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ABSTRACT

The equations of two-dimensional motion of a flexible inextensible
cable are linearized by a small-perturbation approximation and sinusoidal
time dependence is assumed. The simplified equations are integrated nu-
mericilly by the Kutta-Merson method. Separate computer programs,
OMWAY and OMFLO, have been written for the Quadrant | and Quadrant
II cable-towed-body problems and are listed in the appendixes.

ADMINISTRATIVE INFORMATION i

This research was supported by the Naval Air Systems Command and by the

General Hydromechanics Research Program under SR 009 0101, Task 0102 sponsored
by the Naval Ship Systems Command Code 03412B.

INTRODUCTION

Accurate prediction of the motion of cable-towed-body systems is essential for '
their rational design and for simulation of their operation. For the simplest of these
systems, a single body towed by a cable attached to a towing ship, adequate represen-
tations of the towpoint motion, the dynamic behavior of the cable as it is affected
by the tension at its two ends and by hydrodynamic and gravitational forces,
and the motion of the towed body are needed. If only steady-state motion is
considered where the entire system is in steady rectilinear translation, analysis is possible
by numerical integration of the differential equations that describe the cable configur-
ation and tension. The case of steady-state motion of an inextensible tow cable in the
plane described by gravity and the direction of translation has been solved numerically
by Cuthill! The tow speed and the tension and angle at the towed-body end of the
cable are prescribed and the viscous force on the cable is represented by functions of
cable angle based on experimental data. Integration of the two simultaneous first-order
nonlinear ordinary differential equations for the cable tension and angle as functions of
distance along the cable is performed by the Kutta-Merson method.

The unsteady two-dimensional motion of the same system was considered by
Whicker.? Instead of prescribing tension and angle at the towed-body end of the cable,
the equations of motion of the body become a boundary condition for the equations
of motion of the cable. The cable equations are four first-order nonlinear partial

1References are listed on page 46.




differential equations for the tension, angle, and two velocity components as functions
of time and distance along the cable. Unless the restriction to an inextensible cable is
relaxed, the mathematical classification of these equations is parabolic since two are
hyperbolic and two are parabolic. Consequently they cannot be solved by the method
of characteristics.

The next section of this report describes the system of inextensible cable
equations given in Reference 2 and a particular way of representing the viscous force
on the cable. Then two important simplifying approximations are introduced: the
unsteady dependent variables are assumed to be small perturbations of the steady-state
variables, and their time dependence is assumed to be sinusoidal. The first of these
permits the linearization of the unsteady equations; the second changes them from
partial to ordinary differential equations with distance along the cable as independent
variable. The digital computer programs used to integrate the equations are described
in the next section and are listed in Appendixes B and C.

Thus the accuracy of the analysis reported here rests on the validity of four
main assumptions: (1) that the motion of a real cable can be represented by the
solution of the equations of motion of an inextensible cable, (2) that it remains in a
vertical plane, (3) that it consists of small excursions from a steady-state configuration,
and (4) that these excursions are sinusoidal in time.

EQUATIONS AND BOUNDARY CONDITIONS FOR TWO-DIMENSIONAL CABLE MOTION

The two-dimensional motion of an inextensible cable is described by four
nonlinear first-order partial differential equations in which independent variables are
distance -along the cable s and time ¢ and dependent variables are the cable angle ¢,
tension 7, and normal and tangential velocity components U and V. For the case
where the motion is in a plane containing gravity and ¢ is measured from the hori-.
zontal the equations are those derived in Appendix A which are

U0 0 (1]
s as ot
9 oV [2]
U—+— =
os os :

3]
u[(l+k)-§tz— Vﬂ]=—Ti¢-- F, + wcos¢
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where u is the cable mass per unit length, u\ is its added mass (in water) per unit
length, w is its weight in water per unit length, and F; and F; are the normal and
tangential components of the viscous force per unit length acting on the cable. These
equations were also derived by Whicker® for the case of A=0,

Two cable-towed systems are considered in this report: in one a surface ship
in a seaway is towing a deeply submerged body, and in the other a deeply submerged
submarine is towing a float which is slightly beneath the free surface and subject to
disturbances from its seaway. The two configurations are shown in Figures | and
2. In either configuration the (mean) towing direction is to the right and the origin
of coordinates is at the center of mass of the towed body with x in the (mean)
towing direction and y up. For the two configurations ¢ lies between 0 and #/2 and
between #/2 and x so they are known as the Quadrant I and Quadrant II configurations
respectively. The cable is of length L and the quadrant choice of ¢ causes the towpoint
to be located at s=L in Quadrant I and s=—L in Quadrant Il. More detailed discus-
sion of these quadrant conventions is provided by Springston.?

In the Quadrant I problem the cable motion is excited by the effect of the
seaway on the towing ship so the boundary conditions at s=L are the motion of the
towpoint; the boundary conditions at the bottom are provided by the equations of
motion of the body tethered by the cable. In the Quadrant Il problem the towpoint
is on a deeply submerged submarine and the towed body is subject to time-varying {
forces due to the seaway. Therefore the boundary conditions at s=0 are the equations
of motion of the tethered body subject to these forces; the other boundary conditions
are that the point s==~L be in steady rectilinear translation. Thus each problem has
kinematic boundary conditions at one end and dynamic conditions at the other, and in
either problem the excitation is due to the action of the seaway; this excitation is
through the kinematic boundary conditions in Quadrant I and through the dynamic
boundary conditions in Quadrant II,

~In both problems the steady towing speed is ¢. In the Quadrant I problem the
towpoint velocity components in surge and heave, positive forward and up, are ¢ + cg
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(0) and ¢; (#) and are assumed to be known. Therefore the kinematic boundary con-
dition for Quadrant I is

UL,t)sing(L,t)+ V(L,t)cos¢ (L,t)=c + ¢, (1) (5)

and

-U(L,t)cos¢ (L,t)+ V(L,t)sing (L,t)=cy (1) (6)

In the Quadrant Il problem the towpoint is in steady horizontal translation at speed ¢
so the kinematic boundary condition is

U~Ltsing (=L, t)+V(~Lt)cosp(—L1t)=c 7

and

~U(=Lcos¢p(=L,t)+V(=Lpt)sing (—Lt)=0 (8

The towed-body equations of motion used here are those of a very simple
representation of the body dynamics. The body is assumed to be a point of mass m
with added masses in surge and heave m; and m;, and weight (in water) Wp, on
which known drag and lift forces Dy and L act. No body pitching is represented,
any body motion which is excited is undamped and the mass center of the body,
center of buoyancy, and point of cable attachment are coincident. In the Quadrant 1
problem Dpg and Lg are taken as constants but in the Quadrant II problem they
represent the exciting force from the seaway and are time-dependent. If Up and
Vg are the horizontal and vertical components of the body veloéity, given by

Ug(t) = U(C0,1) sin ¢ (0,¢) + V(0,t) cos ¢ (0,¢)
and

Vg (t) == U(0,t) cos ¢ (0,t) + ¥(0,¢) sin ¢ (0,1)



differentiation with respect to ¢ and substitution into the body equations of motion
leads to the dynamic boundary conditions

(m+ m,){-:—‘q (0,2) sin¢ (0,0) + -%Z (0,¢) cos¢ (0,¢)

+ [U(0,¢) cos ¢ (0,¢) — V(0,¢) sin ¢ (0,2)] :—f 0,) }== =Dg £ T (0,t) cos ¢ (0,2) 9)

(m+my) {-gg(OJ) cos ¢ (0,1) + %’ (0,¢) sin ¢ (0,¢)

+[ U(0,r) sin ¢ (0,¢) + V(0,¢) cos ¢ (0,¢)] %?(0,!)}’ Ly —Wp £t T(0,t)sing (0,r) (10)

with the signs in front of the T(o,) chosen as plus for the Quadrant I problem and
minus for the Quadrant II problem.

In steady-state towing-cable theory the viscous force components F; and Fg
are assumed to be equal to D times known functions of ¢, where D is the drag per
unit length of the cable when ¢ is #/2. F;/D and Fg/D are known as the normal
and tangential loading functions. In this report it is assumed that the viscous force on
the cable in unsteady flow can be represented by an unsteady generalization of the
steady-state force. D is expressed in terms of Cp, the coefficient of steady-state drag
per unit length when the cable is normal to the flow, as D=%z hCp where p is the
water density and & is the cable thickness, or dimension in the direction normal to the
plane in which the motion lies. The unsteady generalization of this expression for D
consists of assuming that D is given by

U2 +?

D=p hCp

(1)

where Cp remains the drag coefficient for the cable normal to a steady flow but U
and V are instantaneous values of the velocity components. The unsteady generali-

zation of the loading functions consists of replacing the functional dependence on ¢
with the same functional dependence on 0, defined by O=tan’! U/V since, as can be
seen in Figures 1 and 2, this is the angle between the tangent to the cable and the
direction of cable motion. (0 clearly reduces to ¢ when U and V take on their

5



steady-state values of U = ¢ sin ¢ and V = ¢ cos ¢.) Cor'nparison of Figure 2 with
Figure | shows that the positive viscous force components in Quadrant lI Fp and
-Fg, should exhibit the same functional dependence .on -8, the acute angle ‘between
the. cable tangent and the flow drrectron, that FL and Fg exhibrt on @ in Quadrant 1.
Since the generahzed loading functions proposed in Reference 3 are used in this report
this requirement will be satisﬁed if the loading functrons are given by

' [ i
i ! . ' i

\ . | - o ' (A |
' —£=A0(A)1A|(A)coso -t-,4¢(A)cos20+B,(A)sin0:I:B,( )sin 20 (12)

S S TR ® M )

D=tA,, +A, coso:tA, cos 20 £ B, srn?+B, sin29 13) .

1
i i 0 ! l

where plu's signs are used for Quadrant I and minu's signs for Quadrant II. | A4 and B
are, constants to be determined. : ;!
An example of how A and B may be related to expenmental data is provrded

" by Eames, who suggests that the vrscous force on ‘the cable can be assumed to consist

© of 2 pressure drag, D(1-f) sin? 6, 'which acts normal to the cable tangent and a L E

! fnctronal drag, Df, which acts parallel to the flow drrectxon or honzontal for the steady-
state case. Consequently Fy' = D(1-f)sin® # + Df sin 6 and Fg =Df cos 0, and A
andBaregwen by 4, = l‘2£ W= B(A)-fA(P)=fandthe |
other six equal to zero. This representation results in reasonable values at the ends of
“the range of 0; for @ = x/2, F. is D and Fg is zero, for 0 =0, F; is zero and FG
is Df. Furthermore only two quantities, Cp and: f, need to be determined from’ ex-
penments They should be expected to be dependent on Reynolds number '.

The parameter A, the ratio of the added mass per unit length in water to mass.
per ‘unit length for motion in the x-y plane, will be represented in the form
! . | : ) i ! : f

{ f [ { . i

t -!phﬁ'” . i | \ (14)
i | A= 4“' & : ) !

!

t

1
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where v is a cqmt'a'nt to be determined. Idealfluid theory predicts v=1 for bare
round cables. ;

In ecither quadrant the coordinates x and y of a point on the cable are related
to's and ¢’b.y-.g§ = cos ¢ and ' _gsl = gin ¢ so they are given by

' ' ; ©x(s.) sf' cos ¢ (s'.0) ds' [15]
i o

' "y =./: sin ¢ (s".0) ds’ [16)

. To ‘summarize, UV, ¢ and T are given as functions of s and ¢ by solutions of
Equations (1){4), with loading functions given by Equations [12) and [13] (with
appropfiate signs), D giveﬁ by quation {11], A given by Equation [14], kinematic
boundary conditions provided by Equations (5] and (6] or [7] and [8], and dynamic
boundary' conditions by [9] and 110] (with appropriate signs). Then x and y can be
found using Equations [[15] and [16].

L

_ . SMALL-PERTURBATION FREQUENCY-DOMAIN
: ' EQUATIONS AND THEIR SOLUTIONS

Approximate solutions to the system of equations given in the previous section
are obtained for the case when the exciting disturbance - the towpoint motion in the
Quadrant I problem and the tlme-varymg force in the Quadrant II problem - is small
and smusoxdal in t1m¢ by aSsummg that ¢, T, U, and V are equal to the steady-state
values plus a sgnall perturbation term which is proportional to the cosine of w¢ minus a
phase angle. ‘w is constant'and the magnitude and phase angle of the perturbation
terms are functions of s found as solutions of eight linear ordinary differential equations
obtai'nedgfrom ‘the four nonlinear partial differential equations, (1]-[4]). Since the
solutions are: the magnitudes and phases of a sinusoidal oscillation they are known as
frequency-domain solutions.

