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ABSTRACT

Guidance laws are developed for tactical
missiles whichtake into account the following important
dynamic and random effects: random target motion,
homing sensor measurement noise, bounded control
level, bounded acceleration level, and missile autopilot
dynamics. Several different guidance laws are derived
using optimal stochastic control theory and evaluated
by computer simulation. An important conclusion of
this workis that when interceptaccuracy is appreciably
limited by missile maneuvering capability, a control
policy obtained by taking control saturation into account
can yield significantly better performance than control
policies derived assuming that control levels are un-
constrained.
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1. INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

The task oif guiding a tactical missile to a target is affected by a
number of factors and constraints --e.g., target maneuvering capability,
homing sensor measurement errors, missile autopiloet dynamics, bounded
control variables, limited missile maneuvering capability, and launch ini-
tial conditions. To overcome those effects, a number of guidance tech-
niques have been developed and evaluated (Refs. 1,2, 3, 4.5, 6). Heretofore,
most guidance laws have been derived assuming fairly simple mathematical
models of the missile-target engagement problem. A familiar example is
so-called proportional guidance which is designed primarily for constant
velocity targets and unconstrained missile controls. It is frequently found
that guidance laws derived in this fashion yield terminal miss distances that
are unacceptable when applied in situations where target maneuvers, etc.,
exist. Consequently one is motivated to obtain improved performance by
including within the guidance problem form. .tion more of thnse factors
which affect the missile's interception capability.

In Ref. 6 a number of guidance laws which offer improvements
over conventional proportional guidance are evaluated. These laws are
derived with the aid of optimal control theory from mathematical models
that include the effects of initial condition errors, missile airframe dynam-
ics, constant target acceleration and a penalty on the amount of control
effort consumed. This report represents a continuation of that effort;
guidance laws are developed which include the effects of measurement
noise, bounded control levels, bounded maneuvering acceleration level and
random time-varying target maneuvers. Emphasis is placed upon those

1-1
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techniques which can potentially be applied in practical tactical missile
weapons systems in the next ten to twenty years, especially those which
can take advantage of the rapid improvement in computer hardware tech-
nology.

In Chapter 2 guidance laws are derived using some results from
optimal stochastic control theory described in Appendix A, which account
for measurement noise, random target acceleration, and bounded missile
control variables. Performance results for these laws, obtained by com-
puter simulation, are presented in Chapter 3. In addition, an acceleration
limiting technique is developed and evaluated in Chapter 3, its purpose
being to prevent the missile lateral acceleration from exceeding pre-
scribed limits. A summary of the results and major conclusions are
given in Chapter 4.
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OPTIMAL STOCHASTIC GUIDANCE LAWS

e

In this chapter stochastic guidance problems for a tactical mis-
sile, including the effects of bounded control variables and sensor measure-

ment errors, are formulated and 8olved. First a mathematical model is
developed which provides a standard description of the guidance system
dynamics for use throughout the report. Then both optimal and suboptimal
nonlinear guidance laws are derived; the performance of each law is sub-
sequently evaluated in Chapter 3 by digital computer simulations of the sys-

— . :

! tem model.

2.1 PROBLEM FORMULATION

The equations of motion for the missile guidance problem are
derived assuming motion is confined to a single plane and neglecting forces
caused by gravity and aerodynamic drag. * Referring to Fig, 2.1-1, a non-
rotating orthogonal coordinate system is defined with the x-axis chosen
along the line-of-sight (LLOS) between the interceptor and the target at the
beginning of the engagement. The center of the coordinate system moves
with the target but the coordinate axes do not rotate.

*In actual applications, drag can significantly reduce the airspeed of

a coasting missile, thereby adversely affecting guidance accuracy.

~ The exclusion of this effect here is justified on the basis that we are
seeking guidance law design criteria that offer improvement over
conventional methods with respect to more significant guidance error
sources. However, a more complete system evaluation of the methods
resulting from this study would certainly include aerodynamic forces,
as well as oti.er factors neglected in this simplified investigation.

L
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R-2054

Subscript m denotes missile A
Subscript t denotes target
v = velocity

o = acceleration

A = line-of -sight angle

8 = missile acceleration
orientation angle

MISSILE POSITION MISSILE POSITION
AT TIME ¢

MISSILE
TRAJECTORY

Figure 2.1-1 Relative Coordinate System

If the guidance system works well, a reasonable conjecture is
that the LOS rotates very little along the missile's trajectory, except near
the end when the range becomes small (less than 100 feet). This assump-
tion is suggested by the similarity between optimal linear deterministic
guidance laws and conventional proportional guidance in that all such tech-
niques tend to achieve a small LOS angular rate (Refs. 5,6). Consequently
at the terminal time tf, the missile trajectory intersects the y-axis in
Fig. 2.1-1 almost perpendicularly and the terminal miss distance is
approximately y(tf). Therefore, the missile's motion parallel to the y-axis
is of primary interest.

We shall assume that the control variable available for the guid-
ance law is the output u(t) of the missile's control actuation mechanism -~
e.g., a control surface deflection.* The latter,acting through the missile

*This assumption neglects actuator dynamics which typically have much
faster response characteristics than the missile rotational dynamics,

2-2
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rotational dynamics, provides an acceleration vector a., that changes the
interceptor's flight path. In a nonthrusting drag-free vehicle, a is
approximately perpendicular to the missile's velocity as indicated in

Fig. 2.1-1, Only the y-component of a given by

a, = -am(t) cos 6 (2.1-1)

y
where am(t) = |a m(t) |, is important for controlling terminal miss. If
the o.lentation of Ym is assumed to be slowly varying, cos 6 can be treated
as a known scale factor; throughout this discussion we assume cos 6 = 1.

In many applications the missile rotational equations of motion
can be modeled as being linear; therefore they can be written in state
variable form as

X0 = Fox ®)+g ult)
an® = ¢l x_()+du) 2.1-2)

where the acceleration is regarded as an output variable that im general
can be a function of both the state x () and the control u(t).” In this re-
port Fm, Em’ S’ and d are assumed to be constant arrays, a condition
that needs some elaboration. In many applications missile dynamic char-
acteristics vary rapidly because of changing flight conditions, especially
when thrusting at a high g-level. In these situations, the parameters in
Eq.(2.1-2) may be treated as constant if an adaptive autopilot has been de-
signed which maintains known, uniform dynamic characteristics.

