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NOTATION

a, Polynomial coefficients

C Constant of integration

D Diameter of parallel middle body
Df Diameter of flat face

F Integral defined in Equation (31)
h "Cubic' polynomial

Ky [x] Polynomial corresponding to k;
K, [x] Polynomial corresponding to K,

Ro [x] Polynomial corresponding to TEo

k Curvature

kK Rate of change of curvature with arc length

E; Rate of change of curvature with arc length at x
E‘o Rate of change of curvature with arc length at x
Q [x] Polynomial for restraining conditions

8 Arc length

X Axial coordinate

xn Axial length of forebody

X Normalized axial coordinate

Y Radius

y Normalized radius

o . Unspecified constant

o Adjustable conditions

iti

]



Unspecified constant
Restraining conditions
Unspecified constant

Single differentiation with x
Double differentiation with x

Triple differentiation with x



ABSTRACT

Transition curves between flat faces and parallel middle bodies are developed
as families of special polynomials termed ""cubic' polynomials. The curves start
and end with zero curvature to provide no discontinuities in curvature at the junc-
tion with the flat faces and the parallel middle bodies. Each "cubic' polynomial is
a linear combination of independent polynomials controlled by adjustable para-
meters. Permissible ranges of the adjustable parameters are examined with re-

spect to selected geometrical constraints such as inflection points.

ADMINISTRATIVE INFORMA TION

The work described in this report was sponsored by the Naval Ordnance Sys-
tems Command (Code 035B) and was funded under UR 109-01-03.

INTRODUCTION

The geometrical characteristics of streamlined bodies of revolution are
developed in Reference 1*by the method of independent polynomials and adjustable
parameters. For the case of flat-faced forebodies, a "cubic" polynomial is intro-
duced for the transition curve from the flat face to the section with maximum
diameter. The "'cubic' polynomial has the desirable property of providing infinite
slope and zero curvature at the junction with the flat face. The "cubic' polynomial
of Reference 1 has one adjustable parameter k;, the curvature at the junction with
the section of maximum diameter.

It is now desired to develop "cubic' polynomials that fair into parallel middle
bodies, that is, having zero curvature at the junction with the parallel middle body.
For the '"'cubic'" polynomial of Reference 1, k; is zero to satisfy the noncurvature
of the parallel middle body and the resulting polynomial has no adjustable para-
meter. It is now proposed to develop "‘cubic" polynomials to fit parallel middle
bodies so that the polynomials have adjustable parameters. Two adjustable para-

meters are considered:

*References are listed on page 17.
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flat face.

, the rate of change of curvature with arc length at the junction with the

2, Q, , the rate of change of curvature with arc length at the junction with the
parallel middle body.

The polynomials are subjected to geometrical considerations such as those
concerning inflection points to provide suitable ranges of values for the adjustable

parameters.
The pressure distribution on a body in a flow is governed by the curvature of

the body shape, among other factors. Discontinuities or sharp changes in curva-
ture are in general to be avoided since they lead to pressure fluctuations which may
have undesirable results such as separation or cavitation. Such changes in curva-
ture may occur at junctions of bodies or at inflection points. Hence curvatures at
junctions should be matched and inflection points avoided in most cases.

An earlier study of elliptic curves bridging the flat face and the parallel middle

body is given in Reference 2.

TWO-PARAMETER '"CUBIC'" POLYNOMIALS
The "cubic' polynomial for the transition curves of forebodies between flat-
faced noses and cylindrical parallel middle bodies requires a zero curvature at the

junctions. For the '"cubic'’' polynomial of Reference 1, k) = 0 and
Y= Qx) = 1+ (x-1)° (1)

This may be termed the zero-parameter ''cubic' polynomial. The normalized

coordinates x and y are given by (see Figure 1),

x= X/Xn

y= (2Y-Di)/(D—Df)



where
X 1is axial coordinate starting from the flat face,
Y is radial distance from centerline,
X, is axial length of forebody,
D is diameter of parallel middle body, and

D¢ s diameter of flat face.

To provide a more general family of bodies, two additional adjustable para-
meters are introduced. Since curvature k represents the rate of change of slope
with arc length, the rate of change of curvature with arc length K ought to be a use-
ful parameter. The two adjustable parameters are then Eo and K i Katx= 0and
at x = 1, respectively.