The ste;dy-s'tat'e solutions are denoted by terms with subscript zero. For ex-
ample ¢(s,7} is given by !

0(s,8) = 9o (s) + du (s) cos [wr = bg(s)) +...
= $0(s) + ou (5) [cos wr cos 8g(s) + sin wi sin 5p(s)] +. .. (171
=@o(s) +dr(s) cos wt + ¢(s)sinwt +. ..
= 0o(5) + Re [¢.‘(S)é'w'l +...
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where Re means that the real part is to be taken, / is the imaginary unit, and +. . .
indicates that ¢p(s) cos [wr — 8¢(s)] is the leading term in a perturbation series for
#(s.1) — ¢o (s). ¢r and ¢; are related to the magnitude and phase ¢y and &g by

Or = dm cos 8y

and
¢1 = éu sin b¢
s0
on =Vor® +o1°
and
¢ = tan™! :—:

¢, is given by ¢, = ¢ + i¢;.
Similarly

T(s.t) = To(s) + Ty (s) cos [wt = b7(s)] +..
=To(s)+ Re [T (s)e’ ¥ +. .. (18]

with corresponding relations between Ty, 67, Tr, T;, and T,. As was seen in the
previous section, U, and V, are given by

Up(s) = ¢ sin ¢y (s) [19]

and

Vo(s) = c cos ¢o(s)
[20])

and satisfy Equations [1] and ([2]. It is convenient to represent / in the form

UGs.1) = ¢ sin{do(s) + Reld, (5} 1} + Re[ U, (s)e ') +. ..

= ¢ sin @o (5) + € cOs @ (s) Reld, (s)e D] + RelU, (s)e @] +. ..

so the expansion for U is

e re——



U(s.t) = c sin ¢o(s) + Re{ [cg, (5) cos ¢o(s) + U, (s)) €'’ } & [21)

In the same way

V(s,t) = c cos ¢o(s) + Re { [= cd, (s) sin @o(s) +V, (s)) &' " }+ . [22]
Then if U, = Ugp + iU; and Uy and 8y are given by

Un =V(cor cos gy + Ug )* + (cd; cos ¢o + Up)?

and

6y = tan™! o cos b + Us
C¢R Ccos ¢o + UR

Equation [21] reduces to

U(s,t) = Ug(s) + Uy (s) cos [wt =" 4(s)] +. ..

Similarly, V; = Vg + iV; and Vy and 6y are given by

Vi =v/(=cop sin gy + Vg)* + (—c¢y sin ¢o + V[)*

and

—cdrsingy + Vi
~ cPr singo + Vg

6y = tan’!

to give

V(s,t) = Vo(s) + Vy(s) cos [wt—=8p(s)] +...

In the Quadrant I problem the excitation is due to speeds in surge and heave
at the towpoint, ¢,(t) and cx(¢), yet it is desirable to have prescribed displacements in
surge and hecve, a,(t) and a,(¢), as inputs.

These are given by

a;(t) = agpyy cos (wt — o)



and
an() =appy cos (Wt — &)
S0 ¢g is given by
cs(8) = — wagy sin (wt — 8s)

= — wagy (sin wt cos & — cos wt sin &)

. (23]
= (3p COS Wi+ Cgy sin W!
= at’ (C,]("lw‘)
where 51 = cgg + icgy with csp = wagy sin 8 and ¢y = —wagy cos §;.
Similarly, ¢, is given by
cn (1) = Re (cpy ')
[24]

where c;1= cypr + ichy, Chr = wapy sin 84, and ¢y = —~wapy cos Oy
The excitation for the Quadrant Il problem is due to time-varying drag and lift
forces on the towed body. Therefore the forces are given by
Dp =Dpgg + Dy cos (wt—=8p)
[25]
=Dpo + Re(Dye'“)
and
Lg =Lpo— Wg + Ly cos(wt=25)
=Lgy—Wg+Re(L,e'“") [26]
where D; and L, are zero for the Quadrant I problem and given by D, = Dg + iD;
and L, = Lg + iL; in the Quadrant Il problem where Dg = Dy cos &p,
D; = Dy sin 8p, LR = Ly cos &, and Ly = Ly sin §;.
Substitution of Equations [21] and [22] into Equation [11] gives

hC, )
2 3 D {c’ +2¢ sin ¢g Re [(cd, cosdo + U, )e'@r ] + ...

+2¢ cos o Re [(— co, singg + V)@ + . } (27]
=Do {I + 'g' Re |c|(-\')c.iw'] } +...
v

where Dy = (p/2)c*hCp and ¢, = U, sin ¢g + V, cos ¢g.
Equations [21] and ([22] give

10
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U_csing, + Qe [(co; cos gy +U el 4+,
V ccoséy+QRe[(—co, singy + V)@ +, ..

1+Re (c¢‘ cos b0 * U, e"“")+...

c sin ¢

1+ae('c¢' sindo *+ Vs e'“‘")-!-...

C COoS ¢y

=tan¢o{l +ae[(cdu cfss¢o+U. o 1 5in g — Vl)e-lwr].,,“.}
¢ sin ¢

€ cos ¢p

= tan ¢o

" Therefore

Oﬁtan"{tan% +tan ¢, Re [(C¢| cos ¢y + U, ! cd, sin ¢o — Vl)e-twt].,,”_}

c sin ¢, C cos §o

and use of the Taylor expansion for the inverse tangent gives

tan ¢ . cdy cospoe +U. cd, singy — V
08¢°+_r-l+tano¢o ae[( 10 1,71 e ')e"""]-ﬁ..

¢ sin ¢, € cos ¢, [28])
=@y + Re [0,(s)e'¥} +. ..

where

0, = tan ¢o cp, cos gy + U, o ¢, singo =V,
' T+ tan?g, c sin ¢ € cos ¢y

U v
=4, +—c'- cospy — —c" sin ¢o

Substitution of Equations [27] and (28] into Equations [12] and [13] shows
that the expansions for the viscous-force components are

Fi=F1 (Do o)+ 2 F1. (Do $0) Re [“(" 'w']+difi (Do o) Re [6,(s)e"!) + ..

[29]
and

Fg =Fg (Do,$¢) + 2 Fg (Do ,90) ﬁe[ Fatd) '“‘”] (Do,90) Re [0,(s)e’ ] +.

[301

d¢o

The two steady-state cable equations are obtained by substituting the steady-
state terms-in the expansions for ¢, T, U, V, F;, and Fg given by Equations f17]

11
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through [22], [29], and [30] into Equations [3] and [4].

Thus
déo
—~To —— = F, (Dg,90) +wcos¢y =0
and
dT, .
& ~Fo Deier—waingye0 132

Boundary conditions at s = 0 are found by substitution of these steady-state terms into
Equations [9] and [10]. The result is

=Dpot Ty (0)cosde (0)=0

and
Lpo — Wp Ty (0) sin ¢5(0) =0
or
To (0)=VDgo? + (Lo — Wp) (3]
and
0o @ = tart 220" ¥e 341

- Dgo

Dpo is positive so Equation [34] shows that Wp must be greater then Lgy for the
Quadrant 1 problem and less than Lgy for the Quadrant II problem.

Equations [31]) and [32], which are simultaneous nonlinear first-order ordinary
differential equations for ¢, and T,, are integrated numerically on 0 < s < L in
Quadrant I and 0 > s >-L in Quadrant II, with initial conditions provided by
Equations [33] and [34]. The integration is performed by the same Kutta-Merson
subroutine, KU TMER, that is used in Reference 1. Thus the results of Reference 1 are
duplicated although it is necessary to write separate programs for Quadrants I and II and
the loading functions are restricted to those that can be described by Equations [12]
and [13].

Substitution of Equations [17] — [22], [29], and [30] into Equations [1] —

12



[4], use of small-angle approximations to the multiple-angle formulas, subtraction of
Equations [31] and [32), and cancellation of a mutual factor e'/®! result in

du, déo _ [35]
as s Tl
db 4V, _
Yie v 0 136}
d¢ d 2
—iwp [Acd; cosgg + (1 +A) U} ==T, —d's"' -T, 7?‘2 "";'FL (Do ,$0) ¢,
(37)
dF,
- ‘# (Do$0) 0, —wo, sin ¢,
and
dar 2 dF
—iwp (V, +A\cd, sindo) = 'T'- = = Fg (Dy ,$0) ¢, -—£ (Do 90) 8, — wé, cos 9, [38]
s c déo

Since ¢, and T, are given by numerical integration of Equations [31] and [32) and
appear as coefficients in Equations [35] through [38), these four linear ordinary dif-
ferential equations must be integrated numerically. This is also done by the subroutine
KUTMER.

Boundary conditions at s = O are found by substitution of Equations [17]—[22]
into {9] and [10]. Thus

— l(m + m;)[U, (0) sin ¢ (0) + ¥, (0) cos ¢ (0)] = = D, £ [T} (0) cos, (0)
~ Ty (0) ¢, (0) sin ¢, (0))

and
—iw(m +mp)[ = U,(0) cos ¢o (0) + V, (0)sin ¢ (0)] =L, % [T, (0)sin ¢, (0)

+ T, (0) ¢, (0) cos ¢ (0)]

or
T1(0) = £ (= iw{U, (0)rmy ~ mp) sin $o(0) cospo(0) + ¥, (0)m + m; cos’do (0) (3

+my sin® ¢4(0)1} + D, cos ¢, (0) = L, sin ¢, (0))
and

13



t1
To (0)

$,(0) = (= iw{ = U, (0)m + m; sin?$(0) + my cos?§o(0)] — V, (0X(mg —my)

[40]
sin $6(0) cos o (0)} — D, singy(0) — L, cosdy (0))

with plus signs for Quadrant I and minus signs for Quadrant Il. Recall that D, and
L, are zero for the Quadrant 1 problem.

Boundary conditions at s = L for the Quadrant I problem are obtained by
substitution of Equations [17] and [21] - [24] into Equations (5] and [6]. Thus

Uy(L)=cs1 sindg (L) = cay cos @g (L) [41]
and
Vy(L)=cs1 cos g (L) +cpy singg (L) [42]

Substitution of Equations [17], [21], and [22] into Equations (7] and [8] shows that
the boundary conditions at s = —L in the Quadrant Il problem are

U(-L)=0 [(43]
and
Vi(-<L)=0 [44]

Satisfaction of the two-point boundary conditions is achieved by assigning differ-
ent sets of initial values to the dependent variables at the lower, or passive, end of the
cable and integrating Equations [35]—[38] up the cable twice, once with each set of
initial values, so that two different solutions are obtained along the cable. Then the
linearity and homogeneity of the lower boundary conditions and the equations permit
linear superposition of the two solutions such that the inhomogeneous boundary condi-
tions at the upper, or excited, end are satisfied. This is known as a ‘“‘shooting” method
of solving a two-point boundary-value problem,

The two sets of solutions are called the A-mode and B-mode solutions and the
solution to the full problem is given by A
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Uy=Cq Uyq +Cp U, [45]

V] ’CA V,A +CB V‘B [46]

01 =Cs0,4 +Cpdi8 [47]
and

Ty=CyTy4 +CpTy [48]

where the subscripts on U,, V,, ¢,, and T, denote the solution mode and C4 and Cp
are constants to be determined below.

In the Quadrant 1 problem, values of U,,(0), U,5(0), V,,(0) and V,5(0) are
assigned and T, 4 (0), T;5(0), ¢,4(0) and ¢,5(0) are found from Equations {39) and
[40) with plus signs and D; = L, = 0. Next Equations [35]—[38] are integrated on
0 < s < L so that both modal solutions are known on 0 € s € L. Then Equations
[45], [46], [41], and [42] show that C4 and Cp must be given valurs such that

CaUyqa (L)+CpU (L) = cyy sin @o(L) — cny cospo(L)
and
CaVia(L)+CpVyp(L)= c51 cospo(L)+ cny singo(L)

are satisfied, Therefore

- Len singo(L) — ch1 cospo(L)) ¥yp(L) = [cnn cosdo(L) + caysingo(L)] Uyp(L) 49

Ca
Uya) V(L) =U;p(L) V 4 (L)

and

Co = L611 €08B0(L) * cn1 singo(L)] Ui (L) = [ cn1 singo(L) — e cosdo(L)] Via (L) (50
s Ura@) V15 (L) = Uy 5(L) Vi (L)
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Finally U,, V,, ¢,, and T, are found on 0 € s < L by substituting back into
Equations [45]—([48].

