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ABSTRACT 

Two-dimensional numerlcel solutions of three problems of stress 

wave Interactions with oblique cracks In granite have been carried out using 

the SHEP code, a finite-difference Lagrangian program that incorporates a 

comprehensive hyclrodynamlc-clastlc-plastlc behavioral model.   The problems 

involve both Infinite and finite-length crack surfaces.   To enable the study 

of propagation of cracks und,r stress wave loading, a dynamic Griffith criterion 

has been formulated for incorporation into the code.   Comparisons of the 

numerical results with analytic solutions for model problems are being obtained 

to verify the code.   Included in these correlations is the problem of an accel- 

erating crack for the case of enti-plane shear. 
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1. INTRODUCTION 

The objective of this program Is to apply two-dimensional numerical 

techniques to the solution of problems of stress wave Interactions with indi- 

vidual, oblique cracks In rock media.   Computer codes suitable for solving 

a wide range of fluid and solid mechanics problems have been c vallable or 

under development for several years and efforts to extend thsse techniques to 

the quantitative analysis of wave Interactions witn cracks and of crack motion 

are now feasible.   Shock Hydrodynamics two-aimenslonal SHEP (Shock 

Hydrodynamlc  JjIastlcJPlastlc) code Is being utilized for this purpose in this 

program. 

This report describes the work conducted during the first six months 

of the program. 

2. SUMMARY 

2.1 PROBLEM AREA 

Excavation processes In rock media typically Involve the action of 

strong dynamic stresses introduced either from explosive, mechanical, or 

other Impulsive loading sources.   The propagation of stress waves in homo- 

geneous, Isotropie media Is reasonably well understood.   In-sltu rock media, 

however, typically contain large scale discontinuities In the form of cracks, 

joints, and faults.   Interactions of stress waves with these discontinuities 

can cause slippage along .he cracks, or extension (prop?ga,Ion) of the cracks, 

or separation.   The Interactions con also alter the ch iractr-ristlcs of the stress 

wave transmitted across the discontinuity. 

This study Is concerned, with an analysis of the detailed mechanisms 

Involved when strong stress waves Interact with the crack surfaces In jointed 

block media.   Of particular Interest are cracks which are obliquely oriented 

relative to the wave front.   The understanding thus obtained can contribute 

to the advancement of knowledge of excavation processes In various media, 

and how to control and/or improve such processes. 
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The technical approach that Is being used in studying the details of 

stress wave-crack Interactions Is based on two-dimensional numerical analyses 

of the dynamic phenomena occurring under various conditions of stress wave 

profile, crack orientation relative to the wave front, and degree of locking 

(or lubrication) initially fc und across the crack.   The computer program being 

used to obtain the numerical solutions is the SHEP code.   SHEP is a finite- 

difference Lagrangian program employing a comprehensive hydrodynamlc- 

elastlc-plastlc behavioral model.   SHEP has been under Intensive use and 

development for the past six years and has been applied to a broad spectrum 

of wave propagation problems. 

A major difficulty In examining wave Interactions with discontinuities 

such as cracks or fracture surfaces arises due to the constraint of the contin- 

uum model which Is normally assumed In numerical analyses of wave propaga- 

tion.   Special routines In the SHEP code alleviate this difficulty by permitting 

crack surfaces to be explicitly defined In the computational grid.   Thus the 

grid is not coupled across the crack, and slippage and/or separation can 

occur. 

2.2 PLAN OF RESEARCH 

The work under the current contract is divided Into the following two 

tasks, corresponding to analyses of stress wave interactions with 

a) single, infinite crocks and 

b) single, finite-length cracks. 

2.2.1   Task 1 - Interaction of Stress Waves with Single, 
Infinite Cracks 

T -is task Is concerned with the analysis pertaining to cracks which 

are infinit   In extent, or which intersect with tie ground surface.   The work 

initially consists of the selection and determine'tlon of the problem specifi- 

cations (such as media properties, loading wave characteristics, and crack 

orientation and condition).   SHEP code solutions of the problems defined are 

then sot up and run.   These solutions provide complete quantitative data for 
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all the state and motion variables of interest throughout ths computing field 

at regular Intervals of time.   In addition, spatial pIo*s of the principal stress, 

particle velocity, and displacement fields are obtained IA selected times 

during the event.   Following completion of the solutions, analysis and inter- 

pretation of the results are performed 'o assess the important mechanisms and 

factors Influencing the behavior of the crack and the characteristics of the 

transmitted stress wave. 

