
Best
Available

Copy

The work reported here was carried out within Project MAC, an
M.I.T. research laboratory. Support was provided by:

The Advanced Research Projects Agency of the
Department of Defense, under Office of Naval
Research Contracts Nonr-4102(01), -(02), and
Defense Supply Service Contract DAHC15 69 C
0347;

The National Aeronautics and Space Adminis-
tration, under Contracts NCR 22-009-393 and
NAS 12-2093;

The National Science Foundation, under Contracts
GJ-432 and GJ-1049;

The National Library of Medicine, under Contract
PH-43-68-1249.

,The support for some of this work came from the M.I.T. Departments
and laboratories that participate in Project MAC and whose research
programs are, in turn, sponsored by Government and private agencies.

Reproduction of this report, in whole or in part, is permitted for
any purpose of the United States Government. Distribution of this
document is unlimited.

4;

/.CjggjgJl

I

sfsn ...
001 '

muL CSB.

«nritATiai

RITE SECTION

BUTF SECTION [

D

BY

DISTBIB,jt!nH/AVAi!.>,,5?).ITY C(

D!ST. ,VAIL, r-

(Pur cover illustrates four brief dialogues
with MACSYMA, a computer system for algebraic

f. Manipulation under development at Project MAC
since 1968. The lines labeled Cl through C7
kre displays of lines typed in by a user, and
'translated to two-dimensional format on a
typewriter-like device. The lines labeled D2
through D7 are computed responses to commands.
The examples demonstrate some recent improve-
ments to MACSYMA which include the ability to
"evaluate limits, improper integrals, and power
series expansions.

■

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Secunly clataillcmtion ol riff», body ot mbmtimct and n. »«m^ annofarfon mual ba antarad whan tha ovarall raport ia claaailtad)

I. ORIGINATING ACTIVITY (Corporala author)

Massachusetts Institute of Technology
Project MAC

2* REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2t>. CROUP

None
3 RtPORT TITLE

Project MAC Progress Report VII July I969 to July 1970

4. DESCRIPTIVE NOTES (Typa ol raporl and IncluBlva dalaa)

Annual Progress
S. AUTHORISI (Last name, Ural nMna, inlllal)

Collection of reports from Project MAC participants
Prof. J. C. R. Licklider, Director

6. REPORT DATE

1 July 1970

ia CONTRACT OR GRANT NO.

Nonr-'HOZCOl), -(02)
b. PROJECT NO.

7«. TOTAL NO. OF PAGES

Ii6_

7b. NO. OF REFS

(In Text)
«a. ORIGINATOR'S REPORT NUMBERIS)

MAC Progress Report Vll

tb. OTHER REPORT NOIS) (Any olhar numbara thai may ba
mtaltnad Ihla taporl)

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution
is unlimited.

II. SUPPLtMENTARY NOTES

None

■•

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
3D-200 Pentagon
Washington. P.C. 20301

IJ. ABSTRACT

The broad goal of Project MAC is experimental investigation of new ways in
which on-line use of computers can aid people in their individual work,
whether research, engineering design, management or education.

TW.S is the seventh annual Progress Report summarizing the research
carried out under the sponsorship of Project MAC. Details of this
research may be found in the publications listed at the end of each
section and in Appendix A.

v
\

D D c
■ nr

14. KEY WORDS

0n-Line Computers
Multiple-Access Computers
Real-Time Computers
Computer Networks
Interactive Management

Time-Sharing
Information Systems
Artificial Intelligence
Machine-Aided Cognition
Graphics

tr

NOV 00 im

If I i

mg Dynamic Mode
Programming Linguistics
Computation Structures
Theory of Automata
Hybrid Ci rcuits

- ...

Tt;

00.^1.1473 (M.I.T.) UNCLASSIFIED
Security Classification

PROGRESS REPORT VII

JULY 1969 to JULY 1970

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

545 Technology Square Cambridge, Massachusetts 02139

PROJECT MAC

JULY 1969 to JULY 1970

,

D. S. Acker man
W. Acker man
A. C. Adams
S. M. Adams
G. K. Adler
H. Adler
E. Albanese
W. Allen
C. W. Andrews
G. S. Andrews
R. Ascott
H. Ashley
A. Bagchi
B. J. Bailin
M. E. Baker
E. Banks
D. Bar ma
A. Bardou
W. Bass
W. F. Bauer
R. C. Bean
R. Beatty
M. D. Beeler
P. Bennett
V. M. Berardinelli
R. M. Berman
W. T. Beyer
A. K. Bhushan
R. J. Bigelow
W. D. Bilofsky
T. W. Binford
G. R. S. Bingham
P. B. Bishop
E. H. Black
M. Bogue
J. W. Brackett
P. Brandler
P. G. W. Bras
M. F. Brescia
R. D. Bressler
D. Bricklin
H. R. Brodie
M. Bromberg

S. A. Brooks
M. S. Broos
A. L. Brown
C. Brown
E. Brown
K. M. Brown
H. P. Brück
G. G. Bruere-Dawson
R. Bryan
D. E. Bur master
M. C. Burnham
R. Bushkoff
T. F. Callahan
A. Campbell
R. H. Campbell
I. R. Campbell-Grant
D. Capps
O. D. Carey
K. J. Carley
T. Carlton
S. Carney
R. Carpenter
M. Carr
L. S. Cavallaro
C. Chang
J. R. Cecil
E. Charniak
J. C. Cheney
M. T. Cheney
L. M. Chui
D. D. Clark
J. Coffman
J. Cohan
M. A. Cohen
N. J. Colvin
M. J. Connell
L. J. Connelly
Prof. F. J. Corbato
R. Crowley
S. E. Cutler
R. C. Daley
D. T. Dalton
C. A. Dancey

.

B. K. Daniels
T. M. Dattilo
A. J. Davidoff
D. R. Dawson
P. E. deCoriolis
H. M. Deitel
Prof. J. B. Dennis
F. L. DeRemer
J. DeRosnay
Prof. M. L. Dertouzos
J. D. DeTreville
M. W. Dickens
J. Dionne
S. Dimond
Prof. J. J. Donovan
P. Dorin
C. P. Doyle
H. R. Drab, Jr.
M. S. Draper
F. Drenckham
D. Duggento
S. D. Dunten
R. S. Eanes
D. E. Eastlake
J. W. Eddleman
M. Edelberg
R. M. Elkin
J. R. Ellerman
Prof. A. Evans, Jr.
J. R. Evans
S. Fahlman
Prof. R. M. Fano
R. J. Fateman
R. J. Feiertag
S. Feldman
H. Fell
Prof. R. R. Fenichel
J. G. Fiascanaro
Prof. M. J. Fischer
R. Fish
T. Fitzpatrick
R. J. Fleischer
L. T. Flynn
J. L. Fowler
E. Fox
P. J. Fox

R. Frankston
W. A. Freeman
J. S. Freiberg
E. Freuder
J. D. Fulton
J. A. Friel
M. G. Furze
P. Gagner
E. A. Gardner
R. L. Gardner
C. C. Garman
S. Garner
S. L. Geffner
J. L. Gertz
J. P. Golden
R. E. Golden, HI
R. S. Goldhor
I. Goldstein
R. C. Goldstein
Prof. G. A. Gorry, Jr.
R. W. Gosper
C. D. Graceffa
Prof. R. M. Graham
M. J. Grano
P. A. Green
R. S. Green
R, D. Greenblatt
J. M. Greene
I. G. Greif
J.-Y. Gresser
A. K. Griffith
J. M. Grochov/
F. Guertin
R. H. Gumpertz
Prof. A. Guzman
M. Hack
M. K. Hadley
D. Hall
M. M. Hammer
A. Hanover
P. Hardin
R. J. Harman
J. H. Harris
Prof. M. Harrison
B. Harvey
J. F. Haverty

VI

P. G. Hebalkar
D. A. Henderson, Jr.
W. H. Henneman
Prof. F. C. Hennie
A. Herskovits
C. E. Hewitt
D. C. Hill
R. F. Hill
M. G. Hinchey
P. Hirshon
R. Hoeft
J. T, Holloway
P. Holloway
B. K. P. Horn
E. C. Horvath
B. D. Hubbard
P. W. Hughett
W. F. Hui
W. G. Hutchinson, Jr.
K. M. Jacobs
L. H. Jamieson
J. L. Jaroslav
J. P. Jarvis, HI
P. Jensen
J. W. Johnson
L. Johnson
R. Johnston
D. L. Tones
Prof. M. M. Jones
T. L. Jones
E. I. Kampits
R. K. Kanodia
E. I. Katz
R. M. Katz
D. Kaufman
C. A. Kessel
M. M. Kessler
D. J. Kfoury
C. Kidwell
P. A. King
E. S. Klang
P. R. Klein
J. C. Kl ens in
W. J. Klos, Jr.
T. F. Knight
Prof. Z. Kohavi

E. I. Kohn
D. Kontrimus
L. J. Krakauer
J. Kulick
M. Lambrinides
D. Lang
P. Leach
P. D. Lebling
R. J. Lecompte
P. M. Ledoux, Jr.
B. P. Lester
C. Leung
Prof. J. C. R. Licklider
J. C. Lind
R. Lindsay
L. Lipman
Prof. C. L. Liu
P. Loewe
S. Lothes
Prof. F. L. Luconi
C. Lynn
R. F. Mabee
J. Macko
S. E. Madnick
P. S. Malek
R. Mandl
M. J. Marcus
K. J. Martin
Prof. W. A. Martin
W. D. Mathews
T. McLaughlin
J. J. McGillivray
D. McMillan
R. P. McNamara
R. M. Metcalfe
C. R. Mehta
Prof. A. Meyer
E. W. Meyer, Jr.
P. L. Miller
R. G. Mills
J. M. Milner
Prof. M. L. Minsky
G. H. H. Mitchell
R. M. Moll
P. Monaco
S. Montgomery

vn

,

E. T. Moore
R. C. Moore
B. A. Morneault
N. I. Morris
S. L. Morton
Prof. -^T. Moses
S. R. Murphy
D. Murthy
S. K. R. Murthy
E. Nangle
S. B. Nelson
Prof. D. N. Ness
J, R. Nestor
R. E, Neubauer
W. Y. Ng
S. E. Niles
R. Noftsker
G. E. Nose worthy
J. Nourse
C. Obler
B. Ong
R. Orban
R. C. Owens, Jr.
M. A. Padlipsky
M. A. Pagliarulo
P. A. Pangaro
L. G. Pantalone
Prof. S. A. Papert
Prof. M. S. Paterson
S. S. Patil
D. Peaselee
J. T. Pepe
R. Petrivalle
P. Pichoir
J. L. Piggins
J. E. Pinella
L. K. Platzman
W. Plummer
C. Ramchandani
K. Reagan
E. T. Reardon
D. P. Reed
C. L. Reeve
L. I. Reich
J. L. Reuss
H. Richards

R. Roach
R. B. Roberts
E. M. Roderick
G. T. Roe
J. S. Roe
B. Rosenbaum
L. J. Rotenberg
J. Rothnie
A. Rubin
J. B. Rubin
Prof. J. H. Saltzer
P, R. Samson
S. Saunders
D. C. Scanlon
R. R. Schell
A. Scherer
M. D. Schroeder
R. C. Schroeppel
J. Schwartz
K. Schwartz
Prof. M. S. Scott-Morton
J. I. Seiferas
A. Sekino
H. L. Selesnick
L. Seligman
L. I. Selwyn
T. H. Seymore
J. M. Shah
G. Sharp
H. J. Siegel
D. Silver
K, K. Simpson
L. B. S. Sloan
T. P. Skinner
N. J. Smith
S. W. Smoliar
J. Snell
C. Solomon
M. V. Solomita
J. W. Spall
M. Speciner
M. J. Spier
W. A. Spies
J. Stavrinos
M. K. Stephens
J. Stern

vm

„.,,.:,. ,-". ,

R. T. Stetson
J. R. Stinger
N. Stone
S. M. Stoney
J. M. Stray horn
A. J. Strnad
G. J. Sussman
J. E. Sussman
J. E. Tamayo
C. D. Tavares
M. L. Terry
A, Testa
R. H. Thomas
M. R. Thompson
W. H. Thrasher
R. C. Thurber, Jr.
C. Tillman
H-M. D. Toong
L. E. Travis
E. Trautman
E. Tsiang
H. E. Tucker
D. H. Vanderbilt
T. H. VanVleck
J. L. Vecchione
K. D. Venezia
A. Vezza
B. J. Vilfan
C. A. Vogt
M. Von Sawyer
V. L. Voydock
J. W. Waclawski
R. W. Wade
C. T. Waldrop
W. C. Walker
G. Wallace
D. L. Waltz
M. Wand

P. S-H. Wang
J. E. Ward
P. Ward
S. A. Ward
M. B. Weaver
M. W. Webber
S. H. Webber
N. S. Weinstein
J. Weiss
Prof. J. Weizenbaum
T. A. Welch
D. M. Wells
J. C. Wentzell
J. L. White
T. Williams
L. Wilson
T. A. Winograd
P. H. Winston
C. H. Woebcke
E. M. Wolman
R. T. Wong
F. H. G. Wright, II
L. F. Yeager
C. Ying
J. C. Yochelson
F. L. Yost
K. Young
M. L. Young
B. J. Zak
S. N. Zilles

Guests

N. Adleman
T. G, Evans
Prof. E. Fredkin
Prof. G. lazeolla
Prof. E. I. Organick
Prof. C. Stratchey

ix

CONTENTS*

PROJECT MAC ADMINISTRATION 1

INTRODUCTION 3

COMPUTATION STRUCTURES 11

COMPUTER SYSTEM RESEARCH 43

INTERACTIVE MANAGEMENT SYSTEMS 67

PROGRAMMING LINGTJISTICS/EXTENSIBLE LANGUAGES 75

PROGRAMMING LANGUAGES 83

AUTOMATA THEORY 89

MATHLAB 97

UNCL 105

DYNAMIC MODELING, COMPUTER GRAPHICS AND
COMPUTER NETWORKS 109

ON-LINE CIRCUIT DESIGN AND HYBRID COMPUTING
STRUCTURES 125

APPENDIX A PROJECT MAC PUBLICATIONS 137

* The work of the Artificial Intelligence Group for 1969-1970
will be reported in Project MAC Progress Report VIII.

xi

awiwiwiwuwwM'iian..

PROJECT MAC ADMINISTRATION

Prof. J. C. R. Licklider

Prof. M. M. Jones

D. E. Burmaster

Director

Assistant Director

J. R. Ellerman

P. Brandler

D. C. Scanlon

R. J. Harman

M. S. Draper

L. J. Connelly

M. K. Hadley

Assistant Director for Student
Activities and Business Manager

Assistant Business Manager
(to February 1970)

Assistant Business Manager

Assistant to the Director
and Office Manager

Assistant to the Director

Administrative Assistant

Property Officer (to May 1970)

Librarian

S. A. Brooks
L. S. Cavallaro
M. J. Connell
S. Dimond
D. Duggento
R. E. Golden, HI
C. D. Graceffa
J. M. Greene
D. Kontrimus
E. T. Moore
L. G. Pantalone
E. M. Roderick
K. K. Simpson
J. Stavrinos
M. K. Stephens
R. T. Stetson
E. M. Wolman
M. L. Young

INTRODUCTION

In Project MAC (nMen and Computers"), about 270 persons are en-
gaged in digital computer research and development; they include faculty
members -- mainly of the Departments of Electrical Engineering and
Mathematics and of the Sloan School of Management — staff members,
and students.

The over-all program of Project MAC comprises the programs of 11
interacting and overlapping groups. The work of five of these will be
summarized here in order to describe the Project MAC effort in
1969-1970.

Artificial Intelligence

The last year has seen significant advances in analysis of visual scenes
and visually controlled manipulation of objects by computer, in machine
understanding of natural language and narrative, and in a broad effort
to incorporate knowledge and intelligence into programs. In these areas,
which we group under the rubric "Artificial Intelligence", Professors
Robert R. Fenichel, Michael J. Fischer, Marvin L. Minsky, Seymour A.
Papert, Michael S. Patterson, Joseph Weizenbaum, and Patrick H. Winston
and Visiting Professor Edward Fredkin have conducted research with
approximately 60 staff members and students.

Into a new programming language and system, PLANNER, Carl E. Hewitt
has incorporated an array of features that promise to be as basic to
heuristic programming as have been the "DO Loops" of FORTRAN and
the "FOR Statements" of ALGOL to numerical programming. In PLANNER
one can write, for example, "Whenever X happens, do Y", where X is a
general description of an event and Y is almost any action at all. For
example, one can tell PLANNER to choose a simpler goal whenever
three efforts to reach the old goal fail — and PLANNER will set up a
process ("demon") that keeps an eye open for trios of failures and,
whenever it sees one, initiates the reselection process.

Terry A. Winograd completed a system of programs that translates a
wide range of statements from English into the PLANNER language.
Winograd's system is based on a heuristic grammar that uses con-
textual information; his system handles the semantic and syntactic parts
of the analysis concurrently. An important feature, which gives the sys-
tem more flexibility than is afforded either by "semantic networks" or
by lists of grammatical rules, is the representation of the grammar as
a set of programs. The definition of a word is also a program -- as,
indeed, is each component of the system's "knowledge of the world".
All such programs are available to the deductive part of the system.

The interests of the Artificial Intelligence Group embrace human as
well as machine intelligence. The last year pressed home the essential

Preceding page blank

I

I

I

I

INTRODUCTION ,

pertinence to human teaching and learning of basic concepts developed
or clarified through research on artificial intelligence, and Professors
Minsky and Papert and some of their colleagues determined to exploit
the breakthrough into the realm of human cognition. In April 1970, ,
Professor Papert gave a Saturday lecture on this subject to a capacity
audience at M.I.T., and h6 and Professor Minsky participated in a dis-
cussion with visiting leaders in the field. In June, the National Science
Foundation provided initial funds for research in teaching and learning.

Computer-Based Mathematics Laboratory

Continuing the development pf "Mathlab", a system of computer pro-
grams designed to provide sophisticated assistance to people working
on mathematical problems that involve complex symbolic expressions.
Professors William A. Martin and Joel Moses implemented a new alge-
braic manipulation system. With this new system. Mathlab is able to
give strong assistance in work with, summations, integrals, derivatives,
exponentials, logarithms and factorials. If, for example, at point C14
in 9. certain calculation the user types to Mathlab

FACTOR (X**6 -1)

and then presses tte @ key to t^U Mathlab to go. Mathlab at once
displays

{D14)' (X + 1)(X - l)(X2 + X + 1)(X2 - X + 1)

If at another point an expression stands as .

X2+X-6 , /
(D20' X3.6X2 + 9X ! '

the user can have it "rationally simplified" by typing

RATSIMP (t)@

where % means "it" or "the preceding expression". Mathlab then re-
sponds with

X- 2
(D21) —s— ,

When given (e2x + 2eK + 1) - 21og(ex + 1), Mathlab simplifies it to zero.

Computation Structures ^ { ■

Human mathematicians are, of course, superior to Mathlab in intuition,
in deciding what manipulations to try in order to reach a goal. How-
ever, a suitably programmed computer can handle, much more rapidly
and accurately than any human mathematician, algebraic manipulations
involving dozens or hundreds of terms. Thus, the human and computer
capabilities complement each other. Even though the development of

i i

.

i

INTRODUCTION

Mathlab is far from complete, it proved itself, this past year, to be a
very helpful assistant in serious mathematical work. During the coming
year, its capabilities will be further increased.

Computation Structures

In research on "computation structures", a group of 13 staff members
and students led by Professor Jack B. Dennis worked toward a formal
integration of hardware and software concepts, especially of concepts
pertaining to highly parallel, asynchronous computer systems. Their
work dealt with design, architecture, specification and modeling of
digital systems, with representation of concurrent processes, and with
security, privacy, and controlled sharing of procedures and data.

One of the tools that most facilitates thinking about complex concurrent
processes i^ a diagram called the Petri net. Suhas S. Patil generalized
Petri nets, as modified by Holt, to handle coordination of asynchronous
events and has showed that Petri nets can be systematically converted
into asynchronous modular structures. In turn, Professor Dennis showed
that Patil's generalized nets are suitable for representing the control of
very large computers. Asynchronous design of a machine, similar in
many ways to the synchronous CDC 6600 but simpler in detail, required
only nine types of control module. For such a machine, asynchronous
design has important advantages in conceptual simplicity and perhaps
also in speed.

Attempting to understand a large and complex digital system, a person
examines it one part at a time and then, actually or conceptually, puts
the parts and their behaviors together. Suppose that each part turns
out to be determinate in the sense that all runs of any program (that
will run in it) yield the same result. Is the over-all system necessarily
determinate? This last year, Patil showed that it is, given an appro-
priate input-output discipline, which he defined. He showed that a class
of Petri nets called "marked graphs" has the determinacy-preserving
property.

Prakash Hebalkar carried out a study of restrictions of concurrent
activities that are imposed by limitation of resources --an ubiquitous
problem (encountered in transportation, manufacturing, maintenance, etc.)
that is of great interest in the field of computation. With the aid of a
very useful representation called "demand graphs", he developed a
fundamental understanding of the phenomenon of deadlock, in which
would-be concurrent processes block one another by hoarding resources,
and of the safeness algorithm used in efforts to anticipate and avoid
deadlock.

Other research carried out by the Computation Structures Group in-
cludes an analysis of hierarchical associative memories, the develop-
ment of schemata ("computational schemata") for modeling the structure

«

INTRODUCTION

of computer programs, and the beginning of the definition of a very
basic and general programming language, intermediate between such a
language as ALGOL and the "language" of the code that is directly
executable by computer hardware. In June at Woods Hole, Massachu-
setts, the Computation Structures Group held a conference, attended by
27 research workers from more than a dozen laboratories, on "Con-
current Systems and Parallel Computation".

Computer System Research

Under the leadership of Professor Fernando J. Corbato, Professor
Jerome H. Saltzer and Robert C. Daley and in close cooperation with
a group in the General Electric Company headed by Charles T, Clingen,
the Computer System Research Group of Project MAC brought the
Multiplexed Information and Computing Service (Multics) System -- the
advanced and comprehensive time-sharing system on which Project
MAC has focused a large part of its total effort since 1965 — into
successful operation. On 1 October 1969, Project MAC transferred
operational control of the Multics System to the M.I.T. Information
Processing Center under an arrangement that leaves Project MAC in
charge of continued development of the operating system and of re-
search on computer-utility and computer-network aspects of Multics.

Although Multics is a much more complex and sophisticated system
than its predecessor, the Compatible Time Sharing System, which was
the first large general-purpose multi-access computer system, Multics
was able in Fall 1969 to support as many users as CTSS; and it has
been increasing steadily in number of simultaneous users and in ratio
of performance to cost ever since it reached its initial operating capa-
bility. The number of registered users of Multics has increased quite
linearly from 26 projects and 190 individuals in October to 72 projects
and 408 individuals in June, and it now seems quite probable that
Multics will meet the initial design expectations, which seemed radical
when they were published in 1965, in respect of performance and use.

In retrospect, it appears that one of the best decisions of the Multics
project was to program the operating system in a high-level program-
ming language. That decision represented a break with the tradition of
system programming in "assembler language". Using a high-level lan-
guage made it possible to revise the program repeatedly, some parts
as many as seven times, and to make progress despite "usually high"
turnover in the staff. These two factors far outweighed the advantage
(perhaps a factor of two, over-all) that could have been achieved
through the more efficient coding possible in assembler language --
and, in any event, that advantage remains open, to be exploited, if it
should seem worthwhile, when no further fundamental revisions of the
operating system are envisaged.

I

6

V-, -■■. .>„-..- ,- .■ „V.s;.^. ' iV^

INTRODUCTION

Over the long development period, there were times when it seemed
that the main objective of the Multics project was simply to complete
Multics. During the last year, however, it was possible to devote time
and energy to the earlier-conceived and more-basic purpose: to under-
stand how to systematize and optimize the myriad factors and forces
that interact with one another in a comprehensive multi-access informa-
tion and computing system. Marked progress was made toward that
goal. It was possible to make sense out of about a dozen technical
puzzles. Each gain in understanding reflected itself at once in improved
system performance and, at the same time, added a significant element
to the body of knowledge of computer system design.

Toward the end of the year, some of the interests and energies of the
Computer System Research Group turned to problems of graphical dis-
play and to Multics as a node in a multi-computer network. Those
topics will figure strongly in research during the coming year.

Programming Linguistics

Professors Robert M. Graham, Arthur Evans, Jr., and John J. Donovan,
Visiting Professor Michael A. Harrison, and a group of 38 staff mem-
bers and students conducted research in the linguistics of computer
programs. Much of this research is aimed at understanding program-
ming languages in terms of formalisms similar to those of logic and
mathematics. Because computer programming languages are simpler,
have more definite purposes, are more likely to be deliberately de-
signed, and are more susceptible to measurement and analysis than
natural languages, there is some chance of understanding them formally,
in due course, and dealing with them as quasi-mathematical objects
rather than (as is now approximately the case) as cooking recipes or
instructions for assembling hi-fi kits. The practical advantages to be
gained through formal mastery of the language of computers are very
great. If it were possible, for example, to state precisely what a com-
puter program is intended to do and then formally — through a definite
sequence of operations similar to those used in proving theorems --to
show that it does or does not do it, then one of the main sources of
trouble in the use of computers could be eliminated. As matters stand
now, about all one can do to test a program is to check in a few specific
(and usually oversimple) cases that, step-by-step, it performs the opera-
tions its programmer specified and, at the end, yields output considered
correct on the basis of external criteria. That procedure is so obvious-
ly unsatisfactory as to provide strong motivation for more formal
"theorem-proving" approaches, almost no matter how difficult they ap-
pear to be. At the same time, it is evident that work in formal pro-
gramming linguistics is intellectually attractive and self-motivating.

Professor Donovan and his associates developed a mathematico-linguistic
formalism called "Canonic Systems" within which one can specify the

INTRODUCTION

syntaxes of computer languages and the rules for translating from one
computer language (e.g., a compiler language) to another (e.g., an as-
sembler language). They were successful, though as yet only in a sim-
plified case, in preparing programs capable, given the syntaxes and the
rules, of carrying out the translation automatically; and they made
progress toward specifying the complexity of the translation process
for various language pairs in terms of the number of steps theoreti-
cally required.

Professor Evans and his associates studied methods of formalization
that appear promising from the points of view of language description
and language extension. They found several ways to improve the defi-
nition of programming languages, which currently are described in
manuals full of rather jargonistic natural language plus syntactic "re-
write rules". They also found several ways to let the user of an "ex-
tensible" programming language specify extensions that, for some
special purpose, he would like to make to its general-purpose base
language. As tools in the study of formalization, the group used the
languages PAL and BCPL. It brought the formalization and documenta-
tion of PAL, which was designed especially for pedagogical purposes,
near to completion, and it improved the performance and expanded the
library of BCPL in Multics, produced a computer-based version of
the BCPL Reference Manual, and "exported" tapes of BCPL to 16
System 360 installations.

Other Research Programs

The five programs touched upon in the foregoing paragraphs subsume
about two-thirds of the research program of Project MAC. It will have
to suffice merely to mention the rest in this summary.

Professors Frederick C. Hennie, C. L. Liu, and Albert R. Meyer and
nine associates continued research in the theory of automata, advancing
the understanding of the complexity of computations and the structure
of automata. They proved two new theorems about complexity, clarified
the concept of randomness as applied to particular sequences, extended
findings of Minsky and Papert to additional varieties of perceptron, and
obtained new results in graph theory, algebraic coding theory, integer
programming, and extensible languages.

Professors Malcolm M. Jones, G. Anthony Gorry, and Michael S. Scott-
Morton conducted research in management application of computers.
With Professors Daniel Roos and James D. Bruce, Dr. Myer M. Kessler,
and a distributed group of about 20 staff members and students. Profes-
sor Jones conducted a program of studies on interactive problem-solving
and decision-making and continued the development of the simulation
system SIMPLE; and he and Robert Goldstein carried on the develop-
ment of the Advanced Information Management System, MacAIMS.

I

INTRODUCTION

Professor Michael L. Dertouzos and several associates in the Electronic
Systems Laboratory, functioning as a research group of Project MAC
conducted studies of an essentially new kind of comUr^ compeer'
made of components that are in one respect digital and another analog.
It seems possible that such a computer can solve certain classes of
problems more rapidly than ordinary digital computers and more ac-
curately than ordinary analog computers.