The Quadrant Il problem is solved in much the same way. Values are assigned
to ¢4 (-L), ¢;18(-L), Ty4(-L), and T,g(-L). Then Equations {43] and |44] show that U, (-L),
U,p(-L), Vy4(-L) and V,p(-L) are all zero. (Otherwise Equations [45] and [46], with
left-hand sides equal to zero, show that C4 and Cp would be determined by conditions
at s = -L). Equadtions [35]—[38] ar integrated on -L < s € 0 so that both modal
solutions are known on -L € s € 0. Equations [45]—(48] and [39] and [40] with
minus signs show that, if P and Q are defined by

P=T,(0)—iw { U, (0)(m; — mp, ) cosdo(0) sindo(0) + ¥, (0)[m + my cos? ¢ (0)
+my, sin*o(0)] }

and
Q = Ty (0}, (0) — iw { U, (0)[m + m ¢ sin?do(0) + my, cos?,(0)]

= V,(0)(m; — my) cospo(0) sing, (0)}

with P4, Pg, Q4, and Qp defined with appropriate modal values of T,, ¢,, U,, and
V, on the right-hand side, the boundary conditions at s = 0 become

CaPy +CpPp = =D, cospo(0) + L, singo(0)

and
Ca Q4 +CpQp =D, singo(0) + L, cosdo(0)

Therefore C4 and Cp are given by

_ =D, cosdo(0) + L, singo(0)) Qp— [D, singo(0) + L, cospy(0)] Pg [51]
PqaQp —PpQ4

Ca

and

_ 1D, singo(0) + L, cospo(0)] Py —[— D, cosdo(0) + L, singo(0)] Q4 [52]
PyQp —PpQy

Cp

Finally U,, V,, ¢,, and T, are found on -L < s € 0 by substituting back into Equation
[45]—[48].
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The analysis is completed by computing the cable configuration. This is denoted
by x and y and is found from Equations [15]) and [16]). Equation [17] suggests that
x and y are given by expansions of the form

x(s,8) = xo(s) + Re [x,(s)e'@!] +. .. [53]
and
y(s.0)=yols) + Re [y, (s)e¥] +. .. [54)

Then if x; = xg + ix;, xy = \/xR! + 2, and 6 = tan"% it is found that
R
X = X9 +xy cos (Wt — &) + ...
Similarlly y, = yg + iy, yu =YR® + y?, and §, = tan”’ i—’
R
Substitution of Equations [17], [53], and [54] into Equations [15) and [16)

and use of the small-angle approximations to the multiple-angle formulas give

Xo = j;' cospo(s’) ds’ [55)
X = - j: 61 (s") sing, (s') ds’ [56)
Yo = ﬁ singo(s') ds’ [57]
and
Y, = /;'¢,(s') cosdo(s') ds' [58]

These integrals are to be evaluated for 0 < s € L in the Quadrant I problem and for
0 > s 2 -L in the Quadrant II problem. Because of the choice of origin, the con-
figuration given is that seen by an observer moving with the towed body.

After the complex-valued functions ¢,, T, cd, cos ¢o + U, c¢; sin ¢ +
i’,, x;, and y, have been found the amplitudes and phases of the perturbation
quantities are easily found.

There is one redundancy in this small-perturbation frequency-domain solution to
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the two-dlmensronal cable problem since there is no way of aaslgmng a meaning to the
time ¢ = 0. Consequently the phase angle of either the horizontdl or vertrcal ex- '
citation is meamngless and may be set equal to zero.
f { i
: COMPUTER PROGRAMS ' 4 o : ,

' The digital computer programs whxch solve the Quadrant I and Quadrant I} .
problems are OMWAY and OMFLO respectively, and are hsted in, Appendrxes B and C, ,
' together with sample calculatlons. .They are written' in FORTRAN IV for.a CDC 6700 : '

computer. - { : i
. ‘Although Equatiops [35]— £[38], {331, (54], and the boundary cond,mons are
written for complex-valued functions of s, they must be separated into real and . ' .,
imaginary parts because the mtegratmg subroutine: KUTMER, is not available .in complex
arithmetic. However, the exxstence of a complex-conjugate relationship between the
. real and imaginary patts makes solution for two, instead of four modes sufficient.
' Whenever possible the notaltion: of the previous section is retained; some important ex- !
. ceptions are the angle ¢ which' is replaced by PH, and the frequency w which is '
replaced bly OM. In general quantitles which pertaln to the towed body start with a B..
Thus m,, the body added ‘mass m surge, is BMS. The cable is of thickness CH and is
N-1 segments long; each segment is of length DsS. Its mass: per umt length u is
replaced by ULM and its added mass parameter v by AMP lts werght per unit length
in water is WUL: and the densrty of water is DN. Further explanatlon pf the program I
is provxded by comment cards in the listing. | .0 , :
i Each program mcludes four subroutlnes ATA prevents the ‘inverse-tangent " ; :

functron from dlvrdmg by a prohrbrtrvely small number if an angle is very close to
t w/2. KUTMER performs mtegratlons thh a fourth-order Kutta—Merson method This -
is a generahzatlon of the Runge-l(utta method that provndes an automatnc reductlon in
integration-step size when an error criterion is not met DAUX and DARN provide
integrands for KUTMER; DAUX for ¢o. Ty, Xo, and yo and DARN for Ui, Vi, 41, :
and Tl KUTMER is not used for x, and y,; they are calculated by a simple first- . ;
zorder integration. wnthm the main program. ,

In the program OMWAY, J is an mteger wh1ch increases from J = l at the towed
body (s-O) to' J=N at the towpomt (rL) Successive data cards are used to specify; |

1k Name of program, OMWAY. . ’ ' 7 _, !

2.Body lift BL, drag BD, and weight BW. | ‘

3 Magmtude and' phase of surge and heave of towpomt ASM, DAS, AHM DAH, ,



and frequency OM.

4, Body mass and added masses in surge and heave, BM, BMS, and BMH,

S.WUL, ULM, DS, and N,
' 6.Tow speed C, DN, CH, cable drag coefficient CD, and AMP.

", 7.Constants for Equation [12] to give Fi/D,.

8. Cons'tants for Equation [13] to give Fg/D,.
These data are written out. Dy is computed and Equation [14] is used to compute A,
“which ' is represented by AMC/ULM. Equations [33] and [34] are used to find Ty
'and ¢o0 at J=1 and U, Vo. %o. f'o. xo, and yo are computed by using Equations [12],
[‘13], [19], (20}, (31]), [32], [55), and [57]) and are written out as functions of J.
Values are assigned at J=1 as U;, real and ¥, zero, ¢;4 and T;, are found from
Equations [39] and [40], and the A-mode solution is computed by integrating
Equations [35]—[38]"on'l <J < N. Then U,p is set zero and V,p is set real at
J=1 and the B-mode solution is found in the same way. Next ¢;; and cs, are com- ’
puted and the required values of U; and ¥, at J=N are found from Equations [41]
and [42) and C4 and Cp ate found from Equations [49]) and [50). U,, V,, ¢, and
. T, are found along the cable from Equations (45] —[48] and their magnitudes and
phases are computed and written out. Finally Equations [56] and [58] are used to
find x, and y, and their magnitudes and phases are computed and written out.

OMFLO uses the nomenclature of OMWAY wherever possible. J is an integer
which decreases from J=-1 at the towed body (s=0) to J=-N at the towpoint (s=-L).
For performing integrations down the cable, which is done when @9, Tp, X0, Yo, X1,
and Yi are corﬁputed,’ an integer K is used which is defined by K=+/ and thus in-
creases from K= at the towed body to K=N at the towpoint. Since these inte-
grations are made in the direction of decreasing s, the integrands computed in DAUX
are negatives of those in OMWAY. U,, V,;, ¢;, and T; are computed by integration
in the direction of inc}casing s S0 an integer / is defined by /=N+/-K which increases
from l=( at tpe -towpoint to /=N at the towed body. The first three data cards
'diff,er from those of OMWAY and specify:

1. Name of program, OMFLO.

2. Steady-sta'te body lift and drag BLO and BDO, and body weight BW.

f3. Ma‘gn'itude and phase of oscillating ijt and drag forces on the body, BLM,
DBL, DBM, DBD, and frequency OM.
These.data are w'ritten out. Do is computed and Equation [14] is used to compute
A, which is represented by AMC/ULM. Equations [33]) and (34] are used to find

i
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To and ¢ at K=I and Uy, Vp, ¢9. Ty, X9, and yo are computed by using Equations
[12], [13], [19], (20}, (31], [32]), (55], and [57]) and are written out as functions
of J. ¢p and Ty are relisted as functions of /,¢,, is set real and T),4, U;4, and V;4
are set equal to zero at /=/, and the A-mode solution is computed by integrating
Equations [35]—[38) on 1</ N. Then T,z is set real and ¢;5, U;p, and V,;p are
are set equal to zero at /=1 and the B-mode solution is computed in the same way.
Next ¢9, To. Usa, Via. 914. T1a. Uip. Vis, ¢,5, and T)p are re-listed as
functions of K instead of /. The required values of P and Q at K=1 are found from
Equations [39] and [40) and C4 and Cp are found from Equations [51] and (52].
U;., V;, ¢;, and T, are found along the cable from Equations [45]—-[48] and their
magnitudes and phases are computed and written out. Finally Equations [56]) and
[58] are used to find x; and y;, and their magnitudes and phases are computed and
written out.

Representative times for a run involving a cable nine integration steps long (of
ten feet each) are 28 seconds compilation time and 14 seconds computation time on
a CDC 6700 computer.

Certain modifications to the programs are easily made. For example, the
programs listed require angles in radians and any consistent mass-length-time units for
dimensional quantities. They have been adapted to treat, as input and printout
quantities, angles in degrees, masses in pounds, lengths in feet, and speeds in knots.
They have also been adapted to examine behavior over a range of frequencies, by
repeating the unsteady part of the program in a DO loop, with lowest, highest, and
incremental frequencies specified on an additional data card.

A computer experiment was performed on the Quadrant 1 program, OMWAY,
by examining the frequency range 0.01 to 0.80 hertz in steps of 0.01 hertz for.
cable lengths of 200, 400, 600, 800, 1000, and 1200 feet at tow speeds of 6, 10, and
14 knots. As criteria for successful performance it was required that the perturbation
quantities must remain below the steady-state quantities. It was found that Vs, the
magnitude of the tangential velocity, at (or very near) the towpoint was the quantity
which failed at the lowest frequency. The only cable length where its behavior was
satisfactory throughout the frequency and speed ranges was 200 feet; all the longer
ones failed but showed better behavior with increasing speed. The 600-foot cable
failed at 0.26, 0.34, and 0.48 hertz at 6, 10, and 14 knots while the 1200-foot
cable failed at 0.13, 0.20, and 0.30 hertz at the same speeds. Values for the 800-and
1000-foot cables lie in between these and exhibit the same monotonic relation to tow
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speed. The 400-foot cable failed at 0.49 and 0.57 hertz at 6 and 10 knots and
behaved satisfactorily at 14 knots.

The next most sensitive quantity was the perturbation tension at or very near
the ship. It behaved well throughout the frequency and speed ranges for cable
lengths of 800 feet and less. For the 1200 foot cable it failed at 0.46, 0.46, and
0.61 hertz at 6, 10, and 14 knots.

The qualitative conclusions are that the small-perturbation frequency-domain
analysis is valid for short cables undergcing low-frequency oscilations and that increas-
ing towspeed can have a stabilizing effect. Apparently as the forcing frequency ap-
proached 0.80 hertz, a resonant region was being approached; frequencies high
enough to be past such a region, because the inertia of the cable and body prevent
excitation of their motion, might be beyond the range of practical interest.
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APPENDIX A
DERIVATION OF EQUATIONS OF MOTION
Equations [1]—[4], the equations of cable motion, can be derived by considering a
small element 6f the cable shown in Figure | or Figure 2. If x and y represent the
cobrdimtes of a point on the cable then x and y are functions of s and ¢ which
satisfy

E-x- =Ccos ¢ [Al ]
as
oy .
Y sin ¢ [A2]
ox oy
ar Sn¢ =5, cow=U [A3]
_and
ox Wy .
—_ + = =y
ot ot 5 il [Ad4]

Take the derivative of Equation [A3] with 'respect to s, interchange the order of the
s- and t-differentiations of x and y, and substitute from Equations [A1] and [A2] to

obtain

W, PO L SR | S .
> 3 (cos¢) sing + ot cosp s ot (sing) cos¢ + o sing %

which becomes Equation [1] after substitution of Equation [A4]. In the same way,
take the derivative of Equation [A4] with respect to s, interchange the order of
differentiations, and substitute to obtain

w_a R S NN I ')
be oy \CoM)com = g ¥ g (M) st ok oo o

This, with the substitution of Equation [A3], is Equation [2].

