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(Pur cover illustrates four brief dialogues 
with MACSYMA,  a computer system for algebraic 

f. Manipulation under development at Project MAC 
since 1968.     The lines labeled Cl  through C7 
kre displays of lines  typed in by a  user,  and 
'translated to  two-dimensional  format on a 
typewriter-like device.     The lines labeled D2 
through D7 are computed responses  to commands. 
The examples demonstrate some recent improve- 
ments  to MACSYMA which include the ability to 
"evaluate limits,  improper integrals,  and power 
series expansions. 
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INTRODUCTION 

In Project MAC (nMen and Computers"), about 270 persons are en- 
gaged in digital computer research and development;  they include faculty 
members -- mainly of the Departments of Electrical Engineering and 
Mathematics and of the Sloan School of Management — staff members, 
and students. 

The over-all program of Project MAC comprises the programs of 11 
interacting and overlapping groups.  The work of five of these will be 
summarized here in order to describe the Project MAC  effort in 
1969-1970. 

Artificial Intelligence 

The last year has seen significant advances in analysis of visual scenes 
and visually controlled manipulation of objects by computer, in machine 
understanding of natural language and narrative, and in a broad effort 
to incorporate knowledge and intelligence into programs.  In these areas, 
which we group under the rubric "Artificial Intelligence", Professors 
Robert R. Fenichel, Michael J. Fischer, Marvin L. Minsky, Seymour A. 
Papert, Michael S. Patterson, Joseph Weizenbaum, and Patrick H. Winston 
and Visiting Professor Edward Fredkin have conducted research with 
approximately 60 staff members and students. 

Into a new programming language and system, PLANNER, Carl E. Hewitt 
has incorporated an array of features that promise to be as basic to 
heuristic programming as have been the "DO Loops" of FORTRAN and 
the "FOR Statements" of ALGOL to numerical programming. In PLANNER 
one can write, for example, "Whenever X happens, do Y", where X is a 
general description of an event and Y is almost any action at all.  For 
example, one can tell PLANNER to choose a simpler goal whenever 
three efforts to reach the old goal fail — and PLANNER will set up a 
process ("demon") that keeps an eye open for trios of failures and, 
whenever it sees one, initiates the reselection process. 

Terry A. Winograd completed a system of programs that translates a 
wide range of statements from English into the PLANNER language. 
Winograd's system is based on a heuristic grammar that uses con- 
textual information;  his system handles the semantic and syntactic parts 
of the analysis concurrently.  An important feature, which gives the sys- 
tem more flexibility than is afforded either by "semantic networks" or 
by lists of grammatical rules, is the representation of the grammar as 
a set of programs.  The definition of a word is also a program -- as, 
indeed, is each component of the system's "knowledge of the world". 
All such programs are available to the deductive part of the system. 

The interests of the Artificial Intelligence Group embrace human as 
well as machine intelligence.  The last year pressed home the essential 
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INTRODUCTION , 

pertinence to human teaching and learning of basic concepts developed 
or clarified through research on artificial intelligence, and Professors 
Minsky and Papert and some of their colleagues determined to exploit 
the breakthrough into the realm of human cognition.  In April 1970,        , 
Professor Papert gave a Saturday lecture on this subject to a capacity 
audience at M.I.T., and h6 and Professor Minsky participated in a dis- 
cussion with visiting leaders in the field.  In June, the National Science 
Foundation provided initial funds for research in teaching and learning. 

Computer-Based Mathematics Laboratory 

Continuing the development pf "Mathlab", a system of computer pro- 
grams designed to provide sophisticated assistance to people working 
on mathematical problems that involve complex symbolic expressions. 
Professors William A. Martin and Joel Moses implemented a new alge- 
braic manipulation system. With this new system. Mathlab is able to 
give strong assistance in work with, summations, integrals, derivatives, 
exponentials, logarithms and factorials.  If, for example, at point C14 
in 9. certain calculation the user types to Mathlab 

FACTOR (X**6 -1) 

and then presses tte @ key to t^U Mathlab to go. Mathlab at once 
displays 

{D14)'  (X + 1)(X - l)(X2 + X + 1)(X2 - X + 1) 

If at another point an expression stands as   . 

X2+X-6 , / 
(D20'   X3.6X2 + 9X ! ' 

the user can have it "rationally simplified" by typing 

RATSIMP  (t)@ 

where % means "it" or "the preceding expression". Mathlab then re- 
sponds with 

X- 2 
(D21)   —s—  , 

When given (e2x + 2eK + 1) - 21og(ex + 1), Mathlab simplifies it to zero. 

Computation Structures ^   { ■ 

Human mathematicians are, of course, superior to Mathlab in intuition, 
in deciding what manipulations to try in order to reach a goal.  How- 
ever, a suitably programmed computer can handle, much more rapidly 
and accurately than any human mathematician, algebraic manipulations 
involving dozens or hundreds of terms.  Thus, the human and computer 
capabilities complement each other.  Even though the development of 

i      i 
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INTRODUCTION 

Mathlab is far from complete, it proved itself, this past year, to be a 
very helpful assistant in serious mathematical work. During the coming 
year, its capabilities will be further increased. 

Computation Structures 

In research on "computation structures", a group of 13 staff members 
and students led by Professor Jack B. Dennis worked toward a formal 
integration of hardware and software concepts, especially of concepts 
pertaining to highly parallel, asynchronous computer systems.  Their 
work dealt with design, architecture, specification   and modeling of 
digital systems, with representation of concurrent processes, and with 
security, privacy, and controlled sharing of procedures and data. 

One of the tools that most facilitates thinking about complex concurrent 
processes i^ a diagram called the Petri net.   Suhas S. Patil generalized 
Petri nets, as modified by Holt, to handle coordination of asynchronous 
events and has showed that Petri nets can be systematically converted 
into asynchronous modular structures. In turn, Professor Dennis showed 
that Patil's generalized nets are suitable for representing the control of 
very large computers.  Asynchronous design of a machine, similar in 
many ways to the synchronous CDC 6600 but simpler in detail, required 
only nine types of control module.   For such a machine, asynchronous 
design has important advantages in conceptual simplicity and perhaps 
also in speed. 

Attempting to understand a large and complex digital system, a person 
examines it one part at a time and then, actually or conceptually, puts 
the parts and their behaviors together.  Suppose that each part turns 
out to be determinate in the sense that all runs of any program (that 
will run in it) yield the same result.  Is the over-all system necessarily 
determinate? This last year, Patil showed that it is, given an appro- 
priate input-output discipline, which he defined.  He showed that a class 
of Petri nets called "marked graphs" has the determinacy-preserving 
property. 

Prakash Hebalkar carried out a study of restrictions of concurrent 
activities that are imposed by limitation of resources --an ubiquitous 
problem (encountered in transportation, manufacturing, maintenance, etc.) 
that is of great interest in the field of computation.  With the aid of a 
very useful representation called "demand graphs", he developed a 
fundamental understanding of the phenomenon of deadlock, in which 
would-be concurrent processes block one another by hoarding resources, 
and of the safeness algorithm used in efforts to anticipate and avoid 
deadlock. 

Other research carried out by the Computation Structures Group in- 
cludes an analysis of hierarchical associative memories, the develop- 
ment of schemata ("computational schemata") for modeling the structure 
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INTRODUCTION 

of computer programs, and the beginning of the definition of a very 
basic and general programming language, intermediate between such a 
language as ALGOL and the "language" of the code that is directly 
executable by computer hardware.  In June at Woods Hole, Massachu- 
setts, the Computation Structures Group held a conference, attended by 
27 research workers from more than a dozen laboratories, on "Con- 
current Systems and Parallel Computation". 

Computer System Research 

Under the leadership of Professor Fernando J. Corbato, Professor 
Jerome H. Saltzer and Robert C. Daley and in close cooperation with 
a group in the General Electric Company headed by Charles T, Clingen, 
the Computer System Research Group of Project MAC brought the 
Multiplexed Information and Computing Service (Multics) System -- the 
advanced and comprehensive time-sharing system on which Project 
MAC has focused a large part of its total effort since 1965 — into 
successful operation.  On 1 October 1969, Project MAC transferred 
operational control of the Multics System to the M.I.T. Information 
Processing Center under an arrangement that leaves Project MAC in 
charge of continued development of the operating system and of re- 
search on computer-utility and computer-network aspects of Multics. 

Although Multics is a much more complex and sophisticated system 
than its predecessor, the Compatible Time Sharing System, which was 
the first large general-purpose multi-access computer system, Multics 
was able in Fall 1969 to support as many users as CTSS;  and it has 
been increasing steadily in number of simultaneous users and in ratio 
of performance to cost ever since it reached its initial operating capa- 
bility.  The number of registered users of Multics has increased quite 
linearly from 26 projects and 190 individuals in October to 72 projects 
and 408 individuals in June, and it now seems quite probable that 
Multics will meet the initial design expectations, which seemed radical 
when they were published in 1965, in respect of performance and use. 

In retrospect, it appears that one of the best decisions of the Multics 
project was to program the operating system in a high-level program- 
ming language.  That decision represented a break with the tradition of 
system programming in "assembler language".  Using a high-level lan- 
guage made it possible to revise the program repeatedly, some parts 
as many as seven times, and to make progress despite "usually high" 
turnover in the staff.  These two factors far outweighed the advantage 
(perhaps a factor of two, over-all) that could have been achieved 
through the more efficient coding possible in assembler language -- 
and, in any event, that advantage remains open, to be exploited, if it 
should seem worthwhile, when no further fundamental revisions of the 
operating system are envisaged. 
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INTRODUCTION 

Over the long development period, there were times when it seemed 
that the main objective of the Multics project was simply to complete 
Multics. During the last year, however, it was possible to devote time 
and energy to the earlier-conceived and more-basic purpose:  to under- 
stand how to systematize and optimize the myriad factors and forces 
that interact with one another in a comprehensive multi-access informa- 
tion and computing system.  Marked progress was made toward that 
goal.  It was possible to make sense out of about a dozen technical 
puzzles.  Each gain in understanding reflected itself at once in improved 
system performance and, at the same time, added a significant element 
to the body of knowledge of computer system design. 

Toward the end of the year, some of the interests and energies of the 
Computer System Research Group turned to problems of graphical dis- 
play and to Multics as a node in a multi-computer network.  Those 
topics will figure strongly in research during the coming year. 

Programming Linguistics 

Professors Robert M. Graham, Arthur Evans, Jr., and John J. Donovan, 
Visiting Professor Michael A. Harrison, and a group of 38 staff mem- 
bers and students conducted research in the linguistics of computer 
programs.  Much of this research is aimed at understanding program- 
ming languages in terms of formalisms similar to those of logic and 
mathematics.  Because computer programming languages are simpler, 
have more definite purposes, are more likely to be deliberately de- 
signed, and are more susceptible to measurement and analysis than 
natural languages, there is some chance of understanding them formally, 
in due course, and dealing with them as quasi-mathematical objects 
rather than (as is now approximately the case) as cooking recipes or 
instructions for assembling hi-fi kits.  The practical advantages to be 
gained through formal mastery of the language of computers are very 
great.  If it were possible, for example, to state precisely what a com- 
puter program is intended to do and then formally — through a definite 
sequence of operations similar to those used in proving theorems --to 
show that it does or does not do it, then one of the main sources of 
trouble in the use of computers could be eliminated.  As matters stand 
now, about all one can do to test a program is to check in a few specific 
(and usually oversimple) cases that, step-by-step, it performs the opera- 
tions its programmer specified and, at the end, yields output considered 
correct on the basis of external criteria.  That procedure is so obvious- 
ly unsatisfactory as to provide strong motivation for more formal 
"theorem-proving" approaches, almost no matter how difficult they ap- 
pear to be.  At the same time, it is evident that work in formal pro- 
gramming linguistics is intellectually attractive and self-motivating. 

Professor Donovan and his associates developed a mathematico-linguistic 
formalism called "Canonic Systems" within which one can specify the 
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syntaxes of computer languages and the rules for translating from one 
computer language (e.g., a compiler language) to another (e.g., an as- 
sembler language).  They were successful, though as yet only in a sim- 
plified case, in preparing programs capable, given the syntaxes and the 
rules, of carrying out the translation automatically;  and they made 
progress toward specifying the complexity of the translation process 
for various language pairs in terms of the number of steps theoreti- 
cally required. 

Professor Evans and his associates studied methods of formalization 
that appear promising from the points of view of language description 
and language extension.  They found several ways to improve the defi- 
nition of programming languages, which currently are described in 
manuals full of rather jargonistic natural language plus syntactic "re- 
write rules".  They also found several ways to let the user of an "ex- 
tensible" programming language specify extensions that, for some 
special purpose, he would like to make to its general-purpose base 
language.  As tools in the study of formalization, the group used the 
languages PAL and BCPL.  It brought the formalization and documenta- 
tion of PAL, which was designed especially for pedagogical purposes, 
near to completion, and it improved the performance and expanded the 
library of BCPL in Multics,  produced a computer-based version of 
the  BCPL  Reference Manual,  and  "exported" tapes  of  BCPL to 16 
System 360 installations. 

Other Research Programs 

The five programs touched upon in the foregoing paragraphs subsume 
about two-thirds of the research program of Project MAC.  It will have 
to suffice merely to mention the rest in this summary. 

Professors Frederick C. Hennie, C. L. Liu, and Albert R. Meyer and 
nine associates continued research in the theory of automata, advancing 
the understanding of the complexity of computations and the structure 
of automata.   They proved two new theorems about complexity, clarified 
the concept of randomness as applied to particular sequences, extended 
findings of Minsky and Papert to additional varieties of perceptron, and 
obtained new results in graph theory, algebraic coding theory, integer 
programming, and extensible languages. 

Professors Malcolm M. Jones, G. Anthony Gorry, and Michael S. Scott- 
Morton conducted research in management application of computers. 
With Professors Daniel Roos and James D. Bruce, Dr. Myer M. Kessler, 
and a distributed group of about 20 staff members and students. Profes- 
sor Jones conducted a program of studies on interactive problem-solving 
and decision-making and continued the development of the simulation 
system SIMPLE;   and he and Robert Goldstein carried on the develop- 
ment of the Advanced Information Management System, MacAIMS. 

I 
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Professor Michael L. Dertouzos and several associates in the Electronic 
Systems Laboratory, functioning as a research group of Project MAC 
conducted studies of an essentially new kind of comUr^ compeer' 
made of components that are in one respect digital and another analog. 
It seems possible that such a computer can solve certain classes of 
problems more rapidly than ordinary digital computers and more ac- 
curately than ordinary analog computers. 

Professor Robert M. Fano has long been concerned about the possible 
and actual impacts upon society and, especially, with the question of 
how to make computers serve individuals (as distinguished from or- 
ganizations).  Since he retired from the Directorship of Project MAC 
two years ago, he and several students have studied impact-related 
issues intensively    Professor Fano's article, "Computers in Human 
Society -- for Good or 111?" in the Technology_Review of March 1970 
summarizes some of their thinking. ' 

The Dynamic Modeling Group, formed at the beginning of the year to 
develop techniques and an interactive computer system to facilitate the 
formulation and testing of ideas in terms of computer-program models 

tTorPDp'ß/iV01111^!011 ^ itS SyStem a Digital *"* Corpora- ' tion PDP-6/10 computer and the very sophisticated and responsive 
time-sharing software developed since 1965 by members of the Arti- 
ficial   ntelligence Group.   By the end of the year, the most essential 
subsystems of the dynamic modeling system were operating, and a 
major part of the effort was shifting from "basic system programming" 
to the development of the programs with which users of the system 
will directly interact. y 

In the areas of Computer Networks and Computer Graphics, the past 
year s efforts were mainly groundwork.  The Interface Message Proces- 
sor that will connect Multics and one or both of the PDP-6/10 com- 
puter systems to a coast-to-coast network of research computers was 
installed, and an advanced display subsystem was incorporated into the 
dynamic modeling computer system.  At the end of the year, the net- 
work and graphics programs were shifting into high gear. 

Student Participation 

p^^Vl^r3* ^^ the nUrnber 0f undergraduate student members of 
Project MAC increased from approximately 25 to 76.   This increase 
was due partly to a deliberate effort, championed by David Burmaster, 
Assistant Director for Student Activities, and partly to the successful 
initiation of M.I.T.'s Undergraduate Research Opportunities Program 
under the direction of Dr. Margaret MacVicar.   The number of graduate 
student members of Project MAC increased, during the year, from 25 
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Administration 

to fhfn^' ^ R- JOyCe Harman joined ProJect MAC as Assistant 
Iratio^of .T* n ^^ ^ year' MiSS Harman greatly imPr°ve<* ^ operation of the Document Room and Publications Office. 

Financial Support 

S^^m^4 y!f, the COre pr0gram of ProJect MAC and the Arti- 
ol P^      

genCtGru0UP Were suPPorted' ^ heretofore, by the Informa- 
tion Processing Techniques Directorate of the Advanced Research 
Projects Agency (ARPA). Individual projects were funded by several 
other agencies:  research in visual perception and in extensible Ian- 

nrl?       r*1 Aeronautics and SPa" Administration;   interactive 
problem-solving and decision-making, Office of Naval Research;  librarv- 
information networks, Lister Hill National Center for Biomed^l Com- 
mumcation of the National Library of Medicine;  dynamic modeling, 

NaüonaTt   "^f D!reCt0rate of ARPA;  programming generally National Science Foundation. 
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Prof. J. B. Dennis 

I. R. Campbell-Grant 
R. Carpenter 
H. M. Deitel 
Prof. R. M. Fano 
P. J. Fox 
J. L. Gertz 
I. G. Greif 
M. Hack 
P. G. Hebalkar 

Prof. F. L. Luconi 
M. J. Marcus 
B. Morneault 
S. S. Patil 
L. J. Rotenberg 
L. Seligman 
D. H. Vanderbilt 
W. C. Walker 
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I.   INTRODUCTION 

Research in the Computation Structures Group has the objective of ad- 
vancing knowledge and understanding of computer system organization 
through abstraction and analysis. Our activities have led us to some 
interesting ideas regarding appropriate directions for the evolution of 
general-purpose computer hardware. Much of our current activity ex- 
plores the implications of these ideas concerning computer system 
organization.  Areas under study include:  the theory and practice of 
asynchronous systems;   concurrency in computation -- its influence on 
computer structure and on the representation of algorithms;  the con- 
cept of "programming generality" -- the property of a computer system 
that would permit unrestricted combination of independently written pro- 
grams;  the controlled access to programs and data bases;  and an ap- 
proach to formal semantics for programs based on an abstract model 
for information structures. 

The past year has seen major advances in our understanding of modular 
asynchronous systems and the intimate relation of modular control 
structures to the Petri nets studied by Anatol Holt. We have found our 
knowledge of asynchronous systems sufficient to yield elegant and readi- 
ly understood implementations of the control mechanisms of complex 
central processors. We have analyzed aspects of the concept of a 
hierarchical associative memory.  Our understanding of the properties 
of uninterpreted schemes of programs has been improved through 
study of graphs that explicitly show data dependence.   Finally, we have 
studied formal models of two aspects of advanced operating systems -- 
the controlled sharing of information, and the avoidance of deadlocks 
arising from resource sharing. 

II.   MODULAR ASYNCHRONOUS SYSTEMS 

By "system" we mean an arrangement of parts that interact with one 
another by means of discrete signals.  The essence of systems is ac- 
tivity:   The parts of a system act at instants in consequence of earlier 
actions by other parts of the system. Most systems have many parts 
that act without immediate intercommunication.  Such independent parts 
that may act simultaneously are said to have concurrent activity.  Man- 
machine interaction involves concurrent activity of the man and the 
computer;  a digital system operates through the concurrent activity of 
its individual circuits.  The importance of concurrency goes far beyond 
the use of parallel actions to attain greater speed.  A large system is 
usually constructed through interconnection of simpler systems which 
often operate without central control.  The component systems must 
interact to make their presence felt and this interaction is inherently 
a concurrent activity. We shall review some aspects of our current 

13 Preceding page blank 
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work on the representation of concurrent activitv w th0 •     , 
of system in U* ioTm ol asynchronou^oS Ll^Tu^T" 

Consider what happens when a typewriter key is nressed    Th* f       u 
is initially idle. When the key is operated   the tvoeb/r'^.   *** ?** 
toward the carriage-  when it hif« ill        ' yP   bar starts moving 
the samp Hml fl S the paper' it starts to retreat and at 

Petri net; represented by a diagram called a 

a place 

a transition 

^O* 
Key  is 

operated type bar 
is moving 

KÄ hits the 
paper 

transition may toTSkL ! ,ts '"Put PIaces h«e tokens. An enabled 

and conditions, one ean thus say an evtttcnrs ly Xn ajfcT 

Ä%r.rrr atr sL^-- -~£- 
ated at the same time. The Petrl net below Illustrates this situXn. 
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I 

In this figure, transitions t,, . . . , tk are in conflict over the place p , 
and the conflict at this place prevents two or more keys from being 
operated concurrently. 

Petri nets are a scheme for representing concurrent systems adopted 
by Anatol Holt of Applied Data Research [1] from the nets originally 
proposed by Carl Adam Petri of the University of Bonn [2]. In the 
Computation Structures Group, Suhas Patil has developed a generaliza- 
tion of Petri nets that simplifies the representation of interactions 
associated with resource sharing [3];  Jack Dennis has investigated the 
use of Petri nets to represent the control structures of a highly paral- 
lel computer processing unit [4];  and we have studied fhe implementa- 
tion of nets in the form of asynchronous modular structures.  A few 
aspects of these investigations are discussed briefly in the following 
paragraphs. 

Marked graphs constitute a subclass of Petri nets in which each place 
is an input place of exactly one transition and an output place of exact- 
ly one transition.  The net describing the operation of one key of a 
typewriter is a marked graph.  Marked graphs have many important 
properties, and there is a direct correspondence between marked graphs 
and elementary control structures for digital systems built by the in- 
terconnection of a set of primitive asynchronous control modules to be 
introduced shortly.  This correspondence is useful in two ways:  A com- 
puter control unit specified as a marked graph can be translated into 
an asynchronous control structure by a clerical procedure;  and a con- 
trol structure may be converted into a marked graph to facilitate 
analysis. 

Since a place in a marked graph has only one incident arc and only 
one emergent arc, the circles representing the places are usually 
omitted — an arc from one transition to another is understood to have 
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a place on it. Further conciseness is obtained by drawing the tran- 
sitions as solid dots. In this simplified form, the marked graph de- 
scribing the operation of a typewriter becomes: 

key is 
operated 

type bar hits 
the paper 

idle condition 
is reached 

In the new notation, the presence of tokens is indicated by placing 
markers on the arcs ~ hence the name "marked graphs". 

An important question about a marked graph is whether its activity 
continues forever or comes to a halt.  The property of representing 
activity that goes on indefinitely is called liveness.  A net is said to 
be live for some initial marking if, after any arbitrary activity has 
passed, a continuation of activity is possible that will fire any chosen 
transition.  In other words, in a live net no transition is ever crossed 
off the list of transitions that may be called upon to fire.  In general, 
it is difficult to determine whether an arbitrary Petri net is live.  Yet 
marked graphs have the nice property that a marked graph is live if 
and only if cutting the marked edges of the graph leaves an acyclic 
graph.  The marked graph shown below is live. 

a live marked graph 
i   .- 

The reader can check that, if any of the markers are removed, the 
activity of the graph will come to a halt.  This property of marked 
graphs is very useful in determining whether an elementary control 
structure is free of hang-ups. 

An elementary control structure is a digital system consisting of 
models of six types interconnected by directed links.  Each link is 
able to transmit ready signals in the forward direction and acknowledge 
signals in the reverse direction.  By associating two arcs with each 
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link of a module, the behavior of each module type may be specified 
by a marked graph fragment as follows: 

L ._ 
i 

source   module 

•O 
L i J 

sink  module 

a   I 

r Tl     r 

I 
I    a 

I . l 

sequence  module 

W 

^ i   I .  

wye   module 

junction   module 

r 

a 

, r'U--: 
a   * ■   ä 

trigger   module 

The arrival of a token on an arc in the marked graph corresponds to 
the transmission of a ready or acknowledge signal between two modules. 
A wye module, for example, sends a ready signal over the two emer- 
genTTinks when a ready signal is received on the incident link.  Then, 
when acknowledge signals have been returned, an acknowledge signal is 
returned over the incident link. 

Thus a w^e module controls the concurrent execution of two independent 
operations.  The sequence module controls the sequential execution of 
two operations.  The junction rpodule permits an action to take place 
only when the conjunction of two conditions becomes true.  The control 
structure shown on the next page causes concurrent execution of ac- 
tivities f, and f2, and causes activity f3 to occur only when f:| and f2 

have completed.  The operators f,, f2, and fj are represented by sink 
modules, and a sou rce module is included so that the control structure 
will have unceasing activity.  The corresponding marked graph was 
found by substituting for control modules the marked graph fragments 
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given above, and simplifying the resulting graph by omitting certain re- 
dundant nodes.  Since the marked graph is live, we can conclude that 
the control structure from which it was derived will not hang up. 

It is also straightforward to obtain an elementary control structure 
that implements an arbitrary marked graph by making the foUowing 
substitutions: 

o transition 

i 

i 

a marked arc 

becomes 

becomes 

? 

9 

W 

i 
The resulting control structure is guaranteed to be hang-up free if the 
given marked graph is live. 

