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ABSTRACT

Two-dimensional numerical solutions of three problems of ;stress
wave Interactions with oblique cracks in granite have bzen carried out using
the SHEP code, a finite-difference Lagrangian program that incorporates a
comprehensive hydrodynamic-elastic-plastic behavioral model. The problems
involve both infinite and finite-length crack surfaces. To enable the study
of propagation of cracks und._r stress wave loading, a dynamic Grif{ith criterion
has been formulated for incorporation into the code. Comparisons of the
numerical results with analytic solutions for model problems are being obtained
to verify the code. Included in these correiations iz the problem of an accel-

erating crack for the case of anti-plane shear.

41 praceding page Mank
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1. INTRODUCTION

The objective of this program is to apply two-dimensional numerical
techniques to the solution of problems of strcss wave interactions with indi-
vidual, oblique cracks ir rock media. Computer codes suftable for solving
a wide rar.ge of fiuid and solid mechanics problems have been ¢ vailable or
under development for several years and efforts to extend th2se techniques to
the quantitative analysis of wave interactions with cracks and of crack motion
are now fcasible. Shock Hydrodynamics two-d.mensional SHEP (Shock
Hydrodynamic Elastic Plastic) code is being utilized for this purpose in this

program, .

This report describes the work conducted during the {irst six months

of the program,

2. - SUMMARY
2,1 PROBLEM AREA

Excavation processes in rock medla typically involve the action of
strong dynamic stresses {ntroduced either from explosive, mechanical, or
other impulsive loading saurces. The propagétion of stress waves in homo-
geneous, isotropic media is reasonably well understood. In-situ rock media,
however, typically contain large scale discontinuities in the form of cracks,
joints, and faults. Interactions of stress waves with these discontinuities
can cause slippage along “he cracks, or extension (propzga.ion) of the cracks,
or separation. The interactions can also alter the chiaracteristics of the stress
wave transmitted across the discontinuity.

This study is concerned with an analysis of the detailed mechanisms
involved when strong stress waves interact with the crack surfaces in jeinted
block media. Of particular interest are cracks which are obliquely oriented
relative to the wave front. The understanding thus obtained can contribute
to the aavancement of kncwledg: of excavation processes in various media,

and how to cortrol and,cr impreve such processes.
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The technical approach that is being used in studying the details of

stress wave-crack interactions is based on two-dimensicnal numerical analyses

of the dynamic phenomena occurring under various conditions of stress wave
profile, crack orientation relative to thz wave front, and degree of locking
(or lubrication) initially fc und across the crack. The computer program being
used to obtain the numerical solutions is the SHEP code. SHEP is a finite-
difference Lagrangian program eiaploying a comprehensive hydrodynamic-
elastic-plastic behavioral model. SHEP has been under intensive use and
development for the past six years and has been applied to a broad spectrum

of wave propagation problems.

A major difficulty in examining wave interactions with discontinulities
such as cracks or fracture surfaces arises due to the coastraint of the contin-
uum model which is normally assumed in numerical analyses of wave propaga-
tion. Spacial routines in the SHEP code alleviate this difficulty by permitting
crack surfaces to be explicitly defined in the computational grid. Thus the
grid is not coupled across the crack, and slippage and/or sepaiation can

occur.
2.2 PLAN OF RESEARCH

The work under the current contract is divided into the following two

tasks, corresponding to analyses of stress wave interactions with

a) single, infinite cracks and
b) single, finite-length cracks.

2.2.1 Task 1 - Interaction of Stress Waves with Single,
Infinite Cracks

T 4s task Is concerned with the analysis pertaining to cracks which
are Iinfinit in extent, or which intersect with t 1e ground surface. The work
initially consists of the selection and determination of th2 problem specifi-
cations (such as media properties, loading wave characteristics, and crack
orlentation and condition). SHEP code solutions of tha problems defined are
then sct up and run. These solutions provide complete quantitative data for
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all the state and motion variables of interest throughout thz computing field
at regular intervals of time. In addition, spatial plots of the principal stress,
particle velocity, and displacement fields are obtained &t selectied times
during the event. Following completion of the solutions, aralysis and inter-
pretation of the results are performed ‘¢ assess the important mechanisms and
factors influencing the bzhavior of the crack and the characteristics of the

transmitted stress wave.