The apparent-momentum vector of a segment of length 8s has components
u8s(1+N\)U, udsV, 0 in a right-handed orthogonal coordinate system with axes in the
directions of U, ¥, and upwards from the paper of Figure 1 or Figure 2. Here
u is the mass of the cable per unit length and u\ is the added mass in water for
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motion in the direction of U. The angular velocity has components 0,0, 3¢/0t in the
fixed coordinate system defined by the x and y axes and the direction up out of the

paper in either figure. Therefore the rate of change of apparent momentum observed from the

fixed coordinate system in either figure has components along the directions of U and V equal
to

oU 99 14 ¢
u8s(1 +1\) - uds o and uds » ués(1 +A) U ot
Therefore the dynamic equations of motion of the cable segment are
oU LT . A
uds (1 +2) Tl VE- = resultant force on &s in the direction of U [AS]
and
3¢ . N
uds -5- +(1+)U -a}- = resultant force on &s in the direction of V [A6]

The right-hand sides of Equations [AS] and [A6] are easily computed and the results
are, after division by 6s, Equations [3] and (4].
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APPENDIX B

LISTING AND SAMPLE OUTPUT OF OMWAY

PROGRAM OMWAY (INPUTQUTPUT ¢ TAPESS INPUT ¢ TAPEG=OUTPUT)

OIMENSION PHO(400)s TO(400)s UO(400)s VO(400)s PHRA(400)

* PHRB(400) ¢ PHIA(400)9 PHIB(400)s TRA(400)s TRB(400)» TIA(400),
o TIB(400) s URA(400)s URB(400) s UIA(400)s UIB(400) e VRA(400)

¢ YRB(400)s VIA(400)s VIB(400) +PHR(400) s PHI(600)9 TR(400),

¢ T1(600)e UR(400)s UI(400)s VR(400)s VI(400)s FL(400)s» FG(400),
¢ DFL(400)9 DFG(400)s T(8)

COMMON DSoWUL 9D9s ALAMO s ALAM] s ALAM29BLAM] »

1BLAM2 9 AGAMO » AGAM] ¢ AGAM2 ¢ BGAM] 9BUAM2 ¢
20MoULMIAPP oCoPHOsDFLsDFGoJo TO+PHRIPHI oFL+FG

EXTERNAL DAUX+DARN

READ (Sell) TITLEs

¢ BL o BD » BWe

¢ ASMe DASe AHMe DAHe OMe

¢ BMyo BMSe BMMH,

& WULe ULMe DSe No

¢ Co DNs CHe CDo AMP,

¢ ALAMOs ALAM1loe ALAM2y BLAM1e BLAM2¢

¢ AGAMOs AGAMle AGAM2y BGAMle BGAM2

WRITE TITLE AND INPUT DATA

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
INITIAL

(6021)
(6922)
(6923)
(6026)
(6029)
(6026)
“(6OZZ)
16028)
1ze

TITLE

8L » BD » BW

ASMe DASe AMMe DAMHe OM

BMe BMSe BMM

WULe ULMe .DSe N

Co DNo CHe CDo AMP

ALAMO9s ALAMLy ALAMZy BLAM]s BLAM2
AGAMOs AGAMls AGAMZe BGAM1s BGAM2

D= {y, SRDN*CHC#CHOCD
AMC = 3.1615939CHICHODN®AMP/4 ¢ 0
® . le0 ¢ AMC/ULM

SOLVE STEADY=STATE PROBLEM

APP

Cx0 =.0.0
CY0 = 0.0
CXR = 0,0
CXl = 0,0
CYR = 0,0
CYl = 0,0
JA = Ne-)
ERR=,00001
ERA=,001

CALL ATA(8D,YK)
PHOB = ATANZ (BW=BL»VYK)
708 = SQRT (BD®*BL+ (BW=BL) *(BW=-bL!})

WRITE
WRITE

PHO()) = PHOB

10(1)

(6¢31)
(6+32)

= T08

MULTIPLY TU FINO VELOCITY COMPONENTS

1 Js= LN

U0(J) = C*SINIPHO(J))

Vo(J) = C*COS(PHO(J))

WRITE (6+33) PHO(J)e TO(J)s UULJ)e VO(J)s CXOs CYOs J

00 10

IF J

«EQ.N)

G0 T0 101
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60

65

70

75

8s

90

100

105

110

S SRR S SO A % 3 s ST T T AR R e B TS

c

101
c

c

201

c
C
c

c

C
c

ey
2

INTEGRATE TO FIND TENSIONs ANGLEs AND CABLE CONF IGURATION

T(1)sT0(Y)
T(2)=PHO (J)
T(3) = CX0
T(4) = CY0
FIRST=,0
ALS=FLOAT (J) #DS
CALL KUTMER (49ALSeToERR9DSFIRS| oHCX9ERA+DAUX)
T0(J*1)=T(])
PHO(J*1)=T (2)
Cx0 = T(3)
CY0 = T(4)
CONTINUF.

SOLVE DYNAMIC PROBLEM

WRITE (6+34)
WRITE (6+39)

COMPUTE VISCOUS=FURCE TERMS ALONG CABLE

D0 201 JU = 1s UA

FL{J) = D®(+ALAMOSALAML*COS (PHO(J)) +ALAM2#COS (2,09PHO(J)) ¢
¢ BLAMI®*SIN(PHO (J) ) *+BLAM2®SIN{2,0*PHO(J)))

FG(J) = D®( AGAMO*AGAM]*COS (PHO(J)) *AGAM2#COS (2.0%PHO(J))
¢ *BGAM]1®*SIN(PHO (J)) +BGAMZ*SIN(2.0%PHO (J)))

OFL(J) = O®(=ALAM1*SIN{PHO(J))=2.0®ALAMZESIN(2,0*PHO(J))

+ ¢BLAMI®*COS(PHO (J) ) +2.0%BLAM22CUS (2,0*PHO(J)))

DFG(J) = D®(=AGAM1®SIN(PHO(J))=2+.0*AGAM2#SIN(2,0*PHO(J))

i 68??56;COS(PHO(J))02.0'86AN2'CUS(2.0'PH0(J)))

CON

COMPUTE MODAL SOLUTIONS
COMPUTE A =-MODE SOLUTION
ASSIGN VALUES TO VELOCITY COMPONENTS AY BOTTOM

URA(1) = 0,00000]
VIA(l) = 0.0
VRA(l) = 0.0
VIA(]l) = 0.0

COMPUTE CORRESPONDING VALUES OF ANGLE AND TENSION AT B80TTOM

PHRA(1) = OM® (=UTA(1)*(BMeBMSESIN(PHO (1) ) ®SIN(PHO(L1) )+

¢ BMH®COS (PHO (1) )#COS(PHO(1)))eVIA(])®(BMH=BMS) *SIN(PHO(]1))*COS(

+« PHO(1)))2Z10())
PHIA(L) = - =OM® (=URA(1)®(BM*BMS*SIN(PHO (1)) ®SIN(PHO(1)) e

¢ BMH®COS (PHO (1) ) #COS(PHO(1))) +VRA(])® (BMH=BMS) ®*SIN(PHO(]1))*COS(

+ PHO(1)))/T0())

TRA(]1) = OM® («UIA (1) * (BMH=UMS) *SIN(PHO (1)) *COS(PHO(1))
¢ *VIA(1)®(BMeBMS*COS (PHO (1)) ®*COS(PHO(1))
¢ BMHO*SIN(PHO (1)) ®SIN(PHO(1))))

TIA(l) = =0M® (=URA(]1)*(BMH=BMS) *SIN(PHO(1))*COS(PHO(1))
¢ *VRA(1)®(BM+BMS®*COS (PHO (1)) *COS(PHO(1)) e
¢+ BMHOSIN(PHO(1) ) &SIN(PHO(1))))

FIND VELOCITY COMPONENTSs ANGLEs AND TENSION BY INTEGRATING UP
THE CABLE

00 202 J = 1y JA
T(1)=PHRA (J)
T(2)sPHIA(J)
T(3)aTRA(J)
T(6)=TIALY)
T(S5)sURA(J)
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115

120

125

130

135

140

145

150

155

160

165

202
c
c

c

c
c

T(6)sU]lA(J)
T(T7)sVRA(J)
T(8)sVIA(Y)
FIRST=,0

ALS=FLOAT (J) *DS
CALL KUTMER(8+ALSo»TsERR9DSoFIRST oHCX+ERA9DARN)

PHRA(Je1)aT (1)
PHIA(Je1)m) (2)
TRA(J*)1)=T(3)
TIA(Jel)aT (&)
URA(J*1)=T(5)
UIA(J*1)=T(6)
VRA(J*1)=T(7)
VIA(J*])=T(8)
CONT INVE

VIB(1) = 0.0

VRB(1) = 0.000001

vig{l) = 0.0
PHRB(]1) =

PHIB(]1) =

TRB()) =

TIB(1) =

T(1)=PHKRB (J)
T(2)=PHIB(J)
T(3)sTRE(J)
T(4)=TIB(J)
T(5)=URB (J)
T(6)=UI8(J)
T(7)=VRH(J)
T(8)=ViB(J)
FIRST=.0

ALS=FLOAT (J) #DS
CALL KUTMER(BIALSsToERR9DSoF IRSToHCX9ERA9DARN)

PHRB(J+1)=aT(1)
PHIB(J+]1) =1 (2)
TRB(J*1)=T(J)
TIB(J*1)=T (&)

URB(J+1)=T(5) °

UlB(Je1)=T(6)
VRB(J*1)=T(T7)

COMPUTE 8 -MODE SOLUTION
ASSIGN VALUES TO VELOCITY COMPONENTS AT BOTTOM
"URB(1) = 0.0

27

COMPUTE CORRESPONDING VALUES OF ANGLE AND TENSION AT BOTTOM
OM® (=UIB (1) * (BMeUMSESINI(PHO (1) ) *SIN(PHO(1) )«
¢ BMH®COS(PHO(1))*COS(PHO(1))) +VIB (1) ®(BMH=BMS) *SIN(PHO(1))*COS(
¢+ PHO(1)))/T04())
=0M® (=URB (1) ® (BMeBMSESIN(PHO (1) ) *SIN(PHO (1))
* BMH®*COS (PHO(1))*COS(PHO(1)))oVRB(1)®(BMH-BMS) *SIN(PHO(1))®COS(
¢ PHO(1)))/10(1)
OM® (=UIB (1) ® (BMH=BMS) *SIN(PHO(]1) ) *COS(PHO(1})
¢ oVIB(1)*(HMeBMS®COS (PHO (1)) *COS(PHO(L))
¢ BMH®*SIN(PHO(1))®SIN(PHO(1)))) .
=OM® (=URB (1) ® (BMH=UMS) *SIN(PHO (1)) *COS(PHO (1))
¢ oVRB(1)*(BMeBMS®*COS (PHO (1) ) *COS{PHO(1))
* BMHOSIN(PHO(1))*SIN(PHO(1))))
FIND VELOCITY COMPONENTSs ANGLEs AND TENSION BY INTEGRATING UP
THE CABLE
00 203 J = 1v JA



203
c
c

c

VIB(J+1)=1(8)
CONTINUE

SUPERIMPOSE MODAL SOLUTIONS
COMPUTE VELOCITY COMPONENTS FORCEL AT TOP

CSR=OM#*ASM#SIN (DAS)
CSI==0M®ASM*COS (DAS)
CHR=QM*AHM®SIN (DAN)
CHI==0M*ANM®*COS (DAH)
UR(N) = CSR*SIN(PHO(N)) = CHR#*COS(PHO(N))
UI(N) = CSI®*SIN(PHO(N)) = CHI®COS(PHU(N))
VR(N) = CSR®*COS(PHO(N)) ¢ CHR®*SIN(PHO(N))
VI(N) = CSI®COS(PHO(N)) ¢ CHI®SIN(PHO(N))

