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ABETRACT

Recently acquired high pressure ablation data for graphite and carbon
phenolic are analyzed with the objective of establishing the magnitude of
discrepancies between measured ablation rates and smooth-wall "thermochemical
only" predictions. Data were obtained under the SAMSO sponsored Thermal Pro-
tection Program and are believed of sufficient quality to reach meaningful con-
clusions with respect to the magnitude of ablation enhancement resulting from
the combined effects of rough-wall and mechanical erosion phenomena. Compari-
sons between predicted and measured recession are presented for laminar and
turbulent conditions for models tested in the Cornell wave Superheater, The
AFFDL 50 MW arc-jet, and the AEDC ballistic range. The ratio of predicted-to-
measured recession for laminar and turbulent flow for both materials correlate
moderately well with local pressure.
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SECTION 1

INTRODUCTION

The objective of this study was to calculate the smooth wall, thermo-~
chemical, steady-state ablation response of selected reentry vehicle nose tip
models tested as part of the SAMSO, :rospace Thermal Protection Program. Cal-
culations were performed for POCO graphite and R-6300 carbon-phenclic models
tested in the Cornell Wave Superheater, the AFFDL 50 MW RENT facility, and the
AEDC Hypervelocity Range G facility. These calculations specifically exclude
the effects of the rough model surface on heat and mass transfer rates and the
effects of mechanical ablation on the model response, Thus, these predictions
provide an accurate "baseline" for comparison to experimentally observed abla-
tion response, and these comparisons provide useful input to mechanical abla-
tion and surface roughness effects studies.

The test conditions and model contours for the ablation response pre-
dictions were taken from References 1 and 2 for models tested in the CAL WSH,
from Reference 3 for models tested in the RENT facility, and from References
4 and 5 for models tested in the ballistic range. The selection of the particu-
lar models for analysis was guided by the desire to consider (1) a variety of
materials, (2) a variety of test facilities and conditions, and (3) relatively
high quality test data, particularly contour histories. "Baseline" smooth-

wall thermochemical ablation response predictions were performed for the
following models:

Model No. Test Facility Material
G~9 WSH POCO graphite
CP-16 WSH R-6300 carbon phenolic
12-2 RENT POCO graphite
103A RENT R-6303 carbon phenolic
123A RENT R-6300 carbon phenolic
1750 Ballistic Range POCO graphite
1756 Ballistic Range POCO graphite
1763 Ballistic Range R-6300 carbon phencolic
1861 Ballistic Range R-6300 carbon phenolic
-1~
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In addition to performing "baseline" thermochemical ablation calcula-
tions, a number of parametric calculations for one of the models tested
1in the wave superheater were performed in order to quantitatively assess
the cffects of stveral uncertainties and assumntiong nn tha oomnuted

ablation responscs. The unoertainties assessed in this fashion were:

U Uncerlainties associated with defining the model contour from the
reduced movie film data - nose radius and bi-conic cone angle
uncertainties

o Transition location uncertainties
o) The effect of the pressur. distribution representation

] The effect of unequal spucies diffusion coefficients for carbon
phenolic ablation

0 The effect of the "enthalpy spike" in the AFFDL 50 MW RENT facility.

The analytical techniques employed in these computations are briefly
described in Section 2, The baseline model response predictions are compared
to measurements in Section 3, and appropriate conclusions are drawn in Sec-
tion 4,
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SECTION 2

ABLATION AND STRUCTURAI. ANAT.YSTS COMPUTER CODES

In this section, the computerized analytical tools utilized in this
program are described. These codes evaluate the fluid dynamics, boundary
layer mass and heat transfer, surface thermochemistry, transient in-depth heat
conduction, and thermal-structural response phenomena. The various codes are
described in the followiny paragraphs.

AEROTHERM CHEMICAL EQUILIBR1UM (ACE) CODE

The ACE code evaluates the equilibrium or kinetically controlled chemical
composition of a set of molecular species and associated thermodynamic and trans-
port properties for two types of systems; closed systems and open systems. 1In
a closed system calculation, the relative amounts of each element in the total
system plus system pressure and either system entropy, temperature, or enthalpy
are gpecified. For an open system calculation, the relative amounts of the
chemical elements depend upon various boundary layer mass transfer formulations
and upon the specified injection rates of solid material decomposition products
and surface ablation products. Chemical equilibrium with a solid surface
species provides an additional constraint in open system computations. Further
descriptions of ACE code options are included in References 6, 7 and 8.

INVISCID FLOW CODES, RABBI AND SUPER

Surface pressure distributions and bow shock shapes are obtained
utilizing two computer codes, one for the solution of the subsonic and tran-
sonic nose region, (Realgas Axisymmetric Blunt Body at Incidence, Refs. 9 and
10), and the other for the solution of the supersonic regions. (SUPER, Ref.ll)
Solutions in the subsonic/transonic region performed in this study were
obtained using a zero angle of attack version of RABBI code described in
Reference 10. The steady flow field was obtained as the time asymptotic limit
of an unsteady flow. The shock was treated as a sharp discontinuity. The code
is applicable to thermally and calorically perfect gases or to air in chemical
equilibrium (perfect gas equation of state).

The supersonic flow field program (SUPER) employs the method of
characteristics as described in Reference 1ll1. All shocks are treated as sharp

discontinuities; sharp expansion corners are treated as concentrated centered




expansions; the fluid is treated as a thermally and calorically perfect gas.
The initial data for this code is obtained from the RABBI code, described in

P e —— -- 1)
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In order to make a consistent coupling between the two codes. the
solution in the subsonic/transonic region is done for an ideal gas (here, y=1.2
was used.). The solutions were compared with the solutions for air in equilib-
rium, and it was found that there was no difference in surface pressure distri-
bution and negligible difference in the bow shock shape.

BOUNDARY LAYER INTEGRAL MATRIX PROCEDURE (BLIMP)

The BLIMP code computes numerical solutions of the nonsimilar multi
component laminar and/or turbulent boundary layer with arbitrary equilibrium
or nonequilibrium chemically reacting systems over planar or axisymmetric bodies.
A variety of surface boundary conditions, including coupling with steady state
or transient charring ablation energy and mass balances, are available., Multi-
component diffusion and thermal diffusion are treated through the use of
convenient correlation equations. The code computes its own boundary layer
edge condition from the stagnation conditions, the pressure distribution, and,
if entropy layer is being considered, shock shape input data.