Professor Robert M. Fano has long been concerned about the possible
and actual impacts upon society and, especially, with the question of
how to make computers serve individuals (as distinguished from or-
ganizations). Since he retired from the Directorship of Project MAC
two years ago, he and several students have studied impact-related
issues intensively Professor Fano's article, "Computers in Human
Society -- for Good or 111?" in the Technology_Review of March 1970
summarizes some of their thinking. '

The Dynamic Modeling Group, formed at the beginning of the year to
develop techniques and an interactive computer system to facilitate the
formulation and testing of ideas in terms of computer-program models

tTorPDp'ß/iV01111^!011 ^ itS SyStem a Digital *"* Corpora- ' tion PDP-6/10 computer and the very sophisticated and responsive
time-sharing software developed since 1965 by members of the Arti-
ficial ntelligence Group. By the end of the year, the most essential
subsystems of the dynamic modeling system were operating, and a
major part of the effort was shifting from "basic system programming"
to the development of the programs with which users of the system
will directly interact. y

In the areas of Computer Networks and Computer Graphics, the past
year s efforts were mainly groundwork. The Interface Message Proces-
sor that will connect Multics and one or both of the PDP-6/10 com-
puter systems to a coast-to-coast network of research computers was
installed, and an advanced display subsystem was incorporated into the
dynamic modeling computer system. At the end of the year, the net-
work and graphics programs were shifting into high gear.

Student Participation

p^^Vl^r3* ^^ the nUrnber 0f undergraduate student members of
Project MAC increased from approximately 25 to 76. This increase
was due partly to a deliberate effort, championed by David Burmaster,
Assistant Director for Student Activities, and partly to the successful
initiation of M.I.T.'s Undergraduate Research Opportunities Program
under the direction of Dr. Margaret MacVicar. The number of graduate
student members of Project MAC increased, during the year, from 25

INTRODUCTION

Administration

to fhfn^' ^ R- JOyCe Harman joined ProJect MAC as Assistant
Iratio^of .T* n ^^ ^ year' MiSS Harman greatly imPr°ve<* ^ operation of the Document Room and Publications Office.

Financial Support

S^^m^4 y!f, the COre pr0gram of ProJect MAC and the Arti-
ol P^

genCtGru0UP Were suPPorted' ^ heretofore, by the Informa-
tion Processing Techniques Directorate of the Advanced Research
Projects Agency (ARPA). Individual projects were funded by several
other agencies: research in visual perception and in extensible Ian-

nrl? r*1 Aeronautics and SPa" Administration; interactive
problem-solving and decision-making, Office of Naval Research; librarv-
information networks, Lister Hill National Center for Biomed^l Com-
mumcation of the National Library of Medicine; dynamic modeling,

NaüonaTt "^f D!reCt0rate of ARPA; programming generally National Science Foundation.

10

COMPUTATION STRUCTURES

Prof. J. B. Dennis

I. R. Campbell-Grant
R. Carpenter
H. M. Deitel
Prof. R. M. Fano
P. J. Fox
J. L. Gertz
I. G. Greif
M. Hack
P. G. Hebalkar

Prof. F. L. Luconi
M. J. Marcus
B. Morneault
S. S. Patil
L. J. Rotenberg
L. Seligman
D. H. Vanderbilt
W. C. Walker

11

"—" rrrrnnrwuniiiiiimmi WWtWIHmgHI i

COMPUTATION STRUCTURES

I. INTRODUCTION

Research in the Computation Structures Group has the objective of ad-
vancing knowledge and understanding of computer system organization
through abstraction and analysis. Our activities have led us to some
interesting ideas regarding appropriate directions for the evolution of
general-purpose computer hardware. Much of our current activity ex-
plores the implications of these ideas concerning computer system
organization. Areas under study include: the theory and practice of
asynchronous systems; concurrency in computation -- its influence on
computer structure and on the representation of algorithms; the con-
cept of "programming generality" -- the property of a computer system
that would permit unrestricted combination of independently written pro-
grams; the controlled access to programs and data bases; and an ap-
proach to formal semantics for programs based on an abstract model
for information structures.

The past year has seen major advances in our understanding of modular
asynchronous systems and the intimate relation of modular control
structures to the Petri nets studied by Anatol Holt. We have found our
knowledge of asynchronous systems sufficient to yield elegant and readi-
ly understood implementations of the control mechanisms of complex
central processors. We have analyzed aspects of the concept of a
hierarchical associative memory. Our understanding of the properties
of uninterpreted schemes of programs has been improved through
study of graphs that explicitly show data dependence. Finally, we have
studied formal models of two aspects of advanced operating systems --
the controlled sharing of information, and the avoidance of deadlocks
arising from resource sharing.

II. MODULAR ASYNCHRONOUS SYSTEMS

By "system" we mean an arrangement of parts that interact with one
another by means of discrete signals. The essence of systems is ac-
tivity: The parts of a system act at instants in consequence of earlier
actions by other parts of the system. Most systems have many parts
that act without immediate intercommunication. Such independent parts
that may act simultaneously are said to have concurrent activity. Man-
machine interaction involves concurrent activity of the man and the
computer; a digital system operates through the concurrent activity of
its individual circuits. The importance of concurrency goes far beyond
the use of parallel actions to attain greater speed. A large system is
usually constructed through interconnection of simpler systems which
often operate without central control. The component systems must
interact to make their presence felt and this interaction is inherently
a concurrent activity. We shall review some aspects of our current

13 Preceding page blank
^mawrwiawiiiWMiwiiwwii

COMPUTATION STRUCTURES

work on the representation of concurrent activitv w th0 • ,
of system in U* ioTm ol asynchronou^oS Ll^Tu^T"

Consider what happens when a typewriter key is nressed Th* f u
is initially idle. When the key is operated the tvoeb/r'^. *** ?**
toward the carriage- when it hif« ill ' yP bar starts moving
the samp Hml fl S the paper' it starts to retreat and at

Petri net; represented by a diagram called a

a place

a transition

^O*
Key is

operated type bar
is moving

KÄ hits the
paper

transition may toTSkL ! ,ts '"Put PIaces h«e tokens. An enabled

and conditions, one ean thus say an evtttcnrs ly Xn ajfcT

Ä%r.rrr atr sL^-- -~£-
ated at the same time. The Petrl net below Illustrates this situXn.

14

m

COMPUTATION STRUCTURES

I

In this figure, transitions t,, . . . , tk are in conflict over the place p ,
and the conflict at this place prevents two or more keys from being
operated concurrently.

Petri nets are a scheme for representing concurrent systems adopted
by Anatol Holt of Applied Data Research [1] from the nets originally
proposed by Carl Adam Petri of the University of Bonn [2]. In the
Computation Structures Group, Suhas Patil has developed a generaliza-
tion of Petri nets that simplifies the representation of interactions
associated with resource sharing [3]; Jack Dennis has investigated the
use of Petri nets to represent the control structures of a highly paral-
lel computer processing unit [4]; and we have studied fhe implementa-
tion of nets in the form of asynchronous modular structures. A few
aspects of these investigations are discussed briefly in the following
paragraphs.

Marked graphs constitute a subclass of Petri nets in which each place
is an input place of exactly one transition and an output place of exact-
ly one transition. The net describing the operation of one key of a
typewriter is a marked graph. Marked graphs have many important
properties, and there is a direct correspondence between marked graphs
and elementary control structures for digital systems built by the in-
terconnection of a set of primitive asynchronous control modules to be
introduced shortly. This correspondence is useful in two ways: A com-
puter control unit specified as a marked graph can be translated into
an asynchronous control structure by a clerical procedure; and a con-
trol structure may be converted into a marked graph to facilitate
analysis.

Since a place in a marked graph has only one incident arc and only
one emergent arc, the circles representing the places are usually
omitted — an arc from one transition to another is understood to have

15

COMPUTATION STRUCTURES

a place on it. Further conciseness is obtained by drawing the tran-
sitions as solid dots. In this simplified form, the marked graph de-
scribing the operation of a typewriter becomes:

key is
operated

type bar hits
the paper

idle condition
is reached

In the new notation, the presence of tokens is indicated by placing
markers on the arcs ~ hence the name "marked graphs".

An important question about a marked graph is whether its activity
continues forever or comes to a halt. The property of representing
activity that goes on indefinitely is called liveness. A net is said to
be live for some initial marking if, after any arbitrary activity has
passed, a continuation of activity is possible that will fire any chosen
transition. In other words, in a live net no transition is ever crossed
off the list of transitions that may be called upon to fire. In general,
it is difficult to determine whether an arbitrary Petri net is live. Yet
marked graphs have the nice property that a marked graph is live if
and only if cutting the marked edges of the graph leaves an acyclic
graph. The marked graph shown below is live.

a live marked graph
i .-

The reader can check that, if any of the markers are removed, the
activity of the graph will come to a halt. This property of marked
graphs is very useful in determining whether an elementary control
structure is free of hang-ups.

An elementary control structure is a digital system consisting of
models of six types interconnected by directed links. Each link is
able to transmit ready signals in the forward direction and acknowledge
signals in the reverse direction. By associating two arcs with each

16

i t

,' I

COMPUTATION STRUCTURES

link of a module, the behavior of each module type may be specified
by a marked graph fragment as follows:

L ._
i

source module

•O
L i J

sink module

a I

r Tl r

I
I a

I . l

sequence module

W

^ i I .

wye module

junction module

r

a

, r'U--:
a * ■ ä

trigger module

The arrival of a token on an arc in the marked graph corresponds to
the transmission of a ready or acknowledge signal between two modules.
A wye module, for example, sends a ready signal over the two emer-
genTTinks when a ready signal is received on the incident link. Then,
when acknowledge signals have been returned, an acknowledge signal is
returned over the incident link.

Thus a w^e module controls the concurrent execution of two independent
operations. The sequence module controls the sequential execution of
two operations. The junction rpodule permits an action to take place
only when the conjunction of two conditions becomes true. The control
structure shown on the next page causes concurrent execution of ac-
tivities f, and f2, and causes activity f3 to occur only when f:| and f2

have completed. The operators f,, f2, and fj are represented by sink
modules, and a sou rce module is included so that the control structure
will have unceasing activity. The corresponding marked graph was
found by substituting for control modules the marked graph fragments

17

(i
 * ' " -■ ll—.-M-M—H-.—l—Wl^^-.i™. »" mmmmm

COMPUTATION STRUCTURES

given above, and simplifying the resulting graph by omitting certain re-
dundant nodes. Since the marked graph is live, we can conclude that
the control structure from which it was derived will not hang up.

It is also straightforward to obtain an elementary control structure
that implements an arbitrary marked graph by making the foUowing
substitutions:

o transition

i

i

a marked arc

becomes

becomes

?

9

W

i
The resulting control structure is guaranteed to be hang-up free if the
given marked graph is live.

Work is continuing on the problem of obtaining control structures for
more general subclasses of Petri nets. We know, from the work of
Suhas Patil [3], a systematic way of implementing any Petri net by an
interconnection of asynchronous modules. However, this scheme seems
unnecessarily complex, and we are studying what sets of simple primi-
tive modules are sufficient to implement several intermediate classes
of nets.

18

a

COMPUTATION STRUCTURES

m, DESCRIPTION OF A HIGH PERFORMANCE PROCESSOR

We have looked into the suitability of Petri nets and asynchronous
control structures for representing and implementing the control mech-
anisms of a high-performance processor. For this exercise, we chose
a machine similar in principle to the Control Data 6600 but simpler in
detail. The machine has several functional units that can perform
different operations concurrently. The processor is so organized that
instructions may be executed in a sequence different from their order
of appearance in the instruction stream. A mechanism known as the
scoreboard controls access of the functional units to values held in
data registers so that each unit operates only when its operands are
available.

Synchronous logic design techniques were used for the 6600. Thus it
appeared to be an interesting challenge to see whether the control
mechanisms of such a machine could be conveniently implemented by
using the asynchronous modular techniques developed by the Computa-
tion Structures Group.

We divided the control problem into these parts: the instruction queue
the instruction allocator, the scoreboard, and control circuits for the
functional units. Each was represented by a Petri net, and a control
structure was devised to have exactly the behavior represented by each
Petri net. It turned out that nine types of control modules were suf-
ficient to give reasonable implementations of all six control structures-

source

sink

wye

junction

decision

union

sequence trigger arbiter

six of these modules were specified earlier in terms of The first

marked graphs. The three remaining modules are'defined by"the^frag-
ments of Petri nets shown on the following page.

The union module permits control of an activity from either of two
points within a control structure. The arbiter interlocks two activities
so that only one of them may be in progress at a time. The decider
module makes it possible for the control structure to effect different
activities, depending on information residing outside the control struc-
ture - for instance, the operation code of an instruction.

The design of the scoreboard turned out to be particularly elegant and
it seems clearly preferable to a synchronous design in regard to com-
plexity and speed. Details are given in a recent paper by Jack
Dennis [4].

19

■ ■■^-■'■■■■■^.■■^ : .-^..^

COMPUTATION STRUCTURES

U

(2>- *~ (2)

union module arbiter module

t

decision module

IV. DETERMINACY OF SYSTEMS

To keep the design complexity of a large system within manageable
limits, the system is generally conceived as a combination of simpler
systems. Unfortunately, even if the subsystems are known to work cor-
rectly, one cannot conclude that the interconnection of the subsystems
to form the complete system will operate as intended. Therefore, it is
important to obtain a better understanding of the problems which arise
when systems are interconnected. In this direction we have achieved
some important results concerning interconnections of determinate sys-
tems — systems whose input-output relations are functions. A com-
puter system which gives the same results for two runs of a given
program for given data is a determinate system, a system that does
not is not determinate. In constructing a large system from simpler
determinate systems one would like to know how to ensure that the
interconnection will result in a determinate system. Suhas Patil [5]
has shown that, if the intercommunication discipline is chosen proper-
ly, any interconnection of a number of determinate systems may be

20

I

I

COMPUTATION STRUCTURES

guaranteed to be determinate. This work provides a theoretical basis
for elementary control structures: The elementary control structures
form a class which is closed under interconnection. Moreover, since
each of the elementary control modules discussed earlier is deter-
minate, each member of the class of elementary control structures is
guaranteed to be a determinate system. Correspondingly, the marked
graphs form a class of determinate systems.

This work on the interconnection of systems may have significant ap-
plication to networks of computers in which one would like to ensure
correctness of a computation even though parts of it are carried out
at different installations.

V. HIERARCHICAL ASSOCIATIVE MEMORY

The use of location-independent addressing is essential in a computer
system that offers programming generality. In contemporary computer
systems, where the memory consists of several physical storage media
(solid-state, magnetic-core, drum, etc.), combinations of software ana
hardware mechanisms (paging, for example) have generally been used
to realize location-independent addressing. Nevertheless, it is recog-
nized that these implementations suffer from gross inefficiencies in
the form of wasted processor time and poorly utilized memory space.
In 1968, we outlined a radical concept of computer organization, and
proposed the concept of a hierarchical associative memory [6].

I

MC MB "A

processor hierarchical associative memory

In such a memory system each level is arranged as an associative
memory with value fields of n bits and key fields of p bits; M. is
small and fast, Mc is slow by comparison but large. Reference to an
item is made by presenting its name to the memory system. A match
is first sought in MA; if successful, the required item has been lo-
cated and is read out or altered. If the search in M. is unsuccessful,
the key is used for a search of MB, and then a search of M-. When
an item is found, it is moved to the highest level MA, possibly to-
gether with other items known likely to be required in conjunction
with it. In each level, we suggested that the age of items since their
last instance of use be used to determine which items should be moved
down in the hierarchy to maintain a suitable number of vacant locations
for newly referenced items.

I

21

COMPUTATION STRUCTURES

As in conventional memory systems, an organization is desired that
permits a large throughput (average number of references completed
per unit time). In contemporary high-performance systems, high
throughput is achieved by building the memory in several modules
each of which can be performing memory accesses concurrently ^ith
the others. In a location-addressed memory, this scheme works well
because each name (address) always designates the same location in
the same module, and action by more than one module is never re-
quired to complete a reference.

Jr
h
n

e
hl

C
p
0nStrc0"0" 0f a m0dUlar assoc,ative memory poses some new

problems. Since an item may occupy different locations in the memory
at different times, one does not know in general which module will

Is011^!!^"6111 Whe" access t0 " is squired. Unless some provision
is made for organized assignment of items to modules, an access re-
quest to a modular associative memory must be presented to each of
the modules either in sequence or concurrently. If this is done sequen-
tially, an average of half the modules will have to be interrogated
before the item is found. If the item is not present in this level of
he memory hierarchy, all modules must be interrogated before this

fact is known. If all modules are interrogated concurrently, each one
will be activated whether or not the item is present in the level, but
the average time required to complete an access may be less In
either scheme, the speed advantage of using a modular memory is lost.

Jeffrey Gertz has investigated two alternate schemes for avoiding the
necessity of searching all modules [7]. Both schemes assign each

ofTheitem.^0100 """^ aCCOrding to some readily tested property

(1) By ownership - all items belonging to the same computa-
tion are assigned to the same module.
(2) By transformation - a transformation of the key (a hash
code) determines the module to which an item is assigned

If items are assigned to memory modules by ownership, a search of
more than one module is required only when reference is made to the
information owned by another computation. If the key includes unique
denüfication of an item's owner, only one module need be searched

If the key does not indicate ownership, the module containing owned'
information can be interrogated first - on the assumption that items
referenced are more likely to be owned items than shared items. The
use of this scheme implies there are many more active computations
than modules because it is unreasonable to expect one module to exact-
ly fit the memory requirement of any one computation.

The assignment of items to modules according to a hash code of their
Keys is attractive where one expects most information to be shared
among active computations. Only one interrogation is required to lo-
cate an item or to find that it must be retrieved from a lower level

I

22

.

COMPUTATION STRUCTURES

However, if an item may be referenced by two distinct keys, either the
item would have to be duplicated in two modules, or all modules would
have to be interrogated to effect reference by one of the two keys.

VI. BASE LANGUAGE RESEARCH

During the past year, work has begun toward the definition of a base
program language. We think of the base language as a representa-
tion scheme for programs intermediate between source programming
languages ouch as Algol and Snobol, and a machine-level representation.
In its design, we hope to achieve three goals: to create a general-
purpose language that is entirely consistent with the requirements of
programming generality; to find a representation that expresses all
possibilities for concurrent execution of parts of algorithms; and to
obtain a language that can be used as a functional specification for an
advanced highly parallel computer design.

We have made major gains in our understanding of the properties of
certain mathematical models of the structure of programs; we call
these models computation schemata. Our theoretical work with compu-
tation schemata has so far been restricted to computations that operate
on simple variables -- variables whose structure as a collection of
simpler entities is not relevant to the scheme (the flowchart) of the
computation. Yet it is important to thoroughly understand this subject
as a basis for building a more general theory for programs that oper-
ate on structured data.

VII. COMPUTATION SCHEMATA

Our work on computation schemata has evolved from the thesis research
done by Van Horn [8], Rodriguez [9], Luconi [10], and Slutz [11] at
Project MAC, and har. been considerably influenced by the original
studies of Yanov [12] and, more recently, the work of Karp and Miller
[13], and the work of Paterson [14]. Two questions have been of
greatest interest to us: What sort of constraints must be met in the
representation of parallel computations so that unique results of com-
putations may be guaranteed? Under what conditions is it possible to
determine whether two representations (schemata) describe identical
classes of computations? For the class of schemata we have considered,
we now have satisfactory answers to the first question, and have gained
a better understanding of the second.

A computation schema represents the manner in which functional ele-
ments and decision elements are interconnected, and their action
sequenced, to define an algorithm. The functional elements of a schema
are called operators: Each operator a evaluates some unspecified func-
tion of an m-tuple of input variables and assigns values to an n-tuple
of output variables.

-

23

■ ■ : .

ÜH^.. -.;, i^.

COMPUTATION STRUCTURES

input cells • } output cells

g(a): |m-tuples} -*- |n-tuples}

The unspecified function associated with an operator a is denoted by
g(a). The decision elements of a schema are called deciders: Each
decider d tests some unspecified predicate p(d) for an m-tuple of
input variables.

input cells

CK.

m

p(d)) p(d): |m-tuples} -*- {true, false|

A computation schema has two parts --a data flow graph and a
control. The data flow graph defines the interconnections through which
results of each operator application are passed on as arguments for
further transformations and tests. The variables of a schema are
represented in the data flow graph by boxes called cells. There is
also a circle for each operator and a diamond for each decider.
Directed arcs join the operators to their output cells and represent
the connections to each operator and decider from its input cells.

The cells of the schema are identified by the letters m,, m2
Certain cells are designated as input or output cells. Values are as-
signed to the input cells before a computation begins; upon completion,
the result is the set of values present in the output cells. Several
operators, a and b, say, may have the same associated function letter:
g(a) = g(b). In this way, a schema may require that two operators, a
and b, always implement the same transformation, although the par-
ticular transformation is unspecified. Similarly, each decider designates
a predicate letter p(d). The function letters and predicate letters of a
schema make up two finite sets G and P.

The control of a computation schema is a specification of the order in
which the operators and deciders of the data flow graph are permitted
to act. In particular, the control indicates how further progress of
computations is affected by the actions of the deciders. For the ex-
amples of computation schemata given below, we shall represent the
control by precedence graphs. An example of a computation schema is
the following.

24

. >;.;.■...--*■.^■.-.': ■ ■ ■■■■■■! ■■ immmmm wwwpiiw^^ia^^

V data flow graph

COMPUTATION STRUCTURES

precedence graph

begin

^®

Each diamond node in the precedence graph connects to two subordinate
precedence graphs that specify alternative computations according to
whether the designated decider has a true or false outcome. Operator
a in the data flow graph is an identity operator; the associated func-
tion g(a) is always the identity function.

For schema S , the precedence graph allows just four distinct sequences
of action by the operators and deciders of the schema. These sequences
comprise the control set C of the schema

C,: (a f, i4 a5)

a4 a3 a5)
I "2 'I 3

(a, a2 f

(a, a2 t, a6 f2 a3 a5)

(a, a2 t, a6 t2 a4 a«.).

In these sequences, a stands for an acfion by operator a,; f, stands
for an action by decider d, for which the outcome is false; and t,
stands for an action by decider d, for which the outcome is true.
Since no iteration is p esent, the control set C, is finite.

Iteration is represented in a precedence graph by a pie-shaped node
connected to a single subordinate precedence graph.

25

mm ■

■■ ■

COMPUTATION STRUCTURES

S2
: data flow graph precedence graph

begin

acTs wiTftt SP?ified by the SUbgraph iS repeated until the decider acts with a false outcome. The control set for schema S is C .

(a, t, a2 a3 f,)

(ai *! a3 a
2 V

(a, t, a2 a3 t, a2 ^ f,)

J
To convert a computation schema into a specificatio a particular
algorithm it is necessary to specify the functions .ad predicates desig-
nated by the function letters in G and the predicate letters in P cT
course, the specified functions and predicates must have domain and
ranges consistent with the topology of the data flow graph and musf
be m agreement whenever the value of a function maybe [he argument
o a function or predicate. Such a specification of functions and prTdi
cates is called (after Yanov) an interpretation of a schema.

Tis Sm^l0'f
SC

f
hemata *** 0i ^^^ interest to us- A ^hema S is determinate if, for any interpretation of the function and predicate

letters, S determines a functional relation of output tuples to £
tuples. In order to say whether two schemata S, and S2 describe the

26

I

■ ■ -■ ■ ■ ■ ■ ■ . ■■■ ■ .:. ■ . ■■.,.,.. -.

I I Ul I ■
■ ■■ .■■: ■

COMPUTATION STRUCTURES

■

same computations, we must be able to relate the interpretations of
the function and predicate letters in S, and S2. For this purpose, let

0 = 0.00, P = P, U P.

Then S, and S2 are equivalent schemata if, for any interpretation of
the functions and piedicate letters in O and P, S, and S2 determine
precisely the same relation of output tuples to input tuples.

To develop insight into the questions of determinism and equivalence,
we have devised the notion of data-dependence graph or dadep graph
for short. A dadep graph of a schema sets forth separately each action
by an operator or decider. For a particular control sequence of a
schema, the final value placed in each output cell will be the result of
some cascaded composition of functions. A dadep graph is just a graph
representation of the cascade composition of operators associated with
each output cell.

Let us construct the dadep graph for schema S from its unique con-
trol sequence a = (a a2 a3 a4).

S :
^3 begin •(a)

end •(e)

The construction is shown on the next page. We start by setting down
a copy of each input cell of the schema. (The letters denoting these
cells are underlined.) Then we add a copy of an operator and its out-
put cells for each succeeding element of the control sequence-. Each
cell added to the dadep graph is labeled as in the data flow graph, and
this label is erased from the cell copy previously bearing it. In the
case of an identity operator, a second label is given to the most-recent
copy of Its input cell, and no copy of the operator is made.

For schemata that include deciders, there will be a cascade composition
of functions associated with each action of a decider as well as each

27

■ , . , ! ,

■ '€*5

COMPUTATION STRUCTURES

m, m2

D D m3D D
2,

a
22

(a) (b) A> <A ®r <S
nil a}2 2, Ea T T

m.

(c) (d) (e)

output cell. A determinate schema with k deciders could have 2k dis-
tinct dadep graphs - one for each combination of decisions that might
occur in the course of some computation. For the schema S , there
are just three dadep graphs because a decision of false by d','results
in the absence of any action by d .

■■"■'■

'■■-■ .:.-.. ■.'. ■. ■.-.

.

COMPUTATION STRUCTURES

In general, a schema that represents an iteration defines an infinite
Set of dadep graphs. In the case of S2, the three simplest dadep graphs
are: . ,

i

Certain properties are important in the study of sphemata: A schem^
is persistent if the occurrence of one of two actions that could proceed
concurrently does not inhibit or block the other action. Furthermore,
a schema is commutative if the order in which two concurrent actions
occur has no effect on the subsequent course of the computation.

Nondeterminate computation can opcuronly when a schema has a cell
that could be assigned a value by one operator either before or after
a value is assigned to or read from the cell by the action of another
operator or decider. When this can happen we say the schema has a
conflict. , i

By means of known methods it is not difficult to show that any compu-
tation schema that is persistent, commutative, and free of conflict is

29

.: :■■

I ' ;
xMeB ,

I

i

COMPUTATION STRUCTURES
i

guaranteed to be determinate. A more interesting problem is to deter-
mine the circumstances for which the conflict free property is a neces-
sary condition for schemata to be determinate. We have studied two
natural restrictions on schemata such that any determinate schema
meeting the restrictions is necessarily conflict free. The first of these
restrictions amounts to requiring that each action by any operator or
decider in a schema participate in determining some output value. A
schema meeting this restriction is said to be normal. The second re-
striction disallows control sets that permit repetition of a computation
or test for the same m-tuple of input values. A schema meeting this
restnchon is said to be repetition-free. In schema S4, repetition of
the function designated by g, occurs. Because of the repetition the
conflict between operators a, and a3 at cell m fails to yield non-
determinate computations - both dadep graphs define the same com-
position of functions.

v dadep graphs

I

(a2 ai a3 a4) (a2
a3 ai a4)

For an elementary schema that is well defined, normal, repetition-free
and determinate, all execution sequences yield the same dadep graph
In fact the dadep graph is a canonical form for this class of schemata
Thus the equivalence of any two elementary schemata can be tested by*
constructing their dadep graphs.

30

I

COMPUTATION STRUCTURES

In the case of a normal, repetition-free schema that has deciders but
nc iteration, the class of computations represented is described by a
finite set of dadep graphs, as shown for the schema S, earlier. Each
pair of input values will be processed as shown in that one of the
dadep graphs for which the evaluation of predicates agrees with the
truth values given at decision points of the graph.

We can construct a table of two columns, called a conditional expression
list, that characterizes the computations represented by a schema. Each
row of the table corresponds to one dadep graph. In the left-hand col-
umn, we write a conjunction of the predicates that must be satisfied by
the input variables for the corresponding dadep graph to describe the
computation. In the right-hand column, we write the compositions of
functions that specify the corresponding dependence of output values on
input values. For S, we have:

Condition

P, (x2)

P,^,,)« P2(g4(x2))

P|(x2)«P2(g4(x2))

Expression

g^gjg, (x,, xj), g,(g|(x|, x)))
>5«»2WI v I 3XDIx I

gR(gl(x1, xj, gJg.Cx., X)))
'5xolx I 3XDIX I

gJgJg.Cx,, x,)), g.fr. X))
'5xo2XDl x I I x I

Now consider the schema S,

31

COMPUTATION STRUCTURES

SXfn5 Z "Z r^S* ^ iS Ch~^ ^ a conamona.