COMPUTE CUNSTANTS NELDED TO SUPERIMPOSE MODAL SOLUTIONS

DENOMR = URA(N)®VRB(N) = UIA(N)®*VIB(N) = URB(N)®VRA(N)
+ UIB(N)®VIA(N)

DENOM] = UIA(N)®VRB(N) ¢ URA(N)®VIB(N) UVIB(N)®VRA(N) =
¢+ URB(N) #*VIA(N)

ANUMR = UR (N)®*VRB(N)
¢+ UIB(N)®V] (N)

ANUMI = Ul (N)®VRB(N) ¢ UR (N)®VIB(N)
+ URB(N)®*VI (N)

BNUMR = URA(N)®VR (N) = UIA(N)®*V]I (N)
+ UL (N)®VIA(N)

BNUMI = UIA(NI®VR (N) ¢ URA(N)®VI (N)
¢+ UR (N)®VIA(N)

DENOM2 = DENOMR®DENOMR ¢ DENOMI®DENOMI
CAR = (ANUMR®DENOMR ¢ ANUMI®DENOMI)/DENOM2
CAl = (=ANUMR®DENOM] ¢ ANUMI®DENOMR)/DENOM2
CBR = (BNUMR®DENOMR ¢ BNUMI®*DENOMI)/DENOM2
CBI = (=BNUMR®DENOMI + BNUMI®DENOMR)/DENOM2

UI (N)®V]IB(N) URB(N)®VR (N) o

VIB(N)®VR (N) =~

UR (N)#VRA(N) o
UL (N)*VRA(N) =

COMPUTE VELUCITY COMPONENTSs ANGLEs AND TENSION ON CABLE

DO 204 J = 1N

UR(J) = CAR®URA(J) = CAI®UIA(J) ¢ CBR®URB(J) .- CBI®UIB(J)
UI(J) = CAI®URA(J) ¢ CAR®UIA(J) + CBI®URB(J) + CBR®*UIB(J)
VR(J) = CAR®VRA(J) = CAI®VIA(J) + CBR®*VRB(J) - CBI®VIB(J)
VI(J) = CAI®VKA(J) * CAR®VIA(J) + CBI®VRB(J) ¢ CBI®VIB(J)
PHR(J) = CAR®PHRA(J) = CAI®PHI1A(J) ¢ CBR*PHRB(J) = CBI®*PHIB(J)
PHI(J) = CAI®*PHRA(J) ¢ CAR®PHIA(J) ¢+ CBI*PHRB(J) ¢ CBR®*PHIB(J)
TR(J) = CAR®TRA(J) = CAI®*TIA(J) + CBR®*TRB(J) = CBI*TIB(J)
TI(J) = CAI®TRA(J) ¢ CAR®TIA(J) + CBI*TRB(J) + CBR*TiB(J)

COMPUTE PHYSICAL VELOCITY COMPONENTS ON CABLE

URP = C®PHR(J)*COS(PHO(J)) ¢ UR(J)
UIP = C*PHI(J)®*COS(PHO(J)) ¢ UI(J)
VRP = = C*PHR(J)®*SIN(PHO(J)) ¢+ VR(J)
VIP = = COPHI(J)®SIN(PHO(J)) « VI(J)

“OmPUTE MAGNITUDE AND PHASE OF VELOCITY COMPONENTSes ANGLEs AND
TENSION ON CABLE

UM = SQRT(URP®URP ¢+ UIP®UIP)

CALL ATA(URPs YK)

DU =. ATAN2(UIPy YK)

VM =  SQRT(VRPR*VRP + VIP®VIP)

CALL ATA(VRPes YK)

DV = ATAN2(VIPs YK)

PHM = SQRT(PHR{J) #*PHR(J) + PHI(J)*PHI(J))
CALL ATA(PHR(J) e YK)

28



235

260

248

250

255

260

265

210

2715

206
c

205
11

21
a2

23 FORMAT ( IXs BHASM = FlO.So 4Xo BHOAS = o F10.5¢ &Xo
o BHAHM = o F10,59 4Xo BHDAM = 9 F10.59 4Xo BHOM s

24
2s
26
27
28
3l
32
1
3
s
36
ar

38

OPH = ATAN2(PHI(J) o ns

TM = SORT(TR(JI®TR(JY) ¢ TI(S)eTI(J))

CALL ATA(IR(J) e YK)

DT = ATANZ2ITI(J)e YK)

WRITE (6+36) PHMs DPHe TMe DTo UMe DUy VMe DVe J
CONTINUE

WRITE (6+37)

COMPUTE MAGNITUDE AND PHASE OF UYNAMIC CABLE CONFIGURATION

00 205 Js=1eN

CAM = SORT{(CXR®*CXReCXI®CK1)
CALL ATA(CXRs YK)

DCX = ATAN2(CXI» YK)

CYM = SORT(CYR®CYReCYI®CY])
CALL ATA(CYRs YK)

DCY = ATAN21CYIes YK)

WRITE (6+38) CxMs DCXe CYMe DCYs J
IF (J.EQ. N) GO TO 205

‘CAR = = PHR({J)*SIN(PHO(J) ) *DS
CXI = =« PHI(J)*SIN(PHO(J))*DS
CYR = PHR (J) #COS (PHO (J) ) *DS
Cvl = PH]I (J) *COS (PHO (J) ) *0S
CONTINUVE

FORMAT ( 10Xy A6 /7 10Ke 1057 10Xe 5F10.5/ 10Xe IF10.5/

¢ 10Ky IF10.59 110710X95F10.5 7 10X9 SF10.5/ 10Xe SF10.5)
FORMAT (1Mle 10Xs STHSURFACE SHIP IN A SEAWAY TOWING A DEEPLY

¢ SUBMERGED WEIGHT/ LH=¢ 10Xes A67/7)

FORMAT ( IXy B8HBL 2 9 F10.59 4X¢ 8NBD 2 9 F10.50 4Xo

+ BHBW = ¢ F10.5 77}

¢ F10.5 7/}

FORMAT ( Xy BHBM = o F10.59 &Ko BHBMS = o F10.5s &Xo

¢+ BHBMK = 5 F10.5 //)

FORMAT ( IXe BHWUL = 5 F10e59 4Xo BHULM = ¢ F10.59 4Xo

+ B8HDS 2 o F10.59 4Xs 8HN = 9 [10 //)

FORMAT ( LXe 8HC = o F10.5¢ 4Xe BHON s 9 F10.59 &Xo
+8HCH = oF10.50 X9 BHCD = oF10.50 4Xo SHAMP s ¢F10.577)

FORMAT ( 1Xs BHALAMO = oF10.59 @Xo BHALAML = 9 F10.S04Xs

¢ BHALAM2 = ¢ F10.5¢ 4Xo BHBLAML = » F10.59 &Xo BHBLAMZ =

¢ F10.5 //7)

FORMAT “( Xs BHAGAMO = ¢ Fl0.59 4Xo BHAGAM] = 5 F10,59 4Xo
¢ BHAGAMZ = o F10.59 4Xo S8HBGAM] = o F10.5¢ &Xo BHBGAMZ = o

¢ F10.5 //)
FORMAT ! 22M1ISTEADY-STATE SOLUTION)

. FORMAT ( 1HOs lRAe 6HPHO(J) e 10Xe 6HTO(J) o 10Xs GHUO(JD o 10Xe
* 6HVUIJ) o 10Xe 6HCAO(J) e 10Xe OHCYO(J)e 10K 1HJ //)
FORMAT ( 2Xo F9e69 TXs F13469 IXe 2( Fllebs 5719 2(F13e60 3X)s [6).

FORMAT ( 17THIOYNAMIC SOLUTION)

FORMAT ( 1HUs LX9 OHPHMIJ) 9 9Xo OHOPH(J) 0 FRe GHTMIJ) » 9Xo
¢ GHDT(J) » 9Ke GHUM(J) o+ 9Xo 6HUULJ) o+ 9Ky 6HVMIJ) o 9Xo GHOVIJ) o

* 9Xe 1HJ /7))

FORMAT ( 2Xs 2( F9:69 6X)a F12,69 IXs F9eb9 6Xs 2(F10.60 SXo¢

* F9.69 6X)o l4)

FORMAT ( 1Hle 1Xo GHCXM(J) s 10Xs OHDCX(J)9s 10Xe GHCYM(J)s 10Xe

¢ SHDCY(J)s 10Ke 1HY //)

FORMAT ( 2Xe 2( F12469 &4Xe F9e69 TX)s 14)
SToP
END
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18

20

30

40

4S

c

1

, SUBROUTINE ATA(XsYK)

C THIS SUBROUTINE PREVENTS - AIANZ f ROM D}VIDING B8Y ZERO WHEN
C COMPUTING THE ARCTANGENTS 'OF P1/2 AND 23eRl/2

ER = 0,00001

1F ﬂABS(X).GT.EH) 6o T0 10

YK = ER ]

RETURN S
10 YK = X i { :

RETURN ¢ ' \

“END ¢ ,

SUBROUTINE KUTMER (NsTsY0sEPSyHsF IRST oHCXeAsDAUX)
THIS SUBROUTINE PERFORMS FOURTH=ORDER KUTTA=MERSON INTEGRATIONS
. DIMENSION YO(10) 9¥1(10)9Y2(10)+F0(10)sF1(10) sF2(10)
1IF(FIRST120+10+20
© 10 HC=H 1
1PLOC=)
FIRST=1, i
20 LOCs0
HCX=HC ' L
30 CALL DAUX(1+Y0+F0) : !
9 DO 40 I=)eN . :
40 Y1{1)=mYOU(])*(HC/3)®FO (1) ,
+ . CALL DAUX(T*HC/3.9Y1sF1) ° !
00 50 I=1sN
50 Vl(l)-YO(l)0(HC/6.)'F0(1)0(HCls.)OFl(l)
CALL DAUX(IOHCIJ.-YloFl) . i
00 60 Is1sN I
60 vn(1)-vo(1)onc/o.oro(x)o.31s-nc-r1(x) ' ]
, CALL DAUKITOHC/249Y1sF2) '
00 70 1aleN,
70 vntx)-vo(l)onc/z.oro(x)-x.snncofx(x)oz.-nc-rzcl)
CALL DAUX(TeMCoYleFl1) '
! DO 80 I=1sN '
80 }séxa-vo41)onc/e.-ro«lpo.oooooeo1-nc-rz(x)o(uC/e.)-rl(1)
: J
' D0 110 IsleN ' r
ZZZ2ABS (Y1 (1)) ~A
' IF(Z22) 85+AT+p7 . ' f
85 ERROR=ABS (20 (Y1'(1)=Y2(I)))
1F (ERROR=A)100+100+90 i
87 ERROR=ABS (o2~.2%Y2(1)/Y1(I))
IF (ERROR~EPS) 1004100990 o
90 X=128.%ABS (HC)=ABS (H) i
IF(X) 91095495
91 WRITE(6+92) T+ERROR '
92 FORMAT (214 RELA{IVE ERROR AT Ta lpnslz.soauxs F10.6 | )
! FIRST = 2, I
RETURN
95 HC=HC/2. ' ; : . , i
IPLOC=2 *1PLOC
LOC=2 *L0C
HCXSHC ! !
60 Y0 30
100 IF (ERROR®64.=EPS)110»110+10)
101 INC=) , ! !
110 CONTINUE d d .
111 TsTeHC T i
. 00 112 I=slsN o ‘ , !
112 Yo(I)=mv2(l) o ,
LOC=LOC+]
IF (LOC=1PLOC) 12092104210
120 IF(INC)21091309210 ' ]
L '130. IF (LOC=(LOC/2) #2)210+140+210 ' !

" 140 IF(IPLOC=1)210+210+200 ! . i

200  HC®2+.®HC

KUTM00S50
KUTHO060
KUTMO070
KUTM0080'
KUTM0090
KUTM0100
KUTMO110
KUTMO0120
KUTMO130
KUTMO140
KUTMO150

'KUTM0160

KUTMO0170
KUTMO180.
KUTM0190

' KUTH0200

KUTMO210
KUTM0220
KUTM023¢
KUTMO240
KUTM02S50
KUTM0260
KUTMO270
KUTM0280
KUTM0290
KUTMO0300
KUTMO310

KUTM0320 .