2.2.2   Task 2 - Interaction of Stress Waves with Single, 
Finite Cracks        ~~~'     "     ■-—    -        - 

This task is similar to Task 1, except that the class of cracks 

Involved are those of finite length, so that the Interaction of a stress wave 

with a crack tip can be examined,   particular attention Is being given to the 

stress magnitudes developed near the tip, and the effect of the tip on the 

transmitted wave system.   The problems are selected so that comparisons 

between the cases of Infinite (Task 1) and finite (Task 2) cracks can be made, 

Also Included In this task Is ths development of a dynamic Griffith 

criterion to be Incorporated Into the code for the study of crack propagation 

under stress wave loading. 

To verify the suitability and accuracy of the code, and modifica- 

tions made thereto during the course of the program, for analyses of wave/ 

crack Interactions, analytic solutions of selected test problems are being 

obtained and used to check-out corresponding numerical solutions obtained 

with the code. 

2.3 MAJOR ACCOMPLISHMENTS 

Primary program accomplishments during this period included 

a) The completion of three SHEP code solutions of si.ess 

wave/crack Interaction problemJ, 

b) the initial formulation of a dynamic Griffith criterion 

for crack propagattcn, suitable for incorporation into 

the code, and 
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c)   the Initiation of a series of test cases to verify the 

numerical results through comparison with analytic 

solutions that ere being obtained. 

2.3.1   Numerical Solutions 

Three problems of wave interactions with cracks were selected for 

analysis by means of code solution, as depicted in Figure 1.   The^e problems 

were chosen to demonstraLe the utility of numerical techniques for obtaining 

detailed information on the response of cracked media subjected to Impulsive 

loads. In general, and, in particular, for assessments of the wave Interactions 

In the vicinity of a crack.   It Is noted that the explicit definition of a crack 

surface such as specified in these problems is not generally amenable to 

treatment through conventional code techniques, which normally assume a 

comlnuous material model. 

Tne rock medium selected for these problems was granite.   The 

material properties assumed for the granite are described in Section 3.2 of 

this report.   The problems were run in plane geometry, assuming plane strain; 

the variables are thus independent of the z-coo;dlnate (perpendicular to the 

cross-section shown). 

Ths first problem selected for analysis (Case 1) consisted of inter- 

actions of a stress wave with a crack oriented at a 30   angle with the wave 

front.   The stress wave was generated by uniformly loading the left face of 

the granite block with a pressure pulse.   A triangular pressure pulse of 5 

kllobars peak magnitude and 0.2 millisecond duration was used for this 

problem, as sketched bslow: 

P(kb) 

t (msec) 
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CASE I.   INTERACTION OF STRESS WAVE WITH SINGLE, INFINITE CRACK 

Loading Surface *■ 

Granite Slab 

CASE 2.   INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH CRACK 

 » 

'S 

30°/ 

-Crack TI3 

— 

CASE 3.   INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH 
CRACK, WITH CRACK GROWTH 

30°/ 

/ 

/ 
/ 

/ 
/ 

^-Initial Crack Tip 

Figure 1.   Specifications of Problems for SHEPCode Solutions. 



The crack In this problem was characterized by a free slip condition 

and zero width.   Opening of the crack was allowed to occur if stres? compon- 

ents normal to the crack went into tension. 

Tne second problem considered (Case 2) involved the interaction of 

a stress wave with a finite-length crack.   The angle of orientation of the 

crack and the applied pressure loading were the same as In the first problem. 

The crack extended from the loading surface (lower left) to the crack tip, 

situated on the horizontal mid-plane of the block. 

Case 3 was the same as the second problem, except that crack 

growth was permitted.   This case demonstrates the provisions in the code 

which can be used to model crack propagation.   In this case, dynamic decoup- 

ling of lattice points in the computing mesh occurs when a specified criterion 

is satisfied. 

SHEP code solutions of these three problems were successfully 

completed.   Plots depicting the particle velocity field and the principal stress 

field occurring in the test block were obtained for several times during the 

Interactions.   In addition, time histories of pertinent parameters at several 

stations In the field were recorded.   These results are discussed In detail 

In Section 3 of the report.   Some representative results of these code solu- 

tions are shown here. In Figures 2 to 7. 

For Case 1, the principal stress field, for a time of .3 msec, and 

the particle velocity field, for a time of .5 msec, are shown in Figures 2 and 

3.   As the wave encounters the crack, the principal stress vectors may be 

seen (Figure 2) to rotate Into a direction transverse to the crack surface, 

reflecting the fact that the crack surface can not bear shear stress.   This 

Interaction produces a dllatatlonal wave and trailing shear wave which propa- 

gate actoss the block, as indicated In the velocity field plot (Figure 3).   The 

pe^k stress in the transmitted wave was reduced by about 25% from that in 

the Incident wave. 