Condition

P|^2)'P2(g4(x2))

P|(X2)'P2(g4(x2))

Expression

Pi^'PpfeJxJ)

^(ggCg.Cx,, x2)), g3(g|(X|, x^))

Ss^fe,^,, x2)), g3(g|(x|, x2)))

2V&4^2;

PiM-PpfeJxJ) 2xo4v 2;

^s^fe^x,, x2)), g (X x))
Iv"|» ^2^

^|(x,>x2), g-Cg.Cx,, Xj)) 3vol ^|» V

c,, lor we have the logical equivalence
P, (x2) = p, (X2) . p2(g4(x2)) + - (xj # p^^^,) _

sxrzsz.-zz Sire -CLS rr-«--

P|fef(x2)).p((g(gf(xJ))

P. fe, M • P, ^fef^))) • P, fesfejfefCxJ)))

g2(xi' & (Xj)

^^r ^2^1' glW))

the sense illustrated by our demlstraMo"^ exPres
1
slon "^ts agree in

V When the lists are" „nite Z^'LT^X^i3

32

, .
.■-■" ■ :.,(■■...V.

..■ .
■.•.•

•»»WWI«8W*>'*«M*» m

-

COMPUTATION STRUCTURES

clear. At this time it is not known whether or not a decision procedure
can be found for the more general equivalence problem.

VIII. CONTROLLED INFORMATION SHARING

The merit of the computer utility concept [15], lies in the ability of
the users of the utility to build on each other's work. Thus the utility
must provide orderly means for sharing access to procedures and data
bases. We believe [16] that, to be successful, a utility must provide an
environment in which a variety of information services may flourish
and compete as private enterprises. Because proprietary and personal
data will reside in the memory of a computer utility, access of users
to stored information must be controlled so that only legitimate access
is permitted.

Dean Vanderbilt has studied the implications of these requirements for
sharing and access control on the organization and representation of
procedures and data bases in a computer utility [17]. A computer utility
must allow the owner of a program to authorize its use by other users
without giving them the ability to view its internal structure. The execu-
tion of a program involves access to data and access to other programs.
This additional information falls into two categories -- information that
is associated with (shared by) all activations of the program; and the
information that is associated with a particular activation (and not
shared by several activations). The former category (Category I) con-
sists of subprograms considered to be part of the program, subprograms
of these subprograms, etc., and any data that are common to all activa-
tions of the programs. Category II information consists of all informa-
tion passed as arguments to and from the program, and all temporary
information generated during the particular activation.

During execution of a program, access to Category I and Category II
information must be provided. Two aspects must be dealt with: First,
the names used by the program to refer to this additional information
must be bound to be the correct information. Second, the access con-
trol mechanisms of the utility must allow access to the information
when it is needed.

The Category I information is known to the owner — the creator — of
the program, but not to the borrower. Thus the owner must specify
the binding of names in the program to that information, and ensure
that the information may be effectively referenced when needed during
execution of the program. Since the program borrower should be
granted no more access abilities than necessary, it must be possible
for the owner to give the borrower the ability to access Category I
information only in conjunction with use of the program. Thus, access
abilities and binding information must be associated with the shared
program so that the appropriate Category I information is available
each time the program is executed.

I

33

COMPUTATION STRUCTURES

The Category n information consists of information supplied by the pro-
gram user and information ereated by the program. Fo? the former

CftoTh! 1"eS P0Se n0 Pr0blem since this ^formation be- long, o the program user. For the iatter information, the process
executing the program must be allowed to create information and to

progr^ ^ b0Und t0 ^ aPPrÜPriate nameS ^^ '" ^

men" Jm^l Um deSigned T abStraCt P^ram-execution environ-
ment 17] which offers one solution to the problems of implementing
controlled access to shared information in a computer utlUtTrafwork

Sed tÖrrd
h

BrPh m0del 0£ StrUCtUred '^"»ation that L 2"
related to the abstract information structures that form the foundation
of our development of a base language, and is similar to the "ct

ÄVer.c^.the IBM vienna Laboratory w'- «•- ^ "
DC. RESOURCE SHARING WITHOUT DEADLOCK

Another form of concurrency is the cooperative activity of interacting
computational processes, as in a multiprocess computer system One
form of interaction among processes is the implicit" interacoT«
from the sharing of limited resources. Consider, for example two

ZlT:^^1 Pr0CeSSeS ^ Pr0greSS ^^ --iTstlnct

D.; process process 2

System Capocity
O 10

I

34

a

COMPUTATION STRUCTURES

: :

I

For each of its phases (identified by the circled numbers), a process
requires the specified amount of a single resource type. The number
of available units of the resource type (the system capacity) is C = 10
This representation of the resource requirements of a system of con- *
current processes is called a demand graph. It is convenient to repre-
sent the composite state of the processes by a slice through the demand

boThtn eXamPle' " ^ SliCe ^ = (®' ©^emand'graph DT both processes are engaged in phase 1 of their activity. Slice y is '
gMl^k because the total resource units required is seven, which is

nh/J r- "ff ^ reS0UrCe Capacity- If Process 2 sh0^ complete
phase 1 it could immediately proceed with phase 2, for the slice
r - KKD, (£» is also feasible. However, process 2 could not continue
into phaSe 3 of its activity because slice / = (®, ®) ^ total
resource requirement larger than the system cavity - we say that
slice y is not feasible. The resource-allocation mechanism of a sys-

hlSiT .0Pera,te S0 that a11 Processes ^n complete all phases of
their activities, if possible, by a sequence of feasible slices. This kind
of scheduling is not simply implemented if processes are assumed to
re am control over resources during their transitions to new phases of
activity For instance, we must allow process 2 to retain the four units
alloca ed to it for phase 1 while awaiting the release of three more
units for its use in phase 2. Such hoarding occurs in computer systems
where the resource may be memory areas, access to locked data bases
tope units, etc. When such hoarding is practiced, deadlocks can occur '

! f y ^ uf uemand graph Di iS feasible' and ^presents a system
state reachable by a sequence of feasible slices. Yet neither process
can proceed beyond its phase in slice / for the lack of needed resource
umts - the two processes are deadlocked. To avoid deadlock, the
allocator must prevent the system from reaching the state correspond-
ing to slice y' even though the slice is feasible.

We call a slice y in a demand graph safe if it is feasible and there
is a sequence of phase transitions leading to a succession of feasible
slices so that each process completes all remaining phases of its ac-
tivity. K there is no such sequence of feasible slices, then slice v~"is
u^sMe. Slice y' in D, is unsafe. That slice y is safe is demonstrated
by showing, on the next page, a sequence of phase transitions to suc-

phaser ^ SliCeS ^^ ^^ b0th pr0cesses through a11 remaining

In these terms, the task of the resource allocator is to regulate the
transitions of processes to new phases so that each slice attained is
safe. It is not adequate to start the system of processes in a safe
slice, for unsafe slices may be reached from a safe slice.

For demand graph D,, we can discover that slice y is safe by observing
that process 1 goes through a phase of reduced demand during which

35

ii —i. ■

COMPUTATION STRUCTURES

D,: process I process 2

System Capacity
C = 10

In principle, one could examine all possible slice* nt * **
and determine whether each is safe h.LT- 1 ! mand graph

test fl tf y em u processes- Incremental algorithms, wJch o*

oTthe stef6!6: rn th; derd for the process at ^";h
de; step. For demand graph D,, the Saleness Algorithm produces

<

36

■

COMPUTATION STRUCTURES

the sequence of steps y -^ y, — r2 -^ y3 to verify the safeness of
sUce y We have shown that 'failure2 of the algorithm to generate a
sequence of feasible slices by which all processes complete their ac-
tivity implies the slice under test is unsafe; conversely, success of
the algorithm implies safeness. A resource allocator that uses the
Safeness Algorithm to restrict system operation to only safe^ allocation
states would make better use of resources without the possibility of

deadlock.
For systems in which more than one type of resource is ^ared we
have formulated an extension of the Safeness Algorithm and established
its validity. However, the amount of computation can have a nonlinear
dependence on the number of phases of the processes in the demand
graph - a problem that does not arise for systems with a single re-
source type This is not a failing of our particular algorithm: We have
shown that a local algorithm (one that is not permitted a bird s-eye
view of the entire demand graph) will, for some cases, have to ex-
haustively search a large set of slices to determine that a slice is
safe. The following example illustrates why this is so.

The extended Safeness Algorithm generates feasible slices in steps, as
before However, the series of phase transitions making up a step now
ends only at a slice in which each component of demand is no greater
than the same component in each prior phase of the series.

V
process 3

1
® (6,6)

i

System Capacity C = (21, 21)

Thus in D , a step will consist of moving from y to / rather than

from y to y

37

.

COMPUTATION STRUCTURES

Now consider the demand graph D3.

process I

©
<

(6,6) ©
'2'3 • x. ^ <

y#- (D ii-jiX ®

® (11,7)^ ®

© (0.0)

(6,6)

(7,5)

.(11,7)^

© (0,0) © (0,0)

System Capacity C = (21, 21)

Without further modification, using the Safeness Algorithm to search
for a step from slice r leads to failure for processes 1, 2 and 3 at
slices Y yz and yz, respectively. Thus the algorithm would conclude
(falsely) that y is unsafe. A limited backtracking algorithm must dis-
cover some way of getting past the slice y+ = (®, (1), ®) consisting
of the barrier arcs /?,, /3 and ß From the study of the demand
graph, it is evident that the slice y* = (@, @, ®) must be used.
But a local algorithm can determine this only through an exhaustive
search of slices. The number of futile trials can be quite large.

The Safeness Algorithm can also be extended to systems in which ex-
plicit interactions between processes take place as well as the implicit
interactions arising from resource-sharing. In studying this situation,
we have discovered an interesting phenomenon, called intrinsic deadlock-
There are demand graphs for which no schedule can permit the
processes to complete their activity, for example:

I

38

.^j^..^^,^.^.. ..^ ^.^ ^

COMPUTATION STRUCTURES

This is a result of excessive hoarding of resources at points of
(explicit) interaction. For this reason, among others, hoarding of re-
sources at points of interaction should be held to the minimum.

The study of demand graphs is a perfectly general one that is not
restricted to computer processes. Deadlock situations can arise from
sharing of resources in road transportation, aircraft maintenance, and
so on, and these operations can profit from analysis for the prevention
of deadlocks.

X. WOODS HOLE CONFERENCE

The culmination of the year's activities of the Computation Structures
Group was the sponsoring of an informal conference on Concurrent Sys-
tems and Parallel Computation. It was held at the National Academy of
Scieaces' Conference Center in Woods Hole, Massachusetts, during the
first week of June 1970. Participants in the conference included six
members of Project MAC and twenty-one persons representing most
institutions in the United States that are carrying on theoretical re-
search related to parallelism and concurrency.

The objective of the conference was to bring together people working
along four distinct conceptual lines that we have found to be intimately
related:

Representations of systems of concurrent events.
Speed-independent switching circuits.
Uninterpreted schemes of programs.
Cooperating sequential processes.

The conference was most successful in acquainting the participants
with each other's ideas and in catalyzing many stimulating discussions.

Eleven technical papers were prepared for the conference, and were of
such quality that they have been published collectively as a Conference
Record [20j. For the conference we assembled an extensive collection
of papers and reports related to the concepts of concurrency and
parallelism. With the inclusion of a bibliography of this collection,
the RecoT-d should be a valuable introduction to the field for interested
reseaiv... entists.

Publications 1969-1970

Dennis, J. B., "Asynchronous Control Structures for a High Performance
Processor", Record of the Project MAC Conference on Concurrent Sys-
tems and Parallel Computation. ACM, N.Y., 1970, pp. 55-80.

Gertz, J. L., Hierarchical Associative Memories for Parallel Computa-
tion, Ph.D. Thesis, Dept. of Electrical Engineering, June 1970, also
MAC TR-69, AD-711-091.

(continued)

N

I

39

■

mmmmm

COMPUTATION STRUCTURES

Publications 1969-1970 (cont.)

Patil, S. S., "Closure Properties of Interconnections of Determinate
Systems", Record of the Project MAC Conference on Concurrent Sys-
tems and Parallel Computation. ACM, N.Y., 1970, pp. 107-116.

Patil, S. S., Coordination of Asynchronous Events, Ph.D. Thesis, Dept.
of Electrical Engineering, June 1970, also MAC-TR-72, AD-711-763.

Vanderbilt, D. H., Controlled Information Sharing in a Computer Utility,
Ph.D. Thesis, Dept. of Electrical Engineering, October 1969, also
MAC TR-67, AD-699-5Ü3.

References

1. A. W. Holt and F. Commoner, "Events and Conditions". Record of
the Project MAC Conference on Concurrent Systems and Parallel
Computation, ACM, New York (1970), pp. 3-52.

2. C. A. Petri, Communication with Automata. Supplement 1 to Tech-
nical Report RADC-TR-65-377, Vol. 1, Griffiss Air Force Base,
New York, 1966. [Originally published in German: Kommunikation
mit Automaten, University of Bonn, 1962.]

3. S. S. Patil, Coordination of Asynchronous Events. Report MAC-TR-72,
Project MAC, M.I.T., Cambridge, Massachusetts, June 1970.

4. J. B. Dennis, "Modular, Asynchronous Control Structures for a High
Performance Processor". Record of the Project MAC Conference
on Concurrent Systems and Parallel Compv4 tion. ACM, New York
(1970), pp. 55-80.

5. S. S. Patil, "Closure Properties of Interconnections of Determinate
Systems". Record of the Project MAC Conference on Concurrent
Systems and Parallel Computation. ACM, New York (1970),
pp. 107-116.

6. J. B. Dennis, "Programming Generality, Parallelism and Computer
Architecture". Information Processing 68, North-Holland, Amsterdam
(1969), pp. 484-492.

?. J. L. Gertz, Hierarchical Associative Memories for Parallel Com-
putation. Report MAC-TR-69, Project MAC, M.I.T., Cambridge,
Massachusetts, June 1970.

8. E. C. Van Horn, Computer Design for Asynchronously Reproducible
Multiprocessing. Report MAC-TR-34, Project MAC, M.I.T., Cam- '
bridge, Massachusetts, 1966.

9. J. E. Rodriguez, AjGraph Model for Parallel Computation. Report
MAC-TR-64, Project MAC, M.I.T., Cambridge, Massachusetts, 1969.

(continued)

40

,

'' ' . ■ °

''

COMPUTATION STRUCTURES

References (cont.)

10. F. L. Luconi. Asynchronous Computational Structures. Report
MAC-TR-49, Project MAC, M.I.T., Cambridge, Massachusetts, 1968.

11. D. R. Slutz, The Flow Graph Schemata Model of Parallel Computa-
' tion.'Report MAC-TR-53, Project MAC, M.I.T., Cambridge, Massa-

chusetts, 1968.

12. Y. I. Yanov, "The Logical Schemes of Algorithms". Problems of
Cybernetics. Vol. 1, Pergamon Press (1960), pp. 82-140.

13. R. M. Karp and R. E. Miller, "Parallel Program Schemata". J. of
Computer and System Sciences, Vol. 3, No. 2 (May 1969), pp.
147-195.

14. M. S. Paterson, "Program Schemata','. Machine Intelligence, Vol. 3,
American Elseyier, New York (1968), pp. 18-31.

15. R. M. Fano, "The MAC System: The Computer Utility Approach".
I.E.E.E. Spectrum, Vol. 2, No. 1 (January 1965), pp. 56-64.

16. J. B. Dennis, "A Position Paper on Computing and Communications".
Comm. of the ACM, Vol. 11, No. 5 (May 1968), pp. 370-377.

17. D. H. Vanderbilt, Controlled Information Sharing in a_Computer
' Utility. Report MAC-TR-67, Project MAC, M.I.T., Cambridge,

Massachusetts, 1969.

18. P. Lucas, P. Lauer and H. Stigleitner, Method and Notation for
the Formal Definition of Programming Languages. Technical Re-
port TR 25.087, IBM Laboratory, Vienna, June 1968.

19. P. G. Hebalkär, Deadlock-Free Sharing of Resources in Asynchronous
Systems. Report MAC-TR-75, Project MAC, M.I.T., September 1970.
— '■ < ' .

20. Record of the Project MAC Conference on Concurrent Systems and
Parallel Öomputation, ACM, New York (1970).

I

41

' •
, ■

I

I J

I

COMPUTER SYSTEIV RESEARCH

Prof. F. J. Corbato

R. Beatty
V. M. Berardinelli
M. Bromberg
M. C. Burnham
R. H. Campbell
O. D. Carey
J. R. Cecil
D. D. Clark
R. C. Daley
C. P. Doyle
S. D. Dunten
R. J. Feiertag
R. Frankston
R. L. Gardner
C. C. Carman
S. Garner
J. M. Grochow
D. L. Jones
R. K. Kanodia
E. W. Meyer, Jr.

N. I. Morris
M. A. Padlipsky
Prof. J. H. Saltzer
R. R. Schell
M. D. Schroeder
A. Sekino
T. H. Seymour
T. P. Skinner
N. J. Smith
J. W. Spall
M. J. Spier
A. Testa
M. R. Thompson
V. L. Voydock
M. B. Weaver
S. H. Webber

Guest

N. A. Adleman

43 Preceding page blank

COMPUTER SYSTEM RHSEARCH

i

I. INTRODUCTION

The year from July 1969 through June 1970 was a critical year for
the Multics (Multiplexed Information and Computing Service) system,
which was again the major concern of the Computer System Research
Group. During the reporting period, research and development efforts
on Multics continued to be performed jointly with the General Electric
Company's Cambridge Information Systems Laboratory personnel; and
the assumption of responsibility for the administration, operation and
maintenance of the system by the M.I.T. Information Processing Center
was initiated. In addition, members of the group participated in work
on the ARPA Computer Network and on computer graphics, reflecting
the Group's shift in emphasis toward exploitations of the research base
which the Multics system represents. The dominant role of Multics in
the Group's efforts dictates that the bulk of this report will address
itself to Multics; however, the new areas of interest will also be dis-
cussed in more detail subsequently.

As indicated in last year's report, 1 October 1969 was firmly set as
the date on which Multics service would be made available to the
general Project MAC and M.I.T. user community. This goal was
achieved, offering a version of the system that was considerably im-
proved over what was available at the end of the previous reporting
period. Because the success and acceptance of the system by the user
community is a key issue in the desired dissemination of the under-
lying concepts of Multics, much stress was laid on making the system
more attractive to general users (i.e., not just system programmers).
To this end, expansion and refinement of functional capabilities and
improvement of performance were the areas on which the Group con-
centrated. An index to the success of these efforts may be found in
Fig. 1, which shows the growth of the user community. By the end
of the present reporting period, the operational version of the system
again represented a considerable over-all improvement over the
October First version. Table I (which will be discussed in greater
detail in the section on Performance) furnishes a good indication of
the improvement of the system over the year, in terms of gross per-
formance. It is worth noting here that Multics, as of October 1969,
was furnishing performance superior to that of the Compatible Time-
Sharing System (CTSS) and is continuing to improve.

Of the conceptual goals discussed in the 1965 Fall Joint Computer Con-
ference papers on Multics, most have been fulfilled, although a few
key functions are still being worked on and should be installed in the
next year. On the performance side, it is expected that the coming
year will see the system beginning to support the original predictions
of simultaneous users. Moreover, the original decision to implement

45 Preceding page blank

. ■.

■

COMPUTER SYSTEM RESEARCH

450

£ 400
w

? 350

Oct Nov
1969

Dec Jan
1970

Feb Mar Apr May Jun

Fig. 1.

Multics in a high-level language has shown itself to be a wise one, as
both the quantity and quality of the changes effected during the reporting
period attest. Now that the basic Multics framework has been estab-
lished, there is still much to be learned. New work is under way in
two broad areas of interest:

(1) Work on the system per se addresses itself to deeper under-
standing of the issues involved in large, complex systems; and
work is intensifying on the propagation of our results to other
workers in the systems field.

(2) Using Multics as a springboard, new areas of interest in the use
of sophisticated systems are being explored, especially the con-

46

COMPUTER SYSTEM RESEARCH

■

Table I.

PDP-8 Script Performance Comparison between CTSS
and Multics System 7.0, 4.0, and 3.0.11

Average load while measuring

CPU time charged

Real time required

CPU time per interaction

Average response time

Dollar charge

Cost per console hour

Multics
?.0.11

6/25/69

12 users

87.9 sec

2702 sec

1.91 sec

~18 sec

$11.01

$14.70

Multics
4.0

9/25/69

24 users

50.3 sec

2520 sec

0.79 sec

12.4 sec

$6.55

$9.10

Multics
7.0

3/30/70

21 users

28.7 sec

2298 sec

0.436 sec

5.2 sec

$3.99

$6.27

CTSS
8/1/69

17 users

70.97 sec

2434 sec

1.07 sec

5+1 sec

$6.50

$9.62

Notes:

1. All figures are for two passes through the standard "Fortran de-
bugging" script.

2. All prices are based on a Multics CPU charge of $420/hr, a
Multics dialup charge of $l/hr, a CTSS CPU charge of $330/hr,
and no CTSS dialup charge.

3. Note that this script is, on balance, a smaller than average user
of core memory, and is unfavorably charged by a Multics CPU
price based on average core memory usage. (It is expected that
in the future the Multics charging policy will be revised to cor-
rect this inequity.)

cern with the ARPA Network and with the support of terminals
with graphical capability. There is also a continuing interest in
dealing with problems of data base management and of protection.

II. THE OCTOBER FIRST SYSTEM

When Multics was formally released to the user community, the version
of the system made available at the time was designated "System 4.3".
For convenience of subsequent reference, it should be explained that
the numbering system adopted for system versions indicates major
changes in the supervisor by incrementing to the next whole number,
and less far-reaching changes to the basic ".0" system by incrementing
to the right of the decimal point. Accompanying the "October First

47

COMPUTER SYSTEM RESEARCH

^MPMT This '^f"36 0f ^ Multics Programmers' Manual
(MPM) This users' manual originally comprised some 500 pages
under the following major headings: Introduction to the Concepts of
Multics; Introduction to the Use of Multics; Reference Data, Standards
Conventions, Formats, and Codes; and detailed descriptions of the
various commands and subroutines - both system-supported and user-

rf. .r aVailable- By year'S end some 100 more pages had been added to the MPM. f B * "*" wen

It is interesting to note that even before the 1 October deadline
Multics had been successfully used by non-system programmers: An
M.I.T Summer Course in programming linguistics furnished the sys-
tem s first extensive use by non-members of the Group as Multics
was employed on an experimental basis for the performance of assign-
ments by students in the course. The assignments involved use of the

UULTTTL
Ch WaS imPlemented by graduate students working

under Prof. Arthur Evans, Jr. The PAL translator itself was coded in
BCPL (discussed in last year's report). The success of this experiment
was gratifying for several reasons, in that it not only demonstrated
the general uility of Multics for practical applications, but also sup-
ported the belief that subsystems would be relatively easy to embed in
Mu tics, and, of course, furnished evidence that the system was actual-
ly shaken-down enough to support general users.

Functional Capabilities: The Standard Service System Approach

LTem" TlTf ^ 1
0Ct0b.er FirSt SyStem WaS the ,,Standard Ser-ce bystem , a set of closely audited, optimized commands and subroutines

of interest to general users. The Standard Service System includes the
command processor (the "mini-Shell", discussed below) and such basic
commands as the "edm" context editor, the file and directory manipula-
tion commands, and a Fortran compiler. All modules in the Standard
Service System are carefully coded and audited for high performance
and small working sets, adhere to a standard user interface for argu-
ment specification, and are implemented in either a subset of the EPL
language selected for efficient code generation or with the more efficient
PL/1 compiler. All the components of the Standard Service System are
organized into a special system library, which is the first to be
searched when a procedure is initially referenced in a process. The
net result is to furnish the general user with nearly optimum perform-
ance particularly for tasks that do not inherently require a large share
of the system's resources. Indeed, this conscious bias in favor of the
small user has emerged as a cornerstone of the system. To aid the
user in the identification of Standard Service System routines, the indi-

Ird^sJ ^ SeCti0n 0f ^ MPM iS S0 0rganized as t0 ^0UP Stand- ara System commands and subroutines in sections of their own.

(

48

COMPUTER SYSTEM RESEARCH

The most important single aspect of the Standard Service System is the
command processor. The version of the command processor in the
October First system was a considerably improved one, having been
completely recoded to adhere to Standard Service System standards. A
more efficient subset of command language feitures was isolated, and
only this subset was handled directly by the new command processor,
or "mini-Sheir. The full command language was still available, but
was still processed by the relatively cumbersome "full Shell". The
new command loop also speeded up console input/output operations, by
avoiding the invocation of the full I/O System until and unless the user
explicitly invoked it himself. I/O was also minimized by the elimination
of the "wait" message which was previously typed out on receipt of
each command. Further, various support subroutines were bound to-
gether with the mini-Shell.

Functional Capabilities: Resource and Access Control

Another important functional capability added to the system for its pub-
xic debut was resource control: With use of the system no longer
limited to system programmers, it was necessary to install quotas for
disk storage. Also, a minimal accounting system was incorporated, to
allow for the maintenance and billing of user accounts, involving both
disk storage and central processor time used. Accounting also required
reorganization of the data bases employed in the System Control sub-
system. Other changes in System Control for the October First system
were the ability to automatically log out a process when its console
was hung up, and the ability to automatically create a new process
when a running process became incapable of proceeding. The presence
of non-system programmers on the system also necessitated the in-
stallation of full access control; each user upon logging in is assigned
his proper process group identification which allows the access control
machinery to function correctly.

Performance Improvements

In addition to the extensions of functional capability discussed above,
several performance improvements were included in the October First
system. The primary one was a fully reimplemented Traffic Control
module, which constituted System 4.0. The basis of this change was a
tightening of the interface between the Traffic Controller and the File
System, allowing the highest-priority process in the scheduling queues
to be specially handled when requesting paging. This is quite desirable,
in that it minimizes the likelihood of "thrashing" — that is, of having
a lower-priority process bring in pages (while the higher-priority
process is waiting for its own pages) which dislodge pages still needed
by the higher-priority process.

Other pe;formance-improvement tasks included the following:

49

1

t

COMPUTER SYSTEM RESEARCH

(1) Procedure linkage sections were redesigned in order to reduce
the number of linkage faults in the system.

(2) The need for several data segments which were carried in each
process was eliminated by means of consolidation with other
segments, thus minimizing the working set of each process-
this strategy pays large dividends, and the reduction of "ne'r-
process segments" is an on-going task.

(3) The system libraries were reorganized to allow more efficient
searching.

(4) The device interface module (DIM) for the high-speed printer
was recoded in order to improve its buffering strategy and
moved to ring 0 (the supervisor's protection ring); these two
performance improvements were rather important, as manv
users rely quite heavily upon listings from the high-speed
printer. & F

(5) Considerable attention was paid to ehe metering of such kev
areas as the Traffic Controller and the typewriter DIM, to
furnish vital performance information under full user load as
a guide to further refinements.

Maintenance Tools

Maintenance tools made available for the October First system included
toe following: The backup reloader was extended to restore Ml Wer-
archy mtormation (e.g., dates modified and used, access control on

Scm l"etl'rk
reloa?ed mes- The backuf) äam^ ™ "^ to

th. ^ „ "* 0' COmplete dumps ^ the Operations staff. Also
he reloader was modified to allow selected files to be retrieved from

the backup types. The "Salvager- program discussed in lit year's
report (wluch corrects inconsistenc.es in the File System h erarchv
after a system crash, allowing prompt restoration of user se^ce)
was improved and made a standard operational tool. It should be em-
Phased that these File System maintenance tools have been of cdal
■mportance In maintaining satisfactory system operation for the general

r1^ ;V Se' 0' COmmandS WaS devel0'*d '» 'mutate ctonges o the standard system and to allow rapid installation of new systems.

HI. THE CURRENT STATE OF THE SYSTEM

Functional Capabilities: System Version Iterations

Wl'? Vfri0n 4-0' an iterati0n 0t which was ^"operation on 1 October
mcludeo the new Traffic Controller and the first wave of Standard '

had hi ^ era. m0dUleS- F0Ur m0re maior chai«es 'o the supervisor
had been mtroduced by the end of the reporting period, designated by
the version numbers 5.0 through 8.0: »'Buatea oy

50

COMPUTER SYSTEM RESEARCH

System 5.0

The first changeover, to System 5.0, took place with the introduction
of new hardware, DSU270 disks.

These devices, which are fixed-head disks, offer more efficient
secondary storage than the original DSU10 units. Software
changes necessary to support the new hardware were made in
such a fashion as also to facilitate the anticipated introduction
of new, larger DSU170 units (equivalent to the IBM 2314) at
some time in the future. Both the DSU270,s and the DSUlTO's
offer, in addition to speed, the highly desirable feature of ex-
pandability. That is, as the need for more secondary storage
increases with the increased user population of the system,
more disk units may simply be brought in and connected.