Work is continuing on the problem of obtaining control structures for 
more general subclasses of Petri nets.  We know, from the work of 
Suhas Patil [3], a systematic way of implementing any Petri net by an 
interconnection of asynchronous modules.  However, this scheme seems 
unnecessarily complex, and we are studying what sets of simple primi- 
tive modules are sufficient to implement several intermediate classes 
of nets. 
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m,   DESCRIPTION OF A HIGH PERFORMANCE PROCESSOR 

We have looked into the suitability of Petri nets and asynchronous 
control structures for representing and implementing the control mech- 
anisms of a high-performance processor.   For this exercise, we chose 
a machine similar in principle to the Control Data 6600 but simpler in 
detail.   The  machine  has several functional units  that can perform 
different operations concurrently.   The processor is so organized that 
instructions may be executed in a sequence different from their order 
of appearance in the instruction stream.   A mechanism known as  the 
scoreboard controls access of the functional units to values held in 
data registers so that each unit operates only when its operands are 
available. 

Synchronous logic design techniques were used for the 6600.  Thus it 
appeared to be an interesting challenge to see whether the control 
mechanisms of such a machine could be conveniently implemented by 
using the asynchronous modular techniques developed by the Computa- 
tion Structures Group. 

We divided the control problem into these parts:   the instruction queue 
the instruction allocator, the scoreboard, and control circuits for the 
functional units.  Each was represented by a Petri net, and a control 
structure was devised to have exactly the behavior represented by each 
Petri net.  It turned out that nine types of control modules were suf- 
ficient to give reasonable implementations of all six control structures- 

source 

sink 

wye 

junction 

decision 

union 

sequence trigger arbiter 

six of these modules  were specified earlier in terms of The  first 

marked graphs.   The three remaining modules are'defined by"the^frag- 
ments of Petri nets shown on the following page. 

The union module permits control of an activity from either of two 
points within a control structure.   The arbiter interlocks two activities 
so that only one of them may be in progress at a time.   The decider 
module makes it possible for the control structure to effect different 
activities, depending on information residing outside the control struc- 
ture - for instance, the operation code of an instruction. 

The design of the scoreboard turned out to be particularly elegant   and 
it seems clearly preferable to a synchronous design in regard to com- 
plexity and speed.  Details are given in a recent paper by Jack 
Dennis [4]. 
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U 

(2>- \*~ (2) 

union   module arbiter  module 

t 

decision   module 

IV.   DETERMINACY OF SYSTEMS 

To keep the design complexity of a large system within manageable 
limits, the system is generally conceived as a combination of simpler 
systems.   Unfortunately, even if the subsystems are known to work cor- 
rectly, one cannot conclude that the interconnection of the subsystems 
to form the complete system will operate as intended.  Therefore, it is 
important to obtain a better understanding of the problems which arise 
when systems are interconnected.  In this direction we have achieved 
some important results concerning interconnections of determinate sys- 
tems — systems whose input-output relations are functions.  A com- 
puter system which gives the same results for two runs of a given 
program for given data is a determinate system, a system that does 
not is not determinate.  In constructing a large system from simpler 
determinate systems one would like to know how to ensure that the 
interconnection will result in a determinate system.  Suhas Patil [5] 
has shown that, if the intercommunication discipline is chosen proper- 
ly, any interconnection of a number of determinate systems may be 
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guaranteed to be determinate. This work provides a theoretical basis 
for elementary control structures: The elementary control structures 
form a class which is closed under interconnection. Moreover, since 
each of the elementary control modules discussed earlier is deter- 
minate, each member of the class of elementary control structures is 
guaranteed to be a determinate system. Correspondingly, the marked 
graphs form a class of determinate systems. 

This work on the interconnection of systems may have significant ap- 
plication to networks of computers in which one would like to ensure 
correctness of a computation even though parts of it are carried out 
at different installations. 

V.   HIERARCHICAL ASSOCIATIVE MEMORY 

The use of location-independent addressing is essential in a computer 
system that offers programming generality.  In contemporary computer 
systems, where the memory consists of several physical storage media 
(solid-state, magnetic-core, drum, etc.), combinations of software ana 
hardware mechanisms (paging, for example) have generally been used 
to realize location-independent addressing.   Nevertheless, it is recog- 
nized that these implementations suffer from gross inefficiencies in 
the form of wasted processor time and poorly utilized memory space. 
In 1968, we outlined a radical concept of computer organization, and 
proposed the concept of a hierarchical associative memory [6]. 

I 

MC MB "A 

processor hierarchical   associative  memory 

In such a memory system each level is arranged as an associative 
memory with value fields of n bits and key fields of p bits;   M. is 
small and fast, Mc is slow by comparison but large.   Reference to an 
item is made by presenting its name to the memory system.  A match 
is first sought in MA;   if successful, the required item has been lo- 
cated and is read out or altered.  If the search in M.  is unsuccessful, 
the key is used for a search of MB, and then a search of M-. When 
an item is found, it is moved to the highest level MA, possibly to- 
gether with other items known likely to be required in conjunction 
with it.  In each level, we suggested that the age of items since their 
last instance of use be used to determine which items should be moved 
down in the hierarchy to maintain a suitable number of vacant locations 
for newly referenced items. 

I 
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As in conventional memory systems, an organization is desired that 
permits a large throughput (average number of references completed 
per unit time).  In contemporary high-performance systems, high 
throughput is achieved by building the memory in several modules 
each of which can be performing memory accesses concurrently ^ith 
the others.  In a location-addressed memory, this scheme works well 
because each name (address) always designates the same location in 
the same module, and action by more than one module is never re- 
quired to complete a reference. 

Jr
h
n

e
hl

C
p
0nStrc0"0" 0f a m0dUlar assoc,ative memory poses some new 

problems.  Since an item may occupy different locations in the memory 
at different times, one does not know in general which module will 

Is011^!!^"6111 Whe" access t0 " is squired.   Unless some provision 
is made for organized assignment of items to modules, an access re- 
quest to a modular associative memory must be presented to each of 
the modules either in sequence or concurrently.  If this is done sequen- 
tially, an average of half the modules will have to be interrogated 
before the item is found.  If the item is not present in this level of 
he memory hierarchy, all modules must be interrogated before this 

fact is known.  If all modules are interrogated concurrently, each one 
will be activated whether or not the item is present in the level, but 
the average time required to complete an access may be less    In 
either scheme, the speed advantage of using a modular memory is lost. 

Jeffrey Gertz has investigated two alternate schemes for avoiding the 
necessity of searching all modules [7].  Both schemes assign each 

ofTheitem.^0100 """^ aCCOrding to some readily tested property 

(1) By ownership - all items belonging to the same computa- 
tion are assigned to the same module. 
(2) By transformation - a transformation of the key (a hash 
code) determines the module to which an item is assigned 

If items are assigned to memory modules by ownership, a search of 
more than one module is required only when reference is made to the 
information owned by another computation.  If the key includes unique 
denüfication of an item's owner, only one module need be searched 

If the key does not indicate ownership, the module containing owned' 
information can be interrogated first - on the assumption that items 
referenced are more likely to be owned items than shared items.   The 
use of this scheme implies there are many more active computations 
than modules because it is unreasonable to expect one module to exact- 
ly fit the memory requirement of any one computation. 

The assignment of items to modules according to a hash code of their 
Keys is attractive where one expects most information to be shared 
among active computations.  Only one interrogation is required to lo- 
cate an item or to find that it must be retrieved from a lower level 
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However, if an item may be referenced by two distinct keys, either the 
item would have to be duplicated in two modules, or all modules would 
have to be interrogated to effect reference by one of the two keys. 

VI. BASE LANGUAGE RESEARCH 

During the past year, work has begun toward the definition of a base 
program  language.   We  think  of the  base language as a representa- 
tion scheme for programs intermediate between source programming 
languages ouch as Algol and Snobol, and a machine-level representation. 
In its design, we hope to achieve three goals:   to create a general- 
purpose language that is entirely consistent with the requirements of 
programming generality;  to find a representation that expresses all 
possibilities for concurrent execution of parts of algorithms;   and to 
obtain a language that can be used as a functional specification for an 
advanced highly parallel computer design. 

We have made major gains in our understanding of the properties of 
certain mathematical models of the structure of programs;  we call 
these models computation schemata.  Our theoretical work with compu- 
tation schemata has so far been restricted to computations that operate 
on simple variables -- variables whose structure as a collection of 
simpler entities is not relevant to the scheme (the flowchart) of the 
computation.  Yet it is important to thoroughly understand this subject 
as a basis for building a more general theory for programs that oper- 
ate on structured data. 

VII. COMPUTATION SCHEMATA 

Our work on computation schemata has evolved from the thesis research 
done by Van Horn [8], Rodriguez [9], Luconi [10], and Slutz [11] at 
Project MAC, and har. been considerably influenced by the original 
studies of Yanov [12] and, more recently, the work of Karp and Miller 
[13], and the work of Paterson [14].  Two questions have been of 
greatest interest to us:   What sort of constraints must be met in the 
representation of parallel computations so that unique results of com- 
putations may be guaranteed? Under what conditions is it possible to 
determine whether two representations (schemata) describe identical 
classes of computations? For the class of schemata we have considered, 
we now have satisfactory answers to the first question, and have gained 
a better understanding of the second. 

A computation schema represents the manner in which functional ele- 
ments and decision elements are interconnected, and their action 
sequenced, to define an algorithm.  The functional elements of a schema 
are called operators:   Each operator a evaluates some unspecified func- 
tion of an m-tuple of input variables and assigns values to an n-tuple 
of output variables. 

- 
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input cells •    } output  cells 

g(a):   |m-tuples} -*- |n-tuples} 

The unspecified function associated with an operator a is denoted by 
g(a).  The decision elements of a schema are called deciders:   Each 
decider d tests some unspecified predicate p(d) for an m-tuple of 
input variables. 

input   cells 

CK. 

m 

p(d)) p(d):   |m-tuples} -*- {true, false| 

A computation schema has two parts --a data flow graph and a 
control.  The data flow graph defines the interconnections through which 
results of each operator application are passed on as arguments for 
further transformations and tests.  The variables of a schema are 
represented in the data flow graph by boxes called cells.  There is 
also a circle for each operator and a diamond for each decider. 
Directed arcs join the operators to their output cells and represent 
the connections to each operator and decider from its input cells. 

The cells of the schema are identified by the letters m,, m2  
Certain cells are designated as input or output cells. Values are as- 
signed to the input cells before a computation begins;  upon completion, 
the result is the set of values present in the output cells.  Several 
operators, a and b, say, may have the same associated function letter: 
g(a) = g(b).  In this way, a schema may require that two operators, a 
and b, always implement the same transformation, although the par- 
ticular transformation is unspecified.  Similarly, each decider designates 
a predicate letter p(d).  The function letters and predicate letters of a 
schema make up two finite sets G and P. 

The control of a computation schema is a specification of the order in 
which the operators and deciders of the data flow graph are permitted 
to act.  In particular, the control indicates how further progress of 
computations is affected by the actions of the deciders.   For the ex- 
amples of computation schemata given below, we shall represent the 
control by precedence graphs.  An example of a computation schema is 
the following. 
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precedence graph 

begin 

^® 

Each diamond node in the precedence graph connects to two subordinate 
precedence graphs that specify alternative computations according to 
whether the designated decider has a true or false outcome.  Operator 
a   in the data flow graph is an identity operator;  the associated func- 
tion g(a ) is always the identity function. 

For schema S , the precedence graph allows just four distinct sequences 
of action by the operators and deciders of the schema. These sequences 
comprise the control set C of the schema 

C,: (a f, i4 a5) 

a4 a3 a5) 
I "2   'I 3 

(a, a2 f 

(a, a2 t, a6 f2 a3 a5) 

(a, a2 t, a6 t2  a4 a«.). 

In these sequences, a   stands for an acfion by operator a,;  f, stands 
for an action by decider d, for which the outcome is false;   and t, 
stands for an action by decider d, for which the outcome is true. 
Since no iteration is p esent, the control set C, is finite. 

Iteration is represented in a precedence graph by a pie-shaped node 
connected to a single subordinate precedence graph. 
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S2
:      data flow graph precedence  graph 

begin 

acTs wiTftt SP?ified by the SUbgraph iS repeated until the decider acts with a false outcome.   The control set for schema S    is C  . 

(a,   t,   a2 a3 f,) 

(ai   *!   a3 a
2 V 

(a,   t,   a2 a3 t,   a2 ^ f, ) 

J 
To convert a computation schema into a specificatio a particular 
algorithm   it is necessary to specify the functions   .ad predicates desig- 
nated by the function letters in G and the predicate letters in P   cT 
course, the specified functions and predicates must have domain and 
ranges consistent with the topology of the data flow graph   and musf 
be m agreement whenever the value of a function maybe [he argument 
o   a function or predicate.  Such a specification of functions and prTdi 
cates is called (after Yanov) an interpretation of a schema. 

Tis Sm^l0'f
SC

f
hemata *** 0i ^^^ interest to us-  A ^hema S is determinate if, for any interpretation of the function and predicate 

letters, S determines a functional relation of output tuples to £ 
tuples.  In order to say whether two schemata S, and S2 describe the 
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same computations, we must be able to relate the interpretations of 
the function and predicate letters in S, and S2.   For this purpose, let 

0 = 0.00, P = P, U  P. 

Then S, and S2 are equivalent schemata if, for any interpretation of 
the functions and piedicate letters in O and P, S, and S2 determine 
precisely the same relation of output tuples to input tuples. 

To develop insight into the questions of determinism and equivalence, 
we have devised the notion of data-dependence graph or dadep graph 
for short.  A dadep graph of a schema sets forth separately each action 
by an operator or decider.   For a particular control sequence of a 
schema, the final value placed in each output cell will be the result of 
some cascaded composition of functions.  A dadep graph is just a graph 
representation of the cascade composition of operators associated with 
each output cell. 

Let us construct the dadep graph for schema S   from its unique con- 
trol sequence a = (a a2  a3 a4 ). 

S : 
^3 begin •(a) 

end •(e) 

The construction is shown on the next page. We start by setting down 
a copy of each input cell of the schema.   (The letters denoting these 
cells are underlined.)   Then we add a copy of an operator and its out- 
put cells for each succeeding element of the control sequence-.  Each 
cell added to the dadep graph is labeled as in the data flow graph, and 
this label is erased from the cell copy previously bearing it.  In the 
case of an identity operator, a second label is given to the most-recent 
copy of Its input cell, and no copy of the operator is made. 

For schemata that include deciders, there will be a cascade composition 
of functions associated with each action of a decider as well as each 
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m,             m2 

D       D m3D                D 
2, 

a 
22 

(a) (b) A> <A ®r <S 
nil        a}2 2,            Ea T T 

m. 

(c) (d) (e) 

output cell.  A determinate schema with k deciders could have 2k dis- 
tinct dadep graphs - one for each combination of decisions that might 
occur in the course of some computation.   For the schema S , there 
are just three dadep graphs because a decision of false by d','results 
in the absence of any action by d  . 
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In general, a schema that represents an iteration defines an infinite 
Set of dadep graphs. In the case of S2, the three simplest dadep graphs 
are: . , 

i 

Certain properties are important in the study of sphemata:   A schem^ 
is persistent if the occurrence of one of two actions that could proceed 
concurrently does not inhibit or block the other action.  Furthermore, 
a schema is commutative if the order in which two concurrent actions 
occur has no effect on the subsequent course of the computation. 

Nondeterminate computation can opcuronly when a schema has a cell 
that could be assigned a value by one operator either before or after 
a value is assigned to or read from the cell by the action of another 
operator or decider.  When this can happen we say the schema has a 
conflict. , i 

By means of known methods it is not difficult to show that any compu- 
tation schema that is persistent, commutative, and free of conflict is 
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guaranteed to be determinate.  A more interesting problem is to deter- 
mine the circumstances for which the conflict free property is a neces- 
sary condition for schemata to be determinate. We have studied two 
natural restrictions on schemata such that any determinate schema 
meeting the restrictions is necessarily conflict free.  The first of these 
restrictions amounts to requiring that each action by any operator or 
decider in a schema participate in determining some output value.  A 
schema meeting this restriction is said to be normal.  The second re- 
striction disallows control sets that permit repetition of a computation 
or test for the same m-tuple of input values.  A schema meeting this 
restnchon is said to be repetition-free.  In schema S4, repetition of 
the function designated by g, occurs.   Because of the repetition   the 
conflict between operators a, and a3 at cell m   fails to yield non- 
determinate computations - both dadep graphs define the same com- 
position of functions. 

v dadep graphs 

I 

(a2 ai   a3 a4) (a2 
a3 ai  a4) 

For an elementary schema that is well defined, normal, repetition-free 
and determinate, all execution sequences yield the same dadep graph 
In fact the dadep graph is a canonical form for this class of schemata 
Thus the equivalence of any two elementary schemata can be tested by* 
constructing their dadep graphs. 
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In the case of a normal, repetition-free schema that has deciders but 
nc iteration, the class of computations represented is described by a 
finite set of dadep graphs, as shown for the schema S, earlier.  Each 
pair of input values will be processed as shown in that one of the 
dadep graphs for which the evaluation of predicates agrees with the 
truth values given at decision points of the graph. 

We can construct a table of two columns, called a conditional expression 
list, that characterizes the computations represented by a schema.  Each 
row of the table corresponds to one dadep graph.  In the left-hand col- 
umn, we write a conjunction of the predicates that must be satisfied by 
the input variables for the corresponding dadep graph to describe the 
computation.  In the right-hand column, we write the compositions of 
functions that specify the corresponding dependence of output values on 
input values.  For S, we have: 

Condition 

P, (x2) 

P,^,,)« P2(g4(x2)) 

P|(x2)«P2(g4(x2)) 

Expression 

g^gjg, (x,, xj), g,(g|(x|, x ))) 
>5«»2WI v   I 3XDIx   I 

gR(gl(x1, xj, gJg.Cx., X ))) 
'5xolx  I 3XDIX   I 

gJgJg.Cx,, x,)),  g.fr. X )) 
'5xo2XDl x   I I x   I 

Now consider the schema S, 
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SXfn5 Z "Z r^S* ^ iS Ch~^ ^ a conamona. 

Condition 

P|^2)'P2(g4(x2)) 

P|(X2)'P2(g4(x2)) 

Expression 

Pi^'PpfeJxJ) 

^(ggCg.Cx,, x2)), g3(g|(X|, x^)) 

Ss^fe,^,, x2)), g3(g|(x|, x2))) 

2V&4^2; 

PiM-PpfeJxJ) 2xo4v  2; 

^s^fe^x,, x2)), g (X     x )) 
Iv"|»  ^2^ 

^|(x,>x2), g-Cg.Cx,, Xj)) 3vol ^|»  V 

c,, lor we have the logical equivalence 
P, (x2) = p, (X2) . p2(g4(x2)) + - (xj # p^^^,)      _ 

sxrzsz.-zz Sire -CLS rr-«-- 

P|fef(x2)).p((g(gf(xJ)) 

P. fe, M • P, ^fef^))) • P, fesfejfefCxJ))) 

g2(xi'  &  (Xj) 

^^r  ^2^1'  glW)) 

the sense illustrated by our demlstraMo"^   exPres
1
slon "^ts agree in 

V  When the lists are" „nite Z^'LT^X^i3 
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clear.  At this time it is not known whether or not a decision procedure 
can be found for the more general equivalence problem. 

VIII.   CONTROLLED INFORMATION SHARING 

The merit of the computer utility concept [15], lies in the ability of 
the users of the utility to build on each other's work.  Thus the utility 
must provide orderly means for sharing access to procedures and data 
bases. We believe [16] that, to be successful, a utility must provide an 
environment in which a variety of information services may flourish 
and compete as private enterprises.  Because proprietary and personal 
data will reside in the memory of a computer utility, access of users 
to stored information must be controlled so that only legitimate access 
is permitted. 

Dean Vanderbilt has studied the implications of these requirements for 
sharing and access control on the organization and representation of 
procedures and data bases in a computer utility [17].  A computer utility 
must allow the owner of a program to authorize its use by other users 
without giving them the ability to view its internal structure.   The execu- 
tion of a program involves access to data and access to other programs. 
This additional information falls into two categories -- information that 
is associated with (shared by) all activations of the program;   and the 
information that is associated with a particular activation (and not 
shared by several activations).  The former category (Category I) con- 
sists of subprograms considered to be part of the program, subprograms 
of these subprograms, etc., and any data that are common to all activa- 
tions of the programs.  Category II information consists of all informa- 
tion passed as arguments to and from the program, and all temporary 
information generated during the particular activation. 

During execution of a program, access to Category I and Category II 
information must be provided.  Two aspects must be dealt with:   First, 
the names used by the program to refer to this additional information 
must be bound to be the  correct information.  Second, the access con- 
trol mechanisms of the utility must allow access to the information 
when it is needed. 

The Category I information is known to the owner — the creator — of 
the program, but not to the borrower.  Thus the owner must specify 
the binding of names in the program to that information, and ensure 
that the information may be effectively referenced when needed during 
execution of the program.  Since the program borrower should be 
granted no more access abilities than necessary, it must be possible 
for the owner to give the borrower the ability to access Category I 
information only in conjunction with use of the program.  Thus, access 
abilities and binding information must be associated with the shared 
program so that the appropriate Category I information is available 
each time the program is executed. 

I 
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The Category n information consists of information supplied by the pro- 
gram user and information ereated by the program.   Fo? the former 

CftoTh! 1"eS P0Se n0 Pr0blem since this ^formation be- long,   o the program user.   For the iatter information, the process 
executing the program must be allowed to create information and to 

progr^ ^ b0Und t0 ^ aPPrÜPriate nameS ^^ '" ^ 

men" Jm^l Um deSigned T abStraCt P^ram-execution environ- 
ment   17] which offers one solution to the problems of implementing 
controlled access to shared information in a computer utlUtTrafwork 

Sed tÖrrd
h

BrPh m0del 0£ StrUCtUred '^"»ation that L 2" 
related to the abstract information structures that form the foundation 
of our development of a base language, and is similar to the "ct 

ÄVer.c^.the IBM vienna Laboratory w'- «•- ^ " 
DC.   RESOURCE SHARING WITHOUT DEADLOCK 

Another form of concurrency is the cooperative activity of interacting 
computational processes, as in a multiprocess computer system    One 
form of interaction among processes is the implicit" interacoT« 
from the sharing of limited resources.  Consider, for example   two 

ZlT:^^1 Pr0CeSSeS ^ Pr0greSS ^^ --iTstlnct 

D.; process process 2 

System Capocity 
O 10 

I 
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For each of its phases (identified by the circled numbers), a process 
requires the specified amount of a single resource type.  The number 
of available units of the resource type (the system capacity) is C = 10 
This representation of the resource requirements of a system of con- * 
current processes is called a demand graph.  It is convenient to repre- 
sent the composite state of the processes by a slice through the demand 

boThtn       eXamPle' " ^ SliCe ^ = (®' ©^emand'graph DT both processes are engaged in phase 1 of their activity.  Slice y is ' 
gMl^k because the total resource units required is seven, which is 

nh/J r-       "ff ^ reS0UrCe Capacity-  If Process 2 sh0^ complete 
phase 1   it could immediately proceed with phase 2, for the slice 
r   - KKD, (£» is also feasible.  However, process 2 could not continue 
into phaSe 3 of its activity because slice / = (®, ®) ^ total 
resource requirement larger than the system cavity - we say that 
slice y    is not feasible.  The resource-allocation mechanism of a sys- 

hlSiT   .0Pera,te S0 that a11 Processes ^n complete all phases of 
their activities, if possible, by a sequence of feasible slices.  This kind 
of scheduling is not simply implemented if processes are assumed to 
re am control over resources during their transitions to new phases of 
activity    For instance, we must allow process 2 to retain the four units 
alloca ed to it for phase 1 while awaiting the release of three more 
units for its use in phase 2.  Such hoarding occurs in computer systems 
where the resource may be memory areas, access to locked data bases 
tope units, etc. When such hoarding is practiced, deadlocks can occur   ' 

!   f    y  ^ uf   uemand graph Di iS feasible' and ^presents a system 
state reachable by a sequence of feasible slices.  Yet neither process 
can proceed beyond its phase in slice / for the lack of needed resource 
umts - the two processes are deadlocked.  To avoid deadlock, the 
allocator must prevent the system from reaching the state correspond- 
ing to slice y' even though the slice is feasible. 

We call a slice y in a demand graph safe if it is feasible and there 
is a sequence of phase transitions leading to a succession of feasible 
slices so that each process completes all remaining phases of its ac- 
tivity.  K there is no such sequence of feasible slices, then slice v~"is 
u^sMe.  Slice y' in D, is unsafe.   That slice y is safe is demonstrated 
by showing, on the next page, a sequence of phase transitions to suc- 

phaser ^ SliCeS ^^ ^^ b0th pr0cesses through a11 remaining 

In these terms, the task of the resource allocator is to regulate the 
transitions of processes to new phases so that each slice attained is 
safe.  It is not adequate to start the system of processes in a safe 
slice, for unsafe slices may be reached from a safe slice. 