2.2,2 Task 2 - Interaction of Stress Waves with Single,
Finite Cracks

This task is similar to Tesk 1, except that the class of cracks
involved are those of finite length, so that the interaction of a stress wave
with a crack tip can be examined. Particular attgntton is being given to the
stress magnitudes developed near the tip, and the effect of the tip on the
transmitted wave system, The problems are selected so that comparisons
between the cases of infinite (Task 1) and finite (Task 2) cracks can be made.

Also included in this task is th= development of a dynamic Griffith
criterion to be incorporated into the code for the study of crack propagation
under stress wave loading.

To verify the suitability and accuracy of the code, and modifica-
tions made thereto during the course of the progromi, for analyses of wave/
crack interactions, analytic solutions of selected test problems are being
obtained and used to check-out corresponding numerical solutions obtained
with the code.

2.3 MAJOR ACCOMPLISHMENTS

Primary program accomplishments during this period included

@) The completion of three SHEP code solutions of si ess
wave/crack interaction problem.,

b) the initial formulzation of a dynamic Criffith criterion
for crack propagaticn, suitable for incorporation intc

thz code, and



c) the iInitiation of a serles of test cases to verify the
numerical results through comparison with analytic

solutions that ere being obtained.

2.3.1 Numerical Sojutions

Three problems of wave interactions with cracks were selected for
analysis by means of code solution, as depicted in Figure 1. These problems
were chosen to demonstra.e the utility of numerical techniques for obtaining
detailed Information on the response of cracked media subjected to impulsive
loads, In general, and, in particular, for assessments of the wave Interactions
in the vicinity of a crack. It is noted that the explicit definition of a crack
surface such as specified in these problems is not generally amenable to
treatment thrcugh conventional code techniques, which normally assume a

coniinuous material model.

Tne rock medium selected for these problems was granite. The
material properties assumed for the granite are described in Section 3.2 of
this report. The problems were run in plane geometry, assuming plane strain;
the varlables are thus independent of the z-coo: dinate (perpendicular to the

cross-section shown).

The first problem selected for analysis (Case 1) consisted of inter-
actions of a stress wave with a crack orlented at a 30° angle with the wave
front. The stress wave was generated by uniformly loading the left face of
the granite block with a pressure pulse. A triangular pressure pulse of $
kilobars peak magnitude and 0.2 millisecond duration was used for this
problem, as sketched bzlow:

P (kb)
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CASE 1. INTERACTION OF STRESS WAVLE WITH SINGLE, INFINITE CRACK
Loading Surface——»

—s 300 Crack
~«———+—Granite Slab
]

CASE 2. INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH CRACK

Crack Tip

—130°

CASE 3. INTERATTION OF STRESS WAVE WITH SINGLE, FINITF- LENGTH
CRACK, WIiTH CRACK GROWTH

/
/
/
/

——————ird

mcvn—

— ‘—Initial|Crack Tip
— =

e—————y

30

Figure 1. Specifications of Problemns for SHEP Code Solutions,
)



The crack in this problem was characterized by a free slip condition
and zero width. Opening of the crack was allowed to occur {f stress compon-

ents normal to the crack went into tension.

Tne second problem considered (Case 2) involved the interaction of
a stress wave with a finite-length crack. The angle of orientation of the
crack and the applied pressure loading were the same as in the first problem.
The crack extended from the loading surface (lower left) to the crack tip,
situateu on the horizontal mid-plane of the block.

Case 3 was the same as the second problem, except that crack
growth was permitted. This case demonstrates the provisions in the code
which can be used to model crack propagation. In this case, dynamic decoup-
ling of lattice points in the computing mesh occurs when a specified criterion
is satisfied.

SHEP code solutions of these three problems were successfully
completed. Plots depicting the particle velocity field and the principal stress
field occurring in the test block were obtained for several times during the
interactions. In addition, time histories of pertinent parameters at several
stations in the field were recorded. These results are discussed in detail
in Section 3 of the report. Some representative results of these code solu-
tions are shown here, in Figures 2 to 7.