An example of the results of the Case 2 solution Is shown In 

Figure 4, which depicts the particle velocity field occurring at P. time of 

.6 msec.   In this interaction, the wave system is divided approximately in 
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half, the part above the crick tip appearing as a simple plane wove, and 

that below as a dllatatlonal wave and trailing shoai wave, as In the previous 

solution.   Starting from the crack tip, a disturbance propagates Into the 

plane wave region above and the "cracked" region below, altering both flow 

fields and creating an expanding region of transition between them. 

In Case 3, where crack growth was allowed, the criterion used for 

decoupling of points beyond the crack tip was that each of the ceils surround- 

ing a lattice point must have failed. I.e., at some time reached a state on 

the granite failure surface.   This was a conservative criterion, since the 

failure siirface generally represents states whetc virtually complete fracture 
occurs.   Use of more sensitive criteria can be employed, and development 

01 a dynamic Griffith criterion Is currently under development, as descrlbsd 

below.   The crack growth occurring In this solution Is Indicated In Figures 5, 
6^ and 1, which are plots of the particle velocity field for times of .5,  .6, 

and .7 msec.   The extent of the crack In each plot Is Indicated by the circled 
lattice points. 

2.3.2   Dynamic Griffith Criterion 

In connection with efforts being made under the program to enable the 
study of propagation of cracks under stress wave loading, the incorporation of 

equations Into the SHEP code which govern the rate of propagation of a brittle 
crack surface in an elastic material Is currently under development.   These 

equations are known as the Griffith criterion and they provide a relation 

bstween power Input to the body and the rate of uptake of this power by strain 

energy, kinetic energy, and new surface energy.   The concept of surface 
energy Is the feature that was Introduced by Griffith in the early 1900's, and 

It requires the determination of an additional material parameter, namely the 

surface energy per unit area.   It Is planned to extract the value of this para- 
meter for granite from available fracture data. 

13 



2.3.3  Analytical Comparison Problems 

To verify the SHEP code solutions and the formulation changes being 

made, comparisons of numerical results with analytical solutions of model 

problems are being ma^.e. 

As part of this effort, the capability has bsen added to the code for 

the treatment of anti-plane shear, or out-of-plane displacements, with the 

restriction that the motions are independent of   he z-coordinate, so as to 

retain the two-dimensional character of the code.   This was done primarily 

since the only elasto-dynamic solutions currently available for an accelera- 

ting crack are those for the case of anti-plane shear, although it also repre- 

sents a useful tool In numerical analysis which has heretofore been unavailable. 

A model problem of simple, shear motion of a slab has been solved 

with the modified code.   Tlie results of the code solution showed excellent 

agreement with the analytical solution for this case.   The next case in this 

series, currently in work, is a problem Involving the interaction of an anti- 

plane shear wave with a stationary crack. 

3. NUMERICAL SOLUTIONS 

As noted above, numerical solutions of three problems involving the 

Interaction of stress waves with cracks were performed.   The specifications 

of these problems were given in Section 2.3.1. 

3.1 COMPUTATIONAL METHOD 

3.1.1   Physical Model 

The computer program being used in this study is the two-dimensional 

SHEP code, which solves the equations of motions for elastic-plastic bodies 

by means of a finite-difference Lagranglan-cell technique.   SHEP has been 

under intensive use and development for the past six years and has been 

previously documented   and distributed to interested parties.   The mathema- 
2 tical formulation is basically the same as that described by Wilklns  .   To 

14 
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dellneatethe boundary between elastic and plastic deformations, various yield 

criteria may be used, such as von Mlses, Mohr-Coulomb, or arbitrary functions. 

Within the chosen yield surface, the deformations are considered to b-2 elastic, 

i.e., vhen 

/a r2  < Y (1) 

where Ji is the second Invariant of the devlatorlc stress tensor and Y Is the 

yield strength. Excursions on the yield surface arc made In accordance with 

the Prandtl-Reuss flow rule. 

To model a crack surface, SHEP contains provisions for Inserting 

surfaces of discontinuity, which consist of grid lines having a dual set of 

lattice points.   These turfaces are discussed In the following section. 

3.1.2  Surfaces of Discontinuity 

In a normal Lagranglan computational grid, material elements on 

either side of an Interface at any point are, coupled to each other for the entire 

problem; they are. I.e., locked or welded together along the line segment 

connecting any two lattice points along the Interface.   At any Interface, which 

may represent a crack within a material or the boundary between two different 

materials, there are, however. In general, special boundary conditions which 

apply, and. In addition, there Is the possibility of forces which may be set 

up that tend to cause the materials to slip past each other or to separate.   A 

gas flowing past a metal surface Is an example of such a case.    The onset of 

material fracture during a problem also gives rise to the requirement for treat- 

ing the decoupling or uncoupling of elements which are, in this case, within 

an originally competent ma.erial.   For application to problems in fracture 

mechanics, such as in this program, the latter requirement Is particularly 

Important. 