*For example, in a tail-controlled lifting vehicle u(t) can represent
the control surface deflection which contributes directly to missile
lateral acceleration.

2-3
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Alternatively, when the elements of Fm’ etc,, are time-varying, they can
be estimated on-line by a parameter identification technique which can ,
track time-varying parameters. In either case, the subsequent develop- L
ment has application; however we shall see that if the airframe param- i
eters are known a priori, certain feedback control gains can be determined |
off-line and stored in the guidance computer. If the parameters are iden-

tified in flight, then the control gains must be calculated on-line. i

In addition to the missile's acceleration, the target acceleration

a 1:(t) has an effect on the guidance dynamics. In particular, from Fig. 2.1-1 i
it follows that ¢

§t) = a, ®+a_ (© 2.1-3) |
ty Ty

where aty(t) is the component of a t along the y-axis. We shall assume that

the target accelerates randomly according to the relations P

Xy = Pzt +w(t)

L.
8, ® = ¢/x,0 (2.1-4)
y
where w t(1:) is a gaussian white noise process having statistics described :
by* e
E{wt)} = 0
E{w, 0w, (7} = Qstt-7) (2.1-5)

*A nonzero, known mean can readily be included in the development.

2-4
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and F, and ¢,
and positive semidefinite, and 6(t-~) is the unit impulse function. This
model represents the target's acceleration as the output of a linear

system driven by white noise. It is a good representation insofar

are known constant arrays. The matrix Q ¢ is constant

as the target maneuvers appear to be random and correlated in

time. The correlation characteristics of at.y(t), which determine
the extent to which the target's future maneuvers can be predicted
from previous measurements of target motion, are determined by

Bowd fod Gond Ongd B ap

j; Fy.
,3;5, Random maneuvers are frequently used by aircraft flying in a
- region where they are subject to attack by missiles, especially by surface-
1] to-air missiles (SAM's) (Ref. 7). The pilot's purpose is to prevent SAM
.. radar trackers from acquiring a fix on the aircraft. However, if the pilot
2, knows a SAM has been launched, he is more likely to employ one of several
deterministic-type maneuvers which have been historically successful in
[ avoiding intercepts. To analyze the latter situation, game theory may allow
. a more realistic problem formulation in that the target aircraft can be
_} modeled as an intelligent evader whose objective is to maximize the ter-
minal miss distance. In this report only random target motion is con-
J sidered; the application of game theory is an important topic for future
: investigation.
)
Combining Egs. (2.1-2), (2.1-3), and (2.1-4) the complete set
J of state equations for the guidance problem can be written as®
|

x
10 The symbols 0 and [0] denote respectively a vector and a matrix
‘ having all elements zero.

2-5
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or more compactly as

i(t) = Fx®) +gutt) + w(t) (2.1-7)
where”*
[ y(t) 7 0]
y(t) 0
x(t) @ L wit) &
x,(0 w, (0
X | 2.
fo o oT o7
T T
00 0
E{w(t) v_J(-r)T} 2Qot-1)= - 6t -7) (2.1-8)
T 0 0 Q [0
,L9_ o [o] [o]

and F and g are identified as the matrix and vector coefficients of x(t) and
u(t) respectively, in Eq. (2.1-6). The initial value of x(t) is assumed to
be a vector gaussian random variable with known statisties given by

irThe notation 0 and [0] denotes respectively a vector and a matrix
having all zero elements,

U,
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:

E{[x(0) - gl[0) - EJT} = P,

E {x(0)} =

The objective in designing the guidance system is to derive a
feedback control law for u(t) having performance that is optimum in some
sense, In order to provide feedback, measurements related to the ele-
ments of x(t) must be available. It is usually realistic to assume that mea-
surements of line-of-sight angle or angle rate are available from a homing
sensor. From Fig. 2.1-1, the LOS angle A(t) is given approximately by

AE) = x‘:) - ﬁ{t(ft_-)ﬁ 2.1-9)

where tf is the terminal time and v c is the magnitude of the closing velocity
which is assumed to be constant. ¥ Eq. (2. 1-9) is differentiated with respect
to time, the result is

: _z__<t> 3 -
At) = [ (tf t) (t t)] (2.1-10)

Consequently, within the limits of the approximation stated in Eq.(2.1-9), an
LOS rate measurementis linearly related tothe state variables y(t) and y(t).
In addition, linear measurements of some of the missile airframe state vari-
ables x m(t) (pitch rate, lateral acceleration, etc.) are also generally avail-
able. The set of all these measurements, z(t), is considered to be available
at discrete times tj and corrupted by additive gaussian noise; thus z(tj) can
be expressed as

—(ti) = Hx, +v (2.1-11)

2-1
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where
T .T
el 1vele-t) 07 @
.
| 0 o [0 B
Ef{yjl=0
T R ; i=]
E ’giy_j‘ . (2.1-12)
0 ; i#j
and Ri is a positive definite matrix that can vary with time. The quantity

X, denotes x(t;)in Eq.(2.1-7) and the matrix Hy, describes the linear rela-
tion between the missile airframe state variables and the measuremeuts.

In situations where the homing sensor output is interpreted as an
LOS angle, H; takes the form

1/velte-t) 0 0T 0

0
H. =
0 0 [0] H

i

m

In this report we use Eq.(2.1-12) as the sensor model.