The rate of change of curvature with arc length is given by gk—s 5

“CUBIC” POLYNOMIAL

Oy
1 ™~ FLAT FACE

CYLINDER

NORMALIZED x 2Y-Dg

COORDINATES: * X, * Y~ O

J
o
5

Figure 1 —Basic Geometry of Flat-Faced Nose



Curvature k may be written for convenience in the form

which yields
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Curvature k may be written now in the alternative form
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(where x is taken as the independent variable since g—’%= 0 at x = 1), which yields
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= gx-.-:d =
Atx =1, werequiredx d—:} (1]

and then

~ d®x
K, =(Lx
1 (dya>x= 1 (7)

To obtain the two-parameter ''cubic' polynomials, the method of Reference 1
is followed.

There are two conditions, o4 and a3y, for the two adjustable parameters:

The boundary conditions B, are

]
By: XxX=0,y=0
Bo: x=1,y=1
dy _

Bs: x=1,

&

Eé - Byt x=1,:—:§=0

Since there are six conditions in all, the required polynomial is of the fifth
degree.




The o and Bj are substiiuted into the "cubic' polynomial

yd= ag+ ax + ax? + agx® + axd + agx® (8)

to give for each condition

aq: ay =

G

o

o 2ay + 884 + 20ag = i:‘

: a_=
B8y o 0
-PH ao+a1+az+aa+a‘+a5=1
Ba: a,+2a2+3a3+4a4+5a5=0

By 2ap+ 6ay+ 12a, + 20a; = 0

The form of the "cubic' polynomial is then

3:

¥ ==K, [x] + & Ky [x] +Q[x] (9)

o*?'t—

where I'Eo, E, and Q are fifth-degree polynomials which are deterrained as follows:

The preceding relations for o, and B j correspond to conditions on y?, the
"cubic" polynomial, instead of y, as follows:
d 6
ot o) -ay -2
o

gt %x’f [1] = 6ay + 24a, + 60a; = 3K,

8,: y° [0] =a =0



o, I, TR R ) e

Byt y'l1]l=ag+a,+ap+ag+a,+a;=1

By: %a {1]=a, + 2a, + 3ay + 4a, + 585, =0

2.3
Byt %ﬁ— [1]=2a, + 6ay + 12a, + 20a5=0

In terms of the polynomials ko [x]. E,[x]a.nd Q[x]the preceding relations

represent

o: K 'lo]=s, K, '(0]=Q' [0]=0

a: Ky [1]=3, Eo"'[1]=Q"'[1]=o
B: K [ol=K;l0]=Qlol=0

Bat §°[1]=§,[1]=0.Q[1]=1

g: R '11=K,(1]=q'(1]=0

Be: R "[)=Ky[1]=qr[1]=0

~

. .48 =, _ 49K
HereKo = W ,Ko —a‘é" etc.

Evaluation of ¥
i+

Since Roto]= ko [1]= iZo' (1]= Eo" (#]= i'('o"' (1] =o,

K°=ax(x— 1)4 (10)

Also since K'[0]=6, o = 6. Then
R‘o =6x (x - 1)* (11)

Evaluation of k,
Since R, [0]=K,'{0]=RK, {11=R'11=R," [1]=0o,



~

K, = ex?(x-1)?

Also, since K,""'[1]=3, B ='};. Then

T{'l =-§- x? (x - 1)%

Evaluation of Q
Since Q' [0]=Q'{11=Q""[1]1=Q''[1] =0,

and

Q=vx(x-1>3

From Q{0] =0, C =0 and fromQ{1]=1, vy = -20.

Then

Q=1-x-1D'ax+1

Permissible ranges of 'lzo and k;

(12)

(13)

(14)

(15)

(16)

Not all combinations of E'o and 'la give desirable shapes. It is interesting to

analyze possible limitations in terms of simple criteria:

1.

Zero condition: y = 0.

Negative values of y are meaningless.
Unity condition: y = 1.

Bulges above y = 1 are undesirable.
Maximum or minimum condition: g{- =0.

Maxima or minima other than at x = 1 are undesirable.

a?y

Inflection point condition: — = 0.
dx2



Inflection points are considered undesirable on noses of bodies.

As explained in Reference 1, an envelope curve may be determined for each
of the preceding conditions. As shown in Figure 2, desirable values of 'IE'O and E"

are on the inside of the envelope curve.