A formulation of sliding interfaces for Lagranglan codes, as reported 
2 

by Wllklns   , provided a capability for the numerical treatment of problems 

involving sliding of two materials along an Interface.   This formulation served 

as the basis for development of the surface of discontinuity capability currently 

available in the RHEP codt. 

15 



The basic features of the surface of discontinuity formulation are 

Illustrated in Figure 8.   The grid line corresponding to the surface of discon- 

tinuity Is known in common parlance as a slide line.   At the start of a probJem, 

the lattice points along the slide line may be Individually designated as 

decoupled points, corresponding to their lying on an Interface, or as coupled 

points, In which case their bshavlor Is the same as in an ordinary mesh.   For 

deco.'p'ed points, special sets of governing equations are used to Individually 

determine the motion of the point pairs, to reflect the fact that there Is an 

Interface, such that, e.g., shear stress cannot be supported.   If forces are 

present which tend to cause slippage, the decoupled points will thus disen- 

gage end move separately along the slide line. 

Additionally, the development of tensile stresses normal to an inter- 

face will tend to cause material separation and formation of voids.   Provisions 

have been made In the code to treat this phenomenon, also. 

The void opening test Is made by computing the stress normal to the 

interface at a decoupled slide p-   .t and comparing this value with a selected 

critical value of stress required for uncoupling.   If the computed stress is 

greater than the critical value (In tension), then that point is designated as 

a free surface point.   The newly formed free point is then moved In accordance 

with the regular equations of motion for a point on a free surface. 

For the problems performed in this study, the critical value for 

uncoupling was set to zero, such that any tensile stress would tend to cause 

separation.   In other applications, e.g., for the interfaces in laminated 

materials, this value could be set equal to the bond strength. 

Void closure may also occur and Is treated in the code by appro- 

priate tests to determine If the materials have come In contact.   If so, the 

equations of the surface of discontinuity are restored, and the materials may 

subsequently slip or re-open, as before. 

Lattice points along the slide line which are initially designated as 

coupled points may dynamically decouple, individually, during the course 

»f a problem. If a selected criterion Is met.   Various decoupling,or fracture, 

criteria may be used.   Once the lattice points are decoupled, the equations 

16 
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of the surface of Jlscontinu'ty are Invoked.   A mechanism Is thus provided 

which can be used to mode, crack propagation within a material. 

Additional Information on the code operations and the mathematical 
2-4 

bd>ls of sliding Interfaces has been previously reported. 

3.2 MATERIAL PROPERTIES 

The rock medium In these problems was granite.   The properties 

selected for the grenlte were: 

Density: p      =2.69 gm/cm 

DUatatlonal Velocity: v.    =    .579 cm/fisec 
o 

Shear Velocity: v      =    .330 cm/msec 
so    ' 

These values Imply the following other properties: 

Bulk Modulus: K      »    .512Mb o 

Shear Modulus: G     «    .293 Mb o 

Polsson's Ratio: v^    =    .26 o 

The subscript  o  In the above Indicates that these are normal, pre-shocked 

values.   These values were selected from previous studies Involving granite 

media (References 5 and 6). 

The equation of state of granite, suitable for the low-pressure 

regime applicable In these problems, was formulated as follows. 

P   = Aji + BM
2
6 + Gpe P < .04 Mb (2) 

where 

6   =   1 for ^i > 0 

6   =   0 for /i s   0 

The symbols are defined as 

e   =   specific Internal energy 

P  =   pressure 

18 
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T;   = p/p     =  relative density 

u   =  Tj- 1 -compression 

p   c  density 

The values of the coefficients are: 

A  =      .512 Mb 

B  =    1.49   Mb 

G  =    2.1 

No hydrostatic tension was permitted, I.e., P   .    = 0. 

A Mohr-Coulomb type yield model war- used. I.e., 

Y  =   .0003+   (l-e'P/-0003) (.00094 + 1.33 P) (3) 

where   Y is the yield strength. In megabars.   The maximum value permitted 

for Y was 10 kllobars. 

3.3 CASE 1 - INTERACTION OF STRESS WAVE WITH SINGLE, 

INFINITE CRACK 

The computational grid set up for the code solution of Case 1 Is 

shown in Figure 9.   This grid contains 2690 cells, with the basic cell size 

set at 10 cm x 10 cm.   Beyond a central region of interest the cell dimensions 

geometrically increase in order to conserve the total cell count and computa- 

tional time.   Representative results of the code solution, as depicted by 

particle velocity fields and/or principal stress fields for times of .3, .5, 

and ,92 msec, are shown In Figures 10 to 12 and in Figures 2 and 3 in the 

Summary, Section 2.3.1.   For clarity in reading these plots, the field of 

view was limited to the central region of interest. 