The numerical solution method, termed an integral-matrix procedure
and description References 12, 13 and 14, incorporates sets of connected
quadratics between boundary layer nodal points to relate enthalpy, velocity,
and elemental mass fraction variations to their derivatives with respect to
the boundary layer thickness coodinate, The derivatives of these quadratics
are made continuous at the nodal points thus resulting in smooth but flexible
profiles. The turbulent flow model built into the BLIMP code consists of
dividing the flow into a wall region in which a mixing length description
of turbulent shear is used and a wake region in which eddy viscosity is
related to global parameters of the flow. Further discussion of the BLIMP
code including descriptions of the turbulent model are included in Reference
15, 16 and 17.

CIIARRING MATERIAL ABLATION (CMA) PROGRAM

The CMA program computes the in-depth transient thermal response of a
one~space dimension charring, ablating material. An Arrhenius rate law is
utilized to obtain material decomposition in-depth., The program is an

implicit, finite-difference computational procedure for heat conductions coupled

to one of three ablating surface boundary conditions. These options are:
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e A film coefficient model which accounts for convection -
radiation heating with coupled mass transfer, including
the effects of unegual heat and mass transafer. nnecual
species diffusion rates, and surface chemical reactions
in equilibrium or kinetically controlled.

e Specified surface temperature and recession rate.

e Specified radiation view factor and incident radiation
flux for a stationary surface.

For the first and last options a surface energy balance is utilized in
conjunction with the in-depth implicit finite difference solution to define
surface temperature. Surface temperature is specified in the second option.
Surface thermochemistry data generated by the ACE code is utilized by the
first option. Additional descriptions of the use and operation of the CMA
code are included in References 18, 19 and 20.

AXISYMMETRIC TRANSIENT HEATING AND MATERIAL ABLATION (ASTHMA) PROGRAM

The ASTHMA code is a two space dimension transient heat conduction code
for ablating but non~-charring materials. It accounts for two-dimensional
surface recession, and allows for anisotropic in-depth thermal conduction.
Surface boundary counditions are in general the same as those described above
for the CMA code. Input to the ASTHMA code consists of geometry specifications
(in terms of a finite difference grid), material thermal properties tables, and
heated surface boundary condition information as a function of time. Output
consists of two dimensional thermal properties ans surface recession. Provision
is made for subsequent input of thermal data into various structural analyses
codes, Further description of the code are included in Reference 21 and
addenda thereto.

DEFORMATION FORMULATION OF ORTHOTROPIC AXISYMMETRIC SOLUTION OF INELASTIC
SOLIDS (DOASIS)

The DOASIS finite element stress analysis code determines the anisotropic,
elastic~plastic~thermal solution (i.e. displacements, stresses, strains, etc.) of
any two dimensional structure (axisymmetric, plane stress or plane strain) for
any prescribed mechanical and/or thermal lcad. The inelastic response is based
on deformation plasticity theory, in conjunction with the appropriate
orthotropic material formulation. The finite element method of sclution is
employed which subdivides the structure into a number of "finite elements" with
nodes. The solution consists of finding the displacements of these nodes and
then the resulting strains and stresses in each finite element. When inelastic
phenomencn occurs, the nonlinear solution is found by iteration. Further details

of the theory and methodology of the DOASIS code may be found in Reterences
22 and 23.
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SECTION 3
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MATERIAL RESPONSE PREDICTIONS

This section presents experimental data, describes how the baseline
calculations were performed, and compares predicted to measured model response. :
Calculations for the ballistic range experiments are presented in Section 3,1 ff
and are followed, in Section 3.2 by a description of calculations for the wave ?5
superheater and the 50 MW RENT facility, &

3.1 BALLISTIC RANGE EXPERIMENTS

The recent improvements in the instrumentation and data acquisition
capabililities of the AEDC 1000 ft Ballistic Range facility have enabled ex-
perimental data to be ubtained for conditions closely approximating those
encountered by high performance reentry vehicles. These data should be useful
not only in experimentally verifying the applicability and survivabllity of
new heat shield materials, but also in the evaluation and improvement of analyt-
ical techniques for the prediction of material response, In this section, de-
tailed predictions of the thermal response of four model shots in the AEDC
Range G facility durlng the recently completed SAMSO/Aerospace test program] '
are described. Comparlsons between predictions and test measurements provide
a basis for assessing the quality of the data and the current analytical tech-
niques, The predictions were performed utilizing the computer codes described i
above in Section 2. The test conditions of the range shots for which the cal-
culations correspond are given in Section 3.1.1. The inviscid flow solution
(shock shape and pressure distribution) are presented in Section 3.1.2. Re-
sults of boundary layer computations are discussed in Section 3.1.3. The sur-
face and in-depth transient thermal response predictions (including recession)
are shown in Section 3.1.4. And the evaluation of model thermal expansion dur-
ing one of the range shots is described in Section 3.1.5.

3.1,1 Test Conditions

Four ballistic ranye shots were selected for analysis in this study.
The tust conditions, model geometries and materials are summarlzed in Table I.
All four shots were p:rformed in the AEDC 1000 ft ballistic rangeLdurlng the

SAMSO,/Acrospace test rogram, ]Two shots for each of two materials were chosen
tor these calculations to demonstrate the effect of both different materials
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TABLE 1
SUMMARY OF BALLISTIC RANGE SHOTS
SHOT No. 1750 1756 1763 1861
Material (Layup Angle) POCO POCO R-6300 (30°) R-6300(30°)
Range Temperature (°F) 75° 75° 75° 75°
Range Static Pressure (atm) 0.364 0.458 0.366 0.236
Blast Tank Static Pressure(atm)|[0.013 | 0.038 0.037 0.026 |
Launch Velocity (ft/sec) 17860 17000 17900 18580
Time to Last Station®
(millisec) 57.9 62,1 56.9 52.2
Initial Geometry (Sphere~Biconic)
Nose Radius (inches) 0.040 0.040 0.040 0.045
Fore Cone Hzlf Angle (Deg.) 45° 45° 40° 37.5° ;
Aft Cone Half Angle (Deg.) 16© 160 16° 16© F
Ballistic Coefficient(psf) 58 58 58 78
Init.stag.Pt.Pressure]J (atm) 122.1 139.2 123.3 85.8
Init. Stag. Pt. Enthalpy
(Btu/1lbm) 6372 5773 6400 6896
Stag.Pt, Recessiog (mils) 25 24 44 36
(a) Time from launch, Station 42(940 ft., including blast tank)
(b) Entrance to range tank.
(c) JANAF base state, 298°K,
(d) Station 42.