For Case 1, the principal stress field, for a time of .3 msec, and
the particle velocity field, for a time of .5 msec, are shown in Figures 2 and
3. As the wave encounters the crack, the principal stress vectors may be
seen (Figure 2) to rotate into a direction transverse to the crack surface,
reflecting the fact that the crack surface can not bear shear stress. This
interaction produces a dilatatioaal wave and trailing shear wave which propa-~
gate actoss the block, as indicated in the velocity field plot (Figure 3). The
penk stress in the transmitted wave was reduced by about 25% from that in

the incident wave,

An example of the results of the Case 2 solution is shown in
Figure 4, which depicts the particle velocity field occurring at # iime of
.6 msec. In this Interaction, the wave system is divided approximately in

e ————— — . —— T IR TI s e,
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half, the part above the crack tip appearing as a simple plane wave, and
that below as a dilatational wave and trailing shcar wave, as in the previous
solution, Starting from the crack tip, a disturbance propagates into the
plane wave region above and the "cracked" region below, altering both flow

fields and creating an expanding region of transition between them,

In Case 3, where crack growth was allowed, the criterion used for
decoupling of points beyond the crack tip was that each of the cells surround
ing a lattice point must have failed, i.e., at some time reached a state on
the granite failure surface. This was a conservative criterion, since the

failure surface generally represents states whes: virtually complete fracture
occurs. Use of more sensitive criterla can bz employed, and development

or a dynamic Griffith criterion is currently under development, as describad
below. The crack growth occurring in this solution is indicated in Figures 5,
6, and 7, which are plots of the particle velocity fleld for times of .5, .6,
and .7 msec. The extent of the crack in each plot is indicated by the circled

lattice points.

2.3.2 Dynamic Griffith Criterion

In connection with efforts being made under the program to enable the
study of propagation of cracks under stress wave loading, the incorporation of
equations into the SHEP code which govern the rate of propagation of a brittle
crack surface in an elastic material is currently under development. These
equations are known as the Griffith criterion and they provide a relation
between power input to the body and the rate of uptake of this power by strain
energy, kinetic energy, and new surface cnergy. The concept of surface
energy is the feature that was introduced by Griffith in the early 1900's, and
it requires the determination of an additional material parameter, namely the
surface energy per unit area., It is planned to extract the value of this para-

meter for graniie from available fracture data.

13



2,.3.3 Analytical Comparison Problems

To verify the SHEP code soluticns and the formulation changes being
made, comparisons of numerical results with analytical solutions of model

problems are bzing ma-e,

As part of this effort, the capability has bzen added to the code for
the treatment of anti-plane shear, or out-of-plane displacements, with the
restriction that the motions are independent of .he z-cocordinate, so as to
retain the two-dimensional character of the code. This was done primarily
since the only elasto-dynamic solutions currently available for an accelera-
ting crack are those for the case of anti-plane chear, although it also repre-
sents a useful tool in numerical analysis which has heretofore been unavailable.

A model problem of simple, shear motion of a slab has been solved
with the modified code. Ti:e results of the code solution showed excellent
agreement with the analytical solution for this case. The next case in this
series, currently in work, is a problem involving the interaction of an anti--
plane shear wave with a stationary crack.

3. NUMERICAL SOLUTIONS

As noted above, numerical solutions of three problems involving the
interaction of stress waves with cracks were performed. The specifications
of these problems were given in Section 2.3.1.

3.1 COMPUTATIONAL METHOD

3.1.1 Physical Mod~}

The computer program being used in this study is the two-dimensionral
SHEP code, which solves the equations of motions for elastic-plastic bodies
by means of a finite-difference lLagranglan—cell technique. SHEP has been
under intensive use and development for the past six years and has been
previously documentedl and distributed to interested parties. The mathema-
tical formulation {s basically the same as that described by Wilklnsz. To

14




e et e Nttt

delineate the boundary between elastic and plastic deformations, various yleld
criterfa may be used, such as von Mises, Mohr-Coulomb, or arbitrary functions.
Within the chosen yield surface, the deformations are considered to bz ¢lastic,

f.e., vvhen

31, <Y (1)
where 1‘2 is the secand invariant of the deviatoric stress tensor and Y is the

yie!ld strength. Excursions on the yield surface arc made in accordance with

the Prandtl-Reuss flow rule.

To model a crack surface, SHEP contains provisions for inserting
surfaces of discontinuity, which consist of grid lines having a duai se* of
lattice points. These surfaces are discussed in the following section.

