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THE EQUATIONS OF INTERIOR BALLISTICS

Chapter I

Thermodynanmic 1'oundtions

In eCtiabhishing i, ,- l.o . , , : rl:
ball~stics we be'in for sir,)3c'ity by ' f fo. tLh. p,wdcr g:.-; &n
equation of state of the co--volu. type'. Such an coution is a van
der Waals equation containing 'e "b" t!,rm but riot the "a" te-m.
Possible modification of the equation of state and the effect on the
equations of interior ballistics will-be mentioned later. For a gas
obeying such an equation of state the specific internal energy depends
only: on the temperature and not on: the density. Even if such an equation
holds for each component gas, however, it can hold for the mixture only
if all ch-emical reactions that occur are equivoluminar and if gas
imperfection has no appreciable effect on the chemical equilibrium
donstants. This statemeht follows from the facts that an equilibrium
constaift is independent of density only if the latter tw8 assumptions
hold and thzt dependence of equilibrium constants on. density would-mean
dependence of relative concentrations on density as well as temperature,
with a resulting dependence of specific internal ,energy on density as
well as temperaturci

The assumption of the co-voiume type of equation of state thus
Involves a restriction of the theory to "coo1" pcwz' ez, for with 'hot"
powders dissociat'c.ls and other non-equivo]uminar reactions come into
play. With this same ruling out of non-equivolumin-ar reactions and of
the effect of gas imperfection on -equilibrium constants one also 'has for
each powder composition a definite explosion temperature which is in-
dependent of the density of loading. Thus the decomposition of one gram
of such a powder always J.ibe .atts the s-±me m:ouni of energy, which then
warms the one gr am of powder gas to the same temperat-re, indepeu"iently
of the density of loading. On the other hand, dependence Of equililrium
constants on density would involve a dependence on the density of-
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loading of relative concentrations and thus ctf specific heat and ex-
plosion temperature.,

Earlier treateints of interio' ballistics involved the
assuJption that the spccific heat of the powder gas is independent of
temvperature. Modern developments in quantum physics and in heat
measurec,ents have shown that such an assumption is untrue. Dederick(l)
pointed out that the internal energy of the powder gas at temperature
T can l)'2 expl.essod in terms of an ave."age cf the specific heat over- the
who? , .. . . :.,'. fzvo.., a :,oluLe -ero to T. By vest-rictioli of
the .1cc',y, houwev.vr, to cool powders and the consequent existence of a
definite exp)os)on teml:perature, such long range averages may be avoided
by th initroluction of Kent's concept of the pote-ntial of the powder.
We proceed next to d.velop this concept and .to obtain the fundamental
enerfgy equation of interior ballistics.

Let To be the expltsion temperature* and T the temperature of

the main body of the gas; th .gas is formed at-temperature To '* and drops
to the lower temperature T because of work done on and heat loss *to the
suriroundir..s. Let u(T) I._ the siecif-ic internal energy"%.. of the gas at

, T -: u(To) Y nt-. na! encrgy at Le:,peatue T0 .
Then iI C is 'he or-iv'lo ru- of the powcr and G the fraction burned
at timie t, in tim' dt nass C dG of gac is formed at temperature To, so that

the gas gaiins' energy C dG u(ToY This gain is expressible as the sum of
a term d CG u(T) , the gain in internal energy :6f the main body of gas,
and a term 6W, composed of work done in imparting translational kinetic
energy to the proj'ctile, to the powder and. powder gases, and to the gun,,
in overcoming passive resistance, and in stretching the gun, and of heat
Ioss to the gun. We :have thus:

,C dG u(TO) = d ICG u(T) 6W (1)

Eq. (1) can hold strictly only if all gas reactions are equivoluminar
and gas ihiperfection .has no effect, on equilibrium constants. Now, since
u(T.0 ) is constaht,,

C'dG u(TO) - Gu(T) d CG u(T) -CG u(T) (2)

(1) L.S. Dederick: Certain Considerations in athe'Thermodynamics of Gases
with Applications to Interior Ba-listics, R-l-14, May 17, 1928i
*The adiabatic closed chamber explosion temperature is referred to
throughout.
i See Addendum to Chapter I.
**Cexclusive of the macroscopic kinetic energy of flow.
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Thus 6W is a complete differential dW, where W represent,, the sum of
total work done and heat loss up .to time t. We have therefore from
Eqs.. (1) and (2):

CC u('ro ) = CG u(T) + W + ki, (3)

where k, is a constant of integration. Now customarily the time origin
t = 0 is taken as the beginning of motion, but Eq. (3) holds also for
negative values of time as far back as the beginning cf burning, at •
which time G = 0 and 'd = O 'Thus the integration coruitant I:, vanishes,
so tjzat

CG u(T0 ) = CG u(T) .- W (4)

The introduction into Eq. (4) of a short range average specific heat c
(To,T),, defined by:

(To,T) (T - u(T) I - T) (5)
0T

gives

CGcTo=CGc T + W
We now introduce some definitions:

-tree volume Q: gas Volumo - co-volume

p): appropriate, space - average pressure in the
equation of state. We assume that the proper space - average pressure
for use in the rate of burning equation is: equal to it.

R - gas constant .per unit mass of-gas.

Potential - C TO  (7)

yj analogous to the ratio of specific heats in the older
theory,, defined by:

- /R (8)

The equation of state then takes the formi

L pfl = CGR T (9)

Eqs. (6), (7), (8),, and (9) together lead to the fundamental energy
equation of interior ballistics:

PCG -pl/(y-l) + W (10)
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y is analogous to the ratio of specific heats in the oider theory, C to
the specif ic energy of the powde,,. end pc/(,y-l) to the internal energy
appcavri, iii that tLtcory. The (analogy, howtever, is not to be confused

inteall cuei.gy reuferred to in ther theory was C i(T- u(O)]

It is apparent from their definitions that cj},, and y are
weakly varying functions of tcmperatu, . We consider them hencef6rth
to be corist nt, a-sumii|" that they are evaluated for some mean tempet-
atul- u tie 'x.cn , o' t-r'>n': tur - s ctu-Dly occ-1-ing in the gun. In
so:,,° ecfficientE, that apjQ,,i, later [., and yi occur, togcther as the
product ,:(y.-l) , which, is seen by Eqs. (7) and (8) to be given by:

The quantity RiTo,, which we shall denote by A, is sometimes called' the
".force" of the powder. If-R "is the universal gas constant,, i.e.,, the
-gas constant per gram mole, and if Z is the number of gram moles per
gram of gas, then

R1  ZR, (12)

so that A ZRTo (13)

With the restriction to "cool" 'powdcrs, all gas reactions that occur are
equivoluminar or, speaking more strictly, equimolar. Since displacement
of such a, reaction will not change the number of moles pr grams Z and
thus Rl-and A are independent of temperature and- of density of loading
for such "cboi" powders.

The quantities To, c, and X may be calculated as follows.
Let O. be the heat of formation" ,at 150C of one gram of the solid powder
from the elements and Q,"the constant volume heat of formation at 150C
of one gram of the powder &ases. Then Q2 - Q1 is the energy liberated'
when one gram of the solid powder at 15°C decohposes -into powder gases,
at 150C. If the reaction takes place adiabatica,.1y rather than iso-
ther-mally, then this available energy 'heats the podeqr' gases to the
explosion te, perature T0 . In this final state the-re will be a definite
numtber of moles x. (TO ) of the i th gas. Although irn the actual, process
the miolal concentrations may change during the heating., the same final
state will be reaahed if we assume the solid powder to decompose directly
into the final 'molal conceutrations present at temperature To : this
statement follows fro.i the first law of thermodynamics. Thus we
interpret Q2 - Q, as the energy iiberated when one gram of the solid
powdei- ecoiposes ii:to powder gases at 150Cj the conacntrations, how-
ever, being as at temperature Tw.

.in a closed chamber

--



If we now denote by U.(T) the molal internal energy of gas i at temper-
ature T we have

Ui(T 0) -Ui(288)'Q2- Q1 -ijrO)

where the summation is over all the species of gases present. To solve
Eq,. (14) for To, one assumes a value for To, calculates the equilibrium
constant for each reaction, and uses the equilibrium-equations and
equations expressing the conservation of the number of gram atoms of,
each eleent; these iatteri niumbers av*e krovn :ro:i the composi'tion of the
solid powder'. There are then as mahiy equations for the x~i's as there
are unknowns; these equations are then solved and the solutions inserted
into Eq. (111Y. This process is continued until Eq. (Jl) checks. In
carrying out this process there appears as a by-product a table of values
of the xi's, as functions of T, and thus of ihe function F(T), where

:F(T)->ixi(T) LUi(T) -Ui(288), (15)

Values of Ui(T) - Ui(280) are given in a -book by Lewis and von Elbe.
2

Our specific internal energies (per gram) are. now expressible as:

UT) = xj(T) Ui(T) (16)
u('To) : ' xiT) I(To )  (17L)

Combination of Eqs. (15), (16)', and (17) gives:,

A uIT - u o ) - - xj(To), ( BV l F - iU(288) q(T) -i(T 0  (18)

Cr) let , 1(T ) -*iiT B -xi  (1

-As the gram of powder gas drops in temperature from To to, T the
equilibria of the chemical ieactions get ,dirsplaced. In each reaction
.a " gets a certain mole increase, positive or negative; let Axi Q) be
the mole-increase of gas i in the jth reaction as TO-'4T, and let 'N' be
the number of react-ions tak.eh into account.

Then Axi  Axi (20)

Then frm Eqs. (18), (19), and (20): N'

u(T) - U(T o ) = F(T) - F(T+o) "I-ZUI(288)' ' Ax1 (j) (21)

-=FT)-F(TC 0 ) + 1 j28) A~(} -22)

.Bernard Lewis and Gunther von 1-l-be;
.. "Combustion, names and Explosions of Cases", Cambridge (1938)

*5



Now the quantity - .U U1(288) Axi(j) has a s"imple interpretation,,
readily deducible from tle fir* s aw- of therinodynamics. It is
interpretable as the heat J iberate'd in the jth reaction taking 'place at
150 C and at conistant volume, when the mole chifts are the same as those
that occur in the jth reaction when the whole powder gas drops from
equilibrium at To to equilibrium at T. Now the constant volume heat at
150 of the jth reaction can be calculated from the constant volule heats
of fornation at l50 C, and the mole shifts above referred to are 'known
from the calculations already done to find T Thus the second teri-in
Eq. (2 ) can be calculated, so that u(T) -,Ui o') can be calculated:

the c'alcu.]ation of (T- T) and of follows at once. The evaluation
of R, y , and X fcllows as soon as Z has been obtained:; we have inmedi-
ately, however,

S- x i(TO), Q3)

so that all quantities so far introduced can now be evaluated.

6i

6i

- **~***" ' -- ~fl% S * - ~ ' ' '~'~" ~ A > -. Y'W - "p" ~ *'-
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Chapter I!

The Heo't Loss Problei

We next consider the evaluation of the various terms of which
the quantity 11 in our fundamental energy equation (0) is composed. The
inost difficult part of W to handle in any rational manner is the loss of
heat by cont-ict of the hot gases with the walls Of the gun. Onfortunate-
ly this~ h, w c- ' te(... i, cr on,~~c nce in Smal. ;r:!,s-, whero it may
bC Lqu..! tc tnt- klantio ycqv uited by the plojectile. This chapte-
is devotcl to outiniw, the riin features of a possible rational attack
on the prelK. -,:-d a satctment of the epirical procedure that we shall
actually avlopt.

Rlotation: t, time from beginning of motion

-tj, time at which burning begins

x, distance frca, breech to an arbitrary cross-section

. lzLlh O o-:, ir ~ue

s, travc of projcctile witi respect to the gun

D1 , diameter, of chamber

D2 , diameter of bore

Al, 'cross-sectional area .of chamber

A2, cross-sectional ar-ea Of bore

T, temperature of'main body of gas

Tb, temperature of breech face

Tw(xt) temperature of walls of chamber and bore

Tp, temperature of base of projectile

hb, coefficient of heat transfer from hot gas to breech face

11, coefficient of heat-transfer from hot gas to walls of
chamber and bore.

* There is sove theoretical indication that the heat less may be im-

portant also in large caliber guns.
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1,, coefficient of heat transfer from hot gas to batc of projtctilciQ(i') %oral h*eat loss at tiraL t IY. con'taCt of gas W,-Uth e,1U11.

