelling radiation, in polarization state

n, is clearly

j=1 m=I fram

x ti (t,ko)(Coseo)Io(k 0 ) (10.1)

where Ii(ko) is the initial intensity, in polarization state i.

Strictly speaking, the transmission coefficients for the physical-ocean

medium will differ from those derived in the previous sections on the basis of an

idealized semi-infinite homogeneous medium. The physical medium has a fluctuating

index of refraction which makes the description of propagation much more compli-

cated than the exponential absorption model adopted here. Nevertheless, the t iJ

of this report should be sufficiently accurate for clear waters. Also, we will

assume that the distance to the bottom is large compared with the absorption length
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so that any radiation scattered off the bottom and subsequently scattered back

into the medium by the surface will be of negligible intensity as compared to the

direct transmission component.

The simplest application of Eq. (10.1) is to a homogeneous (but absorbing)

medium with a plane bottori (of zero slope). Then, the scattering coefficient is

'Y t) r rj(k5t.)6 J6(ks-k5 ) (10.2)

where

ks = kt-2(kt*z)z (10.3)

Here, rj is the reflectivity of the bottom for radiation in polarization state j.

We also assume a plane wave for the incident radiation, so

ii ^ ^
Io(k) ) = 6(ko-ko) (10.4)

Then, the substitution of Eqs. (10.2) and (10.4) into Eq. (10.1) yields

cose 2 ^ _

ki(•) = (co__ )i l d t tjn( k*k)rj(kt'z)tiJ(ktk°) . (10.5)

All quantities in this equation are known, with the transmission coefficients

available from Sections V and IX.

XI. CONCLUSIONS

A ray theory which describes the transmission of light across a random rough

boundary has been formulated. The approach uses a complete geometrical-optics

r r tretnent in that multiple-scatter and shadowing effects are retained. The mair,

results of the analysis are as follows:

1) A theory of shadowing for the transmission problem ias been derived;

i.e., the probability that a surface point is visible to a source above the sur-

face as well as to an observer below the surface (or vice versa) is now available

in closed form.
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2) The transmission coefficient, which determines the angular profile of

transmitted energy, is expressed as an expansion in terms of the number of ray

intersections with the surface. All terms in the expansion are positive, so

the retention of, 5ay, the first m terms yiells a lower bound to the true value

of the transmission coefficient. The leading term, the direct transmission coef-

ficient, is corrected for shadowing but contains no multiple-scatter information.

As expected, it is proportional to the probability density of that slope which

connects the incident and observer directions by Snell's law. The direct trans-

mission coefficient is derived for the general two dimensional random rough sur-

face, and it therefore contains polarization information. Expressions for both

air-to-water and water-to-air transmission are available, the latter by a reci-

proci ty argument.

3) Higher-order transmission terms were formulated only for the mathemati-

cally tractable one dimensional rough surface (cylindrical symmetry). Thus, a

ray of sunlight may reflect from one point on the ocean surface only to intersect

the surface again at a second pjint. The angular profile due to transmission of

energy at the second point has been derived; the total fraction of incident energy

associated with this double-scatter process is about 3% of the directly trans-

mitted energy for likely ocean roughnesses. The corresponding process in which

a transmitted ray of sunlight is reflected by the under-sea surface was also

formulated. I. is expected to contribute significantly to the below-surface

radiation profile only for near-grazing incidence and the very roughest of ocean

surfaces.
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APPENDIX A

We consider the general case of a medium with complex index of refraction n,

where
n= n + ini (A.1)

Snell' nas the familiar form for radi&tion incident on a plane surface at

angle bol
I' sine 0

sine = S , (A.2)
n

but since c is complex, the quantity o. r is also complex and no longer has the

simple significance of the angle of refraction. The angle that is significant,

eT, relates the direction of propagation of the surfaces of constant real phase

with the normal to the boundary. From Born and Wolf, 8 we have

sine
sireT D- D ' (A.3)

where ni

D sin 2e+n2q2(cosy - •- siny)2  (A.4) j"'

and q and -y are real numbers defined by
Ilu

cosbT = q exp(iy)

For optical radiation in the blue-green band, the d~tenuation length for
clear water ranges up to about 30 meters, so at the peak K = kni = 3x1O- 4 cm" 1 ,

and ni is a few tiies 10-9. When ni/n << 1, the quantity D rejuces to
2

D =n 1 - 2l sin20o) . (A.5j

Since the correction term is only of the order of 10"18 for the optical (blue.

gri-en) transmission problem (n = 1.33), Eq. (A.3' takes the form

sineo

sire- .0  (A.6)4n
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11 0 APPENDIX B
We are concerned here with refraction across an arbitrarily oriented plane

surface (Fig. 5). First, let us consider the incident plane wave to be hori-

zontally polarized, i.e., the electric field vector is orthogonal to the (0- z)I plane of incidence:

Einc00I n exp(iko0 .r) ; ko= -sir1o~X- cOSeoZ (B.1)

We now transform to the local (k o- plane of incidence:
I

y alv1+blhI , (B.2)

where

'^o ^
(kox n 1.

hI)= ^ ( 0 , (B.3)

V A

= -k0x hI , (B.4)

and, after simplification,

nl"Y
aI (B.5)

!koxn1 l

A A

n *'v 0
bI = o n vo - - coseox + sine z (B.6)

IIkox ni 0IThe incidnt, field now has the canonical form

ikor ^ "kr

E, avi e + 0e (B.7)
Inc 11+~~
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so the refracted field is 0

HA ik T* A 1'IT or
E efr a1tv VIT e + bltHhI If! (B.8)

where

v = AT A kif (B.9)

and the superscript on the refracted field indicates the initial' polarization

state. The quantities tV and tH are determined in the usual way byrequiring

continuity of the tangential electric and magnetic field components at the

surface:

= 1 +RH(COSct) , (B.1O)

t I+Rv(cosaI) (B.11)
tV , n

A_ 
A

where, as usual,,' cosa = (-k nl).

