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ABSTRACT

The fixed-base natural frequencies of a system are those natural frequencies the system
would have if it were mounted on a base of infinite mass and stiffness. The main purpose of
this investigation is to find a generalized analytical method for determining the fixed-base
natural frequencies of an in situ or laboratory mechanical subsystem. The analysis will be
based on an arbitrary n-degree-of-freedom undamped linear time-invariant system. The appli-
cation of this analytical method is extended to cases wi.) small viscous damping. Only one
shaker is needed to obtain the required response measurements necessary to calculate the
fixed-base natural frequencies of the subsystem. Gages to obtain these measurements should
be placed at all supporting points of the subsystem being tested and one additional point
located any other place on that subsystem. The analytical work reveals that the following
advantages of this method are realized:

1. No assumption other than linear time-invariant of the total system has to be
imposed in the derivation.

2. No detailed physical properties of the whole system have to be known although,
by its very nature, the mobility of any element within the system depends upon the physical
properties of the whole systemn. In fact, acquiring detailed physical properties has always
been the difficulty in calculating the fixed-base natural frequencies of a real 2omplex system.

3. Itisequally convenient to carry out the test in the field as well as in the laboratory,
provided that the shaker is capable of generating enough mechanical energy to excite the
subsystem.

4. When conditions allow, many subsystems can be measured simultaneously. Con-
sequently, based on the liheral choice of force application points, savings in manpower, time,
ejuipment, and money may be effected.

There ave als. disadvantages:

1. Tests will not reveal fixed-base natural frequencies if the system contains exten-
sive viscous-type damping. This is not a sericus limitation, however, since in the presence of
large amounts of energy dissipation, natural frequencies do not in any case represent the
significant dynamic parameters.

2. Precise setting and alignment of the shaker 1s essential to avoid introducing un-
wanted complex responses.




In summary, this paper presents a practical method to determine the fixed-base natural
frequencies of a subsystem. If such frequencies exist, they are significant in current methods
of structure analysis and design criteria involving dynamic loading.

PROBLEM STATUS

This is an interim report; work is continuing on other phases of the problem.
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SYMBOLS

The sym’ ,ls used in this report are defined as they appear within the text. The most
importznt ones are listed below for reference.

A dot over a variable in the text represents the differentiation of that var able with re-

spect to time.
A superscript T or -1 at the right corner of a matrix indicates the transpose or inverse
of the matrix respectively.
— row matrix
{ } column matrix
i 1 square matrix
{3 non-square matrix
' (13 identity matrix
% ‘. bl determinant
; ' o absolute value
% ajj matrix element of [A] at ith row and jth column

L(a,¢;t) Lagrangian

T(q;t) kinetic energy

Viq,t) potential

ar kth generalized coordinate
t time

M) mass matrix

[R] damping matrix

(K] stiffness matrix




{w]

Zij
[z¢]
[2°]
[2°]
lc,

v(mij; w)

frequency of excitation

Jjth fixed-base natural frequency of structure or subst-vcture i
force at location k

amplitude of the sinusoidal force Fj(?)

Spatial force column matrix (or vecior)

relative phase angle of kth response with respect to the applied force ¥j(t)
at location j

amplitude of the kth displacement response due to the applied force Fj(t)
at location j

kth spatial displacement component

Spatial displacement column matrix (or vector)
flexibility matrix

flexibility matrix element a\ ith row and jth column
mobility matrix

mobility matrix element at ith row and jth column
cofactor of the flexibility matrix element zj;
flexibility matrix of the equipment subsystem
flexibility matrix of the support subsystem
flexibility matrix of the base subsystem

coupling matrix between subsystem k and subsystem ¢

Resonance function
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DETERMINATION OF FIXED-BASE NATURAL FREQUENCY OF
MULTIPLE-FOUNDATION MECHANICAL SYSTEMS BY SHAKE TEST

i

INTRODUCTICN

The theory explaining the small oscillation of a simple mechanical system has been ex-
perimentally validated for some time. The application of the theory to a real complex sys-
tem, however, is limited, where precise information concerning the coupling mechanisms
among the eiements of the system is lacking. Even when the exact physical constants are
given, the numerical calculations are very cumbersome. As a general practice, certain impor-
tant constants can be extracted quantitatively from the experimental results. The shake test
] is often used to measure the vibrational responses. It was mentioned in the report by Petak
* and O’Hara (1) that knowledge of the fixed-base natural frequencies of a system is essential
in current methods of treating dynamic problems. Since Ref. 1, the method of determina-
tion of fixed-base natural frequencies by shake test has been investigated at NRL.! Simple
cases were analyzed by Petak and Kaplan.{2) for a one-dimensional linear chain, and byPetak
and O’Hara (1) for a dual-foundation shipboard equipment. Experimental work on a single
support beam was reported by Remmers (3). This analytical method is proved to be a gen-
eralization of the aforementioned special cases.

This report includes the analytical presentation of this method, the physical interpreta-
tion of the entities derived, the technical method suggested in taking and analyzing test data
and drawing conclusions, and the extension of its application to damped systems, which is
of importance in engineering practice. Various computer simulations of a problem designed
to illustrate the developed method are provided. 'Experimental confirmation of this method
on a three-support beam mounted on a truss-like frame will be presented in a separate report.*

A
\

The experimental techniques in principle are essentially the same as described in Ref. 2,
except that phase differences (or the relative phase) between the applied force and corres-
ponding responses at points of measurement are necessary for a subsystem having three or
more supporting points. By use of the resonance condition, the fixed-base natural frequencies
can be calculated from the experimental data. In order to eliminate the extraneous frequen-
cies inherent in this method of measurement, one additional shaking point on the equiptaent
subsystem itself is required. Contrary to the speculation that many shakers with variable
forces (both magnitude and phase) ought to be used in a multiple-foundation system, this
method requires only one shaker at a time. The magnitude of the forces applied is irrelevant
to the result, as long as the system is being excited to a measurable level. However, the phase
differences between the forces and the responses are important.