|
!
:
!




nd varying test conditions. In-flight model profile traces and the correspond-
L recession measurements were studied to define those shots which provided
the most consistent set of response data. Shots were graded not only on the
clarity and resolution of the stagnation point recession measurements, but also
on the degree of symmetry and gquality of shape data on the fore-cone section

c
‘

Lhe wwoddl, fwsive daka {ut ithie shous predicted should provide valuable com-

parisons for both the laminar nose region and the turbulent cone region. The

twe materials feor whi 15 were perforumed (FOCO yraphite and KR-6300
carbon phenolic) are representative of currently utilized reentry vehicle ther-
mal protection systems. Figure ! shows the overall shape of the two POCO

graphite models,

Model velocity histories determined from test data for each shot are
shown in Figure 2. The velocity decay is due to aerodynamic drag on the test
model. Based upon real gas computations of flow past a normal shock wave
(ARCE code), the stagnation point enthalpy and pressure histories were obtained
from the range static conditions and the velocity histories. Stagnation point
pressure and enthalpy histories are shown in Figures 3 and 4, respectively,
for each range shot considered. These histories along with the inviscid flow
solution discussed in the following section provide the necessary input to the
boundary layer and thermal structural calculations.

3.1.2 1Inviscid Flow Sclutions

The inviscid flow about the ballistic range model is one of the primary
inputs to the evaluation of the boundary layer flow and the model thermal-
structural response. An inviscid flow solution for a particular body geometry
consists of the bow shock wave geometry and the associated pressure gradients.
To evaluate these, the RABBI and SUPER codes discussed in Section 2 were uti-
lized assuming ideal gas flow (y = 1.2). For the hypersonic conditions of
interest here (Mach numbers between 11.0 and 16.5), effects of varying stagna-
tion pressure and Mach number on shock shape and pressure distribution are
negligible., This was verified by performing calculations at various free
stream conditions for the 45° half-angle sphere-cone nose geometries used in
shots 1750 and 1756 and shown in Figure 1.

The variation of model geometry due to ablation during flight does alter
the inviscid flow. To account for this variation, in-flight model profile
traces were utilized to define approximate shapes for each time at which bound-
ary layer solutions were obtained. Because of the extremely short exposure
times (+60 milliseconds), recession was small so that, although ablation
occurred, the models remained roughly sphere-cones. That 1s, ablation resulted
in only slight increases in the nose radii and for the R-6300 models slight de-
creases in the cone half angle. As a result, sphere-cone solutions of the
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inviscid flow could be used throughout. This provided a ygreat simplification

R S

since inviscid flow solutions are identical for any similar geometrical shape.
and Figure 6 gives the shock angle as a function of normalized radius (from
the body centerline) to the shock. The solution for the 45° half angle cone
was used for all POCO graphite model solutions while the solutions between 35°
and 40° were utilized for the various geometries obtained by the R-6300 models. #

i s

3.1.3 Boundary Layer Solutions

The BLIMP code described in Section 2 was utilized to compute the heat
transfer coefficient distributions around the ballistic-range models for sev-
eral times during each shot analyzed. The solutions accounted for the varia-
tions in free stream conditions, model geometry, and shock shape as described
above., Cross plots of transfer coefficient versus time for the body locations
of interest provided the coefficient histories required as input to the thermal
response codes.

The BLIMP solutions for both the POCO and the R~6300 models were per-
formed utilizing a surface energy balance formulation which accounts for steady
state ablation of the nose tip material in thermochemical equilibrium with the
gas at the surface. Also, the assumption of equal diffusion cocefficients for
all species in the boundary layer was uil.ilized. This assumption is further
discussed in Section 3.2 below. No attempt was made to account for surface
roughhess in these boundary layer calculations.

The effect of the large entropy gradient at the boundary layer edge
due to the shock wave curvature was guite significant in these solutions. This
entropy gradient occurs because the mass at different locations in the boundary
layer and the edge gas has entered the flow through different shock angles. 1In
regions where the shock curvature changes rapidly, this entropy layer results
in an edge vorticity much different than zero. The effect on the predicted
heat transfer ccefficient distribution is shown in Figure 7. Several other
solutions for the same geometry are shown for comparison. As would be expected,
the entropy layer solution near the stagnation point is near the solution found
using only a normal shock entropy, while out on the conic region, the entropy
layer solution approaches that obtained using sharp cone shock angle to define
the edge entropy. Velocity profiles at a streamwise location of 0.008 feet
for the three distributions are shown in Figure 8. 1In the figure, edge velocity

is used to normalize the local velocity in the boundary layer. The effect of
the vorticity (i.e., the entropy layer) is tc produce the non-zero slope in
profile at the boundary layer edge.
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The minimum point in the coefficient distribution (at a streamwise loca-
tion of 0,010 feet) of Figure 7 occurs because the edge vorticity passes through

L

a maximum at this point. The velocity gradients within the boundary layer are
least severe and the minimum in coefficient results, Some question exists as

-

to the reality of this edge vorticity effect on the coefficient distributions.

During the running of the various BLIMP solutions considerable difficulty was
encountered in several cases at this location on the body. Convergence was
often defeated by apparent instabilities in the numerical technique or in the
turbulent model being employed. At times, more than ore solution appeared i
mathematically possible. Once past this region, the solutions were quickly
obtained and appeared correct. As seen in Figure 7, downstream of the minimum
the solution approaches that for the sharp cone since edge vorticity decreases
4 to zero and edge entropy approaches the sharp cone shock angle value.

