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éur cover illustrates four brief dialogues
. | with MACSYMA, a computer system for algebraic
DISTRIBHTION /&Y i 223t 17 d:‘manipulation under development at Project MAC
' since 1968. The lines labeled Cl through C7
.are displays of lines typed in bu a user, and

ments to MACSYMA which include the ability to
“evaluate limits, improper integrals, and power
series expansions.

i

translated to two-dimensional format on a

typewriter-like device. The lines labeled D2
fhrough D7 are computed responses to commands.
The examples demonstrate some recent improve-
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INTRODUCTION

L il e i

In Project MAC ("Men and Computers"), about 270 persons are en-
gaged in digital computer research and development; they include faculty
members -- mainly of the Departments of Electrical Engineering and
Mathematics and of the Sloan School of Management -- staff members,
and students.

e Ty

The over-all program of Project MAC comprises the programs of 11
interacting and overlapping groups. The work of five of these will be
summarized here in order to describe the Project MAC effort in
1969-1970.

e D LT

Artificial Intelligence

The last year has seen significant advances in analysis of visual scenes
and visually controlled manipulation of objects by computer, in machine !
understanding of natural language and narrative, and in a broad effort

to incorporate knowledge and intelligence into programs. In these areas,
which we group under the rubric "Artificial Intelligence", Professors . ¥
Robert R. Fenichel, Michael J. Fischer, Marvin L, Minsky, Seymour A.
Papert, Michael S. Patterson, Joseph Weizenbaum, and Patrick H. Winston
and Visiting Professor Edward Fredkin have conducted research with
approximately 60 staff members and students.

Into a2 new programming language and system, PLANNER, Carl E. Hewitt
has incorporated an array of features that promise to be as basic to
heuristic programming as have been the "DO Loops" of FORTRAN and
the "FOR Statements" of ALGOL to numerical programming. In PLANNER
one can write, for example, "Whenever X happens, do Y", where X is a J g
general description of an event and Y is almost any action at all, For §
example, one can tell PLANNER to choose a simpler goal whenever ‘
three efforts to reach the old goal fail -- and PLANNER will set up a N
process ("demon") that keeps an eye open for trios of failures and, C
whenever it sees one, initiates the reselection process.

{

Terry A. Winograd completed a system of programs that translates a
wide range of statements from English into the PLANNER language.
Winograd's system is based on a heuristic grammar that uses con-
textual information; his system handles the semantic and syntactic parts
of the analysis concurrently. An important feature, which gives'the sys-
tem more flexibility than is afforded either by "semantic networks" or
by lists of grammatical rules, is the representation of the grammar as
a set of programs. The definition of a word is also a program -- as,
indeed, is each component of the system's "knowledge of the world". -
All such programs are available to the deductive part of the system.

The interests of the Artificial Intelligence Group embrace human as
well as machine intelligence. The last year pressed home the essential

!

.  Preceding page blank




_ braic manipulation system, With this new system, Mathlab is able to

. FACTOR (X**G 1) '

If at another point an expression stands as.

INTRODUCTION ' g S

. ! '
i g |

pert1nence to human teaching and learmng of basic concepts developed
or clarified through research on artificial intelligence, and Professors
Minsky and Papert and some of their cclleagues determined to explolt : J
the breakthrough into the realm of human cognition, In April 1970, | i (
Professor Papert gave a Saturday lecture on this subject to a capaclty
audience at M.LT., and he and Professor Minsky part1c1pated in a dis--
cussion with visiting leaders m the field, In June, the National Science
Foundation provided initial funds for research miteachlng and learning.

' Computer-Based Mathematics Laboratory - ' 1

1

Continuing the development of "Mathlab", a system of computer pro-

grams designed to prov1de sophisticated assistance to people working

on mathematical problems that involve complex symbolic expressions, ‘
Professors William -A. Martin and Joel Moses implemented a new alge- r

give strong assistance in work with summatlons integrals, derivatives,
exponentlals logarlthms and factorials. If, for example, at point C14

i

in a certam calculation the user types to Mathlab ' :

{

and then presses the @ key to tell Mathlab to go, Mathlab at once '
d1sp1ays ,

(D14) X + 1)(X - 1)(X + X + 1)(X - X+ 1)

(D20, '3"2*"’6 - S
6X +9X ‘

the user can have it "ratlonally s1mp11f1ed" by typing

RATSIMP (10)@ ,

where % means "it" or "the preceding expression"'. ‘Mathlab then re-
sponds with | ’

i {

X-2 ’

x2+3X | ,

1

(D21)

i

When given (e’2x + 2e" + 1) - 210g(e + 1), Mathlab s1mp11f1es it to zero
{ { '

Computatlon Structures

Human mathematicians are of course superior to Mathlab in intuition,

in dec1d1ng what manipulations to try in order to reach a goal How-
ever, a su1tab1y programmed computer can handle, much more rapldly
and accurately than any human mathematician, algebraic manipulations
involving dozens or hundreds of terms. Thus, the human and computer |
capabilities complement each other. Even though the development of

{
'

1
|




INTRODUCTION

Mathlab is far from complete, it proved itself, this past year, to be a

very helpful assistant in serious mathematical work. During the coming

year, its capabilities will be further increased.

- Computation Structures

In research on "computation structures", a group of 13 staff members
and students led by Professor Jack B. Dennis worked toward a formal

‘integration of hardware and software concepts, especially of concepts

pertaining to highly parallel, asynchronous computer systems. Their

‘work dealt with design, architecture, specification and modeling of

digital systems, with representation of concurrent processes, and with
security, privacy, and controlled sharing of procedures and data.

One of the tools that most facilitates thinking about complex concurrent
processes ic a diagram called the Petri net. Suhas S. Patil generalized
Petri nets, as modified by Holt, to handle coordination of asynchronous
events and has showed that Petri nets can be systematically converted
into asynchronous modular structures. In turn, Professor Dennis showed
that Patil's generalized nets are suitable for representing the control of
very large computers. Asynchronous design of a machine, similar in
many ways to the synchronous CDC 6600 but simpler in detail, required
only nine types of control module. For such a machine, asynchronous
design has important advantages in conceptual simplicity and perhaps
also in speed.

Attempting to understand a large and complex digital system, a person
examines it one part at a time and then, actually or conceptually, puts
the parts and their behaviors together. Suppose that each part turns

out to be determinate in the sense that all runs of any program (that
will run in it) yield the same result. Is the over-all system necessarily
determinate? This last year, Patil showed that it is, given an appro-
priate input-output discipline, which he defined. He showed that a class
of Petri nets called "marked graphs" has the determinacy-preserving
property.

Prakash Hebalkar carried out a study of restrictions of concurrent
activities that are imposed by limitation of resources -- an ubiquitous
problem (encountered in transportation, manufacturing, maintenance, etc.)
that is of great interest in the field of computation. With the aid of a
very useful representation called "demand graphs", he developed a

‘fundamental understanding of the phenomenon of deadlock, in which

would-be concurrent processes block one another by hoarding resources,
and of the safeness algorithm used in efforts to anticipate and avoid
deadlock.

Other research carried out by the Computation Structures Group in-
cludes an analysis of hierarchical associative memories, the develop-
ment of schemata ("computational schemata") for modeling the structure




INTRODUCTION l
1
of computer programs, and the beginning of the definition of a very |
basic and general programming language, intermediate between such a S

language as ALGOL and the "language" of the code that is directly
executable by computer hardware., In June at Woods Hole, Massachu-
setts, the Computation Structures Group held a conference, attended by
27 research workers from more than a dozen laboratories, on "Con-
current Systems and Parallel Computation”.

Computer System Research

Under the leadership of Professor Fernando J. Corbaté, Professor
Jerome H. Saltzer and Robert C. Daley and in close cooperation with
a group in the General Electric Company headed by Charles T. Clingen,
the Computer System Research Group of Project MAC brought the
Multiplexed Information and Computing Service (Multics) System -- the
advanced and comprehensive time-sharing system on which Project
MAC has focused a large part of its total effort since 1965 -- into
successful operation. On 1 October 1969, Project MAC transferred
operational control of the Multics System to the M.I.T. Information
Processing Center under an arrangement that leaves Project MAC in
charge of continued development of the operating system and of re-
search on computer-utility and computer-network aspects of Multics.

Although Multics is a much more complex and sophisticated system
than its predecessor, the Compatible Time Sharing System, which was i :
the first large general-purpose multi-access computer system, Multics ti
was able in Fall 1969 to support as many users as CTSS; and it has |
been increasing steadily in number of simultaneous users and in ratio
of performance to cost ever since it reached its initial operating capa- |
bility. The number of registered users of Multics has increased quite '
linearly from 26 projects and 190 individuals in October to 72 projects
and 408 individuals in June, and it now seems quite probable that
Multics will meet the initial design expectations, which seemed radical ‘

when they were published in 1965, in respect of performance and use.

In retrospect, it appears that one of the best decisions of the Multics
project was to program the operating system in a high-level program-
ming language. That decision represented a break with the tradition of
system programming in "assembler language". Using a high-level lan-
guage made it possible to revise the program repeatedly, some parts
as many as seven times, and to make progress despite "usually high"
turnover in the staff. These two factors far outweighed the advantage
(perhaps a factor of two, over-all) that could have been achieved
through the more efficient coding possible in assembler language --
and, in any event, that advantage remains open, to be exploited, if it
should seem worthwhile, when no further fundamental revisions of the
operating system are envisaged.




INTRODUCTION

Over the long development period, there were times when it seemed
that the main objective of the Multics project was simply to complete
Multics. During the last year, however, it was possible to devote time
and energy to the earlier-conceived and more-basic purpose: to under-
stand how to systematize and optimize the myriad factors and forces
that interact with one another in a comprehensive multi-access informa-
tion and computing system. Marked progress was made toward that
goal. It was possible to make sense out of about a dozen technical
puzzles. Each gain in vnderstanding reflected itself at once in improved
system performance and, at the same time, added a significant element
to the body of knowledge of computer system design.

Toward the end of the year, some of the interests and energies of the
Computer System Research Group turned to problems of graphical dis-
play and to Multics as a node in a multi-computer network, Those
topics will figure strongly in research during the coming year.

Programming Linguistics

Professors Robert M. Graham, Arthur Evans, Jr., and John J. Donovan,
Visiting Professor Michael A. Harrison, and a group of 38 staff mem-
bers and students conducted research in the linguistics of computer
programs. Much of this research is aimed at understanding program-
ming languages in terms of formalisms similar to those of logic and
mathematics., Because¢ computer programming languages are simpler,
have more definite purposes, are more likely to be deliberately de-
signed, and are more susceptible to measurement and analysis than
natural languages, there is some chance of understanding them formally,
in due course, and dealing with them as quasi-mathematical objects
rather than (as is now approximately the case) as cooking recipes or
instructions for assembling hi-fi kits, The practical advantages to be
gained through formal mastery of the language of computers are very
great. If it were possible, for example, to state precisely what a com-
puter program is intended to do and then formally -- through a definite
sequence of operations similar to those used in proving theorems -- to
show that it does or does not do it, then one of the main sources of
trouble in the use of computers could be eliminated. As matters stand
now, about all one can do to test a program is to check in a few specific
(and usually oversimple) cases that, step-by-step, it performs the opera-
tions its programmer specified and, at the end, yields output considered
correct on the basis of external criteria. That procedure is so obvious-
ly unsatisfactory as to provide strong motivation for more formal
"theorem-proving" approaches, almost no matter how difficult they ap-
pear to be. At the same time, it is evident that work in formal pro-
gramming linguistics is intellectually attractive and self-motivating,

Professor Donovan and his associates developed a mathematico-linguistic
formalism called "Canonic Systems" within which one can specify the
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syntaxes of computer languages and the rules for translating from one
computer language (e.g., a compiler langvage) to another (e.g., an as-
sembler language). They were successful, though as yet only in a sim-
plified case, in preparing programs capable, given the syntaxes and the
rules, of carrying out the translation automatically; and they made
progress toward specifying the complexity of the translation process
for various language pairs in terms of the number of steps theoreti-
cally required.

Professor Evans and his associates studied methods of formalization
that appear promising from the points of view of language description
and language extension. They found several ways to improve the defi-
nition of programming languages, which currently are described in
manuals full of rather jargonistic natural language plus syntactic "re-
write rules". They also found several ways to let the user of an "ex-
tensible" programming language specify extensions that, for some
special purpose, he would like to make to its general--purpose base
language. As tools in the study of formalization, the group used the
languages PAL and BCPL. It brought the formalization and documenta-
tion of PAL, which was designed especially for pedagogical purposes,
near to completion, and it improved the performance and expanded the
library of BCPL in Multics, produced a computer-based version of
the BCPL Reference Manual, and "exported" tapes of BCPL to 16
System 360 installations.

Other Research Programs

The five programs touched upon in the foregoing paragraphs subsume
about two-thirds of the research program of Project MAC, It will have
to suffice merely to mention the rest in this ‘summary.

Professors Frederick C. Hennie, C. L. Liu, and Albert R. Meyer and
nine associates continued research in the theory of automata, advancing
the understanding of the complexity of computations and the structure
of automata. They proved two new theorems about complexity, clarified
the concept of randomness as applied to particular sequences, extended
findings of Minsky and Papert to additional varieties of perceptron, and
obtained new results in graph theory, algebraic coding theory, integer
programming, and extensible languages,

Professors Malcolm M. Jones, G. Anthony Gorry, and Michael S. Scott-
Morton conducted research in management application of computers,
With Professors Daniel Roos and James D. Bruce, Dr. Myer M. Kessler,
and a distributed group of about 20 staff members and students, Profes-
sor Jones conducted a program of studies on interactive problem-solving
and decision-making and continued the development of the simulation
system SIMPLE; and he and Robert Goldstein carried on the develop-
ment of the Advanced Information Management System, MacAIMS.
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Professor Michael L. Dertouzos and several associates in the Electronic
Systems Laboratory, functioning as a research group of Project MAC,
conducted studies of an essentially new kind of computer, a computer
made of components that are in one respect digital and another analog.
It seems possible that such a computer can solve certain classes of
problems more rapidly than ordinary digital computers and more ac-
curately than ordinary analog computers.

Professor Robert M. Fano has long been concerned about the possible
and actual impacts upon society and, especially, with the question of
how to make computers serve individuals (as distinguished from or-
ganizations), Since he retired from the Directorship of Project MAC
two years ago, he and several students have studied impact-related
issues intensively, Professor Fano's article, "Computers in Human
Society -- for Good or I1?" in the Technology Review of March 1970,
summarizes some of their thinking,

The Dynamic Modeling Group, formed at the beginning of the year to
develop techniques and an interactive computer system to facilitate the
formulation and testing of ideas in terms of computer-program models,
acquired as a foundation for its system a Digital Equipment Corpora-
tion PDP-6/10 computer and the very sophisticated and responsive
time-sharing software developed since 1965 by members of the Arti-
ficial Intelligence Group. By the end of the year, the most essential
subsystems of the dynamic modeling system were operating, and a
major part of the effort was shifting from "basic system programming"
to the development of the programs with which users of the system
will directly interact,

In the areas of Computer Networks and Computer Graphics, the past
year's efforts were mainly groundwork. The Interface Message Proces-
sor that will connect Multics and one or both of the PDP-6/10 com-
puter systems to a coast-to-coast network of research computers was
installed, and an advanced display subsystem was incorporated into the
dynamic¢ modeling computer system. At the end of the year, the net-
work and graphics programs were shifting into high gear.

Student Participation

During the past year, the number of undergraduate student members of
Project MAC increased from approximately 25 to 76, This increase
was due partly to a deliberate effort, championed by David Burmaster,
Assistant Director for Student Activities, and partly to the successful
initiation of M.L.T.'s Undergraduate Research Opportunities Program,
under the direction of Dr. Margaret MacVicar. The number of graduate
student members of Project MAC increased, during the year, from 25
to 40,
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Administration

In September, Miss R. Joyce Harman joined Project MAC as Assistant
to the Director. During the year, Miss Harman greatly improved the
operation of the Document Room and Publications Office,

Financial Support

During the past year, the core program of Project MAC and the Arti-
ficial Intelligence Group were supported, as heretofore, by the Informa-
tion Processing Techniques Directorate of the Advanced Research
Projects Agency (ARPA). Individual projects were funded by several
other agencies: research in visual perception and in extensible lan-
guages, National Aeronautics and Space Administration; interactive
problem-solving and decision-making, Office of Naval Research; library-
information networks, Lister Hill National Center for Biomedical Com-
munication of the National Library of Medicine; dynamic modeling,
Behavioral Sciences Directorate of ARPA; programming generality,
National Science Foundation.
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I. INTRODUCTION

Research in the Computation Structures Group has the objective of ad-
vancing knowledge and understanding of computer system organization
through abstraction and analysis. Our activities have led us to some
interesting ideas regarding appropriate directions for the evolution of
general-purpose computer hardware. Much of our current activity ex-
nlores the implications of these ideas concerning computer system
organization. Areas under study include: the theory and practice of
asynchronous systems; concurrency in computation -- its influence on
computer structure and on the representation of algorithms; the con-
cept of "programming generality" -- the property of a computer system
that would permit unrestricted combination of independently written pro-
grams; the controlled access to programs and data bases; and an ap-
proach to formal semantics for programs based on an abstract model
for information structures.