The torall loss Q(t) is made up) of the p)1sQD to the bleec0,
to % the chamber, wLlJ, QbVI to the hope vail, an(, Qp to the hase of the

projectile. The component losses are given by:
t

hbUA1  ( dt (21)

-1i

t 1

Qc J hwdt ir D1  (T-Tw:)dx (25)

t L+s
r

.I hdt L (T-T ).,: (26)
Qb, w 2 2

o L

t

Qp = hp A2 (T-Tp)dt (27)

-ti

Fr6m the beginning of burning at time -tl to the beginning of motion at
t = 0 there is no motion of the powder gas as a. whole, so that zhe
transfet, coefficients in this interval are f r a sort of "free con-
vection". After time 't = 0 there is stalll no motion of powder gas as
a whole with respect to the breech face or the projectile face, so that
the transfer coefficients hb and h are stll for "free convection".
There is after t = 0, however, motion of the gas as a whole "with respec
to the walls of chamber and bore, so we speak of hw as a transfer coez-
ficient for "forced convection1

To determine h one night use the expressions for forced con-
vection .given in McAdams , although these exnreszons seemln to be f-or
values df the Reynolds number somewhat lower than those that occur in
a gun,. Al such expressions, however, give zero as the answer when the
velocity is zero, and it is hard to believe that the he at loss with the
gas at rest would not be apprecial'ie,

3W,, H. McAdams "Heat Transmission", McGraw-}I)Il Book C. :mpany, (1933)
Chapter VII.

9



Surthermor , the "f rue convecLion" transfer coefficients that occur here
ale foil situdtions tht do nut occur in ordinary cases of free convection,
since fv!.e convcetion in a gun i. prob-lil!y associaled with strong turbu.-
3.ilecc. 'h'him e&. in thv wzall t :..prcitur:m are not known. Of course if one
knew th,.,cjI2nfez co-Jficients oie migh i ca.lculate the wall temperatures
fro:n the gtci,, t'ry, th..,,al conductivity, and specific heat of the gun and
the transfer coefficient from -he outside of the gun to the air. Such
a calculation, huwevvr, would have to be a special one for- each gun, and
would appay.-iitly not be applic-AJe to a :general trea, lent of interiol,

I urt bc.r.tor-V, even if on: could evaluate the heat loss accura'tely
as a ful,',.tJonx of t, the icsultiir cu-iplicticon of the equaLions with
the add oof xiray cxrp might miaka it iinadvisable to use
the accurate formula. For all these. reasons we adopt tentatively the
procedure of tcking Q to be proportional to the kinetic energy of the
projectile. Thus if in is the mass of the projectile and v its velocity
,with respect to the ground, we have:

Q(t) k 1/9 (28)

S v. , . y . vau t. J,. / ' . d Q(J). . n :. 2 .;
muzze v[.lues of C -r bebt kro:n for aci'.e guns, fr- which on., can
mreasul C ho tot;. heat develoead in a larof n r of -onds., and divide
that value by the ut:;bcr of rl:.ds. it is urobably bict(r to take heat
loss into account in this way than to neglect it altogether, as has been
the custom up to the present.

In the place of any better tzcatnient we may regard any energy
lost in stretching the gun as moportional to the kinetic energy of the
.projectile. Thus in Eq. (28.) we regard Q as the sum of heat loss and
stretch loss, and k as a constant that takes both into account.

i0



Chapter III

The PrOlctr.-- t[¢i.i.S a P o lm

In this chanter we consider the tan1ationA. and rotd iotl.
motions of the projectile and the passIve reIid tac, The motioi of the
po.der and powder gases and the recoil of the gun a-c omitted her-e,
since thei' ,proper consideration requires a treatment of the hydh o-
dynamical probleims (Chapter IV).

If l is 0,', l z,- ..  th-,- pv)o jCCt~,J V v it,' , y wil,
respect to the g-r.,1d D. the prebsure xui'ed to piroduce the t,.
lational acce)"cratcon', vltrans 'the translatjoi:aJ kinetic enemLy of the
Projectile, an6 A2 the cros-scctional area oE tile b~r2 theh

Pa = m dv (2a)
T-2 at

Wtrans 1/2 mv2  (30)

c h treatxvg 'Pottio a mot3on we cons{ider only tihe cas,! of a
consta:nt _.o_,-:l,, of r !:,; (!r :th co,,tq-zJ -n " :/ c %,

is helica in for.z, so that devc]opr.ent of the bore o.r  he t Col., a
plane results iW the sitration depicted in 15g. 1.

Fig. 1.
Development of Bore on, Plae

'P_ __ _ p __

rr 12

For the point P on the rotating band, touching one of the lands.,

yp = p tan r, (31)

11

- ' t ~ n - w i '- - - .
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If the angu3ar coordinate (in cylindrical coordinates) of the point P

is deuoted by 0, and 1) is the diamnetcr of the bore, than

yp 1/2 GD2  (32)

From Tqs. (31) and (32),

0 = 2z tan C, (33)

]f v is t !i i velocity of the projcctile and to its angular
velocity:1 then

dz
S" _P (355

dt
u = d0 (35)

Eqs. (33), ({3 t), and (35) give:

ci= 2 tan V'rv (36)

Letting Wrot denote the rotational kinetic energy of the projectile

ald Rg its .. tius of Lyration, we have

Irot = 1/2 mR 2 ,2 (37)
g

Eqs. (33'Y- a l (37) then give:

Wrot = 1/2 mv2 fltan2'c- r (38)

where fl - -(2R 9/D2 )
2, (39)

about 0.6 for most projectiles.

low- let Prot denote the pressure required to produce the
rotation. The power going into rotation is

A2Pro rot = My d fl tan2r (zO)
dt

so that Prot A-2 dv tan2 Q (,4)

We next derive an expression for the energy loss due to
passive .-esistance, i.e., due to friction between the rotating bond
and ihL bore of the gun. It is assumed that engraving has been com-
pletedi We call the part of the rotating band between two of the



grooves a "ridge" of the band, and of the fovces exerted' by the bore or,
the projectile take into account -nly thos;e fol.c.s exert:< oil the r, dge.
by the driving ,ides of the land.s of the bore. 1e a!,o d.;i'r,- th0 ]'w
of friction to hold between a ridge -inh the con t3guoun d)'av'i .Xid.
Thus in Xig. 2, of the pressures indicated, only 'n is taken into accouit:

RiDGE
/

LANDS

The forces acting per uhit area on the side face of the r1idge a.e IV
the pressure exerted by the side face of the contiguous driv'ing lan,
and r-. the friction force per'unit area. We now introduce the unit
vectors Ih along the normal to the ridge in the general direction of
rotation and I t along the tangent to the ridge in the gerenacl direction
of the breech. in the system of cylinCrica' C:oo in;2t's 1/2 I 2 , a
Z, . ... eio, pc ,:-ve in t" - - . C. !.- a,. . .. .. ., . .
frrc: the breech alcvrg the a:iz of the ,,! & C.rodic, t}ae hrzx vc.f.tc'slD and J;,. Then

P =lPn

F-= -I t IL

In =-z sin e

"it =1z cos r + 10 sin

The components of total force per unit area on the side face of the
ridge are then:

z cfmponent - (Pnsin or + f cos (i13)

0 component Pr, cos r - f sin r (1111)
Integration -of Eq. (43) over the side tace of the ridge and uiultipli-
cation by I, the nu.mber of lands or of ridges, gives the total forward
force on the projectile due to the bore. Multiplication of Eq. (4) by
1/2 D2 , integration over the side face of the ridge, ard multiblication
by 11 gives the total torque on the projectile. On the assumption that
Pn and f are uniform and that the angle of rifling, is constant, we get:.

r ,- 1 Ak (Pn sin O, f cos 0') -6)

Torque = 1/2 NARD 2 (Pn dos 9r- f sin (116)

where AR is the area '6f the sine face of a ridge.

13



The law of friction states that f is proportional to Pn' so that

f P ' (1'7)

vhcrc pis a constant, Eq. (I7) may oi- may not hold accurately for the
friction of the lands against the ridges. If it djes hold, however, the
cocfficient of fricl ion 1i may not have the value that it has for ordinary
casc of the fricti(ni of steel and copper. We may now express N AZP n in

terms of the accelc Aion Xv as ollows. Insert Eq, (117) into Eq. (I16),di.

equ.tu Om- 1: Iue t-,. ... : i -o q. (36). One readily obtains:
dt

N A,1.1 - T-111 tanr . d ('18)
CoS. -r sill r • dt

where f3 is given by Eq. (39). If we now let FB denote the force on the

base of the projectile, we have from Eqs. (1,5) and (117):

r - N A P (sin:, + 1 cos ') = inv (419)
B P 1 I dt

Eqs. (4E) aln ("'t!) tgt:! -!.-: "
"1

B B - fl tan "r (tan r + i) (50)B d-i l ptanQ J

Letting pass denote the passive pressure and W the energy expended

in overcoming passive resistance, and realizing tat Eq. (50) gives the

total foi-ce necessary to produce translational acceleration ahd rotational
acceleration and to overcome passive resistance, we have from Eq. (50):

Prot + p m dv fi tan cr (tan p + I' ) (51)

A2 d- 3.- I tan',, tan

Wrot Wpass = 1/2ny2  fl tan (tan " m-, ) (52)

I - tan *?r

We may expect to have

v ta1 (53)pi tan' «1f

With the approxin-ation (53), comparison of Eq. (51) with Eq. (11) and of
Eq. (52) with Eq, (38) gives the equations:

p = m dv , (54)

F T 2 t

r6
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Wpass /2 mv2 p (55)

where l fl tan 'n ' (56)

In view of the difficulty of obtaining the value of the

coefficient of friction under the actual interior ballistic conditions
and possible doubts as to the validity of the law of friction, we shall
not commit ourselves to the ,subseqtient use of Eq. (56), but shall treat
II as a quantity to be determined by experiment or by comparison with
firings.

In order to take into account the fincr details of a tra-
jectory one might use a ccitain con.Lant value for It' during the process
of engraving and a smaller constanV value thereaf:Ver. One should also
mention here the suggestion that has been made, mvotably, by Dcderick"', of
using a constant value not for 1i' but for the passive pressure itself,
orl of one constant passive pressure during engraving and a smaller one
thereafter. Assumption of a constant passive pressure

Ppass = Pl (57)

leads to the e:.:prcsion

Wpass =P1 S, (58)

where s is the travel.
The pressure p on the base of the projectile may now be

expressed with the aid o?Eqs. (29) and (L41) and Eq. (54,) or Eq. (57)

.Case c, Passive Pressure proportional to Accelerating Pressure:

pp - m dv (1 + V' + f tan" p ) (59)
A 2 dt . r

Case II. Constan Passive Pressure:
pp - m dv (i + f, tan 2 r) + P]. (60):

A 2 dt

If we ,now let vI denote the recoil velocity of the gun, e
the ratio vl/v, (which will be shown later to be a function of travel),
and u the velocity of the projectile with respect to the gun, then

v = u/(l+e) (61)

[n, p p( m  du- u _d (lip' .+ f tan ? ) (62)
A li-e) L.t (I+e)7

(Case I)-

'4L. S. Dederick: "Project for a New Table for Interior Ballistics",,
~RI .7
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or

Pp du (1 if tan~_ 2 M(i

Lit (i~c)~(Case II')



Chapter IV

The llydrodynamzical Pr'oble,is

1. The Equation of Cont .'tinui e adopt the !-"oluowing
no tation.

x, distance from breech face to a varlable cross-section
in the chaliter or the bore,

X, distance from breech face to base of projectile.
a(x), cross.-sec"P;nal area at distance x from brecch face.
w(%) , total vo,'_.r -Pex brT.h e to Cro.s-_.:-t1 -1n at

distanc x.
C, mass of powder charge.

p(t), density of powder and po:der dhs mixture.
ug(x,t), velocity at distance x from breech face of powder gas

with respect to the gun.
v (x,t), velocity at distance x from breech face of powder gas

with respact to the ground.
u, velocity of the projectije -!th respect to the gun.

tc-Ci in . .

In this chapter cftr fur,.v.- rteh . h.U-.is.o
Ramsey's 5 thcory of fluid .oIoio In -,-,e gu. These are-

(a) tne density of the mixture of powder .and powder gas
,is unifr m although variable with time;

(b) the velocity ,of flow of this mixture is ,parallel to
the axis of chamber and' bore and uniform. oyer a cross-
I ectioh.y

In regard to bypothcsis '(a) we refer to a paper by Kent 6

in which he shows that noh-;uniformity of density can have only a small
effcct. He show;s that non-naf;iet.' of density changes the ratio of
breech -pressure-to .brojeciile base pressure only i:y tfhe fraction
C2 /211y; fo- e = 1/3,' d -y = 1.2, this figure amoums to 1/260, His
celculation is first carried out on the assumntions that the powder
is all burned, that the powder gas is a perfect gas, and that the
expansion process is adiabatib; in the lattei part of the paper, how-
ever, he points out that the result is independent of these
assumptions.

Hypothesis '(b) is a natural one to ,zake in View of the
turbulence that undoubtedly exists in the gun.

L5.A.F. Ramsey Jr.., Ballistic Reseich Laboratory Report No. 3, (with
J. R. Lane),January 25, 1935,
GR. H. Kent Physics 7', 319(k936). See also Love and Pidduck, Phil.