A feeling for the development of the boundary layer can be obtained
from Figure 9. Shown are five veclocity profiles for various locations on the
body. Local velocity in this figure is normalized by a reference velocity
(the velocity which is calculated for an isentropic expansion to the local

T AT T e

pressure reatio for a normal shock). Notice that due to entropy layer this
reference velocity can be less than the computed edge velocity. The five pro-
files shown correspond to the following body locaticha: .

® A Laminar profile near sonic point
® B ~ First turbulent profile '

@ C - Solution upstream of vorticity maximum sihowing entropy layer i
effects

® D - solution downstream of vorticity maximum showing boundary layer
thinning due to entropy layer effects

4 ) E - Last solution approaching sharp cone profi.e,

The heat transfer coefficient distributions for each BLIMP solutior per-
formed in this study are shown in Figure 10. The trends discussed abo're ovur

throughout although the locations and degree of severity change be--us.- W the
varying test conditions and geometries. For the two carbon phenol. i :, pre-
dictions were carried out only to the middle of the fore cone where 7%. 95t

CMA calculation was performed. Examples of typical boundary layer uoonosition

A TR T TG 3 TN o e A TED e

profiles are shown in Figure 11, One is for a POCO graphite prediction and
one is for an R-6300 carbon phenolic prediction.

:
N
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3.1.4 Comparison of Measured and Predicted Ablation Responses

The thermal and ablation response predictlons LOr the two rFUCU yraphitie
shets were performed by the ASTHMA code. The CMA code was utilized to compute
the thermal and ablation response for two locations on each of the two R-6300
carbou pherolic models of interest, The ACE code was used to generate the
equilibrium surface thermochemistry data required as input to both the CMA and
ASTHMA codes. Plots of some of these data are given in Figure 12. Shown for
the POCO graphite predictions are the normalized ablation rate versus surface
temperature for various values of pressure, For the R-6300 carbon phenolic,
normalizad ablation rate versus surface temperature for various noraalized
pyrolysis gas rates at a particular pressure are shown.

Material thermal conductivity variations with temperature are given in
Figure 13. The values used in the R-6300 predictions were those of a very
similar material MX-4926 carbon phenolic at a 0° layup angle. Extrapolation
to temperatures above 8000°R was required.

Various results of the transient thermal response predictions are given
in Figures 14 through 16. Figure 14 shows the variations of gurface tempera-
ture at various locations on the respective models. Also shown as symbols are
various steady state surface temperatures computed by the BLIMP ncde. This
comparison verifies that essentially steady state ablation occurs throughout
the ballistic range shots.

Figure 15 gives several typical predicted in-depth temperature and, for
the R-6300 carbon phenolic, density profiles at the last measurement station.
The figure indicates that the back wall temperatures in the POCO graphite
models are high enough to cause the epoxy bonds and Scotchply backup to begin
decomposing (~1000°R). Heat soak did not reach the back surface of the R-6300
models, however.,

The predictions of nose region recession for the four shots are shown
in Figure 1l6. Comparison is made between the final measured ycometries and
the predicted surface locations data points. For shot 1750, an additional
prediction which accounts for thermal expansion is shown. This prediction
will be discussed in the following section, 1In general, less ablation was
predicted than was indicated by the in-flight model photographs. At the stag-
nation point for all cases, predicted recession was about 1/3 of neasured,
while on the cone region, predicted was only about 1/2 of measured.

3.1.5 Thermal Expansion Calculations

Two elastic thermal expansion calculations were made utilizing the DOASIS
code described in Section 2, The ASTHMA prediction of shot 1750 prov. .2d the
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necessary thermal and mechanical loading plus the geometrical input data. The
finite element network and temperature distributions employed are shown in Fig-
ures l7a and b respectively. Thermal-structural properties of the POCO graphite
were obtained from Reference 24. Predictions were made for two back wall sup-
port conditions. These were:

) Nose tip supported by Scotchply plug on the back wall (Surface A
in Figure 1)

] Nose tip supported by beryllium-copper afterbody at the end of the
aft-cone (Surface B in Figure 1)

The second condition more accurately represents the actual support condition

for shot 1750. For comparison purposes, both cases were run. For the support
at surface A, the thermal expansion at the stagnation point was 2.5 mils and

less than 1 mil at the bi-conic intersection. FPFor the support at surface B,

the thermal expansion was 6.5 mils at the stagnation point and 4.0 mils at the
bi~conic intersection. The differences between these two surfade expansions
comes from the differential thermal expansion between support A and B. Figure
l6a shows the predicted final contour corrected for the latter thermal expansion.

Sufficient high temperature material properties data was not available
to adequately perform a reliable plasticity analysis, however, it should be
pointed out that inclusion cof plastic flow at the outer surface (T > 5000°F)
would decrease the predicted thermal expansion. Consequently, the thermal ex~-
pansion shown in Figure l6éa should be considered as an upper limit,

3.2 WAVE SUPERHEATER AND 50 MW RENT FACILITY TESTS

Calculations presented above for ballistic range tests required consid-
eration of the changing free stream conditions and to some extent, changing
model contour with time. The wave superheater and RENT facility tests are
characterized by only minor changes in test conditions with time and the par-
ticular test models chosen for analysis were selected on the basis of having
established a relatively stable shape. Because of the high convective heating
rate conditons, it is reasonable tc assume that steady state energy and mass
balances at the surface are representative of reality for test times of approx-—
imately 1 second and longer. Hence, for each model analyzed an ablation predic-
tion was performed for one point in time. The test conditions and model con-
tours are described first, in Section 3.2.1, and are followed by a description
of inviscid flow representation and boundary layer solutions in Sections 3,2.2
and 3.2.3 respectively. Predicted ablation response and comparison to data
are given in Section 3.2.4.
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3.2.1 Test Conditions and Model Contours

For the models tested in the WSH, the stagnation point impact pressure
(Ptz) and total enthalpy (Hp) values used in the calculations were taken 4di-
rectly rrom Reterence 1. The enthalpy values reported in Reference 1l were

decreased by 129. Btu/lbm to be consistent with the JANAF enthalpy bass state
employed here.