1. Zero condition

y’-h[x,é,E’,]=o 0sx=s1 a7
ko
The envelope in— and E with x as the variable parameter is given by
ko
dh
' (=
h = 1] (18)
The two envelope conditions, Equations (17) and (18) provide two simultaneous
equations in S and E’l which are solved by the Cramer rule to give
o

1 x-1'@3x+2)+5x-2

= RETY] (19)

® 6x (x - 1)

o
and
2(x - 1)% - 2(5x - 1)

= (20)

R’l =
x%x - 1)3
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1
For x = 0, — = 0 and K, = 20.

1
Forx=1,——oand ky— >

o

1 o~
The envelope curve i8 shown in Figure 2. Desirable values of — and k; are on the

k
o

"inside curved' side of the envelope curve.

2. Unity Condition

¥y =h|x; =1 o0sxs<1

W{l»—-

1
The envelope in? and E’, with x as the variable parameter is given by

o

3

-2

n
I
o

3
a—;(h- 1)

By,
H]

(21)

(22)

The two envelope conditions, Equations (21) and (22), provide two simultaneous

1 ~
equations in— and k; which are solved by the Cramer rule to yield

[o]

3x + 2

o™=
2

(23)



and

2(x - 1)?

Ry
"

(24)

1 ~
For x = 0.-: S>» and ky >

k
o

~

Forx =1, =-2—and 1=0.

F'I'-‘

[¢]

1 ~
The envelope curve is shown in Figure 2 with desirable values of — and kjon the

o
"inside curved" side.
3. Maximum or Minimum Condition
”
1 -~
%1=i;' x;—, ki) =0 (25)
x k

1
The envelope curve lnE and E'i with x as the variable parameter is given by

o

h''=0 (26)

The two envelope conditions, Equations (25) and (26), provide two simultaneous

equations in% and 'l\(‘ which are solved by the Cramer rule to produce

k
o

12



e X Y

1 5x2
= e (27)
k 10%2-5x+1
o
and
20(x - 1)?
E'; Se————— (28)
10x% - 5x + 1
1
Forx=0,—=0,?=20
K
o
1
Forx =1,— =2, K;=0
o~ 6
k
[o]

1
The envelope curve is shown in Figure 2 with desirable values of — and E',
kK

o
on the "inside curved' side.
4. Inflection Point Condition
For y3 the inflection point condition becomes
3hh'' - 2(h")% =0 (29)

1
The envelope curve in — and E'x with x as the variable parameter is given by

[+]

3hh'*' - h'h'' =0 (30)

. 1
These two conditions provide two simultaneous equations in — and E; in terms of x.
k
o

13



Since the equations are quadratic in L and ‘R',, numerical procedures are necessary.

Kk

o
The results are shown in Figure 2.

Relative Fullness of Shape

The ''cubic' polynomial as defined in normalized coordinates specifies an
annular volume which is also governed by the relative diameter of the flat face.
Consequently the prismatic coefficient is a function of not only the 'cubic' polyno-

mial parameters but also the relative diameter of the flat face.

A simple measure of the fullness of the volume specified by the '"cubic"

polynomial is given by the integral F where
F= ¥y dx (31)

For Equation (19)
F=§+l(l)-_‘£x_ (32)

For constant values of F. straight lines are indicated in Figure 2. TIuller shapes

are specified in the lower right hand side nf Figure 2.

ONE-PARAMETER "CUBIC" POLYNOMIALS

A one-parameter family of ""cubic' polynomials may also be considered if
I?'o, say, is taken as the single adjustable parameter. The result is a fourth-

degree polynomial or quartic. Then ag of Equation (8) is zero and

T o= - 12 (i:) +8 33)

(o]

14



This {8 plotted in Figure 2 as well as the values for the zero-parameter ''cubic"

Cad 1
polynomial, Equation (1), k; = 2and— = % .
o)

By use of Equation (33) in Equation (9), the one-parameter '"cubic' polynomial

becomes
y3=i~—iz° [x]+ qQ[x] (34)
o
where
T(o = —6x (x-1) @35)
and
Q= x* (3x% - 8x + 6) (36)

A study of : permissible range of ,;({,— gives

to satisfy the zero, unity, maximum or miniinum, and inflection point conditions.

Representative curves are plotted in Figure 3.

15
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