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ABSTRACT

Solar flux, and "total" particle and 02 density distribution, in
the upper mesosphere and lower thermosphere (70~ to 150-km region)
are described. Respective distributions were determined from solar
flux intensities measured by ion chambers in three rocket vehicles
launched on 21 February 1966 from North America (two at Eglin Gulf
Test Range, Florida, and one at Fort Churchill, Manitoba). Method
of determining density distributions is given.

Solar flux outside and inside the absorbing atmosphere was meas-
ured for the following wave bands: 1-20A (X ray), 1140-1260R (mainly
hydrogen Lyman-g line at 1215.65), and 1325-1475} (Schumann-Runge con-
tinuum), Distributions of 02 and "total" particle density are based
on the solar flux absorptien in the sensible atmosphere.

Results of solar flux measurements compare, in gener&l, with
results obtained elsewhere, Estimated errors vary from 10 to 100
percent. Density results also agree generally with those of other
experimenters (using similar or other techniques), except for one
striking difference: a step cof 02 density erists at 113 & 7 km alti-
tudes., This step, which to our knowledge has not been reported else-
where, is described theoretically. 1Its existence is also confimmed
by electron density data derived by ionosonde at each launch site,
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I, INTRODUCTION

Experiments described in this paper were undertaken as a con-
tribution to an on-going scientific effort to study the upper at-
mosphere in the 70- to 150-km altitude region (upper mesosphere and
lower thermosphere),

Numerous factors make this part of the upper atmosphere an in-
teresting one to study. For example, most modes of radio communi-
cation are sensitive to density distributions, temperature, and
motions (winds and turbulences) found here, Also, density distri-
butions and temperature in the upper mesosphere control the ven-
tilation upward of the stratosphere and mesosphere--significant
regions in the light of predicted pollution by exhaust gases of
supersonic transport vehicles and rockets, In the lower thermos-
phere, density distribution at the higher altitudes fluctuates
widely as compared with that at the lower altitudes where density
fluctuations are smaller, The strong fluctuations at these higher
altitudes can strongly affect the temporal changes in orbital charac-
teristics of earth satellites whose perigees may be low.,

Study of this region, in which geophysical processes are many
and varied, has been handicapped in the past because various experi-
mental techniques that have been effective in studying atmospheric
characteristics above and below the region proved ineffective with=-

in the region.

Experimental data were obtained by three rocket vehicles (Gro-
becker, 1967a), launched on 21 February 1966 by the Naval Research
Laboratory (NRL). Two lifted off at Eglin Gulf Test Range, Florida,
and one at Fort Churchill, Manitoba, Launch locations, times, set-
tings, sun positions, and apogee information are given in Table 1,

1
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Each rocket vehicle contained four pairs of ion chambers: two
pairs sensitive to vacuum ultraviolet rays (Grobecker, 1967b) and
two sensitive to Xpradiation(Grohecker, 1967c). Molecular oxygen
density and "total" particle density in the upper mesosphere and lower
thermosphere were determined from the chambers' measurements of the
sensible atmosphere's absorption of solar radiation along a neér-
vertical trajectory through the region.

Solar flux absorption inside the sensible atmosphere and solar
flux intensities outside the sensible atmosphere were determined for
three wave bands yielding the most useful information: 1-20A (X ray),
1140-1260% [mainly hydrogen Lyman-g (H Ly-a)] line at 1215.6%, and
1325-1475} [Schumann-Runge (SR)] continuum,

Absorption of solar flux by the 02 molecule, at the measurement
altitudes of the experiments, was determined at the H Ly~a line and
in the SR continuum, Absorption by oxygen and nitrogen atoms, either
free or bound in molecular form, was determined in the 1-204 wave band.

Solar flux in each wave band was measured by two ion chambers
(detectors A & B) in each rocket vehicle. Originally, it was planned
to determine solar flux in the 44-60A wave band, and two detectors in
each rocket ehicle measured intensities in this band during the ex-
periments, However, results from these detectors were considered not
useful since the 44-60A determination proved sensitive to errors in
1-20A flux determinations., Consequently, these particular results
are not discussed in the paper,

Throughout this paper, detectors for each of the three wave
bands providing usable dita are referred to either by wave band (i.e.,
1-20A, H Ly-a, and SR detectors corresponding to the respective wave
band ranges) or by the channel through which measurement data were
telemetered (i.e., Channel 14 detector for 1-20A, Channel 15 for
H Ly-a, and Channel 18 for SR).