3.1.2 Surfaces of Discontinuig

In & normal lagrangian computational grid, material elemeuts on
either side of an interface at any point are, coupled to each other for the entire
problem; they are, i.e., locked or welded together along the line segment
connecting any two lattice points along the interface. At any interface, which
may represent a crack within a material or the boundary between two different
materials, there are, however, in general, special boundary conditions which
apply, and, in addition, there is the possibility of forces which may be set
up that tend to cause the materials to slip past each other or to separate. A
gas fiowing past a metal surfece is an example of such a case. The onset of
materia. fracture during a problem also gives rise to the requirement for treat-
ing the decoupling or uncoupling of elements which are, in this case, within
au originally competent ma.erial. For application to problems in fracture
mechanics, such as in this program, the latter requirement is particularly
important,

A formulation of sliding interfaces for lagrangian codes, as reportad
by W!lkinsz, provided a capability for the numerical treatment of prchlems
involving sliding of two materials along an interface, This formulation served
as the basis for development of the suriace of discontinuity capability currently

available in the SHEP code,

15



The basic features of the surface of discontinuity formulation are
illustrated in Figure 8. The grid line corresponding to the surface of discon-
tinuity is known in common parlance as a slide line. At the start of a problem,
the lattice points along the slide line may be individually designated as
decoupled points, corresponding to their lying on an interface, or as -oupled
points, in which case their bzhavior is the same as in an o;dinary mesh. For
deco.'ed points, spzcial sets of governing equations are used to individually
determine the motion of the point pairs, to reflect the fact that there is an
interface, such that, e.g., sh2ar stress cannot b2 supported. If forces are
present which tend to cause slippage, the decoupled points will thus disen-
gage and move separately along the slide line.

Additionally, the development of tensile stresses normal to an inter-
face will tend to cause material separation and formation of voids. Provisions l
have been made in the code to treat this phenomenon, also.

The void opening test is made by eomputing the stress normal to the
interface at a decoupled slide p- .t and comparing this value with a selected
critical value of stress required for uncoupling. If the computed stress is
greater than the critical value (in tension), then that point is designated as

a free surface point. Th2 newly formed free point is then moved in aczcordance
with the regular équations of motion for a point on a free surface.

For the problems parformed in this study, the critical value for
uncoupling ~as set to zero, such that any tensile stress would tend to cause
separation. In other applications, e.g., for the interfaces in laminated
materials, this value conuld be set equal to th2 bond strength,

Void closure may also occur and is treated in the code by appro-
priate tests to datermine if the materials have come in contact. If so, the
equations of the surface of discontinuity are restored, and the materials may

subsequently slip or re~-open, as bafore,

lattice pnints along the slide linc which are initially d=signated as
coupled points may dynamically decouple, individually, during th2 course
~f a problem, if a selected criterion i{s met, Various decoupling,or fracture,

criteria may be used. Once the lattice points are decoupled, the equations
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of the surface of iiscontinu’ty are invoked. A mechanism is thus provided
which can be used tn moda. crack propagation within a material.

Additional information on the code operations and the mathematical

basis of sliding interfaces has been previously reported.z--“l

3.2 MATERIAL PROPERTIES

The rock medium in these problems was granite. The properties

s2lected for the granite were:

2.69 gm/cm3

Density: Py =
Dilatational Velocity: vy = - 579 cm/usec
o
Shear Velocity: Vg = . 330 cm/usec
' o

These values imply the following‘other propertles:

Bulk Modulus: Ko = .512 Mb
Shear Modulus: Go = ,293 Mb
Poisson's Ratio: Vo = " .26

The subsccipt o in the above indicates that these are normal, pre-shocked
values. These values were selected from previous studies involvirg granite

media (Referenzes 5 and 6).

The equation of state of granite, suitable for the low-pressure
regime applicable in these problems, was formulated as follows.

P = Au+ Bulb + Gpe P < .04 Mb )
where

6 = lforpy>0

6 = Oforpus< O

Tne symbols are defined as

e

specific internal energy

pressure

18




n = P/po = relative density
u = n-1=compression
p = density

The values of the cozafficients are:

A = .512Mb
B =-1.49 Mb
G = 2.1

No hydrostatic tension was permitted, {.e., P 0.

min =
A Mohr-Coulomb type yield model wasz used, l.e.,
Y = .0003+ (1-e"F/-0003) ( 00094+ 1.33 p) (3)

where Y is the yleld strength, in megabiars, The maximum value permitted
for Y was 10 kilobars.