For the stress field plots, the principal components of the stress 

tensor for each cell are shown, as follows:   The magnitude of the two princi- 

pal stresses in the x-y plane are plotted in their corresponding principal 

directions.   The third principal stress (In the z direction) Is plotted along 

the line bisecting the other two principal directions.   Vectors pointing to 

the right are comprcsslvc, to the left, tensile.   An example of how a stress 

tensor is plotted Is sketched below: 

19 
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The edits of the velocity vector field plot the direction and magni- 

tude of the velocity of each lattice point In the computing grid.   The vector 
lengths for both the principal stress and velocity fields are scaled to the 

unit length Indicated above each plot; the units are Mb/cm and {cm/ß3ec)/cm, 

respectively.   On the more recently produced plots, the scale Is also graphi- 
cally depicted In the upper right hand corner. 

As the stress wave Interacts with the crack, the material on the 

right side of the crack Is driven by the stress component normal to the crack, 

since shear stresses cannot be supported.   As shown in Figure 10, the velo- 
city vectors along the crack at the shock front are thus directed normal to the 

crack, turned downward 30 .   Also, as shown In Figure 2, note that the piln- 

clpal stress tensors In the material along the right side of the crack are rotated 
Into a direction transverse to the crack surface, again reflecting the fact that 

the crack surface can not bear shear stress.   As the Incident wave runs along 

the crack, a dllatatlonal wave and trailing shear wave are formed which 

propagate across the block.   The transmitted shock front remains approxi- 
mately planar and oriented at 90° to the x  axis.   In the shear region behind 

the shock, a distinctly downward velocity flow Is evident.   This action 

Induces material slippage along the crack, the material on the right side of 
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the crack moving downward and to the left, along the crack, relative to the 

material on the left side.   In addition, there v/as a slight separation, or 

openlng-up, of the materials on either side of the crack, which were Initially 
In contact. 

Time histories of the material displacement at the points Indicated 

In Figure 13 were recorded during the code solution.   Tne slippage of material 

Initially at the point x = 100 cm, y = 0 cm, as given by the distance b3tween 

points on opposite sides of the crack (points Band C In Figure 13), Is shown 
In Figure 14.   The extents of the downward (y-dlrectlon) displacements of 

these points are shown In the time histories   given In Figure 15.   The down- 

ward displacements of other points In ths field, at x = 55, 158, 203, and 
253 cm (points A, D, E, and F) along the central horizontal plane (y = 0), are 

shown In Figure 16.   The forward (x-direction) displacements of these points 

during this time were all ~ 0.25 cm.   The perturbation of flew, as measured 

by the downward thrust of material. Is seen to diminish as the distance from 
the crack Increases. 

Stress (a ) - time profiles at points A, D, E, and F are shown In 

Figure 17.   The peak stress In the transmitted wave (points D, E, and F) Is 

seen to be reduced by about 25% from that In the Incident wave.   The afore- 

mentioned two-wave structure In the transmitted wave and the reflected wave 
at point A are also displayed In these plots. 

3.4 CASE 2 - INTERACTION OF STRESS WAVE WITH SINGLE, 

FINITE-LENGTH CRACK 

The Initial configuration of the Lagranglan grid set up for this 
problem Is shown In Figure 18.   The crack extends from the loading surface 

(lower left) to the crack tip at x =  200 cm, / = 0. 

Representative results of the SHE? code solution of this problem, 

as depicted by the particle velocity fields for times of .3, .4, .5, .6, and 

1 msec, are shown In Figures 19 to 22 and In Flgu--e 4 In the Summary, 

Section 2.3.1.   Associated principal stress fields for times of .4, .5, and 
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.7 msec are shown In Figures 23 to 25.   For clarity in reading these plots, 

the field of view is limited to the central region of interest. 

The response of the granite in this problem is, of necessity, similar 

to that in the infinite-crack problem, until the wave front reaches the crack 

tip.   Subsequsntly, the wave system is divided approximately in half, the 

part above the crack tip appearing as a simple plane wave, and that below 

as a dilational wave and trailing shear wave, as In the previous solution. 

Starting from the crack tip, a disturbance, or bow wave, propagates Into the 

plane wave region above and the "cracked" region below, altering both flow 

fields and creating an expanding region of transition between them.   The 

diversion of flow around the crack tip may be seen in Figures 19 and 20. 