System 6.0

System 6.0 featured a major reworking of the command processing loop
and a general expansion of the scope of the Standard Service System.

The command loop was redesigned and recoded in PL/1, which
had by this time become appreciably more efficient than EPL
both in compile time and in generated code. It no longer avoided
the full I/O system, since the performance of the central module
of that subsystem, the "I/O switch", had also been upgraded ap-
preciably. These changes dropped the distinction between "mini"
and "full" Shell, allowing users to employ whatever features of
the command language they wished, at low cost in time. The
key issue here was a reorganization of the command processor
(the term "Shell" having also been dropped) such that the user
pays only for those features which he explicitly invokes, rather
than having to use the full machinery for even minor tasks.
The new command loop also enabled writers of private (and
public, for that matter) commands to acquire the commands'
arguments in a less-awkward fashion, and in general to inter-
act with the command loop more cleanly. A deeply embedded
per-process segment was eliminated ("process_info"); this was
an independent task since it involved changes to a large number
of segments, as well as rather extensive changes to the Inter-
process Communication facility, which were not practicable
earlier. Also, more commands, subroutines, and the Interprocess
Communication facility were converted to PL/1 and made to
conform to Standard Service System criteria. Finally, the
handling of conditions and signaling was reimplemented.

System 7.0

System 7.0 was a major performance breakthrough, since it incorporated
a new, "fast" Page Control module.

51

■■■■

i

^Pi

COMPUTER SYSTEM RESEARCH

The key here was the exprr-iQino- ^ ~
been ooen fW IT exerc

r
lsl,1S of an option which had always

reoorts thP „GQ ^f •, 1"uuuies- As mentioned in previous

chaages quickly a„d the abih y to pre e„t u„l f "^T Strategy

clearly. A further arivant^I Present underlying algorithms

-e ^ewar^tr^Lxr^:' rr^4 there is
can be used to squeeze nut 0t,Q„ L u ' nand-coding

lssues o, the stZZ^^Z^ltZ^l^Z ^

System 8.0

ttltcuvel^re'^t o;oPaSittg
h

meChaai3m' fU™ish^ ^ ****
ability to "po'sf-pur1^ fl e' releU " ^ ^ t0 be "" and the

Pages when the p^essts ^Z ZuT^™ ^ ^

^m^VZTV^ biaSeS the S^em '^ard the

faults8 isT eSmde^eaPs^7v^l/iir
e the nUmber 0''™e

each interaction.) By the tndTthe re^ t eliminated' tor

impact of pre-nagimr and rZ> ^rtmg period, the exact
-cause ^^^^^Jt*^ -uated.

Fjwctlonal Capabilities: Supervisor Changes

^hThVr nÄrnew^t8 t0 'he ^"^ ^ -^. ^l"
most important of thet „as th?!,"1/6"10" nUmberS- 0ne <" 'he

problem": When a proeraTh^ h " t0 the S0-Called "™Unking

pure-procedure obje'tsegmenrand^a" uT™ '" a Pr0CeSS' b0th a

process-dependent'inform^ are n^J**™^ "f*™ dress space. However if fKQ "iLroaucea into the process's ad-

linkage section oTthe 'old tersioTwMeh"!* '0 be ^^^ **
"combined linkage segment" l^ een added t0 a sin8le
erroneously belmploved ' hen the ^T** Protec"0n ring, will
Previously, the solution w!ff„ T 0b,eCt Segment is ex^^-

but this is
y^ime:lUsumi^b

t
0

0th
CIrtteermro,; IT™ ^ "^^ terms of having to TP Hn r u u . process creation and in

process. Therefo^ ^ coi . ^ "^ ^^ in the ^
the system LU*^ ^ t^^ PL/1 VerSi0n 0f

program, a facility was added which allows compilers

52

■ .

! t - .

COMPUTER SYSTEM RESEARCH
i ;

I ■ ■ ',

automatically (and users, by explicit command call) to cause removal
of a named program, including its linkage section, from the address
space of a process. This makes the debugging process far less cum-
bersome. Additionally, the PL/1 Linker is more efficient than the older

EPL version.

' Another area of the supervisor that underwent significant change was
the "Gatekeeper" module. This module manages the transfers of control
among Multics protection rings. A large improvement in speed was ef-
fected by a new Gatekeeper which handles ring-crossings into the super-
visor's protection ring as special cases. (Such a strategy is made
possible by the fact that the ring-0 environment is rigorously defined,
so that the premium for generality of preparation need not be paid
when the ring being entered is known not to require that, generality.)
Also, an important advance in system security came about from the
inclusion of full argument validation on calls to the supervisor; for,
by accident or by design, it is possible for a non-supervisor program
to furnish bad arguments when calling the supervisor, and if the argu-,
ments are not validated (by the Gatekeeper) when the call is made,
the highly privileged supervisor routine could inadvertently either
destroy or reveal vital system information. ,

Functional Capabilities: Command Repertoire

The system's command repertoire also has been strengthened con-
siderably. Perhaps the most valuable command of all is the PL/1
compiler. As has been'seen, and as will be seen further, recompila-
tion in PL/1 has led to improved performance in ail areas of the
system from the supervisor modules to individual commands. Further-
more, it should be noted that the G. E. Cambridge Information Systems
Laboratory team responsible for the compiler won a General Electric
corporate award for their work, and that the compiler is believed to
be the best PL/1 compiler yet implemented. Aside from general im-
provement, full implementation of most defined language features, and
the addition of object-code optimization, the compiler also benefited
from the inclusion of more complete,1/0 facilities, in accordance with <
the full PL/1 language specification. PL/1 is expected to lend itself
quite well to the implementation of data-base management subsystems,
particularly because it is able, both directly (through its "based
Storage" facility) and indirectly (through PL/1 I/O), to take full ad-
vantage of the virtual memory that Multics affords. This should allow
very large data bases to be manipulated with far greater ease than
they could be by a PL/1 on a conventional system. Another feature
added both to PL/1 and to the command loop in general is an improved
mechanism for signaling and handling "conditions" as defined in the
full PL/1 language specification. Signaling is already employed in the
system's quit-handling and fault-handling mechanisms, and will be play-
ing a larger role in error-handling in the future.

53

; . , ,

i i

COMPUTER SYSTEM RESEARCH

Another heavily used command which was vastly improved is the Multics
context editor, "edm". Taking advantage of the power of PL/1, a new
edm command was installed which offered an order-of-magnitude im-
provement in the time needed to locate an arbitrary string in a file.

Finally, several new commands were added to the repertoire, including
a BASIC compiler, which will be discussed in more detail below. Of
particular interest to system programmers has been the development of
a new interactive debugging program, "db", which is far more rich and
flexible than the earlier "probe" command. By requesting the genera-
tion of a symbol table during compilation, the user of db may refer to
variables symbolically when debugging and refer to source-code state-
ments by location. The ability to set breakpoints is also afforded.
Another new command, called "help", is of considerable interest to
general users, for it prints out usage information about named com-
mands on-line; working from ordered files, the command pauses be-
tween levels of complexity to interrogate the user as to whether more
help is desired. Still another interesting command, called "mail" allows
users to send messages to other users by placing files in the others'
directories. Card reading and punching facilities were also made avail-
able; the former is of great value for CTSS users shifting over to
Multics. In addition, a large number of already existing commands
were converted to Standard Service System standards during the re-
porting period.

The Student Information Processing Board Subsystem

The BASIC compiler (borrowed from the Rome Air Development Center
time-shading system) led to a windfall in that it became the vehicle for
a subsystem developed by the M.I.T. Student Information Processing
Board (SIPB). Using Multics, the SIPB group developed in a surprisingly
short time the "SIPB-0 System", a subsystem that gained many ad-
herents among student users. This subsystem constitutes a closed
environment that makes available a limited number of low-cost, easy-
to-use commands. The commands include a subset of Multics commands
as well as special SIPB-O ones. It was found that many students availed
themselves of the subsystem for homework assignments. Among the
features of SIPB-0 are the BASIC compiler and editor, a special com-
mand processor, numerous "help" files, the ability to have many simul-
taneous users with a single working directory, and a library of game
programs for demonstration purposes. This venture was gratifying not
Only because of the interest generated, but also because it further
demonstrated the relative ease with which subsystems could be developed
under Multics — in this case, in two or three weeks (during which work
on the subsystem was only part-time) by users who, although highly
mqtivated and quite talented, had no previous Multics experience.

54

.

"i-y ■■' ■ ■

COMPUTER TSTEM RESEARCH

■/

■

I

■■■

IV. PERFORMANCE ^

Summary

Progress was quite good in the area of system performance. By the
end of the reporting period, loads in excess of 30 users were common j
during day-to-day "one-CPU" operation, and system response was ade-
quate at that level. (During the next year, it is hoped to increase the
acceptable load to approximately 50 users for the single-processor,
256K of core memory configuration; with both processors and 384K of
core, a considerably larger load will be supportable.) Note that, al-
though the system is operated most of the time with the system par-
titioned (one CPU and 256K for service, the other CPU and 128K for
development work), there are scheduled sessions each week during which
the full dual-processor configuration is used as the service system.
These full-configuration sessions allow particular attention to be paid
to issues of reliability, tuning, reconfiguration, and operational proce-
dures. The remainder of the time, the development system is reserved
for the testing and checkout of new systems, so as not to disrupt
normal service.

Principles

Three principles worthy of note emerged from the Group's work in the
area of performance improvement. The first is a design principle — or
attitude -- which holds that system modules should be so arranged as
to cause the user to pay for only those features that he explicitly in-
vokes. This was the approach taken in, for example, the redesign that
changed the mini- and full-Shells into the command processor (System
6.0). It has also been encountered in many other areas of the system.
The basic point is that generality of function need not be sacrificed to
efficiency, but neither should it be achieved through an implementation
that is inefficient for commonly used specific functions. The second
principle is that careful and extensive metering of system performance
is indispensable. Indeed, much valuable tuning information was derived
from a few simple commands that allowed Group personnel to "browse"
over the performance characteristics of the running system. This in-
formation, in conjunction with tuning commands, allows system adminis-
trators to dynimically change from any console parameters affecting
system performance. (It should be noted that controlled system experi-
ments are elaborate to set up, and nearly impossible to repeat; as a
consequence, on-line tuning with a "live" user population has been an
important stratagem.) The third principle is that judicious choice of
which system modules to convert to hand-coding pays large dividends.
The striking success in the Page Control area was mentioned previously.
At year's end there were strong indications that hand-coding the argu-
ment validation portion of the Gatekeeper would also have very significant
effects upon system performance. However, most of the system will
continue to remain in PL/l.

55

. . ■ ■

■

COMPUTER SYSTEM RESEARCH

Comparison with CTSS

Table I shows the rather dramatic improvements accomplished during
the year, with both CPU time and dollar charge decreasing to roughly
one-third of the levels at the beginning of the period. The figures are
gathered from the execution of a fixed series of commands, input to
Multics by tising the PDP-8 display computer over a Dataphone line.
The "script" entails the inputting, compilation, editing, recompilation,
and execution of a Fortran program that calculates prime numbers.
In broad outline, this "debugging sequence" is fairly typical of time-
sharing system use, although it does not really take advantage of or
exploit the greatly increased generality and functional features of the
Multics system; nevertheless, the Fortran "script" is run on a regular
basis since it can be considered a "worst case" comparison between
Multics and other systems. As can be seen, the version of Multics
that was current when the system was made generally available on
1 October furnished somewhat superior performance to that of CTSS
in most categories. Only the average response time (how long it takes
for a command to be reacted to by the system) compared unfavorably
at that point in lime. By the Spring of 1970, Multics showed a clear
superiority over CTSS in all categories. (In the area of response time,
where the two systems appear from the table to be essentially equiva-
lent, it should be noted that Multics was more heavily loaded than
CTSS at the time the statistics were gathered; for equal loads, the
response time on Multics beats that of CTSS). Unfortunately, the 8.0
version of Multics (which was installed in June of 1970) had not yet
been measured in all these categories at the time this report was
written. However, indications from other metering tools and the sub-
jective "feel" of the 8.0 system are that it has surpassed the perform-
ance of the 7.0 system by a substantial amount. (Further tuning of
the 8.0 system is expected to make the difference even more notice-
able.)

V. HARDWARE

Hardware on Site

The major change in the hardware complement during the year was the
previously referenced changeover to fixed-head DSU270 disk units.
These devices offer a transfer rate of approximately 55,000 36-bH
words per second, with a mean access time of 26 milliseconds. Each
unit has a capacity of 2.5 million words, but the number of units on-
line to the system is essentially limited only by the number of con-
trollers. Currently, 10 to 15 disks are being employed through a single
controller. An important consideration here is the fact that, as system
usage increases and a need for increased disk capacity is felt, more
disks (and controllers) can be added without necessitating major soft-
ware changes, Actually, it is anticipated that the DSU270,s will

56

- '-V-r-V'■"'*•

COMPUTER SYSTEM RESEARCH

eventually be augmented by DSUlTO's, to which similar considerations
apply. The DSUl70's (which are GE's equivalent of the IBM 2314 mul-
tiple disk-pack drive) offer a transfer rate of 69,000 words per second,
have a mean seek time of 75 msec, a mean latency of 12.5 msec, and
will be more economical when they become available. (Initially, an
IBM 2314 unit will be used.)

Hardware Performance

Difficulties with the performance of the hardware, leading to system
crashes, were experienced during the reporting period. Indeed, with
the increase in the stability of the software, hardware-caused crashes
came to outnumber those attributable to software. System-crash
analysis revealed that the electrical grounding of the GE 645 was in-
adequate. (At one point, the use of a vacuum cleaner to remove the
chads from the card punch could cause the system to crash!) Suitable
changes were made in the machine room, but, at year's end it proved
necessary to run a ground cable to the basement of the building to
make the grounding adequate. Another hardware problem that showed
up in crash analysis was the occasional mis-writing of the first 64
words of 1024-word drum records. This proved to be the result of a
subtle design error in the drum timing which was corrected at the end
of the reporting period. System crashes were also caused with some
frequency by core-memory failures and DSU270 problems. These prob-
lems are currently receiving intense attention from hardware specialists
who have been brought in by General Electric from its Phoenix facility.
Many of these hardware problems were only exposed under the heavy
system loads experienced during the latter half of this reporting period.
It is expected that system reliability will be brought to a satisfactory
level during the next year.

VI. ADMINISTRATION AND OPERATIONS

In November 1969, the day-to-day administration and operation of
Multics was turned over to the M.I.T. Information Processing Center
(IPC), allowing the Computer System Research Group to devote itself
more fully to its research and development role. Responsibility for
providing user consultation and for distributing documentation was also
assumed by the Center. The GE 645 operators are also now adminis-
tratively responsible to IPC.

Excerpts from the announcement to the M.I.T. Faculty and Staff by
Richard G. Mills (then M.I.T. Director of Information Processing
Services) are of interest:

"The Center will cooperate with Project MAC in the continuing
development of the Multics system, while providing the M.I.T.
community with a powerful, sophisticated, and reliable remote-
access computer utility. We expect that many of the application

57

■
- ■ ■ ■

/

r v
COMPUTER SYSTEM RESEARCH

programs now operating under CTSS, and possibly other user-
developed subsystems now running in other time-shared com-_ >
puters, will be transferable to the Multics environment with an
acceptable level of program-modification effort. Once in Multics,
these programs can begin to benefit from the improved capa-
bilities that are available in the new system. The cost-perform-
ance ratio for Multics, initially about equal to that of CTSS,
will improve considerably over the three-year initial period.
Multics will supplant CTSS as the Institute's primary general-
purpose time-sharing system, and CTSS service will be termi-
nated (with appropriate notice) when Multics has proved its
ability to support the work now being done on CTSS . . .

"This announcement carries out the new policy of explicitly
committing to provide a major service component for a stated
minimum time period. In the case of Multics. a commitment
period of three years, beginning 1 October, 1969, was recom-
mended by the Information Processing Advisory Committee,
endorsed by the Information Processing Advisory Board, and
approved by the Provost.

"The significance to users of such a commitment is that it pro-
vides a basis for planning and proposing research and educa-
tional tasks with the assurance that the computer-system base
on which they rest will not be unexpectedly swept away. A three-
year minimum commitment, of course, does not mean that we
expect Multics to be terminated at the end of three years; in
fact, we would hope after a year of experience with the system
to announce a substantial extension of the commitment period."

At the end of the reporting period, the new arrangement was working
well, with IPC personnel becoming increasingly involved with system-
maintenance functions. In addition, some IPC personnel were making
contributions to the system's command repertoire, the "help" and "mail"
commands mentioned above being prominent examples.

VII. ARPA NETWORK

Background

In order to study the issues involved in large-scale computer networks
and to enable a widespread user community to benefit from the work
being performed on a number of advanced computer systems, the Ad-
vanced Research Projects Agency (ARPA) has initiated research into
the formation of a computer-to-computer network among those systems
that have been developed under its sponsorship. Multics is, of course,
one of these systems, and considerable work was done on the network
by members of the Group during the reporting period. (In the following
discussion, each system that is a node of the network is referred to

c

l

58

■ ■ ■

COMPUTER SYSTEM RESEARCH

as a "host'. At any given network site, there may be one or more
host systems; at Project MAC, both the Multics GE 645 system and
the Dynamic Modeling and Computer Graphics Groups' PDP-6/10 sys-
tem are network hosts.) Since the network is in itself a very large-
scale computer utility system, it is expected that the network will play
an increasingly larger role in the Group's activities in years to come.

Physical Message Communication

The ARPA Network involves a multi-level hardware and software sys-
tem. At the lowest level is the physical-communication network, man-
aged at each node by a specially built device known as an Interface
Message Processor (IMP). This hardware, along with standard control
programs in the IMP, provides the basic facility of sending raw mes-
sages from one computer to another. A special hardware interface
between M.I.T.'s IMP and Multics has been constructed by A. K. Bhushan,
and, as of July 1970, the communication path between the IMP and the
Multics I/O module is in final checkout.

Logical Communication Paths

A higher level of network control protocol must be supported by a soft-
ware module known as the Network Control Program (NCP). This
module must be implemented within each host computer system to
factor the raw message-transmission capabilities provided by the IMP
network into generalized communication facilities for individual user
processes at a host.

The network participants at Project MAC, several of whom are mem-
bers of the Computer System Research Group, have been engaged in
discussions with representatives of other sites concerning the definition
of a common network protocol. Each site will implement an NCP which
acts jointly with other NCP's according to the protocol in creating,
maintaining and destroying communication paths. As of June 1970, 'the
Network participants appear to be in fundamental agreement concerning
the protocol and are proceeding to settle the details.

Software modules implementing communications between the Multics
NCP and its IMP are currently being coded. The NCP is under design
and preliminary coding has begun. We intend to have an operational
NCP communicating with the Network by early Fall.

Inter-Host Software Protocols

Several still-higher-level software protocols are possible, the most im-
portant of which is a "logger" protocol. Because the NCP only provides
communication facilities between two existing processes, some process
must exist on each host system which agrees to listen to the Network
and create processes for Network users upon proper identification. In
Multics the Answering Service process performs this function for users

59

M ' >> ^ j

■

'COMPUTER SYSTEM RESEARCH

dialing up over typewritei^-Gliannels, and it will be modified to provide
this function for Network users as well. However, there must also be
some protocol by which a potential user first gets the attention of the
logger process, establishes communication with it, then establishes
communication with the created process. As of June 1970, the issue of
a standard logger protocol for all hosts is unresolved. Network partici-
pants at Project MAC and Lincoln Laboratory have agreed to take the
lead in formulating such a protocol. The Network participants will
probably take up this issue once the basic NCP protocol is officially
promulgated.

VIII. GRAPHICS

Another area with which the Group is becoming more involved is that
of terminals with graphical-display capabilities. The basis for this
involvement is twofold: not only is it desirable for Multics, as a
general-purpose system, to support such display terminals, but it is
also the case that a major point of interest of the ARPA Network is
a wealth of sophisticated display hardware and software that will be
made available. Graphics-related work during the reporting period
focused on the development within Multics of a General Graphics Sys-
tem and on a new teletypewriter device interface module (TTY DIM).

The Multics General Graphics System

The first version of the Multics General Graphics System was developed
during the reporting period and is currently employing the DEC PDP-
8/338 display computer as its display device. Because of the wide
variety of displays that exist and may be connected to Multics, a par-
ticular objective of the graphics effort is to avoid the kind of frag-
mentation among users that occurs when a given group writes a soft-
ware package that is keyed to a single device: not only is the user
tied to that device, but the resulting software cannot be shared with
users of slightly different but functionally equivalent hardware. To
avoid this situation, it is planned that a Multics graphics user will
manipulate device-independent three-dimensional picture descriptions
in a per-user "working graphic segment" through the use of General
Graphics System primitives. When a user issues a display call, a
"graphic structure compiler" for his particular device type is invoked
to produce a display command stream and dispatch it to his particular
type of display device through the Multics I/O system. A graphic
structure compiler which produces an ASCII-encoded command stream
for a two-dimensional static display such as the ARDS console is cur-
rently working, with the PDP-8/338 used as a simulated ARDS. When
the new ring-0 typewriter DIM (discussed below) is installed, it will
convert this command stream into actual hardware commands for the
ARDS. Alternatively, the command stream can be sent as-is through
the ARPA Network for subsequent interpretation by the computer

I

60

i.

<

COMPUTER SYSTEM RESEARCH

serving the remote user's display. Work is currently under way to
develop a graphics structure compiler capable of providing a general
three-dimensional x epresentation which may also be transmitted through
the Network. Note that, when new graphical devices are added to
Multics, it will be sufficient simply to add another conversion table to
the TTY DIM; no changes to the graphics^system itself will be neces-
sary. There also exists a graphics editor through which a user can
manually edit and display graphic items. These items can be stored
in a "permanent graphic segment" for later pickup and use by a
graphics program.

The New TTY DIM

As mentioned above, the Multics General Graphics System will drive
the ARDS console through a new teletypewriter device interface module.
This TTY DIM, which was in the final stages of checkout at the end
of the reporting period, is of both abstract and practical interest. It
is table-driven, the table basically representing a directed graph of
operations and branches. The logic is sufficiently general to be able
to accommodate a wide variety of character-oriented terminals. (Such
terminals are becoming more and more numerous of late; the new
TTY DIM will be able to deal with both the familiar types of hard-copy
devices and the new soft-copy devices such as the storage-tube ARDS
and the refresh-display computer IMLAC PDS-1.) The terminals may
be connected over different types of channels, or according to different
disciplines on the same channel. It is particularly interesting that the
new TTY DIM is an instance of a table-driven device interface module
that allows a device's characteristics to be specified in sufficient de-
tail for it to be completely responsible for operating a terminal. The
fundamental solution to terminal operation which it represents is felt
to be relatively easily exportable to other machines; for, although
some details of the table format and the interpreter program are
specific to the GE 645 Generalized Input Output Controller, the bulk
of both is general, and the GlOC-specific aspects could be replaced by
more abstract representations. The interpreter program itself is
written in PL/1 and should be usable elsewhere. Also under develop-
ment is an unsophisticated compiler to facilitate the creation of tables
for new devices.

IX. WORK IN PROGRESS AND FUTURE PLANS

Functional Capabilities and Performance Improvements

Multics projects in progress at the end of the reporting period include
the following.

Standard Service System

The policy of causing all present system modules to adhere to Standard
Service System criteria continues. In addition, the scope of the Standard

Vk'

61

■ ■ ■. ^xmMi&^m^-:-

COMPUTER SYSTEM RESEARCH

Service System is broadening with the planned introduction of such
features as the commands of the Dartmouth System, a LISP interpreter
and an APL interpreter. All Standard Service System programs are
also being converted from the EPL to the TPh/l language. This not
only offers the improved efficiency of the PL/1 object code, but allows
halting of EPL maintenance.

File System

Also being converted to PL/1 is the File System. In conjunction with
the recoding, certain design modifications are being effected as well:
A new format is being introduced to allow for "small" directories
(less space-consuming when the number of entries is low). The most
frequently used paths through the File System are being optimized,
which should result in significantly improved performance since some
90% of processing is performed by some 10% of the code. The binding
of the various modules is being altered to minimize the number of
page faults incurred by the paths chosen for optimizing.

Fault Interceptor Module

Many modules are being reworked to add new functional capabilities
and to improve existing functions. Most basic of these modules is the
fault interceptor module (FIM), which invokes the appropriate system
routines in response to hardware-fault signals. Because of its central
role in a process, the FIM has gained numerous responsibilities by
accretion; therefore, the redesign is aimed at making the FIM more
modular, to increase its speed for performing its basic fault-handling
functions, and to clarify its other roles.

Other Modules

Other key modules being reworked are the interprocess communication
facility (which is undergoing a thorough redesign to speed up its per-
formance and extend its capabilities to include a secure, general
message-passing mechanism), the Linker and the Gatekeeper. Still
other important areas include the backup facility, management of the
storage-device hierarchy ("multi-level storage" -- which is responsible
for assigning less frequently us^d segments to slower-speed devices),
the Binder, the User Control module (which manages logging in and
out of the system), and the maintenance tools used in generating new
Multics System tapes ("MSTs").

New Features

Two console-related additions to the system are the ability for a
single process to drive multiple consoles, and a facility for on-line
console-to-console communication. The supervisor is being modified
to allow flexible specification by the user of which directories to
search for a segment when a linkage fault occurs; this will be a more

62

I

i

COMPUTER SYSTEM RESEARCH

general form of an interim facility introduced during the reporting
period which allows the insertion of a single user-specified directory
into the search path. Another supervisor change (referred to as "limit
stops") will broaden the system's accounting facilities to allow for
interruption of a process that has exhausted its allocated resources --
particularly with regard to machine time. Work is also being per-
formed (by G. E. Cambridge Information Systems Laboratory personnel)
on the APL language, which has become quite popular at some instal-
lations, and the embedding of the GE 600-series monitor GECOS under
Multics.

Performance Improvements

Finally, continuing system-improvement tasks include the reduction of
per-process segments, the continued propagation throughout the system
of the object segment format, and the reduction of the amount of wired-
down (non-paged) memory employed by the supervisor.

Thesis Research

Among the new features under development, three are related to thesis
research. One of these, the ability to alter the hardware configuration
while the system is running ("dynamic reconfiguration") is being im-
plemented by a graduate student as part of his thesis; by the end of
the reporting period, the ability to reconfigure processors had been
demonstrated in a test system. The other two (a "save and resume"
facility whereby a process may be restarted after an automatic logout
resulting from a system crash, and an "absentee user" facility where-
by a process can be created to perform a series of commands without
console interaction) are being implemented by staff members who have
benefited from the thesis research performed by graduate students.

Student Participation

Undergraduate students are playing an increasingly large role in
Multics development. Summer projects being performed by under-
graduates include the introduction of a major portion of the Dartmouth
"SIMON" (simple monitor) system under Multics in a simulated en-
vironment, the development of a LISP interpreter, and the conversion
of the Multics assembler from a combination of GECOS Fortran and
GMAP (635 assembler) code to PL/1 and 645 assembly code, which
is directly maintainable under Multics. Additionally, the Student In-
formation Processing Board intends to expand and improve its SIPB-0
subsystem in the Fall.

Future Plans

Aside from expanding efforts in the areas of graphics and the ARPA
Network, two Multics-related areas are of particular long-range
interest to the Group. The first of these is the topic of follow-on

63

.... ■ ■ . ■■■.■■■■ :■■ :- ..■-.■ ■.■...■■■,.-.