Trans. Roy. Soc. 222, 222 (1922)
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It has lonfg seen known that I-or viseuvus flow. in' a tuhc thle distribution
of velocity cver a cross-section -is paraibo.1-ic, but that fo, turbulent

f t1V: '100citv it, 1un3for'l ovs.: mnost of ae's.ection' One should
~~a~±liz4. hoc tt lh-re may e n st-atis;tic& fuiotuations

in the v.:1Cloity, -due to tne po~sible exyistenco of lar: ge rather than
smnall e'ldie.

iTh:: equation of-; pontinuity Efo116w.s directty from tlhe con-
servtion off imas-, with th* use off by-oth-ssis (a) and (b). Thus i.1
tbii e-th - intp Z' s2iab of -i '1.arez. a(%:) anT -thick-
Tez-: dx: tht- PU pu k~X(x& Zd from it ther-C klov.s the m1ass
P1 (x-1d%)'aK.:VFx)1 The 'r&4t cain of- ifass in- time .dt is thus
--p a, ( att & II-t 'I -wich ~rs i s~ to Ie. equ-*:ted to th(- product of

the v61une of thec slzzh and its gain of csensity in time dt, viv..

a(x)d% dp dt. Thus we Yet the eqqation of- continuity:'

pd

'D-3vidir Fqlu:. :n (Vh1) bY r', Un'~i~wth respec't io x f xo. 0 -to x,

/ we -ha~v:
X, x

an,1  T (7t) a (xY d.%6

0 0,

Introduction of the boundary condition uj(o,t;) 0-, corresponding to the
fact that the gas at 'the breech face has' io fort.;a2d' velocitY, -'ahd use, of
the fact that

ja(Y)d% wx)'

At the base of the projerctile x =X, and ug(xt) it) so that

Elimillautioq of '7(t) between Equations (68)-abid &~ gives:

1.8



f

U k, U (7o)
d×

where u(t) - - the veIocity of the pvpjectile with resp.ect to the

gun. Eq. (70) was first derived in a diffprent Yrn:e, by Dederiek.

2. Recoil of the Gun.

Recoil of the gun is 'treated in this chapter because its"
consideration r'equire the u'e of 1 ::Xlaion (70), Vr nn'.: c:.
assuription about the shape of the gun. ActualXly the ,ue" part of the
chamber of a gun is of ecssnt~ally constant crozs.-sec:tion and the bor o
is of strictly constant cross-s ticn* so::c'.:hat sralier Ln that of
the chember. The two are ordinar3,ly joined by a por'tie:: of a cone.,
T'he problem of pressure distriibuto.,. in the gUaa would be complicatcd
very seriously by explicit treatment of the colie. Ile shall ther^efore
use a slightly idealized, model for the gun. We assume a constant -cross-
section A2 for the bore equal to that required' to tive the correct

volume to the bore, when. the ].ands are taken into account, and a
constant cross-section A1 for-chairber plus joining cone, A3 to be so
chosen that it g1&,ivc . the co:'rcci vol!,c f'0 ... :" C-- -. I, j o-0:,LE COT..
We subscqucn'tly abb),eviaCe the phr.sc "c:r.> p-un o1nnz co:" tO
"chambcrM' and call its length L. We., alsva-. ,c tht , i iO o-
.jectile is seated that its base is flush wili. the e:d c- the 1o::ng
conc,. so that L is also equal to the dista=,ce frco-a the iraach fac. to
the base of the seated .projectile. We -denote the travel of the pi-o-
jcile & 1y s. Then

x L + ,s (71')
(X) AIL + A2s (2)

-Abbieviating the rat~6 AIR to, ,, we have for

x<L w(x) e (73)1, 2C

•L:A L + A2 (x-L)
'() A 2

We also& et v .be the, velocity of the proj?_ctile with repe_ t to the

ground', v, the velocity of the gun with riespect to the groundr and
Vl./V :e he recoil i 6tio. Then

(X).: v_(x% + l (75)

U zv V (6)

,B.RI,. RepOrt No, X1, J.- 4, 1933, Addendum to App:ndix D.
-'e arc -thus excluding apered-bo.e guns from consideradon in this renort..
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Equations (70)-, (72), (75), and (76) and the relation a(X) = A2
now give: .

%2 ,

tqua'tions (77), (73), and (T41) now give:

.- / v r v
,-<I: ,g(x') = --v i. ,: + , 0 .1 X(018)

X>L: vg(x) = .-v + IN + (a- 1)1 ('9)

We now assuue free recoil, so that the total nomentum of the system is
conserved, The momentum 13 of powder and powder gas with: respect to the

ground is:
L L+s

143 j pvg(x)Aldx + f %pV(x)h2dx (80)
0 L.

Us &p = e/i(:) (81)

and equations (78), (79), (80), and (72), we obtain an integration:

= -Cv 1  C(v + vI ) 
2

Mo- =2sCV ( FL2 + + 2a1bs) (82)

With the abb'eviation s/L- r,
Equation (82) becomes:

.3 = -Cv! + .(V+ vi) ,a- )

The momentum of the projectile with respect to the groind 5s:

t12 = mv (811)

and that of the recoiling .parts with respect to the ground is:

M1 = Mr!v3. (185)

The conservation of mcmentu,, gives:

12 + 13 = Il (86)

so that

v-1 v 1+ (V Vi) .a7-2 m= v

20



Solution, of Eq. (87) gives:

a v. mI2* 0~8)Ia' t~ o(o-.2 "

20 ,I lK
In -the special case that AJIA 2  I = q. (88) reduces o:

e =  fl + C/2 (89)

m1+ C/2
Eq. (89) it , the u&.ual :: r ci found it . of Lc .
ballisIics. 'Eq. (88) may be so"a-what simplifled by no-Lnt.,hat evez& it,
the most extreme case the ratio oi C/2 to ml is only I pr--.t i-. GO0, s o
that, to a good accuracy, the dencminator of Eq. (88) may be s-;.:f.jplJfvd
to ml. This simplification, togethcr with the use of '1m; gives

e L .7 '(a-i i (90),

Actually the r'ecoil is always dampec, and the effect of thils damping
is to reduce e by a vcry sm-a3l auzt; the eifezt of e va3ue of o 1
i.- l* such as to ' e. '1hZ t!- !r0:,., tLus O.v. in t:t.,sz .
direction, so that ine)uzion of the col.-cction I e ill a n should .jerow
matters. (If the effects actcd in bpposit- dir-ctions. 'they would
patvtially canbel each other. ,and taking the G terim into account might
-not be an improvement).

The er.ergy of recoil WR is given by:-

WR = 1/2- mlVl2  (91)

Using v, = ev, we have:

WR

1/2 inV

Applying Eq. (-90) and the abbreviation

a-_ 1 -- F r)W (93)

we get:

.12 V4v -V

-3. Kinetic Energy of Powder and Powder Gases

(a) With fleglect of Recoil.

21-



In this case we tile vg(x) .ug(x) and u v, The. kinetic energy

of tile p a.:il • ad poI.xder ga'ses gs ,iver by:

pod 1/2 pv?(x-)Aldx j+ 112 pv,(x''A2 . (95)

0 4

With the a r.-tio" or v r() 'y u,(x) and the use of Eqs. (70), (72),

Wp d - i/) :rv ? 
.r ui o 2 - I ,6

Wpow:. )V2 C .I "C i -

(b) With Recoil Taken into Account.
Eqs. (95), (78'), and (79) give:

&'pod-, I'l + "2, "hlere-
I

jo L

~2'~ j 1 v 1 + __ x+(o-1)L ,, x (98)

Eqs. '(i2) and (81) and the relation v i  ev'give:-

r

1/ ,23(l e) [c-.....i -e) +eJ (9g)

and'

~'2 /2 nvZ T'Le) L !.(1+e) (100.

0

Thus
1/ 2 1+v)

L 3(+ ) o + s

-fl 1/2 mvCa - (101

* INote that if e is put eeual to zero that Eq. (101) recijees to Eq. (96),

}:q,3( (!e! a:a + ... +.,I:; . ae 0 9)...

2 (102)

o- +r
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Then the expression in, brackets r 2 (r) is expressible as:

P 2 ( ) - ae 3 + o (q e) - q-e) 3  (103)

Thus

F2  = I , r (02 - 1)q 3  + 3o (a - .)q2  c + e3 + .0)

or iei +3 U) 3e(l+e)2j (L05op F2 l ,a 30+ +3 -F

In Eq. (105) ;re 1:,y c:it, w:'th e ' of , tln I 1 t

in 1000, all tetms not linlear in e. Thcn

1'2 :: .- F1  (I + 3e) -- 3 '(106)a+ y.

or1
F2 = - t +j 3e ( a - L (107)