The past year has seen major advances in our understanding of modular
asynchronous systems and the intimate relation of modular control
structures to the Petri nets studied by Anatol Holt. We have found our
knowledge of asynchronous systems sufficient to yield elegant and readi-
ly understood implementations of the control mechanisms of complex
central processors. We have analyzed aspects of the concept of a
hierarchical associative memory. Our understanding of the properties
of uninterpreted schemes of programs has been improved through

study of graphs that explicitly show data dependence. Finally, we have
studied formal models of two aspects of advanced operating systems --
the controlled sharing of information, and the avoidance of deadlocks
arising from resource sharing.

II. MODULAR ASYNCHRONOUS SYSTEMS

By "system" we mean an arrangement of parts that interact with one
another by means of discrete signals. The essence of systems is ac-
tivity: The parts of a system act at instants in consequence of earlier
actions by other parts of the system. Most systems have many parts
that act without immediate intercommunication. Such independent parts
that may act simultaneously are said to have concurrent activity. Man-
machine interaction involves concurrent activity of the man and the
computer; a digital system operates through the concurrent activity of
its individual circuits. The importance of concurrency goes far beyond
the use of parallel actions to attain greater speed. A large system is
usually constructed through interconnection of simpler systems which
often operate without central control. The component systems must
interact to make their presence felt and this interaction is inherently
a concurrent activity, We shall review some aspects of our current

> Preceding page blank
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work on the representation of concurrent activity and the implementation
of systems in the form of asynchronous modular hardware structures,

Consider what happens when a typewriter key is pressed. The type bar
is initially idle, When the key is operated, the type bar starts moving
toward the carriage; when it hits the paper, it starts to retreat and at
the same time the carriage starts to advance. The key can be operated
again only after the mechanism has returned to the idle condition, that
is, the motion of the carriage has stopped and the type bar has returned
to rest. This activity may be represented by a diagram called a

Petri net;

carriage is
. type bar advancing
key is hits the
type bar
operated is moving Paper

a place

a transition >'—.. s

returning

idle

The circles are called places and the solid bars are called transitions.
The places are associated with conditions and the transitions with
events. The condition associated with a place is said to hold when
there is a token (sometimes called a marker or stone) at the place,

A transition is enabled if all its input places have tokens, An enabled

In Petri nets, a place may be an input place of more than one tran-
sition. The situation where two transitions are active, but have one
input place in common, is called a conflict because the transitions are
in conflict over the token at the shared place. Only one of the tran-
sitions may fire even though both are active. Such a situation arises
in a typewriter which does not permit more than one key to be oper-
ated at the same time. The Petri net below illustrates this situation.

14
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In this figure, transitions t , ..., tk are in conflict over the place P,
and the conflict at this place prevents two or more keys from being
operated concurrently.

Petri nets are a scheme for representing concurrent systems adopted
by Anatol Holt of Applied Data Research [1] from the nets originally
proposed by Carl Adam Petri of the University of Bonn [2]. In the
Computation Structures Group, Suhas Patil has developed a generaliza-
tion of Petri nets that simplifies the representation of interactions
associated with resource sharing [3]; Jack Dennis has investigated the
use of Petri nets to represent the control structures of a highly paral-
lel computer processing unit [4]; and we have studied the implementa-
tion of nets in the form of asynchronous modular structures. A few
aspects of these investigations are discussed briefly in the following
paragraphs.

Marked graphs constitute a subclass of Petri nets in which each place
is an input place of exactly one transition and an output place of exact-
ly one transition. The net describing the operation of one key of a
typewriter is a marked graph. Marked graphs have many important
properties, and there is a direct correspondence between marked graphs
and elementary control structures for digital systems built by the in-
terconnection of a set of primitive asynchronous control modules to be
introduced shortly. This correspondence is useful in two ways: A com-
puter control unit specified as a marked graph can be translated into
an asynchronous control structure by a clerical procedure; and a con-
trol structure may be converted into a marked graph to facilitate
analysis.

Since a place in a marked graph has only one incident arc and only
one emergent arc, the circles representing the places are usually
omitted -- an arc from one transition tc another is understood to have

15
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a place on it. Further conciseness is obtained by drawing the tran- , . <
sitions as solid dots. In this simplified form, the marked graph de-
scribing the operation of a typewriter becomes: : ‘

type bar hits
the paper

° ° idle condition _ B .

\\_.____/. is reached

key is
operated

In the new notation, the presence of tokens is indicated by placing -
markers on the arcs -- hence the name "marked graphs".

An important question about a marked graph is whether its activity - ’
continues forever or comes to a halt. The property of representing
activity that goes on indefinitely is called liveress. A net is said to

be live for some initial marking if, after any arbitrary activity has

passed, a continuation of activity is possible that will fire any chosen ' '
transition. In other words, in a live net no transition is ever crossed ’
off the list of transitions that may be called upon to fire. In general,

it is difficult to determine whether an arbitrary Petri net is live. . Yet _,
marked graphs have the nice property that a marked graph is live if ;

and only if cutting the marked edges of the graph leaves an acyclic

graph. The marked graph shown below is live.

a live marked graph 3

The reader can check that, if any of the markers are removed, the . i
activity of the graph will come to a halt. This property of marked

graphs is very useful in determining whether an elementary control ,
structure is free of hang-ups. . ' !

An elementary control structure is a digital system consisting of S it
models of six types interconnected by directed links. Each link is :
able to transmit ready signals in the forward direction and acknowledge
signals in the reverse direction, By associating two arcs with each
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link of a module, the behavior of each module type may be specified |

by a marked graph fragment as follows:
' l {
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. r , : | e Sty |
r——=" ‘ i
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e e 0 ol ! i
2 a | o ~™T™ al | @
-t @t o e 4

I | o L_‘__I___l

i -
sequence module o trigger module
. . i - N ! '

’ t
i

The arrival of a token on an arc in the marked graph corresponds to
the transmission of a ready or acknowledge signal between two modules.
A wye module, for example, sends a ready signal over the two emer-
gent 1t links when a ready signal is received on the incident link. Then,
when acknowledge s1gna1s have been returned, an acknowledge s1gna1 is

returned over the incident link. i

Thus a wye module coutrols the concurrent executlon of two independent
operatlons. The sequencé module controls the sequential execution of
two operations. The junction module permits an action to take place
only when the comunctlon of two conditions becomes true. The contrcl
‘structure shown on the next page causes concurrent execution of ac-
tivities fI and f2 and causes act1v1tj £y to occur only when f, and f

- have completed. The operators £ f ’ and f are represented by smk
‘modules, and a source module 1s 1nc1uded so that the control' structure

will have unceasing activity. The corresponding marked graph was
found by substituting for control modules the marked graph fragments

i "
' " I
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f, f f

/.

S
'given above, and simplifying the resulting graph by omitting certain re-

dundant nodes. Since the marked graph is live, we can conclude that
the control structure from which it was derived will not hang up.

It is also straightforward to obtain an elementary control structure
that ‘implements an arbitrary marked graph by making the following

substitutions:

{

\

I
|

o transition ® becomes

N
d

/ N\

/

becomes

:
IS
s

a marked arc

The resulting control structure is guaranteed to be hang-up free if the
given marked graph is live.

Work is continuing on the problem of obtaining control structures for
more general subclasses of Petri nets. We know, from the work of

- Suhas Patil [3], a systematic way of implementing any Petri net by an
interconnection of asynchronous modules. However, this scheme seems
unnecessarily complex, and we are studying what sets of simple primi-
tive modules are sufficient to implement several intermediate classes
of nets.
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IIl. DESCRIPTION OF A HIGH PERFORMANCE PROCESSOR

We have looked into the suitability of Petri nets and asynchronous
control structures for representing and implementing the control mech-
anisms of a high-performance processor. For this exercise, we chose
a machine similar in principle to the Control Data 6600 but simpler in
detail. The machine has several functional units that can perform
different operations concurrently. The processor is so organized that
instructions may be executed in a sequence different from their order
of appearance in the instruction stream. A mechanism Kknown as the
scoreboard controls access of the functional units to values held in
data registers so that each unit operates only when its operands are
available,

Synchronous logic design techniques were used for the 6600. Thus it
appeared to be an interesting challenge to see whether the control
mechanisms of such a machine could be conveniently implemented by
using the asynchronous modular techniques developed by the Computa-
tion Structures Group,

We divided the control problem into these parts: the instruction queue,
the instruction allocator, the scoreboard, and control circuits for the
functional units. Each was represented by a Petri net, and a control
structure was devised to have exactly the behavior represented by each
Petri net. It turned out that nine types of control modules were suf-
ficient to give reasonable implementations of all six control structures:

source wye decision
sink junction union
sequence trigger arbiter

The first six of these modules were specified earlier in terms of
marked graphs. The three remaining modules are defined by the frag-
ments of Petri nets shown on the following page.

The union module permits control of an activity from either of two
points within a control structure. The arbiter interlocks two activities
so that only one of them may be in progress at a time. The decider
module makes it possible for the control structure to effect different
activities, depending on information residing outside the control struc-
ture -- for instance, the operation code of an instruction,

The design of the scoreboard turned out to be particularly elegant, and
it seems clearly preferable to a synchronous design in regard to com-
plexity and speed. Details are given in a recent paper by Jack

Dennis [4].
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union module arbiter module

decision module

IV. DETERMINACY OF SYSTEMS

To keep the design complexity of a large system within manageable
limits, the system is generally conceived as a combination of simpler
systems. Unfortunately, even if the subsystems are known to work cor-
rectly, one cannot conclude that the interconnection of the subsystems
to form the complete system will operate as intended. Therefore, it is
important to obtain a better understanding of the problems which arise
when systems are interconnected. In this direction we have achieved
some important results concerning interconnections of determinate sys-
tems -- systems whose input-output relations are functions. A com-
puter system which gives the same results for two runs of a given
program for given data is a determinate system, a system that does
not is not determinate., In constructing a large system from simpler
determinate systems one would like to know how to ensure that the
interconnection will result in a determinate system. Suhas Patil [5]
has shown that, if the intercommunication discipline is chosen proper-
ly, any interconnection of a number of determinate systems may be
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guaranteed to be determinate. This work provides a theoretical basis
for eclementary control structures: The elementary control structures
form a class which is closed under interconnection. Moreover, since
ecach of the elementary control modules discussed earlier is deter-
minate, each member of the class of elementary control structures is
guaranteed to be a determinate system. Correspondingly, the marked
graphs form a class of determinate systems.

This work on the interconnection of systems may have significant ap-
plication to networks of computers in which one would like to ensure
correctness of a computation even though parts of it are carried out
at different installations.

V. HIERARCHICAL ASSOCJATIVE MEMORY

The use of location-independent addressing is essential in a computer
system that offers programming generality. In contemporary computer
systems, where the memory consists of several physical storage media
(solid-state, magnetic-core, drum, etc.), combinations of software and
hardware mechanisms (paging, for example) have generally been used ',
to realize location-independent addressing. Nevertheless, it is recog-
nized that these implementations suffer from gross inefficiencies in
the form of wasted processor time and poorly utilized memory space.
In 1968, we outlined a radical concept of computer organization, and
proposed the concept of a hierarchical associative memory [6].

wnmy

processor hierarchical associative memory

In such a memory system each level is arranged as an associative
memory with value fields of n bits and key fields of p bits; M, is
small and fast, MC is slow by comparison but large. Reference to an
item is made by presenting its name to the memory system. A match
is first sought in MA ; if successful, the required item has been lo-
cated and is read out or altered. If the search in MA is unsuccessful,
the key is used for a search of M., and then a search of M.. When
an item is found, it is moved to the highest level M,, possibly to-
gether with other items known likely to be required in conjunction

with it. In each level, we suggested that the age of items since their
last instance of use be used to determine which items should be moved
down in the hierarchy to maintain a suitable number of vacant locations
for newly referenced items.
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As in conventional memory Systems, an organization is desired that
permits a large throughput (average number of references completed
per unit time), In contemporary high-performance systems, high
throughput is achieved by building the memory in several modules
each of which can be performing memory accesses concurrently with
the others. In a location-addressed memory, this scheme works well
because each name (address) always designates the same location in
the same module, and action by more than one module is never re-
quired to complete a reference,

The construction of a modular assoclative memory poses some new
problems. Since an item may occupy different locations in the memory
at different times, one does not know in general which module will
contain an item when access to it is required. Unless some provision
is made for organized assignment of items to modules, an access re-
quest to a modular associative memory must be presented to each of
the modules either in Sequence or concurrently, If this is done Sequen-
tially, an average of half the modules will have to be interrogated
before the item is found. If the item is not present in this level of

the memory hierarchy, all modules must be interrogated before this
fact is known. If all modules are interrogated concurrently, each one
will be activated whether or not the item is present in the level, but
the average time required to complete an access may be less. In
either scheme, the speed advantage of using a modular memory is lost,

Jeffrey Gertz has investigated two alternate schemes for avoiding the
necessity of searching all modules [7]. Both schemes assign each
item to a specific module according to some readily tested property
of the item:

(1) By ownership -- all items belonging to the same computa-

tion are assigned to the same module,

(2) By transformation -- a transformation of the key (a hash

code) determines the module to which an item is assigned.
If items are assigned to memory modules by ownership, a search of
more than one module is required only when reference is made to the
information owned by another computation. If the key includes unique
identification of an item's owner, only one module need be searched,
If the key does not indicate ownership, the module containing owned
information can be interrogated first -~ on the assumption that items
referenced are more likely to be owned items than shared items. The
use of this scheme implies there are many more active computations
than modules because it is unreasonable to expect one module to exact-
ly fit the memory requirement of any one computation,

The assignment of items to modules according to a hash code of their
keys is attractive where one expects most information to be shared
among active computations. Only one interrogation is required to lo-
cate an item or to find that it must be retrieved from a lower level,
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However, if an item may be referenced by two distinct keys, either the
item would have to be duplicatcd in two modules, or all modules would
have to be interrogated to effect reference by one of the two keys.

VI. BASE LANGUAGE RESEARCH

During the past year, work has begun toward the definition of a base
program language. We think of the base language as a representa-
tion scheme for programs intermediate between source programming
languages such as Algol and Snobol, and a machine-level representation.
In its design, we hope to achieve three goals: to create a general-
purpose language that is entirely consistent with the requirements of
programming generality, to find a representation that expresses all
possibilities for concurrent execution of parts of algorithms; and to
obtain a language that can be used as a functional specification for an
advanced highly parallel computer design.

We have made major gains in our understanding of the properties of
certain mathematical models of the structure of programs; we call
these models computation schemata. Our theoretical work with compu-
tation schemata has so far been restricted to computations that operate
on simple variables -- variables whose structure as a collection of
simpler entities is not relevant to the scheme (the flowchart) of the
computation. Yet it is important to thoroughly understand this subject
as a basis for building a more general theory for programs that oper-
ate on structured data.

VII. COMPUTATION SCHEMATA

Our work on computation schemata has evolved from the thesis research
done by Van Horn [8], Rodriguez [9], Luconi [10], and Slutz [11] at
Project MAC, and has been considerably influenced by the original
studies of Yanov [12] and, more recently, the work of Karp and Miller
[13], and the work of Paterson [14]. Two questions have been of
greatest interest to us: What sort of constraints must be met in the
representation of parallel computations so that unique results of com-
putations may be guaranteed? Under what conditions is it possible to
determine whether two representations (schemata) describe identical
classes of computations? For the class of schemata we have considered,
we now have satisfactory answers to the first question, and have gained
a better understanding of the second.