3.3 CASE 1 - INTERACTION OF STRESS WAVE WITH SINGLE,
INFINITE CRACK

The computational grid set up for the code solution of Case 1 is
shown in Figure 9. This grid contains 2690 cells, with the basic cell size
set at 10 cm x 10 cm. Beyond a central region of interest the cell dimensions
geometrically increace in order to conserve the total cell count and computa-
tional time. Representative results of the code solution, as depicted by
particle velocity fields and/or principal stress fields for times of .3, .5,
and .92 msec, are shown in Figures 10 to 12 and in Figures 2 and 3 in the
Summary, Section 2.3.1. For clarity in reading these plots, the field of
view was limited to the central region of interest.

For the stress field plots, the principal components of the stress
tensor for each cell are shown, as follows: The magnitude of the two princi-
pal stresses in the »-y plane are plotted in their cosrespoading principal
directions. Tne third principal stress (in the z direction) is plotted along
the line bisecting the other two prinzipal directions. Vectors pointing to
the right are compressive, to the left, tensile. An example of how a stress

tensor is plotted is sketched below:
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The edits of the velocity vector field plot the direction and magni-

tude of the velocity of each lattice point in the computing grid. The vector

lengths for both the principal stress and velocity fields are scaled to the

unit length indicated above each plot; the units are Mb/cm and (cm/usec)/cm,

respectively. On the more recently produced plots, the scale is also graphi-
cally depicted in the upper right hand corner.

As the stress wave interacts with the crack, the material on the
right side of the crack is driven by the stress component normal to the crack,
since shear stresses cannot b2 supported. As shown in Figure 10, the velo-
city vectors along the crack at the shock front are thus directed normal to the
crack, turned downward 30°, Also, as shown in Figure 2, note that the ptin-
cipal stress tensors in the material along the right side of the crack are rotated
into a direction transverse to the crack surface, again reflecting the fact that
the crack surface can not bear shear stress. As the incident wave runs along
the crack, a dilatational wave and trailing shear wave are f&med which
propagate across the block. The transmitted shock front remains approxi-
mately planar and oriented at 90° to the x axis. In the shear region behind
the shock, a distinctly downward velocity flow is evident. This action
induces material slippage along the crack, the material on the right side of
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the crack moving downward and to the left, along the crack, relative to the
material on the left side. In uddition, there was a siight separation, or
opening-up, of the matciials on either side of the crack, which were initially

in contact.

Time histories of the material displacement at the points indicated
in Figure 13 were recorded during the code solution. The slippage of material
initially at the point x = 100 c¢in, y = 0 cm, as given by the distance bz2tween
points on opposite sides of the crack (points Band C in Figure 13), is shown
in Figure 14. The extents of the downward (y-direction) displacements of
these points are shown in the time histories given in Figure 15. Thc down-
ward displacements of other points in thz field, at x = 55, 158, 203, and
253 cm (peints A, D, E, and F) along the central horizontal plane (y = 0), are
shown in Figure 16, The forward (x-direction) displacements of these points
during this time were all ~ 0.25 cm. The perturbation of flcw, as measured
by the downward thrust of material, is seen to diminish as the distance {from

the crack increases,

Stress (ox) - time profiles at points A, D, E, and F are shown in
Figure 17. The peak stress in the transmitted wave (points D, E, and F) is
seen to be reducgd by about 25% from that in the incident wave. The afore-
mentioned two-wave structure in the transmitted wave and the reflected wave
at point A are also displayed in these plots.

3.4 CASE 2 - INTERACTION OF STRESS WAVE WITH SINGLE,
FINITE-LENGTH CRACK

The initial confiyuration of the Lagrangian grid set up for this
problem is shown in Figure 18. Tne crack extends from the loading surface
(lo'wer left) to the crack tipat x = 200 cm, v = 0.

Representative results of the SHEP code solution of this problem,
as depicted by the particle velocity fields for times of .3, .4, .5, .6, and
1 msec, are shown in Figures 19 to 22 and in Figure 4 in the Summary,
Section 2.3.1. Associated principal stiess fields for times of .4, .5, and
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.7 msec are shown in Figures 23 to 25, For clarity in reading these plots,
the field of view is limited to the central region of interest.