Vertical profiles of electron density were determined continu-
ously by ionosonde at each launch site during launch periods.,



Solar flux detemminations are discussed in Section II of this
paper, They are described in terms of flux absorption inside the -
sensible atmosphere and flux intensities outside it, flux computa-
tions, flux as a function of altitude, and error contributions in
the flux measurements.,

"Total" particle and 0, density distribution, based on the solar
flux determination, is discussed in Section III. This is presented
in terms of analyzing solar flux absorption data, computing density
values as a function of altitude, and interpreting the experimental
data {rom the geophysical standpoint,

Information related to observations of solar emission constancy
during the experimental period is presented in Appendix A, Material
amplifying density computations in Section III is given in Appendix B.

ae
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II, SOLAR FLUX DETERMINATION

A, FLUX ABSCRPTION WITHIN THE ATMOSPHERE

Individual results of the three rocketborne experiments to de-
termine the absorption of solar flux in each of the three wave bands
yielding useful information are given i» Figs, 1, 2, and 3, Flux
values within the sensible absorbing atmosphere are shown as functions
of altitude, determined from the ion current of each of two detectors
(A & B) turned toward the sun, one after the other, as the rocket
vehicle spun in its near-vertical trajectory., Heavy lines indicate
the values of solar flux believed with confidence to be important in
determining density values; thin lines indicate flux determinations
in which there is lesser confidence in their importance. The diminish-
ment of confidence is based on several criteria:

1. Slope of the flux value's logarithm versus integrated
number density (absorbing particles, per cm2, of

gas between the sun und detector) changes abruptly,
indicating a sharp unexplainable change of mean
absorption coefficient.

Flux values are physically inconsistent.

W N

Density determinations from the several flux
bands are mutually inconsistent.

Information content of data plotted in Figs. 1, 2, and 3 contains only
frequencies below 0.125 Hz.

Examples of how these criteria are applied are revealed by the
curves in Figs, 1, 2, and 3, A change of slope in the semilog plot
of flux measured by Channel 15 at about 104 km is noted in records
of experiments NC7.178 and NC7,181, and at about 93 km in the record
of NC7.180. In determining density from the H Ly-o flux values at

5
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higher altivudes, an apparent bulge of 0, density (as different from
the density step) that is inconsistent with the determination of
"total" particle density (i.e., sum of number densities of O2 and

N2 and half the number density of 0) occurs. This apparent bulge is
reported by otheis (Lockey, Horton & Rofe, 1969). 1In the case of the
present experiments it is believed to be the effect of absorption
contamination of the H Ly-« line. This line penetrates deeply into

the atmosphere because of its small absorption cross section (1 x 10'20
cm2). Other radiation within the sensitivity band of the H Ly-¢ de-
tector, e.g., the solar Si IIT line at 1206.55, may be the source of
the concamination, The latter line, possessing perhaps 2 percent of
the energy (Hinteregger, Hall & Schmidtke, 1964) of the H Ly-« line,
has an absorption cross section 2000 times larger (Watanabe, 1958),
Although solar energy of the 1206.5A line disappears quickly as radi-
ation penetrates the absorbing atmosphere, its effects perhaps con-

taminate measurements of the H Ly-o line by the H Ly-qo detector.

Another example of explainable inconsistency in flux appears in
the record of SR continuum flux measured by NC7.181 Channel 18
Detector B, shown in Fig. 3. In this record, the flux diminishes by
absorption from its out-of-the-atmosphere value of 1 erg % e
at about 150 km, to about 104 erg em™? sec™t at about 106 km, and
then increases as it penetrates to a local maximum of about 2(10

2
erg cm'2 sec'l at approximately 90 km., This anoms ous "negative

)

absorption" is due to airglow-like re-emission of SR continuum radia-
tion by a third-body recombination: atomic oxygen created by the

H Ly-o produced dissociation of 02 molecules recombines to form
molecular oxygen. Similar re-emissions of SR continuum radiation

at altitudes below about 100 km are apparent in the records of

NC7.178 and NC7.180.

B. SOLAR FLUX OUTSIDE THE ABSORBING ATMOSPHERE

Solar flux intensities measured outside the absorbing atmos-
phere are given in Table 2, Measurements similar to NC7.,178, 180,

& 181 data in the 1-20& wave band are given in Fig. 4. This figure
9
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presents solar flux measured by an NRL X-ray monitoring satellite
(1965-93A, Explorer 30, NRL SOLRAD 8) on the day the satellite was
launched, which coincided with the launch date of NC7.178, 180, & 181.