A computation schema represents the manner in which functional ele-
ments and decision elements are interconnected, and their action
sequenced, to define an algorithm. The functional elements of a schema
are called operators: Each operator a evaluates some unspecified func-
tion of an m-tuple of input variables and assigns values to an n-tuple
of output variables.
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input cells output cells

gla): {m-tuples} — {n-tuples}

The unspecified function associated with an operator 7 is denoted by
g(a). The decision elements of 2 schema are called deciders: Each
decider d tests some unspecified predicate p(d) for an m-tuple of
input variables.

input cells

d
@ p(d): {m-tuples} — {true, false}

A computation schema has two parts -- a data flow graph and a
control. The data flow graph defines the interconnections through which
results of each operator application are passed on as arguments for
further transformations and tests. The variables of a schema are
represented in the data flow graph by boxes called cells. There is
also a circle for each operator and a diamond for each decider.
Directed arcs join the operators to their output cells and represent
the connections to each ope-ctor and decider from its input cells.

The cells of the schema are identified by the letters m, My, ....
Certain cells are designated as input or output cells. Values are as-
signed to the inpui cells before a computation begins; upon completion,
the result is the set of values present in the output cells. Several
operators, a and b, say, may have the same assuciated function letter:
g(a) = g(b). In this way, a schema may require that two operators, a
and b, alwayz implement the same transformation, although the par-
ticular transformation is unspecified. Similarly, each decider designates
a predicate letter p(d). The function letters and predicate letters of a
schema make up two finite sets G and P.

The control of a computation schema is a specification of the order in
which the operators and deciders of the data flow graph are permitted
to act. In particular, the control indicates how further progress of
computations is affected by the actions of the deciders. For the ex-
amples of computation schemata given below, we shall represent the
control by precedence graphs. An example of a computation schema is
the following.

24




COMPUTATION STRUCTURES

S: data flow graph precedence graph

Each diamond node in the precedence graph connects to two subordinate
precedence graphs that specify alternative computations according to
whether the designated decider has a true or false outcome. Operator
a_ in the data flow graph is an identity operator; the associated func-
tion g(a )} is always the identity function.

For schema S the precedence graph allows just four distinct sequences
of action by the operators and deciders of the schema. These sequences
comprise the control set C of the schema

.0 ]
C: (a. a, f, a5 a, a5)

(a, a, f, a, a, a5)

(2, a, t, ag f, a5 as)

(2, a, t; ag t, a, ag) |

In these sequences, a, stands for an acfion by operator a ; f | stands
for an action by dec1<ler d, for which the outcome is false; and t,
stands for an action by dec1der d, for which the outcome is true.
Since no iteration is p-esent, the control set C, is finite,

Iteration is represented in a precedence graph by a pie-shaped node
connected to a single subordinate precedence graph.

25
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82= data fiow graph precedence graph

begin

The computation specified by the subgraph is repeated until the decider
acts with a false outcome. The control set for schema 82 is C2 :

C,: [ (a' £,) ]
(a' t, a, a, f,)
(a' t, a; a, f')
) (a' t, a, a3 t, a, a, fl) q
. . .
. . .
[ . . .
To convert a computation schema into a specificatic < particular

algorithm, it is necessary to specify the functions .nd predicates desig-
nated by the function letters in G and the predicate letters in P, Of
course, the specified functions and predicates must have domains and
raiges consistent with the topology of the data flow graph, and must

be in agreement whenever the value of a function may be the argument
of a function or predicate. Such a specification of functions and predi-
cates is called (after Yanov) an interpretation of schema,

Two properties of schemata are of particular interest to us., A schema
S is determinate if, for any interpretation of the function and predicate
letters, S determines a functional relation of output tuples to input
tuples. In order to say whether two schemata S, and S, describe the
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same computations, we must be able to relate the interpretations of
the function and predicate letters in &, and S,. For this purpose, let

G=G|UG2 P=P|UP2 .

Then S, and S, are equivalent schemata if, for any interpretation of
the functions and piedicate letters in G and P, S, and S, determine
precisely the same relation of output tuples to input tuples.

To develop insight into the questions of determinism and equivalence,
we have devised the notion of data-dependence graph or dadep graph
for short. A dadep graph of a schema sets forth separately each action
by an operator or decider. For a particular control sequence of a
schema, the final value placed in each output cell will be the result of
some cascaded composition of functions. A dadep graph is just a graph
representation of the cascade composition of operators associated with
each output cell.

Let us construct the dadep graph for schema S3 from its unique con-
trol sequence a = (aI a, az a,).

begin

The construction is shown on the next page. We start by setting down
a copy of each input cell of the schema. (The letters denoting these
cells are underlined.) Then we add a copy of an operator and its out-
put cells for each succeeding element of the control sequernice. Each
cell added to the dadep graph is labeled as in the data flow graph, and
this label is erased from the cell copy previously bearing it. In the
case of an identity operator, a second label is given to the most-recent
copy of its input cell, and no copy of the operator is made.

For schemata that include deciders, there will be a cascade composition
of functions associated with each action of a decider as well as each
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O O

(a)

(c) (d) (e)

output cell. A determinate schema with k deciders could have 2% dis- i
tinct dadep graphs -- one for each combination of decisions that might [
occur in the course of some computation. For the schema S , there : 'i

|

are just three dadep graphs because a decision of false by d, results
in the absence of any action by d2.
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In gener"al, a schefna that represents an iteration defines an infinite
set of dadep graphs. In the case of -Sz’ the three simplest dadep graphs
are:

i {

(a) (b) | (c)

! i
Certain properties are important in the study of schemata: A schema
is persistent if the occurrence of one of two actions that could proceed

" concurrently does not inhibit or block the other action. Furthermore, :

a schema is commutatlve if the order in which two ‘concurrent actions
occur has no effect on the subsequent course of the computatien,

Nondeterminate computation can occur,only when a 'schema has a cell
that could be assigned 'a value by one operator either before or after
-a value is assigned:to or read from the cell by the action of another
_operator or dec1der When this can happen wp say the schema has a

' conﬂict P ' | . !

By means of known methods it is not dlfflcult to show that any compu-

tation schema that is persistent, commutative, and free of conflict is
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guaranteed to be determinate. A more interesting problem is to deter-
mine the circumstances for which the conflict free property is a neces-

- sary condition for schemata to be determinate. We have studied two

natural restrictions on schemata such that any determinate schema
meeting the restrictions is necessarily conflict free. The first of these
restrictions amounts to requiring that each action by any operator or
decider in a schema participate in determining some output value. A
schema meeting this restriction is said to be normal., The second re-
striction disallows control sets that permit repetition of a computation
or test for the same m-tuple of input values. A schema meeting this
restriction is said to be repetition-free. In schema S4, repetition of
the function designated by g, occurs. Because of the repetition, the
conflict between operators a; and a, at cell m, fails to yield non-
determinate computations -- both dadep graphs define the same com-
position of functions.

4 ‘ dadep graphs

For an elementary schema that is well defined, normal, repetition-free
and determinate, all execution sequences yield the same dadep graph.
In fact the dadep graph is a canonical form for this class of schemata,
Thus the equivalence of any two elementary schemata can be tested by
constructing their dadep graphs.

P

i 0 i Bt

|
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In the case of a normal, repetition-free schema that has deciders but
ne iteration, the class of computations represented is described by a
finite set of dadep graphs, as shown for the schema S, earlier. Each
pair of input values will be processed as shown in that one of the
dadep graphs for which the evaluation of predicates agrees with the
truth values given at decision points of the graph.

We can construct a table of two columns, called a conditional expression
list, that characterizes the computations represented by a schema. Each
row of the table corresponds to one dadep graph. In the left-hand col-
umn, we write a conjunction of the predicates that must be satisfied by
the input variables for the corresponding dadep graph to describe the
computation. In the right-hand column, we write the compositions of
functions that specify the corresponding dependence of output values on
input values. For Sl we have:

Condition Expression

p, (x,) g5(8,(8, (x5 x,)), 8,508 &, x,)))

p,(x,)* p,(8,(x,)) | 858, (x5 X,), 8508, (x5 X))

p, (%,) * B, (8,(x,)) | 85(8,(&, (x5 X,)), & (x,, X))

Now consider the schema SS:
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Schema S5 has four dadep graphs
€xpression list with four entries:

Condition Expression

Pi0g) *B,8,05,)) | 85ty x,, x,)), g, (e, (x,, x,)))

Pi0R) « y(84,)) | (e, 8, v, x,)), (8, x,)))

P, (x,) # B, (g,(x,)) 85(8,(8, (x|, x,)), g (x,, x,))

P (x,) + p,(g,(x,)) 858, (x,, x,), g5(g, x,, x,)))

This table specifies the same

class of Computations as the conditional
expression lis* for S,, for we

have the logical equivalence

P (5) = B, (x,) « B, (g, (k) + P (%)) ¢ b, (g,(x,)) .
Thus schemata SI and S5 are equivalent,

mata may be tested for equivalence by co
€xpression lists,

In general, noniterative sche-
nstructing their conditional

Since an iterative schem

a has an infinite set of dadep graphs, its con-
ditional expression list i

S infinitely long, For schema 82 we have

Condition Expression

B, €% (x,)) g, (x,)

P, (€5(x,)) o T, (8387 (x,))) 82(x,, g (x,))

P, (€ (x,) « p, (B5(e7(x,))) B, (85 (856 (x,)))) | g,(x,, &%), g (x,)))

We can show that, in general, two normal and repetition-free schemata
are equivalent if and only if their conditional expression lists agree in
the sense illustrated by our demonstration of equivalence for S, and

S5 - When the lists are finite the existence of a decision procedure is

32
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clear. At this time it is not known whether or not a decision procedure
can be found for the more general equivalence problem.

VIII. CONTROLLED INFORMATION SHARING

The merit of the computer utility concept [15], lies in the ability of
the users of the utility to build on each other's work. Thus the utility
must provide orderly means for sharing access to procedures and data
bases. We believe [16] that, to be successful, a utility must provide an
environment in which a variety of information services may flourish
and compete as private enterprises. Because proprietary and personal
data will reside in the memory of a computer utility, access of users
to stored information must be controlled so that only legitimate access

is permitted.

Dean Vanderbilt has studied the implications of these requirements for
sharing and access control on the organization and representation of
procedures and data bases in a computer utility [17]. A computer utility
must allow the owner of a program to authorize its use by other users
without giving them the ability to view its internal structure. The execu-
tion of a program involves access to data and access to other programs.
This additional information falls into two categories -- information that
is associated with (shared by) all activations of the program; and the
information that is associated with a particular activation (and not
shared by several activations). The former category (Category I) con-
sists of subprograms considered to be part of the program, subprograms
of these subprograms, etc., and any data that are common to all activa-
tions of the programs. Category II information consists of all informa-
tion passed as arguments to and from the program, and all temporary
information generated during the particular activation.

During execution of a program, access to Category I and Category II
information must be provided. Two aspects must be dealt with: First,
the names used by the program to refer to this additional information
must be bound to be the correct information. Second, the access con-
trol mechanisms of the utility must allow access to the information

when it is needed.

The Category I information is known to the owner -- the creator -- of
the program, but not to the borrower. Thus the owner must specify
the binding of names in the program to that information, and ensure
that the information may be effectively referenced when needed during
execution of the program. Since the program borrower should be
granted no more access abilities than necessary, it must be possible
for the owner to give the borrower the ability to access Category I
information only in conjunction with use of the program. Thus, access
abilities and binding information must be associated with the shared
program so that the appropriate Category I information is available
each time the program is executed.
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The Category II information coasists of information supplied by the pro-
gram user and information created by the program. For the former,
the supplied arguments must be bound to the program's call parameter
names. The access abilities bose no problem since this information be-
longs to the program user. For the latter information, the process
executing the program must be allowed to create information and to
have it automatically bound to the appropriate names appearing in the
program.

Dean Vanderbilt has designed an abstract program-execution environ-
ment [17] which offers one solution to the problems of implementing

controlled access to shared information in a computer utility, This work

uses a directed graph model of structured information that is closely
related to the abstract information structures that form the foundation
of our development of a base language, and is similar to the abstract
"objects™ used by the IBM Vienna Laboratory [18] for their work in
formal semantics.

IX. RESOURCE SHARING WITHOUT DEADLOCK

Another form of concurrency is the cooperative activity of interacting
computational processes, as in a multiprocess computer system. One
form of interaction among processes is the implicit interaction arising
from the sharing of limited resources. Consider, for example, two
independent, sequential processes that progress through several distinct
phases of activity,

D,- process | process 2

@] o @ o

x

o
- |
/O

System Capacity
C=10

©@ ® @ 0
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For each of its phases (identified by the circled numbers), a process
requires the specified amount of a single resource type. The number

of available units of the resource type (the system capacity) is C = 10,
This representation of the resource requirements of a system of con-
current processes is called a demand graph. It is convenient to repre-
sent the composite state of the processes by a slice through the demand
graph. For example, in the slice y = (@, @) of demand graph D,,
both processes are engaged in phase 1 of their activity. Slice y is
feasible because the total resource units required is seven, which is
less than the system resource capacity. If process 2 should complete
phase 1, it could immediately proceed with phase 2, for the slice

y' = (Q), @) is also feasible. However, process 2 could not continue
into phase 3 of its activity because slice = (@, @) has a total
resource requirement larger than the system capacity -- we say that
slice y" is not feasible. The resource-allocation mechanism of a sys-
tem should operate so that all processes can complete all phases of
their activities, if possible, by a sequence of feasible slices. This kind
of scheduling is not simply implemented if processes are assumed to
retain control over resources during their transitions to new phases of
activity, For instance, we must allow process 2 to retain the four units
allocated to it for phase 1 while awaiting the release of three more
units for its use in phase 2. Such hoarding occurs in computer systems
where the resource may be memory areas, access to locked data bases,
tape units, etc. When such hoarding is practiced, deadlocks can occur:
Slice y' in the demand graph D, is feasible, and represents a system
state reachable by a sequence of feasible slices. Yet neither process
can proceed beyond its phase in slice y' for the lack of needed resource
units -- the two processes are deadlocked. To avoid deadlock, the
allocator must prevent the system from reaching the state correspond-
ing to slice y' even though the slice is feasible,

We call a slice y in a demand graph safe if it is feasible and there
is a sequence of phase transitions leading tc a succession of feasible
slices so that each process completes all remaining phases of its ac-
tivity. If there is no such sequence of feasible slices, then slice y is
unsafe. Slice y' in D, is unsafe. That slice y is safe is demonstrated
by showing, on the next bage, a sequence of phase transitions to suc-
cessive feasible slices that takes both processes through all remaining
phases.,

In these terms, the task of the resource allocator is to regulate the
transitions of processes to new phases so that each slice attained is
safe. It is not adequate to start the system of processes in a safe
slice, for unsafe slices may be reached from a safe slice.

For demand graph DI » We can discover that slice y is safe by observing
that process 1 goes through a phase of reduced demand during which
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D|3 process | process 2

System Capacity
C=10

process 2 may advance to phase 4. In the absence of the detailed de-
mand data given by the demand graph, this sort of reasoning cannot

be applied, and less-complete resource usage is possible. For instance,
if it is only known that brocesses 1 and 2 require maximum demands
of 7 and 9 units, respectively, the system state represented by slice y
could not be permitted to occur,

In principle, one could examine all possible slices of 3 demand graph
and determine whether each is safe before initiating any activity, How-
ever, this technique lacks flexibility, since adding a new process to 3
system of processes would require a suspension of activity while a
redetermination of safeness of slices is carried out. It is also waste-
ful in that few of the slices of a demand graph will occur during a

run of the system of processes. Incremental algorithms, which only
test for safeness slices that are candidates for becoming the new cur-
rent slice, are therefore of interest. Prakash Hebalkar [19] has formu-
lated an algorithm for testing safeness that is non-enumerative and in
which the amount of backtracking is minimal. This Safeness Algorithm
attempts to construct a Seéquence of feasible slices from the slice
under test to the terminal slice of the demand graph, The construction
proceeds in steps, each of which consists of a series of phase tran-
sitions by one process. A step ends at the first phase that has a de-
mand no greater than the demand for the process at the initial phase
of the step. For demand graph DI » the Safeness Algorithm produces
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the sequence of steps y — vy, —> Y, —" 73 to verify the safeness of
slice y. We have shown that failure of the algorithm to generate a
sequence of feasible slices by which all processes complete their ac-
tivity implies the slice under test is unsafe; conversely, success of
the algorithm implies safeness. A resource allocator that uses the
Safeness Algorithm to restrict system operation to only safe allocation
states would make better use of resources without the possibility of
deadlock. '

For systems in which more than one type of resource is shared, we
have formulated an extensivu of the Safeness Algorithm and established
its validity. However, the amount of computation can have a nonlinear
dependence on the number of phases of the processes in the demand
graph -- a problem that does not arise for systems with a single re-
source type. This is not a failing of our particular algorithm: We have
shown that a local algorithm (one that is not permitted a bird's-eye
view of the entire demand graph) will, for some cases, have to ex-
haustively search a large set of slices to determine that a slice is
safe. The following example illustrates why this is so.

