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NOTATION 

a. Polynomial coefficients 

C Constant of integration 

D Diameter of parallel middle body 

D Diameter of flat face 

F Integral defined in Equation (31) 

h "Cubic" polynomial 

Kj [x]       Polynomial corresponding to kj 

Ki [x]        Polynomial corresponding toTti 

15 [x]       Polynomial corresponding to "K 

k Curvature 

iT Rate of change of curvature with arc length 

Iq Rate of change of curvature with arc length at x = 1 

k" Rate of change of curvature with arc length at x = o 
o 

Q [x ] Polynomial for restraining conditions 

s Arc length 

X Axial coordinate 

X Axial length of forebody 
n 

x Normalized axial coordinate 

Y Radius 

y Normalized radius 

q; Unspecified constant 

a. Adjustable conditions 

iii 



8 Unspecified constant 

B Restraining conditions 

y Unspecified constant 

' Single differentiation with x 

" Double differentiation with x 

'" Triple differentiation with x 



ABSTRACT 

Transition curves between flat faces and parallel middle bodies are developed 

as families of special polynomials termed "cubic" polynomials.   The curves start 

and end with zero curvature to provide no discontinuities in curvature at the junc- 

tion with the flat faces and the parallel middle bodies.   Each "cubic" polynomial is 

a linear combination of independent polynomials controlled by adjustable para- 

meters.    Permissible ranges of the adjustable parameters are examined with re- 

spect to selected geometrical constraints such as inflection points. 

ADMINISTRATIVE INFORMATION 

The work described in this report was sponsored by the Naval Ordnance Sys- 

tems Command (Code 035B) and was funded under UR 109-01-03. 

INTRODUCTION 

The geometrical characteristics of streamlined bodies of revolution are 

developed in Reference l*by the method of independent polynomials and adjustable 

parameters. For the case of flat-faced forebodies, a "cubic" polynomial is intro- 

duced for the transition curve from the flat face to the section with maximum 

diameter. The "cubic" polynomial has the desirable property of providing infinite 

slope and zero curvature at the junction with the flat face. The "cubic" polynomial 

of Reference 1 has one adjustable parameter Iq , the curvature at the junction with 

the section of maximum diameter. 

It is now desired to develop "cubic" polynomials that fair into parallel middle 

bodies, that is, having zero curvature at the junction with the parallel middle body. 

For the "cubic" polynomial of Reference 1, Iq is zero to satisfy the noncurvature 

of the parallel middle body and the resulting polynomial has no adjustable para- 

meter.   It is now proposed to develop "cubic" polynomials to fit parallel middle 

bodies so that the polynomials have adjustable parameters.   Two adjustable para- 

meters are considered: 
#Reference8 are listed on page 17. 



1. k    , the rate of change of curvature with arc length at the junction with the 

flat face. 

2. itj , the rate of change of curvature with arc length at the Junction with the 

parallel middle body. 

The polynomials are subjected to geometrical considerations such as those 

concerning inflection points to provide suitable ranges of values for the adjustable 

parameters. 

The pressure distribution on a body In a flow is governed by the curvature of 

the body shape, among other factors.    Discontinuities or sharp changes in curva- 

ture are in general to be avoided since they lead to pressure fluctuations which may 

have undesirable results such as separation or cavitation.   Such changes in curva- 

ture may occur at junctions of bodies or at inflection points.    Hence curvatures at 

junctions should be matched and inflection points avoided in most cases. 

An earlier study of elliptic curves bridging the flat face and the parallel middle 

body is given in Reference 2. 

TWO-PARAMETER "CUBIC" POLYNOMIALS 

The "cubic" polynomial for the transition curves of forebodies between flat- 

faced noses and cylindrical parallel middle bodies requires a zero curvature at the 

junctions.    For the "cubic" polynomial of Reference 1, Iq = 0 and 

y3- Q[x]=  1+ (x-1)3 (1) 

This may be termed the zero-parameter "cubic" polynomial.   The normalized 

coordinates x and y are given by (see Figure 1), 

x= X/X n 

y=  (2Y-Df)/(D-Df) 



where 

X   is axial coordinate starting from the flat face, 

Y   is radial distance from centerline, 

Xn is axial length of forebody, 

D   is diameter of parallel middle body, and 

Df is diameter of flat face. 

To provide a more general family of bodies, two additional adjustable para- 

meters are introduced.   Since curvature k represents the rate of change of slope 

with arc length, the rate of change of curvature with arc length It ought to be a use- 

ful parameter.   The two adjustable parameters are then ic   and ic., ic at x = 0 and 

at x = 1, respectively. 
dk The rate of change of curvature with arc length is given by -r- . 