KUTHO0330

'KUTM0340

KUTMO3SO,
KUTM0360
KUTM0370
KUTH0380
KUTH0290

KUTM0400 -
‘KUTMO410

KUTM0420
KUTM0430
KUTM0#40
KUTH0450
KUTM0460
KUTMO470
KUTMO0480
KUTM0490
KUTM0500
KUTMOS10
KUTM0520
KUTM0530
KUTMOS40
KUTMOSS0



10

15

10

1S

20

1

LOCsLOC/2 KUTHOS60

IPLOCeIPLOC/2 KUTMOST70
210 IFC(IPLOC=LOC) 309220930 KUTHOSS80
220 RETURN KUTH0S90
END ' KUTM0600

SUBROUTINE DAUX{(Z+TXsF)
C  THIS SUBROUTINE PROVIDES THE INTEGRANDS FOR KUTMER WHEN IT
;€ COMPUTES THE STEADY=STATE TENSIONs ANGLEs AND CABLE CONFIGURATION

1 DIMENSION TX(8)e F(8) +PHO(400) +DFL(400) sOFG(400) 9 TO(400)

* PHR(200)+' PHI(200)
COMMON DSoWUL oD 9 ALAMOsALAM] 9 ALAM2oBLAM] »
. L1BLAM23sAGAMO 9 AGAM] s AGAM2 9y BGAM] ¢+BLAM2 s

| 2O0MoULMoAPPsCoPHOSDFLoDFGoJoeTOsPHRIPH]

TX1=TX{1)

. 'TxesTX(2)
Cl=C0S(Tx2)
S1=SIN(TX2)
‘ C2=C0S(2.*TX2)
S2sSIN(2.*1X2)
FLED® (ALAMUOSALAM]®CL oALAM2#C2+BLAM]#S] *BLAM2#S2)
FG= D® (AGAMO*AGAML®*Cl ¢AGAM29C2+3GAM] #S]1+BGAM29S2)
IF(TX1.EQe0.) GO TO S0
. Fi2)= (WUL®Cl=FL)/TX]
C F(3) = C1
! Fle) =  S)
T FCl)= (WUL®S1+FG)
' RETURN '
S0 F(2)=0.0
G0 T0 7
i END '

SUBROUTINE DARN(ZsToF)
" THIS SUBROUTINE PROVIDES THE INTEGRANDS FOR KUTMER WHEN IT
COMPUTES THE DYNAMIC ANGLEes TENSIUNe AND VELOCITY COMPONENTS
DIMENSION T(8)s F(8)sPHO(A00) +LFL (400) +»DFG(400)+TO0(600)
¢ FLI400) oFG(L00) oPHR(600) oPHI (400)
COMMON DSoWUL 9D 9 ALAMO s ALAM] s ALAM29BLAM] o
1BLAM2 ¢ AGAMO + AGAM] s AGAM2 s BGAM] ¢ BGAK2 s ,
20MoULMoAPP»CoPHO sDFL sDF GoJe TOsPHRsPHI oFL oFG
- C1=COS(PHO(J))
. S1sSIN(PHO(J))
IF(T0(J) +€Q.0.0) GO TO S0
Fl)a(=OMPULM® (APP®T (6) * (APP=]1,0) *C2*T(2)%C1)=T(3)*(PHO(J*]1)=PHO(J)
*)/705=(T(1)+(T(S5)*C)=T(7)#S1)/C)*DFL(J)
/ . =2.0%FL(J)(T(S)*S1eT(T)®*CLl)/C=WUL*T(1)*S]1)/T0(J)
F(2)=( OMPULM® (APP®T (S) ¢ (APP=]1,0)*CeT(1)®Cl)=T(4)®(PHO(Je])=PHO (J)
¢)/DS=(T(2)+(T(6)*C1=T(8)*S1)/C)*DFL(J)
. " =24 0%FLIJIR(T(6)8S]1eT(B)®C1)/C=NHUL®T(2)*S1)/T0(J)
7 F(I)s( OMOULM® (T (8) + (APP=1.0)2CoT(2)#S]1)+(T(1)e(T(S5)eC]~
! ¢ T(T)I2S1)/CI®DFG(J) +2.09FG(J) # .
¢ (T(5)8S1+T(T)*Cl)/CoNUL®T(1)®CL) )
FUG)n(=OMPULMR(T(T) o (APP=],0)*C*T(1)®S1)¢(T(2)¢(T(6)*Cl~
¢ T(B)®#S51)/C)*0FG(J)*2.,0*FG(J)®
¢ (T(6)RS1+T(B)%CLY)/CoNULET(2)%C)1)
, F(S)==OM#T (2) ¢T(T)*(PHO(Je])=PHU(J)) /DS
F(6)= OM®T(1)+T(B)*(PHO(J*]))=PHU(J)) /DS
F(7)==T(S)®*(PHO(J*1)=PHO (J)) /DS
! F(B)=-T(6)*(PHO(J*1)=PHO(J)) /DS
. RETURN
S0 F(1)=0,0
t F(2)=0.0
f GO 7O 7
END'

(2 X 2]
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CXM(J)

0.000000
«087537
«056209
+049291
+051531
052518
«050056
e 04ATT?
+037998
+031219
026169
+024713
027646
«033999
+042539
«052629
064073
«076891
+091202
107182

ocx(Jh

04000000

=2¢303692
=1+564765
=.801759
=¢302560
=e034669
+081509
"+ 079939
=e034296
=e 276547
=¢671205

=1.195132

=1.725520
=2.168766
~2.530422

=2.841067 -

=3.12189}
2.898573
2.647597
206046798

CYM(J)

0000000
0012649
«014046
«017611
«023934
«030007
«033937
«035120
+033833
«031098
028826
« 029820
036254
0068134
« 064647
« 085431
«110618
« 140647
«176153
217931

ocY W)

0.000000
«837901
1.576827
24339834
20839033
3.1069264
=3,060084
=3,061654
3,107297
20865066
24470387
1.9464061
14416073
0972827
611171
300525
«019702
=e263020
=+493996
=e736794

'OtI-iQ‘UUOWJlUU-
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APPENDIX C

LISTING AND SAMPLE OUTPUT OF OMFLO

PROGRAM OMFLO (INPUT»OUTPUT » TAPESSINPUT » TAPEG6SOUTPUT)
DIMENSION PHO(200) s TO(200) 9 UO(402)e VO(200)9 PHRA(200)»

L 2 2 2 B 2K B N 2

PHRB(200) ¢ PHIA(200) ¢ PHIB(200)s TRA(200)s TRB(200)s TIA(200)
TIB(200)» URA(200)s URB(200)9 UIA(200)s UIB(200)9» VRA(200)+
VRB(200) s VIA(200)s VIB(200)sPMR(200)s PHI(200}s TR(200)»
T1(200) ¢ UR(200) ¢ UI(200)9 VR(200)s VI(200)e FL(200)9 FG(200)»
OFL(200) s DFG(200)s T(8)9 QOPHO(200)s QT0(200)9 QPHRA(200)»
QPHRB (200) ¢+ QPHIA(200)9 QPHIB(200)s QTRA(200)s QTRB(200)»
QTIA(200)s QTIB(200)s QURA(200)s QURB(200)s QUIA(200),
QUIB(200)s QVRA(20C)» QVRB(200)s QVIA(200)» QVIB(200)

COMMON DSoWULsD9sALAMO s ALAM]I 9 ALAM2 9BLAM] »
I1BLAM29AGAMO 9 AGAM] 9 AGAM2 9BGAM] 9 BGAM2 ¢
20MoULMoAPP9CoPHO sDFLoDFGoKoe I9 TOoPHRePHIAFLFG

EXTERNAL -DAUXsDARN

READ (5¢11) TITLE

L 2 2K R BR Y 3

*

8LOs BDO» BWe

BLMe OBLe BDMe DBDe OMe

BMy BMSe BMMy

WULe ULMs DSoe No

Co DONo» CHe CDo AMPo

ALAMOs ALAM1o ALAMZ29y BLAMYo BLAMZ2
AGAMOs AGAMles AGAM2y BGAMle BGAMZ

WRITE TITLE AND INPUT DATA

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
INITIALL

(6+21)
(6922)
(6+23)
(6026)
(6+25)
(6026)
(6027)
(6928)
ZE

TITLE

B8LO0s BDOs BW

BLMy DBLe B0OMe DBDe OM

BMy BMSe BMH

WULs ULMs DSe N

Co DNe CHe CDs» AMP

ALAMOs ALAMl» ALAMZ2y BLAM1s BLAMZ
AGAMOs AGAM)e AGAM2» BGAM1e BGAMZ2

‘D = 0.5*0ON®CeCoCH*CD
AMC = 3,15159%CHO®CHODN®AMP/4 40
1.0 ¢ AMC/ULM

APP =
CX0 =
CY0 =
CXR =
CX]l =
CYR =
Cvl =
KA =
IA =

0.0
0.0
0.0
0.0
0.0
0.0
N-l
N=]

SOLVE STEADY=STATE PROBLEM

ERRs,0
ERA=,.0

0001
01

CALL ATA(BDO»YK)
=  ATAN2(BLO~BWs =YK)
T08 = SQRT(BDO®BD0 «(BLO=BW)*(BLO=BW))

PHOB

WRITE
WRITE

(6931)
(6932)

PHO(1) = PHOB -

T0(1)

s 708

MULTIPLY TO FIND VELOCITY COMPONENTS
00 101 K = 1oN
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60

65

70

75

as

90

100

105

110

c

101

301

302

201

UO(K) = COSIN(PHO(K))
VO(K) = C®COS (PHO (K))
J = =K
WRITE (6933) PHO(K)s TO(K)s UO(K)s VO(K)s CXOs CYOs» J
IF (K.EQeN) GO TO 101
INTEGRATE TO FIND TENSIONs ANGLEs AND CABLE CONFIGURATION
T(1)=T0(K)
T(2) =PHO (K)
T(3) = CX0
T(6) = CYO
FIRST=.0
ALS=FLOAT (K) #0S ,
CALL KUTMER (49ALS»T+ERRDSsF IRSTsHCX9ERA+DAUX)
TO(Ke1)aT (1)
PHO (K+1) =T (2)
CX0 = T(3)
CY0 = T(4)
CONTINUVE
SOLVE DYNAMIC PROBLEM
WRITE (6934)
WRITE (6435)
REVERSE LISTS OF PHO AND TO
DO 301 I s 1sN
QPHO(I) = PHO(I)
QTo(I) = TO(I)
CONTINUE
D0 302 I = 1N
L = Nel=l
PHO(I) = QPHO(L)
To(I) = QTo(L)
CONTINUE _
COMPUTE VISCOUS=FORCE TERMS ALONG CABLE
00201 I =1 IA
FLUI) = D®(+ALAMO=ALAM1#COS (PHD (1)) *ALAM2%COS (20 0%PHO (1)) ¢
¢ BLAMISIN (PHO (1)) =BLAM29SIN(2,U%PHO (1)))
FG(I) = D®(=AGAMO*AGAM]I*COS (PHO (1} ) =AGAM29COS (2,0#PHO (1))
+ =BGAMI®SIN(PHO (1)) +BGAM2®SIN(2,09PHO(1)))
DFL(I) = D®(*ALAMI®SIN(PHO (1)) =2,0®ALAM2®SIN(2+0%PHO (1))
o +BLAMI®COS (PHO (1)) =2+ 09BLAM2#CUS (2. 0%PHO (1)) )
‘OFG(1) = D®(=AGAMI®SIN(PHO (1)) +2.0°AGAM2#*SIN(2.0#PHO (1))
+ =BGAM19COS (PHO (1)) +2+ 0#BGAM29C0S (2. 0%PHO (1)) )
CONTINUE
COMPUTE MODAL SOLUTIONS
COMPUTE A =MODE SOLUTION
SET VELOCITY COMPONENTS EQUAL TO 2ERO AT BOTTOM
URA(L) = 0.0
UIA(1) = 0.0
VRA(1) = 0.0
VIA(L) = 0.0
ASSIGN VALUES TO ANGLE AND TENSION AT BOTTOM
PHRA(1) = 04001
PHIA(l) = 0.0
TRA(L) = 0.0
TIAC(L) = 0.0
FIND VELOCITY COMPONENTSs ANGLEs AND TENSION BY INTEGRATING UP
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115