The extended Safeness Algorithm generates feasible slices in steps, as
before. However, the series of phase transitions making up a step now
ends only at a slice in which each component of demand is no greater
than the same component in each prior phase of the series.

D.: process | process 2 process 3

Y e
0) (6,6) QD | 6,6
@
" ¢
¥
®
' ¢ System Capacity C = (21, 21}
Y
@ | (s,6)

Thus in D,, 2 step will consist of moving from y to y' rather than
from y to y".
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Now consider the demand graph D3.

032 process | process 2 process 3
4 : i |
, ®L(6’ 6) @¢(6,6) Q@ | te,6) .
1’2
(7, 5)
73

@¢('I,T)Bz "<, 78,
@ | (0,0 @ | 10,0 @ | (0,0)

System Capacity C = (21, 21)

Without further modification, using the Safeness Algorithm to search

for a step from slice y leads to failure for processes 1, 2 and 3 at
slices Y,» Yo and Y3, respectively. Thus the algorithm would conclude
(falsely) that y is unsafe. A limited backtracking algorithm must dis-
cover some way of getting past the slice y+ = (@, @, @) consisting
of the barrier arcs ,BI , ,32 and ,83. From the study of the demand
graph, it is evident that the slice y* = (@, @, @) must be used.
But a local algorithm can determine this only through an exhaustive
search of slices. The number of futile trials can be quite large.

The Safeness Algorithm can also be extended to systems in which ex-
plicit interactions between processes take place as well as the implicit
interactions arising from resource-sharing. In studying this situation,
we have discovered an interesting phenomenon, called intrinsic deadlock:
There are demand graphs for which no schedule can permit the
processes to complete their activity, for example:
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This is a result of excessive hoarding of resources at points of
(explicit) interaction. For this reason, among others, hoarding of re-
sources at points of interaction should be held to the minimum.

The study of demand graphs is a perfectly general one that is not
restricted to computer processes. Deadlock situations can arise from
sharing of resources in road transportation, aircraft maintenance, and
So on, and these operations can profit from analysis for the prevention
of deadlocks.

X. WOODS HOLE CONFERENCE

The culmination of the year's activities of the Computation Structures
Group was the sponsoring of an informal conference on Concurrent Sys-
tems and Parallel Computation. It was held at the National Academy of
Sciences' Conference Center in Woods Hole, Massachusetts, during the
first week of June 1970. Participants in the conference included six
members of Project MAC and twenty-one persons representing most
institutions in the United States that are carrying on theoretical re-
search related to parallelism and concurrency.

The objective of the conference was to bring together people working
along four distinct conceptual lines that we have found to be intimately
related:

Representations of systems of concurrent events.

Speed-independent switching circuits.

Uninterpreted schemes of programs.

Cooperating sequential processes.
The conference was most successful in acquainting the participants
with each other's ideas and in catalyzing many stimulating discussions.

Eleven technical papers were prepared for the conference, and were of
such quality that they have been published collectively as a Conference
Record [20]. For the conference we assembled an extensive collection
of papers and reports related to the concepts of concurrency and
parallelism. With the inclusion of a bibliography of this collection,

the Recrrd should be a valuable introduction to the field for interested
researw .. ‘entists,

Publications 1969-1970

Dennis, J. B., "Asynchronous Control Structures for a High Performance
Processor”, Record of the Project MAC Conference on Concurrent Sys-
tems and Parallel Computation, ACM, N.Y., 1970, pp. 55-80.

Gertz, J. L., Hierarchical Associative Memories for Paraliel Computa-
tion, Ph.D. Thesis, Dept. of Electrical Engineering, June 1970, also
MAC TR-69, AD-711-091,

(continued)

39




COMPUTATION STRUCTURES

Publications 1969-1970 (cont.)

Patil, S. 8., "Closure Properties of Interconnections of Determinate
Systems", Record of the Project MAC Conference on Concurrent Sys-
tems and Parallel Computation, ACM, N.Y., 1970, pp. 107-116.

Patil, S. S., Coordination of Asynchronous Events, Ph.D. Thesis, Dept.
of Electrical Engineering, June 1970, also MAC-TR-~72, AD-711-763.

Vanderbilt, D. H., Controlled Information Sharing in a Computer Utility,
Ph.D. The51s Dept. of Electrical Engineering, October 1969, also
MAC TR-67, AD-699-503,
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I. INTRODUCTION

The year from July 1969 through June 1970 was a critical year for
the Multics (Multiplexed Information and Computing Service) system,
which was agZi—n_the major concern of the Computer System Research
Group. During the reporting period, research and development efforts
on Multics continued to be performed jointly with the General Electric
Company's Cambridge Information Systems Laboratory personnel; and
the assumption of responsibility for the administration, operation and
maintenance of the system by the M.I.T. Information Processing Center
was initiated. In addition, members of the group participated in work
on the ARPA Computer Network and on computer graphics, reflecting
the Group's shift in emphasis toward exploitations of the research base
which the Multics system represents. The dominant role of Multics in
the Group's efforts dictates that the bulk of this report will address
itself to Multics; however, the new areas of interest will also be dis-
cussed in more detail subsequently.

As indicated in last year's report, 1 October 1969 was firmly set as
the date on which Multics service would be made available to the
general Project MAC and M.I.T. user community. This goal was
achieved, offering a version of the system that was considerably im-
proved over what was available at the end of the previous reporting
period. Because the success and acceptance of the system by the user
community is a key issue in the desired dissemination of the under-
lying concepts of Multics, much stress was laid on making the system
more attractive to general users (i.e., not just system programmers).
To this end, expansion and refinement of functional capabilities and
improvement of performance were the areas on which the Group con-
centrated. An index to the success of these efforts may be found in
Fig. 1, which shows the growth of the user community. By the end
of the present reporting period, the operational version of the system
again represented a considerable over-all improvement over the
October First version. Table I (which will be discussed in greater
detail in the section on Performance) furnishes a good indication of
the improvement of the system over the year, in terms of gross per-
formance. It is worth noting here that Multics, as of October 1969,
was furnishing performance superior to that of the Compatible Time-
Sharing System (CTSS) and is continuing to improve.

Of the conceptual goals discussed in the 1965 Fall Joint Computer Con-
ference papers on Multics, most have been fulfilled, although a few

key functions are still being worked on and should be installed in the
next year. On the performance side, it is expected that the coming
year will see the system beginning to support the original predictions
of simultaneous users. Moreover, the original decision to implement
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Multics in a high-leve! language has shown itself to be a wise one, as
both the quantity and quality of the changes effected during the reporting
period attest. Now that the basic Multics framework has been estab-
lished, there is still much to be learned. New work is under way in
two broad areas of interest:

(1) Work on the system per se addresses itself to deeper under-
standing of the issues involved in large, complex systems; and
work is intensifying on the propagation of our results to other
workers in the systems field,

(2) Using Multics as a springboard, new areas of interest in the use
of sophisticated systems are being explored, especially the con-
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Table 1.

PDP-8 Script Performance Comparison between CTSS
and Multics System 7.0, 4.0, and 3.0.11

Multics | Multics | Multics

7.0.11 4.0 7.0 CTSS

6/25/69 | 9/25/69 | 3/30/70 | 8/1/69
Average load while measuring | 12 users |24 users |21 users|17 users
CPU time charged 87.9 sec|50.3 sec|28.7 sec|70.97 sec
Real time required 2702 sec |2520 sec|2298 sec|2434 sec
CPU time per interaction 1.91 sec|0.79 sec|0.436sec|1.07 sec
Average response time ~18 sec|12.4 sec|5.2 sec|5*1 sec
Dollar charge $11.01 ([$6.55 $3.99 $6.50
Cost per console hour $14.70 |[$9.10 $6.27 $9.62

Notes:

buggirg" script.

rect this inequity.)

1. All figures are for two passes through the standard "Fortran de-

2. All prices are based on a Multics CPU charge of $420/hr, a
Multics dialup charge of $1/hr, a CTSS CPU charge of $330/hr,
and no CTSS dialup charge.

3. Note that this script is, on balance, a smaller than average user
of core memory, and is unfavorably charged by a Multics CPU
price based on average core memory usage. (It is expected that
in the future the Multics charging policy will be revised to cor-

cern with the ARPA Network and with the support of terminals
with graphical capability. There is also a continuing interest in
dealing with problems of data base management and of protection.

II. THE OCTOBER FIRST SYSTEM

When Multics was formally released to the user community, the version
of the system made available at the time was designated "System 4.3".
For convenience of subsequent reference, it should be explained that
the numbering system adopted for system versions indicates major
changes in the supervisor by incrementing to the next whole number,
and less far-reaching changes to the basic ".0" system by incrementing
to the right of the decimal point. Accompanying the "October First
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System" was the initial release of the Multics Programmers' Manual
(MPM). This users' manual originally comprised some 500 pages,
under the following major headings: Introduction to the Concepts of
Multics; Introduction to the Use of Multics; Reference Data, Standards,
Conventions, Formats, and Codes; and detailed descriptions of the
various commands and subroutines -- both system-supported and user-
furnished -- available, By year's end some 100 more pages had been
added to the MPM.

It is interesting to note that even before the 1 October deadline,
Multics had been successfully used by non-system programmers: An
M.L.T. Summer Course in programming linguistics furnished the Sys-
tem's first extensive use by non-members of the Group as Multics
was employed on an experimental basis for the performance of assign-
ments by students in the course. The assignments involved use of the
PAL translator, which was implemented by graduate students working
under Prof. Arthur Evans, Jr. The PAL translator itself was coded in

BCPL (discussed in last year's report). The success of this experiment

was gratifying for several reasons, in that it not only demonstrated
the general utility of Multics for practical applications, but also Ssup-
ported the belief that subsystems would be relatively easy to embed in
Multics, and, of course, furnished evidence that the system was actual-
ly shaken-down enough to support general users.

Functional Capabilities: The Standard Service System Approach

A major feature of the October First system was the "Standard Service
System", a set of closely audited, optimized commands and subroutines
of interest to general users. The Standard Service System includes the
command processor (the "mini-Shell", discussed below) and such basic
commands as the "edm" context editor, the file and directory manipula-
tion commands, and a Fortran compiler. All modules in the Standard
Service System are carefully coded and audited for high performance
and small working sets, adhere to a standard user interface for argu-
ment specification, and are implemented in either a subset of the EPL

language selected for efficient code generation or with the more efficient

PL/1 compiler. All the components of the Standard Service System are
orgarized into a special System library, which is the first to be
searched when a procedure is initially referenced in a process. The
net result is to furnish the general user with nearly optimum perform-
ance, particularly for tasks that do not inherently require a large share
of the system's resources. Indeed, this conscious bias in favor of the
small user has emerged as a cornerstone of the system. To aid the
user in the identification of Standard Service System routines, the indi-
vidual writeups section of the MPM is so organized as to group Stand-
ard System commands and subroutines in sections of their own,
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The most important single aspect of the Standard Service System is the
command processor. The version of the command processor in the
October First system was a considerably improved one, having been
completely recoded to adhere to Standard Service System standards. A
more efiicient subset of command language features was isolated, and
only this subset was handled directly by the new command processor,
or "mini-Shell”. The full command language was still available, but
was still processed by the relatively cumbersome "full Shell”, The

new command loop also speeded up console input/output operations, by
avoiding the invocation of the full I/0 System until and unless the user
explicitly invoked it himself. I/O was also minimized by the elimination
of the "wait" message which was previously typed out on receipt of
each command. Further, various support subroutines were bound to-
gether with the mini-Shell,

Functional Capabilities: Resource and Access Control

Another important functional capability added to the system for its pub-
:ic debut was resource control: With use of the system no longer
limited to system programmers, it was necessary to install quoias for
disk storage. Also, a minimal accounting system was incorporated, to
allow for the maintenance and billing of user accounts, involving both
disk storage and central processor time used. Accounting also required
reorganization of the data bases employed in the System Control sub-
system. Other changes in System Control for the October First system
were the ability to automatically log out a process when its console
was hung up, and the ability to automatically create a new process
when a running process became incapable of proceeding. The presence
of non-system programmers on the system also necessitated the in-
stallation of full access control; each user upon logging in is assigned
his proper process group identification which allows the access control
machinery to function correctly,

Performance Improvements

In addition to the extensions of functional capability discussed above,
several performance improvements were included in the October First
system. The primary one was a fully reimplemented Traffic Control
module, which constituted System 4.0. The basis of this change was a
tightening of the interface between the Traffic Controller and the File
System, allowing the highest-priority process in the scheduling queues
to be specially handled when requesting paging. This is quite desirable,
in that it minimizes the likelihood of "thrashing” -- that is, of having
a lower-priority process bring in pages (while the higher-priority
process is waiting for its own pages) which dislodge pages still needed
by the higher-priority process.

Other pe-formance-improvement tasks included the following:
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(1) Procedure linkage sections were redesigned in order to reduce
the number of linkage faults in the system.

(2) The need for several data segments which were carried in each
process was eliminated by means of consolidaticn with other
segments, thus minimizing the working set of each process;
this strategy pays large dividends, and the reduc‘ion of "per-
process segments" is an on-going task.

(3) The system libraries were reorganized to allow more efficient
searching,

(4) The device interface module (DIM) for the high-speed printer
was recoded in order to improve its buffering strategy and
moved to ring 0 (the Supervisor's protection ring); these two
performance improvements were rather important, as many
users rely quite heavily upon listings from the high-speed
printer,

(5) Considerable aitention was paid to the metering of such key
areas as the Traffic Controller and the typewriter DIM, to
furnish vital performance information under full user load as
a guide to further refinements.

Maintenance Tools

Maintenance tools made avsilible for the October First system included
the following: The backup reloader was extended to restore full hier-
archy information (e.g., dates modified and used, access control on
directories) for reloaded files. The backup dumper was modified to
facilitate the taking of complete dumps by the Operations staff. Also,
the reloader was modified to allow selected files to be retrieved from
the backup types. The "Salvager® program discussed in last year's
report (which corrects inconsistencics in the File System hierarchy
after a system crash, allowing prompt restoration of user service)

was improved and made a stundard operatio:al icol. It should be em-
phasized that these File System maintenance tools nave been of crucial
importance in maintaining satisfactory system Operation for the general
user. Also, a set of commands was developed to facilitate changes to
the standard system and to allow rapid installation of new systems.,

IIl. THE CURRENT STATE OF THE SYSTEM

Functional Capabilities: System Version Iterations

System version 4.0, an iteration of which was in operation on 1 October,
included the new Traffic Controller and the first wave of Standard
Service System modules. Four more major changes to the Supervisor
had been introduced by the end of the reporting period, designated by
the version numbers 5.0 through 8.0:
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System 5.0

The first changeover, to System 5.0, took place with the introduction
of new hardware, DSU270 disks.

These devices, which are fixed-head disks, offer more efficient
secondary storage than the original DSU10 units. Software
changes necessary to support the new hardware were made in
such a fashion as also to facilitate the anticipated introduction
of new, larger DSU170 units (equivalent to the IBM 2314) at
some time in the future. Both the DSU270's and the DSU170's
offer, in addition to speed, the highly desirable fealure of ex-
pandability. Thal is, as the need for more secondary storage
increases with the increased user population of the system,
more disk units may simply be brought in and connected,

System 6.0

System 6.0 featured a major reworking of the command processing loop
and a general expansion of the scope of the Standard Service System.

The command loop was redesigned and recoded in PL/1, which
had by this time become appreciably more efficient than EPL
both in compile time and in generated code. It no longer avoided
the full I/O system, since the performance of the central module
of that subsystem, the "I/O switch", had alsn been upgraded ap-
preciably. These changes dropped the distinction between "mini"
and "full" Shell, allowing users to employ whatever features of
the command language they wished, at low cost in time. The
key issue here was a reorganization of the command processor
(the term "Shell" having also been dropped) such that the user
pays only for those features which he explicitly invokes, rather
than having to use the full machinery for even minor tasks.

The new command loop also enabled writers of private (and
public, for that matter) commands to acquire the commands'
arguments in a less-awkward fashion, and in general to inter-
act with the command loop more cleanly. A deeply embedded
per-process segment was eliminated ("process info"); this was
an independent task since it involved changes to a large number
of segments, as well as rather extensive changes to the Inter-
process Communication facility, which were not practicable
earlier. Also, more commands, subroutines, and the Interprocess
Communication facility were converted to PL/1 and made to
conform to Standard Service System criteria. Finally, the
handling of conditions and signaling was reimplemented.