*NRL Report 7362
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2 NI AND SKOP
fHEORETICAL ANALYSIS OF A LINEAR TIME-INVARIANT MECHANICAL SYSTEM

It is intended to develop a steady-state method for determining fixed-base natural fre-
quencies of aninsitu or laboratory mechanical subsystem. In this analytical treatment, gen-
eralized coordinates g, in configuration space, Lagrangian mathematical formulation, and
linear space matrix representation will be used to clanfy the physical contents of the mathe-
matical formulation. Since it is understood that the main goal of this investigation is to deter-
mine fixed-base natural frequencies, the result is confined to linear time-invariant systems,
or to systems behaving approximately so.

Undamped System

Equation of Motion—The Lagrangian formulation describing an n-degree-of-freedom
dynamica! system can be found in many books on mechanics (4, 5). Since this formulation
is not our main interest here, only the result will be intrcduced. Suppose L(a,q;t) denotes
the Lagrangian of the system, T(g;t) the kinetic energy, and V(g;t) the potential energy of
the system; then by gefinition,

L = T(@t) - V(@t) @
T@G:t) = 3 4.MH{d) @)
Vo) = 3 a [K){a}. (3)

From the variational principle, the equation of motion of a free system can be derived as

d oL oL _
’Ita—d; m =0. (4)

When there are applied forces, the constitutive equation may be written as

d oL oL
e¢ox _ 9L _ ¢
dt 9qp, aqp Fr(®) ©)

The explicit expressions in matrix form of Eq. (4) and (5) are
(M)} + [K1{g} = {0} (6)
(Mg} + (KNa} = {F(} (7)
respectively.
For the particular purpose of natural frequency determination, the applied forces F(t)

on the right side of Eq. (7) have to be limited to being sinusoidal, so as to provide a single
input with a well-defined driving frequency w to the system. Let
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F(t) = Fsin wt . (8)
Here the phase of the force F(t) is assumed to be zero. This assumption will not lose its gen-
erality in the analysis, if a relative phase is assigned to the responses. Then the steady-state

solution of the set of n simuitaneous linear differential equations, Eq. (7), has the general
form of

{ari} = { awjsin (wt + o)} (9)
where¢gj=nn,n=0,1, 2, - . - for undamped cases. Substituting Eq. (8) into Eq. (7), the

set of n simultaneous linear differential equations is reduced to a set of n simultaneous alge-
braic equations, which has the following general form

(~w?m3 + (k1){a} = {F} (10)
where
-w?[M] + [K] = [Z] 11
is defined as the flexibility matrix of the system, and (1/w){Z] is normally defined as me-

chanical impedance matrix (1).

Linear Space—In order to simplify the mathematical manipulation and help to shed
light on the physical insight of the formulation, Eq. (10) can be written in the following form:

[z){q} = {F}. (12)

If one views Eq. (12) as a mapping or transformation between two linear spaces, then {Z] is
just an operator which maps the force space onto the coordinate space. Here [Z] is assumed
to be nonsingular; this is true for most real physical systems, and the mapping is in a one-to-
one ¢ ;rrespondence. When the inverse of [Z] exists, one can apply operator [Z]-1 to Eq.
(12) to obtain

(z1z){q} = (21-2{F} , (13)
or
{a} = tz1{F} ,
where the identity equation
[z)-1[z] = (1] (14)

is used. The matrix [Z]-1 is often defined as the influence matrix. The mobility matrix is
defined in terms of the influence matrix as
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4 NI AND SKOP
[%] =w-[Z]. (15)

For the convenience of discussion, the linear spaces {q} and {F} are divided into sub-
spaces. In doing so, a few definitions are necessary. Any physical system may be described
as three main parts:

Equipment: The subsystem under investigation

Support: The subsystem supporting the equipment

Base: The remaining part of the total system other than the equipment
and support.

Correspcndingly, these three parts can be defined as three subspaces {q’} {q’} {qb} in the
coordinate space {q} and three subspaces {Fe} {F‘} {F b} in the force space{F}
Eq. (12) can always be arranged to have the partitioned form

[ (29 {{ce} '{o} @9 (ir9

4 I [z] |{Cb} {as} p=3{F*} s (16)

EECRIRITRE

or by matrix multiplication

[z4){g¢} +{csHa} = {F} , a7
{cz¥ e + 1291as} + {csHa®) = {F'}, (18)
{cs1{a?} + 12°Hq?} = {FY}. (19)

It is apparent that there is no direct coupling between the equipment and base subsystems be-
cause of the definition of the support subsystem. In the analysis as well as tests, the three
subsystems (or subspaces) must be defined without ambiguity.

Resonance Condition—The resonance condition for the equipment subsystem requires

[ze1{ge} = 0 . (20)

Consequently, this requires

{cefas} = {Fe} . (21)

Theoretically, there is a definite sclution for Eq. (21) if the rank of {C¢ }equals the dimen-
sion of {q s} for a given set of { Fe} . But this does not usually occur in practical applications.
However, the applied forces are arbitrary and under our control. Therefore one may set

e ek b fa

s e ek €S A Sk e th e
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{ Fe} = {0}; that is, there are no forces which can be applied to the equipment, and still
have the resonance condition satisfied. Equation (21) becomes

{ccHa} = 0. (22)

Since {C£} # {0}, the support-displacement response vector must vanish at the fixed-base
natura! frequencies of the equipment subsystem. Now let us examine the set of simultane-
ous equations, Eqgs. (17), (18}, and (19), under the resonance condition discussed previously.
The system can be described by the following equations:

[z¢Hq¢} = 0, (23)
{ce¥{ac} + {c3Ha?} = {Fe}, (24)
[zb){q%} = {FP} . (25)

It can be explicitly shown that the solution of Egs. (23), (24), and (25) does contain the in-
formation we need to know about the fixed-base natural frequencies of the equipment sub-
system. This information is in agreement with the computer simulation of a one-dimensional
linear chain structure reported in Ref. 3. In the present report, we have shown analytically
that it is true for all undamped linear time-invariant systems in general, no matter what the
forces are.