120

125

130

135

140

145

150

155

160

165

c

202

‘THE CABLE
D0 202 I = 1y IA
T(1)sPHRA(I)
T(2)=PHIA(])
T(3)sTRA(])
T(6)=TIAL(D)
T(S)=URA(])
T(6)sUIA(])
T(T)=VRA (1)
T(8)sVIA(])
FIRST=,0
ALS=FLOAT (1) *DS
CALL KUTMER(B+ALSoTIERRIDS+FIRSToHCX9ERADARN)
PHRA(J*1)=T(])
PHIA(I+1)=1(2)
TRA(I*1)=1(3)
TIA(I+1)=T (&)
URA(1+]1)=T(S)
UIA(]+1)sT(6)
VRA(I+1)sT(T)
VIA(I+]1)=T(8)
CONT INVE

COMPUTE B8 -MODE SOLUT]ION

SET VELOCITY COMPONENTS EQUAL TO LERO AT BOTTOM
URB(1) = 0.0
viBg(l) = 0.0
VRB(1) = 0,0
vViB(l) = 0.0

ASSIGN VALUES TO ANGLE AND TENSION AT BOTTOM
PHRB(1) = 0.0
PHIB(1) = 0.0
TRB(1) = 0.l
TIB()) = 0.0

FIND VELOCITY COMPONENTSe ANGLEe AND TENSION BY INTEGRATING UP

THE CABLE
D0 203 I = ]y IA
T(1)=PHRB(])
T(2)sPHIB(])
T(3)=TRB(1)

T(6)=sTIB(])
T(S)sURB(])
T(6)=UIB(])
T(7)=VRB(])
T(8)=VIB(])
FIRST=.0
ALS=FLOAT (1) *DS
CALL KUTMER(8+ALSsToERR9DSoF IRSToHCX9ERA+DARN)
PHRA(I+1)=T(1)
PHIB(1+1)=T(2)
TRB(1*1)=T(3)
TIB(I+1)=T(4)

* URB(I+1)mT(S)
UVIB(1+1)=T(6)
VRB(1+1)=T(7)
VIB(I¢l)=T(8)
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203  CONTINUE

C REVERSE LISTS OF PHO o TO o+ AND MODAL SOLUTIONS
00 303 X = 1y N
QPHO(K) = PHO(K)

170 QT0(K) = TO(K)
QURA(K) = URA(K)
QUIA(K) = UIA(K)
QVRA(K) = VRAI(K)
QVIA(K) = VIA(K)

175 QPHRA (K) = PHRA(K)
QPHIA(K) = PHIA(K)
QTRA(K) = TRA(K)
QTIA(K) = TIAK)
QURB(K) = URBI(K)

180 QuUIB(K) = UIB(K)
QVRB(K) = VRB(K)
QviB(K) = VIBI(K)

QPHRB(K) = PHRB(K)
QPHIBIK) = PHIBIK)
18S QTRB(K) = TRB(K)
QTIB(K) = TIB(K)
303 CONTINUE
00 306 KX = 14 N

M = Nel=K
190 PHO(K) = QPHO(M)
TO(K) = QTO(M)
URA(K) = QURA(M)
UIA(K) = QULIA(M)
VRAIK) = QVRA(M)
195 VIAIK) = QVIA(M)

PHRA(K) = QPHRA{(M)
PHIAIK) = QPHIA(M)

TRA(K) = QTRA(M)
TIA(K) = QTIA(M)
200 URB(K) = QURB(M)
VIB(K) s QUIB(M)
VRB(K) = QVRB(M)
VIBIK) = QVIB(M)
PHRB(K) =  OPHRB(M)
205 PHIB(K) = . QPHIB(M)

TRB(K) = QVRB(M)
TIB(K) = QTIB(M)
306 CONTINUE
C  SUPERIMPOSE MODAL SOLUTIONS
210 ‘C  COMPUTE FORCE COMPONENTS AT TOP
BOR = BOM®COS (BDB)
801 = BOM*SIN(BDB)
BLR = BLM®COS(DBL)
BLI = BLM®SINIDBL)
215 PR = = BDR®*COS(PHO(1)) ¢ BLR*SIN(PHO(1))
Pl s = BDI®COS(PHO(1)) ¢ BLISSIN(PHO(1))
QR = BDRSIN(PHO(1)) ¢+ BLR®*COS(PHO(1))
QI = BDI*SINIPHO(1)) + BLI®COS(PHO(1))
PAR s TPA/]) = OM® (e (BMH=BMS)SUIA (1) *COS(PHO(1))®SIN(PHO(]))
220 ¢ =(BMoBM * IS(PHO(1))®COS(PHO(1)) *BMHOSIN(PHO (1)) *SIN(PHO(1)))®
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- 238

2640

245

260

270

2718

(2 X 2]

s VIA(1))

PAL: = TIA(l) = OM® (~(BMH=BMS) ®URAT]) *COS(PHO(1))*SIN(PHO (1))
¢ ;::?;”S'COS(PHO(H).COSCPNOCU)OWSIN(PHO(U)'SIN(PHO(UHO
.

PBR = TRB(1) = OM® (¢ (BMH=BMS)*UIB(1)*COS(PHO(1))*SIN(PHO(1))

. -:.ﬂ:;?"S’COS(PNO(U)'COS(PNO(U)OW'SIN(PHMI))'SIN(PHO(H))C
sV

PBI = TIBT1) = OM®(~(BMH=BMS)®URB(]1)*COS(PHO(]1))*SIN(PHO(1))

. 0;:‘::?“5'(:05(9"0(1”'(:05(?“0(1)NM’SIN(PHO(I))'SIN(PHOCI‘)H'
oV )

QAR = TO(1)*PHRA(1)=0M® (o (BMoBMS*SIN(PHO(1) ) ®SIN(PHO (1))

+ BMHOCOS (PHO (1)) *COS(PHO(1) ) ) SUTA(]) = (BMH=BMS) *VIA (1) ®*COS (PHO (1))
¢ OSIN(PHO(1)))

QAT = _TO(1)®PHIA(1)=0M® (= (BMeBMSSSIN (PHO (1)) SSIN(PHO (1)) o

o BMHOCOS (PHO (1)) #COS (PHO (1) ) ) SURA (1) + (BMH=BMS) #VRA (1) #COS (PHO (1))
+ SSIN(PHO(1)))

QBR = TO(1)*PHRB (1) ~0M® (¢ (BMeBMSOSIN(PHO (1) ) *SIN(PHO(1))

4 Bm’COS(PHNlH.COS(PNO(lH)'Ull(l) (BMH=BMS) *VIB (1) *COS(PHO (1))
¢ OSINIPHO(1)))

QB = 10(l)OPHIB(I)-OMﬂ-(BHOUNSOSIN(PHO(l))'SIN(PHO(H)0

. BWCOS(PHO(IH'COS(PHO(IH)'URB(!)NW'OHS).VRO(I)'COSCPHD(l))
* OSIN(PHO(1)))

DENUMR = PAR®QBR-PA1®QBI-PBR®*UAR*PB]®QA]

OENOMI = PAI®QBR+PAR®*QBI-PBI*UAR=-PBR*QA]
ANUMR = P R®™QBR=-P 1°Q81-PBR®Q R+PB1®Q 1
ANUMI = P [%QBReP R*QBI-PBI®Q R-PBR®*Q I
BNUMR = PAR®Q R=PAI®*Q I=-P R®UAReP ]®QAl
BNUMI = PAI®Q R+PAR®Q I=-P 1®U0AR-P R®#QA]

DENOM2 = ODENOMR®DENOMR ¢ DENOMI®DENOMI

CAR = (ANUMRS®ODENOMR ¢ ANUMIS®DENOMI) /DENOM2

CAl = (=A’WUMR®DENOMI ¢ ANUM]SDENOMR) /DENOM2

CBR = (BNUMR®DENOMR ¢ BNUMI®DENOMI)/DENOM2

CBI = (=BNUMR®DENOMI ¢ BNUM]®DENOMR) /DENOM2
COMPUTE VELOCITY COMPONENTSe ANGLEe AND TENSION ON CABLE

00 206 K = 1o N

UR(K) = CARMURA(K) = CAI®UIA(K) ¢ CBR®URB(K) = CBI®UIB(K)
UI(K) = CAI®URA(K) ¢ CAR®UIA(K) ¢ CBI®URB(K) ¢ CBR®UIBI(K)
VRI(K) = CAR®VRA(K) = CAI®VIA(K) ¢ CBR®*VRB(K) =~ CBI*VIB(K)
VIIK) = CAI®VRA(K) ¢ CARSVIA(K) ¢ CBI®VRB(K) ¢+ CBI®VIB(K)

PHR(K) = CAR®PHRA(K) = CAI®PHIA(K) ¢ CBR®*PHRB(K) = CBI®*PHIB(K)

PHI(K) = CAI®*PHRA(K) ¢ CAR®PHIA(K) ¢+ CBI®*PHRB(K) ¢ CBR*PHIBI(K)

TR(K) = CAR®TRA(K) = CAI®*TIA(K) ¢ CBR®*TRB(K) = CBI*TIB(K)

TI(K) =. CAI®TRA(K) ¢ CAR®TIA(K) ¢ CBI®TRB(K) ¢ CBR®*TIB:!K)
COMPUTE PHYSICAL VELOCITY COMPONENTS ON CABLE

URP s Co*PHRI(K)*COSIPHO(K)) ¢ UR(K)

UVIP s C*PHI(K)®*COS(PHO(K)) ¢ VI(K)
VRP = = CoPHRIK)®SIN(PHO(K)) ¢ VR(K)
VIP s « COPHI(K)®SINIPHO(K)) < VI(K)
COMPUTE MAGNITUDE AND PHASE OF VELOCITY COMPONENTSe ANGLEs AND
TENSION ON CABLE

UM = SQRT(URP®URP ¢ UIP®UIP)

CALL ATA(URPy YK)

DU = ATANZ(UIP» YK)

VN = SQRT(VRPO®VRP ¢ VIP®VIP)

CALL ATA(VRPy YK)
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280

285

290

295

300

305

310

s

320

325

330

204
C

205
11

2l
22
a3

26
25
26
27
28
31

32
3

- 36

kL3

DV = AT

ANZ(VIPy YK)

PHM = SURT(PHR(K) *PHR(K) ¢ PHI (K)*PHI (K))

CALL ATA(
NPH = A

PHK(K) » YK)
TANZ (PHI(K) s YK)

TM = SORT(TR(K)®TR(K) ¢ TI(K)*TI(K))

CALL ATA(
DT = AT
J = =K

IR(K) o YK)
ANZ2(TI(K)» YK)

WRITE (6936) PHMe DPHs TMe DTe UMe DUs VMe DVe J

CONTINUE
WRITE (60

37

COMPUTE MAGNITUDE AND PHASE OF DYNAMIC CABLE CONFIGURATION

VD 205 «
CXM = Suwr

= 1lsN
T(CAR®CXR+CXI#*CX])

CALL ATA(CXKe YK)

NCX = A
CYM = SQR
CALL ATA(
DCY = A
J = =K
WRITE (6
IF (K.EQ.