System 7.0
System 7.0 was a major performance breakthrough, since it incorporated

a new, "fast" Page Control module.
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been open -- that of going from compiler language to assembly
language for crucial system modules. As mentioned in previous

S

changes quickly and the ability to present underlying algorithms
clearly. A further advantage is, of course, the fact that there jg
some "leeway" inherent in the object code, so that hand-coding
can be used to Squeeze out even higher performance once the
issues of the strategy and algorithm have been iterated to an

order of 2 msec.

System 8.0

System 8.0 also involved the paging mechanism, furnishing the ability
to selectively bre-page a process when it was about to be run and the
ability to "post-purge” (i.e., release core Space occupied by) selected
bages when the process has finished its time quantum,

The pre-paging aspect further biases the system toward the
"small user" in that it increases the likelihood that he may be
able to interact without taking any page faults, (Actually, all
users benefit from the pre-paging, since the number of page
faults is at least decreased, even if it is not eliminated, for
each interaction.) By the end of the reporting period, the exact
impact of pre-paging and post-purging had not yet been evalnated,
because tuning experiments were still being performed,

Functional Capabilities: Supervisor Changes

Numerous other significant changes to the Supervisor were made, al-
though they did not entail new system version numbers., One of the

pure-procedure object segment and a linkage section (which contains
process-dependent information) are introduced into the process's ad-
dress space. However, if the program needs to be recompiled, the
linkage section of the old version, which has been added to a single
"combined linkage segment" in the appropriate protection ring, will
erroneously be employed when the new object segment is executed,
Previously, the solution was to Create a neaw process after recompiling,
but this is time--consuming, both in terms of process creation and in
terms of having to re-do links which had been "snapped" in the old
brocess. Therefore, in conjunction with an improved PL/1 version of
the system Linker brogram, a facility was added which allows compilers
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{

automatically (and users, by explicit command call) to cause removal ;

of a named program, including its linkage section, from the address

'space of a process. This makes the debugging process far less cum- |

bersome. Additionally, the PL/1 Ligker is more efficient than the older ;
y
{
i
|

EPL version. , ,

" Another area of the supervisor that underwentisignifican.t change was
the "Gatekeeper" module. This module manages the transfers of control
among Multics protection rings. A large improvement in speed was ef-
fected by a new Gatekeeper which handles ring-crossings into the super-
visor's protection ring as special cases. (Such a strategy is made !,
possible by the fact that the ring-0 environment is rigorously defined, 1 G
so that the premium for generality of preparation need not be paid , {
when' the ring being entered is known not fo raquire that, generality.)
Also, an important advance in system security came about from the
inclusion’of full argument validation on calls to t}le supervisor; for, 1 1
by accident or by design, it is possible for a non-supervisor program !
to furnish bad arguments when.calling the supervisor, and if the argu-.
ments are not validated (by the Gatekeeper) when the call is made,
the highly privileged supervisor routine could inadvertently either

- destroy or reveal vital system information.

i

Functional Capabilities: Comm:and 'Repertoir’e

The system’'s command' repertoire, aléo has been strengthened con-
siderably. Perhaps the most valuable command of all is the PL/1

- compiler. As has been'seen, and as will be seen further, recompila- ,
tion in PL/1 has led to improved performance in all areas of the '
system from the supervisor modules to individual commands. Further-
more, it should he noted that the G. E. Cambridge Information Systems
Laborator’y team responsible for the compiler won a General Electric
corporate award for their work, and that the compiler is believed to
be the best PL/1 compiler yet implemented. Aside from general im-
‘provement, full implementation of most defined language features, and
the addition of object-code optimization, the compiler also benefited
from the inclusion of more comp!cte, I/0 facilities, in accordance with
the full PL/1 language specification. PL/1 is expected to lend itself
quite well to the implementation of data-base management subsystems,
particularly because it is ‘able, both directly (through its "based "
stor’age"' facility) and indirectly (through PL/1 1/0), to take full ad-
vantage of the virtual memory that Multics affords. This should allow
very large data bases :to be manipulated with far greater ease than "
they could be by a PL/1 on a conventional system. Andther feature
added both to PL/1 and to the command loop in general is, an improved
mechanism for 'signaling and handling "conditions" as defined in the
full PL,1 language specification. Signaling is already employed in the
system's quit-handling and fault-handling mechanisms, and will be play-
ing a larger role in error-handling in the future. '

!
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Another heavily used command which was vastly improved is the Multics
context editor, "edm". Taking advantage of the power of PL/1, a new
edm command was installed which offered an order-of-magnitude im-
provement in the time needed to locate an arbitrary string in a file.

Finally, several new commands were added to the repertoire, including

a BASIC compiler, which will be discussed in more detail below. Of

particular interest to system programmers has been the development of

a new interactive debugging program, "db", which is far more rich and
flexible than the earlier "probe" command, By requesting the genera-

tion of a symbol table during compilation, the user of db may refer to ;

, variables symbolically when debugging and refer to source-code state-
ments by location. The ability to set breakpoints is also afforded. §
Another new command, called "help", is of considerable interest to
general ‘users, for it prints out usage information about named com-
mands bn—line; working from ordered files, the command pauses be-
tween levels of complexity to interrogate the user as to whether more
help is desired. Still another interesting command, called "mail" allows
users to send messages to other users by placing files in the others'

/ directories. Card reading and punching facilities were also made avail-
able; the former is of great value for CTSS users shifting over to |
Multics. In addition, a large number of already existing commands 3
were converted to Standard Service System standards during the re-
porting period,

S

o r

i

‘ The Student Information Processing Board Subsystem

' The BASIC compiler (borrowed from the Rome Air Development Center
time-sharing system) led to a windfall in that it became the vehicle for
a subsystem developed by the M.I.T. Student Information Processing
Board (SIPB). Using Multics, the SIPB group developed in a surprisingly
short time the "SIPB-O System", a subsystem that gained many ad-

- herents 'among student users. This subsystem constitutes a closed
‘environment that makes available a limited number of low-cost, easy-
to-use commands. . The commands include a subset of Multics commands
as well as special SIPB-O ones. It was found that many students availed
themselves of the subsystem for homework assignments., Among the
features of SIPB-O are the BASIC compiler and editor, a special com-

 mand processor, numerous "help" files, the ability to have many simul-
taneous users with a single working directory, and a library of game
programs for demonstration purposes. This venture was gratifying not

’ only because of the interest generated, but also because it further

' demonstrated the relative ease with which subsystems could be developed
under Multics -- in this case, in two or three weeks (during which work
on the subsystem was only part-time) by users who, although highly
motivated and quite télented, had no previous Multics experience.

R A i i, S B BB .
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IV. PERFORMANCE }
Summary /

Progress was quite good in the area of system performance. By the

end of the reporting period, loads in excess of 30 users were common ¢
during day-to-day "one-CPU" operation, and system response was ade-
quate at that level. (During the next year, it is hoped to increase the
acceptable load to approximately 50 users for the single-processor,
956K of core memory configuration; with both processors and 384K of
core, a considerably larger load will be supportable.) Note that, al-
though the system is operated most of the time with the system par-
titioned (one CPU and 256K for service, the other CPU and 128K for
development work), there are scheduled sessions each week during which
the full dual-processor configuration is used as the service system,
These full-configuration sessions allow particular attention to be paid

to issues of reliability, tuning, reconfiguration, and operational proce-
dures. The remainder of the time, the developmeat system is reserved
for the testing and checkout of new systems, so as not to disrupt
normal service.

Principles

Three principles worthy of note emerged from the Group's work in the
area of performance improvement. The first is a design principle -- or
attitude -- which holds that system modules should be so arranged as
to cause the user to pay for only those features that he explicitly in-
vokes. This was the approach taken in, for example, the redesign that
changed the mini- and full-Shells into the command processor (System
6.0). It has also been encountered in many other areas of the system.
The basic point is that generality of function need not be sacrificed to
efficiency, but neither should it be achieved through an implementation
that is inefficient for commonly used specific functions. The second
principle is that careful and extensive metering of system performance
is indispensable. Indeed, much valuable tuning information was derived
from a few simple commands that allowed Group personnel to "browse"
over the performance characteristics of the running system. This in-
formation, in conjunction with tuning commands, allows system adminis-
trators to dynamically change from any console parameters affecting
system performance. (It should be noted that controlled system experi-
ments are elaborate to set up, and nearly impossible to repeat; as a
consequence, on-line tuning with a "live" user population has been an
important stratagem.) The third principle is that judicious choice of
which system modules to convert to hand-coding pays large dividends.
The striking success in the Page Control area was mentioned previously.
At year's end there were strong indications that hand-coding the argu-
ment validation portion of the Gatekeeper would also have very significant
effects upon system performance. However, most of the system will
continue to remain in PL/1.
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Comparison with CTSS

Table I shows the rather dramatic improvements accomplished during
the year, with both CPU time and dollar charge decreasing to roughly
one-third of the levels at the beginning of the period. The figures are
gathered from the execution of a fixed series of commands, input to
Multics by wusing the PDP-8 display computer over a Dataphone line.

" The "script" entails the inputting, compilation, editing, recompilation,

and execution of a Fortran program that calculates prime numbers

In broad outline, this "debugging sequence" is fairly typical of time-
sharing system use, although it does not really take advantage of or
exploit the greatly increased generality and functional features of the
Multics system; nevertheless, the Fortran "script" is run on a regular
basis since it can be considered a "worst case" comparison between
Multics and other systems. As can be seen, the version of Multics
that was current when the system was made generally available on

1 October furnished somewhat superior performance to that of CTSS
in most categories. Only the average response time (how long it takes
for a command to be reacted to by the system) compared unfavorably
at that point in vime. By the Spring of 1970, Multics showed a clear
superiority over CTSS in all categories. (In the area of response time,
where the two systems appear from the table to be essentially equiva-
lent, it should be noted that Multics was more heavily loaded than
CTSS at the time the statistics were gathered; for equal loads, the
response time on Multics beats that of CTSS). Unfortunately, the 3.0
version of Multics (which was installed in June of 1970) had not yet
been measured in all these categories at the time this report was
written. However, indications from other metering tools and the sub-
jective "feel" of the 8.0 system are that it has surpassed the perform-
ance of the 7.0 system by a substantial amount. (Further tuning of

the 8.0 system is expected to make the difference even more notice-
able.)

V. HARDWARE

Hardware on Site

The major change in the hardware complement during the year was the
previously referenced changeover to fixed-head DSU270 disk units.
These devices offer a transfer rate of approximately 55,000 36-bit
words per second, with a mean access time of 26 milliseconds. Each
unit has a capacity of 2.5 million words, but the number of units on-
line to the system is essentially limited only by the number of con-
trollers. Currently, 10 to 15 disks are being employed through a single
controller. An important consideration here is the fact that, as system
usage increases and a need for increased disk capacity is felt, more
disks (and controllers) can be added without necessitating major soft-
ware changes. Actually, it is anticipated that the DSU270's will
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eventually be augmented by DSU170's, to which similar consideratiorns
apply. The DSU170's (which are GE's equivaleat of the IBM 2314 mul-
tiple disk-pack drive) offer a transfer rate of 69,000 words per second,
have a mean seek time of 75 msec, a mean latency of 12.5 msec, and
will be more economical when they become available. (Initially, an
IBM 2314 unit will be used.)

Hardware Performance

Difficulties with the performance of the hardware, leading to system
crashes, were experienced during the reporting period. Indeed, with
the increase in the stability of the software, hardware-caused crashes
camc to outnumber those attributable to software. System-crash
analysis revealed that the electrical grounding of the GE 645 was in-
adequate. (At one point, the use of a vacuum cleaner to remove the
chads from the card punch could cause the system to crash!) Suitable
changes were made in the machine room, but, at year's end it proved
necessary to run a ground cable to the basement of the building to
make the grounding adequate. Another hardware problem that showed
up in crash analysis was the occasional mis-writing of the first 64
words of 1024-word drum records. This proved to be the result of a
subtle design error in the drum timing which was corrected at the end
of the reporting period. System crashes were also caused with some
frequency by core-memory failures and DSU270 problems. These prob-
lems are currently receiving intense attention from hardware specialists
who have been brought in by General Electric from its Phoenix facility.
Many of these hardware problems were only exposed under the heavy
system loads experienced during the latter half of this reporting period.
It is expected that system reliability will be brought to a satistactory
level during the next year.

V1. ADMINISTRATION AND OPERATIONS

In November 1969, the dav-to-day administration and operation of
Multics was turned over to the M.I.T. Information Processing Center
(IPC), allowing the Computer System Research Group to devote itself
more fully to its research and development role. Responsibility for
providing user consultation and for distributing documentation was also
assumed by the Center. The GE 645 operators are also now adminis-
tratively responsible to IPC.

Excerpts from the announcement to the M.LT. Faculty and Staff by
Richard G. Mills (then M.I.T. Director of Information Processing
Services) are of interest:

"The Center will cooperate with Project MAC in the continuing
development of the Maultics system, while providing the M.LT.

community with a powerful, sophisticated, and reliable remote-
access computer utility. We expect that many of the application
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programs now operating under CTSS, and possibly other user-
developed subsystems now running in other time-shared com-_ 2
puters, will be transferable to the Multics environment with an
acceptable level of program-modification effort. Once in Multics,
these programs can begin to benefit from the improved capa-
bilities that are available in the new system. The coest-perform-
ance ratio for Multics, initially about equal to that of CTSS,

will improve considerably over the three-year initial period.
Multics will supplant CTSS as the Instituie's primary general-
purpose time-sharing system, and CTSS service will be termi-
nated (with appropriate notice) when Multics has proved its
ability to support the work now being done on CTSS. ..

"This announcement carries out the new policy of explicitly
committing to provide a major service component for a stated
minimum time period. In the case of Multics. a commitment
period of three years, beginning 1 October, 1969, was recom-
mended by the Information Processing Advisory Committee,
endorsed by the Information Processing Advisory Board, and
approved by the Provost.

"The significance to users of such a commitment is that it pro-
vides a basis for planning and proposing research and educa-
tional tasks with the assurance that the computer-system base
on which they rest will not be unexpectedly swept away. A three-
year minimum commitment, of course, does not mean that we
expect Multics to be terminated at the end of three years; in
fact, we would hope after a year of experience with the system
to announce a substantial extension of the commitment period."”

At the end of the reporting period, the new arrangement was working
well, with IPC personnel becoming increasingly involved with system-
maintenance functions. In addition, some IPC personnel were making
contributions to the system's command repertoire, the "help" and "mail"
commands mentioned above being prominent examples.

VII. ARPA NETWORK
Background

In order to study the issues involved in large-scale computer networks
and to enable a widespread user community to benefit from the work
being performed on a number of advanced computer systems, the Ad-
vanced Research Projects Agency (ARPA) has initiated research into
the formation of a computer-to-computer network among those systems
that have been developed under its sponsorship. Multics is, of course,
one of these systems, and considerable work was done on the network
by members of the Group during the reporting period. (In the following
discussion, each system that is a node of the network is referred to
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as a "host'. At any given network site, there may be one or more
host systems; at Project MAC, both the Multics GE 645 system and
the Dynamic Modeling and Computer Graphics Groups' PDP-6/10 Sys-
tem are network hosts.) Since the network is in itself a very large-
scale computer utility systeni, it is expected that the network will play
an increasingly larger role in the Group's activities in years to come.

Physical Message Communication

The ARPA Network involves a multi-level hardware and software sys-
tem. At the lowest level is the physical-communication network, man-
aged at each node by a specially built device known as an Interface
Message Processor (IMP). This hardware, along with standard control
programs in the IMP, provides the basic facility of sending raw mes-
sages from one computer to another. A special hardware interface
between M.L.T.'s IMP and Multics has been constructed by A. K. Bhushan,
and, as of July 1970, the communication path between the IMP and the
Multics I/O module is in final checkout,

Logical Communication Paths

A higher level of network control protocol must be supported by a soft-
ware module known as the Network Control Program (NCP). This
module must be implemented within each host computer system to
faclor the raw message-transmission capabilities provided by the IMP
network into generalized communication facilities for individual user
processes at a host.

The network participants at Project MAC, several of whom are mem-
bers of the Computer System Research Group, have been engaged in
discussions with representatives of other sites concerning the definition
of a common network protocol. Each site will implement an NCP which
acts jointly with other NCP's according to the protocol in creating,
maintaining and destroying communication paths. As of June 1970, the
Network participants appear to be in fundamental agreement concerning
the protocol and are proceeding to settle the details,

Software modules implementing communications between the Multics
NCP and its IMP are currently being coded. The NCP is urder design,
and preliminary coding has begun. We intend to have an operational
NCP communicating with the Network by early Fall.