Resonar:ce Function—A resonance function is defined in this section because of its par-
ticular importance in fixed-base natural-frequency determination. It contains information
about the resonance frequencies of the equipment subsystem. All extraneous natural fre-
quencies of the base and support subsystems are excluded. The graphical representation of
the function shows peaks at the fixed-base natural frequencies of the equipment subsystem.
The resonance function is also a function of the mobility entities of the mobility matrix of
the total system. These entities are the characteristic and invariant properties of the total
physical system, and their measurability is of key importance in this investigation.

Before we proceed to derive an explicit expression of the resonance function, it seems
essentizal to recall the linear space transforination in matrnx form. The harmonic solution has
1 shown that the mobility matrix is defined as in Eq. (15). The entities of the mobility matrix
can be expressed as

Z .
where Z;p, is the adjoint of the flexibility matrix [Z], which corresponds to the flexibility
matrix element zp;. Physically there is a difference in meaning between the mobility matrix
and the inverse of the flexibility matrix; the mobility matrix is an operator to map the gen-
eralized velocity vector onto the generalized force space, while the inverse flexibility matrix
is an operator to map the generalized coordinate vector onto the generalized force space. In
our particular case, generalized coordinates and generalized velocities are related by a scalar
multiplier w, the frequency of excitation. It is immaterial which one is used in this analysis.
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However, in order to avoid ever increasing confusion in terminology, the mobilities are used
throughout the derivation.

We consider a system composed of an 2 degree-of-freedom equipment subsystem, an
m-2 degree-of-freedom support subsystem, and an n-m degree-of-freedom base subsystem.
The explicit form of the set of simultaneous equations, Eq. (13), describing the total n
degree-of-freedom dynamic system, is the following, when there is no force acting on the
equipment subsystem:

wqy = myeaFesy + oot mypFm + oo+ my o F, ,

wqe = moes1Foer + --- + mopFy + --- + mg aFp

wqy = Mg g43Foey + <o + My Fy + --- + mg oFy

Wqgs1 = Meay g41Fcey *+ - + Moy mFpy + -+ + Moy nFp
Wim = My e41Fee1 + oo Y My Fyy + - + My g Fy
Wem+1 = Mma1e41Fos1 + oo+ MpaymFm + --- + My o F, ,
Wap = My oe1Fpey + oo + My Fpy + -+ my o F, .

In applying the resonance condition, we single out the part containing the generalized coor-
dinates of the support subsystem from Eq. (27) and set them equal to zero; that is,

Qo+l = qes2 = " = qm =0, (28)
or
Most e+1Fesr + -+ Mesy mFm + o-- + Moy nFp = 0,
Mes2 qe1Foa1 + -5 + Meag mFm + -o- + Moy nFp = 0,
(29)
My e1Fee1 + oo+ My Fry + =~ % My nFn = 0.

Equation (29) 1s a set of simultaneous homogeneous algebriac equations. In general n - ¢ >
m — ¢; that means an infinite number of solutions can be developed for various give forces.
In other words, the solution is indefinite. However, once again one may take advantage of
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the fact that the applied forces are under our control during the measurement. If one limits
the total number of forces applied, one at a time, to be equal to the degree of freedom of the
support subsystem m — ¢, then a nontrivial solution exists. This solution requires that the
determinant, consisting of the mobility entities associated with the applied forces, vanishes.
For example, if all the forces are applied at the support points, then

Mos1 ¢4 °° " Metl m

Mo+ 741 ~°° Mes2 m

= Q(w) . (30)

Mmesy “°° Mmm

It is equally true for any other combination of m - £ forces. In other words, the forces can
be applied on the support subsystem, on the base subsystem, or on the combination of both.,
This liberal choice of application points offers great flexibility in application of this particular
method.

It is important to show explicitly that Eq. (30) does contain information about the fixed-
base natural frequencies of the equipment subsystem. Recall the matrix Eq. (14). The flexi-
bility matrix and its inverse arr commutative. The matrices in Eq. (14) may be partitioned
and written in the following form:

e B o — - n
[ze] :{cf} : {0} || mi : : I : 0 : 0
POV I R B R (I T
{c;f itz 1 {ci} | =|oj- 10
——— e m g — | |- —— ——t—
o} Heplize e | mangy 0loly
i
L 4 J . -

13! myag o {0}
{o} | o} |
{0} : * Mpm/e , (7]

—_ — — — — = e e —_— e e e - = e —_ = e o

SRR

{0} :{C;}I‘: [Zb]J {0}: M :[l} {O} :{0} ‘l l/b]J

N G R R C N O N
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8 NI AND SKOP
Taking the determinant of hoth sides of Eq. (31) and applying the identical equation

fa}BY = AN I[B]H (32)

results in

(z)w) = [Ze)[Zb)wmt,

Hze) UZON e

U= Tz

(33)

Equation (33) shows that 2(w) = 0 not only carries information about the fixed-base r.atural
frequencies of the equipment subsystem, that [Z€] = 0, but also the fixed-base natural fre-
quencies of the base subsystem as well as the natural frequencies of the total system. These
extraneous frequencies can be eliminated by constructing another determinant having an
order of m — ¢ + 1. 1t is done physically by adding another force applied at one of the equip-
ment points. If we designate this determinant as Q'(w), then

me ¢ me m

Mes1 041

= Q'(w) .

My ¢ Mm m

Following the same procedure in deriving (w), one has

[z I[Z"]l motsl |

) = =

(34)

In general, [ Z¢']| does not vanish at the fixed-base natural frequencies of the equipment sub-
system unless the determinant |[Z¢ ]| and the determinant |[ Z¢]] do have common factors.
This will be discussed later.

Now we are in position to construct the resonance function y(mp,;w) in explicit form.
This is defined as

el
Somay i) = '_<_)" ”uz il 35

I[Z"]||

Here, the double line designates absolute value. The use of the absclute values in the reso-
nance function evaluation essentially converts the zero-crossing points of function {[Z¢]{ =

a

-
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to minima. For a physical system, |[Z¢]| is finite for finite . The singularities of v(mpj;w)
corresponding to I Z¢]i = 0 gives the fixed-base natural frequencies of the equipment sub-
system.