In order to guide the missile, the measurement data is to be
used for computing control commands. To allow for the time required
to make the necessary calculations, it is assumed that a new value of the
control can be computed only at each measurement time t;. Thus on the
interval ti sts ti 1 u(t) is held constant at the value of u(tj). Because
both the measurements and the controls are generated at discrete points

in time, we use the discrete equivalent of Eq. (2.1-7):

u, 2 u); x; & x)

X - OE LYY (2.1-13)

2-8




o onmary G e
R T R S A T W SR N e

THE ANALYTIC SCIENCES CORPORATION

¢ bSmd @B

where Oi, Y and W, are determined from F, g, and w(t) according to
Egs. (A.1-12) and (A.1-13) of Appendix A. For thig application the inter-
val between measurements is assumed to be of uniform length, At,

v et e

Boid  Dibed  OGemd

At 2t -t

i+1- i=o,1,ooo, N-l

¥
with ty Qtf. Therefore, because the dynamics in Eq. (2.1-7) and the sta-
tistics of w(t) are constant, Eqs. (2.1-13), (A.1-12) and (A.1-13) can be
written as

o

' ﬁ ¢ =@ 4 JFFat
| At
i y =y & 0 oF(Bt-7) o 4
4 ﬁ Ky = XytYW t W i=0,1,..., N-1 (2.1-14)
ﬂ where w, is a gaussian random sequence satisfying

Blw;} = 0

t
E{!’il’;r} 4 Q = S: eF(At-T)Q(eF(At'T))TdT

E{v_zig;r} =0; i#j (2.1-15)

Having Eqs. (2.1-11) and (2.1-14) describing the measurement
sequence and the discrete time dynamics, we desire to establish rational
performance criteria for determining each control uj. In many applications
the most important objective is that the terminal miss distance be made as

2-9

Goed  Gied  feed




THE ANALYTIC SCIENCES CORPORATION

small as possible. More precisely, if we define a loss function of the ter-

minal miss distance f(xq(tf)), where x, is the first element of the state vec-

tor x -- i.e., the quantity y in Fig. 2.1-1 -- and tf is the terminal time,

then we say that guidance performance is optimized if the index
3 = E{tlx, &)}

is minimized. The designer's objective is to determine the sequence of
optimal control commands which accomplishes this goal. In this report the
loss function used is the square of the miss distance so that the perform-
ance index becomes

3 = E{xl(tf)z} (2.1-16)

In practical applications the allowable values of the control are bounded in
magnitude; typically for tactical missiles the control surface deflection is
limited to a few degrees. Thus, our objective is to minimize J1 subject
to the constraint™®

luil s D ; i = 0,1,...,N'1 . (2.1-17)
It is subsequently demonstrated that this problem formulation leads to an

optimal nonlinear stochastic control law; i.e., W is a nonlinear function
of past measurements.

*Depending upon the type of control actuation mechanism in use,
it may be desirable to restrict other variables as well, say
du/dt. Such a requirement can complicate the task of finding
the optimal control law and the designer may have to settle for a
suboptimal law that satisfies the constraints but which does not
exactly minimize Jj.

2-10
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If the energy expended by the control law is of no importance,
as may bethe case in short range missions or near the end of a long range
mission, the above problem formulation is quite realistic. Its solution
will indicate the ultimate guidance accuracy that can be achieved for a
given target engagement situation when control level is bounded. However,
for comparison purposes it is convenient to consider alternative perform-
ance criteria that have been advocated for the guidance problem.

In (Ref. 6) linear guidance laws for a continuous-time, deter-
ministic problem formulation are evaluated. These laws are chosen to
minimize a quadratic performance index of the form

t

f
J = xl(tf)z + rso u(t)? at (2.1-18)

for various models of the missile autopilot dynamics and target maneuver-
ing capability, but without any direct constraint on ju(t)|. This performance
criterion has one advantage over that outlined above, in that the presence
of u(t) in the definition of J results in a guidance law that tends to con-
serve missile energy. * However, it lacks a capability for directly

*This statement must be qualified with respect to the type of energy
consumption one is talking about. If the control surface actuator is
electromagnetic, a constant electric current must be provided to main-
tain a constant control surface deflection and j’ u(t)2 dt is proportional

to the electrical energy consumed. However, in electrohydraulic sys-
tems, power is required anly when the control surface is in motion so
that [(t)2 dt is a better measure of energy. In addition, some sys-
tems pump hydraulic fluid into the atmosphere; in this case [ |i(t)|dt
represents the amount of fluid expended. Besides actuator energy/fluid
losses, the missile incurs a kinetic energy loss proportional to [|a(t)| dt
when it performs a maneuver at constant altitude. Although J in Eq.
(2.1-18) is directly related only to energy used by the electromagnetic
type of actuator, it is frequently observed that utilizing a penalty on the
integral of u(t)Z produces a control law that also tends to Limit all of the
other losses mentioned above. Therefore we are qualitatively correct in

saying that minimization of J in Eq. (2.1-18) tends to conserve missile
energy.

2-11
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constraining control magnitude. Therefore the zontrol levels called for

can exceed any limit which may exist; this condition tends to occur most
frequently near the expected time of intercept when the observed line-of-
sight angular rate tends to become large,

By analogy with Eq. (2.1-18), in this study we investigate a
performance index having a quadratic penalty on control level, to be com-
pared with J 1 in Eq. (2.1-16). Namely, we seek those unconstrained con-
trols u, which minimize the index

Jg = E§x1(tf)2 1 ;‘;; uﬁi (2.1-19)
This design criterion ordinarily leads to a linear stochastic control law;
i.e., uj is a linear function of the measurements. However, because the
actual missile control capability is constrained according to Eq. (2.1-17),
the control sequence obtained by minimizing J9 is "clipped" when applied
in the actual guidance system resulting in a suboptimal nonlinear stochastic

guidance law.

The solutions to the above two guidance problems are given in
the next two sections.