Time histories of the material displacement at the locations indicated 

in Figure 2 6 were recorded during the code solution.   The slippage of material 

at three points along the crack, as given by the distance between points on 

opposite sides of the crack, designated as-(W,X), (R,S)/ and (M, N) in 

Figure 26, Is shown in Figure 27.   The material on the right side of the crack 

is moving downward and to the left, along the crack, relative to the material 

on the left side.   The extents of the downward (y-direction) displacements of 

these points and the crack tip (point I) as a function of time are shown in 

Figure 28.   Tne spatial trajectory of the point pair (W,X) on the crack surface 

during the time span of the solution is plotted in Figure 29.   Time-histories 

of the vertical displacements of points above and below the crack tip along 

four vertical cuts (x « constant) through the target are shown In Figures 30 

to 33.   The downward shift of material persists at all these stations, but in 

smaller amounts as the distance from the crack increases. 

Stress (a ) - time profiles at points H, I, J, and K, along the hori- 

zontal plane through the crack tip (y«» 0), are shown in Figure 34.   Note the 

increase in stress over that of the loading level near the crack tip.   Stress 

profiles along the vertical plane through the crack tip (x« 200 cm) are shown 

In Figure 35.   The points above the crack tip show a peak stress of 5 kb - 

corresponding to the loading or Incident shock level, and those below the 

tip to about 4 kb - the transmitted stress level.   Stress-time profiles along 

a vertical plane to the right of the crack tip, at x ^ 300 cm, are shown In 
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RUN NB. 7119-2. HAVE INTERflCTleN WITH 30-OEC CKflCh TIP 
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TIME   MSEC 
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Figure 27.   Material Slippage at Three Points Along the Crack, Case 2. 
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Figure 28.   Vertical Displacement at Several Points Along the Crack, Case 2, 
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Figure 29.   Spatial Trajectory cf Two Initially Opposite Points on the Crack 
Surface, Case 2, 
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RUN NB. 7119-2. UflVC INTERfiCTtON WITH 30-OEC CRACK TIF 

0.00 0.2Ü 0.40 
TIME  MSEC 

0.60 0.80 1.00 1 .20 

Figure 30.   Vertical Displacement at Points Along the Vertical Plane at 
x cs 150 cm. Case 2. 
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Figure 31,   Vertical Displacement at Points Along the Vertical Plane 
at x ft*200 cm, Case 2. 
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Figure 32.    Vertical Displacement at Points Along the Vertical Plane 
at x % 250 cm, Case 2. 
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RUN N6.  7119-e. WQVC  IHTtBfiC^ieH UITH iO-OfO MftCH  TIP 
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Figure 33.   Vertical Displacement at Points Along the Vertlca.' Plane 
at x :» 300 cm, Case 2. 
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Figurt 3''.     Stress (ox) Profiles 'it Points Along the Horizontal Plane at 
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Figure 36.   Here the stress level Is reduced at points above as well as below 

the crack tip.   Time histories of the shear stress (o    ) at points along the xy 
vertical plane through the crack tip are shown In Figure 37. 

3.5 CASE 3 - INTERACTION OF STRESS WAVE WITH SINGLS, 

FINITE-LENGTH CRACK, WITH CRACK GROWm 

For this case, the same problem as In Case 2 was solved, but with 

the provision In the code for permitting growth of the crack activated, as 

described previously. 

Representative results of this code solution, as shown by the particle 

velocity fields for times of .5, .6, .7, and ,9 msec, are given In Figurcc 5 

to 7 in the Summary, Section 2.3.1, and in Figure 30.   Associated principal 

stress fields for times of .5 and .6 msec are shown in Figures 39 and 40. 

Propagation of the crack does occur for this loading; the extent of the crack 

at any time is indicated by the circled lattice points.   For this loading function, 

the fracture criterion used was met at relatively late times after the shock front 

has passed, so that the effect of crack growth on the transmitted wave is 

probably not large.   These and other effects, such as material slippage, will 

be examined through comparisons of recorded time histories for Case 2 and 

Case 3 in forthcoming analyses. 

4. DYNAMIC GRIFFITH CRITERION AND CRACK PROPAGAIION 

To improve the physical significance of the numerical solutions, the 

conclusion   was reached that a more realistic, dynamic criterion for predicting 

and following the course of crack propagation In flawed. Jointed, brittle media 

should be incorporated In the numerical method.   A necessary step in making 

such a formulation change Is to check the new code through comparisons with 

analytical results from some model problems, as will be discussed in Section 5. 

The moJlflcations needed to follov crack propagation are threefold. 

These are the logic associated with the crack geometry and crack propagation, 

the velocity threshold criterion, chosen here to be the Griffith criterion, and 

the velocity orientation criterion, chosen to bo the direction transverse to the 

maximum principal stress vector,   programming of tnis formulation is 

currently underway. 
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Figure 36.   Here the stress level Is reduced at points above as well as below 

the crack tip.   Time histories of the shear stress (o    ) at points along the xy 
vertical plane through the crack tip are shown in Figure 37. 