For demand graph D,, we can discover that slice y is safe by observing 
that process 1 goes through a phase of reduced demand during which 
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D,: process I process 2 

System Capacity 
C = 10 

In principle, one could examine all possible slice* nt * ** 
and determine whether each is safe h.LT-   1   ! mand graph 

test fl tf y   em u  processes- Incremental algorithms, wJch o* 

oTthe stef6!6: rn th; derd for the process at ^";h
de; step.  For demand graph D,, the Saleness Algorithm produces 

< 
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the sequence of steps y -^ y, — r2 -^ y3 to verify the safeness of 
sUce y    We have shown that 'failure2 of the algorithm to generate a 
sequence of feasible slices by which all processes complete their ac- 
tivity implies the slice under test is unsafe;   conversely, success of 
the algorithm implies safeness.   A resource allocator that uses the 
Safeness Algorithm to restrict system operation to only safe^ allocation 
states would make better use of resources without the possibility of 

deadlock. 
For systems in which more than one type of resource is ^ared   we 
have formulated an extension of the Safeness Algorithm and established 
its validity.  However, the amount of computation can have a nonlinear 
dependence on the number of phases of the processes in the demand 
graph - a problem that does not arise for systems with a single re- 
source type    This is not a failing of our particular algorithm:  We have 
shown that a local algorithm (one that is not permitted a bird s-eye 
view of the entire demand graph) will, for some cases, have to ex- 
haustively search a large set of slices to determine that a slice is 
safe.   The following example illustrates why this is so. 

The extended Safeness Algorithm generates feasible slices in steps, as 
before    However, the series of phase transitions making up a step now 
ends only at a slice in which each component of demand is no greater 
than the same component in each prior phase of the series. 

V 
process 3 

1 
® (6,6) 

i 

System Capacity C =  (21, 21) 

Thus in D   , a step will consist of moving from y  to / rather than 

from y  to y 
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Now consider the demand graph D3. 

process I 

© 
< 

(6,6) © 
'2'3 • x. ^ < 

y#- (D ii-jiX ® 

®     (11,7)^ ® 

© (0.0) 

(6,6) 

(7,5) 

.(11,7)^ 

© (0,0) © (0,0) 

System Capacity C = (21, 21) 

Without further modification, using the Safeness Algorithm to search 
for a step from slice r leads to failure for processes 1, 2 and 3 at 
slices Y     yz  and  yz, respectively.  Thus the algorithm would conclude 
(falsely) that y  is unsafe.  A limited backtracking algorithm must dis- 
cover some way of getting past the slice y+ = (®, (1), ®) consisting 
of the barrier arcs /?,, /3    and ß      From the study of the demand 
graph, it is evident that the slice y* = (@, @, ®) must be used. 
But a local algorithm can determine this only through an exhaustive 
search of slices.   The number of futile trials can be quite large. 

The Safeness Algorithm can also be extended to systems in which ex- 
plicit interactions between processes take place as well as the implicit 
interactions arising from resource-sharing.  In studying this situation, 
we have discovered an interesting phenomenon, called intrinsic deadlock- 
There are demand graphs for which no schedule can permit the 
processes to complete their activity, for example: 

I 
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This is a result of excessive hoarding of resources at points of 
(explicit) interaction.   For this reason, among others, hoarding of re- 
sources at points of interaction should be held to the minimum. 

The study of demand graphs is a perfectly general one that is not 
restricted to computer processes.  Deadlock situations can arise from 
sharing of resources in road transportation, aircraft maintenance, and 
so on, and these operations can profit from analysis for the prevention 
of deadlocks. 

X.  WOODS HOLE CONFERENCE 

The culmination of the year's activities of the Computation Structures 
Group was the sponsoring of an informal conference on Concurrent Sys- 
tems and Parallel Computation.  It was held at the National Academy of 
Scieaces' Conference Center in Woods Hole, Massachusetts, during the 
first week of June 1970.  Participants in the conference included six 
members of Project MAC and twenty-one persons representing most 
institutions in the United States that are carrying on theoretical re- 
search related to parallelism and concurrency. 

The objective of the conference was to bring together people working 
along four distinct conceptual lines that we have found to be intimately 
related: 

Representations of systems of concurrent events. 
Speed-independent switching circuits. 
Uninterpreted schemes of programs. 
Cooperating sequential processes. 

The conference was most successful in acquainting the participants 
with each other's ideas and in catalyzing many stimulating discussions. 

Eleven technical papers were prepared for the conference, and were of 
such quality that they have been published collectively as a Conference 
Record [20j.   For the conference we assembled an extensive collection 
of papers and reports related to the concepts of concurrency and 
parallelism. With the inclusion of a bibliography of this collection, 
the RecoT-d should be a valuable introduction to the field for interested 
reseaiv...       entists. 

Publications 1969-1970 

Dennis, J. B., "Asynchronous Control Structures for a High Performance 
Processor", Record of the Project MAC Conference on Concurrent Sys- 
tems and Parallel Computation. ACM, N.Y., 1970, pp. 55-80. 

Gertz, J. L., Hierarchical Associative Memories for Parallel Computa- 
tion, Ph.D. Thesis, Dept. of Electrical Engineering, June 1970, also 
MAC TR-69, AD-711-091. 

(continued) 
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Publications 1969-1970  (cont.) 

Patil, S. S., "Closure Properties of Interconnections of Determinate 
Systems", Record of the Project MAC Conference on Concurrent Sys- 
tems and Parallel Computation. ACM, N.Y., 1970, pp. 107-116. 

Patil, S. S., Coordination of Asynchronous Events, Ph.D. Thesis, Dept. 
of Electrical Engineering, June 1970, also MAC-TR-72, AD-711-763. 

Vanderbilt, D. H., Controlled Information Sharing in a Computer Utility, 
Ph.D. Thesis, Dept. of Electrical Engineering, October 1969, also 
MAC TR-67, AD-699-5Ü3. 
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I.   INTRODUCTION 

The year from July 1969 through June 1970 was a critical year for 
the Multics (Multiplexed Information and Computing Service) system, 
which was again the major concern of the Computer System Research 
Group.  During the reporting period, research and development efforts 
on Multics continued to be performed jointly with the General Electric 
Company's Cambridge Information Systems Laboratory personnel;   and 
the assumption of responsibility for the administration, operation and 
maintenance of the system by the M.I.T. Information Processing Center 
was initiated.  In addition, members of the group participated in work 
on the ARPA Computer Network and on computer graphics, reflecting 
the Group's shift in emphasis toward exploitations of the research base 
which the Multics system represents.  The dominant role of Multics in 
the Group's efforts dictates that the bulk of this report will address 
itself to Multics;   however, the new areas of interest will also be dis- 
cussed in more detail subsequently. 

As indicated in last year's report, 1 October 1969 was firmly set as 
the date on which Multics service would be made available to the 
general Project MAC and M.I.T. user community.  This goal was 
achieved, offering a version of the system that was considerably im- 
proved over what was available at the end of the previous reporting 
period.  Because the success and acceptance of the system by the user 
community is a key issue in the desired dissemination of the under- 
lying concepts of Multics, much stress was laid on making the system 
more attractive to general users (i.e., not just system programmers). 
To this end, expansion and refinement of functional capabilities and 
improvement of performance were the areas on which the Group con- 
centrated.  An index to the success of these efforts may be found in 
Fig. 1, which shows the growth of the user community.  By the end 
of the present reporting period, the operational version of the system 
again represented a considerable over-all improvement over the 
October First version.   Table I (which will be discussed in greater 
detail in the section on Performance) furnishes a good indication of 
the improvement of the system over the year, in terms of gross per- 
formance.  It is worth noting here that Multics, as of October 1969, 
was furnishing performance superior to that of the Compatible Time- 
Sharing System (CTSS) and is continuing to improve. 

Of the conceptual goals discussed in the 1965 Fall Joint Computer Con- 
ference papers on Multics, most have been fulfilled, although a few 
key functions are still being worked on and should be installed in the 
next year.  On the performance side, it is expected that the coming 
year will see the system beginning to support the original predictions 
of simultaneous users.  Moreover, the original decision to implement 
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Multics in a high-level language has shown itself to be a wise one, as 
both the quantity and quality of the changes effected during the reporting 
period attest.  Now that the basic Multics framework has been estab- 
lished, there is still much to be learned.   New work is under way in 
two broad areas of interest: 

(1) Work on the system per se addresses itself to deeper under- 
standing of the issues involved in large, complex systems;   and 
work is intensifying on the propagation of our results to other 
workers in the systems field. 

(2) Using Multics as a springboard, new areas of interest in the use 
of sophisticated systems are being explored, especially the con- 
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Table I. 

PDP-8 Script Performance Comparison between  CTSS 
and Multics System  7.0, 4.0, and 3.0.11 

Average load while measuring 

CPU time charged 

Real time required 

CPU time per interaction 

Average response time 

Dollar charge 

Cost per console hour 

Multics 
?.0.11 

6/25/69 

12 users 

87.9 sec 

2702 sec 

1.91 sec 

~18 sec 

$11.01 

$14.70 

Multics 
4.0 

9/25/69 

24 users 

50.3 sec 

2520 sec 

0.79  sec 

12.4 sec 

$6.55 

$9.10 

Multics 
7.0 

3/30/70 

21 users 

28.7 sec 

2298 sec 

0.436 sec 

5.2 sec 

$3.99 

$6.27 

CTSS 
8/1/69 

17 users 

70.97 sec 

2434 sec 

1.07 sec 

5+1 sec 

$6.50 

$9.62 

Notes: 

1. All figures are for two passes through the standard "Fortran de- 
bugging" script. 

2. All prices are based on a Multics CPU charge of $420/hr, a 
Multics dialup charge of $l/hr, a CTSS CPU charge of $330/hr, 
and no CTSS dialup charge. 

3. Note that this script is, on balance, a smaller than average user 
of core memory, and is unfavorably charged by a Multics CPU 
price based on average core memory usage.   (It is expected that 
in the future the Multics charging policy will be revised to cor- 
rect this inequity.) 

cern with the ARPA Network and with the support of terminals 
with graphical capability.  There is also a continuing interest in 
dealing with problems of data base management and of protection. 

II.   THE OCTOBER FIRST SYSTEM 

When Multics was formally released to the user community, the version 
of the system made available at the time was designated "System 4.3". 
For convenience of subsequent reference, it should be explained that 
the numbering system adopted for system versions indicates major 
changes in the supervisor by incrementing to the next whole number, 
and less far-reaching changes to the basic ".0" system by incrementing 
to the right of the decimal point.   Accompanying the "October First 
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^MPMT   This '^f"36 0f ^ Multics Programmers' Manual 
(MPM)    This users' manual originally comprised some 500 pages  
under the following major headings:  Introduction to the Concepts of 
Multics;   Introduction to the Use of Multics;   Reference Data, Standards 
Conventions, Formats, and Codes;   and detailed descriptions of the 
various commands and subroutines - both system-supported and user- 

rf.   .r aVailable-  By year'S end some 100 more pages had been added to the MPM. f B * "*" wen 

It is interesting to note that even before the 1 October deadline 
Multics had been successfully used by non-system programmers:   An 
M.I.T   Summer Course in programming linguistics furnished the sys- 
tem s first extensive use by non-members of the Group as Multics 
was employed on an experimental basis for the performance of assign- 
ments by students in the course.  The assignments involved use of the 

UULTTTL       
Ch WaS imPlemented by graduate students working 

under Prof. Arthur Evans, Jr.   The PAL translator itself was coded in 
BCPL (discussed in last year's report).   The success of this experiment 
was gratifying for several reasons, in that it not only demonstrated 
the general uility of Multics for practical applications, but also sup- 
ported the belief that subsystems would be relatively easy to embed in 
Mu tics, and, of course, furnished evidence that the system was actual- 
ly shaken-down enough to support general users. 

Functional Capabilities:   The Standard Service System Approach 

LTem" TlTf ^ 1
0Ct0b.er FirSt SyStem WaS the ,,Standard Ser-ce bystem , a set of closely audited, optimized commands and subroutines 

of interest to general users.   The Standard Service System includes the 
command processor (the "mini-Shell", discussed below) and such basic 
commands as the "edm" context editor, the file and directory manipula- 
tion commands, and a Fortran compiler.   All modules in the Standard 
Service System are carefully coded and audited for high performance 
and small working sets, adhere to a standard user interface for argu- 
ment specification, and are implemented in either a subset of the EPL 
language selected for efficient code generation or with the more efficient 
PL/1 compiler.  All the components of the Standard Service System are 
organized into a special system library, which is the first to be 
searched when a procedure is initially referenced in a process.   The 
net result is to furnish the general user with nearly optimum perform- 
ance   particularly for tasks that do not inherently require a large share 
of the system's resources.  Indeed, this conscious bias in favor of the 
small user has emerged as a cornerstone of the system.  To aid the 
user in the identification of Standard Service System routines, the indi- 

Ird^sJ    ^ SeCti0n 0f ^ MPM iS S0 0rganized as t0 ^0UP Stand- ara System commands and subroutines in sections of their own. 

( 
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The most important single aspect of the Standard Service System is the 
command processor.   The version of the command processor in the 
October First system was a considerably improved one, having been 
completely recoded to adhere to Standard Service System standards.  A 
more efficient subset of command language feitures was isolated, and 
only this subset was handled directly by the new command processor, 
or "mini-Sheir.  The full command language was still available, but 
was still processed by the relatively cumbersome "full Shell".   The 
new command loop also speeded up console input/output operations, by 
avoiding the invocation of the full I/O System until and unless the user 
explicitly invoked it himself.  I/O was also minimized by the elimination 
of the "wait" message which was previously typed out on receipt of 
each command.   Further, various support subroutines were bound to- 
gether with the mini-Shell. 

Functional Capabilities:   Resource and Access Control 

Another important functional capability added to the system for its pub- 
xic debut was resource control:   With use of the system no longer 
limited to system programmers, it was necessary to install quotas for 
disk storage.  Also, a minimal accounting system was incorporated, to 
allow for the maintenance and billing of user accounts, involving both 
disk storage and central processor time used.   Accounting also required 
reorganization of the data bases employed in the System Control sub- 
system.  Other changes in System Control for the October First system 
were the ability to automatically log out a process when its console 
was hung up, and the ability to automatically create a new process 
when a running process became incapable of proceeding.  The presence 
of non-system programmers on the system also necessitated the in- 
stallation of full access control;   each user upon logging in is assigned 
his proper process group identification which allows the access control 
machinery to function correctly. 

Performance Improvements 

In addition to the extensions of functional capability discussed above, 
several performance improvements were included in the October First 
system.   The primary one was a fully reimplemented Traffic Control 
module, which constituted System 4.0.   The basis of this change was a 
tightening of the interface between the Traffic Controller and the File 
System, allowing the highest-priority process in the scheduling queues 
to be specially handled when requesting paging.   This is quite desirable, 
in that it minimizes the likelihood of "thrashing" — that is, of having 
a lower-priority process bring in pages (while the higher-priority 
process is waiting for its own pages) which dislodge pages still needed 
by the higher-priority process. 

Other pe;formance-improvement tasks included the following: 
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(1) Procedure linkage sections were redesigned in order to reduce 
the number of linkage faults in the system. 

(2) The need for several data segments which were carried in each 
process was eliminated by means of consolidation with other 
segments, thus minimizing the working set of each process- 
this strategy pays large dividends, and the reduction of "ne'r- 
process segments" is an on-going task. 

(3) The system libraries were reorganized to allow more efficient 
searching. 

(4) The device interface module (DIM) for the high-speed printer 
was recoded in order to improve its buffering strategy and 
moved to ring 0  (the supervisor's protection ring);   these two 
performance improvements were rather important, as manv 
users rely quite heavily upon listings from the high-speed 
printer. &      F 

(5) Considerable attention was paid to ehe metering of such kev 
areas as the Traffic Controller and the typewriter DIM, to 
furnish vital performance information under full user load as 
a guide to further refinements. 

Maintenance Tools 

Maintenance tools made available for the October First system included 
toe following:  The backup reloader was extended to restore Ml Wer- 
archy mtormation (e.g., dates modified and used, access control on 

Scm l"etl'rk
reloa?ed mes- The backuf) äam^ ™ "^ to 

th. ^ „ "* 0' COmplete dumps ^ the Operations staff.  Also 
he reloader was modified to allow selected files to be retrieved from 

the backup types.  The "Salvager- program discussed in lit year's 
report (wluch corrects inconsistenc.es in the File System h erarchv 
after a system crash, allowing prompt restoration of user se^ce) 
was improved and made a standard operational tool. It should be em- 
Phased that these File System maintenance tools have been of cdal 
■mportance In maintaining satisfactory system operation for the general 

r1^ ;V Se' 0' COmmandS WaS devel0'*d '» 'mutate ctonges   o the standard system and to allow rapid installation of new systems. 

HI.   THE CURRENT STATE OF THE SYSTEM 

Functional Capabilities:  System Version Iterations 

Wl'? Vfri0n 4-0' an iterati0n 0t which was ^"operation on 1 October 
mcludeo the new Traffic Controller and the first wave of Standard ' 

had hi ^ era. m0dUleS- F0Ur m0re maior chai«es 'o the supervisor 
had been mtroduced by the end of the reporting period, designated by 
the version numbers 5.0 through 8.0: »'Buatea oy 
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System 5.0 

The first changeover, to System 5.0, took place with the introduction 
of new hardware, DSU270 disks. 

These devices, which are fixed-head disks, offer more efficient 
secondary storage than the original DSU10 units.  Software 
changes necessary to support the new hardware were made in 
such a fashion as also to facilitate the anticipated introduction 
of new, larger DSU170 units (equivalent to the IBM 2314) at 
some time in the future.  Both the DSU270,s and the DSUlTO's 
offer, in addition to speed, the highly desirable feature of ex- 
pandability.   That is, as the need for more secondary storage 
increases with the increased user population of the system, 
more disk units may simply be brought in and connected. 

System 6.0 

System 6.0 featured a major reworking of the command processing loop 
and a general expansion of the scope of the Standard Service System. 

The command loop was redesigned and recoded in PL/1, which 
had by this time become appreciably more efficient than EPL 
both in compile time and in generated code.  It no longer avoided 
the full I/O system, since the performance of the central module 
of that subsystem, the "I/O switch", had also been upgraded ap- 
preciably.   These changes dropped the distinction between "mini" 
and "full" Shell, allowing users to employ whatever features of 
the command language they wished, at low cost in time.  The 
key issue here was a reorganization of the command processor 
(the term "Shell" having also been dropped) such that the user 
pays only for those features which he explicitly invokes, rather 
than having to use the full machinery for even minor tasks. 
The new command loop also enabled writers of private (and 
public, for that matter) commands to acquire the commands' 
arguments in a less-awkward fashion, and in general to inter- 
act with the command loop more cleanly.  A deeply embedded 
per-process segment was eliminated ("process_info");   this was 
an independent task since it involved changes to a large number 
of segments, as well as rather extensive changes to the Inter- 
process Communication facility, which were not practicable 
earlier.  Also, more commands, subroutines, and the Interprocess 
Communication facility were converted to PL/1 and made to 
conform to Standard Service System criteria.  Finally, the 
handling of conditions and signaling was reimplemented. 

System 7.0 

System 7.0 was a major performance breakthrough, since it incorporated 
a new, "fast" Page Control module. 
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process-dependent'inform^   are   n^J**™^ "f*™ dress space.  However   if fKQ "iLroaucea into the process's ad- 

linkage section oTthe 'old tersioTwMeh"!* '0 be ^^^ ** 
"combined linkage segment" l^ een added t0 a sin8le 
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program, a facility was added which allows compilers 
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automatically (and users, by explicit command call) to cause removal 
of a named program, including its linkage section, from the address 
space of a process.   This makes the debugging process far less cum- 
bersome.   Additionally, the PL/1  Linker is more efficient than the older 

EPL version. 

' Another area of the supervisor that underwent significant change was 
the "Gatekeeper"  module.  This module manages the transfers of control 
among Multics protection rings.  A large improvement in speed was ef- 
fected by a new Gatekeeper which handles ring-crossings into the super- 
visor's protection ring as special cases.   (Such a strategy is made 
possible by the fact that the ring-0  environment is rigorously defined, 
so that the premium for generality of preparation need not be paid 
when the ring being entered is known not to require that, generality.) 
Also, an important advance in system security came about from the 
inclusion of full argument validation on calls to the supervisor;   for, 
by accident or by design, it is possible for a non-supervisor program 
to furnish bad arguments when calling the supervisor, and if the argu-, 
ments are not validated (by the Gatekeeper) when the call is made, 
the highly privileged supervisor routine could inadvertently either 
destroy or reveal vital system information. , 

Functional Capabilities:   Command Repertoire 

The system's command repertoire also has been strengthened con- 
siderably.  Perhaps the most valuable command of all is the PL/1 
compiler.   As has been'seen, and as will be seen further, recompila- 
tion in PL/1 has led to improved performance in ail areas of the 
system from the supervisor modules to individual commands.   Further- 
more, it should be noted that the G. E. Cambridge Information Systems 
Laboratory team responsible for the compiler won a General Electric 
corporate award for their work, and that the compiler is believed to 
be the best PL/1 compiler yet implemented.   Aside from general im- 
provement, full implementation of most defined language features, and 
the addition of object-code optimization, the compiler also benefited 
from the inclusion of more complete,1/0 facilities, in accordance with < 
the full PL/1 language specification.   PL/1 is expected to lend itself 
quite well to the implementation of data-base management subsystems, 
particularly because it is able, both directly (through its "based 
Storage" facility) and indirectly (through PL/1 I/O), to take full ad- 
vantage of the virtual memory that Multics affords.  This should allow 
very large data bases to be manipulated with far greater ease than 
they could be by a PL/1 on a conventional system.  Another feature 
added both to PL/1 and to the command loop in general is an improved 
mechanism for signaling and handling "conditions" as defined in the 
full PL/1 language specification.  Signaling is already employed in the 
system's quit-handling and fault-handling mechanisms, and will be play- 
ing a larger role in error-handling in the future. 
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Another heavily used command which was vastly improved is the Multics 
context editor, "edm".   Taking advantage of the power of PL/1, a new 
edm command was installed which offered an order-of-magnitude im- 
provement in the time needed to locate an arbitrary string in a file. 

Finally, several new commands were added to the repertoire, including 
a BASIC compiler, which will be discussed in more detail below.  Of 
particular interest to system programmers has been the development of 
a new interactive debugging program, "db", which is far more rich and 
flexible than the earlier "probe" command.   By requesting the genera- 
tion of a symbol table during compilation, the user of db may refer to 
variables symbolically when debugging and refer to source-code state- 
ments by location.   The ability to set breakpoints is also afforded. 
Another new command, called "help", is of considerable interest to 
general users, for it prints out usage information about named com- 
mands   on-line;   working  from  ordered  files,   the command pauses be- 
tween levels  of  complexity to interrogate the user as to whether more 
help is desired.  Still another interesting command, called "mail" allows 
users to send messages to other users by placing files in the others' 
directories.   Card reading and punching facilities were also made avail- 
able;   the former is of great value for CTSS users shifting over to 
Multics.  In addition, a large number of already existing commands 
were converted to Standard Service System standards during the re- 
porting period. 

The Student Information Processing Board Subsystem 

The BASIC compiler (borrowed from the Rome Air Development Center 
time-shading system) led to a windfall in that it became the vehicle for 
a subsystem developed by the M.I.T. Student Information Processing 
Board (SIPB).   Using Multics, the SIPB group developed in a surprisingly 
short time the "SIPB-0 System", a subsystem that gained many ad- 
herents among student users.  This subsystem constitutes a closed 
environment that makes available a limited number of low-cost, easy- 
to-use commands.   The commands include a subset of Multics commands 
as well as special SIPB-O ones.  It was found that many students availed 
themselves of the subsystem for homework assignments.  Among the 
features of SIPB-0 are the BASIC compiler and editor, a special com- 
mand processor, numerous "help" files, the ability to have many simul- 
taneous users with a single working directory, and a library of game 
programs for demonstration purposes.  This venture was gratifying not 
Only because of the interest generated, but also because it further 
demonstrated the relative ease with which subsystems could be developed 
under Multics — in this case, in two or three weeks (during which work 
on the subsystem was only part-time) by users who, although highly 
mqtivated and quite talented, had no previous Multics experience. 
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IV.   PERFORMANCE ^ 

Summary 

Progress was quite good in the area of system performance.   By the 
end of the reporting period, loads in excess of 30 users were common j 
during day-to-day "one-CPU" operation, and system response was ade- 
quate at that level.   (During the next year, it is hoped to increase the 
acceptable load to approximately 50 users for the single-processor, 
256K of core memory configuration;   with both processors and 384K of 
core, a considerably larger load will be supportable.)   Note that, al- 
though the system is operated most of the time with the system par- 
titioned (one CPU and 256K for service, the other CPU and 128K for 
development work), there are scheduled sessions each week during which 
the full dual-processor configuration is used as the service system. 
These full-configuration sessions allow particular attention to be paid 
to issues of reliability, tuning, reconfiguration, and operational proce- 
dures.  The remainder of the time, the development system is reserved 
for the testing and checkout of new systems, so as not to disrupt 
normal service. 