2.2 OPTIMAL NONLINEAR STCCHASTIC GUIDANCE LAW

The optimal stochastic guidance problem associated with Eqgs.
(2.1-15) and (2.1-17) is summarized as follows:

Given the linear discrete time dynamic relations
Xivg = O§i+xui+3{i (2.2-1)

with linear measurements

2, = Hx 4V, 2.2-2)

2-12
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determine the optimal sequence of controle” uf

(i=0,1,...,N-1) such that the performance index
_ 2
5 = E{x ()"} 2.2-3)
is minimized, subject to the constraint
l“i! £D; foralli (2.2-4)

Definitions of the quantities ¢, v, Hi’ Wys and v j are available in Eqgs.
(2.1-12), {(2.1-14) and (2.1-15). The above problem formulation is

a discrete-time generalization of the case treated by Nahi and Sworder
(Ref. 8); the latter is a continuous time problem which does not take into
account target or autopilot dynamics., Fortunatrly the optimal guidance

- ,,\‘

P

[3

law is readily obtained as described in Appendix A. Its mechanization can
be described 25 two separate functions.

= =

&= =

First, a conventional Kalman filter is implemented to obtain an

estimate x; of the state x i+ The required filtering equations, taken from
Eqgs. (A.2-1) and (A.2-4), are as {ollows:

B

8 o~ Fo Xy < &
B K, = %in;r (Hiﬁiﬁ;r + Ri)-l
U % = % +K(z-HX)
}' B = B-k,(n, 80 R K]
| P = ep0T +q,
| X, = 0kryed s 120,1,...N-1 (2.2-5)

r‘..-.

*
The superscript o' denotes optimal.

-t
-
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where p and Pj are the initial mean and covariance matrix of the state,
and gi and ~Pi denote respectively the estimate and its correspording
covariance matrix just before a measurement is taken.

To obtain the second part of the solution -- i.e., the method for
calculating u,-- we begin by transforming % ; linearly according to Eq.
(A.4-8) to obtain the quantity ii; the latter is the expected value of the
terminal state, givenE {x(t;)} = x;, if no control is applied during the in-
terval t; < t sty. Because @ is independent of time, y ; becomes

N-i A

X, (2.2-6)

ii=°

where we have made the substitution
_ aN-i
°(tN' y) = @
Actually only the first element, }711, of the transformed state is needed.
If the first row of ®N-1 i defined to be a transposed column vector, g;r,

we have
¥, = QiT X (2.2-7)
i
Similarly, the vector y in Eq. (2.2-1) is transformed according to Eq. (

(A.4-6) to obtain the quantity 6 i which represents the effect on the ter- !
minal state of a constant control u(t) = U, applied dusing the interval -
ti st t:i+1; 1
_ aN-i-1

g, = ¢ Y (2. 2-8) ;
Only the first element of 8, is needed to describe the effect of the control |
onthe terminal miss distance; therefore by analogy with Eq. (2.2-7) we {
calculate

6, = -‘ei+l Y (2.2-9)

2-14
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-i-
where @is1 is the first row of ON B 1. Now the optimal control strategy,

as proved in Appendix A, is to seiect a control such that the total predicted
terminal miss produced by both g:‘:i and u, be as close to zero as possible;
i.e., we desire

y, +6,u =0
li lii

remembering that the constraint in Eq. (2.2-4) mustalsobe satisfied. Con-
sequently the optimalnonlinear control law (see Eq.(A.4-17)) is given by

S/ 5 AR
1i li ’ 1 1i
o -~
u; = )
-Dsgn(y /6 ) |y /6 | >D
li 1i ? 1i 1i
or alternatively
T . T
d4ix LEARE
W =
i
-D s (d;'x;) |ajz,| > D
a1 5
g‘i= _51—-91; i=0,1,, N-1 (2.2-10)
i

Thus the complete guidance law is represented as a linear filter
cascaded with a nonlinear control policy; the latter consists of a set of
gains d followed by an amplitude iimiter. A block diagram of the system

is given in Fig. 2.2-1. We shall refer to the entire sequence of the
optimal control as {u}.
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OPTIMAL NONLUINEAR STOCHASTIC 30010
GUIDANCE LAW
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Figure 2.2-1 Optimal Nonlinear Stochastic Guidance Law

At this point it is worth inentioning that the guidance law derived
above is much more general than implied by the statement of the guidance
problem at the beginning of this section. It is proved in Section A.4 that
the control sequence given in Eq. (2.2-10) minimizes any convex sym-
metric function of the terminal miss distance subject to the constraint in
Eq. (2.2-4). Consequently one can say that, in a very broad sense, this
guidance law yields the best possible terminal accuracy, within the mis-
sile's control capability.

The mechanization of Eqs. (2.2-5) and (2.2-10) requires com-
putation of both the set of Kalman filter gains Ki and the feedback gains
dj, given by

d, = —pt
Si T £
€in 2

First, with respect to the feedback gains, both ¢ § and ¢ j+1 aTe derived

from the matrices " and " 1"}, The latter usually can be determined

2-16
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analytically in this application. We have already noted that ¢N'l is the

transition matrix ®(t, t;) associated with Eq.(2.1-7). Because F is time-
invariant, it follows that

oftot) = o(-t.0) (2.2-11)
An analytic..l expression for &{t,0) as a function of t can be obtained by
applying Laplace transforms to the homogeneous equation
x(t) = Fx(t)
associated with Eq. (2.1-7). The result is

8t,0) = ! [(Is - F)'l] (2.2-12)
where
1 1 1 T -1 1 T (.. » VI
L3 hete-n)? e s-F,)
8 8 ]
1 1T -1 1T ( o Vi
1 0 35 EEt(Is'Ft) "sgm(ls Fm) ,
(ts-F)" = (2.2-13)
~1
o 0o (s-F) o o
0 o [0] (s-F )"
L. m -t
and L'l[ ] denotes the inverse Laplace transform. The vectors ¢, and ¢, .,
are determined by evaluating the first row of Eqgs. (2.2-12) and (2.2-13) and
by substituting respectively the quantities (tf - tj) and (tf -tj+1) for t into
Eq. (2.2-12). Carrying out the inversion operation indicated in Eq. (2.2-12)

is straightforward and leads to fairly simple expressions for the elements
( } of 9; and ¢, , When the dimensions of F; and F , are not too large.
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The elements of @4 and ¢, ., vary with the index i, requiring
knowledge of time-to-go which is given by

t = range-to-go
go Ve

assuming that the closing velocity, v., is constant. In practice, v, is not
exactly constant so that t 0 must be continually estimated from measure-
ments of range and range rate. Consequently, in the form presented here,
the optimal stachastic guidance law is applicable only for those missiles
having a radar homing sensor, or some other method of measuring range.
If various simplifications are made ~- such as modeling the noise as being
independent of range, using constant filter gains, neglecting autopilot dy-
namics, etc., the requirement for range measurements can be eliminated;
however it is expected that system performance will be somewhat degraded.