For the models tested in the RENT facility, the stagnation point pres-
sures used in the analyses accounted for the flight impact pressure decay along
the stream centerline. At a given axial location the impact pressure was ob-
tained from the measured chamber pressure (Ref, 3) and the ratio of impact to
chamber pressure shown in Figure 18 taken from the measurements reported in
Reference 25. The bulk stream enthalpy values for the models tested in the
RENT facility are reported in Reference 3. However, calorimetric heat flux
measurements reported in References 25 and 26 indicate that there is a sig-
nificant centerline "heat flux spike" in the RENT test jet at high pressure
conditions. Centerline enthalpv measurements have not yet been made for the
RENT test jet although heat flux measurements and heat transfer calculations
in Reference 25 suggest that the high centerline heat flux results because
the centerline enthalpy is on the order of 5000 Btu/lbm for the 2400 Btu/lbm
nominal bulk enthalpy high pressure test conditions. Alsco, the studies of
Reference 27 demonstrate that the model response is essentially unaffected
by the enthalpy of the fluid away from the vicinity of the centerline provided
the ablation model is aligned with the enthalpy spike. It stands to reason
that a misalignment would result in an asymmetric ablation contour and this
wag not observed for the models that were analyzed. Thus, ablation response
calculations for models tested in the RENT facility utilized an enthlapy of
5000 Btu/lbm. To assess the affect of this enthalpy uncertainty, an additional
calculation was carried out using the reported bulk enthalpy, and this is dis-
cussed in Section 3.2. The test conditions considered for each model analyzed
are listed in Table II.

The model contour histories obtained from the movie film data and the

contours analyzed are shown in Figures 19a through e. The film data was ob-
tained from References 1 and 3 and the model contours were selected to repre-
sent an average effective axisymmetric steady state shape. Figures 20a through
e present measured surface recession as a function of time for all models.
Also shown in these figures are the effective cone half angle and nose radii
as deduced from the film data for all models except model 12-2 which did not
assume a bi-conic shape. For models tested in the wave superheater the mea-
sured stagnation point surface temperature history is also shown. By way of
example, the method employed to select the time at which analyses were
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performed may be illustrated by referring to Figure 20a for model G-9 tested
in the wave superheater. For this particular case, the contour analyzed was
selected to havae a 64° cona hals anslc and & avse iadius wi U.08 inch. fhan
contour corresponds approximately to a time of 2.3 sec which is after most
shape change has oceurrad, the surfacc temperature has leveled out, and the

recession rate is relatively constant.

As indicated in Figure 20a, there is considerable uncertainty associated
with estimating an effective cone half angle and nose radius from the film data.
WSH tested models ablated to somewhat asymmetric shapes as indicated in Figures
l9a and b while models tested in the RENT facility (Figures 19¢ through 19e)
displayed only minor asymmetries. The effects on the ablation predictions of
uncertainties associated with defining an effective nose contour from the movie
film data were assessed by carrying out additional solutions with bracketing
values of nose radius and cone half angle. It was found that the effect of
these uncertainties on predicted recession rate was from 10 to 15 percent.
Detailed results from these solutions are given in Section 3.2.

3.2.2 1Inviscid Flow Representation

Boundary layer solutions require specification of (1) the model surface
pressure distribution, wnd (2) if shock curvature is great, the shock shape
must also be specified in order to properly account for vorticity at the bound-
ary layer edge. A single solution was performed accounting for vorticity and
it was concluded that entropy layer effects are negligible for the test con-
ditions and model shapes being considered here (see Table II). Because a de~
tailed shock shape specification was not required it was not necessary toc per-
form numerical inviscid flow field solutions as was required for the ballistic
range tests described in Section 3.1.

Pressure distributions for all models were computed employing a corrected
form of the pressure distribution correlation suggested in Reference 28. The
correlation suggested in Reference 28 gives unsatisfactory results when the
free stream pressure (nozzle exit pressure) was significant relative to the

model stagnation pressure, The pressure distribution correlation equation
employed is given here,

-40-~
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Rmax is the maximum of either RN or R

* denotes sonic condition

P, = stagnation point impact pressure
2

P = free stream static pressure

o©

The sonic point is located by assuming a Newtonian pressure ratio there which
vields:

P* - p
8*=(’:OS1 F—:——P—:
o 0
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The above pressure distribution equation is used for the stagnation point to
the sonic point. A Newtonian P given by

P=F + (1 - 5;)00528

o

is used downstream of the sonic point and up until

ar ap

ds|Newtonian =~ ds|Prandtl-Meyer

and P is obtained from the Prandtl-Meyer expansion expression downstream of
this "match point,"

Pressure distributions for all models are shown in Figures 2la through
e, In addition to the pressure distribution for the baseline contour for model
G-9, IMigure 2la shows pressure distributions employed for investigating effects
of uncertainties in measurement of cone angle and nose radius as well., Also
shown for comparison purposes is the Mewtonian pressure distribution for this
model. DBoundary layer solutions including steady state surface recession rate
calculations were performed for all pressurc distributions shown in Figures 21la
through e.

3.2.3 Boundary Layer Solutions

All boundary layer solutions were performed with the BLIMP program, With
the exception of one solution performed for model G-9 accounting for entropy
layer effects, all solutions were performed assuming the boundary layer edge
thermodynamic state was represented by an equilibrium isentropic expansion
from stagnation (normal shock) conditions. For all models which assumed a
conical nose shape (all but model 12-2 which blunted) boundary layer transi-
tion was assumed to occur just past the sphere cone junction. For model 12~2
(POCO graphite tested in the RENT facility) the boundary layer was assumed
laminar over the entire nose. A brief study was also conducted to assess the
effect of transition location upon predicted recession for the models which
assumed a conical shape. Varying the transition location from the stagnation
point to just downstream of the sphere cone junction had negligible eftect
upon predicted recession rate in the mid-cone region.

A4ll solutions but one employed the assumption of equal molecular diffu-
sion coefficients and the neglect of thermal diffusion., One solution was per-
formed with hest estimate molecular diffusion coefficients for all species and
included thermal diffusion as well. This solution was performed for an R-6300
carbon phenolic model (CP-16) and revealed only a 3 percent effect on predicted
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recession rate when compared to the equal diffusion calculation for the same
model.