Principles 

Three principles worthy of note emerged from the Group's work in the 
area of performance improvement.  The first is a design principle — or 
attitude -- which holds that system modules should be so arranged as 
to cause the user to pay for only those features that he explicitly in- 
vokes.  This was the approach taken in, for example, the redesign that 
changed the mini- and full-Shells into the command processor (System 
6.0).  It has also been encountered in many other areas of the system. 
The basic point is that generality of function need not be sacrificed to 
efficiency, but neither should it be achieved through an implementation 
that is inefficient for commonly used specific functions.  The second 
principle is that careful and extensive metering of system performance 
is indispensable.  Indeed, much valuable tuning information was derived 
from a few simple commands that allowed Group personnel to "browse" 
over the performance characteristics of the running system.   This in- 
formation, in conjunction with tuning commands, allows system adminis- 
trators to dynimically change from any console parameters affecting 
system performance.  (It should be noted that controlled system experi- 
ments are elaborate to set up, and nearly impossible to repeat;   as a 
consequence, on-line tuning with a "live" user population has been an 
important stratagem.)  The third principle is that judicious choice of 
which system modules to convert to hand-coding pays large dividends. 
The striking success in the Page Control area was mentioned previously. 
At year's end there were strong indications that hand-coding the argu- 
ment validation portion of the Gatekeeper would also have very significant 
effects upon system performance.  However, most of the system will 
continue to remain in PL/l. 
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Comparison with CTSS 

Table I shows the rather dramatic improvements accomplished during 
the year, with both CPU time and dollar charge decreasing to roughly 
one-third of the levels at the beginning of the period.   The figures are 
gathered from the execution of a fixed series of commands, input to 
Multics by tising the PDP-8 display computer over a Dataphone line. 
The "script" entails the inputting, compilation, editing, recompilation, 
and execution of a Fortran program that calculates prime numbers. 
In broad outline, this "debugging sequence" is fairly typical of time- 
sharing system use, although it does not really take advantage of or 
exploit the greatly increased generality and functional features of the 
Multics system;   nevertheless, the Fortran "script" is run on a regular 
basis since it can be considered a "worst case"  comparison between 
Multics and other systems.   As can be seen, the version of Multics 
that was current when the system was made generally available on 
1 October furnished somewhat superior performance to that of CTSS 
in most categories.   Only the average response time (how long it takes 
for a command to be reacted to by the system) compared unfavorably 
at that point in lime.  By the Spring of 1970, Multics showed a clear 
superiority over CTSS in all categories.   (In the area of response time, 
where the two systems appear from the table to be essentially equiva- 
lent, it should be noted that Multics was more heavily loaded than 
CTSS at the time the statistics were gathered;   for equal loads, the 
response time on Multics beats that of CTSS).   Unfortunately, the 8.0 
version of Multics (which was installed in June of 1970) had not yet 
been measured in all these categories at the time this report was 
written.  However, indications from other metering tools and the sub- 
jective "feel" of the 8.0 system are that it has surpassed the perform- 
ance of the 7.0 system by a substantial amount.   (Further tuning of 
the 8.0 system is expected to make the difference even more notice- 
able.) 

V.   HARDWARE 

Hardware on Site 

The major change in the hardware complement during the year was the 
previously referenced changeover to fixed-head DSU270 disk units. 
These devices offer a transfer rate of approximately 55,000 36-bH 
words per second, with a mean access time of 26 milliseconds.  Each 
unit has a capacity of 2.5 million words, but the number of units on- 
line to the system is essentially limited only by the number of con- 
trollers.  Currently, 10 to 15 disks are being employed through a single 
controller.   An important consideration here is the fact that, as system 
usage increases and a need for increased disk capacity is felt, more 
disks (and controllers) can be added without necessitating major soft- 
ware changes,   Actually, it is anticipated that the DSU270,s will 

56 



- '-V-r-V'■"'*• 

COMPUTER SYSTEM RESEARCH 

eventually be augmented by DSUlTO's, to which similar considerations 
apply.   The DSUl70's (which are GE's equivalent of the IBM 2314 mul- 
tiple disk-pack drive) offer a transfer rate of 69,000 words per second, 
have a mean seek time of 75 msec, a mean latency of 12.5 msec, and 
will be more economical when they become available.   (Initially, an 
IBM 2314 unit will be used.) 

Hardware Performance 

Difficulties with the performance of the hardware, leading to system 
crashes, were experienced during the reporting period.  Indeed, with 
the increase in the stability of the software, hardware-caused crashes 
came to outnumber those attributable to software.   System-crash 
analysis revealed that the electrical grounding of the GE 645 was in- 
adequate.   (At one point, the use of a vacuum cleaner to remove the 
chads from the card punch could cause the system to crash!)  Suitable 
changes were made in the machine room, but, at year's end it proved 
necessary to run a ground cable to the basement of the building to 
make the grounding adequate.   Another hardware problem that showed 
up in crash analysis was the occasional mis-writing of the first 64 
words of 1024-word drum records.   This proved to be the result of a 
subtle design error in the drum timing which was corrected at the end 
of the reporting period.   System crashes were also caused with some 
frequency by core-memory failures and DSU270 problems.   These prob- 
lems are currently receiving intense attention from hardware specialists 
who have been brought in by General Electric from its Phoenix facility. 
Many of these hardware problems were only exposed under the heavy 
system loads experienced during the latter half of this reporting period. 
It is expected that system reliability will be brought to a satisfactory 
level during the next year. 

VI.   ADMINISTRATION AND OPERATIONS 

In November 1969, the day-to-day administration and operation of 
Multics was turned over to the M.I.T. Information Processing Center 
(IPC), allowing the Computer System Research Group to devote itself 
more fully to its research and development role.  Responsibility for 
providing user consultation and for distributing documentation was also 
assumed by the Center.   The GE 645 operators are also now adminis- 
tratively responsible to IPC. 

Excerpts from the announcement to the M.I.T. Faculty and Staff by 
Richard G. Mills (then M.I.T. Director of Information Processing 
Services) are of interest: 

"The Center will cooperate with Project MAC in the continuing 
development of the Multics system, while providing the M.I.T. 
community with a powerful, sophisticated, and reliable remote- 
access computer utility.  We expect that many of the application 
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programs now operating under CTSS, and possibly other user- 
developed subsystems now running in other time-shared com-_ > 
puters, will be transferable to the Multics environment with an 
acceptable level of program-modification effort.  Once in Multics, 
these programs can begin to benefit from the improved capa- 
bilities that are available in the new system.  The cost-perform- 
ance ratio for Multics, initially about equal to that of CTSS, 
will improve considerably over the three-year initial period. 
Multics will supplant CTSS as the Institute's primary general- 
purpose time-sharing system, and CTSS service will be termi- 
nated (with appropriate notice) when Multics has proved its 
ability to support the work now being done on CTSS . . . 

"This announcement carries out the new policy of explicitly 
committing to provide a major service component for a stated 
minimum time period.  In the case of Multics. a commitment 
period of three years, beginning 1 October, 1969, was recom- 
mended by the Information Processing Advisory Committee, 
endorsed by the Information Processing Advisory Board, and 
approved by the Provost. 

"The significance to users of such a commitment is that it pro- 
vides a basis for planning and proposing research and educa- 
tional tasks with the assurance that the computer-system base 
on which they rest will not be unexpectedly swept away. A three- 
year minimum commitment, of course, does not mean that we 
expect Multics to be terminated at the end of three years;   in 
fact, we would hope after a year of experience with the system 
to announce a substantial extension of the commitment period." 

At the end of the reporting period, the new arrangement was working 
well, with IPC personnel becoming increasingly involved with system- 
maintenance functions.   In addition, some IPC personnel were making 
contributions to the system's command repertoire, the "help" and "mail" 
commands mentioned above being prominent examples. 

VII.   ARPA NETWORK 

Background 

In order to study the issues involved in large-scale computer networks 
and to enable a widespread user community to benefit from the work 
being performed on a number of advanced computer systems, the Ad- 
vanced Research Projects Agency (ARPA) has initiated research into 
the formation of a computer-to-computer network among those systems 
that have been developed under its sponsorship.  Multics is, of course, 
one of these systems, and considerable work was done on the network 
by members of the Group during the reporting period.   (In the following 
discussion, each system that is a node of the network is referred to 
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as a "host'.  At any given network site, there may be one or more 
host systems;   at Project MAC, both the Multics GE 645 system and 
the Dynamic Modeling and Computer Graphics Groups' PDP-6/10 sys- 
tem are network hosts.)   Since the network is in itself a very large- 
scale computer utility system, it is expected that the network will play 
an increasingly larger role in the Group's activities in years to come. 

Physical Message Communication 

The ARPA Network involves a multi-level hardware and software sys- 
tem.   At the lowest level is the physical-communication network, man- 
aged at each node by a specially built device known as an Interface 
Message Processor (IMP).   This hardware, along with standard control 
programs in the IMP, provides the basic facility of sending raw mes- 
sages from one computer to another.  A special hardware interface 
between M.I.T.'s IMP and Multics has been constructed by A. K. Bhushan, 
and, as of July 1970, the communication path between the IMP and the 
Multics I/O module is in final checkout. 

Logical Communication Paths 

A higher level of network control protocol must be supported by a soft- 
ware module known as the Network Control Program (NCP).  This 
module must be implemented within each host computer system to 
factor the raw message-transmission capabilities provided by the IMP 
network into generalized communication facilities for individual user 
processes at a host. 

The network participants at Project MAC, several of whom are mem- 
bers of the Computer System Research Group, have been engaged in 
discussions with representatives of other sites concerning the definition 
of a common network protocol.  Each site will implement an NCP which 
acts jointly with other NCP's according to the protocol in creating, 
maintaining and destroying communication paths.   As of June 1970, 'the 
Network participants appear to be in fundamental agreement concerning 
the protocol and are proceeding to settle the details. 

Software modules implementing communications between the Multics 
NCP and its IMP are currently being coded.   The NCP is under design 
and preliminary coding has begun.  We intend to have an operational 
NCP communicating with the Network by early Fall. 

Inter-Host Software Protocols 

Several still-higher-level software protocols are possible, the most im- 
portant of which is a "logger" protocol.  Because the NCP only provides 
communication facilities between two existing processes, some process 
must exist on each host system which agrees to listen to the Network 
and create processes for Network users upon proper identification.  In 
Multics the Answering Service process performs this function for users 
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dialing up over typewritei^-Gliannels, and it will be modified to provide 
this function for Network users as well.   However, there must also be 
some protocol by which a potential user first gets the attention of the 
logger process, establishes communication with it, then establishes 
communication with the created process.   As of June 1970, the issue of 
a standard logger protocol for all hosts is unresolved.   Network partici- 
pants at Project MAC and Lincoln Laboratory have agreed to take the 
lead in formulating such a protocol.   The Network participants will 
probably take up this issue once the basic NCP protocol is officially 
promulgated. 

VIII.   GRAPHICS 

Another area with which the Group is becoming more involved is that 
of terminals with graphical-display capabilities.   The basis for this 
involvement is twofold:   not only is it desirable for Multics, as a 
general-purpose system, to support such display terminals, but it is 
also the case that a major point of interest of the ARPA Network is 
a wealth of sophisticated display hardware and software that will be 
made available.   Graphics-related work during the reporting period 
focused on the development within Multics of a General Graphics Sys- 
tem and on a new teletypewriter device interface module (TTY DIM). 

The Multics General Graphics System 

The first version of the Multics General Graphics System was developed 
during the reporting period and is currently employing the DEC PDP- 
8/338 display computer as its display device.  Because of the wide 
variety of displays that exist and may be connected to Multics, a par- 
ticular objective of the graphics effort is to avoid the kind of frag- 
mentation among users that occurs when a given group writes a soft- 
ware package that is keyed to a single device:   not only is the user 
tied to that device, but the resulting software cannot be shared with 
users of slightly different but functionally equivalent hardware.   To 
avoid this situation, it is planned that a Multics graphics user will 
manipulate device-independent three-dimensional picture descriptions 
in a per-user "working graphic segment" through the use of General 
Graphics System primitives.  When a user issues a display call, a 
"graphic structure compiler" for his particular device type is invoked 
to produce a display command stream and dispatch it to his particular 
type of display device through the Multics I/O system.   A graphic 
structure compiler which produces an ASCII-encoded command stream 
for a two-dimensional static display such as the ARDS console is cur- 
rently working, with the PDP-8/338 used as a simulated ARDS.  When 
the new ring-0 typewriter  DIM (discussed below) is installed, it will 
convert this command stream into actual hardware commands for the 
ARDS.   Alternatively, the command stream can be sent as-is through 
the ARPA Network for subsequent interpretation by the computer 
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serving the remote user's display. Work is currently under way to 
develop a graphics structure compiler capable of providing a general 
three-dimensional x epresentation which may also be transmitted through 
the Network.   Note that, when new graphical devices are added to 
Multics, it will be sufficient simply to add another conversion table to 
the TTY DIM;   no changes to the graphics^system itself will be neces- 
sary.   There also exists a graphics editor through which a user can 
manually edit and display graphic items.   These items can be stored 
in a "permanent graphic segment" for later pickup and use by a 
graphics program. 

The New TTY DIM 

As mentioned above, the Multics General Graphics System will drive 
the ARDS console through a new teletypewriter device interface module. 
This TTY DIM, which was in the final stages of checkout at the end 
of the reporting period, is of both abstract and practical interest.  It 
is table-driven, the table basically representing a directed graph of 
operations and branches.   The logic is sufficiently general to be able 
to accommodate a wide variety of character-oriented terminals.   (Such 
terminals are becoming more and more numerous of late;  the new 
TTY DIM will be able to deal with both the familiar types of hard-copy 
devices and the new soft-copy devices such as the storage-tube ARDS 
and the refresh-display computer IMLAC PDS-1.)   The terminals may 
be connected over different types of channels, or according to different 
disciplines on the same channel.  It is particularly interesting that the 
new TTY DIM is an instance of a table-driven device interface module 
that allows a device's characteristics to be specified in sufficient de- 
tail for it to be completely responsible for operating a terminal.   The 
fundamental solution to terminal operation which it represents is felt 
to be relatively easily exportable to other machines;   for, although 
some details of the table format and the interpreter program are 
specific to the GE 645 Generalized Input Output Controller, the bulk 
of both is general, and the GlOC-specific aspects could be replaced by 
more abstract representations.   The interpreter program itself is 
written in PL/1 and should be usable elsewhere.   Also under develop- 
ment is an unsophisticated compiler to facilitate the creation of tables 
for new devices. 

IX.   WORK IN PROGRESS AND FUTURE PLANS 

Functional Capabilities and Performance Improvements 

Multics projects in progress at the end of the reporting period include 
the following. 

Standard Service System 

The policy of causing all present system modules to adhere to Standard 
Service System criteria continues.  In addition, the scope of the Standard 
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Service System is broadening with the planned introduction of such 
features as the commands of the Dartmouth System, a LISP interpreter 
and an APL interpreter.   All Standard Service System programs are 
also being converted from the EPL to the TPh/l language.   This not 
only offers the improved efficiency of the PL/1 object code, but allows 
halting of EPL maintenance. 

File System 

Also being converted to PL/1 is the File System.  In conjunction with 
the recoding, certain design modifications are being effected as well: 
A new format is being introduced to allow for "small" directories 
(less space-consuming when the number of entries is low).   The most 
frequently used paths through the File System are being optimized, 
which should result in significantly improved performance since some 
90% of processing is performed by some 10% of the code.   The binding 
of the various modules is being altered to minimize the number of 
page faults incurred by the paths chosen for optimizing. 

Fault Interceptor Module 

Many modules are being reworked to add new functional capabilities 
and to improve existing functions.   Most basic of these modules is the 
fault interceptor module (FIM), which invokes the appropriate system 
routines in response to hardware-fault signals.   Because of its central 
role in a process, the FIM has gained numerous responsibilities by 
accretion;   therefore, the redesign is aimed at making the FIM more 
modular, to increase its speed for performing its basic fault-handling 
functions, and to clarify its other roles. 

Other Modules 

Other key modules being reworked are the interprocess communication 
facility (which is undergoing a thorough redesign to speed up its per- 
formance and extend its capabilities to include a secure, general 
message-passing mechanism), the Linker and the Gatekeeper.  Still 
other important areas include the backup facility, management of the 
storage-device hierarchy ("multi-level storage" -- which is responsible 
for assigning less frequently us^d segments to slower-speed devices), 
the Binder, the User Control module (which manages logging in and 
out of the system), and the maintenance tools used in generating new 
Multics System tapes ("MSTs"). 

New Features 

Two console-related additions to the system are the ability for a 
single  process  to drive multiple consoles,  and a facility for on-line 
console-to-console communication.   The  supervisor  is  being  modified 
to allow flexible specification by  the  user  of which directories to 
search for a segment when a linkage fault occurs; this will be a more 
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general form of an interim facility introduced during the reporting 
period which allows the insertion of a single user-specified directory 
into the search path.   Another supervisor change (referred to as "limit 
stops") will broaden the system's accounting facilities to allow for 
interruption of a process that has exhausted its allocated resources -- 
particularly with regard to machine time.  Work is also being per- 
formed (by G. E. Cambridge Information Systems Laboratory personnel) 
on the APL language, which has become quite popular at some instal- 
lations, and the embedding of the GE 600-series monitor GECOS under 
Multics. 

Performance Improvements 

Finally, continuing system-improvement tasks include the reduction of 
per-process segments, the continued propagation throughout the system 
of the object segment format, and the reduction of the amount of wired- 
down (non-paged) memory employed by the supervisor. 

Thesis Research 

Among the new features under development, three are related to thesis 
research.  One of these, the ability to alter the hardware configuration 
while the system is running ("dynamic reconfiguration") is being im- 
plemented by a graduate student as part of his thesis;  by the end of 
the reporting period, the ability to reconfigure processors had been 
demonstrated in a test system.   The other two (a "save and resume" 
facility whereby a process may be restarted after an automatic logout 
resulting from a system crash, and an "absentee user" facility where- 
by a process can be created to perform a series of commands without 
console interaction) are being implemented by staff members who have 
benefited from the thesis research performed by graduate students. 

Student Participation 

Undergraduate students are playing an increasingly large role in 
Multics development.  Summer projects being performed by under- 
graduates include the introduction of a major portion of the Dartmouth 
"SIMON"  (simple monitor) system under Multics in a simulated en- 
vironment, the development of a LISP interpreter, and the conversion 
of the Multics assembler from a combination of GECOS Fortran and 
GMAP (635 assembler) code to PL/1 and 645 assembly code, which 
is directly maintainable under Multics.  Additionally, the Student In- 
formation Processing Board intends to expand and improve its SIPB-0 
subsystem in the Fall. 

Future Plans 

Aside from expanding efforts in the areas of graphics and the ARPA 
Network, two Multics-related areas are of particular long-range 
interest to the Group.   The first of these is the topic of follow-on 

63 

.... ■ ■   . ■■■.■■■■ :■■  :- ..■-.■  ■.■...■■■,.-. 

',,:m--:ix^^' 



COMPUTER SYSTEM RESEARCH 

hardware to the GE 645.   At the request of the M.I.T. Information 
Processing Center   members of the Group are working in conjunction 
with G. E. Cambridge Information Systems Laboratory personnel on the 
specification of a design for hardware that will stand in approximately 
the same relationship to the new GE 655 as the 645 stands to the 

thP rV* ?     1S' o1^  o^ maChine Wil1 empl0y the same technology as 
the 655 (some 2 to 3 times faster than the 635/645), with the addition 
of appending hardware and a few operation codes.   A specification   s 
being developed that requires only a modest redesign of the 655, and 
that is upward-compatible with the Multics software for the 645    Along 

1^71        ferf0rmance' the follow-on hardware should offer greater 

s th    6y4'ytoV1tr ^^ 'I"' Cl0Ser t0 the stand^-P-duct line 65'   htn 
is the 645 to the 635.   By the end of the reporting period, early drafts 
of the specifications had been produced. 

l^ZT11^01' 1°ng-ranee issue is ^at of the "exportability" of 

f tot n; 2Z "t       'f" literally t0 mean the runni^ of MuUics on 
abmt of Ideas      TT*'  ^T' " iS "^ t0 im^ the t^^ 
ball?of Mu     " m   ^ SenSe 0£ the Promul^tion of the conceptual 
bases of Multics, and of the lessons about the development of large 
systems learned in the course of the Group's work on Multics    The 
la ter aspect is, of course, covered in the journal articles, ;oports 

talks, papers and books about the system that have been o^ Je beüiff 
produced by members of the Group.  In addition, work has be^un on 
bringing both the system's internal (i.e., system-programmerSriented) 

uoryentTa^nr thtVyfm programs themseiv's ^to p^~d) 

effoif in reLd rP
P t      T^       ^ SyStem 1UCidly' al0ng With a like 

be a JL t0
K

external (l-e., user-oriented) documentation should 
be a major means by which the ideas of Multics are propagated 
Present plans are to publish in book form, in the near future   the 
^l^^ogx^Mier^Man^l (MPM) and an examination of t'he system 

o TM rPT* ^ Pr0f- Elli0t L 0rganick- Subsequently, publication 
of the Mulhc^SystemProgrammers'  Manual (MSPM) (whick is current- 
ly undergoing heavy revision) is planned. current 
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Technical Papers about Multics 

IcM^/n* H
H« ^ J' W- Ginte11*' nThe Instrumentation of Multics" 

Ä S
D
eCOnd

f
SymPosium on Operating System Principles (October 20-22 

1969) Prmcetpn University, pp. 167-174. l^ciooer JU-22, 

Spier, J   M., and EL. Organick*, "The Multics Inter-Process Com 
munxcation Facility", ACM Second Symposium on Operaüng System 
Principles (October 20-22, 1969) Princeton UniVeJty, pp   83 91 ' 

Grochow, J. M., "Real-Time Graphic Disnlav of Timo QK. ■      a 
Operating Characteristics"   ArivTr» t   I  * ^J1,"16"8^1^ System 
Press,  1969. StlCS ' AFIPS Conf- Proc- 35 (1969 FJCC), AFIPS 

^mo^-'secotd APM' ^^ ^ R- C- Dal^ "The Mul«cs Virtual Memory , Second ACM Symposium on Operating System Princioles 
Princeton, New Jersey, October, 1969. «" principles, 

M.I.T. Theses Related tö Multics 

Ivstm0"* M,<5
ntU

h
SP?Si0rf 0f Processes in ^ Multiprocessing Computer 

ÄAC^^AD^SS^ EleCtrical Enginee^ Feb^ ™°' 

Non-MAC author 
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INTERACTIVE MANAGEMENT SYSTEMS 

ORGANIZATIONAL DECISION MAKING 

I.  INTRODUCTION 

At the outset of this project in June 1969, two major lines of research 
were proposed.  The first took as its starting point the computer facili- 
ties then available at M.I.T. and examined the ways in which these 
could be used to further general management objectives.  Inextricably 
linked with this was our second objective of studying the decision- 
making process itself in order to discover how it could be improved 
through the utilization of a highly interactive computer system. 

Our study took the form of a series of experiments conducted in 
several of the laboratories and academic departments within M.I.T. 
which were more or less similar to general administrative organiza- 
tions found in government and industry.  In each case, the administra- 
tive personnel concerned were given access to the Compatible Time- 
Sharing System (CTSS) computer.  During the relatively long period of 
CTSS's existence, a large number of programs had been developed 
which offered promise of being useful for mamigement functions. These 
ranged from simple text-editing and printing programs to elaborate 
facilities for sorting, plotting and retrieving information. 

Without going into detail, the results of most of these experiments indi- 
cated that CTSS was not very effective as an interactive problem-solving 
and decision-making system for managers, for it appeared that the real 
problems faced by most administrators and managers are significantly 
more complex and require a more highly interactive environment than 
could be provided by the existing computer programs and systems. 

Despite the disappointing conclusions, these initial experiments provided 
a store of very practical experience and knowledge essential to the de- 
velopment of useful decision-making tools — information difficult to 
obtain by other means.  Also, it should be emphasized, not all our re- 
sults were negative.  The two largest efforts, those within the Electrical 
Engineering Department and in Project MAC itself, led to systems that 
were of significant operational value and continue to be actively used. 

II.   E.E. DATA MANAGEMENT SYSTEM 

The Electrical Engineering Department management system maintains 
information on each course offered by the Department each semester, 
and en each faculty member, course secretary, and graduate teaching 
assistant in the Department.  This information is stored as one large 
file of plain text in CTSS, with special codes to identify the specific 
items in the file.   The standard CTSS text editing commands (TYPSET 
and RUNOFF) are used to update the file.  Special sorting and report- 
generating programs are used to prepare extensive hard-copy reports 
used within the Department. 

I 
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This system was originally developed (with  internal Electrical  Engi- 
neering Department funds) to aid in solving the complex problem of 
assxgning the very large E^E. teaching staff to the large numbers of 
courses taught each semester.  Once that work was completed   the 
data base was expanded to include salaries, charges to research grants 
and contracts, and information on funded chairs.  Then additional pro- 
grams were written to perform other report-generation functions.  Only 
the latter, more general work and the extensive documentation of the 
system have received Project MAC support. 

Although the system is actively used, it is quite primitive in many 
respects.  For example, it employs a very simple, sequential data or- 
ganization, does no input-data validation, and is oriented more toward 
report preparation than interactive decision-making. Despite these 
drawbacks, the system serves a very useful function and is now an 
integral part of the Electrical Engineering Department operations. In 
addition, it has attracted widespread interest in the Chemical and Civil 
Engineering Departments of M.I.T, as well as by the M.I.T. Comptrol- 
ler's Office.  The enthusiasm with which this information-management 
system has been received by these academic and administrative depart- 
ments at M.I.T. is a strong indication of the seriousness of the need 
for such management tools both here at the Institute and elsewhere. 
The E.E. system building demonstrated once again the value of one 
consistent central data base that can be used for a variety of purposes. 