As for the identification of the detected resonance frequencies concerned, the extrane-
ous frequencies of the base subsystem and the totai system are eliminated. As pointed out
before, when there are decoupled subsystems within the equipment subsystem, ambignity
arises due to the fact that |[[Z¢]| and [[Z¢]| have common factors. In turn, the resosaice
function y(my;; w) does not reveal all the resonance frequencies as expected. The remedy
for such ambiguities is to take one or two more force application points on the equipment
subsystem for cross-check purposes.

Although the derivation of the resonance function is based on the assumption that the
m — £ forces are applied to the supporting points, the actual locations of the application
points of the forces are irrelevant as long as they are kept away from the equipment subsys-
tem. The aforementioned fact is not obvious, because the extraneous frequencies induced in
the derivation of the functions Q(w) and £2’(w) depend upon the force-application points.
However, those induced extraneous frequencies are common factors of Q(w)and Q'(w). As
a consequence, the resonance function remains unchanged. A mathematical proof for this
liberal choice of force application points will be given in the next paragraph.

To prove the ubove statement of liberal choice of force-application points, we refer to
Eq. (31), in which the matrix replaced the inverse flexibility matrix having its physical sig-
nificance. In that matrix, one noticed that the mobility entities were replaced by unity or
zero, except those lying in the m — 2 columns. Those columns correspond to the locations
where forces are applied and include the eigenvalue function £(w) for the resonance condi-
tion of the equipment subsystem under investigation. In this particular case, the resonance
condition is

Qeel = Qoe2 = -  qm = 0

with forces applied at the supporting points gg+1, ge+2, * * - gm. Now suppose one of the ap-
plication points, say q,, is to Le changed to a point on the base subsystem, say at q,, where
¢ < w< m,and m < v< n, the corrasponding matrix change is as follows:

s S 5+ R I b b s i, s 5 5 il P i

: Mygslfw *° " Mwlw - ° " Mlmi :
[, | {0}
I ... I
— — + ————————————————— 1— —~— —
o} ! I'{o
ot oo 10}
] |
| |
{o}, ( 1]
| Mupceljo © 77 Mpmyw® * " Mpw/w
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to
[ | i
( my eslfw * " M1 w10 * " M1 wilfw * " M1 m/w | 0---m1 v 0
I
I I
s U,
{o} i ]
N S
| N
] | I
| | ) 1
{0} : : my y/w
i Mpe+lfw """ Mpw-1jw” " " Mpw+ljw """ Mo m/w | I.
! .
l i 1
w .

The determinant of this new matrix is also an eigenfunction (w) corresponding to the same
resonance condition as stated before, but with the difference that one of the applied forces

is changed to a new location at q,, on the base subsystem instead of at g,, on the support
stubsystem. If one makes the corresponding change in Eq. (31) and designates the new matrix
as [V], one will have the following matrix equation:

(36)

Coel g41 * * ° Coel -1 O Coug pi1 °°

[zllv] =

' b b
| Zmel m41°° Zm+1 -1 0 Zmat1 177"
|
| 1
I .
i
|

0
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Taking the determinants on both sides of Eq. (36), one has

Mo+t e4ljw °° " Mol w-1/w Mo+l wHljw ° ° " Mo+l m/iw Me+l v/w

itzu- :

Mpetljw " ° Mmw-1/w Mrwtl/o """ Mmm/fo Mmo/w

Cwv Cwumtl ""~Cyuvl Cwuvil ~""Cuwn

b b b ... pb
Cm+l v Cm+1 m+1 ° * "Zm+1 -1 Tm+1 v+l 2+l n (37

=zW-|eo1v 221 mer - 21 o1 2010 - 2ham

b b b b
Corl v 2+l m+1 " " "Zu+l v-1 Zv+l w4l """ Zvtln

.
.
.

Cnv 22m+1 "'ng-l zgvﬂ "'Zgn
or simply
izell .
Q = ——= .[[ZV) om2 | 38
@) = gy 12N (35)

where [ZY] represents the matrix

Cwv Cwm+l

—

‘Cwr-1 Cwuvil “""Cwn
] b b b

Cm+1 vZm+1 m+1 * " " 2Zm+1 v-12m+1 v+l " " "Zm+l n
b . e b b -« e 0

Co-1v 2v-1 m+l 2p-1 -1 201 v+l Zp-1n
b b b b

Cutl v Zu+l m+1 """ 2pe1 -1 2+l v+l " "2+l n

b b b )
Chvr  2Z2np m+l *rZp -1 2n v+l 2" Znn
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The indices w and v are rather arbitrary within the limitof e < w < m,and m < v< n. This
procedure can be repeated to interchange the force-application points between the support
subsystem and the base subsystem as desired. When each additional application poini of the
forces is changed to another location, Eqgs. (37) and (38) show that the difference in the
eigenfunction Q(w) is limited to the induced extraneous frequency function [Z?] alone, but
not to the absolute value of the ratio of the determinant I[Z €]} and the determinant I[Z }I.
This means that such exchange of force-application points will not alter the information of
the fixed-base natural frequencies of the equipment subsystem. Nevertheless, the solutions of

[z% =0 and [z¥l = o,

in general, will not be identical. Therefore the reraaining task is to show that the extraneous
frequency function, |[[Z?]| = 0, will remain unchanged if an additional force is applied to the
equipment subsystem. Attention is called to the fact that the flexibility matrices [ Z¢] and
[Z?] of the subsystems are merely artificial designations for the convenience of discussion.
They a e physically equivalent, in reality; choice of one or the other is dependent on which
part of -he system is of interest in the particular investigation. Because of this equivalence
betwee . the equipment and base subsystems, one may conclude, without repeating the mathe-
matical manipulation, that one additional shaking point on the equipment subsystem will not
change the determinant I Z ]|, but will change the determinant I[Z€]l. This is the property
being used in constructing the resonance function ¥ (mg;;w) to assure that all the induced ex-
traneous frequencies are eliminated.