The Kalman filter gains K; in Eq. (2.2-5) are calculated from a
time-varying nonlinear difference couation. Generally it is most practical
to compute these gains on-line because H; dei)ends upon both the closing
velocity (see Eq. (2.1-12)) and time-to-go, which are not known before the
mission,

2-18
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2.3 SUBOPTIMAL NONLINEAR STOCHASTIC GUIDANCE LAW

The optimal stochastic guidance problem associated with Eq.
(2.1-19) is summarized as follows:

Given the linear discrete-time dynamic relations

Xjg T G TIYE, (2.3-1)

I with linear measurements

. z; = Hx, +v, (2.3-2)
L
- determine the optimal sequence of controls {u}}
| (i=0.1,..., N-1) which minimizes the per-
formance index
] N-1
_ 2

J2 = E xl(tﬁz +r Z Y (2.3-3)

| i=0

where r is a weighting constant selected by the designer. Definitions of the
quantities &, , Hi’ LA and v ; are available in Ecs. (2.1-12), (2.1-14)
and (2. 1-15).

The solution to the above problem can be taken directly from
Section A.2; however, first it is convenient to modify Eq. (2.3-1) using
the transformation technique described in Section A.4. Specifically, we
define

X, (2.3-4)

e
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where y, is the terminal state produced by an initial state x, with no control )
or random forcing function applied, Vi is the first element of the vector ¥ )
and (pi is the first row of the matrix -@N-1, Substitution from Eq. (2.3-1) ;
for x j+1 and X, produces

= ¥t 4y ey (2.3-5) l

Liva 4%

where 8, and w, are specified by Eqs. (A.4-6) and (A.4-7). Now the first ‘
element of the vector y, is the terminal miss distance produced by the state ‘
at time ti‘ Hence, using Egq. (2.3-4) we have .

YI = xl(tN) (2. 3"7)

N

Therefore by substitution from Egs. (2. 3-4) through (2. 3-7) into Eqs. (2.3-1)
through (2. 3-3), the linear optimal stochastic guidance problem can be re-
stated as follows: -

Given the linear discrete-time dynamic relations

X = PE YW, L
y =y, +6, w+w '
T
Yy = 0. X (2. 3-8)
li ‘-i —i ot 4

with linear measurements

z; = Hyx +v,

(2. 3-9) P

R S Ry
{

determine the optimal sequence of controls (w2}
(i=0,1,...,N-1) which minimizes the performance -
index
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2 =<' 2
; J2 = E {le +r £ ui} (2.3-10)

4

Although the above problem statement is apparently more com-
plex than Eqs. {2.3-1) through (2. 3-3), it permits the solution for the
optimal controls to be more readily obtained. The latter follows directly
from Section A.2. First a conventional Kalman filter is implemented to
obtain an estimate 911 of y1,. This is done by first estimating x; using
¥ Eq. (2.2-5) and then applying the transformation
H

—_—1 =

Y = @ X, (2.3-11)

This part of the solution is almost identical to that for the nonlinear
problem discussed in the preceding section; the only exception is that u?
is now computed differently, as indicated below.

3 We can derive {u? } with the aid of the scalar equation for

L yli ) (Eq. (2.3-8)) and the performance index in Eq. (2.3-10). Comparing
: +

1 these relations with Eqs. (A.2-1), (A.2-2), and (A.2-3) and making the

1 identifications
' VN =1
Vi =0 5 i # N
Wi =r
g §i(in Eq.(A.2-2)) = Y14
| for all i
{ ¢ =1 )
{
Ty = oy (2.3-12)
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we obtain the optimal control law

u = -c yli (2.3-13)

where the scalar feedback gain c; is computed from the backward recur-
sion relations

2 -1
¢ = By 611 (si+l 61i *r >

8y T 1 (2.3-14)
The control law in Eq. (2.3-13) is similar to "predictive proportional guid-
ance"” (Ref.5)in the sense that u? depends upon the predicted terminal miss
distance, §1 i The solution given here is somewhat more general because
missile autopilot dynamics and target dynamics are included in the problem
formulation.

To provide an analogy with the results obtained in the preceding

section, we combine Egs. (2.3-11) and (2.3-13) to obtain g
o _ A i

YTt X i

g - '

Ei ci ®, (2. 3-15) o

The gains ¢ ; are distinguished from the gains d, in Eq. (2.2-10) by the
comparison between the scalar quantities (1/ 61;) and 2;. The latter is the
more difficult quantity to evaluate because no closed form solution is avail- .
able for Eq.(2.3-14), whereas 61; is obtained analytically. Because the ‘
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boundary condition on 8; is specified at the terminal time tN’ Eq. (2.3-14)

is solved backward in time, and the feedback gain must be stored in tke
guidance computer. * This computational distinction is probably not im-
portant in applications where the dynamics of the guidance problem are
known a priori, because the gains for each guidance law can be calculated
off-line and approximated in storage as polynomial functions of time-to-go.
However, if some important dynamic parameters -- such as those associated
with the missile airframe -- are unknown and must be identified on-line,
then the system gains must be calculated on-line. In the latter situation,

the computational advantage of the optimal nonlinear law is more significant.