3.5 CASE 3 - INTERACTION OF STRESS WAVE WITH SINGLE, 

FINITE-LENGTH CRACK, WITH CRACK GROWTH 

For this case, the same problem as in Case 2 was solved, but with 

the provision in the code for permitting growth of the crack activated, as 

described previously. 

Representative results of this code solution, as shown by the particle 

velocity fields for times of .5, .6,  .7, and .9 msec, are given in Figures 5 

to 7 in the Summary, Section 2.3.1, and in Figure 38.   Associated principal 

stress fields for times of .5 and .6 msec are shown in Figures 39 and 40. 

Propagation of the crack does occur for this loading; the extent of the crack 

at any time is Indicated by the circled lattice points.   For this loading function, 

the fracture criterion used was met at relatively late times after the shock front 

has passed, so that the effect of crack growth on the transmitted wave is 

probably not large.   These and other effects, such as material slippage, will 

be examined through comparisons of recorded time histories for Case 2 and 

Case 3 in forthcoming analyses, 

4. DYNAMIC GRIFFITH CRITERION AND CRACK PROPAGATION 

To improve the physical significance of the numerical solutions, the 

conclusion   was reached that a more realistic, dynamic criterion for predicting 

and following the course of crack propagation in flawed, jointed, brittle media 

should be incorporated in the numerical method.   A necessary step in making 

such a formulation change is to check the new code through comparisons with 

analytical results from some model problems, as will be discussed in Section 5. 

The modifications needed to follow crack propagation are threefold. 

These are the logic associated with the crack geometry and crack propagation, 

the velocity threshold criterion, chosen here to be the Griffith criterion, and 

the velocity orientation criterion, chosen to be the direction transverse to the 

maximum principal stress vector,   programming of this formulation Is 

currently underway. 
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It was suggested by Griffith that a useful way of accounting for 

controlled crack growth In an elastic body is to balance the rate of work 

(power input) to the body by the rate of uptake of strain energy, kinetic 

energy, and surface energy, i.e., 

where 

P  =  Uj + U2 + U3 (4) 

P  = ^ ^j vj d ai (5) 

ul=.rwdV0 (6) 

u2=-T-Jvkvkdvo & 

U3 « r j) nk dak (8) 

W is the strain energy density, T is the specific surface energy, a material 

constant, and the dots denote material differentiation. The material deriva- 

tives consist of two components, i.e., 

i -f-L    +iL  « ») 0     X,6      °"   X, t 

where   6   is a measure of the crack length.   When the crack is not moving f 
is the ordinary material derivative. 

In order to accommodate the crack motion it is necessary to follow 

this procedure.  At each point in time, a test iteration Is carried out in 

which the crack is assumed to run a small distance.   New {Uj, Ug/ U^Jare 

calculated for the new 6, and Eqn. (4) is entered and checked.   If the right 

hand side Is less than the left hand side, the crack either has not yet started 

to run or the assumed increase in 6 was too large.   We propose to choose a 

small enough value of 6, such that the error incurred by always assuming the 

crack has not run when the inequality occurs, is a tolerable error.   When 

equality occurs, the crack is advanced another small Increment, and the 

program continues. 
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At each stage the program will calculate the direction of tha principal 

maximum stress vector and the crack will move in a direction transverse to 

that.   The crock geometry will be coded entirely like a free surface with the 

same boundary type characterization that is currently being used. 

5. ANALYTICAL COMPARISON PROBLEMS 

The only elasto-dynamic solutions that are currently available for 
7 8 9 an accelerating crack are those of Kostrov , Eshelby , and Achsnbach .   The 

crack growth is produced by anti-plane shear.   It was thus decided to modify 

the SHEP code to accommodate anti-plane shear or out-of-plane displacement 
In a manner that would retain the feature that the out-of-plane displacement 

remains independent of the 2-coordinate (or ß-coordinate for the axisymmetric 

case).   Thus, the additions maintain the two-dimensional character of SHEP 

because the out-of-plane motion merely superimposes on and does not couple 
with the in-plane motion^ assuming that we are confined to the linear elastic 

region. 

The additional equations that have been incorporated into the SHEP 

code to account for out-of-plane motion are shown below in differential form. 

The difference forms follow the same format as used by the rest of SHEP. 

We have 

ö T or, „       T. xz + P + J3L |* . p W (!„) dx dy y 

E = - (P+q) V + v (sx ex4- sy;y+ s0;0 4 Txy ;xy + rxz ^ +ryz eyz) 

(H) 

rxz=G;xz <12) 
ryz=GV ' ' ^13) 

*xz = G IF (^) 

*yZ   * G W (15) 
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All the rest of the equations retain the same form (the form of the Jauman-Oldroyd 

derivatives is given In the Appendix). 