Steady state energy and mass balances were assumed for all models. The
steady state mass balance implies that the relative quantity of chemical ele-
ments being ablated from the surface are in the same ratio as they are in the
virgin material. The steady state energy balance assumption implies that the
rate of heat conduction into the material from the ablating surface is equal
to the product of mass loss rate and enthalpy increase of the ablation material
from its initial temperature to the surface temperature.

=mlHy = Hiivia1 ablation
w
material

9y) conduction

3.2.4 Ablation Response

This section presents results directed at assessing the effect of sev-
eral uncertainties upon predicted ablation responge and compares measured to
predicted ablation material performance.

3,2.4.1 Effect of Uncertainties

Prior to making predictions for comparing to measured data, an assess-
ment was made of the effect of various uncertainties upon predicted ablation
rate, These uncertainties fall into two categories: ~"

1. Experimental Data Uncertainties
o Inability to precisely measure nose radius from film data

o Inability to precisely determine the body cone angle from
film data

© Uncertainty in stream total enthalpy in RENT facility
2. Uncertainties in Mathematically Modeling the Physics
o Location of boundary layer transition
0 Uncertalnties in assessing the nose pressure distribution
0 Are entropy layer effects ilmportant?

o] Is it necessary to treat unequal molecular diffusion ‘
coefficient effects?

With the exception of the total enthalpy uncertainty (2530 Btu/lb bulk
enthalpy vs. 5000 Btu/lb on the centerline inferred from heat flux measurements)
in the RENT facility, uncertainties investigated generally resulted in less
than a 15 percent change in surface recession rate on the conical (turbulent)

-4~
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portion of the test model. Utilization of the bulk enthalpy rather than the

estimated centerline value in the RENT facility resulted in a 35 percent de-

o®2a3s in piedicied ablation rate.

The effect of many of the investigated uncertainties upon predicted

ablation rate is shown in Figuresg 22a through e. A tabular summary of the

erffect of the investigated uncertainties is given in Table III.

3.2.4.2 Comparison of Predictions with Data

The predicted and measured axial surface recession rates are shown
in Figures 23a through e.

The axial recession rate is ghown in the figures
for compariscon,

The experimental recession rates are all shown as horizontal
lines since, at the times analyzed, relatively stable experimental shapes were
observed. Predicted and measured stagnation point surface temperatures are
«luo shown for models tested in the wave superheater.

The predicted stagnation point surface temperature for the POCO ygraphite
model in the wave superheater (Model G-9) is about 350°R above the measured
value, whereas the corresponding prediction for carbon phenolic is 1300°R above
the mzasurement., It is believed that the large discrepancy in predicted sur-
face temperature for the carbon phenolic model is a result of mechanical erosion.

-47-

1

PPN NP S




i
t
i
i
!
t
‘4,
H
i
!
;
1
t
H

I GZ° 394 woxy uaxe3
wqi/nNlg 0600S JO H SUTTIIIUID © pPazITIIn huwwﬁomu INTH
36¢ anoqe Aq 23ex uotjeIAR poijel SUGTIETNOTRD MW 0§ IdY3I0 ITTYM (wqi/nle 0£SZ) MWOS 11ad4Y urt
-noTes oYy PesesrddP H AING JO UOTIEZITIIN Z-¢1 H ATng pa3zodax pazT[Tin uoTIRINOTED oy1ds Adreyaua
SUOT3TPUOD s3] *3au
103 93eI UOTITIAL arTousyd-noqIPs 10 309339 3o onbjuyosal ay3 Huisn orroudyd-uoqred 103 S3U3TOTJJ20D
(3¢ ueyl Ss9T) TTewWs ' SPY UOTSNIFTP Tewxay3y uoTSNIITP TewIayj pue SJUITDTIIV0D UOTSNIITP uoISNIITP
pue S3udTOTIIV0O UOTSNIITP sotoads tenbaun 9T-dd satoads (enbaun 103 pajuncdde UOTINIOS *‘TI'H satoads Tenbaun
mq T aanjeaind
adeys dooys o3ewixoxdde butisn sooys o3 =anp
Suo73TPUOS 983yl I03 3033308 BTqIbriboU 6-9 uoTINTOS *7I°g UT I10J pajunoooe iaakey Adoxjua xakeT Adozjua
T ssay youut mc...».!wwwxuzJllx.i?-l.
29A0 UOTBBX MOTJ JUBTNQIN3 UT UOTSEIDDX (suotjeInoTed uoTyejuasazdax
ut obueyo 3Ing ‘URTUOIMAN YITM R0V Inoqe I8y3o I03 PISN ‘BZ 3 ‘UOTILTIIIOD IAOT-wyed uoTINQTIISTP
Kq paseaIout UOTssa091 jutod uoljeubris 6-9 031 BATIRTDI) UOTINGTIISIP 2INSSaId URTUOIMNAN @anssaxd
) — Ino3uon Mmum .aur.oum ““““ i
pa23jewTl}ss JOJ I3eX UOTIRTAR 6-9 jutod jusbuey jo weaxjsumop 3Isn{ uUOT3ITSURI]
) ) WIOJFUnR DATIE[AR SPTOTA
. uo§3ed07 UoTl -
-} sue13 weoxjsdn uor3ISuery 950U DTUOS-Tq
30 3uspuadaput 3e dun{ a3jex uoTjEIqQR 6-9 jutod juabue3 je uoT3ITSUEII 103 uoT3EDS0]
: »wumwc uotbox “pue batsesy dixeys spiatik uoT3TSURI]
‘ auod trea13suMop : Tjutod jusbwes 3o | o N
-, U0 23X UOTI A3Turota ut -yead uorjejqe 6-9 jurod uorjerube3s e uolITSuURIY
-e1qe u:wasnusulfl pue HSutjeay spisTi ‘
T . $¥1 3noqe Xq vwmmwu.mmﬂvlln T
,:o..ﬂuumw BUOD PIRMIOJ UO Bj3eX UOTIE[QE 6-9 o0T + @TBue TeutwoUu = at1bue elep wilj
$z7.3n0qe Aq poseaIosul woxy IThue 3uod
017098 BUOD PIEMIO] UG 9IBI UOTIBQE 6-5 o071 - oTbue TeuTWOU = a1bue oTUoD~1q asou
: uotbal auod ay3 I9A0 931 UOTIRIQe T oo
ay3 uo uom.uu,w T1eWws Ax9A © pey 3ng ‘3ST
. 3noqe ‘Aq ®3ex UOTSS2539x jutod uorjeubess ejep wit3y
9Y3 poseaIosp snipex asou ay3 butrqnop 6-9 Ny reutwou x z = Ny woIxj sSnIpeir asou
AIWAI0IYAd