Thus far, the guidance law derived above can be represented as
a linear filter cascaded with a linear control policy. In mechanizing the
guidance equations, the control is first computed according to Eq.(2.3-4).
If |uf| =D, the linear control is applied; however, if lu? | > D, the con-
trol level is "clipped" at the level Dsgn (ug’) by the saturation inherent in
the control actuator. Consequentiy, the actual applied control will in
general be nonlinear; it is also suboptimal with respect to the objective of
minimizing J9. In order to distinguish the applied control surface deflec-
tion from that given in Eq. (2.2-10), we designate the entire sequence of
controls generated by the procedure described above as {uio} »

T A Ta .
TR le;x;| < D
(o] Ta a
-Dsgn(si zr_i); Ig;rzil >D

*Perhaps an analytical solution can be obtained for the discrete-time
feedback gain by making an analogy with the continuous-time case
trezted in Ref. 5. No attempt has been made here to resolve this

question,
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where the subscript "o" denotes that it is a suboptimal nonlinear guidance
law. The adjective ""suboptimal" applies in two contexts -- because of the
nonlinearity in Eq.(2.3-16)[uio}’does not generally achieve as low a value
of Jg as the unconstrained control; it also does not generally achieve as
low a value of Jl in Eq. (2.2-3) as the control law given in Eq. (2.2-10).

A block diagram of the above guidance law is given in Fig.2.3-1.

It is observed by comparison with Fig. 2.2-1 that the functional structure
of the suboptimal law is exactly the same as the optimal nonlinear law
derived in the previous section. The difference in specific detail between

the two is, as we have already noted, the manner in which the gains operat-
ing upon éi are computed. An evaluation of the intercent accuracy obtained
using the controls defined in Eqs. (2.2-10) and (2. 3-16) is given in the next

chapter.

SUBOPTIMAL NONLINEAR STOCHASTIC
GUIDANCE LAW
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7

3. EVALUATION OF GUIDANCE LAWS

In this chapter the results of digital computer simulations of the
optimal and suboptimal nonlinear guidance laws derived in Chapfter 2 are
presented. In addition, a method of limiting missile airframe lateral
acceleration is proposed and evaluated. Statistical averages (root-
mean-square values) of important quantities -- terminal miss distance,
peak acceleration, etc. -- are computed from the results of twenty-five
Monte Carlo runs performed for each of several different launch times and
different values of the guidance problem parameters (measurement noise
level, target acceleration level, etc.). These averages are determined
empirically, rather than analytically, because the equations describing
their evolution along the missile's trajectory are too complex™ to solve for
the number of different cases which we wish to examine.

3.1 CHOICE OF MATHEMATICAL MODELS

Missile Dynamics — For this investigation the missile airframe
dynamics are those of a vehicle that utilizes aerodynamic lift for its man-
euvering force and has tail-mounted control surfaces and fixed wings. The
missile is assumed to be in coasting (nonthrusting) flight with its equations
of motion in the form of Eq. (2.1-2). For this type of missile, the air-
frame dynamic parameters are specified by

*
This is a consequence of the fact that the guidance laws are nonlinear.
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" M [ )
o

Mq LaV Ma
Fm = Em =

VL -L -VL L

| o o i o 6]
ck =[0 1] d = VL (8.1-1)
-m 6 ¢

and the airframe state variables are

[att)
x () 2 l (3.1-2)
a(t)’

The input u(t) is the control surface deflection angle. The symbols used
in the above expressions are defined as follows:

Ma’M ’M6’ La’Lb = Stability derivatives

q
V = Airspesd
q{t) = Pitch rate
a(t)’ = Normal acceleration produced

by body-wing lift

We assume that all of the ahove parameters are constant and known and
that g(t) and a(t)’ can be measured from rate gyro and accelerometer”
outputs, This second order model describes the dominant planar rotational
motion of the airframe.

*

If an accelerometer is oriented along th2 lift vector and mounted at the
missile center of gravity, its output, a(t), is related to a(t)’ by the
relation (neglecting measurement noise):

ait) = a(t) - vL 5 u(t)

3-2
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Target Dynamics — The target motion has the random structure
specified by Eq. (2.1~4). In this simulation the target acceleration 3ty is
assumed to be a first-order Markov process specified by the scalar quan-
tities

Ft = ft Ct =1
_ _ 2
Qt - qt = thO' (3. 1"3)

That is, aty satisfies the differential equation

a, = f a +wi(t)
tt 1
ty y

E {wt(t) wt('r)} = 2ft02 6(t-7)

The covariance q, of the white noise process which drives the target dy-
namics is expressed in terms of g, the steady state root-mean-square
(rms) target acceleration; i.e.,

lim E{at (t)z} = 02

t~o y
Measurement Noise — The measurements available for imple~
menting the guidance laws are described by Eqs. (2.1-11) and (2.1-12).

In this investigation it is assumed that the missile autopilot sensors directly
observe both state variables, i.e.,

H =1 (3.1-4)

at uniform intervals of length At. The most important element of the
measurement noise covariance matrix is Tyqyo the mean square value of
the homing sensor noise. In a practical application, homing sensor noise

3-3
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is contributed by the sensor receiver unit, the target itself (scintillation
noise), the target environment, and the servo control loop used to direct
the sensor. Some noise components decrease as range decreases (e.g.,
radar receiver noise); others increase as range decreases (e.g., target
scintillation noise); others are range independent (e.g., sensor servo
noise). For the purpose of providing a comparative evaluation of the
guidance laws derived in Chapter 2, we choose ' to be constant along a
given trajectory with a value that is inversely proportional to the square
of the launch range, r 4 This simulates, in part, the effect of target
scintillation noise, which is the most troublesome error source., The
validity of this noise model improves as the launch range decreases. The
expression from which 11 is calculated is

2
20
ry = [;—(%5] (3.1-5)

4

The quantity, °s/r ,(At), represents the standard deviation of the scintil-
lation measurement error in line-of-sight rate at the instant of launch.
This error is caused by the fact that radar reflections are returned from
different points on the target from sample to sample because of the tar-
get's rotation relative to the missile and/or because of changes in radar
transmitter frequency. The rms values of the separation between reflect-
ing points is denoted by Oy The factor of two is inserted into Eq. (3.1-5)
simply to allow for the fact that scintillation noise strength increases as
the range to the target decreases. Thus 11 represents an "average' scin-
tillation noise along the missile trajectory. This model provides a real-
istic sensor noise level, neglecting time-variation in the noise statistics.