4. Pressupe Dstrihutaon without Gas rrict.on.

~~~~~B ecau se of t-h e -,<: t o , o -01. i o ., o.d a
there is a dwqo in prezsue fro:z , "che brecch to t-he ba.-,, or the pl'ojet!.
The diffe-reatial equation for this pr,=snul-c dvoo ray be d.rived by ca]-
culzting the net for...-tO m for, ce o.. a sl1a' of P,.s :hose face.-. are two
cross-sections of separation dx, and equating this net forcep to the
product of -the mass and the acceleration of the slab. Ile indicate in
Fig. 3 the portion of the gun between two cross-sections. Let p(y:,t)
be the pressure at time t at distance x.from the breech face, Rx the
radius of the tube (chamber, joining cone, or bore) at distance x froq
the breech face, and 0 the angle -between a normal to the tube and a
normal to the axis. Then

ax

px) 'x +:,)

dF

* I

-, dg - - ' - '.- -----. -*-* e. --- I- .-----



the force d" exe Lted on the slab by an element of wall. area

dx se4R ORdO is:

dF - i,(x),X. eK!d: dO , (1.08)

and the forwaird com!ponept of this is:

-dl' sin 6 -p(x)R>xtandx dO (109)

dI' x  - .-d , n, (1.0)

so thai -dF sin 0 p(z)P .dRxdO (111)

The total forward force due to the.walls is thus

dF w  = 2ip(x)RxdRx = p(x)da(x) (112)

To dFw must be added the net forward force due to the faces of the
slab, vi'z.

p(x )(X) - p(x -1. dx) a(x + dx) - "S (pa)dx (113)

pda - a 'P dx (114)

Thus
dFw + d f = -a 'P dx (115)

"dv (x,t)
The mass acceleration product of the slab is S- -A ad

UMx dt
so that -a , dx Ca dvg(X,-t) dx, , ( 16)

(X dax
or

ap(x) c dv (x.t) (117)
dx wX) jt

Eq. (11.7) is the fundamental law of pressure distribution when gas
friction is negligible; v (x,t) is the gas velocity with respect to the
ground, Now we may express vg(xt) by

vg(xt) = ug(x,t) - Vl, (75)

where ug(x,U) is the gas velocity with respect to the gun, and vl is
is the vof rity of recoil.
Then dvg(Xt) du(xt) dv1 (

----. = --M" - -(i)
dt dt dt

24



Insertion of Eq. (118) in-to Eq. (117) gives:

Cpdu P) (x, 0" dV l: (13 9)

" W(X) dt*

Thus
p(x) -p(o) -C. du (x-t) dx + Cx dv1  (120)

JtX) dt - U( dt-

0

The derivativedg(x>:) may be evaluated by meAns of }g. (76). This'dt
derivation is given in Ramsey's.?, report 11ut" is sui,,:ar. cd hor. for
purposes of completeness and clarity. Tha acceleratiori d (xvt) iS

dt
the acceleration of a definite mass of gas and ug is a function of x aO,1

of t, say f(x,t). At time t, Ug has the value f(xt); at time t + dt
the slab has an x-coordinateequal to x + Ug dt,-so that Ug has the value

f(x + Ugdt, t + dt) = f(x,t) ti- d-
x ~dt + d l~

The acceleration is thus given by

du- a f(22)
g a-U + at

Now, from Eq. <(70)

f(x,t) f l-(x)f 2 (t) (123)

where

f (x) (121)

and f2(t) a(X) u(t) 
(125)

Il Eq. (125) the factor a(X) is a function of t, since the x-coordinate

X of the base of the projectile is a function .of t.

Thus du
Uf l(x)f2Q) + f(x)f 2 ( ) (126)

dt g

2

2 f (t)(x),i(z) + f 2 (t)f 1 (x), (127)

25



SO tlat duII dx / f (t) fl(x)dx (128)
dt 

a

0 ~00J .

Now, f. (0) 0'o so tha:

2 " (22 dx (130)
+ f,'(t) (-

InfertioA of }q, (!3(J) inlto Eq. (120) gives:

x

a(:x)

xL: ! ?Z = x~ - 1 )L (711)

PO.--)~~~ (po C x))d

Thus for our model, v;hen

rw(x) 2

xZI < I," )- dx =1/2 x (132)

x < L: (73)

0

x L: dx f Xdx+ F ~5+ (a-1)LJd

0 0 L

/ +1=: + (a -19 2 a2 (2_ (133)
L

Also, from Eqs. (123), (124), (125), (72), (73), and (74)., we have for:
x < L: u-(x,t) xu(t)(3)

and for

b: u~x~ A%- + Co )I' u~t)(1)S> L _+, =:" (135)
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Also, since f 2 (t) (by Eqs. (125) and (72))

we have ,2tMu'(t) - u2 (t)
2 a, TT s T( - -

Insertion of Eq. (36) and Eq. (1311) or Eq. (135) into Eq. (131) gives:
/A/dv

x < L,: p(x) - p(o) - . 1s/2ul(t)>:2- x(adL +s) "- (137)

x>1 * )(o) C/A2  Rol- l]u2 ut(t) Cx - (0 -- 12x>:1')- o :- 2-(au + s' - L .i -s ,

- (02 -1)J, -'2x(al, +s) dv (138)S
Eqs. (137) and (138) give the distribution of gas pressure for our model
provided gas friction i's neglected. For ,a gun of uniform cross-section
we should have A1  = A2  = A and a = 1.
For such a case we should have for all x: awdv

o /A 1/2u'(t)x - x(L + ), (139)p(x) - ( ) t( _f_

ut(t) is the acceleration of the projectile with respect to the gun, anddv I
- is thb acceleration of the gun with respect to the ground.

5. The Effect of Gas Fricti6n on Pressure Distribution'.

It 'is known that for turbulent flow of fluid in a pipe of
diameter D, the pressure drop per unit length is representable by means.
of the equation:

2fFP (l0)
ax- D g

where p is the mass density of the fluid, ug its velocity, and fF is

a dimensionless factor, usually called, the Fanning friction factor., It
is a rather weakly varying function of the dimensionless Reynolds
number, the latte' being defined as the ratio of the product of diameter,
density , and velocity to the viscosity, Curves showing the variation
of fF with Reynolds number ill be found on page .l0 of McAdams 's
"Heat Transmission". Rough estimates show that the Reynolds- number is
of the order 107 in a gun; this is somewhat beyond the range of the
curves given by McAdams. Furthermore the conditions of turbulencee'xistin in a gun may bb so different from those prevailing in steady
flow in an ordinary pipe that E q,. (i10) may not hold well in, a gun.

lowcvr., Eq. (140) is all that we have to go by in trcating gas friction
in guns. We shall therefore adopt Eq. (1110) as representing the

27
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fallim, off of p.essure due to gas friction, but shall treat fF

ts cons,tut throvj-hout the .un, and use sozav sort of average value for
it . )Or a 0y -, u,;c of 3 0 lcAdss "ruj ipt" curve gives
apIprox)i; ,tt, y 0.003 as tIIQ vlue of f "

Addition of E£s. (119) and ('10), with p = C/w(X) and
D = D1 for x< L and D = D2 for x>L, gives as the cemplete differential

equation for pre ur e-Istr i -but ion:

44x . _c du.(:.:,t) -dv 1  2 & Ufa)

-Th d(X [ at - D

OuL effective di.ctevs are defined by the equations:

IT A
2

SD2 A2

'heu t h cffc'A.' - *' : A1, h b-en hef,,ic in Sect:ion 2 of
this ch..itr. Tha- ,xstio. ,ty aris to wz!thc r vg or Vg should be

used in 1'1. (140) irn gfrraliz:g rom ,readylow in a ipe at rest
to acc:er-at I flow: It, a gun in loon. The ans-:er co.-es at on'ze fro:,i
the fact that vg ,. 0 for gas at rest in a tube in motion, in which case,

however, there is no pressure drop due to gas friction; use of 'Vg in

place of :Ug in Eq. (110) would thus, be incorrect.

The gas friction correction to Eq. (137) for p(x) - p(o)
when x < L is readily obtained by inserting Eq. (134|) into Eq. (l4l)
and integrating. We obtain for

C/A2  [ dV1  14

x < ,L: p () - p(o) C/2( AL+ s- [u!(L)% ' 2x(aL d

+ 11/3 fF U2  x3j

D2 a (aL + s)

On inser-ting Ea. (13S) into Ea. (141) and integrating, we
obtain for

C/ 2 )L u
2  + u,(-) -I

x>L: p(x,) - p(o) )x + ((+. l)i1
2(aL +s) L + ts--

(o2 -.J - 2:(o + s) _. + 4/3 + x * o---J.i*dt D2 (aL + s) J

28
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To calculate the pressure pP at the base of the p>rojectile we i-nser

x = L + s into Eq. (11i5), thus oltaining:

C/A 2  l(a2 - ).u 2 u (
p - p(o) = - + u'-t)- -(oLL s) 2

(- - 2--', + s)73 L(qL + s)
(0C2 - l)L2~ -2(L~ +s) Cob + s) 4.i *.L/3 (01Ca, +s) 3

Sdt D2T) ob 7. 1[-.j,,3  (,6- 03

6. Aver-age Pressure in the Ekouation of State.

In Chapter I on thermodynamic foundations it was assumed
tacitly that the temperature was uniform. Actually it will be a
function of x even with our model in which heat loss is treated as in
Chapter II. Gas friction, for example., produces a dissipation of
mechanical energy into heat energy, and we have seen that its effect
depends on x. We may thus expect T to depend on x. It is clear,
howevear that the u(T) there introduce", s boid be Z, m:ass averave of
u(T.). Thus, if we let p (z) be the dcnrziy of tht: pov~e Las (not
of powder plus poweer gas), our. Eq. (3) should be woitten:

Cdu(T:) dt Ju(Ty) Pg(-') d r + 6 W, (1147)

Tue subscript t is appended to the differential sign in front of the
integral to denote that the change thought of is a change occurring in
time dt, so that the operations dt and f are not inverse to each other;
dr is the gas volume element, Eq. (1117) may also be wr-itten:

CdGuCT0) =d QL-TWI~,~+ 6W, (148)
where

=(T$% uT X ) Pg(x)dT CG, (1'm9)

the mass average of u(T.); the integration is over the volume of chamber
and bore unoccupied by solid powder. ,Comparison of Eq. (148) with Eq.
(W)- shows that our earlier u(T) must be interpreted as our ,present

Now u(x) = cvx where we assume the specific heat cv at constant
velume to be independent of x; this assumpti6n is equivalent to saying
that there is no change in re3ative gas concentrations wilth x.
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Thus u(T) ":':OxT-vV . .(150Y"

where T is the mzass avepragcs:
Tx x~dT(51

The integration i.s again ov-,c the volume of powder gas alone Now 'if
the Co-v !uO,- th(i .,o per unit mas" is ,Il then the equation of scate
May ] e .'rit LTen ZIs:

t%(.. - P1Tx, (152),

Where R1 is tbe ,gas constant per unit mass.

Then
,( p(x) I- nlPg(X) ' (153)

so that
Tx ~ (15 ()1d)

The factcr 3 -. lPg(Y) is a correction factor not very different from 1

for all x. Rer;icrbering Lere that Keit found non-uniforn-ity of density
to be unimportant, we regard this factor as constant, so that it may be
taken outside the sign of integration. The integration is over the
volume of powder ,gas alone., so that:

CGRa7T.: =Vg(I - -lpg) (155)

In Eq. (155) Vg is the volume of powder gas alone, and p is a volume

average of pressure over the region unoccupied by so'lid powder. We aie
naturally led at this point to replace it by a volume average over the
whole volume of chamber :and bore, since in 'the Ramsey hydrodynamical
-theory powder and powder gas are treated as one fluid. Now Vg(P-nlpg)
is our free 'volume ,2 and F,- our earlier T, so that Eq. (155) reduces

to our earlier expression of the equation of state Eq., (9) if we use
that equation a volumte average of the pressure.,

Thus the effective ptessure p in the equation of state is
given by:

L L+s

(Alr, A P(xY)Adx -+ 02p(5)6)dx

o 
L
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NoW' L L+s

C f:

Thus LL~s V

0 L'
( + ,4 A2s) 1-p(o) = (x -p(o) Ald: +- $ p~x).-:p(o); A2d>: (158)

We no9r insert Eq. (0114i)' iLto the fimt tniir~a on the !101t " Sid - c Fc.
(158) and Eq. (1115) ipto the second integral, thereby L.ining:L-Ca d v,'

60 p(>:) 'It u '(t)- 0 (i, + )dv

+ + 2 .3  d
3D2 ai7. (oL- 's j (15s9)midF

aid L+s

( A 2 d x (a 2 -) s- "

-(aL +. s) {L + s). +. [s 1 3

,(a 2, --i.)Ls u'(t)+ .i± -.. s) .1/,~, C<o,. ± s.)" ' ,,

+ J'3s(c- "12-) .,1 .6 )LLs

Addition of EqSo (1]59) and (1.60)- giy vS ,I LP - p c)]-dx.

Onperforning ,this additiOn and equating the suni to (X)' (p.-po), wb~cr-e
where ) +AL + A2s,? and Where p is the des3-,ed average ptssure, we

obtain:

C 1/ (16,1)

-(3D2 - L + s
+ 1hL f / .~'a1/ ~ (160)

where [ "(< z) (_+_______' "~ " ,