Damped System

The computer simulations in the “Example Problem” demonstrate the soundness of the
developed fixed-base natural-frequency determination method for a one-dimensional multiple-
foundation undamped system. It is of both theoretical and practical interest to ask whether
this method can be used in st1dying damped systems. In order to answer this question, an
analytical approach is necessary for two reasons: first, the extension of this method to apply
to damped systems is not trivial; second, damping does exist in all physical systems. In other
words, this analysis is intended to show the applicability and limitation of the fixed-base
natural-frequency determination method on damped systems on the one hand, and the in-
trinsic properties of the damped system on the other. Either of the aforementioned interests
requires proper understanding of the experimental results. Such understanding cannot be
achieved merely from the measured dynamic responses. The exact manner of acquiring the
test data sometimes is the determining factor to accomplish the purpose. It is known that
the shake test has been used to measure impedance, mobility, and natural frequency of a
mechanical system directly or indirectly through response measureme:1ts. Those quantities
are immensely useful in structure analysis and design criteria where dynamic loadings are
involved. The purpose of this analysis is to provide a better understanding of real complex
systems, so that use of test data will be more confident.

Equation of Motion—A damped system involves dissipation of energy. In numer-
ous experimentally justified cases, the dissipative forces in a mechanical system are indeed
proportional to velocities and referred to as viscous damping. For such a system, one may
use the Rayleigh dissipation function, which is defined as
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R =

DO

g [R}4} (39)
where r;; are the elements of the damping matrix [R ], which are r=al and positive.

The corresponding constitutive equation of motion in the Lagrangian formulation
becomes

d (L) oL, on
dt

- + —/ = Fy(t 40
dqs ) dax © agx  T*® (40)

or, written in explicit matrix representation of the governing differential equations,
IM{a} + (R4} + [K)a} = {F} . (41)

A great number of structures also exhibit energy loss during motion, with the dissipa-
tive forces provortional to displacements knowr: as coulomb damping. It is equally possible
that energy losses due to dissipative forces proportional to acceleration may have a sizable in-
fluence on the system in motion. However, these latter cases may be described by Eq. (41),
if we regard the mass matrix [M] and the stiffness matrix [K] as effective mass matrix and
effective stiffness matrix accordingly. Therefore, Eq. (41) may be used to study damped
linear time-invariant systems in general.

Closed Form Mathematical Solution—In an idealized shake test, a shaker providing a real
sinusoidal force is assumed in a mathematical model. Such a force may be expressed as

F(t) = Fsin wt.

The steady-state solution of the governing differential equation, Eq. (41), is supposed to
exist, in which the whole system vibrates at the unique frequency w of excitation. The re-
sponses can be expressed in the following general form:

{ak) = {@ sin (ot + o))
_ (42)
= {Ek cos wt + by sin wt} .

wiere d = Qg COS ¢y, by = g sin $j> and in general ¢p; # nm,n=0,1,2,... for casesin
which viscous damping is involved. It is evident that in a damped system, two components are
needed to describe a single response, i.e., either (qj,¢ kj) or (ag, bp). Taking the time deriva-
tives of Eq. (42) and substituting them into Eq. (41), one has

—w2[M]{Esin wt + b cos wt} + w[R]{Esin wt = b cos wt}
3 _ (43)
+ [KNasin wt + b cos wt} ={Fsinwt}.
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Since sin wi and cos wt are independent, Eq. (43) may be written as
~AMNa} - [RKB} + [K)a}= {F}, (44)
~wqM}a}- o[RMB} + (K)Ma} = {0} . @3

By rearrangement of the terms in Eqgs. (44) and (45), and writing them in a compact form,
we have

(K] - M|  -olR] @ ({7}

_ = (46)
olR] 1K) - w?u] {5} {o}

Theoretically, the problem is solved once a set of forces along with the physical properties
[M),[X], and [R] of the system are given. A closed-form solution can be worked out from
Eq. (46) by any computer means. However, the application of Eq. (46) in practical measure-
ment is not trivial. With this closed-form solution in mind, an approximate solution for a
shake test will be developed in the next paragraph.

Approximate Solution For Shake Test—Equation (46) tells vs: (a) when the system is
undamped, i.c., when [R]1=[0],{a }and {5 }are not coupled (tae solution will be identical
to the solution of Eq. (10) if {a }is replaced by {a}; ana (b when the system is damped, or
[R1#1[0],{a}and ({I;} are coupled. Then the phase factor becomes important, and a set of
2n linear simultaneous equations has to be solved. In general, the semi-analytical determina-
tion of fixed-base natural frequencies of such a system is complicated.

Since numerous small viscous damped mechanical structures do exist, it is well worth
while to continue the investigation of these systems. In order to establish the justification
to extend the developed method to such cases, we recall Eq. (46). In Eq. (46), one sees that
when damping is small, the real part of the response {5 } is weakly coupled with its correspond-
ing imaginary part {5}, and Eq. (44) approaches Eq. (10) as damping decreases towards zero.
Consequently, the solution of the real part of Eq. (46), i.e., {5}, also approaches the responses
{6 } of the undamped system in Eq. (10), which is real. Therefore for a slightly damped sys-
tem, the sclution may be approximated by using Eq. (46) for shake-test analysis. To be more
specific, we rewrite Eq. (46) in the following form

(] | -wlr] | [{a} {F}
etk I , (47)
wlR]; (2] {5} {0}

where [ Z] 1s tne flexibility matrix of the very same system, but with no damping. Then the
real part of the solution of Eq. (47) may be regarded as the approximate solution of a slightly
wamped system. To show this, we suppose that the system under study is not excessively
damped; the real part of Eq. (47) may be approximated as the solution of the system. In
solving for the responses in terms of applied forces
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{a} {F}

_. ¢ =16l , (48)
{5} |{o}
where
(2] | -wlrl [*
(6] ={———5————| . (49)
wl[R] [z]

The explicit expression of the real part is

{a} = {3 cos o}
-1 + w2zRNZIRY) 21 {F) (50)
= (11 + (1~ R1)2)1121{F}

where the matrix w[Z]™! is the mobility matrix [% ]. When {R] is smal!, the following ap-
proximation may be made:

(1 + (x1RD2) = U1 = 0l (51)

because the elements of the matrix [ X ][R ], mjr;i , are much smaller than the damping ma-
trix elements r;;, which are in general small. Then Eq. (50) becomes

{Ecos ¢} = [Z]‘l{f} 3 (52)

It is exac’ly the form of Eq. (14), except that the responses involve a phase factor cos ¢.
Therefore, the developed method can be applied to slightly damped system as well.