',,:m--:ix^^'

COMPUTER SYSTEM RESEARCH

hardware to the GE 645. At the request of the M.I.T. Information
Processing Center members of the Group are working in conjunction
with G. E. Cambridge Information Systems Laboratory personnel on the
specification of a design for hardware that will stand in approximately
the same relationship to the new GE 655 as the 645 stands to the

thP rV* ? 1S' o1^ o^ maChine Wil1 empl0y the same technology as
the 655 (some 2 to 3 times faster than the 635/645), with the addition
of appending hardware and a few operation codes. A specification s
being developed that requires only a modest redesign of the 655, and
that is upward-compatible with the Multics software for the 645 Along

1^71 ferf0rmance' the follow-on hardware should offer greater

s th 6y4'ytoV1tr ^^ 'I"' Cl0Ser t0 the stand^-P-duct line 65' htn
is the 645 to the 635. By the end of the reporting period, early drafts
of the specifications had been produced.

l^ZT11^01' 1°ng-ranee issue is ^at of the "exportability" of

f tot n; 2Z "t 'f" literally t0 mean the runni^ of MuUics on
abmt of Ideas TT*' ^T' " iS "^ t0 im^ the t^^
ball?of Mu " m ^ SenSe 0£ the Promul^tion of the conceptual
bases of Multics, and of the lessons about the development of large
systems learned in the course of the Group's work on Multics The
la ter aspect is, of course, covered in the journal articles, ;oports

talks, papers and books about the system that have been o^ Je beüiff
produced by members of the Group. In addition, work has be^un on
bringing both the system's internal (i.e., system-programmerSriented)

uoryentTa^nr thtVyfm programs themseiv's ^to p^~d)

effoif in reLd rP
P t T^ ^ SyStem 1UCidly' al0ng With a like

be a JL t0
K

external (l-e., user-oriented) documentation should
be a major means by which the ideas of Multics are propagated
Present plans are to publish in book form, in the near future the
^l^^ogx^Mier^Man^l (MPM) and an examination of t'he system

o TM rPT* ^ Pr0f- Elli0t L 0rganick- Subsequently, publication
of the Mulhc^SystemProgrammers' Manual (MSPM) (whick is current-
ly undergoing heavy revision) is planned. current

64

'■' ■ ■ ■■.- ■ -... ■:...'., I.-■■

I

: ,;

COMPUTER SYSTElvi RESEARCH

Technical Papers about Multics

IcM^/n* H
H« ^ J' W- Ginte11*' nThe Instrumentation of Multics"

Ä S
D
eCOnd

f
SymPosium on Operating System Principles (October 20-22

1969) Prmcetpn University, pp. 167-174. l^ciooer JU-22,

Spier, J M., and EL. Organick*, "The Multics Inter-Process Com
munxcation Facility", ACM Second Symposium on Operaüng System
Principles (October 20-22, 1969) Princeton UniVeJty, pp 83 91 '

Grochow, J. M., "Real-Time Graphic Disnlav of Timo QK. ■ a
Operating Characteristics" ArivTr» t I * ^J1,"16"8^1^ System
Press, 1969. StlCS ' AFIPS Conf- Proc- 35 (1969 FJCC), AFIPS

^mo^-'secotd APM' ^^ ^ R- C- Dal^ "The Mul«cs Virtual Memory , Second ACM Symposium on Operating System Princioles
Princeton, New Jersey, October, 1969. «" principles,

M.I.T. Theses Related tö Multics

Ivstm0"* M,<5
ntU

h
SP?Si0rf 0f Processes in ^ Multiprocessing Computer

ÄAC^^AD^SS^ EleCtrical Enginee^ Feb^ ™°'

Non-MAC author

65

:

'

1

.

INTERACTIVE MANAGEMENT SYSTEMS

ORGANIZATIONAL DECISION MAKING

Prof. M. M. Jones

P. Brandler
S. Carney
D. R. Dawson
R. M. Elkin
R. S. Goldhor
R. C. Goldstein

E. T. Moore
S. E. Niles
L. K. Platzman
Prof. M. S. Scott-Morton
A. J. Strnad
D. M. Wells

Electrical Engineering Department

H. E. Brammer
Prof. J. D. Bruce
A. I. Fillat
L. A. Kraning

Civil Engineering Department

J. N. Jackson

Mechanical Engineering Department

C. E. Barringer

Project TIP

M. M. Kessler
W. D. Mathews

SIMPLE PROJECT

Prof. M. M. Jones

R. M. Berman
C. R. Mehta

S. K. R. Murthy
R. C. Thurber, Jr.

67 Preceding page blank

■

INTERACTIVE MANAGEMENT SYSTEMS

ORGANIZATIONAL DECISION MAKING

I. INTRODUCTION

At the outset of this project in June 1969, two major lines of research
were proposed. The first took as its starting point the computer facili-
ties then available at M.I.T. and examined the ways in which these
could be used to further general management objectives. Inextricably
linked with this was our second objective of studying the decision-
making process itself in order to discover how it could be improved
through the utilization of a highly interactive computer system.

Our study took the form of a series of experiments conducted in
several of the laboratories and academic departments within M.I.T.
which were more or less similar to general administrative organiza-
tions found in government and industry. In each case, the administra-
tive personnel concerned were given access to the Compatible Time-
Sharing System (CTSS) computer. During the relatively long period of
CTSS's existence, a large number of programs had been developed
which offered promise of being useful for mamigement functions. These
ranged from simple text-editing and printing programs to elaborate
facilities for sorting, plotting and retrieving information.

Without going into detail, the results of most of these experiments indi-
cated that CTSS was not very effective as an interactive problem-solving
and decision-making system for managers, for it appeared that the real
problems faced by most administrators and managers are significantly
more complex and require a more highly interactive environment than
could be provided by the existing computer programs and systems.

Despite the disappointing conclusions, these initial experiments provided
a store of very practical experience and knowledge essential to the de-
velopment of useful decision-making tools — information difficult to
obtain by other means. Also, it should be emphasized, not all our re-
sults were negative. The two largest efforts, those within the Electrical
Engineering Department and in Project MAC itself, led to systems that
were of significant operational value and continue to be actively used.

II. E.E. DATA MANAGEMENT SYSTEM

The Electrical Engineering Department management system maintains
information on each course offered by the Department each semester,
and en each faculty member, course secretary, and graduate teaching
assistant in the Department. This information is stored as one large
file of plain text in CTSS, with special codes to identify the specific
items in the file. The standard CTSS text editing commands (TYPSET
and RUNOFF) are used to update the file. Special sorting and report-
generating programs are used to prepare extensive hard-copy reports
used within the Department.

I

69 Preceding page blank

■ ■ :-

INTERACTIVE MANAGEMENT SYSTEMS

This system was originally developed (with internal Electrical Engi-
neering Department funds) to aid in solving the complex problem of
assxgning the very large E^E. teaching staff to the large numbers of
courses taught each semester. Once that work was completed the
data base was expanded to include salaries, charges to research grants
and contracts, and information on funded chairs. Then additional pro-
grams were written to perform other report-generation functions. Only
the latter, more general work and the extensive documentation of the
system have received Project MAC support.

Although the system is actively used, it is quite primitive in many
respects. For example, it employs a very simple, sequential data or-
ganization, does no input-data validation, and is oriented more toward
report preparation than interactive decision-making. Despite these
drawbacks, the system serves a very useful function and is now an
integral part of the Electrical Engineering Department operations. In
addition, it has attracted widespread interest in the Chemical and Civil
Engineering Departments of M.I.T, as well as by the M.I.T. Comptrol-
ler's Office. The enthusiasm with which this information-management
system has been received by these academic and administrative depart-
ments at M.I.T. is a strong indication of the seriousness of the need
for such management tools both here at the Institute and elsewhere.
The E.E. system building demonstrated once again the value of one
consistent central data base that can be used for a variety of purposes.

HI. MACAIMS

The work at Project MAC on MacAIMS (Advanced Interactive Manage-
ment System) was designed more to extend the state of the art in in-
formation management than to solve a specific management problem
However, throughout MacAIMS development, the problems involved in
managing Project MAC itself and similar research organizations - both
government and industry — were kept clearly in mind.

Several facilities of the MacAIMS system are currently in use by MAC
Headquarters. In contrast to the system used by the Electrical Engi-
neering Department, MacAIMS employs a rather complex internal data
organization designed to facilitate interactive retrieval of information.
It also has a much more sophisticated user interface, including a con-
siderable degree of input-data validation. Function-oriented programs
written so far are in the areas of personnel-data management, budget-
ing, equipment inventory, and purchasing.

The personnel management system is the most extensive of the four
functional applications and has been most fully developed. In addition
to storing the standard information on name, address, telephone number,
age, salary, etc., we have found it important to associate effective
dates with a number of these fields and thereby be able to store non-

70

■

INTERACTIVE MANAGEMENT SYSTEMS

current information as well as changes that are anticipated but not yet
formally effected. Thus, the system is useful for showing comparisons
over time. The personnel data-base structure itself is hierarchical and
directly reflects the structure of most organizational entities. For ex-
ample, each Project MAC person is associated with one or more re-
search groups, and each group is supported by one contract. For every
research group there is one group leader.

Careful attention has been paid to the issues of privacy of information
and of access control. Thus, each individual may inspect the entry that
pertains to him, and each group leader may access information about
the people in his group but not in other groups. The Headquarters staff
may have access to all information in the file.

The budgeting system developed within MacAIMS effectively demonstrates
the inadequacies of the CTSS environment for most real management
problem-solving applications. Project MAC has about 30 distinct re-
search groupings (when separate contracts and all other pertinent fac-
tors are considered), for each of which it is necessary to store about
25 discrete pieces of financial information. Furthermore, in order to
provide adequate space for both the past and the future, it is necessary
to store about two years (24 months) of figures: 30 x 25 x 24, or
18,000 individual items of information. Since this information is highly
interrelated by pointers which link associated items, it is necessary
that the entire data base be stored in core memory for fast retrieval.
By the time the structured information and the programs themselves
are added, the total space required easily overflows the avaiM)le core
memory of the CTSS system. Faced with this dilemma, we decided to
work with only a subset of the complete organization structure and to
continue system design in order to gain some experience with inter-
active budgeting systems.

The purchasing subsystem of MacAIMS is designed to help with the
general procurement problem. As currently implemented within Project
MAC, it assists with preparation of standard M.I.T. purchase orders.
Also it maintains an on-line purchase journal which may be searched
to determine the status of any individual purchase order, the current
outstanding commitments, the total orders given to any vendor, and the
total expenditures by any research group, etc.

The equipment-inventory programs maintain records on typewriters,
dictating machines, and data-communication equipment, and permit
interactive retrieval of specific information as well as preparation of
standard reports. Full historical data on utilization and charges is
also maintained.

In addition to these specific functional programs, much of the initial
MacAIMS development effort was devoted to building a suitable general

71

.

INTERACTIVE MANAGEMENT SYSTEMS

data-management environment. Once this environment was available,
the implementation of any specific function was a relatively straight-
forward task.

The substantial investment maiie in developing this general environment
has paid off. Initially, functional programs were written to perform
the same operations that previously had been performed manually. Once
these programs were available, the administrative personnel began to
request additional capabilities. They also came to Mac AIMS with un-
usual one-time information requests, e.g., the annual survey on data-
processing employment or the annual Project MAC audit. Because the
basic MacAIMS environment had been built with great care, the most
complex additional capability was implemented with only a few days of
part-time work by a student programmer. Frequently, the one-time,
special requests could be handled in minutes. Thus, we feel that we
have demonstrated the general utility of the MacAIMS system, at least
in part.

During this year we also began the movement of the entire MacAIMS
system from CTSS to Multics, including a substantial redesign in order
to take advantage both of the unique capabilities of Multics and the
experience gained through use of the original system. By the end of
June 1970, coding had begun on most of the key modules of the new
system with the expectation that initial applications tests could be run
in the Fall of 1970.

In summary, the problem of developing a suitable general-purpose,
man-computer, decision-making environment is considerably more com-
plex than might at first be thought. However, as a result of our work,
we now believe that we know how to solve most of these problems and
look forward in the coming year to developing a system that will be
of significant practical as well as theoretical importance in a wide
variety of application settings.

IV. COMPUTERIZED BUDGET CONTROL

The system initially proposed for computerized budget control in the
Mechanical Engineering Department had earlier been developed in an
M.I.T. interdisciplinary research laboratory, but when the system was
transposed to an academic department, a wholly different set of prob-
lems had to be solved, e.g., the various contract budgets were unre-
lated in terms of sponsor, initiation and termination dates. Moreover,
as was discovered after several months' experience, the time-lag in
notifying the principal investigators proved too great in terms of timely
budget decisions. Nevertheless, because of the lessons that had been
learned from the experience, the system was fully documented in an
internal report ("Computerized Budget Generation and Expenditure Con-
trol System", by C. E. Barringer and K. R. Crossen, June 1970).

I

72

■'■ ^ ■ ■■■■^■.■; ^^.vy.^-... .-.,.,,:'^,.^■.■4-^ •:'.-. s.-.;-

INTERACTIVE MANAGEMENT SYSTEMS

Subsequent work in this period included efforts to draw together a
basic personnel file data bank that could be used for various depart-
mental purposes.

V. PROJECT MANAGEMENT IN BUILDING DESIGN

This effort was part of the doctoral thesis research in computer-
assisted building design by James Jackson in the Department of Civil
Engineering. The over-all purpose was to develop means for integrating
the various computer systems used in such designs. Among the goals
of the research was the devising of a data structure for a project file
and a scheme for communication among the multiplicity of computer
systems involved in a building project.

The work concluded with the completion of the Ph.D. thesis in June
1970 ("Building Data Management System").

VI. PROJECT TIP

During the reporting period, several activities in the Technical Informa-
tion Program (TIP) received support from Project MAC, including the
following:

1) Improvement of the TIP System's capability as an administra-
tive information-handling facility;

2) Devising means to enhance the formatting ability of the TIP
retrieval subsystem;

3) Creation of demonstration data bases.

Details of work in all these areas are reported by TIP in the various
reports issued by that Project.

Thesis

Fillat*, Andrew I., and Leslie A. Kraning, "Generalized Organization
of Large Data Bases", Bachelor of Science and Master of Science,
Department of Electrical Engineering; also MAC TR-70, June 1970,
AD 711-060.

* Non-MAC author.

73

■

■

INTERACTIVE MANAGEMENT SYSTEMS

SIMPLE PROJECT

From June 1969 until January 1970, the SIMPLE group continued the
experimental implementation of the SIMPLE Simulation System on the
IBM 1130 computer. (Progress Report V describes the origin of the
program.) In the middle of January, however, we decided to terminate
the effort to implement the system on the 1130. It appeared at that
time that the additional time and effort needed to complete that imple-
mentation could be better spent beginning the implementation of SIMPLE
on the Multics system now that the latter was available. SIMPLE dif-
fers from existing simulation languages in that it was designed for use
on a system permitting both time-sharing and the operation of a
graphical-display device.

Since January, a preliminary SIMPLE system for Multics has been de-
signed, and implementation is proceeding on schedule, /s of August
1970, a preliminary system will be operational. This preliminary sys-
tem consists of a translator which translates a SIMPLE program into
a PL/1 program acceptable to the Multics PL/1 compiler. We decided
to write a translator rather than to try to modify the Multics PL/1 be-
cause a translator could be written comparatively quickly and simply,
and still provide the user with all the features of the SIMPLE language.
Also, the PL/1 compiler is still being constantly changed and updated.

Currently, we are testing and upgrading this preliminary translator.
We plan to use the system during a Sloan School Summer Session
Seminar on simulation techniques at the end of August. The participants
in the Seminar will use the SIMPLE language to construct, debug and
execute simulation models. Thus, the Seminar should provide a good
"first test" of the new system.

The SIMPLE language, as currently implemented, is described in the
"SIMPLE User's Manual", an internal document almost completed which
will be distributed to participants in the Sloan School Seminar and sub-
sequently will be distributed more generally.

Once this initial version of the SIMPLE system is thoroughly debugged,
we plan to spend the Fall and Winter adding additional features to the
system such as more statistical routines, more tracing and debugging
facilities, better error diagnostics, and possibly a graphical-display
language. Also, we expect to complete the design and start the imple-
mentation of an interpreter to replace the present translator. When
this interpreter is available, all the design goals for incremented simu-
lation will be satisfied.

74

■ ■

...

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

PROGRAMMING LINGUISTICS

Prof. R. M. Graham

D. D. Clark
J. D. DeTreville
R. S. Eanes
J. F. Haverty
B. P. Lester
P. S. Malek
P. L. Miller

S. R. Murphy
J. I. Seiferas
H. J. Siegel
J. E. Suss man
C. A. Vogt
M. W. Webber
S. N. Zilles

EXTENSIBLE LANGUAGES

Prof. A. Evans, Jr.

W. D. Bilofsky
A. J. Davidoff
M. W. Dickens
D. A. Henderson, Jr.
E. C. Horvath
B. D. Hubbard
P. M. Ledoux, Jr.

R. F. Mabee
J. R. Nestor
J. L. Piggins
J. E. Pinella
L. I. Reich
B. Rosenbaum
R. H. Thomas

75

•

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

INTRODUCTION

The main theme of the research of the Programming Liuguistics/Ex-
tensible Languages (PL/EL) Group continues to involve improving our
understanding of the basic concepts in programming languages. Our
work centers about language formalization and language extension. We
continue the close relationship between teaching this material to under-
graduates and developing fresh approaches to it.

Motivation and Background

The function of a programming language is to serve as a set of con-
ventions for communicating algorithms — the communication being
either between people and people or between people and machines.
The efficiency of the communication process is clearly improved as
the conventions are better understood. This is just another way of
saying that it is advantageous that the programming languages we use
be accurately defined. Conventionally, programming languages have
been defined by English language descriptions, as written in manuals.
The modern idea in this area is to formalize the definition, using some
suitable notation. The discovery of what sort of notation is "suitable"
is a major unsolved research problem in this area, a problem that we
have been attacking.

The pay-offs for success include rather obvious ones such as enhancing
the process of teaching new languages and providing standards by which
to judge compiler performance. However, there are other advantages.
One application has to do with proof of correctness of algorithms. A
programmer producing a program which he claims to be a solution to
a problem should do more than just show that it works on one or two
selected data sets: He should also be able to prove that the algorithm
is in fact correct. Even more, he should prove that his implementation
of the algorithm is a correct one. Doing the latter requires that he
make statements about the program he has written, and such statements
can take on mathematical significance only if the language in which the
algorithm is expresses has been formalized. For example, as part of
such a proof, one might make an assertion like: "The effect of obeying
this statement is thus-and-so". Since such an assertion can be sup-
ported only by appeal to the definition of the programming language,
formalizing that definition is a prerequisite for making any formal
proof.

Anoihar pay-off from language formalization, one that up to now has
received much attention in the PL/EL Group, concerns language exten-
sion. A user of an extensible language facility is provided with a base
language and with tools so that he may build on to that base the fea-
tures that he needs. Communications from the user to the facility are

I

77 Preceding page blank
» -.. ^ .'.-».,. . • r: ,,* ■

■ /■■-'-.-v ,

i

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

of the form "Please understand that when I say thus-and-so I mean

fem^Ht8^'/!!'1'6 ^ USer,S aCtiVity iS s^^y^ to the system the
semantics tha he wants his proposed constructs to have, what he needs
is a notation for expressing semantics. Clearly, then, any progress
made in the area of language formalization will have an obvious pay-
off in an extension facility.

The word "semantics" which we have been using is a word that means
different things to different people. Let us discuss it briefly. The
usual dichotomy in programming-language definition has to dc with
|yn^x and semantics. Roughly speaking, the former relates to the
legal utterances in the language in question, and the latter to the ef-
fect of such an utterance when the program of which it is a part iT
executed. We do not concern ourselves with what some refer to as
pragmatics, which we term user interpretation, since it has to do with
how the user understands these effects. For example, the assignment

x := x + 1

might be a legal utterance (i.e., syntactically correct) in some language
Its semantics involves something like determining the current value of
he variable x adding one to it (if the value is a number) and storing

the result back into x. The user interpretation might be, "Tally one
more apple", or "Go to the next row", or "Step to the next case".

This discussion should be kept in mind by the reader when we refer
to formalization of semantics", since it implies certain limitations on
our current goals. For example, suppose the expression

A + P

appears in a program. If both A and P denote integers, our semantics
definition scheme will without difficulty ascribe semantics to this
phrase But the user interpretation might be that A counts apples and
P counts pears, and that such a sum is meaninglei"s. While a language
processor that assists the user by taking cognizance of such ideas te
clearly of interest, our current research has not been in that direction.

Long-Term Activities

Two activities continue to occupy our attention on a long-term basis-
teaching the undergraduate subject 6 231, "Programming Linguistics"
and support of the languages PAL and BCPL. Development of the 6 231
material ^ the research of the PL/EL Group have long- gone hand-in-
hand In 6.231, the basic concepts in programming languages are taught
largely by exhibiting a formalization of the semantics of PAL a lan-
guage that we have devised and whose sole purpose is to be taught
Although PAL, by design, is susceptible to a straightforward formal
definition, the creation and polishing of that definition have provided
both insight into the problems and valuable suggestions for ways to

78

■.-...-. iMMW ifRWtfi^j

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

■

proceed. PAL is implemented on several computers, the Multics imple-
mentation being used currently by our students.

BCPL has been an interest of the group since it was devised by Martin
Richards when he was at Project MAC in 1967 and 1968. The language
was designed to be useful for compiler writing, and must be judged a
success. Since the PAL implementation is in BCPL, and since use of
BCPL is fundamental to the LPS project of Prof. Graham, maintenance
and improvement continue to be important to us.

REPORT ON PROGRESS

A major part of the effort of the group has gone into teaching and im-
proving the subject "Programming Linguistics". We continue to derive
a large pay-off from the feedback from the teaching activity. The PAL
formalization is much more complete than it has been in the past, and
the documentation of it is almost entirely finished. Currently, this
documentation is in the form of notes to be used by students, and an
important job for the next year is to produce a more concise docu-
mentation of the formalization. The entire formalization is rather long,
and it is not clear what publishing route should be followed.

Doctoral Research

Robert H. Thomas has been concerned with one particular aspect of
language extension; he has been developing a model in terms of which
the user of an extension facility can specify the semantics of his con-
structs. The model involves a conceptual mechanism whose character-
istics are derived (although are rather different) from Landin's SECD
machine which has so influenced the PAL development. Many features
that are built into the SECD machine are programmable in Thomas's
machine, thus providing a very desirable form of generality. For ex-
ample, the binding of parameters in function application is under the
control of the programmer rather than being built-in. This promising
research will lead to a better understanding of an underlying model for
a language-extension facility.

D. Austin Henderson, Jr. has been pursuing doctoral research on the
problem of transduction of graphical input --a problem related to but
not directly in the mainstream of the rest of the group. The user of
any computing facility, whether it be for engineering design, language
extension, numerical analysis, or other purpose, must communicate to
the facility what he has in mind. Conventionally, such communication
has involved linear strings of characters, as for example in the text
of a program. All available experience with graphical communication
shows that there are problem areas for which linear text is inappro-
priate, at least when there is an alternative. Important developments
such as Sketchpad have been almost exclusively a matter of making
available to the user the ability to submit structured graphical data to

79

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

a computer through a (usually interactive) graphics interface. Most
existing application programs in this area have used rather ad hoc
methods for deducing from the graphical information what the user in-
tended: The developments of lexical and syntactic analysis (which have
so strongly influenced the prOgramming-language game during the last
few years) have received little attention in this area. Henderson's re-
search has been concerned with developing techniques for the analysis
of scenes. An analogy, which is not exact but which nonetheless may
be useful, is the following: Henderson's work is to the earlier ad hoc
schemes as compiler techniques such as precedence analysis and LR(k)
recognizers are to the crude schemes of the late 1950's. This project
has by now proceeded sufficiently far that useful results are anticipated.

BCPL Development

As mentioned earlier, the PL/EL group continues to be concerned with
the BCPL language and its compilers on Multids and other machines.
Both Prof. Evans and Robert F. Mabee have been active in a BCPL
Users Group, consisting of people from different installations in the
country who are interested in BCPL. Wfe have had two meetings at
Lincoln Laboratory at which various language topics have been dis-
cussed. We have produced at Project,MAC a computerized version of
the BCPL Reference Manual, and the Usjrs Group will consider re-
vising this to reflect proposed language changes. Of course, no one
can legislate these changes, but it seems likely that many of them will
be implemented.

Locally, Mabee has been concerned with rewriting the BCPL compiler
on Multics. All the programming done in the group is in BCPL, and
much of it would be improved significantly by a better compiler. We
hope to make the compiler run faster, and also to produce better ob-
ject code. The design is almost complete and much of the coding is
done. The code has been partially debugged.

As a separate activity, we have worked to make BCPL available out-
side M.I.T. The most exportable version of the language is that on the
IBM 360, and we have proyided tapes of the compiler for some 16 in-
stallations. We continue to regard a certain aipount of proselytizing
as within our charter.

i

PAL Development ' '

The PAL implementation has been little improved during the past year.
Any improvements in BCPL will, of course, make all PAL programs
ruri fasier. During this Summer, we hope to add some significant im-
provements to the PAL run-time system. This system is virtually
identical to what was written three years ago on CTSS. There is room
for improvement.

80

■ . i : i .,■,.,. i

i

"

I

I

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

Starting last Fall, we have worked with 80 to 100 students a semester
on Multicä using PAL. For this purpose, we have written a subsystem
that runs under Multics and which permits our students to use only
PAL and an editor, along with certain useful utilities. Continual im-
provements have been made in this operating system, and we expect
to make more during the Summer.

Research by Undergraduates

A senior thesis has been written by Edward C. Horvath on "APL on
Multics: Lexical and Syntactic Considerations". Horvath worked with
some of the Multics design team who were concerned with APL, and
he has documented certain aspects of the design produced.

Development of code-optimization strategies for the BCPL compiler
has been a senior thesis project of Paul Ledoux who expects to com-
plete the work during this coming Summer.

Several students associated with the PL/EL Group on a project basis
have made contributions. Judith L. Piggins has been concerned with
improving the PAL programming which is part of the PAL formaliza-
tion. A major conceptual change was made in these programs, and she
has been developing the new algorithms on the computer. The work is
substantially done and has already become a part of the course notes.

Michael W. Dickens has continued to work on the PAL compiler and
run-time system on Multics. Dickens's work has been a matter of
polishing the interface between the language and the operating system.

Louis Reich and Alan Davidoff have been concerned with improving the
PAL run-time system. Most of their effort has gone into devising a
proposal for an improved string-handling package. One of the problems
of improving the efficiency of any program is that it is frequently dif-
ficult to measure exactly how much improvement has resulted. Since
there is a PAL implementation on the TX-2 computer at Lincoln Labo-
ratory, and since the TX-2 has sophisticated hardware and software
tools for measuring the performance of existing programs, we took
advantage of the opportunity to make some changes to TX-2,s PAL and
to examine the improvement. The results were gratifying, and have
shown where to change the Multics implementation. Hopefully, the two
students will be available next Fall to continue this work. (If not, an
attempt Ayill be made to find other students to do this.) We hope'that
measuring tools on Multics will soon become adequate to do such work
here, but, if not, we shall continue to make use of the facilities at
Lincoln Laboratory.

John Nestor last Fall worked on improvements in the BCPL library;
he produced a general clean-up of a previously rather chaotic situa-
tion, and supplied documentation of the results.

'

81

i i

PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES

Bruce Hubbard has made significant contributions to the machine-
language library for BCPL. During this coming Summer, he expects
to write those parts of the library for the new BCPL that must be
coded in machine language.

Publication 1969-1970

Horvath, E. C, APL on Multics: Lexical and Syntactic Considerations,
B.S. Thesis, Dept. of Electrical Engineering, June 1970.

I

82

PROGRAMMING LANGUAGES

Prof. J. J. Donovan

H. Adler
A. Bagchi
P. G. W. Bras
C. A. Dancy
R. J. Fleischer
J. W. Johnson
C. A. Kessel
W. J. Klos, Jr.
N. V. Kohn

J. C. Lind
S. E. Madnick
R. Mandl
E. Nangle
R. Petrivalle
C. Ramchandani
J. L. Reuss
H-M. D. Toong
L. E. Travis

83

PROGRAMMING LANGUAGES

INTRODUCTION

The focus of all research and teaching activities of the group is pro-
gramming languages. The research has ranged through theoretical
models of programming languages, implementation of compilers, to
implementation of operating systems supporting these languages. The
theoretical work has been aimed at formalizing the relationship of
canonic systems to other formal grammars, using canonic systems as
a basis for a generalized compiler and for the development of quanti-
tative measures for programming languages.

The theoretical work uses a formal system called canonic systems
that was partially developed and enhanced here at M.I.T. A canonic
system is a simultaneous recursive definition of several sets of strings
over a finite alphabet. Canonic systems have been used to completely
specify a programming language and its translation (as reported in
1969 Progress Report, the work of Ledgard). They include many of
the so-called "context sensitive" features of a programming language.
A canonic system's specification and its translation of a language has
been used to derive a generalized translator (as reported in 1969
Progress Report, the work of Alsop). Complexity measures for canonic
system specifications have been studied.