In -E. (:of2) u '3.) is "the a ccera ion o l a.

0 -p

:n theroung u thise sar fits andeuating w-th s to . he (pupo) whc

wher s ,-th - oI +. ..he . .i.the. - -o -'zo Prue,

V 
_ __ _ _ __ _ __ __ __ _ _

obtain:

p p

. . . . .. .= . . -,2 A. . , . , , , - . ' , ,, ; , ., , . , , , . = - , . - . - =,.



Now Eq. (116) may be put into the form:

pp - 1)(o) - 2 (z163)

where

112 = (0 2 .- l)u,/I - 2  ) 1 .)
---1-2 + -7 --- J u ( }- ( e+ ' 1  (t),

*1- a + r (I4

4/3 U ' C, j.2 _ "3 " ( 1611 )
D2  L - + I/)-

Then

P Pp C (165)pp - 2A2 (H1 _ H2 ), 15

where

I1 - 112 2/3u'(t) -- + . -(a + Vl(t) 1 - - - 1
(a +r)"'; 1T i Z 2

+ ( l)0/b f .. + ( " - U j: u2  (166)
v r -. jj

In the special case of a uniform cross-section a = 1, so that

HI  - 12  = 2/3u'(t) +vI- u2 (167)

Now, from Eq. (59), we have:

p mt dv (168)
A 2 dt

where M "
mS- m~l + i' " tnr (169)

Inserting Eq. (168) into Eq. (165) and using Eq. (76), we obtain for
the average pressure:

_ -m + -,O- _ -. u' ('t)

7ai _j_ - '., u2  (170)
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wh1orc 7
rl ef/re' .:(171),

o s t is to be e Jhasized that in :the del.ivat'ion of }q, (170)

io assumpl-ion has "been m zdo as to the rc.lative magnitudes of pro-
jectile mass and, powder mass. Notc also that

.vi(t,) " e - ,(t) (179)
where c is given by Eq. (90). In D-4. (272) th, c in the leno:d.Jtor

may be nec-.¢cted'i- so that, accurately enouah:

v ] -all (173)

and
v 1  al Iu + e u (174)

Now f C-
e -- +J r - (' - .) , (90)

so that

_ (-) (-2) U175

= s/L = u/L
Thus Fi c0a -) U

T S . - 1u' + m £§a -) u 2  (176)
V 1 2(a +)

Nw introduce the abbreviations:

1 (- 1) 1 + E (1 - Fl) (177)
32 jTT j 2 -

and
£'(0(0o-1) .1

F4 (r) -I + f 1 + F) (178)

aid, insert Eq. (17,) into Eq. (170). We obtain:

3- (a 0 m 1= 3T 1-

Ta--Jm's' - 4/L+ 7Fi + u" 2r' ( - r)-/L- (17.9)

2A u( + r)'* D( 0 rYC ni1  .).-2 1 71 a ~~): 2
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It is Q thatteP of sone imrportance -to note how the effect of
gas friction changes when one cha-ne the caibe of the gu, In order

to con, re the change in average prssure due to ga, friction .with the
tt t" I w. ry rew:vite Eq. (179) at follows (bcsides the 3cading
te-nm only the gas fPiction term is retained):

A2 P -- C . x1
2 + (180)

-r- 2D 2 j (7 -+r) j

To Oitta .,.c°- . id, of the co:rp ris n of the turn in u2  with
the tcrm in 1,' , %e approx:iate u2 by the Leduc equation, which is known
'to give a rough ropresentation of an interior baillistic trajectory. The
Leduz equation sLates:

cisu - (181)
- c 2 +s

We casily derive from this:

S

fo tlihe valu e of th-, travel s fof al,(t), which e as

taout here as e tui dent to maximum pressure nertion of Eq. (182)
into Eq. (180) ies:

A2P £'F s  (or i/2 _ '54) s (183)

Now in Eq., (183) let us consider geometrical-ly similar guns, and let s

have its muzzle value. Then the Values of , a nd r to rigbrtuin y

equal foer the different guns, and those Of SiSl, ptesulab so. r isabout the same for- the djffferent guns. Only fF, the friction factov,
re-mains to be considered.. If wea compare a 3.6 inch gun with a cal"iber
.50 gun, tZhe Re no3ds numbers will be in the ratio 32 to 1, but in-
9pection of the curves on D., 110 of McAdams's "H[eat Transmission" shjows
that the resulting ratio of 1[riction factors will not be larger than

2 to 1. We have therefore the important result that the fractionaichange in average pressure due to gas friction. is about the, same in,

all guns. Such differences as arise come maiisly frpm differences in
shape rather than from differences in caliber:
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7 Chapter V

The Chemical Kinetic Problem

IT this short chapter we consider the probleom of the r 'te of
burning of the powder. Since this subject is in a statc of flux, much
of the material of this chapter is necessarily soo:newhat indefinite and
tentative.

The only generally accepted law ConCerning burning seems to
be that known as the "law of burning in parallel layers." -ccord"rg " to
this law a given layer of a pow iokr jr ain burns cz,,]c"~ec.y bero.,c the
next layer begins to burn at all*. Stated in .|oter way, at all pzlxnts
on the surface of a powder grain the surface reccdes at the same rate,
co monly called the rate of reg-ression. It is staniard notation to
denote the linear distance, of regression in 0time t by x ; we MiaJ.
follow -this notation, since there secms to be no danger of confusion
with the x of Chapter IV. The smallest linear dimension of a powder
grain is knon as its web, denoted by w. Thus for solid cy'JLin'Jers
(cordite), the diameter is the web; for single-perforated powder the
difference of the radii is the web; for multipaforated po.dcr the
distance fro:m any perforation to the near.est -neighbo-in r pc rfcoration
o, 'to thc ipE.i.phery is the -w-. The web, has the 'y" -
that uhenr it is burned through the Do;;"er is co pI tely 1,r.i d, exc(pt
in the case of iultiperlourate. powdc.n, which at that mo;;renL falls ap-at-
into slivers. This burning through of the web occurs whcn >: w/2; we
are thus led -naturally to introduce the dimensionless vcariAble z,
defined by the equation:

z 2 x /w

The variable z is the fraction of the web burned hrough; it has of
course the value 1 at the moment -when the web is just burned through.
For all powder grains of the same shape the fraction G of the powder
burned will be a function of z and of z alone; thus G = G(z). E.g.cordite of diameter w and length Lo,.

G(z) 1 - (l-z)2 (1- z) (185)i LjO

For single perforated powder of length Lo and difference of' radii w,

G(z) z 1l. + (1,(186)
L 0

N For multipetforated powder the formula for G(:z) is given in Ordnance
Technical Note No. 1 by G. P. St. Clair. Tables of G(z) fo multi-
perforated grains of typical shape are given in Table VIII of Bennett's
"Table for Interior Ballistics". For ball. powder, just beginning toF come into use:

G(z) =I - (1 - z)3 (187)

*Deviations from this law may, however, arise from turbulent flow orf@..ow inside a perforation.
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The law of burning of the powder is the expression of the
rate of regrcssiozi, dx/dt, as a function of pressure*. The effect of
initial t(mpe,,'ature of the powder *nd of chemical comnposition, including
espuCediay pcrcent moCi;otLW#e and pe.Cent volatile.;, is ordinarily taken
car ye of tihouzh adjus.twcnt of the vJues of paa:',,.ters occurring in the
above function. Thu particular: average pressure that should be used in-
the law would sec:, to be an average over the surfaces of the grainsso
Since, howevern, the grains are apt to be more or less uniformly dis--
tributed throughout the volume behind the projectile, no serious error
should be n:±e by treciaLing such an average as identical with the volume
avci'aI- n the equa-tion o1 state, viz. that given above in ;q.(179).

The most co::mionly used form for the law of burning is the
pressure Jnxa.i.x 1aw:

dx
(I = bpn  (186)

Bennett used n = 2/3, Roggla used ,n -- 07, and various other bailis-
ticians have used values of n ranging all the way from 1/L to 1. The
British have c-sto:,iarily used n 1, but Wadley1 has recently replaced
the first po:er of the pressure by the first power of the density of
the gs. Such a proce'c wa;s suoe-ted by t v worlk of Crow and

.. W.... S Hinetic t.h,:c-ry the rate shi,.uld be pro-
portioniJ to the density. An intei.pretation cr their theory by R. H.
Kent and -he autho:, w-,ould il'dicate, however, that the rate should be
proporLioS:i on tirtheoy, n; to.the density of the main body of
the gas, but to the density of the freshly formed gas in irumediate
contact with the grains. Experimental work by R. B. Dow now in progress
at this laboratory may lead, however, to results in disagreement with
such a conclusion.

Another form for the burning law that has been used to some extent
in this laboratory is the general linear function:

dz/dt = a .+ bp (189)

This law was first proposed by t4ansell 9 and later used by R. H. Kent
on the physical grounds that the law should contain a term independent
of pressure to account for the direct effect of radiation on burning.

Lack of simultaneous ignition may also affect the rate of regression.
On the reasonable assump',ion, however, that ignition is complete before
the start of motion, its effect on the trajectory may not be serious.

7A.T. Wadley, Research Department Woolwich, R.D.. Report Io. 72 (1936).
8A.D.Crow and W.F,.Crishaw, Phil. Trans. Roy. Soc. London A, 230, 387 (1932).

9|ansell, Phil. Trans. A 207 (1907).
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A recent analysis by Hirschfelder of the data given in Tab] U V of Crow
and Grimsh.w's paper on "The Combustion of Collaidul h'lope3) ant-s"18

confirms the experinienlal validity of such a law. ;0i1sche1de 0 Iud
,|oreoven, that ais independent o the iniutia. tlar-pe'Luie of tih, pow:l,
and that b is inverseAy propoitioral to 'j'-.TP, where 'p is t|ce J)Cwd:,
temperature and Ti is the "touchoff temperatuie '' given- by Crow alld
Grimshaw. -In some cases a came out to be zero.

We shall consider only the two above la-. In tcrrts of
the Yiv.iable z they bec',:

Pressure 1nde:x Law: dz/dt = _- US)

,General Linear La,,: dz/dt = a (a + bp) '(191)

w

Questions concerning the dependence of the parameters a and
b on the initial temperature of the powder and on powder, Co:;positien
will not be considered in this repo.It.
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ChapteLr VI

Tho ColCcted }:renldito,l

JI 3. I4..L:":," ,t t5.S: 1o'h t to "'...... e .o.e of the
... 1) Y o 1.Qi .,t t.. -ilt! " ene.,'gy c quation:

cCG(z) 1-1+ N40y-1

then the r ate-of--bux.n.n3 equation:

di ',(190)

d z 2 b :).( 9 14-t -w ( -"? zz

The ner y inEa.(10 isgiven by the sum of Fqs. (28), (30), (38),
(55), (94) ad (101). Oil performing this addition and expressing the

vv wlth c-te ect to th. groun.l in terms of the velocity u with
, esp "- to ti- *r,IC, 10 ti:t

we c, bt&{ ::

11 1/2 F 5 (0, (193)

where

F5(r) 1 T +  ' + ftan2  + k m f + 21- F(r). 2

(1 + ) 2 2 13

+ F 2(19(r)4)
3(1 + e)

In Eqs. (192) and (194)
ve m + .(8

v m 1 - 1-i(r) (88)

Also, with the abbreviations

m (i . + f tn' ) (169)

C' -C/, (171)

F Z, Sure L. bec.-,es"

p a F.(r)u'(t) I F (r) u21(1
A 2 L6 7 -
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where --- ct . 1 (,z - 1) " "1
6 P m (r) (196)

and
2 (G2  -)a f L  1 -0

7 . :7. V~- 2.'

Note that the fmwtjLro:s o1 trtavel F1  12, .. ... "7 are a) ror]ea.

"he functions "b F6 , 17 are defined ji:,wdLttcy E-bove. The functions
F1 5 F2? F35 F1, are:

Fl() a~o- 1)
F (r) a- (93)

F2(r) 2 - ' 1 -c..- - 1 (107)

3 (-r) 3- i (1- l  (377)

2
F4 (r) --" 2 l -q 1s

It is desirable to list the values of the functions F, F2, . .

and of c for the case of uniform cross-section, so that a = 1. In this
special case they are all constants with the values given in the
following table.

Table I
Function Value

F1  0

F2