EXAMPLE PROBLEM AND DIGITAL COMPUTER SIMULATION

A specifically designed sample is in order to illustrate the applicability of the developed
method. Also some comparisons were made to bring out the ambiguity which could arise due
to negligence. A simple, but still general, undamped one-dimensional system of nine degrees
of freedom as shown in Fig. 1 will be treated. The equations of motion for free vibration
may be derived from

d /oL oL
dt(&&,) iy 0 where L=T-V |, (E1)
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L3
[ R4
—&
Ks

"; Xy
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L =) ’ (A i . .
o Fig. 1 - Configurstion of the nine-degree-of-free-
dom, one-dimensional, undamped compaosite struc-
v - ‘,’. “Y ture for digital computer simulation
} - _4‘ *
l_‘:
- Lu(, Ky
ps »
O S N R
1, :2,1 . L3—-Ls,- - j2. 1 -  Lg—Le . . |2
= = 4+ - - g -
T = 5Miy1 2”2[)’2* I3 631 JV2)_ "zﬂs[)’:;* L, 2 ys)]
1,,.2, 1, 0. Li-Le . _-Jo 1, |.  L2-Lsg - __ \l2
* 5Myys + 2”5[?5* I a-¥s)|"+ 5Me|ye + L (ys — ¥s)
1. .2 14 .2.140- Li-Lg,. - ]2
+ g Miyg+ i”sy-zz* 5”9[)'8 + i (y7 -ys)]
1 - o Lg—Lip o - 12 1 2
+ 2M10[>'9+ I (vs —y9)|~ + 2M11y9 , (E2)
1 1 Li-L T
V= cKi(y1-v4)? + 5Ka|y2 - L3 (ys +y4)|2
2 2 I
1 Lo—-L 1 1
+ §K3[J'3 - 2L 8()’5*)’6)]2 + ‘2'K4(y4—y7)2 + 51(5()'5’)'8)2
2
1 1 2 1 1
+ ‘Z‘Kt;(ys-yg)2 + §K7y7 + §Ksy32 + §K9y92- (E3)

For this particular system, the kinetic energy T is coordinate independent and the potential
energy is velocity independent; thus the Lagrangian equation has the form

401y, 2 .y
aliy) a5 =0 (E4)

hge s A
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By differentiation of T and V, the equations of motion are:

[ul + uyf 2 L) ]i + Mp(B BN B)5s + Kayy - Kuva =
e R AR oL RS [

L1-L
+Kz¥z"Kz( i ) -Kz( I 3)ys=0,

2
Lg-Le\/1s)\.. Le ]_ Lo-L
‘la(—‘—LTj)(I:)n + [Ms(-i;) + M4JY3 + K3y3 ~ x3( 2L2 8)?5

- Ka(LzL; LB)YG =0,

2
Ly - - L 'L L ~-L
Ms( 1L1L7) ¥q + Ms( llel 7) - Ky1yy - Kz\ 3))'2

2 2
Ly-L Ly-L
+ [Kl + Kz( L 3) + K4]y4 + Kz( lLl 3) ys - Kqy7 = 0,

1a]
L1:L7) Ly (& : (e te -1\ %[, (Lz—Ls)(La)
Ms( I (L)y +1Ms I + Mg I; ) ¥5 + Mg i, L, )¢
Li - L -L
- w7, - w2+ (i),
Ly - L3\? Ly-Lg\> L
. = L
A
2
Lo - ) Ls) (Lg ) . (Lz - Lg)
M(—— 5 + |Mg|7- | *+ M7|ye — K3\~ y3
\"L, \Lz 6z, 7|Ye NI,
2 2
Lo—-L Ly - L
+ Ks( 2L2 8) ¥5 *[Ks( 2L2 8) + Ks:\ys - Kgyg = 0,

Li—-L . Li-L L
[Ma + Ma( 1L1 9)2})’7* Mg( 1L1 9)(L9)y8 - Kgys + (K4 +Kq)y7 = 0,

2 2
Ly - Lg\(Lg Lg) (L2 -Lo\“|.. (Lz - Lo) (Lo)
: =t} Mol =220} (=0
‘19( L )(Ll)w + [Ms(Ll + Mjo i ) yg + Myo I L M)

- Ksys + (Ks + Kg)yg = 0,

(E5 Con't.)
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We try a solution as the real part of

+ 3‘11]59 - Kgye + (K¢ +Kolyg = 0. (ES)

yi = yie!, where ¥; = y;le®. (E6)

From straightforward substitution of Eq. (E6) into Eq. (E5), the influence matrix [Z] can be
determined.

Zn - Zyy
[z}- :

Zgy .- Zgg

The elements of the [ Z] matrix are real, in this case, and symmetric.

K, - wz[_“‘ + (1‘3_-12)32] ,
L3

L3 - Ls\(Ls
—w2M (2325 (_°_
“ 2( Ly )Ls ’

Zy3 =231 =2)5=25, =216 =Z¢1 =Zy1 =21\ =218 =281 =219 =291 = 0,

Zy

N
N
[
N
i
[

N
-
1l

£
[

_Kl .

*

/Ly - Ls)z]

L3\
Zos = Ky - w2 .'.12(L—Z} + _\I;;k T
4

Ly — Lg\/L
22 = 22 = -t (M) 7).
Zoy = Zys = ‘Kz-\LlL- L;;\’ .
A 1 /
/Ly - ;
Zos = Zsz = - Ko| & L3
1 ’

N
oS
“l

]

»

w
!

¢

tw
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235 = Zs3 = -Ka(b—l;ﬁ) ,
Zy = Zg3 = -Ka(l"l;l") .