Explorer 30 provided numerous measurements of solar X-ray emis-
sions during 1966 (Kreplin, 1966) including those in the 1-8, 8-16,
and 44-604 wave bands. Fig. 4 shows a plot of X-ray flux versus time
(UT) (McClinton & Kreplin, 1967) for these wave bands on which the
1-20A measurement ranges of NC7.178, 180 & 181 are superimposed for
time-of-measurement comparison. The ratio of 1-20} to 0.8} flux is
0.05 at NC7.181 launch time and 0.035 at NC7.178 and NC7.180 launch
times. Flux was essentially constant between 1300 and 2000 GMT. This
period inciudes the launch times of NC7.178, 180, and 181. Other data
establishing solar emission constancy during the experimental period
are given in Appendix A and by Grobecker (1967d).

NC7.178, 180, and 181 data provide measurements of 1-208 flux
that are comparable with those of Explorer 30 when computed for a

sun temperature of 2 x lO6 °

K in this band., Computation of flux at
a higher sun temperature (4 x lO6 OK) makes for better consistency
of density data at lower altitudes. Consequently, at the suggestion
of Chubb (1970), flux in the 1-20& band is computed as though it
originated from two sources using a certain ratio of out-of-the-
atmosphere emission intensities. This ratio is the relationship be-
tween intensities measured at the same time by Explorer 30 and given
in Fig. 4, and intensities with emission temperatures of 2 x lO6 %k

in the 8-30% band and of 4 x 16° % in the 1-8% band.

For another comparison of X-ray data, a plot prepared from data
by Kreplin & Gregory (1963) of X-ray solar flux measurements by
other experimenters is shown in Fig. 5. Observations of 2-8% radi-
ation intensity vary over 5 orders of magnitude in Fig. 5, and those
of 0.5-3 and 1-20A vary over nearly 3 orders of magnitude. Computa-
tion of these radiations, as being from a gray body source, are sen-
sitive to the assumption of effective temperature of one or more

sources in the sun,
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C. COMPUTATION OF SOLAR FLUX

Reduction of measurement data=--an involved process accounting
for laboratory calibrations of detectors and amplifiers and the ef-
fect of solar aspect angle with respect to detector axis--is de=~
scribed in detail elsewhere (Grobecker, 1967b, 1967c, and 1967e).
Results of the measurements, expressed as detector current corrected
to calibration conditions for sensitivity to normmally directed flux,
are summarized in the plots of Figs. 6, 7, and 8., Time is plotted
against detector current (at an 8-cps rate) which is corrected for
detector aperture function and solar aspect angle as measured in
each of two detectors for each of the four range bands measured.

Each plot point in Figs. 6 to 8 represents the mean of 20 or more
points selected from continuously recorded data, digitized at about
400 cps. Since the 44-604 flux determinations proved disappointingly
sensitive to errors in determination of 1-20R flux, the results from
the 44-60R detectors (as prepared for these experiments) are believed
not useful for determining 44-60% flux and are not discussed in the
remainder of this report.

Corrected detector current data of Figs. 6, 7, and 8 are used
in evaluating solar flux, measured by the three experiments, as a
function of time. 1In the case of the 1-20R wave band, the evaluation
of solar flux involves the application of Eq. 1:

-0z, .n ol //[ ) / ] // [oece 7 gt
/ :f\) [ ) ')] / !»-.— :[ :(| [ M )].\/[. ,]:

(1)
where I = ion chamber current due to radiation in 1-30& band.
T8 = temperature of solar source of 1-8% radiation =
4 x 10% %
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T30 = temperature of solar source of 8-30A radiation =

2 x 10% %

efficiency of "1-20& detector" of normalized spectral

€(r)
shape given in Fig, 9 and value at 8A given in Table 3.
= charge on the electron
= 1.43879 cm %k
W = 5.4(10)10 ion pairs per erg based on ionization
potential 11,47V for filling gas CCl4
area of detector aperture as given in Table 3,

b
1]

GG = gas gain, as given in Table 3,
Gap = gain reduction due to aperture restriction, as given
in Table 3.
a(})) = 0.2200 () + 0‘78°N (2) , determined from values given
2 2
in Fig. 10.
o
N(zi) = f F(zi)n(zi)dzi - overhead air mass, above altitude 253
Bl
i

based on U,S, Standard Atmosphers, 1962.
F(zi) = Optical depth factor given in Table 4.
K o= E(l-ei)(zi)/E(e-soﬂ)(zi), ratio of flux in 1-8A and
 8-30R bands as determined from measurements of Explorer

30 satellite, given in Fig. 4.

Evaluation of solar flux in the SR continuum involves the appli-
cation of a relation similar to that of Eq. 1, except the solar
source is taken to be single and at a temperature of 4800 °K. The
spectra of detector efficiency for the detectors of the SR continuum
are given in Fig. 11,

H Ly-oa flux is evaluated in terms of ion chamber current by: .

I = qwa€E (2)

where I ion chamber current

photon detection efficiency at H Ly-o

m
1]
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