e T (1 + e, for hort
ml 2 o0 o

F3  + 2

F4 +4 2

F* + f tari2 C-) +k+ (+£

F5 U + 1c 2

0 L-

W~fT~Yj39
~'*' ~ .rr.r-................-



Table I (Cont'd)
17111 lt ionl Value

2l

If th1L fw-.Ler SI !Calzil Elf" Unipt !onl is nMde that gals

If 1',, W13) 0.~ 39") ain ,Qricd ilnto Eq'. (310), tile

r) 12 Ril 2 5(r) (1.98)

IBqs. (198) and) (190) or (191), together with Eq. (195), constituted
th,:. cqi ua1 ~tincs o:7 interior 1hiJlistics of Which the

siz~a'~""-s j~ic: n vrviO01, treat:.1s,"ts 0-.: interior

hi~'~ :J:. ;~ ~..- IIplc ti~:~cY ~:.: 7 to be 'tero

aiA ~ ~ ~ Fb ai 4?F sv-:h rne;-1eC-tS on - can a'.z'orb the

constzantsL F5 and F6 into the mass, defining a I"mouenturil 'mass

m F6  (199)

and anl "energy mas"

mF ~inF 5 (200)

so that

p 1f1fl1 u'(t) (201)
A2

and

-,C ) ---- u I(-,) + 1/2 mF~u (202)
y-1 A 2

S u Dw, c,: tonE-Ce -t now to gezieralize to the -case In which
T~ox-n~orty crncts-sczcton and gcs friction are ta-6ken int-o account.

Then, Sn si far a-,- the cne rz- ecuatiori alone is concerned, o,-e can
group th.: term, ii. F with the z errI, so that one could IitroduceF vari;41AeJ.C : as foi C,1w,,-t.:

r1



..=m F[(,) (00

II

I 2

low, however, in the pressurc equawtion 3t is no .longer
possible -to introduce an effective varible r:,s.:I (r) such that:

A2

The proble:m of succeedJing t ' tput tha -,," "ions Of
intevior bali istics into, .e.-' i o: , - : tz.Ti:. z. ic.: pci-
raineters as posible. One mlighL for this,. bevin with the equatiorin
(195) and (1.98), perhzps later find.n& that the fUnctJons !*5" F 62 and F7
could be replaced by some sort of average w'thout cziuirg too miuch error.
With such a purpose in nind, hoeveL, it seex d&rabl if possible
first" to tranisfor:n the equatio!is (195) and (98) into such -forms that
variib.e effectivu nass.,s can u'ed to courct for -as friction a::c
non-unifor.:iU y of cac. s.v, ic,. ,.re ......r c -t-ez "

In Ea. (195) the -en: ui is a c :cIl ze.r w.,ch wou.d
vanish for nrct'sn a:.: no : c. !,c.io. "Sinc - it is on]y
a correction zerm we may try t'o express it by soe approximation as the
product of the acceleration u'(t) and some functlion of the travel s. The
Leduc theory enables us to do this. We have, in fact, already obtained
the necessary equation, viz:

2  = u"(,)s ( + _ (182)

2 m
where sm is the value ofthe travel s for axim u'(t). Denoting as
before s/i, by r -a-!d srn/L by r,m we then have:

112A = lIW (205)

Then (205

LI- F7(r) u(t)F 8 (r), (206)

where F( ) S r1 + F (207)21 2r F7(07

so that p L, u'(t) F6 (r) - F8(rY (208)
A2

The rot-o.-r ay bl. ok- on oa ", ...ter to " ..... " co -

parison with firings, or it may be given an appo:imate value as
follows'.

41-
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The quantity s is the value of s for iia:Imun. II' (t). NoVI let V denote
the tvLal voJ u,;ijn bhn the b)f the projectilt, i.e., our w(X) of
C,..pte .~)'V If V ot*o, the in.ltia) value of V, i~e. ie Volume of
the eh !The,, tizem thl ot-.. volu;.. rxp.: on r Eiio , i iveii by:

= V/Vo (209)

The vari.;b) c 1, is identieal with tI travel variable occurring in
Be i ctt '"Thb) for Illlcric'r Bti/isties "'* flow ,we have

.. ... . - Of--f i + - (210)Aa 1,A]i cd.] 0

lh d:.f Al .h the vaue o l2 fe ",.un accecation is seen to
ruije fio:. ac .ut 1.0 to 1.8 with the most iri'por-canct .ases around lb.
If we adopt the value 1.5, wt- obtain r = o/2.

low in the enctrey equation it is of course still possible to
move the u2  cor.rction tern occurzri.q, in the pf) ter-, over into the W
te); an th- .':y o!-t.z':- thee cf4ective mutses of .qs; (2Q3) and (201),

r~1, v.:~ ~jQ~~~~ ntep ~d' que . xon. Then

SccG( :) -~- Au ) r + Fs(P) + 1/2 mu2.?L(;) (211)• y j •A 2  8 1,,5

Eqs. (208) and (211) are formally the same as Eqs. (201) and (202) for
the case of uniform cross-section and no gas friction, where now the
"momentum mass"

m(n(r) m . Fe(r)' + '8 (r), -TF 9(r), (212)

with F9(r) :F6(r) + F8(,r, (213)

and tha "energy mass" .nF() mr(r)s (214)

are, however, functions of travel.

Suppose we multiply the energy equation by y-! and use the
fact that -(y-I) = 1, the "force" of the powder RI To
Then .TCG(). ~A2 UT(T) + 1/2 mE(r) (y-X)u2  (215)

A2 FI
in the event that min(r) and mF( r) may be replaced by constant values we
may take into account the difference of the effective masses mm and mp

throu-1i use of an effective y suggested by R. H. Kent. We simply
intriodtce an effective Y. defined by the equation

*Ordnarnce Ueuzr.nt Docums.nt No. '2039,

'12
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so that i

Theii XCGnn 1  III(t) +,12 In (yo 1 (2u?

A2

the CneYe-by C~uL l (21 ))t'h:~ h &~~- ~2
thec i"t-f-bnri q~~~~'9)or (193), Z:rM the- j)Z" -J.I
(208), wbicih we~ ma~y write as:

p u'(t) (20-3)A2
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Chaiptcr V11

The total o u~ c.%p xisionl ri'o t' has aIrce:dy been decfined
~if equntierar (239) ill Vic \I . It is .idejilicai with Blennett 's di-
Ine.sion:''sS travel vi~5le. III Order to exptoss our' previous equations
illc' 4r C" F w1 I, c5- fc vl;'t trawl ,Vel.c'Z54y, vnd

~ i~:: ' b ; 1:.' tht' 1) -:v & - I:> 'nCkId 5;1 th10 E.Un
is C/. a: t h. v-.c b'rvi zi.c t i C ()/.If V, is thle totel
V , '. .1 oe ':& c t'3:'h 7. g vo2v'.C at tipie t i"

V *. (C/6) I - C('. . iht" !I Volx S' I so & ' v.:r tite latt.)' by
sl1 ci~ctaon of the cc-volix.-. LctL us now'~ e -i~' thrc eo-Vourne per Uinit

v'olumiae of solid bY a c. Then tile total co-.voluna i~s '(1 + a~)
CGW/6,so that the free vo2 v e SQis Eivert b-y:

P V _ 7 GW~. 2.S C("(;
6 t. 6(219)

VC

V V i%~ ti. 1 ..: jw 0)-j (9) a-ij inrtofuce

the d 0iality & ol in 4

A, E /VOI(220)

R , , ( C+ aG~: (221)

It is to be espccially notcc that our density of loading 61 has
dimiensions, so that its value Ecrreas itum;::rically with lannettt's di-

~ersioies desiy o lcdin ~only ifC is e:<pressed in cramns and
V0 in, cubic Otces f course the re-tio L'.1/6 Is dimensionless
and thus aI-..-Ys o:~;. es 2-1 nunarical v~rluc -wi-th Bennett's A16. InI the
ener.gy eCmitic'n (21-.), h'-;rthe ter::i ).CC(--,) ivsrisc to a factop

Al wichd~~s:~o gotdivded ; 6 If e wsh theregfoe t o introduce
the usu--1 wienis:.5 ~ nast expriss Al. as:

Al1  APO (229)

where p. rq)prczents a density )f 1 gramn per culbic centimr~eter.

Jn the rii ir;rergsystnu r,0 hps thle velue 1.91,0 slugs per

Cubic foc.t.
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Bennett use(d ai 0.5 for. hs xnMt.Ar la htic table and
Rogg• h - -, v 't-h his a';.),tpiL o thait "%. ,* cv-vcli,', ,- j:; c-quJl tu tLw \,olwxi:,
'of the poac.dr buprn.c, usd ct = 0. (yo: c.1 i2. : o.5:td 0-110
by an"..ysdio o t ].o:,d C h,.,2 'c-,:, lC cu t o .,c,
lith "the ucc, of improved CcK.3,, Co c-mLo:.'. --: in 1".1,J,. ,epc',rL

No. 281 by R. II, Kent and the auL},,.Jr, the ztuLhr*' annly- 5 of Cr, ow
and Grimhn~i:'s data gave a = 0.70 (PR. L. epory-. l(. 288).

Now if A2  is the o ..... " z f tiv; borr, s: the,

t av e.. %:!Lh 0 t1e f z. Vo  ti - . J 3 . , fl . Ioft

to pyojectil basc,, w :e have

K2 ds = Vod (22)

If te use a superscript dot to denote diffx-entiation ,ith respect to
the time t, the velocity u~t) is given by

ut) V0  (224)
A2

and the acc.-jerltk. ui(t) is .' c: l.

u Mt = -Vo [(2.

A2

It is to be emphasized that V0 in the above equation is the actual
total volume behind the projectile as it sits in the gun before being
fired. It will not be exactly equal to the actual chamber volume in
those cases where the base of the projectile initially juts out into
the powder chamber or in those eases of separate loading in an old gun
where the projectile is ranmmed in until the rotating band comes in
contact with the origin of rifling, flow, hwe ust exprss
the functions F5(r) and F9(.&) in terps of c. Departure of ts(r)

from constancy arises from non-utiiformity of cross- section and
departure of F9(r) ion constancy arises frocr non-uniform.ity of cross-
section and gas friction. We hjive treated these effects in Chapter' IV
in terus of a definite model for which Vo  AL and V - lz + A2 s.
Thus for such a odel

= AlL + A 2 S + s 1+ (210)- A1 L aa i

and

r = o( -) (226)

t5



I'w- th & .ui] ";un Fq. (2 0.) .is thui an ap, o:,irmation giving the )atio
of ty..V:, o 3 Ii < Th:,d,,'w ir tei;l of iA1e .,p n1; Jofl rat.o I')}

} 20), ((22b), and (226) 3nto
V IC, Co1 .) 10;V 1,.;,, ~ ( 1-10 , the cvs~uv qti;tlU- on (20'fi- )  arid the ratc-of-
buz-nhqp G,,. ton (190) (,"r (3.91) fur)-jisbtes the folIoviiie system 6.f equations.

A . )( T .
C, /L/ rnV (0 (-')

b 0 (229.1)
b A2

2

where

a ,(F - 1) (226)

It may be possible to find, by exerience With actual
calculations, a m ethod of choosing constant values of the functions
F (r) an. Fs(r) that will give good results. Let us denote 'the best

possible con)txnz values of these functions by F9 and F 5 , and define

the furctn:s }(r) and B2(r) as

KB(r) Fg(r)/F 9  (230)

B2 (r) '(r)/5 (231)

'7q. (2%) L; su-f-i'nk fob hydroIynamical corrections. Accurate
tVa:32atin fi'C- t-hullay values of to 1ravl s renuires the use of

AS. .( 22 6 1)
'0

,wher'e VC js as in Eq. (225).
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If lie Irlow F>]rc~ (r) arid I' (v .)E 227) ill ti .a~x o 01,r)

(r), divide tIj o',gh by IPq - e~A(ei''a~c1~ ~ t i's''. ,;~

u ~1'~( -1) y~-1 22

,we obtailu for the orlergy equation:

VV P L23iI

The r'at u-of.-buriinan,. cquotUen cQ..

d?. 2)

ja+ B (r) (235.2)
2 -

The choice of, const1-ant values forF r and r 5 (r') leads to

the value unity for' Bl(r') and B2 r). Fela~rtOf t-he f1ctoi ~
and F 5 (r') by the fuinctions B IWr) arnd B 2 (x,) should mAke the effct of

the parameter orcurrira therei.n sernewhrI. weak-er', i-e- lss effective
in governing the lbellzvIor of the e-juat1ions.

2-. The Y'ree VolumeExpcnsion Rrt~o

R" gla i-a his systea, of ixte~rni sisused a li--
mensionless travel var'i-ble rn, defined as the rativ o_: the free voluinc
at time t to the Initial Jfrec volunme. Oi l a' s::to that tile
co-volume is equal. to the vo2.uU3,. of the i, burrne',i the Lrl,:c oue
remains constant fr~th ' bec-Inrini' of Mir.;:z; to Lh,: nii~o
motion. Thus ic3acould take his initi.A3 Irce vos3'- ;' j.c., ,
free volunie at t 0,) th einn tcln ~:y as Vo Cc

117'



As soon as one att :lapts to ilqorove R]ggla's co-volume
apUltoni, ho.v,,i, o:e ~t'n~. 3r<vi v.ls cc.:.pi.caiSo!l.. wit), the use of the
fc. vim. e::p tr, iu rat'c.-'." a tvi' vol3a5Jde. Thus the free
\'lu, x t11A. c,,' lU .!,ai' , IL -"it fr:o." " 01.: ), l {],of ,burn.%ini;, to thle

bo0..'. of I:Otikn VIC M'1.y of courISC une as "inlitia)" value of S£
the vaIlue of R at tho be ginning of buiining, viz.

£i V 0 C/d (236)V 2 t MoII V iV
'th,.c. '_ v(;w , :_ 7 ' .:' '' o, r.L. , "u wi3J thcl bty £iV( lls,

(23'7)

The 03fliculty then ari.ses th at t 0, tile value of n is not known
accuraicely. It will be so ie,herc rear the value unity, but wi-ll vary
from case to case. FuPrthe,.ore, tie equations become much more
comp);Icated than those above. In order, therefore, to preserve some