Zu = K+ Kot 0) s i, - gl )
- g - mfgi )
246 = Z6s = 243 = Zg4 = Z4q = 2o, =0,

247 =274 = - Ky,

R R R

Z4g

Zgg

Zgg

Zgg

o= - o

Zy5 = Zsg =

Zgs = -Ks ,

Zg7 = 0,

K; + Kg - «
Zgg = — w2M,
K¢ + Ko - «

Ls
I

).

L

1

£ )2 +u5(

Ly-L
Lz

2

)

19

2

J'

(E7)
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In calculating the natural frequencies, the numerical values of the physical constants are
assigned:

My =My =My =1,
My =Ms = Mg =2,
M; =1,

Mg = Mg = Myo =3,
iy =1,

L =3,

Ly =Ly =4,

Ly =Lg =2,

K; = K¢ =1,
K; =2,
Kg = Kec = 3.

The natural frequencies of the total system are calculated by setting

iz): = 0.
The results are:
w1l = 0.3631 ,
wy = 0.4802
wis = 0.7801 .
w] = 09196 ,
T

1.0266 .

A0 Pmaey ) SR
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we = 12656 ,
Wy = 1.4065 ,
wgy = 1.4890 ,
wg = 21373 .

Separate cases will be taken into consideration.
Case 1 — General [iustration of the Applicabiity of the Proposed Method with Forces
Applied at the Supporting Points
Define the subsystems:
Y1, Y2, and y3 span the subspace of the equipment subsystem (Fig. 2),
Y4, ¥s, and yg span the subspace of the support system,

¥7. Y8, and yg span the subspace of the base subsystem.

Fig. 2 - Configuration of the equipment substructure
for illustration case 1, with forces applied at its
supporting points y4, y5, and yg and at point y3 on
the equipment x "z Xy

e, Heg e

In order to test the method, the fixed-base natural frequencies of the equipment subsystem
are first calculated by setting:

211 2y Zy3

HZe)l =0 =129 Z9o Zy3 ' .
|
i

Z3y 23z 233

The results are:

wi = 0.7816 ,
why = 0.8774,
w3 = 1.2794 . .




e e A — * wwm e - =

22 NI AND SKOP
Then apply the resonance condition
Ye =¥ =y =0,

with forces f3. f4. [5. and fg applied, one at a time, at the equipment and supporting points
¥2. ¥4, ¥5,and yg respectively. The resonance function y(m;;;«w) may be written as:

my myy ma5 mj¢
.mgy Mmyg M5 Mg

ms; msy niss mgy "

I I
!| meg) mgy mgs meg i

vimjj,w) =
”mu mgs  mug
: E msgy mss Mmsg
il i megy mgs megg
where

and Zj; is cofector of z;; in Z. The result of the digital computer simulation is shown in Fig.
3. The peaks occur right at the frequencies 0.786, 0.8774, and 1.2794.

Case 2 — Illustration of the Actual Physical Location of the Equipment Subsystem Being
Immatenial
In this case, the attempt is made to show that the actual physical location of the equip-
ment subsystem is immaterial, wherever response devices can be positively secured, and meas-
urement can be taken. The systems in this case are redefined as:
¥4, Y5, and yg span the subspace of the equipment subsystem (Fig. 4),
¥1. ¥2,¥3, ¥7, Y8, and yg span the subspace of the support subsystem.

The rest belong to the base subsystem.

LA
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Fig. 3 - Resonance function—frequency plot for digital ‘g’ sor
computer simulation of illustration case 1 -
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Fig. 4 - Configuration of the equipment substruc- X
ture for illustration czse 2, with forces applied at Yo | L
its supporting points y1, ¥2, 3, ¥7,¥8,and yg,and
at point yg on the equipment

IKe

e,
Again solve for the fixed-base natural frequencies by:

244 245 Zge
[zell =0 = |Z54 255 Zs
Zes Zgs Zgg |

The following listed are the calculated frequencies:

w}i = 10712 ,
wy = 1.3015 ,
wg = 1.9682 .
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The resonance conditions are:

8=§9=0,

dl
it

with forces f}, f2. f3. 1. fs. f9, and fg applied, each at a time, at the points v, y2, ¥3. ¥7.
¥8. Y-, and yg “espectively.

The resonance function is:

mgg Mgy Mg2 Mg3 M7 Meg Mgy
me m;; M2 m3 m7 Mg Myg
mg¢ M2 m22 M23 m27 Mg My
m3e m33 M3z m3z m37 M3z M39 "
mi e m7y mip mq3 mq; mg M9

mgg Mgy mg2 msg3 mg7 mgg mgg

mgg Mg} mg2 mg3 Mg7 Mog Mgy

vimij;w) =
" my; myz my3 my7 Mg myg ||

ma; ma2 m23 ma7 m2g ma9
m3; m3a m33 m37 m3g m39
mn ma2 m73 m77 mqg m79

mg1 mgg mg3 Mgy Mmgg Mgy

moy mg2 mg3 mg7 mog mgg

The mobility elements are defined as before. The result of the digital computer simulation
shows that the peaks occurring in the graphical representation truly coincide with the cal-
culated values, which are shown in Fig. 5.

Case 3 — Illustrations of Frequency Shift Due to Change of Loading Condition and of Pos-
sible Ambiguity Due to Coupled (or uncoupled) Subsystems within the Equipmeat
Subsystem

This case is designed with the intention ol showing that any detachment, addition, or
rearrangement of loading condition within the equipment subsystem could cause a large shift
in the fixed-base natural frequencies of that subsystem. (Actually it will effect all the natural
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Fig. 5 - Resonance function—frequency plot for digital
computer simulation of illustration case 2

RESONANCE FUNCTION ¥ (m,,, w)
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frequencies of the total system. Here emphasis has been put on the equipment subsystem,
because it is the mair concern in this case.)

Everything remains the same as in Case 1, except that the mass M which coupies y,
and ys is removed (Fig. 6). The fixed-base naturai frequencies calculated by setting My =0
are:

w] = 1.000 ,
wy = 0.786 ,
wy = 2.938 .