RESEARCH ACTIVITIES

Relation of Canonic Systems to Other Formal Systems

We have proven a number of theorems relating canonic systems to
Post systems, Smullyan's elementary formal systems, and Chomsky's
hierarchies of grammars, the major theorem being that the class of
type i grammars is strongly equivalent to the class of type i canonic
systems, i equals 0,1,2,3. The class of linear, one-sided linear, meta-
linear, sequential, etc., grammars are strongly equivalent, respectively,
to the classes of linear, one-sided linear, meta-linear, sequential, etc.,
canonic systems. The practical motivation for proving such a theorem
is to assure that a generalized compiler using a canonic system as a
data base must halt. Therefore, we must limit the power of a canonic
system only to describe decideable sets. In classical linguistics theory,
it is known which grammars describe decideable sets and which do not.
Therefore, we are motivated to find some of the classes of canonic sys-
tems that describe decideable sets and use this restriction on canonic
systems as input to our generalized compilers.

Power of Canonic Systems

Canonic systems, which were first defined to meet the definitional needs
of programming languages, were felt to be too powerful since they
could generate nonrecursive sets. It is felt that a restriction should

85 Preceding page blank

I

PROGRAMMING LANGUAGES

;i

be placed on canonic systems to render them unable to specify non-
recursive sets yet powerful enough to specify computer programming
languages. The search for such a restriction is the motivation for the
theorems reported above relating canonic systems to existing formal
grammars. Yet we must find where programming languages are in the
hierarchies. We have proven that the set of legal programs of PL/1
is nonrecursive. Thus to specify PL/1 we do need the full power of
canonic systems.

Measures of Complexity

We have developed several simple measures of complexity using
canonic systems that are proportional to the resources (e.g., accesses
to memory, computer time) used by computers in translating languages
specified by canonic systems. One of these measures has turned out
to be proportional to the time of translating a program using a general-
ized translator that has been implemented on CTSS (reported in 1968
Progress Report, done by Alsop).

Using a canonic system C, which describes a set of strings, it is pos-
sible to generate a system Cn, called a proof measure function, that
has two arguments, the canonic system C and a string T that can be
generated by that canonic system. We have defined these proof measure
functions so that they are proportional to the length of the derivation
of a string T within C or proportional to the number of predicates
used in evaluating and producing tto string T in the caninic system C.
Both of these are an indication of the complexity of the number of re-
sources a computer may use in generating these strings. For certain
classes of canonic systems, algebraic bounds upon these functions can
be derived from the structure of the system. A practical computer
programmer is not interested in how long or how many resources it
takes to generate a string. He is interested in how long it takes to
translate a string. We have produced another transformation on C that
produces a system C-1 that characterizes the recognition of strings
generated by C. We have proven theorems relating the major functions
of C and of C"1, thus relating the complexity of the recognition pro-
cedure to that of the language description.

Canonic System Translator

We have implemented a program on Multics that accepts canonic sys-
tem descriptions of a language and produces Floyd's reductions. We
were motivated to write this program because a method of producing
a computer is to have the syntax phase of a compiler driven by reduc-
tions, and a common form of these reductions is Floyd reductions.
Honeywell Corporation has extended this work to produce an entire
compiler generating system.

I

I

86

■Jmmmmmmm

:>>, '■

PROGRAMMING LANGUAGES

Programming System Environment

As the distinction between the compiler, the operating system, and the
source code becomes less and less distinct in modern computer sys-
tems, we find investigations in programming languages becoming more
involved with operating systems. For example, storage assignment and
allocation of resources are all handled by the operating system, yet
the compiler and the compiler object code must interface with the
operating system and the file system in which it finds itself. There-
fore, we have within our group devoted some research to the area of
file systems, since we feel this is the heart of an operating system.
We have developed a systematic approach for the design and study of
file systems. This work is analogous of Dijkstra's development of a
systematic approach for the design of an operating system. He de-
veloped a way of looking at an operating system in a modular approach.
Our work on file systems has been to develop a modular approach to
the design and study of file systems. This work was conducted by
Stuart Madnick. In his work he has developed seven modules, each of
which is independent of the others except through well-defined calls.

Publications 1969-1970

Dancy, Charles, A Cobol Compiler for the IBM 1130, S.M. Thesis,
Dept. of Electrical Engineering, January 1970.

Johnson, Jerry, File System to Support Time Sharing in a Multi-
programming Environment, M.S. Thesis, Dept. of Electrical Engineer-
ing, June 1970.

Mandl, Robert, Further Results on Hierarchies of Canonic Systems,
M.S. Thesis, Dept. of Electrical Engineering, September 1969.

Ramchandani, Chander, Debugging System to Run Interpretively in
Virtual Memory, S.M. Thesis, Dept. of Electrical Engineering,
January 1970.

Madnick, S. E., "MIS -- Problems Plus a Solution", Computer Forum
Report, Vol. 1, No. 4, July 1969.

87

'

AUTOMATA THEORY

Prof. F. C. Hennie

M. E. Baker
V. M. Berardinelli
G. G. Bruere-Dawson
M. Edelberg
M. M. Hammer
D. J. Kfoury

Prof. C. L. Liu
Prof. A. Meyer
R. N. Moll
B. Ong
B. J. Vilfan
C. Ying

89 Preceding page blank

m-

AUTOMATA THEORY

Research in the Automata Theory Group has been fairly eclectic this
year, reflecting diverse interests of new members of the group. Al-
though certain familiar themes in the theory of computation remain
evident in this work — e.g., the interrelations between the structure
and behavior of abstractly characterized computing devices — we shall
not attempt to synthesize further common themes in the assortment of
theoretical problems now under study. Instead we summarize briefly
below the main results obtained by members of the group during the
period covered by this report.

Abstract Complexity Theory

Abstract complexity theory is concerned with the consequences of
classifying computations by the amount of computing resources, such
as time or space, required for their execution. The results are ab-
stract in that the computing resource requirements of particular in-
teresting computations (for example, computing the product of two
numbers) are not considered. Clearly, the ultimate justification of the
theory must come from the insight it helps provide about real computa-
tions; but we cannot expect to fully understand the particular behavior
of a problem like integer multiplication until we have some notion ot
the behavior of computations in general. One would like to discover
the most efficient method for multiplying integers. Abstract complexity
theory, specifically the Speed-up Theorem of Blum, points out that
there cannot be anv most efficient method for computing certain func-
tions. Thus the apparently practical problem of optimizing multiplica-
tion algorithms may be impossible to solve because there is no optimal
solution. Abstract complexity theory at least enables us to recognize
this possibility.

A monograph summarizing the development of abstract complexity
theory in the past decade is now being prepared by Prof. Meyer. As
an illustration of the nature of this area, we shall discuss a theorem
due to Meyer, jointly with Prof. M. J. Fischer, which was presented
at the Logic Symposium of the University of Manchester, August 1969.

Consider programs for deciding predicates on the integers. A program
decides a predicate P if, started with any integer x as input, the pro-
gram eventually prints out the truth value of P(x) and halts. The com-
plexity of P is measured by the amount of time or memory space
which programs deciding P require. It is intuitively clear that predi-
cates may be very complex, and moreover they may be complex for
different reasons. The latter concept is frustrating mathematically,
because no one has yet characterized what might be the -reasons" why
a predicate is computationally complex. (Proofs that predicates are
complex are invariably diagonal arguments of recursive function theory,

91 Preceding page blank

■

AUTOMATA THEORY

with the result that predicates are known to be complex only because
they differ from all predicates that are not complex. This is not a
very satisfactory "reason" for their complexity.)

Suppose that one has two predicates P,, P2 which are complex. Sup-
pose further that even if one had the ability to look up truth values of
P, in a table, or equivalently if one could evaluate the truth value of
P, (x) in one step for each integer x, it remained just as hard to de-
cide P2 as it was without the table. This state of affairs could be
interpreted as meaning that P2 was complex for different reasons
than Pj .

Definition. Let P] be a predicate on the integers which can be
decided by some program. Let P2 be another predicate such that for
any program which decides P and which has the ability to evaluate
P2(x) in one step for each integer x, there is another program deciding
P, which runs just as fast on all inputs and does not have the ability
to evaluate P2. Then P2 is said not to help P,.

Theorem. For any computable function t(x), there exist predi-
cates ^ , P2 which can be decided by programs such that

1) any program deciding ^ (or P2) requires t(x) steps for
its computation on input x for all sufficiently large integers
x, and

2) Pj and P2 do not help each other.

Active research in this area is now directed at two issues: the struc-
ture imposed on computable functions by a complexity classification,
and the relation between size of programs and complexity.

Random and Pseudo-Random Sequences

The statement that a particular infinite binary sequence a = CL, 0., . . .
is "random" is meaningless from the point of view of classical proba-
bility theory. An effort to formalize the idea of a particular sequence's
being random dates back half a century to Von Mis es, and new ap-
proaches have recently been proposed by Kolmogorov and Martin-Lof.
These three notions of randomness are described informally below.

A particular infinite sequence is random in Von Mises's sense if it is
unpredictable. If one were gambling, using tosses of a fair coin, for
example, and the sequence described the outcomes of successive tosses,
then predictions of portions of the sequence not yet observed should
be wrong half the time. Formally, a prediction method is a computer
program which, given the first n digits of a sequence, will print out a
prediction of the n + lst digit. A sequence is Von Mises random if for
any computer program the fraction of the number of correct guesses
among the first n guesses goes to the limit 1/2.

92

■

AUTOMATA THEORY

Martin-Lof's definition can be motivated by a bit of word play. Con-
sider some property satisfied by almost all real numbers (a property
of measure one). If one selects a real number from the unit interval
at random, it will, with probability one, have the property. Hence a
random real number should satisfy any property of measure one. This
tentative definition turns out to be absurd because no number has all
properties of measure one; but Martin-Lof shows that, if one restricts
attention to measure one properties which are constructive in a suit-
able sense, then random real numbers exist. Random real numbers
can be equated with their binary expansions to obtain random binary
sequences.

The third definition due to Kolmogorov is based on the idea that a
random sequence is one without a recurring pattern. The simplest pre-
cise description of a patternless sequence is simply a copy of the
sequence. Thus a finite binary sequence is called random if the small-
est program that prints out the sequence has essentially just as many
bits as the sequence itself. An infinite sequence is Kolmogorov random
if its finite prefixes are random.

Gerard Bruere-Dawson has investigated the relations among these
definitions. He has proven that Von Mises's definition yields a strictly
larger class of random sequences than does Martin-Lof's definition.
Also, Martin-Lof's class of random sequences is at least as large as
Kolmogorov's, but whether it is strictly larger is still an open question.

The natural goal of this work is to provide a theoretical framework
for dealing with random number generators in computing. Any program
that serves as a random number generator yields a nonrandom sequence
by the definitions above, precisely because the sequence is generated
by a program. However one can specialize the definitions of Von Mises,
Martin-Lof and Kolmogorov so that mention of programs in these
definitions is replaced by mention of fast or storage-efficient programs.
Bruere-Dawson shows that there are computable sequences whose xth

digit can be generated in t(x) steps but which are Von Mises random
with respect to all programs that run in time a little less than t, for
all recursive functions t. This result is a small step in the direction
of developing methods for constructing pseudo-random number genera-
tors which are known a priori to satisfy all computationally simple
statistical tests for randomness.

Perceptrons

Two variant models of perceptrons have been considered by Bostjan
Vilfan. As defined by Minsky and Papert, perceptrons represent one
example of a device in which computations on "local" versus "global"
information can be informally distinguished. Since connectedness is a
paradigmatic global property, it should be the case that other percep-
tron-like models in which global calculations are restricted share the

93

«;;,.

AUTOMATA THEORY

inability of Minsky-Papert perceptrons to recognize connectivity. This
result was verified, but required proofs that are quite different from
those of Minsky and Papert.

Integer Programming

A system S of linear inequalities describes a convex polyhedron P in
n-dimensional space. Embedded in P is another convex polyhedron P'
which is the convex hull of the set of integer points contained in P.
The relationship between the system S and the polyhedron Pf is im-
portani to the solution of many combinatorial optimization problems.
Murray Edelberg has investigated the following problem: Given S, find
a system Sr of linear inequalities which describes the integer polyhedron
P' directly. He has developed a method for transforming S into S' for
systems S of two-variable inequalities. Essentially, this method "rounds
cornerstt of the polygon P by means of an integer division process
based on a generalization of the familiar division theorem for integers.
The properties of higher-dimensional integer polyhedra have also been
studied, and the conditions under which a system S' describes an inte-
ger polyhedron P' have been determined.

Algorithms on Graphs

Professors Meyer and Fischer observed that Strassen's fast matrix
multiplication algorithm can be applied to find the transitive closure
of an n-node directed graph in 0(n2-9) steps, a considerable improve-
ment over the best previously known algorithms which required 0(n3)
steps. The graph theoretic interpretation of Strassen's method is now
being studied in the hope that still better algorithms can be discovered.

Complexity of Boolean Functions

Circuit diagrams and functional expressions are reasonably natural
formalisms with which to describe Boolean functions. The complexity
of a Boolean function is reflected by the size of a minimal Boolean
expression for it, and the number of gates in, or the depth of, an op-
timal circuit for it. Asymptotic arguments imply that the majority of
Boolean functions of n variables have size exponential in n, but thus
far no particular function has been proved to have size exceeding n2.

A summary of the few published arguments which enable one to ac-
curately estimate these parameters for certain functions is now being
prepared by Bostjan Vilfan. A class of functions whose size is con-
jectured to exceed any polynomial is being studied.

Algebraic Coding Theory

Work on algebraic coding theory was continued this year by Boon Ong
and Gregory Ruth, under the supervision of Prof. C. L. Liu. This work
is directed toward understanding the algebraic structure of certain

94

AUTOMATA THEORY

i

•■

.%

classes of codes and the construction of efficient error detection and
correction codes. , ,

Boon Ong devised a new scheme for constructihg certain liriear and
nonlinear codes. The basic idea is to concatenate words from two
given codes to yield a longer code with certain distance properties.
This scheme has been used to construct a large claäs of linear codes,
including the Hamming codes and the Golay (23,12) code, and a large
class of nonlinear codes, including the Nordstrom-Jlobinson (15,8) op-
timal code and Preparata's (2n - 1, 2n - 2n) optimal codes (n even).
It is believed that this approach will not only aid in understanding the
structure and properties of many known codes, but also lead to the
discovery of new and useful codes. '

Regular Languages

Ip their study of the counter-free languages, a subfamily of the regular
languages, McNaughton and Papert introduce a binary operator "box"
which preserves regularity and the counter-free property. They raised
the question whether "box" was independent of the other familiar lan-
guage operators of concatenation, union, complementation and star.
The question was settled affirmatively by Fischer;, Meyer, O'Neil and
Paterson in a note which appeared in SICACT News (Dec. 1969). A
stronger version of this result pertaining to language derivatives was
subsequently obtained by Meyer and S. Ahy. '

Probabilistic Automata

A synchronizing sequence for a probabilistic automaton A is a sequence
that is guaranteed to leave A in a particular final state probability
distribution, regardless of the initial state probability distribution. The
automaton A is said to be synchronizable of order m if It Sas a syn-
chronizing sequence of length m but no synchronizing sequence of
length less than m. Denis Kfoury has shown that for each integer
n > 3 and each positive integer m, there exists at least one n-state,
probabilistic automaton that is synchronizable of order m. liowever,
for n > 4, Kfoury shows the problem of determining whether an arbi-
trary n-state probabilistic automaton is synchronizable to be recursive-
lv undecidable.

Publications 1969-1970

1. Bruere-Dawson, Gerard. "Pseudo-Random Sequences", M.S. Thesis,
M.I.T., Dept. of Electrical Engineering, June 1970.

2. Edelberg, Murray. "Integral Convex Polyhedrä and an Approach to
Integralization", Sc.D. Thesis, M.I.T., Dept. of Electrical Engineer-
ing, August 1970.

95
\

'■

' i

i

AUTOMATA THEORY

3. Fischer, M., Meyer, A., O'Neil, P. and Paterson, M., "A Note on
Independence of a Regularity-Preserving Operator", SICACT NEWS
Assoc. for Comp. Machinery, January 1970. '

4. Kfoury, Denis. "Synchronizing Sequences for Probabilistic Automata"
Studies in Applied Math. XLK, No. 1, March 1970.

5. Meyer, A. and Fischer, M., "Relatively Complex Recursive Sets" to
appear. Proceedings of the Logic Conference, Univ. of Manchester"
August 1969. *

6. Ong, Boon. "A New Construction Scheme for Linear and Non-Linear
Codes ,,M.S. Thesis, M.I.T., Dept. of Electrical Engineering, June
iy (u.

7. Vilfan, Bostjan. "A Note on Cyclic Perceptions", Proc. of the Fourth
Annual Prmceton Symposium on Information Sciences and Svstems
October 1969. / »

References

1. Blum, Mi, A Machine-Independent Theory of the Complexity of Re-
cursive Functions, Journ. Assoc. Comn. Marh^ 14, 322-336 (1967).

2. Kolmogorov, A., Three Approaches to the Quantitative Definition of
Information, Int. Journ. of Comp. Math , g, 157-168 (1968).

3' ^.o11^0^ P' The Definition of Random Sequences, Inf. and Cont
9, 602-^619 (1969). — nu*

4. Minsky M. and Papert, S., Perceptrons, M.I.T. Press, Cambridge
Mass., (1969). &'*

5. McNaughton, R. and Papert, S., Counter-Free Automata. M.I T
Press, to appear, 1971. "

6' f*?SlT',V'' Gaussian Elimination is Not Optimal, Num. Math.. 13.
354-356 (1969). —

7. Von Mises, R., Probability, Statistics, and Truth (trans, from
German), Macmillan, New York, 1957. I

96

[■

i-

MATHLAB

Prof. W. A. Martin
Prof. J. Moses

R. J. Fateman
S. Feldman
J. P. Golden
D. C. Hill
P. Loewe
S. Saunders

R. C. Schroeppel
P. S-H. Wang
T. Williams
L. Wilson
K. Young

I

I

97

: :'■

MATHLAB

During the past year, we implemented a new algebraic manipulation
system. This system, called MACSYMA, represents the culmination of
seven years of research on algebraic manipulation in Project MAC and
the Artificial Intelligence Group. This effort included the doctoral the-
sis research of Professors Martin and Moses, and the implementation
of parts of Carl Engelman's MATHLAB system. MACSYMA incorporates
some of the best algorithms and design features of the earlier systems
along with ideas obtained from systems built outside MAC. The current
version of the new system is probably the most general of all existing
algebraic manipulators. With the extensions that are planned or are
already under development, the system should perform as well as or
better than other systems in most situations. The system is running
on the AI Group's PDP-10. It is written entirely in LISP. The system
currently occupies about 60,000 words, of which 27,000 represent com-
piled LISP programs.

The capabilities of MACSYMA are best understood via examples. What
follows is a session with an imaginary user.

(Cl) sin(2*x) + 3*sin(x)/(cos(x) + 1) + (x + 1)**2@
/ -x . /« v 3sin(x) / ^2 (Dl) Sin(2 x) + -3-^4-! + (x + 1)

Each request typed by the user is given a line label (in this case Cl).
The system's responses are also labeled. One inputs algebraic expres-
sions in a FORTRAN-like notation. Algebraic expressions are displayed
in a two-dimensional notation which approximates the notation found in
mathematical textbooks. An @ signifies the end of a request and indi-
cates that the result is to be displayed.

(C2) INTEGRATE U,x)@

A % always represents the previous expression which, in this case,
is Dl.

i 3

(D2) -^cos(2x) - 31og(cos(x) + 1) + y(x + 1)

Simple integrals such as the one above are obtained by the current
version. It is to be expected that the extensive integration facilities
of Refs. 1 and 2 will be available in the system in the coming year.

DPART(D1,2,2)@
3 sin(x)

(C3)

(D3) sin(2x) +
cos(x) + 1

+ (x + 1)

One may refer to previous expressions by name (e.g., Dl in line C3).
For this purpose, old inputs and results are stored on disk files. At
the end of a session, the expressions may be retrieved, edited, and
stored away for future use.

99 Preceding page blank
- ■ ...■,. ■ ■■.;■.: ,-,■ .-. ■ . ■■■■■■■

MATHLAB

DP ART helps one in editing two-dimensional expressions. The argu-
ments of DPART locate a subexpression by specifying in which terms,
factors, or arguments of functions it is located. Thus cos(x) + 1 is
the second argument (i.e., denominator) of the second term in the ex-
pression. The indicated subexpression is highlighted by enclosing it
in a box as shown. One can now use this subexpression or replace it
by some other expression.

(C4) A = B@
(D4) A = B
(C5) % = C@
(D5) A = B = C
(C6) | - 1@
(D6) A - 1 = B - 1 = C - 1
(C7) EXPAND(2*|)@
(D7) 2A-2 = 2B-2 = 2C-2

EXPAND causes each term of the sums to be multiplied by 2.

In addition to handling equations, MACSYMA has facilities for manipu-
lating summations, derivatives, integrals and factorials.

(C8) DERIVATIVE(X,1,Y,2,F(X -. H,Y + K)) + SUM(I,0,N,I!)
+ INTEGRAL(X,A,B,G(X))@

Ji- ?
(D8) -""2 (F(X + H,Y + K)) + Z_^I! + I G(X)DX

DXDY 1=0 JA

The display program makes use of the limited character set of a GE
Datanet to generate summation and integral signs.

A facility exists that allows one to define new functions. The language
is close to ALGOL (actually it is closer to MLISP). For example, the
factorial function can be defined as follows:

(C9) FAC(I): = IF I = 0 THEN 1 ELSE I*FAC(I - 1)$

A $ inhibits the display of the result which is essentially a rehash of
the definition.

(CIO) FAC(5)@
(D10) 120

The system also has the capability of manipulating variable-length
arrays. Arrays need not have their dimensions declared and may have
their entries defined by some function. Only entries that are needed
in computation will be evaluated by the function. To define an array
A1 with entries

I

(

XI!, we can use the following definition:

(Cll) A[I]: = IF I = 0 THEN X ELSE A[I - 1]**I$
Brackets denote arrays.

100

■■.

■

MATHLAB

:

(C12) A[2]: X**3@
(D12) X3

A : signifies assignment. One can assign values to array ele-
ments, thus overriding the general definition.

(C13) A[3]@
(D13) X9

Another useful facility in the system is polynomial factorization.

(C14) FACTOR(X**6 - 1)@
(D14) (X + 1)(X - 1)(X2 + X + 1)(X2 - X + 1)

A powerful simplification algorithm which performs a cancellation of
common factors in quotients is embodied in RATSIMP.

(C15) (X**2 + X - 6)/(X**3 + 6*X**2 + 9*X)@

(D15) X + X - 6

X3 + 6X2 + 9X

(C16) RATSIMP(I)@

(D16)
X_-_2_

'.2
X + 3X

A powerful substitution mechanism is available in MACSYMA. It can
be used to simplify expressions containing sinet; and cosines, for ex-
ample. Let s stand for sinjfx), and c for cos(x), Uien by substituting
1 for s2 + c2 in s4 + 2s2c + c4 we get 1, and by substituting 1 for
s2 + c2 in (s3 - s)/c2 we get -s.

A substitution for anything but a literal is inherently ambiguous. Sup-
pose we wanted to substitute c for xy2 in x2y3, then reasonable answers
are: cxy, c2/y, and x2y3. By varying the calls to the substitution func-
tion, we can get all three of these responses.

MACSYMA has an extra-hairy simplifier in addition to the normal sim-
plifier and RATSIMP, called RADCAN (RADical CANonical). RADCAN
knows a great deal about exponentials, logarithms and algebraic ex-
pressions. For example, RADCAN will simplify

log(e2x + 2ex + 1) - 21og(ex + 1)

to 0, and it will also recognize that

(2I/3 + 4I/3)3 - 6(2I/3 + 4,/3) -6 = 0

RADCAN does not yet recognize

X TT — I
log tan(— +-T) - sinh" tanx = 0

but we are working on that defect.

I

101

. ';■ ^mjam- •

MATHLAB

Extensive facilities exist in MACSYMA for letting a user define patterns
and add new simplification rules to the system. For example, we can
inform the system that cos(O) should become 1, and that cos(n7r) should
be transformed to (-l)n, when n is a non-zero integer. Given such
rules cos(57r) simplifies to -1, and cos(67r) to +1.

Our final example is the solution of a classical problem in algebraic
manipulation, the so-called F & G series problem of dynamical astrono-
my. The series F: and Gj are given by the relations:

Fi = -MGi+ £*i- dt ' -1

Gj = Fj.^ -Gi.,

where F0 = 1, G0 = 0, and^/x= -3/JLO; ^CT= € - 2a2, ^€ = -cr(^+ 2c)

The results are polynomials in€,fJL,(T.

The representation of the problem of finding Fj and Gj is fairly natural
in MACSYMA.

(C17) DERIVATIVE(T,1,EPS): -SIG*(MU + 2*EPS)$
(C18) DERIVATIVE(T,1,MU): -3*MU*SIG$
(C19) DERIVATIVE(T,1,SIG): EPS - 2*SIG**2$
(C20) F[0]: 1$

The Fj and Gj will be placed on an array

(C21) G[0]: 0$
(C22) FANDG(N): = FOR I: 1 STEP 1 UNTIL N DO

(F[I]: EXPAND(-MU*G[I-1] + DIFF(T,1,F[I-1])),
G[I] : EXPAND(F[I-1] + DIFF(T,1,G[I-1])))$

The ALGOL FOR statement is part of the language as well as are the
IF . . . THEN . . . ELSE construction, GO's and RETURN'S. Parentheses
define a block. Statements in a block are separated by commas. Local
variables in a block are identified by a DUMMY statement. Variables
in FOR statements are automatically made local.

(C23) F[5J9
(D23) 105 MU SIG - 45 EPS MU SIG - 15 MU SIG

The above is just a sampling of the facilities of the current system.
The system is partitioned into major sections. The diagram below
indicates the sections that currently exist. The sections in brackets
are under development.

102

... ... ■ ■

MATHLAB

definite (
integration J

References

1. J. Moses, "Symbolic Integration", MAC-TR-47, December 1967.

2. J. Moses, "The Integration of a Class of Special Functions with the
Risch Algorithm", MAC Memo M-421, September 1969.

I

103

■

k

UNCL

Prof. R. R. Fenichel
Prof. J. Weizenbaum
j. C. Yochelson

105
Preceding page Wank

5b

UNCL

The Project MAC Progress Report V (July 1967-July 1968, p. 98
et seq.) describes the language at the heart of the TEACH system,
whiTh then was called PL/2 but which since has been designated UNCL
(UNcommonly Clean Language):

"It is an interactive language that somewhat resembles JOSS
and other JOSS-like languages in veral major respects: for
example, the presence of block structure, a context editor, ana
a function-tracing feature".

The year ending June 1970 was spent in system design of the UNCL
interpreter for Multics. A result of this effort was design of a novel
list-processing system allowing multiple ctU-types. No other separable

results could be seen.

Publications 1969-1970

1 Fenichel, Robert R., and Jerome C. Yochelson. "A LISP Garbage
' Collectoi for Virtual-Memory Computer Systems", Communications

of the ACM, Xm, 11 (November 1969), pp. 611-612.

2 Fenichel, Robert R., Joseph Weizenbaum, and Jerome C. Yochelson.
"A Program to Teach Programming", Communications of the ACM,
Xm, 3 (March 1970), pp. 141-146.

107
Preceding page blank

■-*»*•*'

DYNAMIC MODELING, COMPUTER GRAPHICS
AND COMPUTER NETWORKS

Prof. J. C. R. Licklider

A. C. Adams
B. J. Bailin
W. F. Bauer
A. K. Bhushan
G. R. S. Bingham
E. H. Black
M. F. Brescia
R. D. Bressler
H. R. Brodle
M. S. Broos
A. L. Brown
K. M. Brown
R. Bryan
M. T. Cheney
M. A. Cohen
S. E. Cutler
B. K. Daniels
Prof. G. A. Gorry, Jr.
M. J. Grano

F. Guertin
J. H. Harris
R. F. Hill
P. W. Hughett
W. F. Hui
J. P. Jarvis, in
R. Johnston
E. I. Katz
R. M. Katz
R. Lindsay
R. M. Metcalfe
R. E. Neubauer
P. A. Pangaro
C. L. Reeve
A. Vezza
J. E. Ward
R. T. Wong
F. L. Yost

log Preceding page blank

, -J ,.-, •• ;,.' Mit--,;■'-,,.., ■■ ■.,■-.:■'■:'.■.- J..-. .../■■'X

i \

■

DYNAMIC MODELING, COMPUTER GRAPHICS
AND COMPUTER NETWORKS

I. INTRODUCTION

During the year, three new research groups were formed in Project
MAC: Dynamic Modeling, Computer Graphics, and Computer Networks.
The first two and about half of the third are strongly interrelated, and
their work is reported upon in this one section. The other part of the
work in computer networks, also interrelated but mainly involving
members of the Computer System Research Group, is reported upon
in that group's section.