of the s01'plicity of R6:gla's treatinent without usinS his incorrect
co-voll.3 asszpt 'oip we nucccd to the initrouction of a new di--

LCt G be the vlu- of G(z) at soJe point ik the trajectory.
Also, let

g-- - (l+ ) (238)6

(le do not have to save the letter g for the acceleration
of gravity, since the !atter could enter into interior ballistics
only when effects due to elevation of gun are c6nsidered, and such
effects ave al;1C-ys negligibly small in interior ballistics). Then
with , V/Vo, the total volume expansion ratio,,, we define , as:

I - A!  3 , --

-. (1 + G) 1 - 1/g ( - 1) (239)'

Then the time derivative is g ven by:

(2110)

Initially Z 1 and 0, so that the initi'al values of and are:

o= 1 (2'Ii)
=  o

0 ~(2112)

If we were to asst:e that a 0, we should have:

Ki



-'<= 1 - ,: /6 v.'f-

0

Thus t, is a linewJ, function of the tot Al vol,, ¢c cxlj ;1.Jon rWio XZ
satisfying the inJiial' conditions (-o 1 an ,o " 0, and - i to
the free voluuie expansion ratio r, i. R6ggJ a t s assuiiptiun a z 0 is made.

To obtain the equations in terzas of r, note that Eq, (,239.) cain be
solved for ,:

+ .g (> - 1) (21111)

On insertin7 Eq. (2111) into E.qs. (233), ('3'.), and (235), one
obtains:

12 h(G G) + 1/2 B2(r)(Ye - 1), (24

where A1  _
h (246)

DVo  C F9

A 2

tt ,b, - (248.2)

-. =- I ' " bmV 091, B 1(r')A' (248.2)

Note that if a vanishes that h also vanishes. In such a case the entire
right side of (245) is free of terms in z. hen a is corrcctly treated
as non-vanishin, then h reziains in the ene-:gy eauaticn and there is
some explicit denendence of the riaht hand side on z. The factor of h,
however, , G G, changes sign duhin, th motion, so that is is
reasonable to believe that a propei choice of G will. mn.imizc the effect
of h il infJ.uencing the solution of the equations. In fact the term
h(G - G) bcdome small comparLd to , not far beyond the pressure ,ax:num,
-and is appe ecib ,jl.-ajedto t on y o,1 the i,,i,. -de of the

ivessure maximu-m. It appears then th.:t a va2ue df G ac some po.int
between the star.t of the motion and the occurrence of ms>:-imum pressureshould be chosen for G-

[1

K

-L . . . . . . ... . . . . .



Such a vah1u: Of G 1--1 ii c- Sc:,%.what l e-ss than 1'/2, 11 erhIps 1/11. It
Should IbC -dL~n~ 'c thiC1t D 4k"Chose a travol var.i;bJle that
gave rz:cto i. ;e.'ourvt 11 00)'S~: oill contirinig C - 1/2.

In omkz!,., to B Jl(r), andIB(- as functions of r, we need also

the equation corsijc'tibc' r' and r, iDzi Uqs. (226) and (211,40, we obtain:,

go~r..51



-Cmpter V'III

D)imensionless Ti-mv Valrabjles

We no,; ,conlidcr various mczans of Jnl 'i.cJri, dzc'ns o1;ss
time 11ari1 able inlothe fun lmanulta ixztor.ior ball-,zc c(luA- -31onv. To

do so, let us first define v to be soe constant quantity having the
dimensions of the reciprocal of a time. Then we define T by

T E vt (250)

We co'tJinue to an, 1icott d,'ivz:t3Vas of , ,C. \,W .
with rc, .pec' to t by superscript dots, a:nd now intr. ='ice thc new
convention that derivatives of such zUt'iiOs with Je51)ect to T shall
be denoted by primes. I'We have also

d Vd (251)
dt dT

Thus

" :(252,2)

t/ (253.1l)

=V (253.2)

Then ,Eqs. ,(234), (235), and (236) involving the total volume expansion
-ratio : :become:

EG( -- - (1 + a G "+ 1/2 B2 (r)(ye A! 1 ) 2 (251)

p = PB (r)E*" (255)
1

QB ) (o (256.1)

Qo + QB1(r)F"l (256.2)-

where the "energy parameter"

XA,2 XAE E oig2 = -- (257)

the "pressure paranete's'2@ + -

o 0-9
v

2



and the " quic krie-sos"

Q = 2a(2S)
0 

%v

WV

The l)ai'Le,& ! Qo, and Q are dimensionless, but P is a pressure.
For, the second l,. de.-of-bw'nin-, )aw the exponeut n in ra. (959.1) is :o,

On introcluctio of -r the eq-.atiorn in become:
F -!

EG() B() - h(C - G) 1/2 I2(r)(ye - 1)V22  (260)

.p ::I'B1(r)j : (263.

orQ +

1 2

'where

rnVog F9v
2 ,

p A2  '(26i)
2

_WVp'291

-2a '(259.

It 'is instructive at this po(int '-o make comparisons with

used. His values of P0 and F5 also ccrrsponc to0
k=0, i.e. , to neglect of &as friction, non-unifor;nity of cr'oss -sectlori

and of hoat loZs. His procedure amaounts to usang the E, equations,
-chosingV ini such a way 'that

P ,AIA -A (2 063 ),

K,,
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vi(2re 11 elenotes ulnit prv3u--o in a Ft~tfla'( systmei of unitt i' b/in?)_
an A. 0one I Standard .14,10.c M"Mi, th' Ifcuvccil. i'rcnt ,q. (11

X ; (Y *Jed~ nc( hod-' 7) = f.~ 1.3~, h-~ has

wbere q,, is a sitanda'-d valJue of t~he poItcntji which coxrmcspornds
.romnlly to-II *h t r-(C~cfic cnci-y Ill. In this connc:ctlion notc: the- Ymn.%v*K '

foJowiz~ ~"* .1).The:n 11-c:, 6 n/ -A(2

r '(267)

Th eergy equaltion tl.en, contains only one.- param~eter A]., which to~ethor
with the qul ckncss Qin the rate of-bulrning equ ai,j ives a di'ffer-
entiae.I system with -two strong, p aieters (L%.andQ)

In: TiOrder to get rid'_of a ealk D-zav, et-r -t irrht be brou~ht in byr
con~- ne L,* 1l;- -

L~~, he obtain~s a universal MOtaJ a~e~ " -i~20..

Bly a- "I'strong"-I paranweter we -mecan one the var~ation bf ~;ih
,wil.i produce large changes 'in the solutibn-. and by a 1"weak" paiarn, ter
,one whose varl--I'toii wil ').produce only small1 chances in, the solution.

Nwheparame ter -Pc in the a uati'ns 'Chat have to be

gained by, such a- procedure, since the pai'aeter ni -would still be-

on -the solution Thus two stroig p'aamters, viz. A, a; d eithr o

the itutio isdifF.erent with the equations. In-order
tocmaewt ent eaar assume tUhat* the Irunctionnsj(r n

K B x r~e unity- that YdJ-S'nvraand that the firest ra-e-of-
bunneuto sue.Isedo having a stronig -ppramQ ter Al

IV Coieo 1 qatoPolto A would Still lev vosrn



Now, zhowevc1v, if 0100hooe ij inl such a way as to makem 1 1 'or~ Q
we: reduco thc. numrber~ of strong pzwomc~ters by one. Thuts the C equationls
Should bet a gY'e& iur.pioveC.iort ovc : tho Z, equationls.

ThcYl- 3U1 z.-nohe- w:ny of iveiucine. by One The nwiabt'r
of stronc'~t~t ss This is a 4ethzod siii.'ch under certain spoc-a).
co0i-t ions roduces to Riigg.ls, To obtain the R6 3gga-type cquatipps,
differvnt~ate the energy equation (260) Iwi-thi MS'PeCt to T Then.

d~ _ 0(270),

dz

Now insert Eq. (262) for into Eq. (269) and call

'1W W

o.R ( -dJZ z (273),

EG 2 (O)NU) 01 Z)d273

Now cho6 2 v in such a way thnat

tQG'(P) 1 (274)

Then

0-; orZ) (275)
'Ir

In the above eqations G ?( 0) is the value of*G (,z,) -For 7,0, i.eC., Cit
i-he big of~ burningi toreover 'tR(.Z)' is- equal. 'o the ratio of the
po-Wer surfi'e 0 at tl~mr to to the powder- surface 0~ at the beginning
of burning. To spe,: thcypiess the iiiass off pow~ier burned in timIe dt

lbtermls of both G'(-.Y ;7d the- .-urfa cc 0., Thtws the ulact burned is

CdG MING~) dz (276)
-or, 06dx 06~L d~.(277)

2



where '6 is the mass density of tiie solid powder and dx .is the linear
distance J)upnle. Thus

cG'(z) -0 e (278)

and
CG(o) 6 6 (279)

On dividii,; Yq. (278) by Eq. (2"19) and using the definition (272)
one obtains:

0R(z) = o/0o (280)

Thus for po-der of constCant burning surface u R(z) reiidins equal to

uniTy. Moreover, aR(W) corresponds to Rbggla's cc which he takes to
be a ,function of expansion ratio. It is seen that such an assumption
is false; ,aR is a function of z. In the e,,rent that one can use
constant values for Fg(r) and F 5 (r), the functions Bl(r) and lt2(r)
reduce to uni'ty, so that

Io

0',r -'C+

If one chooses the first rate-of-burning law, assumes constant
burning surface so that aR(z)- i, and makes Rbggla's co--volume

assumption - 0 so that h 0, then
tin = d r +"ye

W + l/2(Y 0 l)'( ''+'" c , (282)

Eq. (282) is the R6ggla equatiJon in the universal form due ,to Kent:1 0

Eq. (281) or the more general Eq. (275) gives the form for use when
the co-volume is properly treated. Tf the surface is not constant,
one must use alsb the rate-of- burning equation:

,QBn(r,)Cin (256.1)

dz j -'d' -- o

SQo B1
+ )Q()%'. , (256.2)/,

.R. 11. Kent, B.R.L. Report No., 48 "RAggla's Equation an, its
ed -ui, i,1tL :,~cAppl tJon to ntepior BaY istic Pr6bbms (ReVised)", Ju l 9'(2.
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- th. t 2,; Q:1f 1 Uv.

C.1 "ro. n

r~ai9 . t' L.:L.r ':4;t..:~1&r.~ ~r.i. it thi! ; svctyul pXi'ce It Clearly
i' ~r~':~ ~j~. S'.~. a ~ cvev R*Lija's co Vulum. as-

.wIt c'nI; '1w.-. LC' L~. y u ,c.Te in ie diffcrctntia2 equation
but T2A ,it ;,I tnc '. A m<Q't!'h' atry. Such a .prozzedu -

I I 1 7o -c

ofirk- -i Mzr1 T ai c..r te-~~ L uatio

of Statrjr (Th)e.u:~..it in the eqUatior of:o

powdeAccrdin uto txche posoibly flamn 1 ,1e podn hihapoxite. at
allt~c cl3'! tinoE.O ) bt vf constantbrig ufc, i m hu~ihl suipraleh

stae'~nt ~ frthr srentheed y tecc is~* thtasp iintot.

ove he chno-ve c-~corcation an biwo ie lr cly tat'h r int c o

pcowdrret5x in x !t pssibly oflk difer ich aioiats. elate
then -ce to a ige~a o fconstant burnino ufa tseshghl iprobisassued

it hardly seem-s ;w'-wth whilie to treat co-volume exactly withbut taking
into a_-cow~it the'v iit of burning- sur -Ce. As soon as one decides

to trua1 the burllna surace_ prop:rly, one sees that the above System
or.I -:is isfar or completeness, howiever,

zaroojw bct' will no1. To obtain hi's equation,
bezin- wih1 Eq. (260),, i*-oo .zi-., C 0,, and solve for EC:) One obtains:

Next iftntaEaF. (? ,K-) i.-ith rPezpect to z, p~ace G'(z') =G'(O)ctR(";),
insev-t th.rt-'-u ic tio (256), and make the Fggia choice
for' vi j he., chc~'v so -,.hat ED7' (0)' 1. Then
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I\ L i ( ) ,1.

SQo0 2

(

haEs only a 3v.1 e d 5.t.,. .....i. A: ).' , d'1 iz4

choose v in the,- rln,,e v , bat _-e_. iL - -t1c: z _ 
1
Ifl
n t. hC.A ,

a strong p, zir4,e 1' in the -ucL:L irs ofthe e .
h/E. Eq. (284), Is thus Zarctnyts cquatica, as no-if-ek by the author.
The compjcations above ref eArrd to arise fro.-i the required differ-
entiation of a fraction.

The foilewin7 tAle .,- ,. of the .. ,
F, anld Q Y,,,.b ,,: , '" .: .-- " .- 3 . :. '" ( ) "

(28b)

-where. a and b are the constants in the la, a + bp;-: linear
rate-of-buvning as a function of p issure., Also, when the second rate-
of-urnLng equaion is used, .w- must put the exponent n = I. The

fotulas for P = P0 or P = PoX/I s tre not included, since such a choice
leads to an additional strong par meter. In writing do:. the for.:nulas
"fie -the RZggla case IEQG'(o) 1, we use Eq. (279) t -express G°-(o) in
tarts of the initial burning surface 00.

L

S57 -

I.



r It

9 N C~

C; ao - 14

H It ' m

~01~'7 II"12 E..
w Ul

C- C,- 1Il
Ij II rII I

I I .W

I~ I '1



Ch.:pa i. :D

I:- .(Cy -

(213 , i'J ~ L ~) h~~.' . . , .'; .h .

(232)

L .n 2 '.,w, -3 , ' k. 2

+i- it -fn Ct t ~ L28

r 3

- + (28)

F9 i 3 + ta 2  2+€. ( 7

!1+ k - p' -fl - . -I 'higher ode_ teC(2

Tn genieral. the passive .resistance term p' an the r'otationzal

I2

V tem fl tan2 ::r will be sr.,-J!- co: par~d to 1, so that .app:o:.:imnate~y:

i:[ --- " z +- + 2 - - .,(.o

L93 9 "(17)

Fwe Ja. gc guns the heat loss chefcert k ,y be n:rlJ