When M3 is set equal to zero, it physically decouples y1 and y3, which causes the existence of
uncoupled subsystems within the equipment subsystem. Caution must be exercised to clear
the ambiguity expected by the theoretical analysis. In order to reveal all the fixed-base
natural frequencies of this partially decoupled equipment subsystem, more than one point on
the equipment must be shaken. More specifically, we start with the influence matrix of the
equipment. When M3 =0,Z19 =29 =0,

Zy 0 0
[ze]={ 0 23 24 |,

0 Zez Zsg
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- Ly . [
M r“ Y;}.___.’L‘ l V‘s
F
t kS y u3 Hites Fig. 6 - Configuration of the equipment substructure
for illustration case 3, with forces applied at its
supporting points y4, ¥5, and yg, and at either point
" "2 o ¥3 or point y] on the equipment
Hee tHes {ire

Zy = Ky - oMy,

213 =23 =0,

Zy = K3 -~ sza(—

Ly—-Lg\(Lg
Zog = Z3g = - w2M (———) ——),
23 32 \7z, \L,

L 2
Z33 = K3 - w? M?,(ﬁ) + My .

When the shaking point on the equipment is at y3,

, Zn O
28 =
3)
0 Zy

the resonance function becomes

e o Mz
bomigie) “ 2 (@) ” Tz
- 12122900l - @ _ 1Z22ll .
1Z11(Z22Z33 ~ Z35) 1299233 = ZZ,|I

which will show peaks at the frequencies

0.786 ,

€
»o
i

2,938 ,

and muss the one w = 1.000 (Fig. 7).
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When the shaking point on the equipment is at y2, the result will be the same as shaking
at y3, because in the resonance function, only the numerator changes from Zg9 to Z33, and
it will not affect the frequency values corresponding to the peaks. However, if the shaking
point on the equipment is at y;, then

(7 Zag Zo3
Z! =
(1)

Z3y Z33
The resonance function in this case is:

2
wll £z 11l w 799233 — Zyqll w
Vimjsw) = —~01_ = =
Hizel 1Z11(Z22233 - Zy)l f1Z111]

The corresponding computer simulation is shown in Fig. 8, which reveals only one of the
fixed-base natural frequencies «w¢€ and loses the other two. The complete information has to
be the combination of these two. The important points illustrated here are the following:
first, the frequency shift due to change of loading condition (Fig. 9); and second, the possible
ambiguity which may arise from a decoupled equipment subsystem. To the second point, it
appears to be a good practice to take one or two more shaking points on the equipment for
checking purposes.

Case 4 — Illustration of the Irrelevancy of the Physical Location of the Shaking Points and
its Key Rule

This case is designed to show that the shaking points can be on the base points. With
the same definition of the subsystems (or subspaces) in Cast: 1, the influence matrix of the
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equipment subsystem remains the same. The theoretical analysis predicts that the resonance
function is independent of application points of the forces although, in practice, one meas-

ures different mobility entities, i.e.,
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This time the shaking points are at y7, g, and y9. The computer simulation of this case is
shown in Fig. 10. One notices that they exactly coincide with the result obtained by apply-
ing forces at y4, ¥5, and yg. The same result will be achieved by applying forces at the com-
bination of support and base points. Duplication of another computer simulation will not be
necessary. The key rules for the force application points are:

1. Keep the shaking points away from the equipment subsystem.

2. The number of shaking points is equal to the number of supporting points
plus one.
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Fig. 0 - Resonance function—frequency plot for digi-
tal computer simulation of illustration case 4—
irrelevancy of the physical locations of the shaking
points
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DISCUSSION

The theoretical analysis of this problem is rather general, as long as the dynamic system
under consideration is undamped or slightly damped linear time-invariant. It shouid be undes-
stood that a reliable result in actual measurement can be expected only if the test is being
carried out according to this condition. The proposed mechanical-resonance frequency-
measurement method applied to a multiple-support equipment system is quite powerful,
because the current difficulties—for instance, the requirement of force ratio of the shakers
(both magnitude and phase), physical location of the shakers, and size of the object to be
tested—are removed, or their limitations are lifted partially or entirely. The method suggests
indirect mobility measurements through response measurements by shake test. The neces-
sary measuring points are limited to only a few, namely the support points and one or two
points on the equipment subsystem, depending on each individual case. Furthermore, de-
vices and techniques to perform such tests are currently available, and results can be acquired
in a rather routine manner.

The theoretical analysis has been proved correct by computer simulation. A vast group
of mechanical systems and structures in reality can be treated by this analysis as if they are
linear time-invariant. Therefore, there is no reason why it should not be feasible to determine
the fixed-base natural frequencies semi-analytically. We have been talking about resonances,
but in practice, we use the resonance properties only to deduce the fixed-base natural fre-
quencies without actually exciting the resonance modes. It is a great advantage in determin-
ing the fixed-base natural frequencies, because in reality only in scarce cases may one excite
a resonance mode of a complex subsystem unless “inner resonance’’ or “heating” exists. It
is simple to illustrate: in the analysis of the text, we define the superstructure, base structure,
and substructure on an arbitrary basis. There is no difference in reality between the super-
structure and the substructure, both physically and mathematically. The so-called super-
structure requires the base points to be stationary while it vibrates at its fixed-base natural
frequency, but the substructure demands otherwise; therefore they interfere with each other.
That is, the substructure prevents the superstructure from vibrating at its own fixed-base
natural frequency. There is only one condition under which both the superstructure and the
substructure have the common fixed-base natural frequency. This condition is what is called
“inner resonance,” or “beat’ phenomena. It is also said that the system is degenerate.

SUMMARY AND CONCLUSION

It is realized that fixed-base natural-frequency analysis of a mechanical system is of im-
portance in the dynamic design and dynamic behavior study. A resonance function has been
derived for an n degree-of-freedom system to measure the fixed-base natural frequencies of
the equipment subsystem. The analysis is based on a linear time-invariant system.

The resonance function is an explicit function of mobility entities, which is composed
of intrinsic properties of the total system with vibrational frequency as a parameter. It is
clear that as long as the dynamic distortion, or disturbance, remains within the linear limit,
this function remains invariant with respect to its input, output, and time as well. This in-
variant feature, besides the advantageous facts pointed out in the discussion, makes the pro-
posed method more desirable than currently available methods.
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