HI.  MACAIMS 

The work at Project MAC on MacAIMS (Advanced Interactive Manage- 
ment System) was designed more to extend the state of the art in in- 
formation management than to solve a specific management problem 
However, throughout MacAIMS development, the problems involved in 
managing Project MAC itself and similar research organizations - both 
government and industry — were kept clearly in mind. 

Several facilities of the MacAIMS system are currently in use by MAC 
Headquarters.  In contrast to the system used by the Electrical Engi- 
neering Department, MacAIMS employs a rather complex internal data 
organization designed to facilitate interactive retrieval of information. 
It also has a much more sophisticated user interface, including a con- 
siderable degree of input-data validation.  Function-oriented programs 
written so far are in the areas of personnel-data management, budget- 
ing, equipment inventory, and purchasing. 

The personnel management system is the most extensive of the four 
functional applications and has been most fully developed.  In addition 
to storing the standard information on name, address, telephone number, 
age, salary, etc.,  we have found it important to associate effective 
dates with a number of these fields and thereby be able to store non- 
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current information as well as changes that are anticipated but not yet 
formally effected.  Thus, the system is useful for showing comparisons 
over time.  The personnel data-base structure itself is hierarchical and 
directly reflects the structure of most organizational entities.   For ex- 
ample, each Project MAC person is associated with one or more re- 
search groups, and each group is supported by one contract.   For every 
research group there is one group leader. 

Careful attention has been paid to the issues of privacy of information 
and of access control.  Thus, each individual may inspect the entry that 
pertains to him, and each group leader may access information about 
the people in his group but not in other groups.  The Headquarters staff 
may have access to all information in the file. 

The budgeting system developed within MacAIMS effectively demonstrates 
the inadequacies of the CTSS environment for most real management 
problem-solving applications.  Project MAC has about 30 distinct re- 
search groupings (when separate contracts and all other pertinent fac- 
tors are considered), for each of which it is necessary to store about 
25 discrete pieces of financial information.   Furthermore, in order to 
provide adequate space for both the past and the future, it is necessary 
to store about two years (24 months) of figures:   30 x 25 x 24, or 
18,000 individual items of information.  Since this information is highly 
interrelated by pointers which link associated items, it is necessary 
that the entire data base be stored in core memory for fast retrieval. 
By the time the structured information and the programs themselves 
are added, the total space required easily overflows the avaiM)le core 
memory of the CTSS system.  Faced with this dilemma, we decided to 
work with only a subset of the complete organization structure and to 
continue system design in order to gain some experience with inter- 
active budgeting systems. 

The purchasing subsystem of MacAIMS is designed to help with the 
general procurement problem.  As currently implemented within Project 
MAC, it assists with preparation of standard M.I.T. purchase orders. 
Also it maintains an on-line purchase journal which may be searched 
to determine the status of any individual purchase order, the current 
outstanding commitments, the total orders given to any vendor, and the 
total expenditures by any research group, etc. 

The equipment-inventory programs maintain records on typewriters, 
dictating machines, and data-communication equipment, and permit 
interactive retrieval of specific information as well as preparation of 
standard reports.  Full historical data on utilization and charges is 
also maintained. 

In addition to these specific functional programs, much of the initial 
MacAIMS development effort was devoted to building a suitable general 
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data-management environment.  Once this environment was available, 
the implementation of any specific function was a relatively straight- 
forward task. 

The substantial investment maiie in developing this general environment 
has paid off.  Initially, functional programs were written to perform 
the same operations that previously had been performed manually.  Once 
these programs were available, the administrative personnel began to 
request additional capabilities.  They also came to Mac AIMS with un- 
usual one-time information requests, e.g., the annual survey on data- 
processing employment or the annual Project MAC audit.   Because the 
basic MacAIMS environment had been built with great care, the most 
complex additional capability was implemented with only a few days of 
part-time work by a student programmer.   Frequently, the one-time, 
special requests could be handled in minutes.   Thus, we feel that we 
have demonstrated the general utility of the MacAIMS system, at least 
in part. 

During this year we also began the movement of the entire MacAIMS 
system from CTSS to Multics, including a substantial redesign in order 
to take advantage both of the unique capabilities of Multics and the 
experience gained through use of the original system.  By the end of 
June 1970, coding had begun on most of the key modules of the new 
system with the expectation that initial applications tests could be run 
in the Fall of 1970. 

In summary, the problem of developing a suitable general-purpose, 
man-computer, decision-making environment is considerably more com- 
plex than might at first be thought.  However, as a result of our work, 
we now believe that we know how to solve most of these problems and 
look forward in the coming year to developing a system that will be 
of significant practical as well as theoretical importance in a wide 
variety of application settings. 

IV. COMPUTERIZED BUDGET CONTROL 

The system initially proposed for computerized budget control in the 
Mechanical Engineering Department had earlier been developed in an 
M.I.T. interdisciplinary research laboratory, but when the system was 
transposed to an academic department, a wholly different set of prob- 
lems had to be solved, e.g., the various contract budgets were unre- 
lated in terms of sponsor, initiation and termination dates.  Moreover, 
as was discovered after several months' experience, the time-lag in 
notifying the principal investigators proved too great in terms of timely 
budget decisions.  Nevertheless, because of the lessons that had been 
learned from the experience, the system was fully documented in an 
internal report ("Computerized Budget Generation and Expenditure Con- 
trol System", by C. E. Barringer and K. R. Crossen, June 1970). 

I 

72 

■'■    ^ ■   ■■■■^■.■;   ^^.vy.^-... .-.,.,,:'^,.^■.■4-^  •:'.-. s.-.;- 



INTERACTIVE MANAGEMENT SYSTEMS 

Subsequent work in this period included efforts to draw together a 
basic personnel file data bank that could be used for various depart- 
mental purposes. 

V. PROJECT MANAGEMENT IN BUILDING DESIGN 

This effort was part of the doctoral thesis research in computer- 
assisted building design by James Jackson in the Department of Civil 
Engineering.  The over-all purpose was to develop means for integrating 
the various computer systems used in such designs.  Among the goals 
of the research was the devising of a data structure for a project file 
and a scheme for communication among the multiplicity of computer 
systems involved in a building project. 

The work concluded with the completion of the Ph.D. thesis in June 
1970 ("Building Data Management System"). 

VI. PROJECT TIP 

During the reporting period, several activities in the Technical Informa- 
tion Program (TIP) received support from Project MAC, including the 
following: 

1) Improvement of the TIP System's capability as an administra- 
tive information-handling facility; 

2) Devising means to enhance the formatting ability of the TIP 
retrieval subsystem; 

3) Creation of demonstration data bases. 

Details of work in all these areas are reported by TIP in the various 
reports issued by that Project. 

Thesis 

Fillat*, Andrew I., and Leslie A. Kraning, "Generalized Organization 
of Large Data Bases", Bachelor of Science and Master of Science, 
Department of Electrical Engineering;  also MAC TR-70, June 1970, 
AD 711-060. 

* Non-MAC author. 
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SIMPLE PROJECT 

From June 1969 until January 1970, the SIMPLE group continued the 
experimental implementation of the SIMPLE Simulation System on the 
IBM 1130 computer.   (Progress Report V describes the origin of the 
program.)  In the middle of January, however, we decided to terminate 
the effort to implement the system on the 1130.  It appeared at that 
time that the additional time and effort needed to complete that imple- 
mentation could be better spent beginning the implementation of SIMPLE 
on the Multics system now that the latter was available.  SIMPLE dif- 
fers from existing simulation languages in that it was designed for use 
on a system permitting both time-sharing and the operation of a 
graphical-display device. 

Since January, a preliminary SIMPLE system for Multics has been de- 
signed, and implementation is proceeding on schedule,  /s of August 
1970, a preliminary system will be operational.  This preliminary sys- 
tem consists of a translator which translates a SIMPLE program into 
a PL/1 program acceptable to the Multics PL/1 compiler.  We decided 
to write a translator rather than to try to modify the Multics PL/1 be- 
cause a translator could be written comparatively quickly and simply, 
and still provide the user with all the features of the SIMPLE language. 
Also, the PL/1 compiler is still being constantly changed and updated. 

Currently, we are testing and upgrading this preliminary translator. 
We plan to use the system during a Sloan School Summer Session 
Seminar on simulation techniques at the end of August.  The participants 
in the Seminar will use the SIMPLE language to construct, debug and 
execute simulation models.  Thus, the Seminar should provide a good 
"first test" of the new system. 

The SIMPLE language, as currently implemented, is described in the 
"SIMPLE User's Manual", an internal document almost completed which 
will be distributed to participants in the Sloan School Seminar and sub- 
sequently will be distributed more generally. 

Once this initial version of the SIMPLE system is thoroughly debugged, 
we plan to spend the Fall and Winter adding additional features to the 
system such as more statistical routines, more tracing and debugging 
facilities, better error diagnostics, and possibly a graphical-display 
language.  Also, we expect to complete the design and start the imple- 
mentation of an interpreter to replace the present translator. When 
this interpreter is available, all the design goals for incremented simu- 
lation will be satisfied. 
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INTRODUCTION 

The main theme of the research of the Programming Liuguistics/Ex- 
tensible Languages (PL/EL) Group continues to involve improving our 
understanding of the basic concepts in programming languages.  Our 
work centers about language formalization and language extension.  We 
continue the close relationship between teaching this material to under- 
graduates and developing fresh approaches to it. 

Motivation and Background 

The function of a programming language is to serve as a set of con- 
ventions for communicating algorithms — the communication being 
either between people and people or between people and machines. 
The efficiency of the communication process is clearly improved as 
the conventions are better understood.  This is just another way of 
saying that it is advantageous that the programming languages we use 
be accurately defined.  Conventionally, programming languages have 
been defined by English language descriptions, as written in manuals. 
The modern idea in this area is to formalize the definition, using some 
suitable notation.  The discovery of what sort of notation is "suitable" 
is a major unsolved research problem in this area, a problem that we 
have been attacking. 

The pay-offs for success include rather obvious ones such as enhancing 
the process of teaching new languages and providing standards by which 
to judge compiler performance.  However, there are other advantages. 
One application has to do with proof of correctness of algorithms.  A 
programmer producing a program which he claims to be a solution to 
a problem should do more than just show that it works on one or two 
selected data sets:   He should also be able to prove that the algorithm 
is in fact correct.  Even more, he should prove that his implementation 
of the algorithm is a correct one. Doing the latter requires that he 
make statements about the program he has written, and such statements 
can take on mathematical significance only if the language in which the 
algorithm is expresses has been formalized.  For example, as part of 
such a proof, one might make an assertion like:   "The effect of obeying 
this statement is thus-and-so".  Since such an assertion can be sup- 
ported only by appeal to the definition of the programming language, 
formalizing that definition is a prerequisite for making any formal 
proof. 

Anoihar pay-off from language formalization, one that up to now has 
received much attention in the PL/EL Group, concerns language exten- 
sion.  A user of an extensible language facility is provided with a base 
language and with tools so that he may build on to that base the fea- 
tures that he needs.  Communications from the user to the facility are 

I 
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of the form   "Please understand that when I say thus-and-so I mean 

fem^Ht8^'/!!'1'6 ^ USer,S aCtiVity iS s^^y^ to the system the 
semantics tha   he wants his proposed constructs to have, what he needs 
is a notation for expressing semantics.  Clearly, then, any progress 
made in the area of language formalization will have an obvious pay- 
off in an extension facility. 

The word "semantics" which we have been using is a word that means 
different things to different people.  Let us discuss it briefly.  The 
usual dichotomy in programming-language definition has to dc with 
|yn^x and semantics.  Roughly speaking, the former relates to the 
legal utterances in the language in question, and the latter to the ef- 
fect of such an utterance when the program of which it is a part iT 
executed.  We do not concern ourselves with what some refer to as 
pragmatics, which we term user interpretation, since it has to do with 
how the user understands these effects.   For example, the assignment 

x := x + 1 

might be a legal utterance (i.e., syntactically correct) in some language 
Its semantics involves something like determining the current value of 
he variable x   adding one to it (if the value is a number) and storing 

the result back into x.   The user interpretation might be, "Tally one 
more apple", or "Go to the next row", or "Step to the next case". 

This discussion should be kept in mind by the reader when we refer 
to   formalization of semantics", since it implies certain limitations on 
our current goals.  For example, suppose the expression 

A + P 

appears in a program.  If both A and P denote integers, our semantics 
definition scheme will without difficulty ascribe semantics to this 
phrase   But the user interpretation might be that A counts apples and 
P counts pears, and that such a sum is meaninglei"s.  While a language 
processor that assists the user by taking cognizance of such ideas te 
clearly of interest, our current research has not been in that direction. 

Long-Term Activities 

Two activities continue to occupy our attention on a long-term basis- 
teaching the undergraduate subject 6 231, "Programming Linguistics" 
and support of the languages PAL and BCPL.  Development of the 6 231 
material ^ the research of the PL/EL Group have long- gone hand-in- 
hand   In 6.231, the basic concepts in programming languages are taught 
largely by exhibiting a formalization of the semantics of PAL   a lan- 
guage that we have devised and whose sole purpose is to be taught 
Although PAL, by design, is susceptible to a straightforward formal 
definition, the creation and polishing of that definition have provided 
both insight into the problems and valuable suggestions for ways to 
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proceed.   PAL is implemented on several computers, the Multics imple- 
mentation being used currently by our students. 

BCPL has been an interest of the group since it was devised by Martin 
Richards when he was at Project MAC in 1967 and 1968.  The language 
was designed to be useful for compiler writing, and must be judged a 
success.  Since the PAL implementation is in BCPL, and since use of 
BCPL is fundamental to the LPS project of Prof. Graham, maintenance 
and improvement continue to be important to us. 

REPORT ON PROGRESS 

A major part of the effort of the group has gone into teaching and im- 
proving the subject "Programming Linguistics". We continue to derive 
a large pay-off from the feedback from the teaching activity.  The PAL 
formalization is much more complete than it has been in the past, and 
the documentation of it is almost entirely finished.  Currently, this 
documentation is in the form of notes to be used by students, and an 
important job for the next year is to produce a more concise docu- 
mentation of the formalization.  The entire formalization is rather long, 
and it is not clear what publishing route should be followed. 

Doctoral Research 

Robert H. Thomas has been concerned with one particular aspect of 
language extension;  he has been developing a model in terms of which 
the user of an extension facility can specify the semantics of his con- 
structs.  The model involves a conceptual mechanism whose character- 
istics are derived (although are rather different) from Landin's SECD 
machine which has so influenced the PAL development.  Many features 
that are built into the SECD machine are programmable in Thomas's 
machine, thus providing a very desirable form of generality.  For ex- 
ample, the binding of parameters in function application is under the 
control of the programmer rather than being built-in.  This promising 
research will lead to a better understanding of an underlying model for 
a language-extension facility. 

D. Austin Henderson, Jr. has been pursuing doctoral research on the 
problem of transduction of graphical input --a problem related to but 
not directly in the mainstream of the rest of the group.  The user of 
any computing facility, whether it be for engineering design, language 
extension, numerical analysis, or other purpose, must communicate to 
the facility what he has in mind.  Conventionally, such communication 
has involved linear strings of characters, as for example in the text 
of a program.  All available experience with graphical communication 
shows that there are problem areas for which linear text is inappro- 
priate, at least when there is an alternative. Important developments 
such as Sketchpad have been almost exclusively a matter of making 
available to the user the ability to submit structured graphical data to 
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a computer through a (usually interactive) graphics interface.  Most 
existing application programs in this area have used rather ad hoc 
methods for deducing from the graphical information what the user in- 
tended:   The developments of lexical and syntactic analysis (which have 
so strongly influenced the prOgramming-language game during the last 
few years) have received little attention in this area.  Henderson's re- 
search has been concerned with developing techniques for the analysis 
of scenes.  An analogy, which is not exact but which nonetheless may 
be useful, is the following:  Henderson's work is to the earlier ad hoc 
schemes as compiler techniques such as precedence analysis and LR(k) 
recognizers are to the crude schemes of the late 1950's.  This project 
has by now proceeded sufficiently far that useful results are anticipated. 

BCPL Development 

As mentioned earlier, the PL/EL group continues to be concerned with 
the BCPL language and its compilers on Multids and other machines. 
Both Prof. Evans and Robert F. Mabee have been active in a BCPL 
Users Group, consisting of people from different installations in the 
country who are interested in BCPL.  Wfe have had two meetings at 
Lincoln Laboratory at which various language topics have been dis- 
cussed. We have produced at Project,MAC a computerized version of 
the BCPL Reference Manual, and the Usjrs Group will consider re- 
vising this to reflect proposed language changes. Of course, no one 
can legislate these changes, but it seems likely that many of them will 
be implemented. 

Locally, Mabee has been concerned with rewriting the BCPL compiler 
on Multics.  All the programming done in the group is in BCPL, and 
much of it would be improved significantly by a better compiler.  We 
hope to make the compiler run faster, and also to produce better ob- 
ject code.  The design is almost complete and much of the coding is 
done.  The code has been partially debugged. 

As a separate activity, we have worked to make BCPL available out- 
side M.I.T.  The most exportable version of the language is that on the 
IBM 360, and we have proyided tapes of the compiler for some 16 in- 
stallations. We continue to regard a certain aipount of proselytizing 
as within our charter. 

i 

PAL Development ' ' 

The PAL implementation has been little improved during the past year. 
Any improvements in BCPL will, of course, make all PAL programs 
ruri fasier.  During this Summer, we hope to add some significant im- 
provements to the PAL run-time system.  This system is virtually 
identical to what was written three years ago on CTSS.  There is room 
for improvement. 
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Starting last Fall, we have worked with 80 to 100 students a semester 
on Multicä using PAL.   For this purpose, we have written a subsystem 
that runs under Multics and which permits our students to use only 
PAL and an editor, along with certain useful utilities.  Continual im- 
provements have been made in this operating system, and we expect 
to make more during the Summer. 

Research by Undergraduates 

A senior thesis has been written by Edward C. Horvath on "APL on 
Multics: Lexical and Syntactic Considerations". Horvath worked with 
some of the Multics design team who were concerned with APL, and 
he has documented certain aspects of the design produced. 

Development of code-optimization strategies for the BCPL compiler 
has been a senior thesis project of Paul Ledoux who expects to com- 
plete the work during this coming Summer. 

Several students associated with the PL/EL Group on a project basis 
have made contributions.  Judith L. Piggins has been concerned with 
improving the PAL programming which is part of the PAL formaliza- 
tion.   A major conceptual change was made in these programs, and she 
has been developing the new algorithms on the computer.  The work is 
substantially done and has already become a part of the course notes. 

Michael W. Dickens has continued to work on the PAL compiler and 
run-time system on Multics.  Dickens's work has been a matter of 
polishing the interface between the language and the operating system. 

Louis Reich and Alan Davidoff have been concerned with improving the 
PAL run-time system.  Most of their effort has gone into devising a 
proposal for an improved string-handling package.  One of the problems 
of improving the efficiency of any program is that it is frequently dif- 
ficult to measure exactly how much improvement has resulted.  Since 
there is a PAL implementation on the TX-2 computer at Lincoln Labo- 
ratory, and since the TX-2 has sophisticated hardware and software 
tools for measuring the performance of existing programs, we took 
advantage of the opportunity to make some changes to TX-2,s PAL and 
to examine the improvement.   The results were gratifying, and have 
shown where to change the Multics implementation.  Hopefully, the two 
students will be available next Fall to continue this work.  (If not, an 
attempt Ayill be made to find other students to do this.)  We hope'that 
measuring tools on Multics will soon become adequate to do such work 
here, but, if not, we shall continue to make use of the facilities at 
Lincoln Laboratory. 

John Nestor last Fall worked on improvements in the BCPL library; 
he produced a general clean-up of a previously rather chaotic situa- 
tion, and supplied documentation of the results. 

' 
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Bruce Hubbard has made significant contributions to the machine- 
language library for BCPL.  During this coming Summer, he expects 
to write those parts of the library for the new BCPL that must be 
coded in machine language. 

Publication 1969-1970 

Horvath, E. C, APL on Multics: Lexical and Syntactic Considerations, 
B.S. Thesis, Dept. of Electrical Engineering, June 1970. 
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INTRODUCTION 

The focus of all research and teaching activities of the group is pro- 
gramming languages.  The research has ranged through theoretical 
models of programming languages, implementation of compilers, to 
implementation of operating systems supporting these languages.  The 
theoretical work has been aimed at formalizing the relationship of 
canonic systems to other formal grammars, using canonic systems as 
a basis for a generalized compiler and for the development of quanti- 
tative measures for programming languages. 

The theoretical work uses a formal system called canonic systems 
that was partially developed and enhanced here at M.I.T.  A canonic 
system is a simultaneous recursive definition of several sets of strings 
over a finite alphabet.  Canonic systems have been used to completely 
specify a programming language and its translation (as reported in 
1969 Progress Report, the work of Ledgard).   They include many of 
the so-called "context sensitive" features of a programming language. 
A canonic system's specification and its translation of a language has 
been used to derive a generalized translator (as reported in 1969 
Progress Report, the work of Alsop).  Complexity measures for canonic 
system specifications have been studied. 

RESEARCH ACTIVITIES 

Relation of Canonic Systems to Other Formal Systems 

We have proven a number of theorems relating canonic systems to 
Post systems, Smullyan's elementary formal systems, and Chomsky's 
hierarchies of grammars, the major theorem being that the class of 
type i grammars is strongly equivalent to the class of type i canonic 
systems,   i equals 0,1,2,3.   The class of linear, one-sided linear, meta- 
linear, sequential, etc., grammars are strongly equivalent, respectively, 
to the classes of linear, one-sided linear, meta-linear, sequential, etc., 
canonic systems.  The practical motivation for proving such a theorem 
is to assure that a generalized compiler using a canonic system as a 
data base must halt.  Therefore, we must limit the power of a canonic 
system only to describe decideable sets.  In classical linguistics theory, 
it is known which grammars describe decideable sets and which do not. 
Therefore, we are motivated to find some of the classes of canonic sys- 
tems that describe decideable sets and use this restriction on canonic 
systems as input to our generalized compilers. 

Power of Canonic Systems 

Canonic systems, which were first defined to meet the definitional needs 
of programming languages, were felt to be too powerful since they 
could generate nonrecursive sets.  It is felt that a restriction should 
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be placed on canonic systems to render them unable to specify non- 
recursive sets yet powerful enough to specify computer programming 
languages.  The search for such a restriction is the motivation for the 
theorems reported above relating canonic systems to existing formal 
grammars.  Yet we must find where programming languages are in the 
hierarchies.  We have proven that the set of legal programs of PL/1 
is nonrecursive.   Thus to specify PL/1 we do need the full power of 
canonic systems. 

Measures of Complexity 

We  have  developed  several simple  measures  of complexity using 
canonic systems that are proportional to the resources (e.g., accesses 
to memory, computer time) used by computers in translating languages 
specified by canonic systems.  One of these measures has turned out 
to be proportional to the time of translating a program using a general- 
ized translator that has been implemented on CTSS (reported in 1968 
Progress Report, done by Alsop). 

Using a canonic system C, which describes a set of strings, it is pos- 
sible to generate a system Cn, called a proof measure function, that 
has two arguments, the canonic system C and a string T that can be 
generated by that canonic system.  We have defined these proof measure 
functions so that they are proportional to the length of the derivation 
of a string T within C or proportional to the number of predicates 
used in evaluating and producing tto string T in the caninic system C. 
Both of these are an indication of the complexity of the number of re- 
sources a computer may use in generating these strings.   For certain 
classes of canonic systems, algebraic bounds upon these functions can 
be derived from the structure of the system.  A practical computer 
programmer is not interested in how long or how many resources it 
takes to generate a string.  He is interested in how long it takes to 
translate a string.  We have produced another transformation on C that 
produces a system C-1 that characterizes the recognition of strings 
generated by C.  We have proven theorems relating the major functions 
of C and of C"1, thus relating the complexity of the recognition pro- 
cedure to that of the language description. 

Canonic System Translator 

We have implemented a program on Multics that accepts canonic sys- 
tem descriptions of a language and produces Floyd's reductions.  We 
were motivated to write this program because a method of producing 
a computer is to have the syntax phase of a compiler driven by reduc- 
tions, and a common form of these reductions is Floyd reductions. 
Honeywell Corporation has extended this work to produce an entire 
compiler generating system. 

I 
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Programming System Environment 

As the distinction between the compiler, the operating system, and the 
source code becomes less and less distinct in modern computer sys- 
tems, we find investigations in programming languages becoming more 
involved with operating systems.   For example, storage assignment and 
allocation of resources are all handled by the operating system, yet 
the compiler and the compiler object code must interface with the 
operating system and the file system in which it finds itself.  There- 
fore, we have within our group devoted some research to the area of 
file systems, since we feel this is the heart of an operating system. 
We have developed a systematic approach for the design and study of 
file systems.  This work is analogous of Dijkstra's development of a 
systematic approach for the design of an operating system.   He de- 
veloped a way of looking at an operating system in a modular approach. 
Our work on file systems has been to develop a modular approach to 
the design and study of file systems.  This work was conducted by 
Stuart Madnick.  In his work he has developed seven modules, each of 
which is independent of the others except through well-defined calls. 

Publications  1969-1970 

Dancy, Charles, A Cobol Compiler for the IBM 1130, S.M. Thesis, 
Dept. of Electrical Engineering, January 1970. 

Johnson, Jerry, File System to Support Time Sharing in a Multi- 
programming Environment, M.S. Thesis, Dept. of Electrical Engineer- 
ing, June 1970. 