LINSTd

. SVYM SISATVNY
'HOIHM Y03 'TIAOW

AIZATYNY JONVLSHWNO¥ID

*asou teoTiayds a8yl Y3TM SUOD STY} JO UOTIOBSIAIUT
*

B ay3 03 si8jysa ,jutod judbue3, dyj pue ‘51Uod-1q pajuniq Arrestiasuyds e

B

3o 3jutod uoTjeube3s SY3 3SIILOU DOBJINS T[EOTUOD dY3 O3 SI9JaI ,uolHAIX

auoo, 9yl ‘sasuodsax uorieiqe 19pow pa3dIpaid SY3 U0 SATIUTRIIIOUN

SNOTIBA JO 2OUSNTJIUT dY3 SSasse 03 pawroyiad SUOTIEBTNITED JC AIRUWNE  ~ (1! i

ALNIVIMIONN

L . ..

-48~-




CANNIING? 11 22N

> _g3=323-."%5 arwv (6-9 13a0n) 3Lird72y oXxo2

ATENY 279 2ANTD (2

»2-9% x| ALYN AX007 ALIMWNRZLY
41° o 41 o [°T~2

0

I\

!
| | m
i NOUNWS ANGE — ——
..uT(J 7 SNOBGWE T $ATTRN XTVH ANTT HIIM

80°

[PPSR i B FE R T

g_.xu}_...f. P TR

et mte T S P

23¢/N " g ' aLvd NOIS53733 37vEaNs TYWaON

e ca ™ i . - ewmple . T T T meseesadne

A2 NOUNEY d3AL)1a324
NSHN SAULNIVLIZIZNN 0 173443 17 32nPH

22:19AHFASNSG IAVM (6-5 SRdaW) ALIHAYZD 0304
. SNIava 360N (v

CANINL X ILYNICACO? GIMWYIALY

41 ot o” ol’ (=N o
<
z
9
n
z
>
100 €
B
C
Iy
&
o
| ]

—_——————— .
\\\ _/ =~ _.‘\\ m
Il —Jao: T
®
Y]
Fa
% &

ke M1OF3._0$ ANBGE ———

m,.. MY O a RNy g g =Ny —— »
: . . ol" =z
Y
m
(3N

~49-

ey |




2393 234NS IAVYM (bb-D NAGON ) 3LiIrdVAD odad
NOILNWBLSAE 32N$ea3d (8

iniadts

™

aanuIlhe? 17 A2N814

SAHIN! 'x  3IYNAACOY FSIMNSRALS

o ol” Gi° =1 to” Q
lej
=4
—_— X-
b _ o
— B PO
i
_
!
l
" NOILMIOS ANIAYYY — ——
o -5C Anesaze NVNOLMAN rm —— |

oLk Y

3
3
b
A
&
m
a
~
N\
»
2
R
m
fn)-
z
x
n

A3INNINOY 1T aanDi4

NOUVPOY NOoWLishwAL (2

SAHIMN X ' 3IVNIAZ00? 2SINWYIALY

DA SRR DGR =,

ot B e & a

: 2o .

/ n

/ <

/ »

L /] r

(2N ) €9 / 2 »

\/ 5

/ g

/ Ao

LN Pn

LNBOINYL 1994 LSNT NOILIGNAL o n

1 ! . \ 7

vl Q %
z

INiod LpavneL oy _..n_::i,aur_ / §

_ H %

| lviad NOLVNYYIS mopd iNmingEnL{ @
;-

L 1 ol m

x

[ ]
~~

31N AHA3ANG AVM (-9 340N ) ALINLWIY oXd

-50-



4]

B2 NPSSETIZ TuiXy asSoc3ze AJGNINOY 1 22N 3
TN TFNSwaly =0 NOSGIAYANOD €2 Iy N
E/MULE €2, =7 Niv FL = Ty N3z (2-2 13G0n ) ALibdv2y O20d
2B I A=LCS ST ADIVHINS NO'LYN9YLS (3

C-E =T, BLRAVEE oo (v
SN ZANTOCT DAV NI | SFHONT X TALVNICHOmD AciMAYIZY
e € s oz gy S5 @ 5¢° og" &1° = Gl Qi -k =]
_ ‘

QILDE BT ZOESBD

CITZMNSIN Z 005
T R EINEEL IIVIAS _
_, SN MNOUNELS

!

(T SIS NARSKIONZaHL) S2oahy

=51~

z0°

/N OG%1 TR 5

o

"ALVZ NOISS3232 B7eH2MS TYWION

SBS/N ~ alva NOKsEDEZ ViKY

1

_ 5

' -

i . :

i . / uu ' 0

_ : / : A—LOF:JQv aN3svd) ,|

i _ x W — @1/nig 0006 =OH T -k o 7
: — : _ i > : | M ; *
5 AN3N23aX3 - M _ _ N
. s T s T T T = n