will rnot exceed 1/3, but rec¢ct huigh ve~3zty gun.- ; :5 e c: ir;..-,9 use a
greater nmss or pow-dee . k., c 4 p:.jectilc', so tlh-jt: , r..y ,.)-ech Oi'::e::
3. in these e:.:tt.cnc eases. any case, ei(i28e) fOo, (2'6) o,' from

59rr
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I.. -

,Y..

, ,)C .:., , . ..l
2
( of [ /, re'.,,, unity dep .ris

thefo.. c l o F..(,:, "i i'!t d,-;i ,ot, o.z- y on, h ,. h alo o n th e , :
i , in [,.e : ~ +h f' .i.t.c xt rz: W'f m/---. s. ,'i and o. e , f ,ctko l' 9 (ro.:)!

" - .... :- '" '*- 7 - - ---.- ' - -
. 

% $K vj f O O ,.

17;.

In c _ib1s thu tz _(h_;A! teun tils Y1 r n 2 r dn d o

the . ..' eigh p rnccr ki, "-, rn/'rn. ... ..,- '~.. ar/% rm,,,.., an.d "'[' S/D2. h Thcs

at hat f),.is theu ratio) ofd F() , o.e ites cnstantyvaIhe atnd

that B'9()rYd is th5(-atio ofF. ) to i.24tst con1.s2 not qlo shpule v
to a the vC.rFions in o anpvafd Br snll o. Tus each o- thee

ei:g ,h:.-,- p' l;eer shoul ha:. e on" y" a m/ jl, effec o n The ou~a-ton ; i9.)

ec one s l-", a ,-, p; . asega ds " ts influence on .h

oncrralo,-,s Aly~th. thhe functions B nd~ hu intduc(ve ol en r

IVe eig t , 7at his t ", il h, h:-D ti a toh

valus Lhat B/2, 17rste ,in of F - .) t n thet ecntstat vle ando

fa B2?. c "e' 1 ee50 to 2, F5(. t constant s oea. e s teeVe

to e u he vaitons) in selr. o d1 BC(o) sml Ol khut ealso on the

enTe coui n hvoe l- G + int ce only ml$ e fend o the soutione ne.,
. ..vi . 1  since -g ais a unctio S 2 f econA..t

solut-o F h: uz B.i]Fc,- I( .-c B():n k snt e admt? sne

oclzea a o ho ice funve:C s B1 and s the lntropaae trev

invalbe rs. A= o/ gt.su er - thr4-n the n .Ion Bthe avn B2hat B1 and on

t he eih aacot'ffiien p" -- $- a,,of 1G G i nde only Thene

toeake ...t v izati sn e g a functio smll Ths ah.,ths

The c1ho e B (r C ] keve is nt aonews,, param eter,

[I0

(ocohi:-, J alo;Iy. Te ucin ,an 2tu nroueol ee

no;adVhsnne ilh ercdt i fw dp h
v a u K / S I - 4_e n C a t- r V . n t e e e t -a - n L

r. 
.A



The 'ChoiCce Q a JIcae- .if.a; 1C. 0113Y !.rce yw. -A-1. Icid.

Vic! cihoicv WI'( ) = I':v. !~~a~t'i.j. t~ is thu 2w~

In gene-a iv5. iriIlatidc*uiJ:! :i r ,C..iZ A

of inaitiadl prd:v'*e to t1 p ii i;c;- ' 1cc':, 17q.(2

Cli 107-0z

Ing dz5: the poL-S!Lle Oc S- of lJ ili

wil1CUseful to Consid± er - tafo: ;. h, rc_1 ~1iCasea

co ;_VIAume ta)'h1en :iLZ) t beo
rae-O-bni., Jet,, is ur i%-& - > z- C

of a -wdiveriaJ. va3AlCe i£9o g leads to a nafiver5.7l m c.±4PJud va-c g%
Yr. 5si~ -a cose a ~eo ~ul'vftSa1 valie Sa 1 is eqa -,~j

*'to the assumnption liha ritiei .pressurec is proporl1iona! to nmazcium

Vithout the above Zisu-iptions 01 the sin~p le2 theory

onedbonthet ausiwvptio of utiq Ua a universaai vwi.ue fo n2 ot~a~
ino-c~src tlead nvra III R6gla'sva then," the;c Of

o mtied'prespe ~~n~to ointia l esue S.ric tc asrui:*:o by'
Mands a Ken-"-- of- er tocl a e prpo onaphyia3 Alt1: S001t

zi Pr~UCe'sve c&c this initit;,,a Znd thus Jos- tiot c ivXJ er we i c 4

reiri tyhe the Pumcitt of t s i &alwr hyicJyI:orc e.,,~

metonetd, proporltiorality aoe Si'l-eiin o~ maibe Ix pmthcr

a universal initizil pressure. A little lczs rca.01Z110Zfb.%mA1
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Pf thc. L-- f Oip

j, V296)F- \'~ 1.- ~- - - -~ . -A

-S.- 4 *-)* Z

-d; aveat : o, thtw ics-r s hy rvadG7mpb

gco. for; nuei- alc i y~ e ~ jc !

Fegtdaeae or the ~ic of-E.(2D)wl haver usit-ni at -(l -0,16S ar so~m

thlal the values 6 !;-53 gim/cma and 1 .074; cm3Ygi lead +c ct' Oa-I.

If" ve p~ow represent the q curbn in they'0 of Eq. (090 bi

we, f *id' .37- Or n i.ocu/nad 4=15 r/r Let us also

correspondii.,g to "he a aid h of "1qcs. (238) an~d (246), the Loki-nc !-n
that we row use th,- value 0' itstead o-.f a.. As befor'e we 3ct V dc-noto the
total vo).umci fro!, the brecch to thc base o-1- tha prjcie

-interibr bal-istIc equpions whn Eq. (295 is ~; re)-z- yI.(9)

rV. th(3)yeuain-i lfetd n i nybog



U :.Tho -- 1
- ( t- -( - "( "

L.- .
-,

,-, . ' ;_) (3;)
Sh'(C-G) _ (e00)

to the termi~ ht(G -G) in the energy equation.

We now estimate the relative values of , h'(G-7), and "A"
in. about as uiffavorablu a case as can be found. To do so we make use of
11Bpnnett!s Table I1 taking a density of loading Al (= 0.800 Zm/ i3 and

ts_ qui}:nss q = 0.,0750. His Table II gives the value =.1111
for max:i.um pressure. Inerpoiation in hia Table III gives the corre-
s-oalding values at n:axmum pressurae: ' 190.-1 and 47 610-
Insert-ion of these valueas inito his enrgy equation Oh, page (x) gives

0.3515. Using C =1/1, we th, find;

h'(G G) - "A, " = .374 - 0'.212 . 0.335 2.197 -(305)

" thus tirna o.ut to be 111i o~f C in this ura'avc oble case.

Neglect of the tern "At, , ho%,cver, wo-u.d not -be so serious
as such a cacuation u-3 -rti icate, for -he aveasor that hen )w
the si:pler }LE1u:a'on (295)W largely zo!:pensate for o'ission 6f the
tern contain-' . 2 by u-;c of a different value of . This fact is
easily scen ,v calcul.tion of I and Si. Thuis sizne-

ht(G-) I .0(303)

YO



Ne I!itt( U, Iv

~ L

- .z rc R - Cs'

L * - -VJobn.8~ Vin.

Useof heles -zcute quai'r: i~stae ~t1e eor~too_4 1



-~ -- (the ordvi' as that in izhic-h tLli'y appa)jCW

OiAec~t' CI ...'cz ~>polo ... iuro. of the powler gant,.

11 () -.-P0(e i 15 irtcerax:1 C11ry of the pow&-r~ gc,; at abcolute temperature7.

w o.t Z:v: ', iA L ta". - 1.pus he-A loss to cvuTI

k1  irntcoivainCn:,Tc nt that van_;Sbe ,

c(TO)U() mean constant volum~e spe, ;Ific heat over

t~U U2 ~a.. T to TP
0

- cr.22.t:~o'.:

e~,meanl poteritiAl of the ,po-.,der over the temperature rangfe To
to TF

i+R 3/c, analogous to ratio of specific heats in older theories of

interior 'ballistics

z num4ber ofg~a mles 'per gram of7 paoner -gas, or pound 'Moles per
pound of po-,rer gas, etc.

R univzersal gas constant :(gas constafit per o)

X E "T Orler_1 oF the pot:Jkr.

0co= cha-.b . hem. of foemrtlon at 1500 of unit P~ass of the

SoI ~2r fcn the l-a ~ t at- 150C

Q2 entet h-cat oilor.t o at lSCC of unit mass ot the

qo- ..,r, t!ho r _l qtive coititrai'k en s at che-mical

x T C1- ,> .:4 U r -l?' ofth gas per unift m'sat abso-Itte temperature TF



CC

11 specific eniex-gy of th! -olld po -ce to the elc~npril..:

oOK at Zero cknsity as the zl:ro le-vel

t time f rcn- b irni n~ otion

x distanjwc frz : to in .A&yc~-c~io ch. 1

L length of': po.dex' cbatibcr (di.-tahce -froia breech face to begrinning

t tr'avel'of projecti~le kwilh 'respect to the gun-

A- wean. cx'oss-sectional area of cham~ber

A 2  crcssestlonal erea of bore

I diame ter of cbx first -ccu-trly dcefirv -- in. Chapter' IV b

P2 djamietez' of 1~rfirzt accurately defr ir 2 in Ciapticr I V '!)y
-relatibn D 2.A-4' 22 2

T -(-absouta) tper-atuxe of rfaill hody of 'as

Tb mpol'atup'e OTf -hreech face

-T (xet) tiqrtporatui , o.& walls of c.-Jer andi bIC-IYI

67!



p ti~wtt~ui'e o! b1i$( of prujectilk

L~)C C C)"[o L,', t L1n;Ti, vr fv-c hod got to br(c( zh fcc(

co ~ ~ o 1 iIt Jh Lt)"1fe? fio:.t hot vas to -UJ3Is of chainbcer
and bo'rec

h) ff5c of' 1woit trarzt;fer f ro-.n hot Eas to base of projectile

Q( 0.) tOL lQ L v : 1tr C t1 z:C'0 .. Z,~t

Q i os., to z.'h

QCV loss to Cha~'fbc1x wall;

C) 10oz to ))z e v:--3-

Q 3c' tz . -. a - Lrryo -roo Ll

this 2'itio beltng assur)2d corst&nt

mn mass of projecile

v velocity of projectile w:ith respect to the ground

Va pressure 'equred to produce tran--ltioria] accelera-tioln

V.tan l/2-Av 2

C, angle ol. riflirz

YP , z P cocnrdi-nte o--- Doirit P on rotatinl- 1OWtnd -(on- develops." bcwa)

0 aw-u 11r cc TH -te of oint P

dO
-~an~:hrvalccit-y 0! PrjCci.:iie

[isR H a'3u -rtic),i. ofl troje.-t'ilre

F8



1.' *' (T. /D2)2 2i

'Prot p~: u:, to,..,- pe ,,?', roti ti =p.J acce3-.'..i~jOh

4

P, pressure of drivin..g sidc of land on ridge of- pi.ojctil

f -friction force per .unit area

3i. uit vet wtL ., !,x:),.! 0 to inTeC-T

NI ntirnbr of l ond r oe of z

F 'total fric-tional. fo,,ce on rotating band- in divection of motion

AR trca of side face a= a ridge

r-B  tot-J force C;: t :"-" of th-. '-" J-

Ppass forcing pesistar.ce pr unit cros-seeCtiona a-rea of ,projectile
("passive" pressure)

Wpass energy lost in 6&ereo.ing -passive pressure

P' ratio of Wpass to 1/2. mv2 , this ratio being assumed constant,

f f tanr., if the law- of friction holds

P, passive pressure (f .taken -o -be cornstant)

V1  recoil velocity of gun

e reco'l ratio vlfV

Chapte. IV

x x distance from breech fece to base of p.-,,jectiIe

" a(x) cross-setional ar-'aat d' F-6DnUc X . breech

-(xy total volume froi breech face to cros-scction .t i .

C B C/m

6C

r

i,



u '(::,u) c~rit v5 : *.y:.t to th~m groun of 1r'gaj- riure ~

m4 rc:inrm with r~e- t tUo thje grounm of the r. oizinrg parts

11:2 oci.:4 with, 7~:t o the grounl "--h,: pr~ojectile

FII

q, S~.~

I F

2

70



(0 angle &!fine'd in Fig. 9

-P(X,t) pr Z:i ' aL UIie t aL cMietancc* x fic,, hrc--11

p(O~) prssur at ti.i; t" at brk-ch

k (t) ()ut

Pg (z) dcl-.3ity ofC JXkL I&~orne

Iu(Td spec5.lic internal energy of pow:der gas at distance x frrd., by-Coch

u(T .) miass average of u'('TY), interpretcd a,- ()

I(r'see, IEq. (162Y on page 31

1(r) see Eq. (1641) oil pacre 32

c,,cconstants occurring in the Leduc equation for' velocity as
-a. functiton of travel.

s travel at n~c~u~accdleration

x-- x rsicn ofr ary- surfaccof the powaer grain

b, co- :f::z:e:: rfofiiburator-burnint- law L bp

d t



it c0wUmtdii t.ijv in 1rLc.-of-bu-ming, law

iof ii~ te~i u - of s d

Chapter V1

r ):( ~ I . (31 Ion-'~Z

T8 P EQ. (2 07 On page III

gr F(r) + '6Cr)

t~Cr ~: :.r~t:- ~ * c E.(212) 1.?rc~"

V9  totail vol.ume from breech t:o base ot projectile =w(X)

v initial value of V

dein.-A for eonstErit . and mE -;i Eq. (217)1 on page 43

Chaoter VIIT

I 1-fa vor. of pco*;der f'a un't v;Olu;ne or Solidowe[c &- -tf of ioaiir;7

Fc b~ cn~~tv.2.Iue o f FS(r) -

A Eratio cf tII'o a cr.iyof I gm~ per cmr3

F9 be-- co,'atv.~ Of T.C(lr)

72



(11 F 11 (y.4

11) Rlbggla' s free volu;.fto expaniorn rattio

'G, arbit-ra-V vzi) ue of G ait sO:Ike p it) 'L-ratj ct ory (prolZLly to

J. + ~(F,-. 1t), rncif ied c.:pa2sicon Lo

h 5 Al j

vt1, ~v

E. dimensionless an'xrgy paramneter', coeFfIicicht of G94-1 in
dimensionless energ-y equation

PS pessure paranmeter, proportionality constant occurrign
equation coihnecting phtysical pr'eszurc anmd d-,Imension less .pressure

quic1lriess, para~meter's occuirzgif, 1m eUnsion less -rate..of-buining
-Q -equation

P- unit pressure in~ standiard systeli of4 unitsct :'a 1adard uleo the: ocev

see 7Eq.i. (271) on pgc 5'

OR(73



'3 sul.Rwe2 of tx'1iA pc'Aor 'I.. tlac. t

Su p., s -ript e0Lt.; or 1)riia4 , )vc~r di~xac~wsio1 ess travel va-tialel denote
derivativ(-, wi~i vesjpcct to " or it re~spectively.

,Chapter YX

C, Ccw' - cicj L.. t.' o ot foc~ic, ~Ik.stance
and ~ k~ x oac-cQxunt

phaiptcar X

,a rlore accurcte exprcss ion foac thf. free volume

hiand tcoeff-10Jcnts in the m~orec accunate e:<pression for 'the free

frc!' Vol t
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