Inter-Host Software Protocols

Several still-higher-level software protocols are possible, the most im-
portant of which is a "logger" protocol. Because the NCP only provides
communication facilities between two existing processes, some process
must exist on each host system which agrees to listen to the Network
and create processes for Network users upon proper identification. In
Multics the Answering Service process performs this function for users
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“dialing up over typewriter~chafinels, and it will be modified to provide
this function for Network users as well. However, there must also be
some protocol by which a potential user first gets the attention of the
logger process, establishes communication with it, then es¢ablishes
communication with the created process. As of June 1970, the issue of
a standard logger protocol for all hosts is unresolved. Network partici-
pants at Project MAC and Lincoln Laboratory have agreed to take the
lead in formulating such a protocol. The Network participants will
probably take up this issue once the basic NCP protocol is officially
promulgated.

VIII. GRAPHICS

Another area with which the Group is becoming more involred is that
of terminals with graphical-display capabilities. The basis for this
involvement is twofold: not only is it desirable for Multics, as a
general-purpose system, to support such display terminals, but it is
also the case that a major point of interest of the ARPA Network is
a wealth of sophisticated display hardware and software that wili he
made available., Graphics-related work during the reporting period
focused on the development within Multics of a General Graphics Sys-
tem and on a new teletypewriter device interface module (TTY DIM).

The Multics General Graphics System

The first version of the Multics General Graphics System was developed
during the reporting period and is currently employing the DEC PDP-
8,/338 display computer as its display device. Because of the wide
variety of displays that exist and may be connected to Multics, a par-
ticular objective of the graphics effort is to avoid the kind of frag-
mentation among users that occurs when a given group writes a soft-
ware package that is keyed to a single device: not only is the user
tied to that device, but the resulting software cannot be shared with
users of slightly different but functionally equivalent hardware. To
avoid this situation, it is planned that a Multics graphics user will
manipulate device-independent three-dimensional picture descriptions
in a per-user "working graphic segment" through the use of General
Graphics System primitives. When a user issues a display call, a
"graphic structure compiler" for his particular device type is invoked
to produce a display command stream and dispatch it to his particular
type of display device through the Multics I/O system. A graphic
structure compiler which produces an ASCII-encoded command stream
for a two-dimensional static display such as the ARDS console is cur-
rently working, with the PDP-8/338 used as a simulated ARDS. When
the new ring-0 typewriter DIM (discussed below) is installed, it will
convert this command stream into actual hardware commands for the
ARDS. Alternatively, the command stream can be sent as-is through
the ARPA Network for subsequent interpretation by the computer
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serving the remote user's display. Work is currently under way to
develop a graphics striicture compiler capable of providing a generzl
three-dimensional representation which may also be transmitted through
the Network. Note that, when new graphical devices are added to
Multics, it will be sufficient simply to add another conversion table to
the TTY DIM; no changes to the graphics—system itself will be neces-
sary. There also exists a graphics editor through which a user can
manually edit and display graphic items. These items can be stored

in a "permanent graphic segment” for later pickup and use by a a

. R ——

graphics program.

The New TTY DIM

As mentioned above, the Multics General Graphics System will drive
the ARDS consoie through a new teletypewriter device interface module.
This TTY DIM, which was in the final stages of checkout at the end

of the reporting period, is of both abstract and practical interest. It

is table-driven, the table basically representing a directed graph of
operations and branches. The logic is sufficiently general to be able

to accommodate a wide variety of character-oriented terminals. {Such
terminals are becoming more and more numerous of late; the new
TTY DIM will be able to deal with both the familiar types of hard-copy
devices and the new soft-copy devices such as the storage-tube ARDS
and the refresh-display computer IMLAC PDS-1.) The terminals may
be connected over different types of channels, or according to different
disciplines on the same channel. It is particularly interesting that the |
new TTY DIM is an instance of a table-driven device interface module
that allows a device's characteristics to be specified in sufficient de-
tail for it to be completely responsible for operating a terminal. The
fundamental solution to terminal operation which it represents is felt
to be relatively easily exportable to other machines; for, although
some details of the table format and the interpreter program are
specific to the GE 645 Generalized Input Output Controller, the bulk
of both is general, and the GIOC-specific aspects could be replaced by
more abstract representations. The interpreter program itself is
written in PL/1 and should be usable elsewhere. Also under develop-
ment is an unsophisticated compiler to facilitate the creation of tables
for new devices.

IX. WORK IN PROGRESS AND FUTURE PLANS

T T U BT N RN i el i

Functional Capabilities and Performance Improvements

Multics projects in progress at the end of the reporting period include
the following.

Standard Service System

The policy of causing all present system modules to adhere to Standard
Service System criteria continues. In addition, the scope of the Standard
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Service System is broadening with the planned introduction of such
features as the commands of the Dartmouth System, a LISP interpreter
and an APL interpreter. All Standard Service System programs are
also being converted from the EPL to the PL/1 language. This not
only offers the improved efficiency of the PL/1 object code, but allows
halting of EPL maintenance.

File System

Also being converted to PL/1 is the File System. In conjunction with
the recoding, certain design modifications are being effected as well:
A new format is being introduced to allow for "small" directories
(less space-consuming when the number of entries is low). The most
frequently used paths through the File System are being optimized,
which should result in significantly improved performance since some
90% of processing is performed by some 10% of the code. The binding
of the various modules is being altered to minimize the number of
page faults incurred by the paths chosen for cptimizing.

Fault Interceptor Module

Many modules are being reworked to add new functional capabilities
and to improve existing functions. Most basic of these modules is the
fault interceptor module (FIM), which invokes the appropriate system
routines in response to hardware-fault signals. Because of its central
role in a process, the FIM has gained numerous responsibilities by
accretion; therefore, the redesign is aimed at making the FIM more
modular, to increase its speed for performing its basic fault-handling
functions, and to clarify its other roles.

Other Modules

Other key modules being reworked are the interprocess communication
facility (which is undergoing a thorough redesign to speed up its per-
formance and extend its capabilities to include a secure, general
message-passing mechanism), the Linker and the Gatekeeper. Still
other important areas include the backup facility, management of the
storage-device hierarchy ("multi-level storage" -- which is responsible
for assigning less frequently usz:d segments to slower-speed devices),
the Binder, the User Control module (which manages logging in and
out of the system), and the maintenance tools used in generating new
Multics System tapes ("MSTs").

New Features

Two console-related additions to the system are the ability for a
single process to drive multiple consoles, and a facility for on-line
cousole-to-console communication, The supervisor is being modified
to allow flexible specification by the user of which directories to
search for a segment when a linkage fault occurs; this will be a more
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general form of an interim facility introduced during the reporting
period which allows the insertion of a single user-specified directory
into the search path. Another supervisor change (referred to as "limit
stops") will broaden the system's accounting facilities to allow for
interruption of a process that has exhausted its allocated resources --
particularly with regard to machine time. Work is also being per-
formed (by G. E. Cambridge Information Systems Laboratory personnel)
on the APL language, which has become quite popular at some instal-
lations, and the embedding of the GE 600-series monitor GECOS under
Multics.

Performance Improvements

Finally, continuing system-improvement tasks include the reduction of
per-process segments, the continued propagation throughout the system
of the object segment format, and the reduction of the amount of wired-
down (non-paged) memory employed by the supervisor.

Thesis Research

Among the new features under development, three are related to thesis
research. One of these, the ability to alter the hardware configuration
while the system is running ("dynamic reconfiguration") is being im-
plemented by a graduate student as part of his thesis; oy the end of
the reporting period, the ability to reconfigure processors had been
demonstrated in a test system. The other two (a "save and resume"
facility whereby a process may be restarted after an automatic logout
resulting from a system crash, and an "absentee user" facility where-
by a process can be created to perform a series of commands without
console interaction) are being implemented by staff members who have
benefited from the thesis research performed by graduate students.

Student Participation

Undergraduate students are playing an increasingly large role in
Multics development. Summer projects being performed by under-
graduates include the introduction of a major portion of the Dartmouth
"SIMON" (simple monitor) system under Multics in a simulated en-
vironment, the development of a LISP interpreter, and the conversion
of the Multics assembler from a combination of GECOS Fortran and
GMAP (635 assembler) code to PL/1 and 645 assembly code, which

is directly maintainable under Multics. Additionally, the Student In-
formation Processing Board intends to expand and improve its SIPB-O
subsystem in the Fall.

Future Plans

Aside from expanding efforts in the areas of graphics and the ARFA
Network, two Multics-related areas are of particular long-range
interest to the Group. The first of these is the topic of follow-on
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hardware to the GE 645. At the request of the M.I.T. Information
Processing Center, members of the Group are working in conjunction
with G. E. Cambridge Information Systems Laboratory personnel on the
specification of a design for hardware that will stand in approximately
the same relationship to the new GE 655 as the 645 stands to the

635 -- that is, the new machine will employ the same technology as
the 655 (some 2 to 3 times faster than the 635/645), with the addition
of appending hardware and a few operation codes. A specification is
being developed that requires only a modest redesign of the 655, and
that is upward-compatible with the Multics software for the 645, Along
with improved performance, the follow-on hardware should offer greater
stability by virtue of being closer to the standard-product line 655 than
is the 645 to the 635, By the end of thLe reporting period, early drafts
of the specifications had been produced.

The second major long-range issue is that of the "exportability" of
Multics. This is not taken literally to mean the running of Multics on
a tot«y different machine. Rather, it is meant to imply the transfer-
ability of ideas -- in the sense of the promulgation of the conceptual
bases of Multics, and of the lessons about the development of large
systems learned in the course of the Group's work on Multics. The
latter aspect is, of course, covered in the journal articles, i eports,
talks, papers and books about the system that have been or .re being
produced by members of the Group. In addition, work has begun on
bringing both the system's internal (i.e., system-programmer-oriented)
documentation and the system programs themselves up to publication
quality. This attempt to describe the system lucidly, along with a like
effort in regard to external (i.e., user-oriented) documentation should
be a major means by which the ideas of Multics are propagated.
Present plans are to publish in book form, in the near future, the
Multics Programmers' Manual (MPM) and an examination of the system
structure prepared by Prof. Elliot I. Organick, Subsequently, publication
of the Multics System Programmers' Manual (MSPM) (which is current-
ly undergoing heavy revision) is planned.
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Technical Papers about Multics

Saltzer, J. H., and J. W, Gintell*, "The Instrumentatipn of Multics",
ACM Second Symposium on Operating System Principles (October 20-22,
1969) Princeton University, pp. 167-174, i

Spier, J. M., and E, ‘L. Organick*, "The Multics ’Inte,r-Process Com-
munication Facility", ACM Second Symposium on Operating System
Principles (October 20-22, 1969) Princeton University, pp. ,83-91'.

Grochow, J, M., "Real-Time Graphic Display of Time-Sharing System
Operating Characteristics'f, AFIPS Conf. Proc. 35 (1969 FJCC), AFIPS
Press, 1969, ' : ! :

Saltzer, 5 H., and J. F. Ossanna*, "Remote Terminal Character Stream
Processing in Multics", AFIPS Conf. Proc. 36 (1970 SJCC) AFIPS
Press, 1970, pp. 621-627. L : K .

Bénsopssan*, A., C. T. Clingen*, and R. C, Daley, "The Multics Virtual
Memory", Second ACM' Symposium on Operating System Principles,
Princeton, New Jersey, ‘October, 1969,

M.L.T. Theses Related t6 Multics

Vogt, C. M, "Suspension of Prbcesses in a Multiprocessing Computer
System", M.S. Thesis, Dept. of Electrical Engineering, February 1970, -
also MAC TM-14, AD-713-989, -

Frankston, R., "A Limited Service ISystem on Multics", B.,S, Thésis,
Dept. of Electrical Engineering, June 1970,

i
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INTERACTIVE MANAGEMENT SYSTEMS
ORGANIZATIONAL DECISION MAKING
I. INTRODUCTION

At the outset of this project in June 1969, two major lines of research
were proposed. The first took as its starting point the computer facili-
ties then available at M.LT. and examined the ways in which these
could be used to further general management objectives. Inextricably
linked with this was our second objective of studying the decision-
making process itself in order to discover how it could be improved
through the utilization of a highly interactive computer system.

Our study took the form of a series of experiments conducted in
several of the laboratories and academic departments within M.LT.
which were more or less similar to general administrative organiza-
tions found in government and industry. In each case, the aninistra-
tive personnel concerned were given access to the Compatible Time-
Sharing System (CTSS) computer. During the relatively long period of
CTSS's existence, a large number of programs had been developed
which offered promise of being useful for management functions. These
ranged from simple text-editing and printing programs to elaborate
facilities for sorting, plotting and retrieving information.

Without going into detail, the results of most of these experiments indi-
cated that CTSS was not very effective as an interactive problem-solving
and decision-making system for managers, for it appeared that the real
problems faced by mcst administrators and managers are significantly
more complex and require a more highly interactive environment than
could be provided by the existing computer programs and systems.

Despite the disappointing conclusions, these initial experiments provided
a store of very practical experience and knowledge essential to the de-
velopment of useful decision-making tools -- information difficult to
obtain by other means. Also, it should be emphasized, not all our re-
sults were negative. The two largest efforts, those within the Electrical
Engineering Department and in Project MAC itself, led to systems that
were of significant operational value and continue to be actively used.

II. E.E. DATA MANAGEMENT SYSTEM

The Electrical Engineering Department management system maintains
information on each course offered by the Department each semester,
and con each faculty member, course secretary, and graduate teaching
assistant in the Department. This information is stored as one large
file of plain text in CTSS, with special codes to identify the specific
items in the file. The standard CTSS text editing commands (TYPSET
and RUNOFF) are used to update the file. Special sorting and report-
generating programs are used to prepare extensive hard-copy reports
used within the Department.

% Preceding page blank

s



INTERACTIVE MANAGEMENT SYSTEMS

This system was originally developed (with internal Electrical Engi-
neering Department funds) to aid in solving the complex problem of
assigning the very large E.E. teaching staff to the large numbers of
courses taught each semester. Once that work was completed, the

data base was expanded to include salaries, charges to research grants
and contracts, and information on funded chairs. Then additional pro-
grams were written to perform other report-generation functions. Only
the latter, more general work and the extensive documentation of the
system have received Project MAC Ssupport.

Although the system is actively used, it is quite primitive in many
respects. For example, it employs a very simple, sequential data or-
ganization, does no input-data validation, and is oriented more toward
report preparation than interactive decision-making. Despite these
drawbacks, the system serves a very useful function and is now an
integral part of the Electrical Engineering Department operations. In
addition, it has attracted widespread interest in the Chemical and Civil
Engineering Departments of M.I.T. as well as by the M.L.T. Comptrol-
ler's Office. The enthusiasm with which this information-management
system has been received by these academic and administrative depart-
meénts at M.LT. is a strong indication of the seriousness of the need
for such management tools both here at the Institute and elsewhere.
The E.E. system building demonstrated once again the vilue of one
consistent central data base that can be used for a variety of purposes.

III. MACAIMS

The work at Project MAC on MacAIMS (Advanced Interactive Manage-
ment System) was designed more to extend the state of the art in in-
formation management than to solve a specific managemen’ problem.
However, throughout MacAIMS development, the problems involved in
managing Project MAC itself and similar research organizations -- both
government and industry -- were kept clearly in mind,

Several facilities of the MacAIMS system are currently in use by MAC
Headquarters. In contrast to the system used by the Electrical Engi-
neering Department, MacAIMS employs a rather complex internal data
organization designed to facilitate interactive retrieval of inforriation.
It also has a much more sophisticated user interface, including a con-
siderable degree of input-data validation. Function-oriented programs
written so far are in the areas of personnel-data management, budget-
ing, equipment inventory, and purchasing.

The personnel management system is the most extensive of the four
functional applications and has been most fuily developed. In addition
to storing the standard information on name, address, telephone number,
age, salary, etc.,, we have found it important to associate effective
dates with a number of these fields and thereby be able to store non-
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current information as well as changes that are anticipated but not yet
formally effected. Thus, the system is useful for showing comparisons
over time., The personnel data-base structure itself is hierarchical and
directly reflects the structure of most organizational entities. For ex-
ample, each Project MAC person is associated with one or more re-
search groups, and each group is supported by one contract. For every
research group there is one group leader.

Careful attention has been paid to the issues of privacy of information
and of access control, Thus, each individual may inspect the entry that
pertains to him, and each group leader may access information about
the people in his group but not in other groups. The Headquarters staff
may have access to all information in the file.