The aim of the Dynamic Modeling Group is to develop methods, tech-
niques, and a hardware-software system that will facilitate the formu-
lation, representation and exploration of complex ideas and processes
in the form of interactive computer-program models. The term "dy-
namic" connotes time-varying force and thus motion of or within the
model; and one of the aspirations of the Dynamic Modeling Group is
to adapt, extend and exploit the great capability of computer graphics
to present complex interrelations in a comprehensible way. Another of
the group's aspirations is to assemble a computer-based modeling sys-
tem that will make available to the modeler a more extensive collection
of resources than the group could itself possibly create. The inter-
relations with the Computer Graphics and Computer Networks Groups
are therefore essential to the effort in modeling.

The aim of the Computer Graphics Group is to advance computer
graphics as a medium of man-computer interaction and to improve the
contribution of computer graphics to "machine-aided cognition". With-
in that general field, the group is concentrating mainly on software
tools and techniques that will farUitate communication nd understand-
ing of complex ideas and rolationships.

The aim of the Computer Networks Group is twofold: (1) to participate
with groups in other laboratories in pioneering the first nationwide
network of general-purpose time-shared computers and (2) to explore
and develop uses of the network that will facilitate resource-sharing
and teamwork among geographically distributed people and computers.
The group has undertaken to connect the Multics GE-645 computer sys-
tem and the Dynamic Modeling/Computer Graphics PDP-10 computer
system into the ARPA Network --a network, sponsored by the Ad-
vanced Research Projects Agency, that is planned to embrace 15 or
more time-shared computers within the next two years. The group is
especially interested in uses of the network that will involve the opera-
tion of computer programs with subprograms in two or more computers
and interaction with remote -- and in some instances even widely dis-
tributed -- sets of data.

Ill Preceding page blank

irtWKwaiiw; wnawtwaai'"»
a

i

'■

MODELING, GRAPHICS; NETWORKS

II. THE DYNAMIC MODELING/COMPUTER GRAPHICS
COMPUTER SYSTEM

Most of the effort of the three groups has been, and during the next
two years will continue to be, devoted to the development of a com-
puter system and its incorporation into the network. The development
is essentially the experimental and iterative specification, implementa-
tion and testing of a philosophy of interaktive computing that emphasizes
three things: graphical display^and-control, software coherence, and the
sharing of resources. In the next few paragraphs, tlie philosophy will
be briefly set forth.

We want to create a computer system that will significantly facilitate
and augment the efforts of users engaged in the kinds of intellectual
activity that'involve formulating, clarifying, exploring, testing and re-
vising ideas. The concept of modeling that is basic to the group's
philosophy involves (1) creating in the memory of the computer a
model that represents the idea by specifying all its parts and all their
interrelations; (2) executing the model and thereby revealing, through
graphic. display, the behavior implicit in its specification; (3) observing
the behavior and comparing it with expectations, either intuitive or
based on quantitative data; and (4) revising the representation in the
memory of the computer, executing the revised model, and so on.

in. PLANS FOR RESEARCH IN MODELING, GRAPHICS,
AND NETWORKS

For two reasons, the report of research in the three areas will be
mainly a report of plans. The first reason is that, because the groups
are new, their main effort has been planning. The second is that we
want others to understand what we aspire to create and do.

The plans have been influenced greatly by the fact that, in order to
conduct research in man-computer interaction — in any of the three
areas --one must have, or be involved in creating, a computer sys-
tem that will support the computer end of the interaction. In the
present case, that means a rapidly and powerfully responsive local
computer system — an interactive time-shared system — connected
into a network of interactive time-shared systems. We need a com-
puter system similar to that of the M.I.T. Artificial Intelligence labo-
ratory or to that of Douglas Englebart's "On-Line System" group at
the Stanford Research Institute, but with stronger emphasis on kine-
matic graphic display, and we need to, incorporate the system into the
ARPA Network. ,

Basic Schema ,

The plans call, therefore, for a protracted effort in system-building.
The building will by no means be merely the implementation of an
existing design. It will proceed, of course, within the guidelines of a

112

I ««WWWW*»**-" i ' - " - ' '"' 1"- •"•«•ttÜKÄCt

!
/■•;

i '

I t

MODELING, GRAPHICS, NETWORKS

,

,

general schema, but it will involve the continuing, iterative interplay
of design, experimental implementation, testing, evaluation and modifica-
tion. Thus, in style, the research of the three groups will probably be
more closely ^kin to that of the Computer System Research Group than,
iot example, to that of the Theory of Automata Group. It will seek
understanding through the interaction of physical synthesis and experi-
mental analysis much more, especially during the system-building
period of about three years, than through theorem-oriented theoretical

work.

The general schema that is guiding the work embodies the following
features:

1) Vigorous development and exploitation of graphical interaction.

2) Heavy reliance upon "core residency" of procedures and data
sets to permit fast interaction and kinematic graphical display.

3) Deferral of linking and binding operations (linking among
procedures and binding of procedures to data) until late in the
over-all process -- usually until the time of initial execution.

4) Use of a greatly extended (and further extensible) "run-time
package" -- a library of procedures and data sets that can be
retrieved and linked or bound into the currently operating pro-
gram or model during its testing or execution.

5) Mastery of a considerable diversity of data types and em-
phasis on type-checking and (when necessary) automatic type
transformation and reformatting.

6) Integration of the processes of formulation, programming,
testing, debugging, program modification, and data-base updating
insofar as possible into one coherent activity.

7) Integration of the main programming language and the inter-
action, languages of the system insofar as possible into one
coherent language.

8) Heavy reliance (tempered somewhat by realism) upon using
already programmed and available procedures in the (remote,
network) computers in which they operate.

9) On-line aids to users, including much on-line documentation
and a descriptor-based retrieval system to facilitate the users'
learning to operate the system and their finding and application
of procedures, models, and data.

10) Significant augmentation of the capabilities of serious, long-
term users at the expense, if and as necessary, of facilitation
of the work of casual, one-time or sporadic users.

113

„w, '',■»,. ,. . "»■ • . * .

■

MODELING, GRAPHICS, NETWORKS

Hardware System

The physical computer system on the basis of which we hope to realize
an approximation to the schema outlined is shown diagrammatically in
Fig. 1. The foundation of the planned system consists of a Digital
Equipment Corporation (DEC) PDP-10 (KA10) main processor and an
Evans and Sutherland (E&S) LDS-1 display subsystem, 256K words of
36-bit memory (most of it of 1.6 to 2.0-microsecond cycle time), and
three DEC disk-pack drives capable of storing 15 million words. There
are two sets of consoles: four major consoles, each with a display
driven by the E&S subsystem, a stylus and tablet (ST), and a Computer
Displays (now Adage) Advanced Remote Display Station (ARDS), and
four or more programming consoles, each consisting of an Imlac PDS-1,
which is a minicomputer plus display and keyboard. The system in-
cludes, also, eight microtape units, an operator's Teletype, paper-tape
reader and punch, a line printer, and an interface to the Interface
Message Processor (IMP) that connects M.I.T. computers into the
ARPA Network. The system may be able to use the network connection
to Multics in lieu of standard magnetic tape. If not, it will need a tape
interface and controller and a magnetic-tape unit. Card input will be
handled via the network.

The main ones of the foregoing items have been or are to be purchased.
In the interest of holding down the over-all cost, however, the two
peripheral-device interfaces and scanners (shown as one long rectangle
in the figure), most of the memory ports and interfaces, a device to
adapt the DEC input-output bus to transistor-transistor logic, and the
interface to the IMP are to be constructed in the laboratory. In ad-
dition, the E&S (Kratos) displays, the stylus tablets, and the ARDS
units will be integrated into consoles in the laboratory.

Software System

The main components of the planned software system are listed in
Table I. The table expresses something of the extent of the undertaking
but probably not much about its organization. The following paragraphs
will deal briefly with its organization.

The plan calls for borrowing much of the basic system software from
the Artificial Intelligence laboratory. Indeed, during the first year, we
adapted, or in a few cases simply adopted, from the PDP-10 computer
system of that laboratory, an amazingly fast and powerful supervisor
(ITS), an excellent assembler (MIDAS), and several very useful utility
routines. The borrowed software has gotten us off to a rapid start,
though admittedly it is a start not precisely in the planned direction.
Our concerns with graphics, coherence, and sharing will require that
we modify some of the underpinning even while we are building upon
it. We recognized the inherent danger in doing that, but the advantage
of getting under way at once compelled us to accept the risk.

114

....

MODELING, GRAPHICS, NETWORKS

■

Disk Drive

32K
Core

t

32K
Core

32K
Core

JH 1 UP
ESS LDS-I

Grophics
Processor t

DEC PDP-IO
Main

Processor t

Programmin
Consoles —

DECtape Contr.
& 8 Drives j

Teletype
37 t

Paper Tape
Reader t

Paper Tape
Punch t

Bright Line
Printer

interface
to IMP t

Fig, 1,
Proposed hardware plan for the Modeling/Graphics/Networks
computer system. (The t symbol indicates hardware items
operating at the end of the year.)

115

■ ■ ■

.. ■ ■ ■ .

MODELING, GRAPHICS, NETWORKS

TABLE I

Main Software Components of Planned System for Research
in Dynamic Modeling, Computer Graphics and Computer Networks

IDENTIFICATION FUNCTION WORK REQUIRED

A. SYSTEM SOFTWARE

1. ITS*t Time-sharing supervisor Adapt

2. A High-level programming language(s) Select, implement
or adapt for PDP-10

3. MIDAS*t Assembly language Adapt

4. A Dynamic loader Design and implement
or adapt from "STINK"*

5 = DDT*t Debugging aid Adapt

6. A Graphical debugging aid Design and implement
with some use of DDT

7. MONIT Interim command interpreter Design and implement

8. A Graphical command interpreter Design and implement

9. TEC0*t Editor Adopt, then adapt

10. NCP Network control program Design and implement

11. INF0*t On-line documentation of utility
routines

Adopt, then adapt

12. At Interface to Imlac PDS-I, incl. Design and implement
loader, editor, and assembler some; adapt some

13. OLIVER Interface with individual user;
agent for individual user

Design and implement

14. CAREt Mediator -- handle calls and Design and implement
returns, facilitate user intervention

15. MACDMP*t Dumper and loader of system routines Adopt

16. A Interface to programs that operate
under DEC time-sharing supervisor

Design and implement

17. L0CK*t Utility associated with ITS Adopt

18. A Library construction and
maintenance

Design and implement

116

■

MODELING, GRAPHICS, NETWORKS

TABLE I (cont.)

IDENTIFICATION FUNCTION WORK REQUIRED

19. A Flow-chart interpreter Design and implement,
adapting some from
GRAIL

20. A Core-resident shared subroutine Design and implement

and data-set address table

21. A Core-resident (individual) user's
subroutine and data-set address

Design and implement

table

22. A Inter-user communication Design and implement

23. A Disk salvager and other disk
utilities

Design and implement

24. SATAN Chief demon (starts up other
demons as needed)

Design and implement

25. SPOOL* Background printing Design and implement

26. A Network logger, network test
routines, and other network
utilities

Design and implement

B. GRAPHICS SOFTWARE

1. At Stylus-tablet input Design and implement

2. At Character recognition Design and implement

3. At Two-dimensional graphing Design and implement

4. At Three-dimensional graphing Design and implement

5. A Complex-plane display Design and implement

6. A "Visual statistics"; visual data
analysis and estimation of rela-

Design and implement

tionships

7. A Graphical display of program
actions and relationships

states, Design and implement

8. POLYVISION Control of composition of
multi-picture displays

Design and implement

9. A Transformer from E§S to ARDS
Imlac displays; preprocessor
transmission via network

and
for

Design and implement

117

,, .i ..J-ÄUÜ

MODELING, GRAPHICS, NETWORKS

TABLE I (cont.)

IDENTIFICATION FUNCTION

■

10. A "Library of shapes"

11. A Graph and diagram editor

12. A Graphical network command
language

C. PROCESSING ROUTINES

I.

2.

3.

4.

A

A

A

LEXICON-
TEXT

At

A

Two-dimensional parser

Fast Fourier transform

Other integral transforms

Lexicon-based text handling

Algebraic compiler for use with
stylus-tablet, character recog-
nizer, and two-dimensional parser

Extension of high-level language
to encompass diverse data types

D. INTEGRATIONS

1. A

4.

Extension of high-level program-
ming language to encompass graphics
and diverse data types

Introduction of coherence into the
interaction languages of the main
system and utility routines

Unification, insofar as possible,
of main high-level programming
language and the main interaction
languages

Introduction of coherence into
library of procedures and data

On-line documentation system

/ORK REQUIRED

Design and implement

Design and implement

Design and implement

Design and implement

Implement

Design and implement

Design and implement

Design and implement

Design and implement

Design and implement

Design and implement

Design and implement

Design and implement

Design and implement

A Wot yet namej.
* Adopted or adapted from AI Group routines.
t Preliminary version operating July 1970.

118

■

■

MODELING, GRAPHICS, NETWORKS

The initial organization of the system has been determined to a large
degree by the nature of the adopted and adapted system and utility
software. It is an organization in which a user interacts with one
routine at a time, with each routine mainly in its own language. For
example, one may log in to MONIT, ask MONIT for the editor TECO,
prepare an assembly-language program (naming it, for example, PROG
MIDAS) and file it, return to MONIT, call the assembler MIDAS, have
MIDAS translate PROG MIDAS into its machine-language form PROG
BINARY, return to MONIT, call the debugging routine DDT and through
it call the loader STINK, have STINK load PROG BINARY and transfer
the symbol table(s) to DDT, tell DDT to execute PROG BINARY, ob-
serve that PROG BINARY does not function properly, return to MONIT,
call TECO, retrieve PROG MIDAS, edit it, return to MONIT, call
MIDAS, and so on and on.

The foregoing description is not a burlesque. Except for leaving out
some steps - for example, the first time MIDAS translates PROG
MIDAS, MIDAS finds syntactic errors that force the user to go back
at once through MONIT to TECO - it is a fair account of the sequence
of transactions required by most present-day time-sharing systems of
a programmer who simply wants to prepare and execute a program.
If he wants to do anything more complex than that, he has to turn into
a veritable switch engine. We want to get far away from all that. The
initial organization will therefore have to be changed. We want it to be
more like that of LISP systems in which program writing, filing, trans-
lating, debugging, and almost all the other operations are carried out
within the coherent framework of LISP. Why not simply adopt LISP?
We could do a lot worse. The main reasons for not simply adopting it
are that current LISP systems, while highly coherent or even unified
internally, are almost impossible to put into effective communication
with any other systems; that they recognize only one data type or very
few data types; and that they are not well developed into the dimension
of graphical interaction.

One major step in effecting the new organization of software will be to
create for the user the effect of communicating with one inclusive pro-
gram, an editor-assembler-loader-debugger-informer, instead of a
multiplicity of routines that converse in diverse and conflicting lan-
guages. That step is perhaps not crucial for the experienced program-
mer, and so it will not be taken first, but we thirk it will be crucial
for substantive modelers.

Another major step is so to arrange matters that a user can monitor
the operation of his program or model, intervene at any appropriate
time, interrupt the operation, make changes, backtrack as far as neces-
sary[and resume operation. The mediator, the dynamic loader, the
core-resident subroutine and data-set address tables, the documentation-

119

__

MODELING, GRAPHICS, NETWORKS

retrieval subsystem, and the unified programming-interaction language
(see Table I) are all part of the required mechanism.

A third major step is to provide for a large amount of sharing of pure,
core-resident procedures. Residency in primary memory is of course
the key, in the present state of computer technology, to very high re-
sponsiveness, very fast interaction. But primary memory is almost
always at a premium. It is necessary, therefore, to determine carefully

(just which procedures and data to hold in primary memory -- and even
more essential to prepare procedures in such a way that the most fre-
quently used components (which are likely to be basic building blocks
used in many different programs) can be separated out and held con-
tinually in primary memory. It will be necessary to experiment in
order to find the optimum in this complex area, but it is obvious that
the system must be designed in such a way as to permit experimenta-
tion. The third step is intended to make it so.

Other steps of organization, which we shall for the sake of brevity,
just mention, are:

1) Substituting interaction through diagrammatic graphics for
much of the alphanumeric interaction that characterizes most
time-sharing systems.

2) Moving much of the initiative, in the interaction between the
user and his running program, from the program to the user.
This involves fundamentally separating many of the interactive
elements from the program proper and replacing them with
"event identifiers" that provide handles for, but do not them-
selves initiate, interaction.

3) Developing a large and coherent library of procedures and
data sets that can be linked or bound into users' programs at
run time. We have set the semirealistic goal of 1000 such
procedures and 100 such data sets. We fear, however, that as
many as 10,000 basic procedures may be needed to provide a
facility in which a typical "new" program or model consists of
10% new and 90% library material.

Planned Techniques for Modeling and Graphical Interaction

At present, the field of computer-based modeling is divided into two
areas, one concerned with sequences of discrete events, the other con-
cerned with dynamic interactions of variables that, for the most part,
are continuous in the real world and, only because the nature of the
computer forces discreteness, discrete in the computer. Each area has
its modeling or simulation languages -- for example, GPSS and SIMULA
for discrete events and DYNAMO for (qualifiedly) continuous variables.
The languages make it convenient to express the operations in which
they specialize but difficult to "follow the lead of the problem" if the

120

-""""''■«« •-■>,,... _.. , , ,,,,,,,

MODELING, GRAPHICS, NETWORKS

problem crosses language boundaries. We are interested, therefore, in
e technique of modeling analogous to that made popular in childhood by
Tinker Toys, Erector Sets, and Mechano Sets: Start with an idea (per-
haps a bit nebulous but interesting), a lot of modular parts, and a lot
of connectors. Assemble the parts by hand under visual monitoring a.m
control. (Doubtless a kind of language is involved in the process, but
it does not intrude or sharply delimit.) Get new ideas and insights s.s
you go. Take some of what you have built apart and rebuild it to in-
corporate new features. As soon as you have something that works,
test it, see how to make it better, make it better, test it again, and so
on. We want to develop that technique in the context of the computer.
In the process, we hope to avoid the childhood frustration of running
out of parts.

In modeling complex processes or systems, one tends to represent
their parts in terms of abstract symbols, which are usually characters
or words or word-like strings of characters. Such symbols have proven
very helpful to modern man, and he has become accustomed to thinking
of them as advances over the picture-like glyphs used in earlier times.
No doubt they are. But it is not clear, and should not be tacitly as-
sumed, that words are on the best evolutionary path. The advent of the
computer opens up new possibilities for dynamic representation in which
words, being static, may not play the major role. We plan to explore
the field of what might be called "dynamic glyphs": quasipictorial signs
that can move about and change shape as the things they represent act
or are acted upon. Perhaps the conveyors of meaning in future lan-
guages may evolve, under the influence of the computer, from the ani-
mated cartoon. Whereas present-day natural languages are strong in
nouns and weak in verbs, it may be that future languages may have as
many verbs as future computers have subroutines. In any event, this
appears to be a potentially important area for technique development.

When one works at a computer console, even a sophisticated and ex-
pensive one, he soon feels severely constrained by the size of its
display screen, which is not nearly so large as the array of desktops
and tabletops, covered with papers and reprints, to which he is accus-
tomed. It is frustrating to lose what is on the screen in order to get
to see something else, for often one wants to compare the one with
the other and has to call the old up again to check it -- and thereby
loses the new. In short, time-multiplexing a 10-inch-square area seems
to be a retrograde step from "space-multiplexing" in a large workspace.
We plan, therefore, to explore a number of techniques, ranging from
very fast time-multiplexing a single screen through splitting screens
and using several screens in parallel, to simulate an office workspace,
with the aid of head-mounted cathode-ray tubes (ä la Ivan Sutherland)
and eye-fixation sensing (a la Minsky, Papert, and Geffner). The ex-
ploration will include distorted displays in which the area of present

121

m -■ mm
i '■*Wfä^im&

MODELING, GRAPHICS, NETWORKS

interest is presented in larger scale than the other areas — as in the
"New-Englander's Map of the United States".

Light pens and styli are not well developed, even yet, and therefore
call for further technique development. We hope to develop a manual-
input system that will "understand" a repertoire of metalinguistic signs
analogous to proofreaders' marks as well as the elements relating to
substantive input. The stylus language should be a part of a coherent
interaction language and not, as it is now, a sequence of decomposed
and nonballistic movements back and forth between a drawing and a
set of light buttons.

We hope in due course to incorporate a limited speech vocabulary into
the coherent system.

Graphical definition and control of processing and composition and con-
trol of display will be a focus of our effort. We hope to develop tech-
niques that will let a programmer or a modeler formulate and specify
a program or model primarily through graphic means, then graphically
control its testing, modification and execution, choosing at each stage
from a library of display and control modes and formats. The inter-
relation of language and metalanguage is a main theme in this area.

Plans Relating to the PDP-10 Computer System and the ARPA Network

The initial effort in networking must be, of course, to receive an IMP
and make the necessary interfaces, hardware and software, between it
and the PDP-10. Then programs must be developed to mediate com-
munication between the PDP-10 and other host computers. Development
of those programs, which include the Network Control Program (NCP)
listed in Table I and a Logger not listed there, will involve much inter-
action between the Computer Networks Group of Project MAC and cor-
responding groups in other ARPA Network organizations. We plan first
to develop interim interface and communications programs, then full-
fledged versions. There may be a series of the latter as, the Network
evolves.

As soon as communication is established with other host computers,
network research will open up to include several parallel undertakings.
These will include:

1) Systematization of access from other hosts to resources
available in the PDP~10 system.

2) Systematization of access through the PDP-10 to other host
systems — as though the user were logged directly into them.
(This way of using the network is only of minor interest to us,
but it is a natural step.)

3) Transfer of files between other hosts and the PDP-10.

122

■ ■
,- .

tn

MODELING, GRAPHTCS, NETWORKS

4) Use of remote resources by programs operating in the
PDP-10; integration of certain remote resources into the PDP-10
system in such a way as to make them appear to be local.

5) Establishment of procedures that will make it possible for
other hosts to use the graphical-processing facilities (e.g.,
picture "trimming and framing") of the E&S processor.

6) Study of data types and data translation within the network
from a taxonomic point of view.

7) Study of models and modeling languages and facilities avail-
able within the network.

In executing those plans, we expect to take advantage of the fact that
the Multics computer will also be connected into the ARPA Network.
In taking the early steps, it will be helpful to work with Multics and
PDP-10 consoles side-by-side. We expect also, however, to enter into
joint research efforts with workers in other host organizations.

IV. PROGRESS AND THE PRESENT STATE

During the past year, the three groups were brought up approximately
to size (see listings at beginning of section), main parts of the com-
puter system were received or constructed and assembled into a working
facility, and beginnings were made on several of the software-development
and technique-development projects. In order to check the system plan-
ning and design against demands posed by actual modeling, a neuronal-
network model and an air-traffic-control model were construct0'. The
Interface Message Processor arrived and was installed, and the physical
interface between the GE-645 and the IMP and the one between the
PDP-10 and the IMP were designed and constructed. At the end of the
year, enough of the parts of the envisioned system were in place and
operating to constitute a strong bootstrap, and an intensive summer of
programming -- manned in part by 25 student programmers -- was
under way. The software library count stood approximately at 50 use-
ful programs, but most were not yet well documented. An on-line docu-
mentation system was being created -- initially in the Multics GE-645
rather than in the PDP-10 because the latter lacked disk files.

I'he "1" marks in Table I identify the software items of which pre-
liminary versions were operating at the end of the year. Work was
under way on about half the items not marked. The prevailing feeling
in the three groups was that too many things were going on at once,
that it was difficult to see the woods for the trees, that there was very
much work indeed to be done, but that progress was accelerating as
new components and subsystems came into operation — and that one
could already sense, through the one E&S console, some of the power
of highly responsive graphical interaction.

123

Mr-.-. ■.■.^■^iWr^jn-^-^S*^:^ L^,: ■-;:■.,■..,;..;,. :;,;

■

'

ON-LINE CIRCUIT DESIGN AND
HYBRID COMPUTING STRUCTURES

Prof. M. L. Dertouzos

F.G. Abramson
D. L. Isaman
G. P. Jessel
M. E. Kaliski Electronic
P. A. King I Systems
M. P. Lum , Laboratory
C. Lynn
J. R. Stinger
H. C. VanSteveninck (Guest)

,

'■

1

125 Preceding page blank

:•
lf *,,, „rfg * . . pmmsmm**»^ :.

I

■

■

1

ON-LINE CIRCUIT DESIGN AND
HYBRID COMPUTING STRUCTURES

For our research group, this was a year of transition from On-Line
Circuit Design to Hybrid Computing Structures. The former research,
fnUiated five'years ago, shortly after the inception of*^
was concerned with the use of on-line computation in the design of
electronic circuits. Major results of this work have been published in
the open literature and are incorporated in CIRCAL-2, a general-
purpose, on-line, circuit-design program.* This program, currently
operational on CTSS, is undergoing conversion by a company which
wlU make it comme'rcially available for IBM 360-67 use fy the e^ of
the vear. The new research in hybrid structures was motiva ed by the
long computing times and inefficiencies we encountered in solving very
large systems of algebraic and differential equations by using conven-
tional machines. Our current effort is concerned with the f ^y and
development of novel hybrid computing techniques and structures, which
Jolsess the accuracy of digital systems and the speed of analog systems.

I. CIRCAL-2: A GENERAL-PURPOSE CIRCUIT-DE SIGN PROGRAM

The main objective of this program is the effective use of on-line com-
puter utilities in the design of electronic circuits. It ^mmanzes in
Its structure the conclusions of several years of

A;
e

n
sear

H
ch

r^r
W

A
e

T
11
i

aS
of

"lessons" learned from the predecessors, CIRCAL-0 and CIRCAL-1, of

that program.
In developing CIRCAL-2, we have tried to make good use of on-line
computaüon in both the interactive and more formal optimization types
oHesign. Accordingly, the program can be used for the repeated analy-
sis of lumped networks, with several features and provisions or efll-
cient interaction; or it can be commanded to automatically optimize a
circuit, in accordance with a prescribed rule. The main features of
the program are as follows:

1) MultipleAnalysis_Capability: - The program accepts any
num^o71Uffirertr7i7cuit-analysis techniques, residing on disk.

' One of the consequences of this feature is the development of a
sufficiently general common set of network elements. Another
consequence is the use of time or frequency as the computing
dimension.
2) Homogeneity of information Structures: - The on-Une circuit-
desü^ro^s involves the input, modification, output and defi-
nition of information that describes elements, networks, or

* (See J. R. Stinger and M. L. Dertouzos "CIRCAL-2: A General-
Purpose On-Line Circuit Design Program User's Manual" M.I.T. Elec-
tronic Systems Laboratory, Report ESL-R-381, May 1969.)

127 Preceding page blank

'■

ON-LINE CIRCUIT DESIGN . . .

sources. It involves, also, the output of informational and diag-
nostic messages and the specification by the user of automatic
circuit-optimization procedures. All information, regardless of
meaning, is handled uniformly by a texl: editor. The information
necessary for analysis, as well as the results of analysis, is
handled in a uniform way through the so-called input and output
data structures which are sufficiently general to permit the use
of a large number of analysis techniques. In addition, commonly
used objects are isolated for economy; for example, the CIRCAL-2
operator which permits the definition of functions, is applicable
to nonlinear characteristics of network elements, waveforms of
sources, output of a function of a computed variable, and the
computations performed in an optimization process.

3) Efficient On-Line Interaction: — An express and a slow mode
of operation are provided, enabling (a) the experienced user to
stack commands with minimum interaction and (b) the inexperi-
enced user to proceed on a question/answer basis. In addition,
all information that is changed in the course of ordinary design,
such as resistor values, analysis time increments, etc., is or-
ganized in such a way that, once initialized, it need only be
changed incrementally, thereby minimizing significantly the inter-
action cycle.

4) Ability to Define Optimization Procedures; — In formal de-
sign, a common procedure is the adjustment of certain parame-
ters until some performance index is minimized. CIRCAL-2
makes possible the definition by the user, in a circuit-oriented
language, of instruction sequences that behave as "pseudo-users" -
that is, they automatically modify/analyze a circuit until and if
the desired index is minimized. Of course, these automatic op-
timization techniques are used when the design process is fully
understood and algorithmically expressible. In the more common
design cases where such intangibles as experience and intuition
are necessary, th3 users resort to the on-line interactive fea-
tures of the program.

II. STATUS AND USE OF CIRCAL-2

CIRCAL-2 is currently operating on CTSS (modified IBM 7094). During
the Summer of 1970 it is being converted by SofTech, Inc. (Waltham,
Mass.) for 360-67 and 360-75 use, with additional plans for conversion
to other popular machines. Several electronics and integrated circuit
companies are expecting to use CIRCAL-2 after its conversion (toward

the end of this year).