Some qualification is needed for the assumption that the homing
sensor noise samples in Eq. (2.1-11) are independent. This is not
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realistic if the homing sensor is a radar that operates at constant frequency
because then the scintillation effect is due solely to changes in the relative
rotational orientation of the missile and target, which usually occur more
slowly than the pulse repetition rate, However, it is often found desirable
to use "frequency diversity' -- i.e., to change the transmitter frequency
from pulse to pulse -- to frustrate jamming countermeasures taken by the
target. In this case, successive scintillation noise samples tend to be inde-
pendent. The latter situation has the more adverse effect upon guidance
accuracy. - the error in line-of-sight angle has significant correlation
over some number of adjacent pulses, the resulting error in measuring
LOS rate is less than if the measurement errors are uncorrelated.
Therefore, the model used here represents the worst type of scintillation
noise.

Other sources of measurement noise are the autopilot sensors
whose mean square levels are denoted by oo (gyro noise) and Tga (accel-
erometer noise). These two parameters are also assumed to be constant.
All three measurement errors are assumed to be uncorrelated with each
other so that the off-diagonal terms in Ri are zero., Therefore Ri isa
constant matrix, R, of the form

T 0 0
Rl = R = 0 I‘22 0 ; i=o,1,ooz,N-1 (3.1-6)
] 0 0 r33-
@
i
‘ 3-5
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3.2 SIMULATION RESULTS

In this section, both the optimal and suboptimal nonlinear control
sequences derived in Chapter 2, {u‘;} and {uj,} respectively, are eval-
uated from ccmputer simulation results. The values of the parameters
defined in Section 3.1 are given below:

Missile Airframe Parameters

Mq = - 0,455 La = 10.15
Ma s - 804 LG = 1086
M, = -71.2 V = 2920 ft/sec

Target Parameters

f, =-0.3 sec™1

o? = 9.0 x 10t/sec?)”

Measurement Parameters

]

0.05 sec v 2000 ft/sec

At

4.75 ft 5.0x10°5 (rad/sec)?

Q
]
1)
¢
N
(L)

Tgq = 10.0 (it/sec?)”

3-6




Sars

R =<

B
s~ g

 wovonr S sonsee B ontniis BN vumnts

|

—

== ===

L

R0 S L L D A S S e A2 ARG el g L s ' ok A’ S S N AT . ALTRO T 2 ¥ hEAFR e UL ak e Kot S e T

b s ¥ RS A AW AR T A e e

THE ANALYTIC SCIENCES CORPORATION

Initial Stale Statistics

g=20
0 0 0 0 0
0 0 0 0 0
_ 3 2\2
Py = |0 0 9.0x10°(t/sec?) 0 0
0 0 0 1.0 x 10" 4(rad/sec)? 0
0 ¢© 0 0 1.0x103(ft/se02)2_

The missile airframe parameter values given above are taken
from Ref. 6, Appendix H. The target dynamics are chosen to yield a tar-
get acceleration correlation time constant of about three seconds. The
two upper-left diagonal elements of the initial state covariance matrix, PO’
are taken to be zero, simulating the absence of an initial heading error.
This is done so that the effects of target acceleration alone on terminal
miss distance can be analyzed. Of course, appreciable heading errors
can exiat at launch -- especially at close ranges -~ and their presence
should be included in a complete quaatitative evaluation of these guidance
laws,

Another parameter to b selected is the weighting constant r that
is associated with J 9 in Eq. (2.3-3) and which is needed to compute the
suboptimal control sequence {ui }, specified in Eq. (2.3-16). The value
chosen for r should be such that the comparison between {u }and {ui }
is a fair one. For example, if r is large, the suboptimal law heavily penal-
izes the control level. This tends to yield amalil feedback gains, ¢ Sy in
Eq. (2.3-16) and correspondingly small values of '“1 |, at the expense of a
relatively large terminal miss distance. Thus, if termmal miss distance
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is used as the basis of comparison, the optimal guidance law will be
definitely superior; if the guidance laws are evaluated on the basis of con-
trol level, then the suboptimal law will appear to be superior. To avoid
this ambiguity, we regard the level of terminal miss distance as the pri-
mary indicator of system performance; after all, miss distance is the sole
quantity appearing in the performance index for the optimal nonlinear guid-
ance law (Eq. (2.2-3)). We shall also be interested in the control levels
required by both guidance laws, but this consideration will be of secondary
importance. With these priorities in mind, r is chosen small enough so that
any further reduction in its value produces no significant further reduction
in the expected terminal miss distance; the value selected was ten.

The simulation consisted of substituting {u‘;} and {y; } from
Eqs. (2.2-10) and (2.3-16) for Ju, } in Eq. (2.2-1), beginning at a variety
of launch ranges. Twenty-five Monte Carlo computer runs were made from
each launch point; the random sequences {v_zi} and {!i} in Eqs. (2.2-1)and
(2.2-2) were generated by a Gaussian rando-* number generator. Because
we are interested in the relative performance of {ug} and fuiol,
identical sets of random numbers are used in the simulation of each guid-
ance law.

Figure 3.2-1 shows the performance of both guidance laws with
the maximum control surface deflection, D in Eq. (2.2-4), set equal to
0.2 radian. In Fig. 3.2-1(a) the rms values of the terminal miss distance
obtained using the optimal and suboptimal guidance laws are plotted for
launch times ranging from one to six seconds before intercept. Note that
the optimal law gives an accuracy only slightly superior to that of the sub-
optimal law,
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(c) Average control effort

Figure 3.2-1(cont.) Guidance Law Performance Averaged Over
Twenty-Five Monte Carlo Runs: D = 0.2 rad

It has been stated that terminal miss distance is of primary im-
portance in evaluating the guidance laws. However, because the difference
between the miss distance achieved with each law is 80 small, other charac-
teristics can be used as a basis of comparison. Figure 3.2-1(b) shows the
rms peak airframe lateral acceleration in g's (1g = 32.2 ft/sec) encountered
along each set of twenty-five trajectories. This peak acceleration usually
occurs at, or just before, the terminal time, when the line-of-sight rate !
becomes large because of proximity to the target. Again there is little dif- "
ference between the behavior of the two guidance iaws. However, it is
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important to note that large lateral accelerations -- in excess of 30 g's -~
are developed; recall that there is nothing in the guidance problem formu-
lation presented in Chapter 2 which directly limits acceleration. If homing
sensor measurement noise or target acceleration are significantly larger

=

i " than the values used for this simulation (both possibilities are realistic),
' lateral accelerations can be developed along the trajectory that are beyond
n the aerodynamic or structural capability of the missile airframe.* Conse-

quently it will be desirable to incorporate some method of bounding accel-
v eration within the control law; this is the subject of subsequent sections.