The budgeting system developed within MacAIMS effectively demonstrates
the inadequacies of the CTSS environment for most real management
problem-solving applications. Project MAC has about 30 distinct re-
search groupings (when separate contracts and all other pertinent fac-
tors are considered), for each of which it is necessary to store about
25 discrete pieces of financial information. Furthermore, in order to
provide adequate space for both the past and the future, it is necessary
to store about two years (24 months) of figures: 30 X 25 X 24, or
18,000 individual items of information. Since this information is highly
interrelated by pointers which link associated items, it is necessary
that the entire data base be stored in core memory for fast retrieval.
By the time the structured information and the programs themselves
are added, the total space required easily overflows the available core
memory of the CTSS system, Faced with this dilemma, we decided to
work with only a subset of the complete organization structure and to
continue system design in order to gain some experience with inter-
active budgeting systems,

The purchasing subsystem of MacAIMS is designed to help with the
general procurement problem. As currently implemented within Project
MAC, it assists with preparation of standard M.L.T. purchase orders.
Also it maintains an on-line purchase journal which may be searched
to determine the status of any individual purchase order, the current
outstanding commitments, the total orders given to any vendor, and the
total expenditures by any research group, etc.

The equipment-inventory programs maintain records on typewriters,
dictating machines, and data-communication equipment, and permit
interactive retrieval of specific information as well as preparation of
standard reports. Full historical data on utilizatior. and charges is
also maintained. -

In addition to these specific functional programs, much of the initial
MacAIMS development effort was devoted to building a suitable general
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data-management environment. Once this environment was available,
the implementation of any specific function was a relatively straight-
forward task.

The substantial investment made in developing this general environment
has paid off. Initially, functional programs were written to perform
the same operations that previously had been performed manually. Once
these programs were available, the administrative personnel began to
request additional capabilities. They also came to MacAIMS with un-
usual one-time information requests, e.g., the annual survey on data-
processing employment or the annual Project MAC audit. Because the
basic MacAIMS environment had been built with great care, the most
complex additional capability was implemented with only a few days of
part-time work by a student programmer. Frequently, the one-time,
special requests could be handled in minutes. Thus, we feel that we
have demonstrated the general utility of the MacAIMS system, at least
in part.

During this year we also began the movement of the entire MacAIMS
system from CTSS to Multics, including a substantial redesign in order
to take advantage both of the unique capabilities of Multics and the
experience gained through use of the original systein. By the end of
June 1970, coding had begun on most of the key modules of the new
system with the expectation that initial applications tests could be run
in the Fall of 1970,

In summary, the problem of developing a suitable general-purpose,
man-computer, decision-making environment is considerably more com-
plex than might at first be thought. However, as a result of our work,
we now believe that we know how to solve most of these problems and
look forward in the coming year to developing a system that will be

of significant practical as well as theoretical importance in a wide
variety of application settings.

IV. COMPUTERIZED BUDGET CONTROL

The system initially proposed for computerized budget control in the
Mechanical Engineering Department had earlier been developed in an
M.LT. interdisciplinary research laboratory, but when the system was
transposed to an academic department, a wholly different set of prob-
lems had to be solved, e.g., the various contract budgets were unre-
lated in terms of sponsor, initiation and termination dates. Moreover,
as was discovered after several months' experience, the time-lag in
notifying the principal investigators proved too great in terms of timely
budget decisions. Nevertheless, because of the lessons that had been
learned from the experience, the system was fully documented in an
internal report ("Computerized Budget Generation and Expenditure Con-
trol System", by C. E. Barringer and K. R. Crossen, June 1970).
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Subsequent work in this period included efforts to draw together a
basic personnel file data bank that could be used for various depart-

mental purposes.
V. PROJECT MANAGEMENT IN BUILDING DESIGN

This effort was part of the doctoral thesis research in computer-
assisted building design by James Jackson in the Department of Civil
Engineering. The over-all purpose was to develop means for integrating
the various computer systems used in such designs. Among the goals
of the research was the devising of a data structure for a project file
and a scheme for communication among the multiplicity of computer
systems involved in a building project.

The work concluded with the completion of the Ph.D. thesis in June
1970 ("Building Data Management System").

VI. PROJECT TIP

During the reporting period, several activities in the Technical Informa-
tion Program (TIP) received support from Project MAC, including the
following:

1) Improvement of the TIP System's capability as an administra-
tive information-handling facility;

2) Devising means to enhance the formatting ability of the TIP
retrieval subsystem;

3) Creation of demonstration data bases.

Details of work in all these areas are reported by TIP in the various
reports issued by that Project.

Thesis

Fillat*, Andrew L., and Leslie A. Kraning, "Generalized Organization
of Large Data Bases", Bachelor of Science and Master of Science,
Department of Electrical Engineering; also MAC TR-70, June 1970,
AD 711-060,

* Non-MAC author.
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SIMPLE PROJECT

From June 1969 until January 1970, the SIMPLE group continued the .
experimental implementation of the SIMPLE Simulation System on the {
IBM 1130 computer. (Progress Report V describes the origin of the |
program.) In the middle of January, however, we decided to terminate i
the effort to implement the system on the 1130. It appeared at that
time that the additional time and effort needed to complete that imple-
mentation could be better spent beginning the implementation of SIMPLE
on the Multics system now that the iatter was available. SIMPLE dif-
fers from existing simulation languages in that it was designed for use
on a system permitting both time-sharing and the operation of a
graphical-display device.

Since January, a preliminary SIMPLE system for Multics has been de-
signed, and implementation is proceeding on schedule. 2s of August
1970, a preliminary system will be operational. This preliminary sys-
tem consists of a translator which translates a SIMPLE program into

a PL/1 program acceptable to the Multics PL/1 compiler., We decided
to write a translator rather than to try to modify the Multics PL/1 be-
cause a translator could be written comparatively quickly and simply,
and still provide the user with all the features of the SIMPLE language.
Also, the PL/1 compiler is still being constantly changed and updated.

Currently, we are testing and upgrading this preliminary translator.

We plan to use the system during a Sloan School Summer Session
Seminar on simulation techniques at the end of August. The participants
in the Seminar will use the SIMPLE language to construct, debug and
execute simulation models. Thus, the Seminar should provide a good
"first test” of the new system.

The SIMPLE language, as currently implemented, is described in the
"SIMPLE User's Manual", an internal document almost completed which
will be distributed to participants in the Sloan School Seminar and sub-
sequently will be distributed more generally.

Once this initial version of the SIMPLE system is thoroughly debugged,
we plan to spend the Fall and Winter adding additional features to the
system such as more statistical routines, more tracing and debugging
facilities, better error diagnostics, and possibly a graphical-display
language. Also, we expect to complete the design and start the imple-
mentation of an interpreter to replace the present translator. When
this interpreter is available, all the design goals for incremented simu-
lation will be satisfied.
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PROGRAMMING LINGUISTICS/EXTENSIBLE LANGUAGES
INTRODUCTION

The main theme of the research of the Programming Liuguistics/Ex-
tensible Languages (PL/EL) Group continues to involve improving our
understanding of the basic concepts in programming languages. Our )
work centers about language formalization and language extension. We 'f
continue the close relationship between teaching this material to under- m
graduates and developing fresh approaches to it. ;

‘Motivation and Background 3

The function of a programming language is to serve as a set of con- a
ventions for communicating algorithms -- the communication being J
either between people and people or between people and machines.

The efficiency of the communication process is clearly improved as

the conventions are better understood. This is just another way of
saying that it is advantageous that the programming languages we use
be accurately defined. Conventionally, programming languages have
been defined by English language descriptions, as written in manuals.
The modern idea in this area is to formalize the definiiion, using some
suitable notation. The discovery of what sort of notation is "suitable"
is a major unsolved research problem in this area, a problem that we
have been attacking.

The pay-offs for success include rather obvious ones such as enhancing
the process of teaching new languages and providing standards by which 4
to judge compiler performance. However, there are other advantages. é
One application has to do with proof of correctness of algorithms. A 1
programmer producing a program which he claims to be a solution to

a problem should do more than just show that it works on one or two
selected data sets: He should also be able to prove that the algorithm
is in fact correct. Even more, he should prove that his implementation
of the algorithm is a correct one. Doing the latter requires that he
make statements about the program he has written, and such statements
can take on mathematical significance only if the language in which the
algorithm is expressed has been formalized. For example, as part of
such a proof, one might make an assertion like: "The effect of obeying
this statement is thus-aand-so". Since such an assertion can be sup-
ported only by appeal to the definition of the programming language,
formalizing that definition is a prerequisite for making any formal
proof.

Ano:lier pay-off from language formalization, one that up to now has
received much attention in the PL/EL Group, concerns language exten-
sion. A user of an extensible language facility is provided with a base
language and with tools so that he may build on to that base the fea-
tures that he needs. Communications from the user to the facility are
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of the form, "Please understand that when I say thus-and-so I mean
thus-and-so". Siice the user's activity is specifying to the system the
semantics that he wants his proposed constructs to have, what he needs
is a notation for expressing semantics. Clearly, then, any progress
made in the area of language formalization will have an obvious pay-
off in an extension facility.

The word "semantics" which we have been using is a word that means
different things to different people. Let us discuss it briefly. The
usual dichotomy in programming-language definition has to dc with
syntax and semantics. Roughly speaking, the former relates to the
legal utterances in the language in question, and the latter to the ef-
fect of such an utterance when the program of which it is a part is
executed. We do not concern ourselves with what some refer to as
pragmatics, which we term user interpretation, since it has to do with
how the user understands these effects. For example, the assignment

X:i=x+1

might be a legal utterance (i.e., syntactically correct) in some language,
Its semantics involves something like determining the current value of
the variable X, adding one to it (if the value is a number) and storing
the result back into X. The user interpretation might be, "Tally one
more apple", or "Go to the next row", or "Step to the next case",

This discussion should be kept in mind by the reader when we refer
to "formalization of semantics", since it implies certain limitations on
our current goals. For example, suppose the expression

A+ P

appears in a program. If both A and P denote integers, our semantics
definition scheme will without difficulty ascribe semantics to this
phrase. But the user interpretation might be that A counts apples and
P counts pears, and that such a sum is meaningless, While a language
processor that assists the user by taking cognizance of such ideas is
clearly of interest, our current research has not been in that direction.

Long-Term Activities

Two activities continue to occupy our attention on a long-term basis:
teaching the undergraduate subject 6 231, "Programming Linguistics",
and support of the languages PAL and BCPL. Development of the 6.231
material and the research of the PL/EL Group have long gone hand-in-
hand. In 6.231, the basic concepts in programming languages are taught
largely by exhibiting a formalization of the Semantics of PAL, a lan-
guage that we have devised and whose sole purpose is to be taught,
Although PAL, by design, is Susceptible to a straightforward formal
definition, the creation and polishing of that definition have provided
both insight into the problems and valuable suggestions for ways to
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proceed. PAL is implemented on several computers, the Multics imple-
mentation being used currently by our students.

BCPL has been an interest oi the group since it was devised by Martin
Richards when he was at Project MAC in 1967 and 1968. The language
was designed to be useful for compiler writing, and must be judged a
success. Since the PAL implementation is in BCPL, and since use of
BCPL is fundamental to the LPS project of Prof. Graham, maintenance
and improvement continue to be important to us.

REPORT ON PROGRESS

A major part of the effort of the group has gone into teaching and im-
proving the subject "Programming Linguistics". We continue to derive
a large pay-off from the feedback from the teaching activity. The PAL
formalization is much more complete than it has been in the past, and
the documentation of it is almost entirely finished. Currently, this
documentation is in the form of notes to be used by students, and an
important job for the next year is to produce a more concise docu-
mentation of the formalization., The entire formalization is rather long,
and it is not clear what publishing route should be followed.

Doctoral Research

Robert H. Thomas has been concerned with one particular aspect of
language extension; he has been developing a model in terms of which
the user of an extension facility can specify the semantics of his con-
structs. The model involves a conceptual mechanism whose character-
istics are derived (although are rather different) from Landin's SECD
machine which has so influenced the PAL development. Many features
that are built into the SECD machine are programmable in Thomas's
machine, thus providing a very desirable form of generality. For ex-
ample, the binding of parameters in function application is under the
control of the programmer rather than being built-in. This promising
research will lead to a better understanding of an underlying model for
a language-extension facility.

D. Austin Henderson, Jr. has been pursuing doctoral research on the
problem of transduction of graphical input -- a problem related to but
not directly in the mainstream of the rest of the group. The user of
any computing facility, whether it be for engineering design, language
extension, numerical analysis, or other purpose, must communicate to
the facility what he has in mind. Conventionally, such communication
has involved linear strings of characters, as for example in the text
of a program. All available experience with graphical communication
shows that there are problem areas for which linear text is inappro-
priate, at least when there is an alternative. Important developments
such as Sketchpad have been almost exclusively a matter of making
available to the user the ability to submit structured graphical data to
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~a computer through a (usually interactive) graphics interface. Most

existing application programs in this area have used rather ad hoc
methods for deducing from the graphical information what the user in-
tended: The developments of lexical and syntactlc analysis (which have
so strongly influenced the programming- language game during the last

few years) have received little attention in this area. Henderson's re-

search has been concerned with developing techniques for the analysis

~of scenes. An analogy, which is not exact but which nonetheless may

be useful, is the following: Henderson's work is to the earlier ad hoc

. 'schemes as compiler techniques such as' precedence analy81s and LR(k)

recognizers are to the crude schemes of the late 1950's. This project
has by now proceeded sufficiently far that useful results are anticipated.

BCPL Development , ' ,

As mentloned earlier, the PL/EL group continues to be concerned with

'the BCPL . language and its compllers on Multics and other machines.

Both Prof. Evans and Robert F. Mabee have been active in a BCPL :

’ Users Group, onsisting of people from different installations in the

country who are 1nterested in BCPL. We have had two meetings at
Lincoln Laboratory at which various language topics have been dis-:
cussed ‘We have produced at PrOJect MAC a computerized version of
the BCPL Reference Manual, and the Users Group will consider re-

. vising this to reflect' proposed language changes., of course, no one

can legislate these changes but it seems llkely that many of them  will

be 1mplemented
|

‘Locally, Mabee has been concerned with rewrltlng the BCPL: compller

on Multics. All the programming done in the group is in BCPL, and
much of it would be improved significantly by a better compiler, We
hope to make the compiler run faster, and also to produce better ob-
ject code. The design is almost complete and much of the coding is

' done The code has been part1ally debugged.

As a separate act1v1ty, we have worked to make BCPL available out-
s1de M.L.T. The most exportable version of the language is' that on the
IBM 360, and we have provided tapes of the compller for some 16 in-
stallations. We continue to regard a certain amount of ,proselytizing

.as within our charter.

i
!
{ ! {

PAL Development - ‘ ‘

{

The PAL 1mplementat10n has been llttle 1mproved dur1ng the past year.
Any improvements in BCPL will, of course, make all PAL programs -
run fasier. During this Summer, we hope . to add some significant 'im-
provements to the PAL run-tlme system. This system is virtually
identical to what was written thiee years ago on CTSS. There is room
for improvement. . , f

I !
i
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Starfing last Fall, we have worked with 80 to 100 students a semester
| on Multics using PAL. For this purpose, we have written a subsystem
that runs under Multics and which permits our students to use only
’ PAL and an editor, along with certain useful utilities. Continual im-
- provements have been made in this operating system, and we expect
to make more during the Summer.

Research by‘ Undergraduates

. A senijor thesis has been written by Edward C. Horvath on "APL on
’ Multics: Lexical and Syntactic Considerations". Horvath worked with
, some of the Multics design team who were concerned with APL, and

' ' he has documented certain aspects of the design produced.

Development of code-optimization strategies for the BCPL compiler
o ~ has been a senior thesis project of Paul Ledoux who expects to com-
~ plete the work during this coming Summer.

’ Several séudents associated with the PL/EL Group on a project basis
have made contributions. Judith L. Piggins has been concerned with

~ improving the PAL programming which is part of the PAL formaliza-

tion. A major conceptual change was made in these programs, and she
has been developing the new algorithms on the computer. The work is
substantially done and has already become a part of the course notes.

Michael W. Dickens has continued to work on the PAL compiler and
run-time system on Multics. Dickens's work has been a matter of
i polishing the interface between the language and the operating system.