Mandl, Robert, Further Results on Hierarchies of Canonic Systems, 
M.S. Thesis, Dept. of Electrical Engineering, September 1969. 

Ramchandani, Chander, Debugging System to Run Interpretively in 
Virtual Memory, S.M. Thesis, Dept. of Electrical Engineering, 
January 1970. 
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Research in the Automata Theory Group has been fairly eclectic this 
year, reflecting diverse interests of new members of the group.  Al- 
though certain familiar themes in the theory of computation remain 
evident in this work — e.g., the interrelations between the structure 
and behavior of abstractly characterized computing devices — we shall 
not attempt to synthesize further common themes in the assortment of 
theoretical problems now under study. Instead we summarize briefly 
below the main results obtained by members of the group during the 
period covered by this report. 

Abstract Complexity Theory 

Abstract complexity theory is concerned with the consequences of 
classifying computations by the amount of computing resources, such 
as time or space, required for their execution.  The results are ab- 
stract in that the computing resource requirements of particular in- 
teresting computations (for example, computing the product of two 
numbers) are not considered. Clearly, the ultimate justification of the 
theory must come from the insight it helps provide about real computa- 
tions;  but we cannot expect to fully understand the particular behavior 
of a problem like integer multiplication until we have some notion ot 
the behavior of computations in general. One would like to discover 
the most efficient method for multiplying integers.  Abstract complexity 
theory, specifically the Speed-up Theorem of Blum, points out that 
there cannot be anv most efficient method for computing certain func- 
tions.  Thus the apparently practical problem of optimizing multiplica- 
tion algorithms may be impossible to solve because there is no optimal 
solution.  Abstract complexity theory at least enables us to recognize 
this possibility. 

A monograph summarizing the development of abstract complexity 
theory in the past decade is now being prepared by Prof. Meyer.  As 
an illustration of the nature of this area, we shall discuss a theorem 
due to Meyer, jointly with Prof. M. J. Fischer, which was presented 
at the Logic Symposium of the University of Manchester, August 1969. 

Consider programs for deciding predicates on the integers.  A program 
decides a predicate P if, started with any integer x as input, the pro- 
gram eventually prints out the truth value of P(x) and halts.  The com- 
plexity of P is measured by the amount of time or memory space 
which programs deciding P require. It is intuitively clear that predi- 
cates may be very complex, and moreover they may be complex for 
different reasons.  The latter concept is frustrating mathematically, 
because no one has yet characterized what might be the -reasons" why 
a predicate is computationally complex.  (Proofs that predicates are 
complex are invariably diagonal arguments of recursive function theory, 
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with the result that predicates are known to be complex only because 
they differ from all predicates that are not complex.   This is not a 
very satisfactory "reason" for their complexity.) 

Suppose that one has two predicates P,, P2 which are complex. Sup- 
pose further that even if one had the ability to look up truth values of 
P,  in a table, or equivalently if one could evaluate the truth value of 
P, (x) in one step for each integer x, it remained just as hard to de- 
cide P2 as it was without the table.  This state of affairs could be 
interpreted as meaning that P2  was complex for different reasons 
than Pj . 

Definition.  Let P]  be a predicate on the integers which can be 
decided by some program.   Let P2  be another predicate such that for 
any program which decides P   and which has the ability to evaluate 
P2(x) in one step for each integer x, there is another program deciding 
P, which runs just as fast on all inputs and does not have the ability 
to evaluate P2.  Then P2  is said not to help P,. 

Theorem.  For any computable function t(x), there exist predi- 
cates ^ , P2  which can be decided by programs such that 

1) any program deciding ^   (or P2) requires t(x) steps for 
its computation on input x for all sufficiently large integers 
x, and 

2) Pj  and P2  do not help each other. 

Active research in this area is now directed at two issues:  the struc- 
ture imposed on computable functions by a complexity classification, 
and the relation between size of programs and complexity. 

Random and Pseudo-Random Sequences 

The statement that a particular infinite binary sequence a = CL, 0., . . . 
is "random" is meaningless from the point of view of classical proba- 
bility theory.  An effort to formalize the idea of a particular sequence's 
being random dates back half a century to Von Mis es, and new ap- 
proaches have recently been proposed by Kolmogorov and Martin-Lof. 
These three notions of randomness are described informally below. 

A particular infinite sequence is random in Von Mises's sense if it is 
unpredictable.  If one were gambling, using tosses of a fair coin, for 
example, and the sequence described the outcomes of successive tosses, 
then predictions of portions of the sequence not yet observed should 
be wrong half the time.   Formally, a prediction method is a computer 
program which, given the first n digits of a sequence, will print out a 
prediction of the n + lst digit.  A sequence is Von Mises random if for 
any computer program the fraction of the number of correct guesses 
among the first n guesses goes to the limit 1/2. 
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Martin-Lof's definition can be motivated by a bit of word play.  Con- 
sider some property satisfied by almost all real numbers (a property 
of measure one).  If one selects a real number from the unit interval 
at random, it will, with probability one, have the property.  Hence a 
random real number should satisfy any property of measure one.  This 
tentative definition turns out to be absurd because no number has all 
properties of measure one;   but Martin-Lof shows that, if one restricts 
attention to measure one properties which are constructive in a suit- 
able sense, then random real numbers exist.   Random real numbers 
can be equated with their binary expansions to obtain random binary 
sequences. 

The third definition due to Kolmogorov is based on the idea that a 
random sequence is one without a recurring pattern.  The simplest pre- 
cise description of a patternless sequence is simply a copy of the 
sequence.  Thus a finite binary sequence is called random if the small- 
est program that prints out the sequence has essentially just as many 
bits as the sequence itself.  An infinite sequence is Kolmogorov random 
if its finite prefixes are random. 

Gerard Bruere-Dawson has investigated the relations among these 
definitions.  He has proven that Von Mises's definition yields a strictly 
larger class of random sequences than does Martin-Lof's definition. 
Also, Martin-Lof's class of random sequences is at least as large as 
Kolmogorov's, but whether it is strictly larger is still an open question. 

The natural goal of this work is to provide a theoretical framework 
for dealing with random number generators in computing.  Any program 
that serves as a random number generator yields a nonrandom sequence 
by the definitions above, precisely because the sequence is generated 
by a program.  However one can specialize the definitions of Von Mises, 
Martin-Lof and Kolmogorov so that mention of programs in these 
definitions is replaced by mention of fast or storage-efficient programs. 
Bruere-Dawson shows that there are computable sequences whose xth 

digit can be generated in t(x) steps but which are Von Mises random 
with respect to all programs that run in time a little less than t, for 
all recursive functions t.  This result is a small step in the direction 
of developing methods for constructing pseudo-random number genera- 
tors which are known a priori to satisfy all computationally simple 
statistical tests for randomness. 

Perceptrons 

Two variant models of perceptrons have been considered by Bostjan 
Vilfan.  As defined by Minsky and Papert, perceptrons represent one 
example of a device in which computations on "local" versus "global" 
information can be informally distinguished.  Since connectedness is a 
paradigmatic global property, it should be the case that other percep- 
tron-like models in which global calculations are restricted share the 
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inability of Minsky-Papert perceptrons to recognize connectivity.  This 
result was verified, but required proofs that are quite different from 
those of Minsky and Papert. 

Integer Programming 

A system S of linear inequalities describes a convex polyhedron P in 
n-dimensional space. Embedded in P is another convex polyhedron P' 
which is the convex hull of the set of integer points contained in P. 
The relationship between the system S and the polyhedron Pf is im- 
portani to the solution of many combinatorial optimization problems. 
Murray Edelberg has investigated the following problem:   Given S, find 
a system Sr of linear inequalities which describes the integer polyhedron 
P' directly.  He has developed a method for transforming S into S' for 
systems S of two-variable inequalities.  Essentially, this method "rounds 
cornerstt of the polygon P by means of an integer division process 
based on a generalization of the familiar division theorem for integers. 
The properties of higher-dimensional integer polyhedra have also been 
studied, and the conditions under which a system S' describes an inte- 
ger polyhedron P' have been determined. 

Algorithms on Graphs 

Professors Meyer and Fischer observed that Strassen's fast matrix 
multiplication algorithm can be applied to find the transitive closure 
of an n-node directed graph in 0(n2-9) steps, a considerable improve- 
ment over the best previously known algorithms which required 0(n3) 
steps.  The graph theoretic interpretation of Strassen's method is now 
being studied in the hope that still better algorithms can be discovered. 

Complexity of Boolean Functions 

Circuit diagrams and functional expressions are reasonably natural 
formalisms with which to describe Boolean functions.  The complexity 
of a Boolean function is reflected by the size of a minimal Boolean 
expression for it, and the number of gates in, or the depth of, an op- 
timal circuit for it.  Asymptotic arguments imply that the majority of 
Boolean functions of n variables have size exponential in n, but thus 
far no particular function has been proved to have size exceeding n2. 

A summary of the few published arguments which enable one to ac- 
curately estimate these parameters for certain functions is now being 
prepared by Bostjan Vilfan.  A class of functions whose size is con- 
jectured to exceed any polynomial is being studied. 

Algebraic Coding Theory 

Work on algebraic coding theory was continued this year by Boon Ong 
and Gregory Ruth, under the supervision of Prof. C. L. Liu.   This work 
is directed toward understanding the algebraic structure of certain 
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classes of codes and the construction of efficient error detection and 
correction codes. , , 

Boon Ong devised a new scheme for constructihg certain liriear and 
nonlinear codes.  The basic idea is to concatenate words from two 
given codes to yield a longer code with certain distance properties. 
This scheme has been used to construct a large claäs of linear codes, 
including the Hamming codes and the Golay (23,12) code, and a large 
class of nonlinear codes, including the Nordstrom-Jlobinson (15,8) op- 
timal code and Preparata's (2n - 1, 2n - 2n) optimal codes (n even). 
It is believed that this approach will not only aid in understanding the 
structure and properties of many known codes, but also lead to the 
discovery of new and useful codes. ' 

Regular Languages 

Ip their study of the counter-free languages, a subfamily of the regular 
languages, McNaughton and Papert introduce a binary operator "box" 
which preserves regularity and the counter-free property.  They raised 
the question whether "box" was independent of the other familiar lan- 
guage operators of concatenation, union, complementation and star. 
The question was settled affirmatively by Fischer;, Meyer, O'Neil and 
Paterson in a note which appeared in SICACT News (Dec. 1969).  A 
stronger version of this result pertaining to language derivatives was 
subsequently obtained by Meyer and S. Ahy. ' 

Probabilistic Automata 

A synchronizing sequence for a probabilistic automaton A is a sequence 
that is guaranteed to leave A in a particular final state probability 
distribution, regardless of the initial state probability distribution. The 
automaton A is said to be synchronizable of order m if It Sas a syn- 
chronizing sequence of length m but no synchronizing sequence of 
length less than m. Denis Kfoury has shown that for each integer 
n > 3 and each positive integer m, there exists at least one n-state, 
probabilistic automaton that is synchronizable of order m.  liowever, 
for n > 4, Kfoury shows the problem of determining whether an arbi- 
trary n-state probabilistic automaton is synchronizable to be recursive- 
lv undecidable. 

Publications   1969-1970 

1. Bruere-Dawson, Gerard.  "Pseudo-Random Sequences", M.S. Thesis, 
M.I.T., Dept. of Electrical Engineering, June 1970. 

2. Edelberg, Murray.   "Integral Convex Polyhedrä and an Approach to 
Integralization", Sc.D. Thesis, M.I.T., Dept. of Electrical Engineer- 
ing, August 1970. 
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3. Fischer, M., Meyer, A., O'Neil, P. and Paterson, M., "A Note on 
Independence of a Regularity-Preserving Operator", SICACT NEWS 
Assoc. for Comp. Machinery, January 1970. ' 

4. Kfoury, Denis. "Synchronizing Sequences for Probabilistic Automata" 
Studies in Applied Math. XLK, No. 1, March 1970. 
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appear. Proceedings of the Logic Conference, Univ. of Manchester" 
August 1969. * 

6. Ong, Boon.  "A New Construction Scheme for Linear and Non-Linear 
Codes ,,M.S. Thesis, M.I.T., Dept. of Electrical Engineering, June 
iy (u. 

7. Vilfan, Bostjan.   "A Note on Cyclic Perceptions", Proc. of the Fourth 
Annual Prmceton Symposium on Information Sciences and Svstems 
October 1969. / » 

References 

1. Blum, Mi, A Machine-Independent Theory of the Complexity of Re- 
cursive Functions, Journ. Assoc. Comn. Marh^ 14, 322-336 (1967). 

2. Kolmogorov, A., Three Approaches to the Quantitative Definition of 
Information, Int. Journ. of Comp. Math , g, 157-168 (1968). 

3'  ^.o11^0^ P'  The Definition of Random Sequences, Inf. and Cont 
9, 602-^619 (1969). — nu* 

4. Minsky   M. and Papert, S., Perceptrons, M.I.T. Press, Cambridge 
Mass., (1969). &'* 

5. McNaughton, R. and Papert, S., Counter-Free Automata. M.I T 
Press, to appear, 1971. " 

6'  f*?SlT',V'' Gaussian Elimination is Not Optimal, Num. Math.. 13. 
354-356 (1969). — 

7.  Von Mises, R., Probability, Statistics, and Truth (trans, from 
German), Macmillan, New York, 1957. I 

96 

[■ 



i- 

MATHLAB 

Prof. W. A. Martin 
Prof. J. Moses 

R. J. Fateman 
S. Feldman 
J. P. Golden 
D. C. Hill 
P. Loewe 
S. Saunders 

R. C. Schroeppel 
P. S-H. Wang 
T. Williams 
L. Wilson 
K. Young 

I 

I 

97 



: :'■ 

MATHLAB 

During the past year, we implemented a new algebraic manipulation 
system.  This system, called MACSYMA, represents the culmination of 
seven years of research on algebraic manipulation in Project MAC and 
the Artificial Intelligence Group.  This effort included the doctoral the- 
sis research of Professors Martin and Moses, and the implementation 
of parts of Carl Engelman's MATHLAB system.  MACSYMA incorporates 
some of the best algorithms and design features of the earlier systems 
along with ideas obtained from systems built outside MAC.  The current 
version of the new system is probably the most general of all existing 
algebraic manipulators. With the extensions that are planned or are 
already under development, the system should perform as well as or 
better than other systems in most situations.  The system is running 
on the AI Group's PDP-10.  It is written entirely in LISP.  The system 
currently occupies about 60,000 words, of which 27,000 represent com- 
piled LISP programs. 

The capabilities of MACSYMA are best understood via examples. What 
follows is a session with an imaginary user. 

(Cl)    sin(2*x) + 3*sin(x)/(cos(x) + 1) + (x + 1)**2@ 
/  -x      . /«    v        3sin(x) /        ^2 (Dl)    Sin(2 x) + -3-^4-! + (x + 1) 

Each request typed by the user is given a line label (in this case Cl). 
The system's responses are also labeled.  One inputs algebraic expres- 
sions in a FORTRAN-like notation.  Algebraic expressions are displayed 
in a two-dimensional notation which approximates the notation found in 
mathematical textbooks.  An @ signifies the end of a request and indi- 
cates that the result is to be displayed. 

(C2)    INTEGRATE U,x)@ 

A % always represents the previous expression which, in this case, 
is Dl. 

i 3 

(D2)    -^cos(2x) - 31og(cos(x) + 1) + y(x + 1) 

Simple integrals such as the one above are obtained by the current 
version. It is to be expected that the extensive integration facilities 
of Refs. 1 and 2 will be available in the system in the coming year. 

DPART(D1,2,2)@ 
3 sin(x) 

(C3) 

(D3)    sin(2x) + 
cos(x) + 1 

+ (x + 1) 

One may refer to previous expressions by name (e.g., Dl in line C3). 
For this purpose, old inputs and results are stored on disk files.  At 
the end of a session, the expressions may be retrieved, edited, and 
stored away for future use. 
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DP ART helps one in editing two-dimensional expressions.  The argu- 
ments of DPART locate a subexpression by specifying in which terms, 
factors, or arguments of functions it is located.  Thus cos(x) + 1 is 
the second argument (i.e., denominator) of the second term in the ex- 
pression.  The indicated subexpression is highlighted by enclosing it 
in a box as shown.  One can now use this subexpression or replace it 
by some other expression. 

(C4) A = B@ 
(D4) A = B 
(C5) % = C@ 
(D5) A = B = C 
(C6) | - 1@ 
(D6) A - 1 = B - 1 = C - 1 
(C7) EXPAND(2*|)@ 
(D7) 2A-2 = 2B-2 = 2C-2 

EXPAND causes each term of the sums to be multiplied by 2. 

In addition to handling equations, MACSYMA has facilities for manipu- 
lating summations, derivatives, integrals and factorials. 

(C8)    DERIVATIVE(X,1,Y,2,F(X -. H,Y + K)) + SUM(I,0,N,I!) 
+ INTEGRAL(X,A,B,G(X))@ 

Ji-       ? 
(D8)      -""2 (F(X + H,Y + K)) +   Z_^I!  +    I    G(X)DX 

DXDY 1=0 JA 

The display program makes use of the limited character set of a GE 
Datanet to generate summation and integral signs. 

A facility exists that allows one to define new functions. The language 
is close to ALGOL (actually it is closer to MLISP). For example, the 
factorial function can be defined as follows: 

(C9)    FAC(I): = IF I = 0 THEN 1 ELSE I*FAC(I - 1)$ 

A $ inhibits the display of the result which is essentially a rehash of 
the definition. 

(CIO)    FAC(5)@ 
(D10) 120 

The system also has the capability of manipulating variable-length 
arrays.  Arrays need not have their dimensions declared and may have 
their entries defined by some function.  Only entries that are needed 
in computation will be evaluated by the function.  To define an array 
A1 with entries 

I 

( 

XI!, we can use the following definition: 

(Cll)    A[I]: = IF I = 0 THEN X ELSE A[I - 1]**I$ 
Brackets denote arrays. 
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: 

(C12)    A[2]: X**3@ 
(D12) X3 

A : signifies assignment.  One can assign values to array ele- 
ments, thus overriding the general definition. 

(C13)    A[3]@ 
(D13) X9 

Another useful facility in the system is polynomial factorization. 

(C14)    FACTOR(X**6 - 1)@ 
(D14)    (X + 1)(X - 1)(X2 + X + 1)(X2 - X + 1) 

A powerful simplification algorithm which performs a cancellation of 
common factors in quotients is embodied in RATSIMP. 

(C15)    (X**2 + X - 6)/(X**3 + 6*X**2 + 9*X)@ 

(D15) X    + X - 6 

X3 + 6X2 + 9X 

(C16)    RATSIMP(I)@ 

(D16) 
X_-_2_ 

'.2 
X    + 3X 

A powerful substitution mechanism is available in MACSYMA.  It can 
be used to simplify expressions containing sinet; and cosines, for ex- 
ample.  Let s stand for sinjfx), and c for cos(x), Uien by substituting 
1 for s2 + c2 in s4 + 2s2c   + c4 we get 1, and by substituting 1 for 
s2 + c2 in (s3 - s)/c2 we get -s. 

A substitution for anything but a literal is inherently ambiguous.  Sup- 
pose we wanted to substitute c for xy2 in x2y3, then reasonable answers 
are:   cxy, c2/y, and x2y3.  By varying the calls to the substitution func- 
tion, we can get all three of these responses. 

MACSYMA has an extra-hairy simplifier in addition to the normal sim- 
plifier and RATSIMP, called RADCAN (RADical CANonical).  RADCAN 
knows a great deal about exponentials, logarithms and algebraic ex- 
pressions.   For example, RADCAN will simplify 

log(e2x + 2ex + 1) - 21og(ex + 1) 

to 0, and it will also recognize that 

(2I/3 + 4I/3)3 - 6(2I/3 + 4,/3) -6 = 0 

RADCAN does not yet recognize 

X      TT — I 
log tan(— +-T) - sinh"   tanx = 0 

but we are working on that defect. 

I 
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Extensive facilities exist in MACSYMA for letting a user define patterns 
and add new simplification rules to the system.   For example, we can 
inform the system that cos(O) should become 1, and that cos(n7r) should 
be transformed to (-l)n, when n is a non-zero integer.  Given such 
rules cos(57r) simplifies to -1, and cos(67r) to +1. 

Our final example is the solution of a classical problem in algebraic 
manipulation, the so-called F & G series problem of dynamical astrono- 
my.  The series F: and Gj are given by the relations: 

Fi = -MGi+ £*i- dt   ' -1 

Gj = Fj.^ -Gi., 

where F0 = 1, G0 = 0, and^/x= -3/JLO; ^CT= € - 2a2, ^€ = -cr(^+ 2c) 

The results are polynomials in€,fJL,(T. 

The representation of the problem of finding Fj and Gj is fairly natural 
in MACSYMA. 

(C17)    DERIVATIVE(T,1,EPS):  -SIG*(MU + 2*EPS)$ 
(C18)    DERIVATIVE(T,1,MU):  -3*MU*SIG$ 
(C19)    DERIVATIVE(T,1,SIG): EPS - 2*SIG**2$ 
(C20)    F[0]:   1$ 

The Fj and Gj will be placed on an array 

(C21)    G[0]:   0$ 
(C22)    FANDG(N): = FOR I: 1 STEP 1 UNTIL N DO 

(F[I]: EXPAND(-MU*G[I-1] + DIFF(T,1,F[I-1])), 
G[I] : EXPAND(F[I-1] + DIFF(T,1,G[I-1])))$ 

The ALGOL FOR statement is part of the language as well as are the 
IF . . . THEN . . . ELSE construction, GO's and RETURN'S.  Parentheses 
define a block.  Statements in a block are separated by commas.  Local 
variables in a block are identified by a DUMMY statement. Variables 
in FOR statements are automatically made local. 

(C23)    F[5J9 
(D23)    105 MU SIG    - 45 EPS MU SIG - 15 MU    SIG 

The above is just a sampling of the facilities of the current system. 
The system is partitioned into major sections.  The diagram below 
indicates the sections that currently exist.  The sections in brackets 
are under development. 
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The Project MAC Progress Report V (July 1967-July 1968, p. 98 
et seq.) describes the language at the heart of the TEACH system, 
whiTh then was called PL/2 but which since has been designated UNCL 
(UNcommonly Clean Language): 

"It is an interactive language that somewhat resembles JOSS 
and other JOSS-like languages in     veral major respects:   for 
example, the presence of block structure, a context editor, ana 
a function-tracing feature". 

The year ending June 1970 was spent in system design of the UNCL 
interpreter for Multics.  A result of this effort was design of a novel 
list-processing system allowing multiple ctU-types. No other separable 

results could be seen. 
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DYNAMIC  MODELING, COMPUTER  GRAPHICS 
AND COMPUTER  NETWORKS 

I.   INTRODUCTION 

During the year, three new research groups were formed in Project 
MAC:   Dynamic Modeling, Computer Graphics, and Computer Networks. 
The first two and about half of the third are strongly interrelated, and 
their work is reported upon in this one section.   The other part of the 
work in computer networks, also interrelated but mainly involving 
members of the Computer System Research Group, is reported upon 
in that group's section. 

The aim of the Dynamic Modeling Group is to develop methods, tech- 
niques, and a hardware-software system that will facilitate the formu- 
lation, representation and exploration of complex ideas and processes 
in the form of interactive computer-program models.  The term "dy- 
namic" connotes time-varying force and thus motion of or within the 
model;   and one of the aspirations of the Dynamic Modeling Group is 
to adapt, extend and exploit the great capability of computer graphics 
to present complex interrelations in a comprehensible way.  Another of 
the group's aspirations is to assemble a computer-based modeling sys- 
tem that will make available to the modeler a more extensive collection 
of resources than the group could itself possibly create.  The inter- 
relations with the Computer Graphics and Computer Networks Groups 
are therefore essential to the effort in modeling. 

The aim of the Computer Graphics Group is to advance computer 
graphics as a medium of man-computer interaction and to improve the 
contribution of computer graphics to "machine-aided cognition". With- 
in that general field, the group is concentrating mainly on software 
tools and techniques that will farUitate communication   nd understand- 
ing of complex ideas and rolationships. 

The aim of the Computer Networks Group is twofold:   (1) to participate 
with groups in other laboratories in pioneering the first nationwide 
network of general-purpose time-shared computers and (2) to explore 
and develop uses of the network that will facilitate resource-sharing 
and teamwork among geographically distributed people and computers. 
The group has undertaken to connect the Multics GE-645 computer sys- 
tem and the Dynamic Modeling/Computer Graphics PDP-10 computer 
system into the ARPA Network --a network, sponsored by the Ad- 
vanced Research Projects Agency, that is planned to embrace 15 or 
more time-shared computers within the next two years.  The group is 
especially interested in uses of the network that will involve the opera- 
tion of computer programs with subprograms in two or more computers 
and interaction with remote -- and in some instances even widely dis- 
tributed -- sets of data. 

Ill Preceding page blank 
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II.   THE DYNAMIC MODELING/COMPUTER GRAPHICS 
COMPUTER SYSTEM 

Most of the effort of the three groups has been, and during the next 
two years will continue to be, devoted to the development of a com- 
puter system and its incorporation into the network.  The development 
is essentially the experimental and iterative specification, implementa- 
tion and testing of a philosophy of interaktive computing that emphasizes 
three things:   graphical display^and-control, software coherence, and the 
sharing of resources.  In the next few paragraphs, tlie philosophy will 
be briefly set forth. 