CUBIC" POLYNOMIAL 

r 
— o, — D 

~ FLAT FACE 

X„ 

CYLINDER 

NORMALIZED 
COORDINATES: 

2Y-D, 
X,,   •    'D-D, 

Figure 1 -Basic Geometry of Flat-Faced Nose 

3 



Curvature k may be written for convenience in the form 

k=  (111   11+IZJ (2) mHty] 
which yields 

^ ($(£)-($) Hi)f An) (&)' [-(tf- 
At x = 0, we require 

dy     dy2 

and then 

o Vdy3/x = o 
C =    ^] W 

Curvature k may be written now in the alternative form 

-(S)Hf)'] 
(where x is taken as the independent variable since -j«- = 0 at x = 1), which yields 

jr.* = «* 
ds        dx f.= fe)f-fe)T-(s)fe)![-(s)]"' <«' 



At x = 1, we require -2- = -Hr = 0 

and then 

H^X,. 
To obtain the two-parameter "cubic" polynomialB, the method of Reference 1 

is followed. 

There are two conditions, al and «j, for the two adjustable parameters: 

-m. x = 0 

*; ^-(0)... 
The boundary conditions ß   are 

ßt:      x = 0, y = 0 

ßj:      x = 1, y = 1 

dy ß,:      x = l.-äJ = 0 

e*:       X = 1• 0 = 0 

Since there are six conditions In all, the required polynomial is of the fifth 

degree. 



The a.  and 0. are substituted into the "cubic" polynomial 1 j 

y3 = a0 + ajx + ajx2 + aax3 + a4X4 + ajX5 (8) 

to give for each condition 

6 

k 
o 

«2:      2R3 + Sai + 20a5 = tTj 

02^      a   + aj + a2 + as + 84 + as = 1 

03:      a! + 2a2 + 3a3 + 4a4 + 5a5 = 0 

0 4:      2a2 + 683 + 12a4 + 20a5 = 0 

The form of the "cubic" polynomial is then 

y3=^Ko [x] ^k, K,   [x]  +Q[x] (9) 
k 

o 

where KQ, KJ and Q are fifth-degree polynomials which are determined as follows: 

The preceding relations for or   and 0   correspond to conditions on y3, the 

"cubic" polynomial. Instead of y, as follows: 

dy5 r  , 6 

o 

dyf 
dx 

«2:    5--   [l] = Ga, + 24a4 + 60a5 = 3k, 

0,:     y3 [0]  = ao = 0 



ßj:     ys Hl] = a0 + a, + a2 + as + a4 + a5 = 1 

dy3 

B: S' ST [l] = a, + 2a2 + 3a3 + 4^ + 5a5 = 0 

^„s 
p4:    -^HJ- [l]= 2&2 + 6a3 + 128« + 2085 = 0 

dx 

In terms of the polynomials K   tx] ,  KjCxBand QCx]the preceding relations 

represent 

«1 

«2 

Pi 

Pa 

Here 

K '[0] = 6, K,' Co] = Q' [0] = 0 

Ki'" [l]=3, K   "• [l]=Q"• [l]=0 

K   L0]=K1C0]=Q[0] = 0 
o ' 

K   Cl]=K1Cl] =0. QCl]= 1 
o 

Ko
1Cl] = K1'Cl] = Q'[l]=0 

K ••[!]= FT," ri]=Q"[n=o 

o       dx dxz etc. 

Evaluation of K 
 Q 

SlnceK [o]=K  Ci]=R: •[I] = K "[T]=K •••[I] = O, o o 00 o " 

K   = ax (x - I)4 (10) 

Also since K' [0]= 6, a = 6.    Then 

K   = 6x (x - I)4 

o (11) 

Evaluation of Bj 

Since Kt  [0] = Ki'[0] =5?! [1] =K1'[1] = K," [11=0, 



Kj =   Px2 (x - I)3 (12) 

Also, since Kj'" [ 1] = 3,  0 = y.    Then 

K^T x2(x- I)3 (13) 

Evaluation of Q 

Since Q'CO] =Q' Cl] = Q" [ 1] = Q'" C l] = 0, 

Q' = Y x (x - I)3 (14) 

and 

Q=v(^-3|4 + x
3-f2)+C (15) 

From QCO] = 0, C = 0 and from QCl] = 1, y = -20. 

Then 

Q = 1 - (x - I)4 (4x + 1) (16) 

Perm la sible ranges of k   and fTj 

Not all combinations of k   and kj give desirable shapes.   It is interesting to 

analyze possible limitations in terms of simple criteria: 

1. Zero condition:   y = 0. 

Negative values of y are meaningless. 

2. Unity condition:   y = 1. 

Bulges above y - 1 are undesirable. 
dv 3. Maximum or minimum condition:  -— = 0. dx 

Maxima or minima other than at x = 1 are undesirable. 

dV 
4. Inflection point condition:   = 0. 

dx2 

8 



Inflection points are considered undesirable on noses of bodies. 