. si i | o
S et bl Lt e iR et ol B -

e e —— e e et v et e odeth Tt e A e el e e e T




An_wﬁi.:zQVw. <2 3orei _ AD“Q?EAQ&@@ Sz
he7/Mus coos = FH L_,._\,_WM L o @/ug Iz =°H  Wiveo = 7Y
2o ey 2R3 TR R ILL Y @
S ~ % SapoN ~ 2
SE_ € S T e s 2, o g€ ¢ sz z s I % o,
§ R
TYM Hloows >
Efez m _»ﬁ_sm.ausa»._t\rmamﬁ w
(VM HLOOWS F 5 r
TV INSHTNDIL) Rtoy ~ b Z
; T o
T g
\ ﬁ—»vs z % 1
° § 3
. 2
[ xt o8 ﬂ. . 14
3 ;
i PR o
J7 & £ )
L z :
\ ' ZeSZon— JAIOTRA — 9 T
F ZoOVLE — AZANSVIN
| n N DN LASSNIL wm
| ot ® | 1N NOUNNBNYIS
T s 2 II_I _inmwzEaxa |
: i | { | | g
| xﬁ
- w | f “
% ] i
[ A A I




(@aanonoe> \ €2 T4

WB1/Mug ooog= M ALY 4L
MNOs ~wOadv  ve!
TITIONGRA NoaXyy cog -3 Am

S3pNE ~ L
v s€ € g2

Nig oo

e « ST

(@amnLNeD) €2 22r9'

rizas i I

SoNaHd Nogavy> ooed-a
SN ~ X

s S

]

ﬁ
|
|
|
_

—1

LLler

X

{
(VM HLOONS "t ARSHPONZ3HL )

D3S/NI ~ 3LvZ NOISSEIIZ WIXY

-L1% Y

-53~

N
:a%, ~ BUNVZ Noesa>321 19Xy




“9s0U ayz ICI SNTeRA OHTIL2AY [EUTWOX 44

"POPRIDUT 30U $3083IJ2 uorisuedxs TRUIDYTL

Le
10T
011
00T
“LL
LS
“LL
“T0T
“3L

a15ue-~3TRPY BUOD

© d1bue.yrEey =UO0D

dUE~-IT2Y JUOD
ollue~J[RY DUOD
arbue-yTey S2Qu0d

wTbue-3TPY 9ULD

IDTUCD-Td
IDTuoD~Tg
!oTUOR-149
{5TUOD-Tg
I5TuoD-Tg

{DTUOD- TF

adeys ,IvUrdeT, DOIUNTY

21bue—31ey 2uod o039 {oTU0d-T3

31duUR-FTRY DUOD oF?

fOTUOD-Ta

i DIID paag

-1

{ea=q I713
AHILLRO0ID Z50X

AI ITIYL

J03 1)

qIaVTaY
I5%0d53d NOILLwlIs? TeOTWIHIOWEIHL
SYIS-XAYILS INTTASYE IO XdVWHAS

DTIOUAYG UCqIT) (0£9-¥ | "Bwi-iBg . 1981
STIOUSUJ UOGTRD 00£9-4 , “dBwy-Teg ﬂ £9LT
a31ydesb 0D04g M.mmmm.qmm ” acLT
@31ydext gdcg - -obwi-ieg 06LT
OTTOURYJ UOGIR) QOE9-H M 0§ 97T
DTITUAYUZ UOGIBRD (0£9~-d MK 0% YEOT
s31ydeab 0204 -zT
DITOUIYd UOJIRD 00f£9-Y 97-dD
a37ydexdb ©)04 8-
TYIYILW ALITIOYS adTi
TICON

- T . S

-54-




R

et

SECTION 4

CONCLUSTIONS

The study objective was to perform baseline calculations of ablative
model performance considering only thermochemical ablation and representing
boundary layer heat-and-mass transport phenomena by smooth~wall relations,

The principal conclusion to be reached from this study relates to the
discrepancy between these baseline predictions and observed model performance.
Some accessory conclusions are also reached which relate to the effect of
varicus uncertainties upon predicted ablation performance.

Table IV summarizes results of the study in the form of predicted-to-
measured recession rate ratio for the model stagnation points and mid-cone
sections. This ratio is plotted as a function of local surface pressure in
Figure 24, With the exception of three ballistic range stagnation point pre-
dictions all data correlate well with local pressure. 1t is noted that
inclusion of thermal expansion effects would tend to bring these points in line
with the correlation; however, some of the other ballistic range predictions
would not correlate as well if thermal expansion effects were included. They
are not included in the correlation because significant uncertainty exists in
the magnitude of thermal expansion as a result of ill-defined high temperature
property data.

It is concluded that surface roughness effects and mechanical ablation
effects becume increasingly impcrtant as pressure increases. The choice of
pressure as the correlation parameter here ig primarily in the interest of
expedience. A detailed effort to correlate the data in terms of more
fundamental parameters was not within the study scope. Other parameters which
should be considered include surface temperature, rough wall shear and perhaps
pressure gradient.

The effects of various experimental uncertainties upon predicted smooth
wall thermochemical ablation are summarized in Table III. It is concluded that
uncertainties in transition location and nose radius have a negligible effect
upon predicted turbulent cone ablation rate., Similarly the effects of unegual
species diffusion coefficients and shock layer vorticity have negligible
effects for models tested in the wave superheater and RENT facilities., A 10 to

-55-




.m._e:s.;,....... , o S i B e o i ' ”._ .'“ :

AANGSAAA IO HLIMN 3LV NOISS3Da
A32NSN3N OL AALIIA3AL 90 NoIlVIZA3CD Pl 32Nn91

Wiy ‘23155334 1voon
QLY Qll O QF o oL o9 o5 o ot ol

-.
T e
./_/

» 2

~ )
@. _

A3AaNI?N! LON Si2344a
NQISNWAX3 TYNA2HL
ANODAIN - SNOUNAG AaDYHY14

‘Id 9V -S10aWAs daabBy4nn
VINONI'Y NOLAY? - $0ANS 43114
o4 = SNO0BNNG N2
2w 2USIIve 3
5 LN32 W
i 23 AHAILNS aAYMm O

-56-

a2 né’vaw; /aa.w Q224 <




- g

TT TTITT S e mnmees e o e e el TN

15 percent error in predicted cone ablation rate is asscciated with nominal
uncertainties in cone half angle and with utilization of an approximate
(Newtonian) pressure distribution. Vorticity effects are very important over
the entire conic surface for models tested in the ballistic range. Because
fundamental data is lacking upon which to base a turbulent prediction with

stronyg edye velocity gradients (normal to the boundary layer edge) these
predictions should be viewed to have a 10 to 30 percent uncertainis;.
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