Equation (B.8) is not in useful form for IT and h are polarization vectors

for the local plane, while we require the polarization vectors for the (kiT-Z)

plane of observation:

'(ki Ix Z)
= (B.12)

IklT X zI

PV= -kiT X PH (B.13)

Thus, VIT and h1 can be expanded in terms of these unit vectors:
II 1I ÷

ViT ciV - c2PH ',

hI = c +2P (B.14)
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S with

C I = hl.PH (B.15)

C2 = hl.Pv (B. 16)

Equation (B.8) now takes t•:e form

+ iklT'r
Erefr (alcltv + beC2tH) e

4.
(bicitH - aC 2tv) H e Tr (B.17)

'The time averaged Poynting vector, N = Re(E x H*), can now be used to

find the fraction of energy incident on the plane surface, in polarization state

H, which is refracted in.to final polarization state H or V. We designate these

fractions as T HH and THV

SHH_ - refr'. --cs_ (B.18)

i=

Mincl Cosa'~ g '1
- nblcltH - a1c 2 t V12 (B.19)

and, similarly,

=THV nja 1cltv + b1C2 r, 2•-• a , (B.20)
~Cosa1,

where, ty Snell's law,Ii'"
2 2 '22

ncosoI = [(n2-1) + coseoaj] The .Iternate quantities VH rand TVV corresponding to vertically polarized in-

cident %.adiation, follow from Eqs. (B.19) and (B.20) by the replacement a-bj1 ,

bl4 -a,:
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2:::::cit + b ctiCosat (B.21) C

T vv= na C b tvi2 (.21
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* APPENDIX C

Snell's law relates the angle of refracticn to the angle of incidence on a

plane surface, but the angles are defined relative to the surface normal. For

an irregular boundary, we must apply Snell's law to each of the locally flat and

arbitrarily oriented elements comprising the surface. Then it is convenient to

talk about the angles of incidence and refraction defined relative to a single

coordinate system.

For isotropic media, the incident ray, the refracted ray, and the normal to

th2 surface all lie in the same plane (Fig. 6). We want to derive the vector

relation between the direction of the refracted ray and the directions of the

incident ray and surface normal. One triplet of unit vectors is

_^(k 0x k IT) A

^o- x I , and V, where
-k0'Ix ki1 tI

^ (kX klT) (C.1)V - AC l

Ik0x kITI 0

Then, the application of vector algebra leads to

A AA

nI = cosa(-k 0 ) + sinc V (C.2)

= sin(a-a' L(sina')k 0 " (sina)klT' (C.3)

By use of Snell's law, sina, = nsinc', Eq. (C.3) simplifies to

nklT = k0 - {[(n 21)+cos 2a] cosaln 1  ' (C.4)

We now apply the general vector relation, Eq. (C.4), to the coordinate

system of Fig. 5. The components of k and klT are

A A A

ko= -sineo x - coseo z , (C.5)
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klT - (sinOlTCOSOlT X ÷ sineiTsinf1T y + coselT z) , (C.6)
#1T

where the minus sign in Eq. (C.6) arises because kit is defined relative to the -z
direction (Fig. 2). In addition, we make use of the geometrical relation between

the direction of the normal to a surface point and the slope components at that

point:

(- ^ (-lx - s! y + Z)

nI I .y.. (C.7)1- 222
(1+slx +S ly)

The substitution of Eqs. (C.5)-(C.7) into Eq. (C.4) yields expressions for

(SiSy) in terms of the incident and refracted angles:

(sineo-nsineiTCOSlT)Sl = , To~T (Co,8)
(ncoselT-coseo)

Sly nsinelTsin4lT (C.9)Sly = -ncoselT.COSo)

In Section V, it is necessary to transform integrations over slope var4-

ables into integrals over the angles (eIT,¢T). The corresponding limits of
integration for the angle variables are not simply arrived at for the general
rough surface. We see, from Eq. (C.4), that, for fixed ko and n, the direction
A AkiT varies with the normal n1 . Hence restrictions on the surface norma, are

equivalent to restrictions on klT. The first restriction is nl-z > 0. From Eq.

(C.4)-(C.6), we see that this condition is equivalent to
i (ncoselT - cose°>) 0

[(n2-1)+cos2a]½ co}

or, because the denominator is always greater than zero,

ncose1T > coseo (C.10)
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The second condition is (-ko n1) > 0. The substitution of Eqs. (C.5) and (C.7)

into this condition yields

SSlx I Cot~o (C.11)

We now substitute Eq. (C.8) into the left-hand side of the inequality. After

algebra, the condition reduces to

ko .kl1T > 1n (C.12)

Since n- 1 =3/4 for water, this latter condition is a severe one.
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