TAN2(CXIs YK)
T(CYR®CYR*CYI®*CYI)
CYRy YK)

TAN2(CYIs YK)

38) CXMe DCXs CYMs DCYs

N) GO TO 205

CXR = PHR(K)*SIN(PHO(K))*DS
CX]l = PHI(K)*SIN(PHO(K))*DS
CYR = =PHR(K)*COS (PHO (K)) #DS
CYI = =PH] (K)*COS (PHO (K)) *0S

CONTINUE
FORMAT (

¢A SEAWAY
FORMAT (
¢+ BHBW
FORMAT (
¢+ BHBDM

¢+ F10.5 7/
FORMAT (
¢ BHBMH
FORMAT (
+ BHDS
FORMAT (
* BHCH
FORMAT (
¢ BHALAM2

FORMAT (
*+ BHAGAM2

FORMAT (
FORMAT. (
¢ 6HVO ()
FORMAT (
FORMAT (
FORMAT (
+ 6HDT (J)

J

10Xe A6 /7 10Xy, 3F1Ve5/ 10Xy SF105/ 10Xs 3F10.5/
+ 10X+ 3F10.5¢ 110/ 10Xs S5F10¢5 7/ 10Xe S5F10.5/ 10Xs SF10.5)
FORMAT (1Hls 10X+ S3HDEEPLY SUBMERGED SUBMARINE TOWING A FLOAT IN

/ lH=9 13Xe A6///7)
1Xe 8HBLO = s F10.50
= ¢ F10.5 77)

159 8HBLM = ¢ F10.59
2 9 Fl10.59¢ 44X+ BHOBD

)

IXe 8HBM = 9 F10.59
= 9 F10.5 77)

1X« BHWUL = 9 F10e59
= 9 F10.59 4Xo 8HN

1Xe BHC = 9 F10.50
2 9 F10459 4Xes BHCD

HXe

4Xo

4Xo
4xe

=y
aXs

8HBDO0 = o F10.51 4Xo

8HDBL = 9 F10.59 4Xo
F10e59 4Xo BHOM s 9

8HBMS 2 9 F1059 4Xo

BHULM = ¢ F10.59 4Xs

110 77)

8HDN = 9 F10:59 4Xo

F104Se 4Xe BHAMP = F10.5//)

I1Xe BHALAMO = 9F10.S5¢ 4Xo BHALAM] = ¢ F10.5¢4Xy

= 9 F10.59 4Xo BHBLAML = o F10.59 4Xo BMHBLAMZ =
¢ F10.5 //) ‘
1Xo RHAGAMO = 4y Fl0e59 4Xo BHAGAML = ¢ Fi0e59 4Xo
2 9 F10.59 Xy BHBGAM] = o F10.59 4X9 BHBGAMZ2 =
¢ F10.5 77)
22H1STEADY=STATE SOLUTION)
1HOe 1Xe O6HPHO(J) e 10Xe O6HTO(J) » 10Xse 6HUO(J) o i0Xo

s 10Xe 6HCXO(J)e 10Xy OHCYO(J)s 10Xe YHJY //)

2Ry F9a69 TXo F13e69 33X 20 F1lle6s SX)» 2(F13:69 3IX) 9o 14)

17HIDYNAMIC SOLUTION)

1HOs 1X9 G6HPHM(J) s 99Xy 6MDPH(J) » 9Xe OGHTM(J) ¢ 9Xo
? OXe 6HUM(J) » 9Xs 6HUU(J) o 9Xe 6HVMIJ) ¢ 9Xe 6HDVI(J)
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3%

30

k

%0

45

c

36
37
an

c
c

THIS SUBROUTINE PERFORMS FOURTH=ORDER KUTTA=MERSON INTEGRATIONS

20
30
39
40

1
60
70

8s
a7
90
9
92

95

100
101
110
111

112

120
130
140
200

* 9Xe 1HJ //7)

FORMAT ¢ ehe 2( FOeb9 6R) e FLl2:69 IXe FOebe 6Xo 2(F10:.60 SXo

* F9.,6¢ 6X)e I4)

FORMAT ( IHlse IXy OMCXM(J) e 1UXe GHDCX(J) e 10Xe 6HCYM(J) 9 10Xo

+ 6HDCY(J) o 10Xe LMJ /7)

FORMAT ( 2Xo 2( F12469 4Xo F9ebs TX)o 14)
STOP

END

SUBROUTINE ATA(XeVYK)

THIS SUBROUTINE PREVENTS ATANZ rROM DIVIDING BY ZERO WHEN

COMPUTING THE ARCTANGENTS OF PlI/2 AND 2J3*Pl/2
ER = 0,0000])
IF (ABS{X}+GT.ER) GO TO 10
YK = ER
RETURN
YK = X
RETURN
END

SUBROUTINE KUTMER(NoToYOIEPSsHeF IRSToMCXoAsDAUXR)

DIMENSION YO(10)0Y1(10)eY2(10)F0C10)eF1(10)4F2(10)
IF(FIRST) 20010020
HCaM
{PLOC=)
FIRST=),
LOCu0
HCX=HC
CALL DAUX(TsYOoFO)
DO 40 Is)eN
Y1(I)mYO(L)e(HC/I:)®FO(])
CALL DAUX(TeHC/le9Y1oF1)
DO SO Is)eN
Y1(I)=mYOUL)o(HC/6)OFO0(])e(HC/64)*F) (1)
CALL DAUX(TeHC/3.9Y1sF1)
D0 60 I=)eN
YI(E)mYOU(L)oHC/8.%F0 (1) *375%HC*F) (1)
CALL DAUX(TeHC/2.9Y19F2)
D0 70 I=)oN
YIC(I)mYO (L) oHC/2.9F0(1)=1.S*HCOF ) (1) 02,.8HC*F2(])
CALL DAUX(TeHCyY1oF1)
DO 80 I=1leN
VSél;'YO(l)ONCIO.'FO(I)0.66666601'“6’?2(l)O(NCIO-)'FI(I)
=

DO 110 I=1leN
Z22sABS(Y1(]))=A
IF (Z22) 85+87+87
ERROR=ABS (.2* (Y1 (1) =Y2(1)))
~ IF(ERROR=A) 1004100490
ERROR=ABS (o 2=02°Y2(I}/Y) (1))
IF (ERROR=EPS) 1000100490
X=]28.*ABS (HC) =ABS (M)
IF(X) 91095995
WRITE(6+92) THoERROR
FORMAT (214 RELATIVE ERROR AT T= 1PIE124393HIS F10.6 )
FIRST = 2.
RETURN
HC=HC/2.
IPLOC=2 #]PLOC
LOCs2 #L0C
HCX=HC
GV 70 230
IF (ERROR®64.=~EPS) 1101100101}
INC=]
CONTINUVE
TaTeNC
D0 112 I=1lsN
Yo(I)=sy2(1)
LOC»LOC*]

IF(LOC=IPLOC) 12002100210
IFC(INC)210+)309210.
IF(LOC=(LO0C/2)*2)210+1404210
IF(IPLOC=1)210+2100200
HC=2 o *HC

4]

KUTM0050
KUTMO0060
KUTHO0TO
KUTHO0080
KUTHO090
KUTMO100
KUTMO110
KUTMO0120
KUTMO130
KUTMO0140
KUTMO0150
KUTMO0160
KUTMO0170
KUTHO180
KUTNO0190
KUTM0200
KUTM0210
KUTM0220

KUTM0230

KUTM0240
KUTM0250
KUTH0260
KUTMO0270
KUTM0280
KUTM0290

‘KUTM0I00

KUTM0310
KUTM0320
KUTM0330
KUTM0340
KUTH03S0
KUTMOI60
KUTMO0370
KUTM0IB0
KUTM0390
KUTMO0400
KUTM0410
KUTM0420
KUTM0430
KUTMO0440
KUTM0450
KUTM0460
KUTMOAT0
KUTMO0480
KUTM0490
KUTMIS00
KUTMO0510
KUTM0S520
KUTMO0530
KUTM0540
KUTM0SS0
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20

30

c
c

.

S0

LOCsLOC/2 : ' KUTHOS60

1PL0C=1PLOC/2 ; L KUTMOSTO
210 IF(IPLOC~LOC) 30122030 , , , KUTM0580
| 220 RETURN KUTHOS90

END , , . KUTH0600
1

+
1 ! 1
{ ! i {

SUBROUTINE DAUX{ZsTXsF) !

' THIS SUBROUTINE PROVIDES THE INTEGRANDS FOR KUTMER WHEN IT:

COMPUTES THE STEADY=STATE 'TENSIONs ANGLEs AND CABLE CONFIGURATION
DIMENSION TX(8) F(BhoPHO(ZOO)obFL(ZPO)oDFG(ZOO)oTO(ZOO)o
* PHR(200) s PHI(200) : . ,
, COMMON DS oWUL sDsALAMO s ALAM] oALAHZoBLAMl * ’
1BLAM2 sAGAMO + AGAML s AGAM2 s BGAM] s BGAM2 o i ,
20MoULMeAPR o CoPHO'OFL sDFGeKe 19 TO oPHRoPHI
TX1=TX(1)
TX2=TX{2) , o
CI=COS(TX2)
S1=SIN(TX2) |
C2=C0S(2.*1X2) , ,
| $22SIN(2.%1X2) i
FLso-(ALAMO-ALAMlOCloALAM2~czoaLAM1-SI-BLAMe-sz) o
FG=D® (=AGAMO ¢ AGAM 'Cl-hGAMZ'CZ-uGKMl'SlOBGAMZ'SZ)
IF(TX1.EQ.0.) GO:TO 50
F(2)==(WUL®*C1=FL)/TX1 | !
F(3) = = C} ,
Fla) = = S ' g i
F(1)==({NUL®S]+FG) ; '
RETURN , .
F(2)=0.0,
60 TO 7 i
END ,

] : ' ! ' 5

SUBROUTINE DARN(Z»TsF) : ’
! THIS SUBROUTINE .PROVIDES THE INTEGRANDS FOR KUTMER WHEN IT

COMPUTES THE DYNAMIC ANGLEs TENSIONs AND VELOCITY COMPONENTS
OIMENSION T(8)9s F(8)9PHO(200) DFL(ZOO)PDFG(ZOO)OTMZOO)O

“+ FL(200) yFG(200) yPHR (200) sPHI (200) . g |
COMMON DSQUULODOALMO.ALANIOALAHZOBLAHI ’

1BLAM2 9AGAMO » AGAM1 9AGAM29BGAM] yBGAM2y | '

. . OMaULMoAPP s CoPHOsDFL sDFGoKo 19 TOePHRIPHIsFL oFG

C1=2COS (PHO (1)) :
S1=SIN(PHOTI)) ,
CIF(TO(1) «EQe040) 6O TO 50 i

: F(l)-(-OM'ULMO(A’P'Ttp)0(APP-l.O)OCOT(Z)'CII-T(3)'(PHO(IO!)-PHO(I)

+)/DS=(T(1) ¢ (T(5)9C1=T (7)#S1) /C) *DFL (1)

. =2.09FL (1) #(T(S)#S1T(7)9C1) /C=NUL*T (1) #S1) /TG (1)
F(2)3( OMOULM® (APPT(S) + (APP=1,0) #C#T(1).9C1) =T (4) ® (PHO (1+1) =PHO (1)

#)/DS=(T(2) + (T(6) #C1~T(8) 4S1) /C) ®DFL (1)

. =2.00FL (1) #(T(6) #S]1 T (8)9C1) /C~-WULT (2) ®S1) /TO(I)
F(3)m( OMSULM® (T(8) « (APP=1,0)#C®T(2) #S1) ¢ (T(1) o (T(S)8Cl>

¢ T(7)#S1)/CI%OFG(I) +2,09FG(I)® |

o (T(S)#S1eT(7)#C1}/CoWUL®T (1)%C1)
rtb)-(-OMOULn-(r(1)otAPP-l.o)-c~7(1)051)o(th)o(T(b)-cm-

+ T(8)#S1)/C)®OFG (1) +2,09FG(I)®. .

+ (T(6)®S1+T(B)*C1)/CoWULIT (2} *01) ‘
F(5)m=0MPT (2) +T (7)# (PHO (1+1)=PHO (1)) /DS |

" F(6)= OM®T (1) T (8)*(PHO(I+1)=-PHO (1)) /0S ,

F(7)2=T(5)* (PHO (1¢1)=PHO (1)) /DS ‘

F(8)%=T(6)® (PHO (1¢1)=PH0 (1)) /DS o ; ,
RETURN . ;
F(1)=0.0 ,

F(2)2040 ' !

60 T07, C

END ‘
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cxMi

0.,000000
«002306
+000948
«000421
«000224
«00013S
«000085
+00005S
«000035
«000024
+000017
«000013
+000011
+000010
«000010
«000009
«000010
+000010
+000010
«000011

oCcx(J)

0.000000
1.,698381
20359663
3.063075
=2.570909
=2.065947
=1.693879
«1,38727%
=10163365
=,939187
=, 729205
«+557606
=+ 457430
-.418907
=.456233
=+:534252
‘o‘Z‘?l‘
*, 707460
= T73746
-.819087

CYM(J)

45

0.000000
+000924
«000656
«000415
«000287
«000213
«000161
«000119
«000088
«000066
+000052
+000045
000042
«000042
0000043
+000046
+000050
+000055
«000061
+000068

DCY(J)

0.000000
1.6983861
20359663
3.,063075
«2.570909
«2.065967
=1.6938
=].406208
=1.163365
-:939187
=, 729205
=.557646
=.461557
=.457120
=.534646
=.673476
«+853303
=]1.058458
=]1.278290
«]1.4246006

=1
-2
-3
=4
=5
-6
=7
-8
=9
=10
=11
=12
=13
=l
=15
=16
=17
=18
=19
=20
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