A test problem consisting of simple shear motion of a slab has already 
been successfully run with the modified code, as discussed in the Appendix. 

The next case that will be run Involves the loading of a stationary crack in 

anti-plane shear. 
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APPENDIX 

CORRECTION TO THE ROTATIONAL TERM IN THE STRESS CALCULATIONS 

During the examination of the formulation of the code preparatory to 

making the modifications discussed In Sections 4 and 5 of the report, an error 

In the sign of the rotational correction term In the stress calculations, as 
Al originally proposed by Wllklns    , was discovered.   In addition, from the 

A2 standpoint of material objectivity    , the form of the rotational term Is si.en 

to be written In only an approximate form.    These statements are documented 

below.   The sign was corrected In our code and a check of the correction 

was made by running a model problem.   The results confirmed the sign correc- 

tion and. In addition, verified the accuracy of the SHEP code. 

formA3: 

where 

In SHEP, the constitutive equations are correctly* subsumed In the 

hi =  S1J " 6Ij P ^ • &l) 

Ö      = InJ (A3) 

J      =5f (A4) o 

tj.      Is the cartesian Couchy stress tensor 

s,.      Is the stress devlator tensor 

P        Is the pressure 

J Is the local volume ratio, equal to the square 

root of the third stretch Invariant. 

♦The term "correctly" Implies that Eqn. (A2) satisfies the principle of 

material objectivity. 
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G        is the shear modulus 

9        is the dilatation 

e^      Is the Cartesian strain rate tensor 

V        is the local Instantaneous specific volume 

and in (A4),     -xj-     is the particle-differentiator, 
o 

From Eqn, (A3) and (A4), It follows that 

J   «"f (AS) 

Furthermore n Eqn. (A2), the dot over e.. denotes the material derivative 

while the hat over s.. denotes the Jaumann-Oldroyd derivative. The form 

of the latter Is given by: 

where 

or 

where 

vM   = e^   +   Wlj (A7) 

vi 1 + v1 1 
iJ2    it    = % W 

Wj. is the spin tensor. 

The last two terms on the right hand side of Eqn, (A6) correspond to 

Wilklnri' 6..; a simple calculation reveals that the entire form of Eqn. (B-14) 

on page 78 of Reference Al Is formally incorrect but approximately appropriate 

(apart from a sign error). 

The sign error apparently arose in the following way:  Wllkins intro- 

duces an angular velocity vector, which he denotes by [sin co ].   The angular 

velocity vector Is correctly taken as the curb of the velocity vector which, 

according to the usual right-handed correction, corresponds to a counter- 
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clockwise rotation.   Wllklns then uses the rotation angle to to transform the 

stress components to new rotated components.   The transformation equations 
A3 he adopts are taken from Timoshenko    .   Presumably Wilkins changed the 

signs of the terms that are odd in co, because Tlmothenko shows a diagram 

in which the rotation is clockwise.   What one must notice, however, is that 

Tlmoshenko's picture is based on a left-handed system of axes.   Thus Timo- 

shenko's equation should have been subsumed without the sign change. 

To further check our logic, we ran the following simple problem.   A 

slab is set into simple shear motion, of: 

\\\\\\\\\\\\ 

IJonlinear (Poynting) effects are associated with the lengthening of the 

originally upright fibers.   The correct rotation terms (with the right sign) pre- 

dict a tensile stress in the lengthened fibers, in agreement with the analytical 

solution.   The original program, with the Incorrect sign, predicts compression. 

Keep in mind that these are second order stresses and thus the effect of thio 
error on the overall computation becomes important only when the first order 

stresses are comparable to the shear modulus of the material.   The reason is 

that the second-order stresses go as the square of the first-order stresses, 

e.g., in the shear problem: 

G 

T       2 
(A9) 

In the process of making these changes in SHEP, we checked out a 

model problem, namely the simple shear at constant velocities of an infinitely 

long slab (a 1-D problem).   The results, in terms of the stress at the moving 
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surface and the stress at the fixed surface are plotted in Figures Al and A2, 

respectively.   The analytical solution is Just a sum of Heavlside step functions. 

The agreement witi. ehe analytical solution is attested to by the fact that the 

computed Jumps fall directly (within 1%) on the grid line (both coordinate axes 
are non-dimensionallzed).   The general solution looks like 

7" SB 

-  ~^- =   E   iH(s - y - 2nh] + H (s + y - 2h - 2nh) ] 
o^       n = 0 

(A10) 

where 

M   (the Mach number) =  — o c 

s  =  ct 

and h is the height of the slab. 
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