The response of the granite in this problem is, of necessity, similar
to that in the infinite-crack problem, until the wave front reaches the crack
tip. Subsequzntly, the wave system is divided approximately in half, the
part above the crack tip appearing as a simple plane wave, and that below
as a dilational wave and trailing shear wave, as in the previous solution,
Starting from the crack tip, a disturbance, or bow wave, propagates into the
plane wave region above and the "cracked" region bzlow, altering hoth flow
fields and creating an expanding region of transition between them. The
diversion of flow around the crack tip may be seen in Figures 19 and 20.

Time histories of the material dlsplacemént at the locations indicated
in Figure 26 were recorded during tiie code solution, The slippége of material
at three points along the crack, as given by tune distance between points on
opposite sides of the crack, designated as'(W,X), (R,S), and (M, N) in
Figure 26, is shown in Figure 27. The material on the right side of the crack
is moving downward and to the left, along the crack, relative to the material
on the left side. The extents of the downward (y-direction) displacements of
these points and the crack tip (point I) as a function of time are shown in
Figure 28, The spatial trajectory of the point pair (W,X) on the crack surface
during the time span of the solution is plotted in Figure 29. Time-histories
of the vertical displacements of points above and. bzlow th2 crack tip along
four vertical cuts (x sy constant) through the target are shown in Figures 30
to 33. The downward shift of material persists at all these s¢tations, but in
smaller amounts as the distance from the crack Increases.

Stress (ox) - time profiles at points H, I, J, and K, along the hori-
zontal plane through the crack tip (y & 0), are shown in Figure 34. Note the
increase in stress over that of the loading level near the crack tip. Stress
profiles along the vertical plane through the crack tip (x ~ 200 cm) are shown
in Figure 35. The points above the crack tip show a pzak stress of 5 kb -
corresponding to the loading or incident shock ievel, and those below the
tip to about 4 kb - the transmitted stress level. Stress-time profiles along
a vertical plane to the right of the crack tip, at x o 300 cm, are shown in
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Figure 36. Here the stress level is reduced a* points above as well as below
the crack tip. Time histories of the shear stress (oxy) at points along the
vertical plane through the crack tip are shown in Figure 37.

3.5 CASE 3 - INTERACTION OF STRESS WAVE WITH SINGLE,
FINITE-LENGTH CRACK, WITH CRACK GROWTH

For this case, the same problem as in Case 2 was solved, but with
the provision in the code for parmitting growth of the crack activated, as
described previously. '

Representative results of this code solution, as shown by the particle
velocity fields for times of .S, .6, .7, and .9 msec, are given in Figurc:s
to 7 in the Summary, Section 2.3.1, and in Figure 3U. Associated principal
stress flelds for times of .5 and .6 msec are shown in Figures 39 and 40.
Propagation of the crack does occur for this loading; the extent of the crack
at any time is indicated by the circled lattice points. For this loading function,
the fracture criterion used was met at relatively late times after the shock front
has passed, so that the effect of crack growth on the transmitted wave is
probably not large. These and other effects, such as material slippage, will
be examined through comparisons of recorded time histories for Case 2 and
Case 3 in forthcoming analyses.

4. DYNAMIC GRIFFITH CRITERION AND CRATK PROPAGATION

To improve the physical significance of the numerical solutions, the
conclusion was reached that a more realistic, dynamic criterion for predicting
and following the course of crack propagation in flawed, jointed, brittle media
should be incorporated in the numerical method. A riecessary step in making
such a formulation change is to check the new code through comparisons with
analytical results from some model problems, as will be discussed in Section $.

* The maitfications needed to follov' crack propagation are threefold.
These are the logic associated with the crack geometry and crack propagation,
the velocity threshold criterion, chosen here to be the Griffith criterion, and
the velocity orientation ciiterion, chosen to b2 the direction transverse to the
maximum principal stress vector. Programming of tinis formulation is

currently underway.
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Figure 36. Here the stress level iIs reduced at points above as well as below
the crack tip. Time histories of the shear stress (oxy) at points along the
vertical plane through the crack tip are shown in Figure 37.

3.5 CASE 3 - INTERACTION OF STRESS WAVE WITH SINGIE,
FINITE-LENGTH CRACK, WITH CRACK GROWTH

For this case, the same probliem as in Case 2 was solved, but with
the provision in the code for permitting growth of the crack activated, as

described previously.