We want to create a computer system that will significantly facilitate 
and augment the efforts of users engaged in the kinds of intellectual 
activity that'involve formulating, clarifying, exploring, testing and re- 
vising ideas.  The concept of modeling that is basic to the group's 
philosophy involves (1) creating in the memory of the computer a 
model that represents the idea by specifying all its parts and all their 
interrelations;   (2) executing the model and thereby revealing, through 
graphic. display, the behavior implicit in its specification;   (3) observing 
the behavior and comparing it with expectations, either intuitive or 
based on quantitative data;  and (4) revising the representation in the 
memory of the computer, executing the revised model, and so on. 

in.   PLANS FOR RESEARCH IN MODELING, GRAPHICS, 
AND NETWORKS 

For two reasons, the report of research in the three areas will be 
mainly a report of plans.  The first reason is that, because the groups 
are new, their main effort has been planning.  The second is that we 
want others to understand what we aspire to create and do. 

The plans have been influenced greatly by the fact that, in order to 
conduct research in man-computer interaction — in any of the three 
areas --one must have, or be involved in creating, a computer sys- 
tem that will support the computer end of the interaction.  In the 
present case, that means a rapidly and powerfully responsive local 
computer system — an interactive time-shared system — connected 
into a network of interactive time-shared systems. We need a com- 
puter system similar to that of the M.I.T.  Artificial Intelligence labo- 
ratory or to that of Douglas Englebart's "On-Line System" group at 
the Stanford Research Institute, but with stronger emphasis on kine- 
matic graphic display, and we need to, incorporate the system into the 
ARPA Network. , 

Basic Schema , 

The plans call, therefore, for a protracted effort in system-building. 
The building will by no means be merely the implementation of an 
existing design.  It will proceed, of course, within the guidelines of a 
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general schema, but it will involve the continuing, iterative interplay 
of design, experimental implementation, testing, evaluation and modifica- 
tion.   Thus, in style, the research of the three groups will probably be 
more closely ^kin to that of the Computer System Research Group than, 
iot example, to that of the Theory of Automata Group.  It will seek 
understanding through the interaction of physical synthesis and experi- 
mental analysis much more, especially during the system-building 
period of about three years, than through theorem-oriented theoretical 

work. 

The general schema that is guiding the work embodies the following 
features: 

1) Vigorous development and exploitation of graphical interaction. 

2) Heavy reliance upon "core residency" of procedures and data 
sets to permit fast interaction and kinematic graphical display. 

3) Deferral of linking and binding operations (linking among 
procedures and binding of procedures to data) until late in the 
over-all process -- usually until the time of initial execution. 

4) Use of a greatly extended (and further extensible) "run-time 
package" -- a library of procedures and data sets that can be 
retrieved and linked or bound into the currently operating pro- 
gram or model during its testing or execution. 

5) Mastery of a considerable diversity of data types and em- 
phasis on type-checking and (when necessary) automatic type 
transformation and reformatting. 

6) Integration of the processes of formulation, programming, 
testing, debugging, program modification, and data-base updating 
insofar as possible into one coherent activity. 

7) Integration of the main programming language and the inter- 
action, languages of the system insofar as possible into one 
coherent language. 

8) Heavy reliance (tempered somewhat by realism) upon using 
already programmed and available procedures in the (remote, 
network) computers in which they operate. 

9) On-line aids to users, including much on-line documentation 
and a descriptor-based retrieval system to facilitate the users' 
learning to operate the system and their finding and application 
of procedures, models, and data. 

10) Significant augmentation of the capabilities of serious, long- 
term users at the expense, if and as necessary, of facilitation 
of the work of casual, one-time or sporadic users. 
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Hardware System 

The physical computer system on the basis of which we hope to realize 
an approximation to the schema outlined is shown diagrammatically in 
Fig. 1.  The foundation of the planned system consists of a Digital 
Equipment Corporation (DEC) PDP-10 (KA10) main processor and an 
Evans and Sutherland (E&S) LDS-1 display subsystem, 256K words of 
36-bit memory (most of it of 1.6 to 2.0-microsecond cycle time), and 
three DEC disk-pack drives capable of storing 15 million words.   There 
are two sets of consoles:  four major consoles, each with a display 
driven by the E&S subsystem, a stylus and tablet (ST), and a Computer 
Displays (now Adage) Advanced Remote Display Station (ARDS), and 
four or more programming consoles, each consisting of an Imlac PDS-1, 
which is a minicomputer plus display and keyboard.  The system in- 
cludes, also, eight microtape units, an operator's Teletype, paper-tape 
reader and punch, a line printer, and an interface to the Interface 
Message Processor (IMP) that connects M.I.T. computers into the 
ARPA Network.   The system may be able to use the network connection 
to Multics in lieu of standard magnetic tape.  If not, it will need a tape 
interface and controller and a magnetic-tape unit.  Card input will be 
handled via the network. 

The main ones of the foregoing items have been or are to be purchased. 
In the interest of holding down the over-all cost, however, the two 
peripheral-device interfaces and scanners (shown as one long rectangle 
in the figure), most of the memory ports and interfaces, a device to 
adapt the DEC input-output bus to transistor-transistor logic, and the 
interface to the IMP are to be constructed in the laboratory.  In ad- 
dition, the E&S (Kratos) displays, the stylus tablets, and the ARDS 
units will be integrated into consoles in the laboratory. 

Software System 

The main components of the planned software system are listed in 
Table I.  The table expresses something of the extent of the undertaking 
but probably not much about its organization.  The following paragraphs 
will deal briefly with its organization. 

The plan calls for borrowing much of the basic system software from 
the Artificial Intelligence laboratory.  Indeed, during the first year, we 
adapted, or in a few cases simply adopted, from the PDP-10 computer 
system of that laboratory, an amazingly fast and powerful supervisor 
(ITS), an excellent assembler (MIDAS), and several very useful utility 
routines.   The borrowed software has gotten us off to a rapid start, 
though admittedly it is a start not precisely in the planned direction. 
Our concerns with graphics, coherence, and sharing will require that 
we modify some of the underpinning even while we are building upon 
it. We recognized the inherent danger in doing that, but the advantage 
of getting under way at once compelled us to accept the risk. 
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Fig,  1, 
Proposed hardware plan for the Modeling/Graphics/Networks 
computer system.   (The   t symbol indicates  hardware items 
operating at the end of the year.) 

115 

■ ■ ■ 

.. ■   ■ ■   . 



MODELING, GRAPHICS, NETWORKS 

TABLE I 

Main Software Components of Planned System for Research 
in Dynamic Modeling, Computer Graphics and Computer Networks 

IDENTIFICATION FUNCTION WORK REQUIRED 

A. SYSTEM SOFTWARE 

1. ITS*t Time-sharing supervisor Adapt 

2. A High-level programming language(s) Select, implement 
or adapt for PDP-10 

3. MIDAS*t Assembly language Adapt 

4. A Dynamic loader Design and implement 
or adapt from "STINK"* 

5 = DDT*t Debugging aid Adapt 

6. A Graphical debugging aid Design and implement 
with some use of DDT 

7. MONIT Interim command interpreter Design and implement 

8. A Graphical command interpreter Design and implement 

9. TEC0*t Editor Adopt, then adapt 

10. NCP Network control program Design and implement 

11. INF0*t On-line documentation of utility 
routines 

Adopt, then adapt 

12. At Interface to Imlac PDS-I, incl. Design and implement 
loader, editor, and assembler some; adapt some 

13. OLIVER Interface with individual user; 
agent for individual user 

Design and implement 

14. CAREt Mediator -- handle calls and Design and implement 
returns, facilitate user intervention 

15. MACDMP*t Dumper and loader of system routines Adopt 

16. A Interface to programs that operate 
under DEC time-sharing supervisor 

Design and implement 

17. L0CK*t Utility associated with ITS Adopt 

18. A Library construction and 
maintenance 

Design and implement 
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TABLE  I   (cont.) 

IDENTIFICATION FUNCTION WORK REQUIRED 

19. A Flow-chart interpreter Design and implement, 
adapting some from 
GRAIL 

20. A Core-resident shared subroutine Design and implement 

and data-set address table 

21. A Core-resident (individual) user's 
subroutine and data-set address 

Design and implement 

table 

22. A Inter-user communication Design and implement 

23. A Disk salvager and other disk 
utilities 

Design and implement 

24. SATAN Chief demon (starts up other 
demons as needed) 

Design and implement 

25. SPOOL* Background printing Design and implement 

26. A Network logger, network test 
routines, and other network 
utilities 

Design and implement 

B. GRAPHICS SOFTWARE 

1. At Stylus-tablet input Design and implement 

2. At Character recognition Design and implement 

3. At Two-dimensional graphing Design and implement 

4. At Three-dimensional graphing Design and implement 

5. A Complex-plane display Design and implement 

6. A "Visual statistics"; visual data 
analysis and estimation of rela- 

Design and implement 

tionships 

7. A Graphical display of program 
actions and relationships 

states, Design and implement 

8. POLYVISION Control of composition of 
multi-picture displays 

Design and implement 

9. A Transformer from E§S to ARDS 
Imlac displays; preprocessor 
transmission via network 

and 
for 

Design and implement 
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TABLE I (cont.) 

IDENTIFICATION FUNCTION 

■ 

10. A "Library of shapes" 

11. A Graph and diagram editor 

12. A Graphical network command 
language 

C. PROCESSING ROUTINES 

I. 

2. 

3. 

4. 

A 

A 

A 

LEXICON- 
TEXT 

At 

A 

Two-dimensional parser 

Fast Fourier transform 

Other integral transforms 

Lexicon-based text handling 

Algebraic compiler for use with 
stylus-tablet, character recog- 
nizer, and two-dimensional parser 

Extension of high-level language 
to encompass diverse data types 

D. INTEGRATIONS 

1.  A 

4. 

Extension of high-level program- 
ming language to encompass graphics 
and diverse data types 

Introduction of coherence into the 
interaction languages of the main 
system and utility routines 

Unification, insofar as possible, 
of main high-level programming 
language and the main interaction 
languages 

Introduction of coherence into 
library of procedures and data 

On-line documentation system 

/ORK REQUIRED 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

Implement 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

Design and implement 

A Wot  yet namej. 
* Adopted or adapted from AI Group routines. 
t Preliminary version operating July 1970. 
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The initial organization of the system has been determined to a large 
degree by the nature of the adopted and adapted system and utility 
software.  It is an organization in which a user interacts with one 
routine at a time, with each routine mainly in its own language.   For 
example, one may log in to MONIT, ask MONIT for the editor TECO, 
prepare an assembly-language program (naming it, for example, PROG 
MIDAS) and file it, return to MONIT, call the assembler MIDAS, have 
MIDAS translate PROG MIDAS into its machine-language form PROG 
BINARY, return to MONIT, call the debugging routine DDT and through 
it call the loader STINK, have STINK load PROG BINARY and transfer 
the symbol table(s) to DDT, tell DDT to execute PROG BINARY, ob- 
serve that PROG BINARY does not function properly, return to MONIT, 
call TECO, retrieve PROG MIDAS, edit it, return to MONIT, call 
MIDAS, and so on and on. 

The foregoing description is not a burlesque.  Except for leaving out 
some steps - for example, the first time MIDAS translates PROG 
MIDAS, MIDAS finds syntactic errors that force the user to go back 
at once through MONIT to TECO - it is a fair account of the sequence 
of transactions required by most present-day time-sharing systems of 
a programmer who simply wants to prepare and execute a program. 
If he wants to do anything more complex than that, he has to turn into 
a veritable switch engine.  We want to get far away from all that.  The 
initial organization will therefore have to be changed.  We want it to be 
more like that of LISP systems in which program writing, filing, trans- 
lating, debugging, and almost all the other operations are carried out 
within the coherent framework of LISP. Why not simply adopt LISP? 
We could do a lot worse.  The main reasons for not simply adopting it 
are that current LISP systems, while highly coherent or even unified 
internally, are almost impossible to put into effective communication 
with any other systems;  that they recognize only one data type or very 
few data types;   and that they are not well developed into the dimension 
of graphical interaction. 

One major step in effecting the new organization of software will be to 
create for the user the effect of communicating with one inclusive pro- 
gram, an editor-assembler-loader-debugger-informer, instead of a 
multiplicity of routines that converse in diverse and conflicting lan- 
guages.   That step is perhaps not crucial for the experienced program- 
mer, and so it will not be taken first, but we thirk it will be crucial 
for substantive modelers. 

Another major step is so to arrange matters that a user can monitor 
the operation of his program or model, intervene at any appropriate 
time, interrupt the operation, make changes, backtrack as far as neces- 
sary[ and resume operation.   The mediator, the dynamic loader, the 
core-resident subroutine and data-set address tables, the documentation- 
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retrieval subsystem, and the unified programming-interaction language 
(see Table I) are all part of the required mechanism. 

A third major step is to provide for a large amount of sharing of pure, 
core-resident procedures.  Residency in primary memory is of course 
the key, in the present state of computer technology, to very high re- 
sponsiveness, very fast interaction.  But primary memory is almost 
always at a premium.  It is necessary, therefore, to determine carefully 

(just which procedures and data to hold in primary memory -- and even 
more essential to prepare procedures in such a way that the most fre- 
quently used components (which are likely to be basic building blocks 
used in many different programs) can be separated out and held con- 
tinually in primary memory.  It will be necessary to experiment in 
order to find the optimum in this complex area, but it is obvious that 
the system must be designed in such a way as to permit experimenta- 
tion.  The third step is intended to make it so. 

Other steps of organization, which we shall for the sake of brevity, 
just mention, are: 

1) Substituting interaction through diagrammatic graphics for 
much of the alphanumeric interaction that characterizes most 
time-sharing systems. 

2) Moving much of the initiative, in the interaction between the 
user and his running program, from the program to the user. 
This involves fundamentally separating many of the interactive 
elements from the program proper and replacing them with 
"event identifiers" that provide handles for, but do not them- 
selves initiate, interaction. 

3) Developing a large and coherent library of procedures and 
data sets that can be linked or bound into users' programs at 
run time.  We have set the semirealistic goal of 1000 such 
procedures and 100 such data sets.  We fear, however, that as 
many as 10,000 basic procedures may be needed to provide a 
facility in which a typical "new" program or model consists of 
10% new and 90% library material. 

Planned Techniques for Modeling and Graphical Interaction 

At present, the field of computer-based modeling is divided into two 
areas, one concerned with sequences of discrete events, the other con- 
cerned with dynamic interactions of variables that, for the most part, 
are continuous in the real world and, only because the nature of the 
computer forces discreteness, discrete in the computer. Each area has 
its modeling or simulation languages -- for example, GPSS and SIMULA 
for discrete events and DYNAMO for (qualifiedly) continuous variables. 
The languages make it convenient to express the operations in which 
they specialize but difficult to "follow the lead of the problem" if the 
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problem crosses language boundaries. We are interested, therefore, in 
e technique of modeling analogous to that made popular in childhood by 
Tinker Toys, Erector Sets, and Mechano Sets:   Start with an idea (per- 
haps a bit nebulous but interesting), a lot of modular parts, and a lot 
of connectors.  Assemble the parts by hand under visual monitoring a.m 
control.   (Doubtless a kind of language is involved in the process, but 
it does not intrude or sharply delimit.)  Get new ideas and insights s.s 
you go.  Take some of what you have built apart and rebuild it to in- 
corporate new features.  As soon as you have something that works, 
test it, see how to make it better, make it better, test it again, and so 
on.  We want to develop that technique in the context of the computer. 
In the process, we hope to avoid the childhood frustration of running 
out of parts. 

In modeling complex processes or systems, one tends to represent 
their parts in terms of abstract symbols, which are usually characters 
or words or word-like strings of characters.  Such symbols have proven 
very helpful to modern man, and he has become accustomed to thinking 
of them as advances over the picture-like glyphs used in earlier times. 
No doubt they are.  But it is not clear, and should not be tacitly as- 
sumed, that words are on the best evolutionary path.  The advent of the 
computer opens up new possibilities for dynamic representation in which 
words, being static, may not play the major role.  We plan to explore 
the field of what might be called "dynamic glyphs":   quasipictorial signs 
that can move about and change shape as the things they represent act 
or are acted upon.  Perhaps the conveyors of meaning in future lan- 
guages may evolve, under the influence of the computer, from the ani- 
mated cartoon. Whereas present-day natural languages are strong in 
nouns and weak in verbs, it may be that future languages may have as 
many verbs as future computers have subroutines.  In any event, this 
appears to be a potentially important area for technique development. 

When one works at a computer console, even a sophisticated and ex- 
pensive one, he soon feels severely constrained by the size of its 
display screen, which is not nearly so large as the array of desktops 
and tabletops, covered with papers and reprints, to which he is accus- 
tomed.  It is frustrating to lose what is on the screen in order to get 
to see something else, for often one wants to compare the one with 
the other and has to call the old up again to check it -- and thereby 
loses the new.  In short, time-multiplexing a 10-inch-square area seems 
to be a retrograde step from "space-multiplexing" in a large workspace. 
We plan, therefore, to explore a number of techniques, ranging from 
very fast time-multiplexing a single screen through splitting screens 
and using several screens in parallel, to simulate an office workspace, 
with the aid of head-mounted cathode-ray tubes (ä la Ivan Sutherland) 
and eye-fixation sensing (a la Minsky, Papert, and Geffner).   The ex- 
ploration will include distorted displays in which the area of present 
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interest is presented in larger scale than the other areas — as in the 
"New-Englander's Map of the United States". 

Light pens and styli are not well developed, even yet, and therefore 
call for further technique development. We hope to develop a manual- 
input system that will "understand" a repertoire of metalinguistic signs 
analogous to proofreaders' marks as well as the elements relating to 
substantive input.  The stylus language should be a part of a coherent 
interaction language and not, as it is now, a sequence of decomposed 
and nonballistic movements back and forth between a drawing and a 
set of light buttons. 

We hope in due course to incorporate a limited speech vocabulary into 
the coherent system. 

Graphical definition and control of processing and composition and con- 
trol of display will be a focus of our effort.  We hope to develop tech- 
niques that will let a programmer or a modeler formulate and specify 
a program or model primarily through graphic means, then graphically 
control its testing, modification and execution, choosing at each stage 
from a library of display and control modes and formats.  The inter- 
relation of language and metalanguage is a main theme in this area. 

Plans Relating to the PDP-10 Computer System and the ARPA Network 

The initial effort in networking must be, of course, to receive an IMP 
and make the necessary interfaces, hardware and software, between it 
and the PDP-10.  Then programs must be developed to mediate com- 
munication between the PDP-10 and other host computers.  Development 
of those programs, which include the Network Control Program (NCP) 
listed in Table I and a Logger not listed there, will involve much inter- 
action between the Computer Networks Group of Project MAC and cor- 
responding groups in other ARPA Network organizations.  We plan first 
to develop interim interface and communications programs, then full- 
fledged versions.  There may be a series of the latter as, the Network 
evolves. 

As soon as communication is established with other host computers, 
network research will open up to include several parallel undertakings. 
These will include: 

1) Systematization of access from other hosts to resources 
available in the PDP~10 system. 

2) Systematization of access through the PDP-10 to other host 
systems — as though the user were logged directly into them. 
(This way of using the network is only of minor interest to us, 
but it is a natural step.) 

3) Transfer of files between other hosts and the PDP-10. 
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4) Use of remote resources by programs  operating in the 
PDP-10; integration of certain remote resources into the PDP-10 
system in such a way as to make them appear to be local. 

5) Establishment of procedures that will make it possible for 
other hosts to use the graphical-processing facilities (e.g., 
picture "trimming and framing") of the E&S processor. 

6) Study of data types and data translation within the network 
from a taxonomic point of view. 

7) Study of models and modeling languages and facilities avail- 
able within the network. 

In executing those plans, we expect to take advantage of the fact that 
the Multics computer will also be connected into the ARPA Network. 
In taking the early steps, it will be helpful to work with Multics and 
PDP-10 consoles side-by-side.  We expect also, however, to enter into 
joint research efforts with workers in other host organizations. 

IV.   PROGRESS AND THE PRESENT STATE 

During the past year, the three groups were brought up approximately 
to size (see listings at beginning of section), main parts of the com- 
puter system were received or constructed and assembled into a working 
facility, and beginnings were made on several of the software-development 
and technique-development projects.  In order to check the system plan- 
ning and design against demands posed by actual modeling, a neuronal- 
network model and an air-traffic-control model were construct0'.  The 
Interface Message Processor arrived and was installed, and the physical 
interface between the GE-645 and the IMP and the one between the 
PDP-10 and the IMP were designed and constructed.  At the end of the 
year, enough of the parts of the envisioned system were in place and 
operating to constitute a strong bootstrap, and an intensive summer of 
programming -- manned in part by 25 student programmers -- was 
under way.  The software library count stood approximately at 50 use- 
ful programs, but most were not yet well documented.   An on-line docu- 
mentation system was being created -- initially in the Multics GE-645 
rather than in the PDP-10 because the latter lacked disk files. 

I'he "1" marks in Table I identify the software items of which pre- 
liminary versions were operating at the end of the year.  Work was 
under way on about half the items not marked.  The prevailing feeling 
in the three groups was that too many things were going on at once, 
that it was difficult to see the woods for the trees, that there was very 
much work indeed to be done, but that progress was accelerating as 
new components and subsystems came into operation — and that one 
could already sense, through the one E&S console, some of the power 
of highly responsive graphical interaction. 
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ON-LINE CIRCUIT DESIGN  AND 
HYBRID COMPUTING STRUCTURES 

For our research group, this was a year of transition from On-Line 
Circuit Design to Hybrid Computing Structures.  The former research, 
fnUiated five'years ago, shortly after the inception of*^ 
was concerned with the use of on-line computation in the design of 
electronic circuits.  Major results of this work have been published in 
the open literature and are incorporated in CIRCAL-2, a general- 
purpose, on-line, circuit-design program.*  This program, currently 
operational on CTSS, is undergoing conversion by a company which 
wlU make it comme'rcially available for IBM 360-67 use fy the e^ of 
the vear.  The new research in hybrid structures was motiva ed by the 
long computing times and inefficiencies we encountered in solving very 
large systems of algebraic and differential equations by using conven- 
tional machines.  Our current effort is concerned with the f ^y and 
development of novel hybrid computing techniques and structures, which 
Jolsess the accuracy of digital systems and the speed of analog systems. 

I.   CIRCAL-2:   A GENERAL-PURPOSE CIRCUIT-DE SIGN PROGRAM 

The main objective of this program is the effective use of on-line com- 
puter utilities in the design of electronic circuits.  It ^mmanzes in 
Its structure the conclusions of several years of
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"lessons" learned from the predecessors, CIRCAL-0 and CIRCAL-1, of 

that program. 
In developing CIRCAL-2, we have tried to make good use of on-line 
computaüon in both the interactive and more formal optimization types 
oHesign.  Accordingly, the program can be used for the repeated analy- 
sis of lumped networks, with several features and provisions   or efll- 
cient interaction;  or it can be commanded to automatically optimize a 
circuit, in accordance with a prescribed rule.  The main features of 
the program are as follows: 

1) MultipleAnalysis_Capability: - The program accepts any 
num^o71Uffirertr7i7cuit-analysis techniques, residing on disk. 

'    One of the consequences of this feature is the development of a 
sufficiently general common set of network elements.  Another 
consequence is the use of time or frequency as the computing 
dimension. 
2) Homogeneity of information Structures: - The on-Une circuit- 
desü^ro^s involves the input, modification, output and defi- 
nition of information that describes elements, networks, or 

*   (See J. R. Stinger and M. L. Dertouzos "CIRCAL-2:   A General- 
Purpose On-Line Circuit Design Program User's Manual"   M.I.T. Elec- 
tronic Systems Laboratory, Report ESL-R-381, May 1969.) 
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sources.  It involves, also, the output of informational and diag- 
nostic messages and the specification by the user of automatic 
circuit-optimization procedures.  All information, regardless of 
meaning, is handled uniformly by a texl: editor.  The information 
necessary for analysis, as well as the results of analysis, is 
handled in a uniform way through the so-called input and output 
data structures which are sufficiently general to permit the use 
of a large number of analysis techniques. In addition, commonly 
used objects are isolated for economy; for example, the CIRCAL-2 
operator which permits the definition of functions, is applicable 
to nonlinear characteristics of network elements, waveforms of 
sources, output of a function of a computed variable, and the 
computations performed in an optimization process. 

3) Efficient On-Line Interaction: — An express and a slow mode 
of operation are provided, enabling (a) the experienced user to 
stack commands with minimum interaction and (b) the inexperi- 
enced user to proceed on a question/answer basis.  In addition, 
all information that is changed in the course of ordinary design, 
such as resistor values, analysis time increments, etc., is or- 
ganized in such a way that, once initialized, it need only be 
changed incrementally, thereby minimizing significantly the inter- 
action cycle. 

4) Ability to Define Optimization Procedures; — In formal de- 
sign, a common procedure is the adjustment of certain parame- 
ters until some performance index is minimized.  CIRCAL-2 
makes possible the definition by the user, in a circuit-oriented 
language, of instruction sequences that behave as "pseudo-users" - 
that is, they automatically modify/analyze a circuit until and if 
the desired index is minimized.  Of course, these automatic op- 
timization techniques are used when the design process is fully 
understood and algorithmically expressible.  In the more common 
design cases where such intangibles as experience and intuition 
are necessary, th3 users resort to the on-line interactive fea- 
tures of the program. 