The analysis techniques residing in the present version of CIRCAL-2
are transient analysis, frequency analysis, and frequency analysis of

128

, .:.■.«■•■■ 'J '"

ON-LINE CIRCUIT DESIGN . . .

sparse networks. In addition, we have used CIRCAL-2 as an experi-
mental forum in developing new analysis techniques. One such technique
developed by our group deals with the algebraic/recursive representa-
tion and analysis of nonlinear networks4. In this technique, circuits are
treated as recursive constructs. That is, specific rules are postulated
for the interconnection of two electronic networks so as to result in a
new network. Recursive use of these relatively few and simple rules
gives rise to any one of a large class of complex circuits. We have
found that complex-looking circuits, if designed by humans, have a very
simple recursive structure, since the designer has created them with
some fixed "rules" — such as "left-to-right information flow", and at
any given stage, the processing of at most two or three signals in the
generation of a new signal.

In addition, we have studied the case of highly repetitive circuit struc-
tures, such as those encountered in integrated digital circuits and have
suggested means for their analysis.

Our group plans to phase out the research on on-line circuit design
toward the end of this year coincident to the commercial availability of
CIRCAL-2.

m. CONTINUITY AND COMPUTATION

Our new research borders the classical areas of continuous (analog)
and discrete (digital) systems. We have several approaches and objec-
tives in mind: First, by viewing continuous systems from a computa-
tional point of view, we can ask several questions of a theoretical
nature:

What is the logical capability of continuous systems? Are there
input-output tasks that cannot be handled by any continuous sys-
tem? Is there a computational hierarchy of continuous machines
with ever-increasing computational power? Is there an inherent
upper limit to the tasks conducted by any continuous machine
(analogous to Turing's thesis for discrete machines)?

Questions such as these may, at first, appear fatalistic, since continu-
ous computing systems in their known form (analog computers) have a
limited accuracy and are difficult to program. We have, however, two
major reasons for studying these questions: First, in contrast to digital
systems, our ability to design continuous systems that perform a given
input-output task is severely limited. Consider, for example, the com-
putational hierarcl"T of discrete machines (left half of Fig. 1) and our
suggested continuous counterparts on the right. While we can express
input-output tasks for the discrete machines, e.g., using Boolean Ex-
pressions for (a), regular expressions for (b), and recursive functions
and predicates for (c), we have no known ways of expressing continu-
ous I/O (input-output) tasks for (e) and (f). Even more important.

129

ON-LINE CIRCUIT DESIGN . . .

DISCRETE SYSTEMS CONTINUOUS SYSTEMS

2> —f

(a) Combinational Logic

Sm!

FF

/MEMORY STORES
/ ONE ELEMENT OF

' {o.'}m

FF

(d) Memoryless Function-block Systems

MEMORY STORES>
ONE ELEMENT OF

ft r " —

"*i COMB. LOGIC

(b) Finite-State Machines

<R
ft IS THE SET

OF REAL
NUMBERS

^1
\.

IFUNCTION-BLOCKI
*{ SYSTEMS _

(e) Continuous Dynamic Systems

TAPE STORES l's 8 O's

x2t

J
(RIGHT
LEFT
HALT)

FINITE-STATE
 MACHINE

(c) Turing Machines

TAPE STORES REAL NUMBERS

J
(CONTINUOUS
ADJUSTABLE
TAPE SPEED)

CONT. DYNAMIC
SYSTEM

(f) Continuous Turing Machines

*

Fig. 1.
Computing-Machine Hierarchies.

130

.... -

-, ;:-.;..

ON-LINE CIRCUIT DESIGN

■

while we have procedures for designing discrete machines, e.g., Quine-
McCIuskey for (a) and Huffman-Moore for (b), we lack any such proce-
dures for the case of continuous machines. We believe that both the
representation of I/O tasks as well as the synthesis of dynamic sys-
tems such as (e) are possible. We have obtained some early results
to substantiate our claim. Specifically, we have developed procedures
which, given practical constraints on the nonlinear function blocks that
can be used, return the number of integrators needed and provide the
specification for the function blocks to be used in (e) so as to accom-
plish the desired task.

Our first reason, then, is the practical synthesis of continuous dynamic
systems. The second reason concerns the use of continuous and dis-
crete components together to provide effective procedures, as discussed
in the following section. In order to combine discrete and continuous
machines we must have a considerably better understanding of the
latter, especially in regard to logical and computational issues.

In this area, our activities to date have been as follows:

1) Study of autonomous systems of the type of Fig. 1(e), with
the integrators replaced by sample and holds (sh), i.e., objects
operating discretely in time, yet capable of storing a real num-
ber. This study has given a large number of results as to the
way in which function-block constraints such as boundedness
and Lipschitzness* affect the number of memory variables and
the way in which the system is interconnected. Given specified
sequences of real numbers, we have developed procedures for
constructing autonomous sh machines that realize these sequences
under any additional constraints on boundedness and Lipschitz-
ness of the constituent function blocks.

2) The results of part (1), above have been extended to autono-
mous intt^rator systems. We have established that no one-
integrator system can ever oscillate, and that a three-integrator
system can realize arbitrary I/O tasks with no constraints on
the function blocks. We have further established that the num-
ber of integrators grows in inverse proportion to the Lipschitz
constant and to the bound or the functions used in the system.

3) A language similar to regular expressions has been developed
for the expression of autonomous tasks of systems of the type

of Fig. 1(e).

4) We have investigated Real Turing machines of the type of

* These latter two conditions are practically necessary. The former,
for instance, insures a finite voltage range while the latter restricts
the "wi^gliness" of every function in the system.

131

Vw« '" V ,,

ON-LINE CIRCUIT DESIGN . . .

Fig. 1(f), trying to establish a model that describes naturally
any continuous task. Although we are not yet certain as to
whether we have found such a model, we have developed some
powerful models of Real Turing machines that have many inter-
esting properties. One such model can solve precisely all those
halting problems that a conventional Turing machine cannot
solve. We have also identified problems unsolvable by the Real
Turing machines.

The study of Real Turing machines, besides its theoretical interest,
has also a practical appeal, in that it can lead to universal analog
machines, and, for our purpose, to universal and interpretive hybrid
machines, discussed below. The fascinating question of a "Real Turing
Thesis" is still open — that is, is there an inherent upper limit to
all the "continuous computational processes"? Alternatively, is an
analog computer at ihat logical limit? Can it solve any problem that
a iiuman can solve with, say, graphic constructions on paper, or any
problem that can be handled by any other special analog system?
Throughout these questions, it is assumed that our machines are capa-
ble of inJinite precision, the primary concern being to study how con-
tinuity affects computation.

IV. HYBRID COMPUTATION: LINEAR EQUATIONS

One of the reasons for our study of continuous computation is our dis-
covery of certain mixed or hybrid structures — consisting of continu-
ous and discrete subsystems — which can be so arranged as to solve
large and relatively complex problems with the speed of analog sys-
tems and the accuracy of digital systems.

The basic idea behind these structures is computation with two classes
of variables, which we have called pressures and flows. The flow
variables include the unknowns and are digitally expressed as binary
numbers. The pressure variables are analog quantities which are sub-
ject to accuracy limitations. Execution involves the adjustment of
flows on the basis of the inexact pressures in accordance with some
prescribed rules, and the adjustment of the pressures on the basis of
exact computations on the flows. These adjustments may be conducted
synchronously or asynchronously in time.

The first structure that we have studied is shown in Fig. 2. It is in-
tended for the solution of large systems of linear equations. Here the
equation to be solved is Ax = y where vector y and matrix A are
given, and vector x is the unknown. The computing structure consists
of two parts: (1) a digital or exact substructure which checks to see
if a suggested vector (a flow variable) Xj does satisfy the above equa-
tion; this structure computes the error y - AXJ; and (2) an analog
substructure which computes inexactly the pressure variable

132

o,.,:^,;.,;..,^:, W'Mäsi^ *"*■ ^ "-"V .'*. >«. »- *•^• *

.

ON-LINE CIRCUIT DESIGN

(Divide by K)

Exact Computation

of y AX:

(Multiply by K)

Analog/Digital

Conversion

T

Digital/Analog

Conversion

Inexact Computation
of A'^l-AXj)

Fig. 2.
A Hybrid Computing Structure.

Ax, = A~ (y - Ax:), where A is an inexc dis- . .:, ,ir%£ i^--,/> ""•—■ — ,,, '■'- ...^ ^^.e-..vwt approximation to A ,
cussed below. Execution is iterative, each iteration consisting of first
the computation of the error, then of the pressure Ax; and then of
Xj+, as xj + | = Xj + ^Xj • K A"'* were exactly A-1, then the exact solu-
tion would be obtained in one iteration. Since A"1^ is inexact, each
iteration brings Xj +) closer than Xj to the solution, with contraction
depending on the error between A-1 and A"'^. The implementation of
A"^ that we envision does the inversion implicitly — that is, an ana-
log system is set up (under program control), with parameters that
are the known coefficients of A; the manner in which the analog com-
ponents are interconnected, however, simulates to within analog ac-
curacy, the equation A^x - £. There are many ways of structuring
an analog system to behave in such a way -- roughly as many as there
are iterative algorithms for linear equations. One way, which we have
chosen, is based on the following approach:

Let D be a matrix consisting of the diagonal elements of A and of O's
everywhere else; and let N be the nondiagonal elements, i.e., N = A ~ !)•
Thus, the equation to be solved is

or

or

(N + D) x = y

Dx = y - N^E

x = D'^y - Nx)

' 133

;a4i«Ä!" i***«-»- J-. i ,v. V , , >w -Sr'.', U-. . f . -tW ^-»feM^a*aiagBg!««l^^

> ;'

ON-LIKE CIRCUIT DESIGN . . .

Note that D-1 is known, by inspection of A. The analog system is ac-
cordingly set up to simulate the last (implicit) set of equations shown
in Fig. 3 (for a system of two equations). Naturally we have taken
advantage here of the fact that, in linear systems, the solution errors
are linearly related by the same equation, i.e.,

AAx = A^

ailXl +ai2X2Sy|
a2lXl +a22X2= 1Z

convert to

i a,,^! t 2'

X2=^2-a2lX2)

Fig. 3.
Inexact Analog Substructure.

As Xj approaches the solution, the error jp - AXj is computed exactly
at a computing cost which grows as N (for an N x N matrix A). It
is then converted (and amplified to a reasonable level) by a digital-to-
analog converter. The computation of the pressure AXJ is executed at
a speed which depends, on one hand, on the response time of the
sealers and summers of Fig. 3 and, on the other hand, on the eigen-
values of A. Because of the continuity and asynchronousness of analog
systems, this solution is reached very rapidly in a matter of, at most,
a few milliseconds, for the typical case of several thousand equations.
Thus, the over-all computing effort grows practically as N2 per itera-
tion, since the digital computation dominates. The number of iterations
necessary for solution of the equation depends on the norm of the
error A - A^. For typical analog systems with errors in the vicinity
of 1% to 2%, each iteration increases the accuracy of the solution by
six bits (g^ = 1.5%). This is because, as the digitally computed error
becomes smaller, when it is converted to an analog quantity it is ampli-
fied so as to remain large with respect to the offset errors of the
analog substructure. Thus, in five iterations, the solution is computed

■ ■..

134

■

. .- . .■ ..-..

I

*» ■

ON-LINE CIRCUIT DESIGN

to 30.bit accuracy. Since complete digital computer solutl0» °f ^
above equation grows as N3, it follows that the savings in computing
time are of the order of N, i.e., the above structure solves a 1000-
eq^ation system 1000 times faster than a strictly digital system with

the same parameters.

Durinp- the reporting period, we have examined in considerable detail
fhe attainLL spee^and accuracy of A+ under several different imple-

mentations.

V. HYBRID COMPUTATION: EXTENSIONS

The above structure can be extended to handle large systems of n^
Unear equations f(x) = y. In fact, any conventional iterative algorithm
^f-uses a matrLT correction, such as an inverse Jacobian gradient
or a Newton^R^Tson method, can be realized in this form In this
case, however, the coefficients of A"', will vary from iteration to

iteration as x-, varies.

Other extensions involve the solution of large systems of differential
^d integral equations. We have identified several -h structures and
are currently investigating them. In the course of our ™f'* h*S.
become apparent that, if a problem can be decomposed into two parts -
anTxacr subproblem which checks the accuracy of a proposed solu-
üon and an "inexact" subproblem which improves every proposed solu-
tion and if the "checking" part requires less computation than the
"TmprovU" part - then the over-all problem can be effectively solved

by a hybrid computing structure.

It is not essential, however, that a problem be decom^sed
1^Jp

W
r
0
n^

h

parts. We are currently investigating decomposition into a larger num-
ber of analog and digital parts, each of which haf ^/"^^
simple task such as addition, or evaluation of a function. These struc-
simpie Uta* ou . . . * .. „ n^^iate" one-for-one the algebraic tures seem promising in that they simulate one loiu . . *
and differential operations of equations by corresponding electronic

mechanisms.

Several additional questions have been raised in the course of our re-
selrch, and these are currently under investigation. They involve the
inherent limitations on computing speed among analog and digital sys-
tems based on a small number of physics-oriented axioms such as
limits on a maximum energy that can be stored per unit volume, a
minimum energy that can be detected, and a maximum power density
Z unit area. It appears that the time required for addition of n quanti les
grows at least as log n, regardless of whether it is conducted by digital
or analog devices; however, we have not yet been able to prove this
from the basic axioms. Other questions concern the coding of informa-
tion so as to maximize processing speed. For example, if the computa-
tion to be performed is simply arithmetical negation, that is, y = -x.

135

-

.

ON-LINE CIRCUIT DESIGN . . .

then a signed binary coding of x results in the fastest computation of
y since the energy that must be changed is the minimal detectable
energy; an analog coding of x would require a larger energy change,
hence a slower computing time. We have been able to prove, along
these lines, that to any finite function y = f(x), with x y Negers
there corresponds a coding of x and y (typically a highly redundant
one) that changes only the minimal detectable energy, hence gives rise
to ^instant" computation.

In a more practical vein, we are currently initiating a study of the
applicability of our hybrid structures to meteorological, electromagnetic-
field and space-navigational problems which are very time-consuming
or nearly impossible by conventional machines. We are also starting
to look at the possibility of using inexact digital rather than analog
processes in our computing structures. Roughly speaking, we are try-
ing to establish whether continuity or inexactness is the significant
property that makes the hybrid structures compute so rapidly.

, Published Material

1 M. L. Dertouzos, "Educational Uses of On-Line Circuit Design",
' IEEE Trai^actions on Education, Vol. E-12, No. 3, September 1969,

pp. 197-198.

2 M L Dertouzos, "Computer Science Education in the Soviet Union",
IEEE Spectruni, VoL 6, No. 12, December 1969, p. 74.

3 M L Dertouzos, "Character Generation from Resistive Storage of
Time Derivatives", AFIPS Conference Proceedings (Fall Joint Com-
puter Conference) Vol. 35, November 1969, pp. 561-568.

4 M L. Dertouzos, "Computer Analysis of Nonlinear Networks by Re-

* cursive Decomposition", Proceedings, Second Biennial Cornell Elec-
trical Engineering Conference on Computerized Electronics, Vol. 2,

August 1969, pp. 57-67.

5 M. L. Dertouzos, "A Visit to the Soviet Union", Aug. 1969, Report
' to the National Academy of Sciences, Natiqnal Science Foundation

and IEEE.
6. G. P. Jessel and J. R. Stinger, "CIRCAL-2: A General Approach

to On-Line Circuit Analysis", 1969 NEREM Record, Vol. 11,

pp. 30-31. *

136

, ,

ON-LINETCIRCIHT DESIGN

t0 SCMt accuracy, ^e,^^^^^
above equation grows as N , it ^Uows^at .^^ ^ im_
time are of the order of N, i.e., the ^ojes
equation system 1000 times faster than a strictly digital sy
the same parameters.

Du.ing the reporting period, we ^ ^ ^t^^L-
the attainable speed and accuracy of A+ under .everai
mentations.
V HYBRID COMPUTATION: EXTENSIONS

or a Newton-Raphson method can be reaped in ^ ^
case, however, the coefficients of A + will vary
iteration as x-, varies.

Other extensions Invdve the ^-^f^Z^^TL
and integral equations. We have '"* ^ ~rki it has

are currently luves«ga jng the^Jn the ^^ ^'^ ^ ..

rn^rs^-iWe-^
r ^ :rr;cC-"re^trsTos^tatU z>r
"«,;- part - S th' over-all problem can be eflectlvely solved

by a hybrid computing structure.

„ is not essential, however, that a ^J*^™^£™Z-
parts. We are -«^^^0?^ Cle^ relatlU
ber of analog and digital parts, each 01 wn ti These struc.
simple task such as add« on « ;—on °f a «^tl^ ^ ^^

tures seem promising in that they = Tr'nrresoonding electronic
and difterentlal operations of equations by corresponding

mechanisms.

tems, based on a small "u-bfj'^^^" per unit volume, a
limits on a m^mum energy ^ - be f° ^^ ^ density

minimum energy that c*" ^t ^ ' requlred for addition of n quantities
per unit area. It appears ^ ^ ''f^Xther It Is conducted by digital
grows at least, as log n, re8ara

<i
le

h
S
a

S
Te

01'fvet „^ ^ to prove this

135

■ . ■ . ■ : .
■

I

<r
APPENDIX A

PROJECT MAC TECHNICAL REPORTS*

t TR-1 Bobrow, Daniel G.
Natural Language Input for a Computer Problem

Solving System
September 1964

t TR-2 Raphael, Bertram
SIR: A Computer Program for Semantic Infor-

mation Retrieval
June 1964

TR-3 Corbatö, Fernando J.
System Requirements for Multiple-Ac cess,

Time-Shared Computers
May 1964

t TR-4 Ross, Douglas T. and Clarence G. Feldmann
Verbal and Graphical Language for the AED

System: A Progress Report
May 6, 1964

t TR-6 Biggs, John M. and Robert D. Logcher
STRESS: A Problem-Oriented Language for

Structural Engineering
May 6, 1964

t TR-7 Weizenbaum, Joseph
OPL-1: An Open Ended Programming System

Within CTSS
April 30, 1964

t TR-8 Greenberger, Martin
The OPS-1 Manual
May 1964

t TR-U Dennis, Jack B.
Program Structure in a Multi-Access Computer
May 1964

TR-12 Fano, Robert M.
The MAC System: A Progress Report
October 9, 1964

t TR-13 Greenberger, Martin
A New Methodology for Computer Simulation
October 19, 1964

TR-14 Roos, Daniel
Use of CTSS in a Teaching Environment
November 1964

137

AD-604-730

AD-608-499

AD-608-501

AD-604-678

AD-604-679

AD-604-680

AD-604-681

AD-608-500

AD-609-296

AD-609-288

AD-661-807

■ ■ ■

APPENDIX A

TR-16 Saltzcr, Jerome H.
CTS^ Technical Notes
March 1965

TR-17 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer
March 1965

t TR-18 Scherr, Allan Lee (Thesis)
An Analysis of Time-Shared Computer Systems
June 1965

AD-612-702

AD-462-158

AD-470-715
TR-19 Russo, Francis John (Thesis)

A Heuristic Approach to Alternate Routing in a
Job Shop

June 1965 AD-47^018
TR-20

TR-21

t TR-22

TR-23

Wantman, Mayer Elihu (Thesis)
CALCULAID: An On-Line System for Algebraic

Computation and Analysis
September 15, 1965 AD-474-019

Denning, Peter James (Thesis)
Queueing Models for File Memory Operation
October 1965

Greenberger, Martin
The Priority Problem
November 1965

Dennis, Jack B. and Earl C. Van Horn
Programming Semantics for Multiprogrammed

Computations
December 1965

AD-624-943

AD-625-728

AD-627-537
t TR-24

TR-25

TR-26

Kapiow, Roy, Stephen Strong and John Brackett
MAP: A System for On-Line Mathematical

Analysis

January 1966 AD-47G-443

Stratton, William David (Thesis)
Investigation of an Analog Technique to Decrease

Pen-Tracking Time in Computer Displays
March 7, 1906 AD-631-386

Cheek, Thomas Burrell (Thesis)
Design of a Low-Cost Character Generator for

Remote Computer Displays
March 8, 1966 AD-631-269

138

APPENDIX A

TR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid System

May 1966

TR-28 Smith, Arthur Anshel (Thesis)
Input/Output in Time-Shared, Segmented, Multi-

processor Systems
June 1966

TR-29 Ivie, Evan Leon (Thesis)
Search Procedures Based on Measures of

Relatedness Between Documents
June 1966

TR-30 Saltzer, Jerome Howard (Thesis)
Traffic Control in a Multiplexed Computer

System
July 1966

TR-31 Smith, Donald L. (Thesis)
Models and Data Structures for Digital Logic

Simulation
August 1966

AD-633-678

AD-637-215

AD-636-275

AD-635-966

AD-637-192

AD-645-660

TR-32 Teitelman, Warren (Thesis)
PILOT: A Step Toward Man-Computer Symbiosis ^^^

September 1966

TR-33 Norton, Lewis M. (Thesis)
ADEPT - A Heuristic Program for Proving

Theorems of Group Theory
October 1966

TR-34 Van Horn, Earl C. (Thesis)
Computer Design for Asynchronously Repro-

ducible Multiprocessing
November 1966

TR-35 Fenichel, Robert R. (Thesis)
An On-Line System for Algebraic Manipulation

December 1966

t TR-36 Martin, William A. (Thesis)
Symbolic Mathematical Laboratory
January 1967

AD-650-407

AD-657-282

AD-857-283

TR^" Guzman-Arenas, Adolfo (Thesis)
Some Aspects of Pattern Recognition by Computer

AD_656_041

February 1967

139

>■■ l c

APPENDIX A

TR-38 Rosenberg, Ronald C, Daniel W. Kennedy and
Roger A. Humphrey ^

A Low-Cost Output Terminal for Time-Shared
Computers

March 1967 AD-662-027

TR-39 Forte, Allen
Syntax-Based Analytic Reading of Musical Scores
April 1967 AD-661-806

TR-40 Miller, James R.
On-Line Analysis for Social Scientists
May 1967 AD-668-009

TR-41 Coons, Steven A.
Surfaces for Computer-Aided Design of Space

Forms
June 1967 AD-663-504

TR-42 Liu, Chung L., Gabriel D. Chang and
Richard E. Marks

Design and Implementation of a Table-Driven
Compiler System

July 1967 AD-668-960

TR-43 Wilde, Daniel U. (Thesis)
Program Analysis by Digital Computer
August 1967 AD-662-224

TR-44 Gorry, G. Anthony (Thesis)
A System for Computer-Aided Diagnosis
September 1967 AD-S62-665

TR-45 Leal-Cantu, Nestor (Thesis)
On the Simulation of Dynamic Systems with

Lumped Parameters and Time Displays
October 1967 AD-663-502

TR-46 Alsop, Joseph W. (Thesis)
A Canonic Translator
November 1967 AD-663-503

t TR-47 Moses, Joel (Thesis)
Symbolic Integration
December 1967 AD-662-666

TR-48 Jones, Malcolm M. (Thesis)
Incremental Simulation on a Time-Shared

Computer
January 1968 AD-662-225

140

.■.■.■ ■ ■ ■ ■■

APPENDIX A

TR-49 Luconi, Fred L. (Thesis)
Asynchronous Computational Structures
February 1968

t TR-50 Denning, Peter J. (Thesis)
Resource Allocation in Multiprocess Computer

Systems
May 1968

t TR-51 Charniak, Eugene (Thesis)
CARPS, a Program which Solves Calculus Word

Problems

AD-677-602

AD-675-554

July 1968

TR-52 Deitel, Harvey M. (Thesis)
Absentee Computations in a Multiple-Ac cess

Computer System
August 1968

TR-53 Slutz, Donald R. (Thesis)
The Flow Graph Schemata Model of Parallel

Computation
September 1968

TR-54 Grochow, Jerrold M. (Thesis)
The Graphic Display as an Aid in the Monitoring

of a Time-Shared Computer System
October 1968

TR-55 Rappaport, Robert L. (Thesis)
Implementing Multi-Process Primitives in a

Multiplexed Computer System
November 1968

t TR-56 Thornhill, D. E., R. H. Stotz, D. T. Ross and
J. E. Ward (ESL-R-356)

An Integrated Hardware-Software System for
Computer Graphics in Time-Sharing

December 1968

TR-57 Morris, James H. (Thesis)
Lambda-Calculus Models of Programming

Languages
December 1968

TR-58 Greenbaum, Howard J. (Thesis)
A Simulator of Multiple Interactive Users to

Drive a Time-Shared Computer System
January 1969

AD-673-670

AD-684-738

AD-683-393

AD-689-468

AD-689-469

AD-685-202

AD-683-394

AD-686-988

141

. ■

APPENDIX A

TR-59 Guzman, Adolfo (Thesis)
Computer Recognition of Three-Dimensional

Objects in a Visual Scene
December 1968

t TR-60 Ledgard, Henry F. (Thesis)
A Formal System for Defining the Syntax and

Semantics of Computer Languages
April 1969

TR-61 Baecker, Ronald M. (Thesis)
Interactive Computer-Mediated Animation
June 1969

t TR-62 Tillman, Coyt C. (ESL-R-395)
EPS: An Interactive System for Solving Elliptic

Boundary-Value Problems with Facilities for
Data Manipulation and General-Purpose
Computation

June 1969

TR-63 Brackett, John W., Michael Hammer, and
Daniel E. Thornhill

Case Study in Interactive Graphics Program-
ming: A Circuit Drawing and Editing Program
for Use with a Storage-Tube Display Terminal

October 1969

t TR-64 Rodriguez, Jorge E. (Thesis) (ESL-R-398)
A Graph Model for Parallel Computations
September 1969

t TR-65 DeRemer, Franklin L. (Thesis)
Practical Translators for LR(k) Languages
October 1969

TR-66 Beyer, Wendell T. (Thesis)
Recognition of Topological Invariants by

Iterative Arrays
October 1969

t TR-67 Vanderbilt, Dean H. (Thesis)
Controlled Information Sharing in a Computer

Utility
October 1969

/

AD-692-200

AD-689-305

AD-690-887

AD-692-462

AD-699-930

AD-697-759

AD-699-501

AD-699-502 (

AD-699-503
t TR-68 Selwyn, Lee L. (Thesis)

Economies of Scale in Computer Use: Initial
Tests and Implications for the Computer
Utility

June 1970 AD-710-011

142

■ ■

APPENDIX A

t TR-69 Gertz, Jeffrey L. (Thesis)
v Hierarchical Associative Memories for

Parallel Computation
June 1970

t TR-70 Fillat, Andrew I. and Leslie A. Kraning (Thesis)
Generalized Organization of Large Data-Bases:

A Set-Theoretic Approach to Relations
June 1970

1 TR-71 Fiasconaro, James G. (Thesis)
A Computer-Controlled Graphical Display

Processor
June 1970

1 TR-72 Paul, Suhas S. (Thesis)
Coordination of Asynchronous Events
June 1970

AD-711-091

AD-711-060

AD-710-479

AD-711-763

TECHNICAL MEMORANDA $

t TM-10 Jackson, James N.
Interactive Design Coordination for the

Building Industry
June 1970

1 TM-11 Ward, Philip W.
Description and Flow Chart of the PDP-7/9

Communication Package
July 1970

AD-708-400

AD-711-379

t Project MAC Progress Report I
to July 1964

Project MAC Progress Report II
July 1964-July 1965

t Project MAC Progress Report III
July 1965-July 1966

Project MAC Progress Report IV
July 1966-July 1967

AD-465-088

AD-629-494

AD-648-346

AD-681-342

143

. ■

■ .. . ■

APPENDIX A

Project MAC Progress Report V
L July 1967-July 1968

Project MAC Progress Report VI
July 1968-July 1969

AD-687-770

AD-705-434

* Copies of all MAC reports listed in Appendix A, as well as earlier
Progress Reports, have been deposited with DDC; using the appended
AD number, a report may be secured from the National Technical
Information Service, Operations Division, Springfield, Virginia, 22151.
The prices from NTIS are: microfilm $0.95; hard copies: reports
more than two years old $6.00, all others are $3.00 except TR-83
which is also $6.00.

t Out-of-print, may be obtained from NTIS (see above).

% All TMs have been deposited with DDC and are available only from
NTIS, using the AD number appended; the cost is $0.95 for micro-
film and $3.00 for hard copy.

144