Representative results of this code solution, as shown by the particle
velocity flelds for times of .5, .6, .7, and .9 msec, are glven in Figures 5
10 7 in the Summary, Section 2.3.1, and in Figure 38. Associated principal
stress flelds for times of .5 and .6 msec are shown in Figures 39 and 40.
Propagation of the crack does occur for this loading; the extent of the crack
at any time is Indicated by the circled lattice paints., For this loading function,
the fracture criterion used was met at relatively late times after the shock front
has passed, so that the effect of crack growth on the transmitted wave is
probably not large. These and other effects, such as material slippage, will
be examined through comparisons of recorded time histories for Case 2 and
Case 3 in forthcoming analyses.

4, DYNAMIC GRIFFITH CRITERION AND CRATK PROPAGATION

To improve the physical significance of the numerical solutions, the
conclus‘on was reached that a more realistic, dynamic criterion for predicting
and following the course of crack propagation in flawed, jointed, brittle media
should be incorporated in the numerical method. A necessary step in making
such a formulation change is to check the new code through comparisons with
analytical results from some model problems, as will be discussed in Section §.

¢ The modifications necded to follow crack propagation are threefold.
These are the logic associated with the crack geometry and crack propagation,
the velocity threshold criterion, chosen here to be the Griffith criterion, and
the velocity orientation criterion, chosen to be the direction transverse to the
maximum principal stress vector. Programming of thic formulation is

currently underway.
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It was suggested by Griffith that a useful way of accounting for
controlled crack growth in an’'elastic body i1s to balance the rate of work
(power input) to the body by the rate of uptake of strain enargy, kinetic
energy, and surface enzrgy, l.e.,

P = U+ U,+ Ug (4)
where
P=gt,vda (5)
U= fwdv, (6)
pO
Up= 7 Jvp v 4V, 7)
Uj ré ny da, ‘ _ (8)

W is the strain energy density, I is the 'specific surface energy, a material
constant, and the dots denote material differentiation. The material ceriva-
tives consist of two components, 1.e.,

+ &l 8 (9)

where 6§ is a measure of the crack length. When the crack is not moving f
is the ordinary material derivative.

In order to accommodate the crack motion it 1s necessary to follow
this procedure. At each point in time, a test iteration is carried out in
which the crack is assumed to run a small distance. New {Ul, U2, U3}are
calculated for the new 6, and Eqn. (4) is entered and checked. If the right
hand side is less than the left hand side, the crack either has not yet started
to run or the assumed increase in § was too large. We propose to choose a
small enough value of §, such that the error incurred by always assuming the
crack has not run when the inequality occurs, is a tolerable error, When
equality occurs, the crack is advanced another small increment, and the

program continues.
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At each stage the program will calculate the direction of tha principal
maximum stress vector and the crack will move in a direction transverse to
that. The crack geometry will be coded entirely like a free surface with the
same boundary type characterization that i{s currently bzing used,

S. ANALYTICAL, COMPARISON PROBLEMS

The only elasto-dynamic solutions that are currently available for
an accelerating crack are those of Kostrov 7, Eshelbye, and Achenbachg. Tha
crack growth is produced by anti-plane shear. It was thus decided to modify
the SHEP code to accommodate anti-plane shear or out-of-plane displacement
in a manner that would retain the feature that the out-of-plane displacement
remains independent of the z-coordlnate (or f-coordinate for the axisymmetric
case). Thus, the additions maintain the two-dimensional character of SHEP
because the out-of-plane motion merely superimposes on and does not couple
with the in-plane motion, assuming that we are confined to the linear elastic
regjon.

The additional equations that have been incorporated into the SHEP
code to account for out-of-plane motion are shown below in differential form.
The difference forms follow the same format as used by the rest of SHEP.

We have

aa:’fz + iat}" + 5;—‘— = pw (10)

é =" (P"'Q) Q+v (sx éx+ syéy+ See.e + Txy éxy y sz .exz +Tyzléyz)
(11)

T, = Gey (12)

Ty =G éyz ' ' (13)

e, = GIL (14)

eyy = G -al;— (15)
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All the rest of the equations retain the same form (the form of the Jauman-Oldroyd

derivatives is given in the Appendix).