As explained In Reference 1, an envelope curve may be determined for each 

of the preceding conditions.   As shown In Figure 2, desirable values of k   and IT. 
o ' 

are on the Inside of the envelope curve. 

1.   Zero condition 

y3=hxi~-,k1     =0       Osxsi (17) 

The envelope In — and kj with x as the variable parameter is given by 
k o 

h'=|4=0 (18) 
o x 

The two envelope conditions.  Equations (17) and (18) provide two simultaneous 

1 f*" equations in —   and kj which are solved by the Cramer rule to give 
K 

o 

1        (x - I)4 (3x + 2) + 5x - 2 

~   = 6x (x - 1)«  <19) 

and 

2(x - I)5 - 2(5x - 1) 
Ki =  (20) 

x2(x - I)3 



10 



For x = 0, — = 0 and C. = 20. 
tr 

o 

For x = 1, ►=■> and k,-*<» 
ir 

o 

The envelope curve is shown In Figure 2.   Desirable values of—and kj are on the 
k 

o 

'inside curved" side of the envelope curve. 

2.    Unity Condition 

y' = h 

-    ko        J 
= 1 0 sx £ 1 (21) 

The envelope In— and Itj with x as the variable parameter is given by 

o 

* (h. i)=|^ = o 
ax ?x 

(22) 

The two envelope conditions.  Equations (21) and (22), provide two simultaneous 

1 ~ 
equations In— and kj which are solved by the Cramer rule to yield 

o 

_1_  _ 3x + 2 

k 
6x (23) 

11 



and 

2(x - I)2 

ki = (24) 

For x = 0, *=> and kj —»a» 
k" 

1 5 ~ 
For x = 1,—  = — and k] = 0. 

k 
o 

The envelope curve Is shown In Figure 2 with desirable values of — and k, on the 
k 

o 

"Inside curved" side. 

3.   Maximum or Minimum Condition 

L       o 

. k. = 0 (25) 

The envelope curve in— and Ic^ with x as the variable parameter is given by 

o 

h" = 0 (26) 

The two envelope conditions, Equations (25) and (26), provide two simultaneous 

equations in— and k, which are solved by the Cramer rule to produce 
k 

12 



5xz 

k        10z - 5x + 1 o 

W 

and 

20(x - I)2 

(28) 

1 <- 
For x = 0, — =0, k1 = 20. 

IT 
o 

Forx = 1,—  = —, ßi=0. 
ir   6 

o 

1 
The envelope curve Is shown in Figure 2 with desirable values of— and iq 

IT o 

on the "inside curved" side. 

4.    Inflection Point Condition 

For y3 the inflection point condition becomes 

3hh" - 2(h')2 = 0 (29) 

1 ~ 
The envelope curve in — and k, with x as the variable parameter is given by 

c 
o 

Shh'" - h'h" = 0 (30) 

1 _ 
These two conditions provide two simultaneous equations in — and kj  in terms of x. 

IT 
o 

13 



1 f Since the equations are quadratic in — and K,, numerical procedures are necessary. 
ko 

The results are shown in Figure 2, 

Relative Fullness ol' Shape 

The "cubic" polynomial as defined in normalized coordinates specifies an 

annular volume which is also governed by the relative diameter of the flat face. 

Consequently the prismatic coefficient is a function of not only the "cubic" polyno- 

mial parameters but also the relative diameter of the flat face. 

A simple measure of the fullness of the volume specified by the "cubic" 

polynomial is given by the integral F where 

F=   I    y3 dx (31) 
-'n 'O 

For Equation (19) 

* Hi) F_  2 +  1/1   \        JSL (32) F      3  +  5 U J        120 

For constant values of F,  straight lines are indicated in Figure 2.    Fuller shapes 

are specified in the lower right hand side of Figure 2. 

ONE-PARAMETER "CUBIC" POLYNOMIALS 

A one-parameter family of "cubic" polynomials may also be considered if 

IT , say, is taken as the single adjustable parameter.   The result is a fourth- 

degree polynomial or quartio.    Then as of Equation (8) is zero and 

k,   - - 12 (±r\   + 8 (33) (t)' 

14 



This Is plotted in Figure 2 as well as the values for the zero-parameter "cubic" 

polynomial, Equation (1), kj = 2 and —     = — . 
KO 

By use of Equation (33) in Equation (9). the one-parameter "cubic" polynomial 

becomes 

y3 * hr K      Cx] + Q [x] (34) 
k        o o 

where 

and 

K    =  - 6x (x - I)3 (35) 

Q = x2 (3x2 - 8x + 6) (36) 

A study of     J permissible range of —  gives 

o 

to satisfy the zero, unity, maximum or minimum, and inflection point conditions. 

Representative curves are plotted in Figure 3. 

15 
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