II.  STATUS AND USE OF CIRCAL-2 

CIRCAL-2 is currently operating on CTSS (modified IBM 7094).  During 
the Summer of 1970 it is being converted by SofTech, Inc. (Waltham, 
Mass.) for 360-67 and 360-75 use, with additional plans for conversion 
to other popular machines.  Several electronics and integrated circuit 
companies are expecting to use CIRCAL-2 after its conversion (toward 

the end of this year). 

The analysis techniques residing in the present version of CIRCAL-2 
are transient analysis, frequency analysis, and frequency analysis of 
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sparse networks.  In addition, we have used CIRCAL-2 as an experi- 
mental forum in developing new analysis techniques.  One such technique 
developed by our group deals with the algebraic/recursive representa- 
tion and analysis of nonlinear networks4.  In this technique, circuits are 
treated as recursive constructs.  That is, specific rules are postulated 
for the interconnection of two electronic networks so as to result in a 
new network.  Recursive use of these relatively few and simple rules 
gives rise to any one of a large class of complex circuits. We have 
found that complex-looking circuits, if designed by humans, have a very 
simple recursive structure, since the designer has created them with 
some fixed "rules" — such as "left-to-right information flow", and at 
any given stage, the processing of at most two or three signals in the 
generation of a new signal. 

In addition, we have studied the case of highly repetitive circuit struc- 
tures, such as those encountered in integrated digital circuits and have 
suggested means for their analysis. 

Our group plans to phase out the research on on-line circuit design 
toward the end of this year coincident to the commercial availability of 
CIRCAL-2. 

m.   CONTINUITY AND COMPUTATION 

Our new research borders the classical areas of continuous (analog) 
and discrete (digital) systems. We have several approaches and objec- 
tives in mind:   First, by viewing continuous systems from a computa- 
tional point of view, we can ask several questions of a theoretical 
nature: 

What is the logical capability of continuous systems? Are there 
input-output tasks that cannot be handled by any continuous sys- 
tem? Is there a computational hierarchy of continuous machines 
with ever-increasing computational power? Is there an inherent 
upper limit to the tasks conducted by any continuous machine 
(analogous to Turing's thesis for discrete machines)? 

Questions such as these may, at first, appear fatalistic, since continu- 
ous computing systems in their known form (analog computers) have a 
limited accuracy and are difficult to program.  We have, however, two 
major reasons for studying these questions:   First, in contrast to digital 
systems, our ability to design continuous systems that perform a given 
input-output task is severely limited.  Consider, for example, the com- 
putational hierarcl"T of discrete machines (left half of Fig. 1) and our 
suggested continuous counterparts on the right. While we can express 
input-output tasks for the discrete machines, e.g., using Boolean Ex- 
pressions for (a), regular expressions for (b), and recursive functions 
and predicates for (c), we have no known ways  of  expressing continu- 
ous I/O (input-output) tasks for (e) and (f).  Even more important. 
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while we have procedures for designing discrete machines, e.g., Quine- 
McCIuskey for (a) and Huffman-Moore for (b), we lack any such proce- 
dures for the case of continuous machines. We believe that both the 
representation of I/O tasks as well as the synthesis of dynamic sys- 
tems such as (e) are possible. We have obtained some early results 
to substantiate our claim.  Specifically, we have developed procedures 
which, given practical constraints on the nonlinear function blocks that 
can be used, return the number of integrators needed and provide the 
specification for the function blocks to be used in (e) so as to accom- 
plish the desired task. 

Our first reason, then, is the practical synthesis of continuous dynamic 
systems.  The second reason concerns the use of continuous and dis- 
crete components together to provide effective procedures, as discussed 
in the following section. In order to combine discrete and continuous 
machines we must have a considerably better understanding of the 
latter, especially in regard to logical and computational issues. 

In this area, our activities to date have been as follows: 

1) Study of autonomous systems of the type of Fig. 1(e), with 
the integrators replaced by sample and holds (sh), i.e., objects 
operating discretely in time, yet capable of storing a real num- 
ber.  This study has given a large number of results as to the 
way in which function-block constraints such as boundedness 
and Lipschitzness* affect the number of memory variables and 
the way in which the system is interconnected.  Given specified 
sequences of real numbers, we have developed procedures for 
constructing autonomous sh machines that realize these sequences 
under any additional constraints on boundedness and Lipschitz- 
ness of the constituent function blocks. 

2) The results of part (1), above have been extended to autono- 
mous intt^rator systems. We have established that no one- 
integrator system can ever oscillate, and that a three-integrator 
system can realize arbitrary I/O tasks with no constraints on 
the function blocks. We have further established that the num- 
ber of integrators grows in inverse proportion to the Lipschitz 
constant and to the bound or the functions used in the system. 

3) A language similar to regular expressions has been developed 
for the expression of autonomous tasks of systems of the type 

of Fig. 1(e). 

4) We have investigated Real Turing machines of the type of 

* These latter two conditions are practically necessary.  The former, 
for instance, insures a finite voltage range while the latter restricts 
the "wi^gliness" of every function in the system. 
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Fig. 1(f), trying to establish a model that describes naturally 
any continuous task.  Although we are not yet certain as to 
whether we have found such a model, we have developed some 
powerful models of Real Turing machines that have many inter- 
esting properties.  One such model can solve precisely all those 
halting problems that a conventional Turing machine cannot 
solve. We have also identified problems unsolvable by the Real 
Turing machines. 

The study of Real Turing machines, besides its theoretical interest, 
has also a practical appeal, in that it can lead to universal analog 
machines, and, for our purpose, to universal and interpretive hybrid 
machines, discussed below.  The fascinating question of a "Real Turing 
Thesis" is still open — that is, is there an inherent upper limit to 
all the "continuous computational processes"? Alternatively, is an 
analog computer at ihat logical limit? Can it solve any problem that 
a iiuman can solve with, say, graphic constructions on paper, or any 
problem that can be handled by any other special analog system? 
Throughout these questions, it is assumed that our machines are capa- 
ble of inJinite precision, the primary concern being to study how con- 
tinuity affects computation. 

IV.   HYBRID COMPUTATION:   LINEAR EQUATIONS 

One of the reasons for our study of continuous computation is our dis- 
covery of certain mixed or hybrid structures — consisting of continu- 
ous and discrete subsystems — which can be so arranged as to solve 
large and relatively complex problems with the speed of analog sys- 
tems and the accuracy of digital systems. 

The basic idea behind these structures is computation with two classes 
of variables, which we have called pressures and flows.  The flow 
variables include the unknowns and are digitally expressed as binary 
numbers.  The pressure variables are analog quantities which are sub- 
ject to accuracy limitations.  Execution involves the adjustment of 
flows on the basis of the inexact pressures in accordance with some 
prescribed rules, and the adjustment of the pressures on the basis of 
exact computations on the flows.  These adjustments may be conducted 
synchronously or asynchronously in time. 

The first structure that we have studied is shown in Fig. 2.  It is in- 
tended for the solution of large systems of linear equations.  Here the 
equation to be solved is Ax = y where vector y and matrix A are 
given, and vector x is the unknown.  The computing structure consists 
of two parts:   (1) a digital or exact substructure which checks to see 
if a suggested vector (a flow variable) Xj does satisfy the above equa- 
tion;  this structure computes the error y - AXJ; and (2) an analog 
substructure which computes inexactly the pressure variable 
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(Divide by K) 

Exact   Computation 

of y AX: 

(Multiply by K) 

Analog/Digital 

Conversion 

T 

Digital/Analog 

Conversion 

Inexact   Computation 
of A'^l-AXj) 

Fig.  2. 
A Hybrid Computing Structure. 

Ax, = A~   (y - Ax:), where A is an inexc dis- .      .:, ,ir%£     i^--,/>  ""•—■ — ,,, '■'- ...^ ^^.e-..vwt approximation to A , 
cussed below.  Execution is iterative, each iteration consisting of first 
the computation of the error, then of the pressure Ax; and then of 
Xj+,  as xj + | = Xj + ^Xj •  K A"'* were exactly A-1, then the exact solu- 
tion would be obtained in one iteration.  Since A"1^ is inexact, each 
iteration brings Xj + ) closer than Xj to the solution, with contraction 
depending on the error between A-1 and A"'^.  The implementation of 
A"^ that we envision does the inversion implicitly — that is, an ana- 
log system is set up (under program control), with parameters that 
are the known coefficients of A;  the manner in which the analog com- 
ponents are interconnected, however, simulates to within analog ac- 
curacy, the equation A^x - £.  There are many ways of structuring 
an analog system to behave in such a way -- roughly as many as there 
are iterative algorithms for linear equations.  One way, which we have 
chosen, is based on the following approach: 

Let D be a matrix consisting of the diagonal elements of A and of O's 
everywhere else;   and let N be the nondiagonal elements, i.e., N = A ~ !)• 
Thus, the equation to be solved is 

or 

or 

(N + D) x = y 

Dx = y - N^E 

x = D'^y - Nx) 
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Note that D-1 is known, by inspection of A.  The analog system is ac- 
cordingly set up to simulate the last (implicit) set of equations shown 
in Fig. 3 (for a system of two equations).  Naturally we have taken 
advantage here of the fact that, in linear systems, the solution errors 
are linearly related by the same equation, i.e., 

AAx = A^ 

ailXl +ai2X2Sy| 
a2lXl +a22X2= 1Z 

convert  to 

i     a,,^! t    2' 

X2=^2-a2lX2) 

Fig.  3. 
Inexact Analog Substructure. 

As Xj approaches the solution, the error jp - AXj is computed exactly 
at a computing cost which grows as N    (for an N x N matrix A).  It 
is then converted (and amplified to a reasonable level) by a digital-to- 
analog converter.  The computation of the pressure AXJ is executed at 
a speed which depends, on one hand, on the response time of the 
sealers and summers of Fig. 3 and, on the other hand, on the eigen- 
values of A.  Because of the continuity and asynchronousness of analog 
systems, this solution is reached very rapidly in a matter of, at most, 
a few milliseconds, for the typical case of several thousand equations. 
Thus, the over-all computing effort grows practically as N2 per itera- 
tion, since the digital computation dominates.  The number of iterations 
necessary for solution of the equation depends on the norm of the 
error A - A^.   For typical analog systems with errors in the vicinity 
of 1% to 2%, each iteration increases the accuracy of the solution by 
six bits (g^ = 1.5%).  This is because, as the digitally computed error 
becomes smaller, when it is converted to an analog quantity it is ampli- 
fied so as to remain large with respect to the offset errors of the 
analog substructure.  Thus, in five iterations, the solution is computed 
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to 30.bit accuracy.  Since complete digital computer solutl0» °f ^ 
above equation grows as N3, it follows that the savings in computing 
time are of the order of N, i.e., the above structure solves a 1000- 
eq^ation system 1000 times faster than a strictly digital system with 

the same parameters. 

Durinp- the reporting period, we have examined in considerable detail 
fhe attainLL spee^and accuracy of A+ under several different imple- 

mentations. 

V.   HYBRID COMPUTATION:   EXTENSIONS 

The above structure can be extended to handle large systems of n^ 
Unear equations f(x) = y.  In fact, any conventional iterative algorithm 
^f-uses a matrLT correction, such as an inverse Jacobian gradient 
or a Newton^R^Tson method, can be realized in this form   In this 
case, however, the coefficients of A"', will vary from iteration to 

iteration as x-, varies. 

Other extensions involve the solution of large systems of differential 
^d integral equations.  We have identified several -h structures and 
are currently investigating them. In the course of our ™f'* h*S. 
become apparent that, if a problem can be decomposed into two parts - 
anTxacr subproblem which checks the accuracy of a proposed solu- 
üon and an "inexact" subproblem which improves every proposed solu- 
tion   and if the "checking" part requires less computation than the 
"TmprovU" part - then the over-all problem can be effectively solved 

by a hybrid computing structure. 

It is not essential, however, that a problem be decom^sed
1^Jp

W
r
0
n^

h 

parts. We are currently investigating decomposition into a larger num- 
ber of analog and digital parts, each of which haf ^/"^^ 
simple task such as addition, or evaluation of a function. These struc- 
simpie Uta* ou     . .      . * ..  „ n^^iate" one-for-one the algebraic tures seem promising in that they    simulate    one loiu     .    .     * 
and differential operations of equations by corresponding electronic 

mechanisms. 

Several additional questions have been raised in the course of our re- 
selrch, and these are currently under investigation.  They involve the 
inherent limitations on computing speed among analog and digital sys- 
tems   based on a small number of physics-oriented axioms such as 
limits on a maximum energy that can be stored per unit volume, a 
minimum energy that can be detected, and a maximum power density 
Z unit area. It appears that the time required for addition of n quanti les 
grows at least as log n, regardless of whether it is conducted by digital 
or analog devices;  however, we have  not yet been able to prove this 
from the basic axioms.  Other questions concern the coding of informa- 
tion so as to maximize processing speed.  For example, if the computa- 
tion to be performed is simply arithmetical negation, that is, y = -x. 
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then a signed binary coding of x results in the fastest computation of 
y   since the energy that must be changed is the minimal detectable 
energy;   an analog coding of x would require a larger energy change, 
hence a slower computing time.  We have been able to prove, along 
these lines, that to any finite function y = f(x), with x   y Negers 
there corresponds a coding of x and y (typically a highly redundant 
one) that changes only the minimal detectable energy, hence gives rise 
to ^instant" computation. 

In a more practical vein, we are currently initiating a study of the 
applicability of our hybrid structures to meteorological, electromagnetic- 
field and space-navigational problems which are very time-consuming 
or nearly impossible by conventional machines. We are also starting 
to look at the possibility of using inexact digital rather than analog 
processes in our computing structures.  Roughly speaking, we are try- 
ing to establish whether continuity or inexactness is the significant 
property that makes the hybrid structures compute so rapidly. 
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PROJECT  MAC TECHNICAL REPORTS* 

t TR-1     Bobrow, Daniel G. 
Natural Language Input for a Computer Problem 

Solving System 
September 1964 

t TR-2     Raphael, Bertram 
SIR:   A Computer Program for Semantic Infor- 

mation Retrieval 
June 1964 

TR-3     Corbatö, Fernando J. 
System Requirements for Multiple-Ac cess, 

Time-Shared Computers 
May 1964 

t TR-4     Ross, Douglas T. and Clarence G. Feldmann 
Verbal and Graphical Language for the AED 

System:   A Progress Report 
May 6, 1964 

t TR-6     Biggs, John M. and Robert D. Logcher 
STRESS:   A Problem-Oriented Language for 

Structural Engineering 
May 6, 1964 

t TR-7     Weizenbaum, Joseph 
OPL-1:   An Open Ended Programming System 

Within CTSS 
April 30, 1964 

t TR-8     Greenberger, Martin 
The OPS-1 Manual 
May 1964 

t TR-U   Dennis, Jack B. 
Program Structure in a Multi-Access Computer 
May 1964 

TR-12   Fano, Robert M. 
The MAC System:   A Progress Report 
October 9, 1964 

t TR-13   Greenberger, Martin 
A New Methodology for Computer Simulation 
October 19, 1964 

TR-14  Roos, Daniel 
Use of CTSS in a Teaching Environment 
November 1964 
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TR-16   Saltzcr, Jerome H. 
CTS^ Technical Notes 
March 1965 

TR-17   Samuel, Arthur L. 
Time-Sharing on a Multiconsole Computer 
March 1965 

t TR-18   Scherr, Allan Lee (Thesis) 
An Analysis of Time-Shared Computer Systems 
June 1965 

AD-612-702 

AD-462-158 

AD-470-715 
TR-19 Russo, Francis John (Thesis) 

A Heuristic Approach to Alternate Routing in a 
Job Shop 

June 1965 AD-47^018 
TR-20 

TR-21 

t TR-22 

TR-23 

Wantman, Mayer Elihu (Thesis) 
CALCULAID:   An On-Line System for Algebraic 

Computation and Analysis 
September 15, 1965 AD-474-019 

Denning, Peter James (Thesis) 
Queueing Models for File Memory Operation 
October 1965 

Greenberger, Martin 
The Priority Problem 
November 1965 

Dennis, Jack B. and Earl C. Van Horn 
Programming Semantics for Multiprogrammed 

Computations 
December 1965 

AD-624-943 

AD-625-728 

AD-627-537 
t TR-24 

TR-25 

TR-26 

Kapiow, Roy, Stephen Strong and John Brackett 
MAP:   A System for On-Line Mathematical 

Analysis 

January 1966 AD-47G-443 

Stratton, William David (Thesis) 
Investigation of an Analog Technique to Decrease 

Pen-Tracking Time in Computer Displays 
March 7, 1906 AD-631-386 

Cheek, Thomas Burrell (Thesis) 
Design of a Low-Cost Character Generator for 

Remote Computer Displays 
March 8, 1966 AD-631-269 
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TR-27   Edwards, Daniel James 
OCAS - On-Line Cryptanalytic Aid System 

May 1966 

TR-28   Smith, Arthur Anshel (Thesis) 
Input/Output in Time-Shared, Segmented, Multi- 

processor Systems 
June 1966 

TR-29  Ivie, Evan Leon (Thesis) 
Search Procedures Based on Measures of 

Relatedness Between Documents 
June 1966 

TR-30  Saltzer, Jerome Howard (Thesis) 
Traffic Control in a Multiplexed Computer 

System 
July 1966 

TR-31   Smith, Donald L. (Thesis) 
Models and Data Structures for Digital Logic 

Simulation 
August 1966 

AD-633-678 

AD-637-215 

AD-636-275 

AD-635-966 

AD-637-192 

AD-645-660 

TR-32   Teitelman, Warren (Thesis) 
PILOT:   A Step Toward Man-Computer Symbiosis ^^^ 

September 1966 

TR-33  Norton, Lewis M. (Thesis) 
ADEPT - A Heuristic Program for Proving 

Theorems of Group Theory 
October 1966 

TR-34  Van Horn,  Earl C. (Thesis) 
Computer Design for Asynchronously Repro- 

ducible Multiprocessing 
November 1966 

TR-35  Fenichel, Robert R. (Thesis) 
An On-Line System for Algebraic Manipulation 

December 1966 

t TR-36  Martin, William A. (Thesis) 
Symbolic Mathematical Laboratory 
January 1967 

AD-650-407 

AD-657-282 

AD-857-283 

TR^"  Guzman-Arenas, Adolfo (Thesis) 
Some Aspects of Pattern Recognition by Computer

AD_656_041 

February 1967 
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TR-38   Rosenberg, Ronald C, Daniel W. Kennedy and 
Roger A. Humphrey ^ 

A Low-Cost Output Terminal for Time-Shared 
Computers 

March 1967 AD-662-027 

TR-39   Forte, Allen 
Syntax-Based Analytic Reading of Musical Scores 
April 1967 AD-661-806 

TR-40  Miller, James R. 
On-Line Analysis for Social Scientists 
May 1967 AD-668-009 

TR-41   Coons, Steven A. 
Surfaces for Computer-Aided Design of Space 

Forms 
June 1967 AD-663-504 

TR-42   Liu, Chung L., Gabriel D. Chang and 
Richard E. Marks 

Design and Implementation of a Table-Driven 
Compiler System 

July 1967 AD-668-960 

TR-43  Wilde, Daniel U. (Thesis) 
Program Analysis by Digital Computer 
August 1967 AD-662-224 

TR-44  Gorry, G. Anthony (Thesis) 
A System for Computer-Aided Diagnosis 
September 1967 AD-S62-665 

TR-45   Leal-Cantu, Nestor (Thesis) 
On the Simulation of Dynamic Systems with 

Lumped Parameters and Time Displays 
October 1967 AD-663-502 

TR-46  Alsop, Joseph W. (Thesis) 
A Canonic Translator 
November 1967 AD-663-503 

t TR-47   Moses, Joel (Thesis) 
Symbolic Integration 
December 1967 AD-662-666 

TR-48  Jones, Malcolm M. (Thesis) 
Incremental Simulation on a Time-Shared 

Computer 
January 1968 AD-662-225 
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TR-49   Luconi, Fred L. (Thesis) 
Asynchronous Computational Structures 
February 1968 

t TR-50 Denning, Peter J. (Thesis) 
Resource Allocation in Multiprocess Computer 

Systems 
May 1968 

t TR-51   Charniak, Eugene (Thesis) 
CARPS, a Program which Solves Calculus Word 

Problems 

AD-677-602 

AD-675-554 

July 1968 

TR-52  Deitel, Harvey M. (Thesis) 
Absentee Computations in a Multiple-Ac cess 

Computer System 
August 1968 

TR-53   Slutz, Donald R. (Thesis) 
The Flow Graph Schemata Model of Parallel 

Computation 
September 1968 

TR-54  Grochow, Jerrold M. (Thesis) 
The Graphic Display as an Aid in the Monitoring 

of a Time-Shared Computer System 
October 1968 

TR-55  Rappaport, Robert L. (Thesis) 
Implementing Multi-Process Primitives in a 

Multiplexed Computer System 
November 1968 

t TR-56  Thornhill, D. E., R. H. Stotz, D. T. Ross and 
J. E. Ward (ESL-R-356) 

An Integrated Hardware-Software System for 
Computer Graphics in Time-Sharing 

December 1968 

TR-57   Morris, James H. (Thesis) 
Lambda-Calculus Models of Programming 

Languages 
December 1968 

TR-58  Greenbaum, Howard J. (Thesis) 
A Simulator of Multiple Interactive Users to 

Drive a Time-Shared Computer System 
January 1969 

AD-673-670 

AD-684-738 

AD-683-393 

AD-689-468 

AD-689-469 

AD-685-202 

AD-683-394 

AD-686-988 
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TR-59   Guzman, Adolfo (Thesis) 
Computer Recognition of Three-Dimensional 

Objects in a Visual Scene 
December 1968 

t TR-60   Ledgard, Henry F. (Thesis) 
A Formal System for Defining the Syntax and 

Semantics of Computer Languages 
April 1969 

TR-61   Baecker, Ronald M. (Thesis) 
Interactive Computer-Mediated Animation 
June 1969 

t TR-62   Tillman, Coyt C. (ESL-R-395) 
EPS:   An Interactive System for Solving Elliptic 

Boundary-Value Problems with Facilities for 
Data Manipulation and General-Purpose 
Computation 

June 1969 

TR-63   Brackett, John W., Michael Hammer, and 
Daniel E. Thornhill 

Case Study in Interactive Graphics Program- 
ming:   A Circuit Drawing and Editing Program 
for Use with a Storage-Tube Display Terminal 

October 1969 

t TR-64 Rodriguez, Jorge E. (Thesis) (ESL-R-398) 
A Graph Model for Parallel Computations 
September 1969 

t TR-65  DeRemer, Franklin L. (Thesis) 
Practical Translators for LR(k) Languages 
October 1969 

TR-66  Beyer, Wendell T. (Thesis) 
Recognition of Topological Invariants by 

Iterative Arrays 
October 1969 

t TR-67  Vanderbilt, Dean H. (Thesis) 
Controlled Information Sharing in a Computer 

Utility 
October 1969 

/ 

AD-692-200 

AD-689-305 

AD-690-887 

AD-692-462 

AD-699-930 

AD-697-759 

AD-699-501 

AD-699-502 ( 

AD-699-503 
t TR-68  Selwyn, Lee L. (Thesis) 

Economies of Scale in Computer Use:   Initial 
Tests and Implications for the Computer 
Utility 

June 1970 AD-710-011 
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t TR-69   Gertz, Jeffrey L. (Thesis) 
v Hierarchical Associative Memories for 

Parallel Computation 
June 1970 

t TR-70   Fillat, Andrew I. and Leslie A. Kraning (Thesis) 
Generalized Organization of Large Data-Bases: 

A Set-Theoretic Approach to Relations 
June 1970 

1  TR-71   Fiasconaro, James G. (Thesis) 
A Computer-Controlled Graphical Display 

Processor 
June 1970 

1  TR-72   Paul, Suhas S. (Thesis) 
Coordination of Asynchronous Events 
June 1970 

AD-711-091 

AD-711-060 

AD-710-479 

AD-711-763 

TECHNICAL  MEMORANDA $ 

t TM-10 Jackson, James N. 
Interactive Design Coordination for the 

Building Industry 
June 1970 

1  TM-11 Ward, Philip W. 
Description and Flow Chart of the PDP-7/9 

Communication Package 
July 1970 

AD-708-400 

AD-711-379 

t Project MAC Progress Report I 
to July 1964 

Project MAC Progress Report II 
July 1964-July 1965 

t Project MAC Progress Report III 
July 1965-July 1966 

Project MAC Progress Report IV 
July 1966-July 1967 

AD-465-088 

AD-629-494 

AD-648-346 

AD-681-342 
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Project MAC Progress Report V 
L    July 1967-July 1968 

Project MAC Progress Report VI 
July 1968-July 1969 

AD-687-770 

AD-705-434 

* Copies of all MAC reports listed in Appendix A, as well as earlier 
Progress Reports, have been deposited with DDC;  using the appended 
AD number, a report may be secured from the National Technical 
Information Service, Operations Division, Springfield, Virginia, 22151. 
The prices from NTIS are:   microfilm $0.95;   hard copies:   reports 
more than two years old $6.00, all others are $3.00 except TR-83 
which is also $6.00. 

t Out-of-print, may be obtained from NTIS (see above). 

% All TMs have been deposited with DDC and are available only from 
NTIS, using the AD number appended; the cost is $0.95 for micro- 
film and $3.00 for hard copy. 
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