A test problem consisting of simple shear motion of a slab has already
been successfully run with the modified code, as discussed in the Appendix.
The next case that will be run involves the loading of a stationary crack In

anti-plane shear.
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APPENDIX

CORRECTION TO THE ROTATIONAL TERM IN THE STRESS CALC ULATIONS

During the examination of the formulation of the code preparatory to
making the modifications discussed in Sections 4 and 5 of the report, an error

in the sign of the rotational correction term in the stress calculations, as

Al, was discovered. In addition, from the

A2

originally proposed by Wilkins
standpoint of material objectivity™™, the form of the rotational term is scen

to be written in only an approximate forin. These statements are documented
below. The sign was corrected in our code and a check of the correction

was made by running a model problem. The results confirmed the sign correc-

tion and, in addition, verified the accuracy of the SHEP code.

In SHEP, the constitutive equations are correctly* subsumed in the

formAsz
ty = Sy - 61j P ] (A1)
A * _1lag
s1j = 2G (e1j 3 bij) (A2)
6 = &n] (A3)
dav
dVo
where
t1 j is the cartesian Couchy stress tensor

S§ is the stress deviator tensor
P is the pressure

J is the local volume ratio, .equal to the square
root of the third stretch invariant.

*The term "correctly" implies that Eqn. (A2) satisfies the principle of
material objectivity.

o Préuding page blank
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G is the shear modulus
6 is the dilatation

eij is the Cartesian strain rate tensor

\' is the local instantaneous specific volume
and in (A4), gV is the particle-diiferentiator.
o

From Eqn. (A3) and (A4), it follows that

\'4 _—~
I = (AS)

Furthermore .n Eqn. (A2), the dot over e1j denotes the material derivative

while the hat over s,, denotes the Jaumann-Oldroyd derivative. The form

ij

of the latter is given by:

S = &, - t, +t (A6)

Stk = Stk Vi, Ytk tyYyLx
where

vi,j = eij + wij (A?)
or

v + v .

._1.1.1_2__141_ = eij (aA8)
where

(.u1j is the spin tensor.

Tro last two terms on the right hand side of Eqn. {(A6) correspond to
Wwilkins' 6”; a simple calculation reveals that the entire form of Eqn. (B-14)
on page 78 of Reference Al is formally incorrect but approximately appropriate
(apart from a sign error).

The sign error apparently arose in the following way: Wilkins intro-
duces an angular velocity vector, which he denotes by [sin W ]« The angular
velocity vector is correctly taken as the curb of the velocity vector which,
according to the usual right-handed correction, corresponds to a counte}-
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clockwise rotation. Wilkins then uses the rotation angle ( to transform the
stress components to new rotated components. The transformetion equations
he adopts are taken from TimoshenkoA?’. Presumably Wilkins changed the
signs of the terms that are odd in w, because Timoshenko shows a diagram
in which the rotation is clockwise. What one must notice, however, is that
Timoshenko's picture is based on a ]left-handed system of axes. Thus Timo-

shenko's equation should have been subsumed without the sign change.

To further check our logic, we ran the followiny simple problem., A

slab is set into simple shear motion, of:
' 1(

Nonlinear (Poynting) effects are associated with the lengthening of the
originally upright fibers. The correct rotation terms (with the right sign) pre-
dict a tensile stress in the lengthened fibers, in agreement with the analytical
solution, The original program, with the incorrect sign, predicts compression,
Keep in mind that these are second order stresses and thus the effect of this
error on the overall computation becomes important only when the first order
stresses are comparable to the shear modulus of the material. The reason is
that the second--order stresses go as the square of the first-order stresses,
e.g., in the shear problem:

g T.., 2

X, (XX

L~ (a9)
In the process of making these changes in SHEP, we checked out a

model problem, namely the simple shear at constant velocities of an infinitely
long slab (a 1-D problem). The results, in terms of the siress at the moving
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surface and the stress at the fixed surface are plotted in Figures Al and A2,
respectively. The analytical solution is just a sum of Heaviside step functions.
The agreement witi: che analytical solution is attested to by the fact that the
computed jumps fall directly (within 1%) on the grid Hne (both coordinate axes
are non-dimensionalized). The general solution looks like

T ©
- X _ % [H(s-y-2nh]+ H (s +y- 2h - 2nh) ] (A10)
MOG n=0

here
wher v

M, (the Mach number) = O

C

s = ct

C=»/g-

and h is the height of the slab.
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