Louis Reich and Alan Davidoff have been concerned with improving the
PAL run-time Systgm. Most of their effort has gone into devising a
proposal for an improved string-handling package. One of the problems
of improving the efficiency of any program is that it is frequently dif-
" ficult to measure exactly how much improvement has resulted. Since
b there is a PAL implementation on the TX-2 computer at Lincoln Labo-
rzitory, and since the TX-2 has sophisticated hardware and software
" tools for measuring the performance of existing prograins, we took
advantage of the opportunity to make some changes to TX-2's PAL and
to examine the improvement. The results were gratifying, and have
shown where to change the Multics implementation. Hopefully, the two
_ Students will be available next Fall to continue this work. (If not, an
~attempt will be made to find other students to do this.) We hope that
measuring tools on Multics will soon become adequate to do such work
here, but, if not, we shall continue to make use of the facilities at
! Lincoln Laboratory.

John Nestor last Fall worked on improvements in the BCPL library;
| he produced a general clean-up of a previously rather chaotic situa-
; tion, and supplied documentation of the results.
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Bruce Hubbard has made significant contributions to the machine-
language library for BCPL. During this coming Summer, he expects
to write those parts of the library for the new BCPL that must be
coded in machine language,

Publication 1969-1970

Horvath, E. C., APL on Multics: Lexical and Syntactic Considerations,
B.S. Thesis, Dept. of Electrical Engineering, June 1970,
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PROGRAMMING LANGUAGES
INTRODUCTION

The focus of all research and teaching activities of the group is pro-
gramming languages. The research has ranged through theoretical
models of programming languages, implementation of compilers, to
implementation of operating systems supporting these languages. The
theoretical work has been aimed at formalizing the relationship of
canonic systems to other formal grammars, using canonic systems as
a basis for a generalized compiler and for the development of quanti-
tative measures for programming languages.

The theoretical work uses a formal system called canonic systems
that was partially developed and enhanced here at M.I.T. A canonic
system is a simultaneous recursive definition of several sets of strings
over a finite alphabet. Canonic systems have been used to completely
specify a programming language and its translation (as reported in
1969 Progress Report, the work of Ledgard). They include many of
the so-called "context sensitive" features of a programming language.
A canonic system's specification and its translation of a language has
been used to derive a generalized translator (as reported in 1969
Progress Report, the work of Alsop). Complexity measures for canonic
system specifications have been studied.

RESEARCH ACTIVITIES

Relation of Canonic Systems to Other Formal Systems

We have proven a number of theorems relating canonic systems to
Post systems, Smullyan's elementary formal systems, and Chomsky's
hierarchies of grammars, the major theorem being that the class of
type i grammars is strongly equivalent to the class of type i canonic
systems. i equals 0,1,2,3. The class of linear, one-sided linear, meta-
linear, sequential, etc., grammars are strongly equivalent, respectively,
to the classes of linear, one-sided linear, meta-linear, sequential, etc.,
canonic systems, The practical motivation for proving such a theorem
is to assure that a generalized compiler using a canonic system as a
data base must halt. Therefore, we must limit the power of a canonic
system only to describe decideable sets. In classical linguistics theory,
it is known which grammars describe decideable sets and which do not.
Therefore, we are motivated to find some of the classes of canonic sys
tems that describe decideable sets and use this restriction on canonic
systems as input to our generalized compilers.

Power of Canonic Systems

Canonic systems, which were first defined to meet the definitional needs
of programming languages, were felt to be too powerful since they
could generate nonrecursive sets. It is felt that a restriction should
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be placed on canonic systems to render them unable to specify non-
recursive sets yet powerful enough to specify computer programming
languages. The search for such a restriction is the motivation for the
theorems reported above relating canonic systems to existing formal
grammars. Yet we must find where programming languages are in the
hierarchies. We have proven that the set of legal programs of PL/1
is nonrecursive. Thus to specify PL/1 we do need the full power of
canonic systems.

Measures of Complexity

We have developed several simple measures of complexity using
canonic systems that are proportional to the resources (e.g., accesses
to memory, computer time) used by computers in translating languages
specified by canonic systems. One of these measures has turned out

to be proportional to the time of translating a program using a general-
ized translator that has been implemented on CTSS (reported in 1968
Progress Report, done by Alsop).

Using a canonic system C, which describes a set of strings, it is pos-
sible to generate a system C,, called a proof measure function, that
has two arguments, the canonic system C and a string T that can be
generated by that canonic system. We have defined these proof measure
functions so that they are proportional to the length of the derivation
of a string T within C or proportional to the number of predicates
used in evaluating and producing th» string T in the caninic system C.
Both of these are an indication of the complexity of the number of re-
sources a computer may use in generating these strings. For certain
classes of canonic systems, algebraic bounds upon these functions can
be derived from the structure of the system. A practical computer
programmer is not interested in how long or how many resources it
takes to generate a string. He is interested in how long it takes to
translate a string. We have produced another transformation on C that
produces a system C~'that characterizes the recognition of strings
generated by C. We have proven theorems relating the major functions
of C and of C™', thus relating the complexity of the recognition pro-
cedure to that of the language description.

Canonic System Translator

We have implemented a program on Multics that accepts canonic sSys-
tem descriptions of a language and produces Floyd's reductions. We
were motivated to write this program because a method of producing

a computer is to have the syntax phase of a compiler driven by reduc-
tions, and a common form of these reductions is Floyd reductions.
Honeywell Corporation has extended this work to produce an entire
compiler generating system.
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Programming System Environment

As the distinction between the compiler, the operating system, and the
source code becomes less and less distinct in modern computer sys-
tems, we find investigations in programming languages becoming more
involved with operating systems. For example, storage assignment and
allocation of resources are all handled by the operating system, yet
the compiler and the corapiler object code must interface with the
operating system and the file system in which it finds itself. There-
fore, we have within our group devoted some research to the area of
file systems, since we feel this is the heart of an operating system.
We have developed a systematic approach for the design and study oi
file systems. This work is analogous of Dijkstra's development of 2
systematic approach for the design of an operating system. He de-
veloped a way of looking at an operating system in a modular approach.
Our work on file systems has been to develop a modular approach to
the design and study of file systems. This work was conducted by
Stuart Madnick. In his work he has developed seven modules, each of
which is independent of the others cxcept through well-defined calls.

Publications 1969-1970

Dancy, Charles, A Cobol Compiler for the IBM 1130, S.M. Thesis,
Dept. of Electrical Engineering, January 1970.

Johnson, Jerry, File System to Support Time Sharing in a Multi-
programming Environment, M.S. Thesis, Dept. of Electrical Engineer-
ing, June 1970.

Mandl, Robert, Further Results on Hierarchies of Canonic Systems,
M.S. Thesis, Dept. of Electrical Engineering, September 1969,

Ramchandani, Chander, Debugging System to Run Interpretively in
Virtual Memory, S.M. Thesis, Dept. of Electrical Engineering,
January 1970,

Madnick, S. E., "MIS -- Problems Plus a Solution", Computer Forum
Report, Vol. 1, No. 4, July 1969.
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AUTOMATA THEORY

Research in the Automata Theory Group has been fairly eclectic this
year, reflecting diverse interests of new members of the group. Al-
though certain familiar themes in the theory of computation remain
evident in this work -- e.g., the interrelations between the structure
and behavior of abstractly characterized computing devices -- we shall
not attempt to synthesize further common themes in the assortment of
theoretical problems now under study. Instead we summarize briefly
below the main results obtained by members of the group during the
period covered by this report.

Abstract Complexity Theory

Abstract complexity theory is concerned with the consequences of
classifying computations by the amount of computing resources, such

as time or space, required for their execution. The results are ab-
stract in that the computing resource recuirements of particular in-
teresting computations (for example, computing the product of two
numbers) are not considered. Clearly, the ultimate justification of the
theory must come from the insight it helps provide about real computa-
tions; but we caanot expect to fully understand the particular behavior
of a problem like integer multiplication until we have some notion of
the behavior of computations in general. One would like to discover

the most efficient method for multiplying integers. Abstract complexity
theory, specifically the Speed-up Theorem of Blum, points out that
there cannot be any most efficient method for computing certain func-
tions. Thus the apparently practical problem of optimizing multiplica-
tion algorithms may be impossible to solve because there is no optimal
solution. Abstract complexity theory at least enables us to recognize
this possibility.

A monograph summarizing the development of abstract complexity
theory in the past decade is now being prepared by Prof. Meyer. As
an illustration of the nature of this area, we shall discuss a theorem
due to Meyer, jointly with Prof. M. J. Fischer, which was presented
at the Logic Symposium of the University of Manchester, August 1969.

Consider programs for deciding predicates on the integers. A program
decides a predicate P if, started with any integer x as input, the pro-
gram eventually prints out the truth value of P(x) and halts. The com-
plexity of P 1s measured by the amount of time or memory space
which programs'deciding P require. It is intuitively clear that predi-
cates may be very comy:.ex, and moreover they may be complex far
different reasons. The latter concept is frustrating mathematically,
because no one has yet characterized what might be the "reasons" why
a predicate is computationally complex. (Proofs that predicates are
complex are invariably diagonal arguments of recursive function theory,
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with the result that predicates are known to be complex only because
they differ from all predicates that are not complex. This is not a
very satisfactory "reason" for their complexity.)

Suppose that one has two predicates F; P, which are complex. Sup-
pose further that even if one had the akility to look up truth values of
P, in a table, or equivalently if one could evaluate the truth value of
PI (x) in one step for each integer x, it remained just as hard to de-
cide P2 as it was without the table. This state of affairs could be
interpreted as meaning that P was complex for different reasons
than P

Definition. Let P, be a predicate on the integers which can be
decided by some program. Let P, be another predicate such that for
any program which decides PI and which has the ability to evaluate
P, (x) in one step for each integer X, there is another program deciding
P, which runs just as fast on all inputs and does not have the ability
to evaluate Pz‘ Then P2 is said not to help Pp.

Theorem. For any computable function t(x), there exist predi-
cates P' 5 P which can be decided by programs such that

1) any program deciding P, (or P, ) requires t(x) steps for
its computation on input x for all suff1c1ent1y large integers
X, and

2) P, and P, do not help each other.

Active research in this area is now directed at two issues: the struc-
ture imposed on computable functions by a complexity classification,
and the relation between size of programs and complexity.

Random and Pseudo-Random Sequences

The statement that a particular infinite binary sequence @ = Qs @y e s -
is "random" is ineaningless from the point of view of classmal proba-
bility theory. An effort to formalize the idea of a particular sequence's
being random dates back half a century to Von Mises, and new ap-
proaches have recently been proposed by Kolmogorov and Martin-Lof.
These three notions of randomness are described informally below.

A particular infinite sequence is random in Von Mises's sense if it is
unpredictable. If one were gambling, using tosses of a fair coin, for
example, and the sequence described the outcomes of successive tosses,
then predictions of portions of the sequence not yet observed should

be wrong half the time. Formally, a prediction method is a computer
program which, given the first n d1g1ts of a sequence, will print out a
prediction of the n+1s digit. A sequence is Von Mises random if for

any computer program the fraction of the number of correct guesses

among the first n guesses goes to the limit 1/2.
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Martin-Lof's definition can be motivated by a bit of word play. Con-
sider some property satisfied by almost all real numbers (a property
of measure one). If one selects 2 real number from the unit interval
at random, it will, with probability one, have the property. Hence a
randorn real number should satisfy any property of measure one. This
tentative definition turns out to be absurd because no number has all
properties of measure one; but Martin-Lof shows that, if one restricts
attention to measure one properties which are constructive in a suit-
able sense, then random real numbers exist. Random real numbers
can be equated with their bLinary expansions to obtain random binary
sequences.

The third definition due to Kolmogorov is based on the idea that a
random sequence is one without a recurring pattern. The simplest pre-
cise description of a patternless sequence is simply a copy of the
sequence. Thus a finite binary sequence is called random if the small-
est program that prints out the sequence has essentially just as many
bits as the sequence itself. An infinite sequence is Kolmogorov random
if its finite prefixes are random.

Gerard Bruere-Dawson has investigated the relations among these
definitions. He has proven that Von Mises's definition yields a strictly
larger class of random sequences than does Martin-Lof's definition.
Also, Martin-Lof's class of random sequences is at least as large as
Kolmogorov's, but whether it is strictly larger is still an open question.

The natural goal of this work is to provide a theoretical framework

for dealing with random number generators in computing. Any program
that serves as a random number generator yields a nonrandom sequence
by the definitions above, precisely because the sequence is generated

by a program. However one can specialize the definitions of Von Mises,
Martin-Lof and Kolmogorov sc that mention of programs in these
definitions is replaced by mention of fast or storage-efficient programs.
Bruere-Dawson shows that there are computable sequences whose x'h
digit can be generated in t(x) steps but which are Von Mises random
with respect to all programs that run in time a little less than t, for
all recursive functions t. This result is a small step in the direction
of developing methods for constructing pseudo-random number genera-
tors which are known a priori to satisfy all computationally simple
statistical tests for randomness.

Perceptrons

Two variant models of perceptrons have been considered by Bostjan
Vilfan. As defined by Minsky and Papert, perceptrons represent one
example of a device in which computations on "local" versus "global”
information can be informally distinguished. Since connectedness is a
paradigmatic global property, it should be the case that other percep-
tron-like models in which global calculations are restricted share the
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inability of Minsky-Papert perceptrons to recognize connectivity. This
result was verified, but required proofs that are quite different from
those of Minsky and Papert.

Integer Programming

A system S of linear inequalities describes a convex polyhedron P in
n-dimensional space. Embedded in P is another convex polyhedron P’
which is the convex hull of the set of integer points contained in P.
The relationship between the system S and the polyhedron P' is im-
poriarc to the solution of many combinatorial optimization problems.
Murray Edelberg has investigated the following problem: Given S, find
a system S' of linear inequalities which describes the integer polyhedron
P' directly. He has developed a method for transforming S into S' for
systems S of two-variable inequalities. Essentially, this method "rounds
corners" of the polygon P by means of an integer division process
based on a generalization of the familiar division theorem for integers.
The properties of higher-dimensional integer polyhedra have also been
studied, and the conditions under which a system S' describes an inte-
ger polyhedron P' have been determined.

Algorithms on Graphs

Professors Meyer and Fischer observed that Strassen's fast matrix
multiplication algorithm can be applied to find the transitive closure
of an n-node directed graph in 0(n2'9) steps, a considerable improve-
ment over the best previously known algorithms which required 0(n3)

. steps. The graph theoretic interpretation of Strassen's method is now

being studied in the hope that still better algorithms can be discovered.

Complexity of Boolean Functions

Circuit diagrams and functional expressions are reasonably natural
formalisms with which to describe Boolean functions. The complexity
of a Boolean function is reflected by the size of a minimal Boolean
expression for it, and the number of gates in, or the depth of, an op-
timal circuit for it. Asymptotic arguments imply that the majority of
Boolean functions of n variables have size exponential in n, but thus
far no particular function has been proved to have size exceeding n®,

A summary of the few published arguments which enable one to ac-
curately estimate these parameters for certain functions is now being
prepared by Bostjan Vilfan. A class of functions whose size is con-
jectured to exceed any polynomial is being studied.

Algebraic Coding Theory

Work on algebraic coding theory was continued this year by Boon Ong
and Gregory Ruth, under the supervision of Prof. C. L. Liu. This work
is directed toward understanding the algebraic structure of certain
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" classes of codes and the qonstruction of efficient error detecfion and

correction codes. ' ,

Boon Ong devised a new scheme for constructing certain linear and -
nonlinear codes. The basic idea is to concatenate words from two
given codes to yield a longer code with certain distance properties. -
This scheme has been used to construct a large class of linear codes, A
including the Hamming codes and the Golay (23,12) code, and a large
class of nonlinear codes, including the Nordstrom-Robinson (15,8) op-
timal code and Preparata's @" -1, 2" - 2n) optimal codes (n even).
It is believed that this approach will not only aid in understanding the

. structure and properties of many known: codes, but also lead to the
discovery of new and useful codes. i ' ‘

1
t

Regular Languages

! In their study of the counter-free languages, a subfamily of the regular
languages, McNaug'hton and Papert introduce a binary operator "box"

’ which preserves regularity and the counter-free property. They' raised

the question whether "box" was independent of the other familiar lan-

‘'guage operators of concatenation, union, complementation and star.

The question was settled affirmatively by Fischer, Meyer, O'Neil and

Paterson in a note which appeared in SICACT News (Dec. 1969'). A

stronger version of this result pertaining to language derivatives was

subsequently obtai.ned by Meyer and S. Ahy. !

1
i

Probabilistic Automata | | | |

A synchronizing sequence for a probabilistic automaton A is a sequence

that is guaranteed to leave A in' a particular final state probability

& . distribution, regardless of the initial state probability distribution. The

automaton A is said to be synchronizable of order m if it “as a syn-
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