- 'Another useful basis for comparing the two guidance l.avés is the
L amount of control used. Recall that the suboptimal law was derived by

finding the sequence of controls which minimizes J9 in Eq. (2.3-3). This
L performance index differs from that for the nonlinear law (Eq. (2.2~3)) in
[ that it contains a term
|

which is a measure of the energy expended by some types of missile actuators

 a—;

in driving the control surface. To reflect this fact more clearly we define the
control effort e by

- N-1 9

e = At u (3.2-1)
i=

The average value of e, denoted by e, evaluated over each set of twenty-five
" Monte Carlo runs, is shown in Fig. 3.2~1(c). Evidently the suboptimal law is

|, *The missile airframe aerodynamic capability can be exceeded if a lateral
acceleration requires an angle of attack that violates the linearity assump-
tions made in writing the airframe equations of motion (see Eq. (2.1-2));

i the airframe structural capability is exceeded if the lateral acceleration
F developed by the missile causes structural failure -- e.g., if the wings
N are torn off.

‘ 3-11




THE ANALYTIC SCIENCES CORPORATION

much moevre efficient than the optimal law in terms of the required level of ’ i
e. This might be somewhat surprising because the suboptimal law was

specified using a value of control weighting that car be considered equal to |
zero for all practical purposes;that is, the form of Jy (with small r) is ap-
proximately the same asJyinEq. (2.2-3). Consequently one might expect that
the suboptimal law would be nearly identicaltothe 4 1 law; this turns out
to be afalse conjecture. The reason isthatthe contriisequence {uj o} inEq.

(2. 3-16) is really a suboptimal mechanization of the §l8ear law in Eq. (2. 3-15),
The latter implicitly assumes that any value of u albe realized at any time

i
since no explicit constraint is imposed upon the control level. F¢.- the

purpose of minimizing J gy €VEnasr approaches zero, it is most efficient [
to utilize large levels of control only near the end of the trjectory. By '
comparison, each time the optimal law computes a new value of u?, it tries |
to completely null the predicted terminal miss distance Yl in Eq. (2.2-7). '
This tends to require iarger control levels than the suboptimal law, especially 5
during the initial portion of the trajectory. The differences between the

two guidance laws are illustrated in Figs. 3.2-2 and 3.2-3 where represen- '
tative gain histories and the rms control level, Iuil g are shown for

trajectorles initiated at six seconds before intercept.

In Fig.3.2-2, the third elements, d4 i and c; ig? of d; and c; respec- l :
tively in Eqs.(2.2-10)and (2. 3-16)are plotted; the relative behavior of these L
two quantitives is characteristics of all the feedback gains. Observe that the
optimal gain, dis’ is much larger than suboptimal gain Cjg near the beginning 1
of the trajectory, If the weighting constant r were reduced below the value .
ten, the effect on Cig Would be a noticeable increase for small vaiues of time- X
to~go but essentially no change during the earlier portion of the trajectory. |
In the prasence of control surface limiting, the latter behavior has no appre- !

ciuble effect on the terminal guidance accuracy provided by the suboptimal law,

Figure 3.2-3 compares the ~ms control levels (averaged over
twenty-f'.e Monte Carlo runs) for both control laws. These curves reflect
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Figure 3.2-2 Representative Feedbac.. Gain Histories for Optimal
and Suboptimal Guidance Laws: Trajectories
Beginning Six Seconds Before Intercept

the fact that the feedback gains for the optimal law are substantiaily larger,
especially during the first part of the trajectory. It is also generally true
that the control command frequently changes sign so that the airframe input
is subjected to an input having a 'bang-bang' character. This may be un-
desirabie for applications where the missile airframe has serious bending
modes that can be excited by the control switching action.

The fact that the control levels are generally larger during the
first part of the missile trajectory for the optimal guidance law than they
are for the suboptimal law provides a corresponding difference in the level
airframe lateral acceleration. This is indicated in Fig. 3.2-4, where rms
acceleration histories beginning at six seconds before intercept are plotted
for both guidance laws. (This figure cannot be deduced from Fi~. 3.2-1(b),
which shows only rms peak acceleration). Again, there is dire.  sidence
of the fact that the optimal law works harder, earlier, to nuli the terminal
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Figure 3.2-4 RMS Acceleration Level: Trajectories
Beginning Six Seconds Before Intercept
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miss distance. Notice also that, as mentioned previously, the peak accel-
eration levels for both laws occur at the end of the trajectory. One con-
sequence of these observations is that the missile velocity losses caused
by induced drag will be greater for the optimal law. This may be an im-
portant consideration, especially in long range missions or for missiles

having a low lift/drag ratio.

Another interesting point to be made here is the comparison
between the linear steering law given by Eq. (2.3-15) and the suboptimal
nonlinear law in Eq. (2.3-16). Suppose there actually were no constraint
on control surface deflection; then how well would the linear law perform?
This question can be most readily answered by evaluating Jo in Eq.
(2.3-3), using the expression in Eq. (A.2-5). The latter becomes

0 T N T T

Ja = 8099 Pp2o * 126 Y CARC N %112 Pg) (3.2-2)
where the matrix Qg is obtained by substiiuting from Egs. (3.1-3) and (2.1-8)
into Eq. (2. 1-15), the matrices P, are obtained from the Kalman filter equa-
tions (Eq. (2.2-5)), 61i is given by Eq. (A.4-6), and ¢ and s, are determined
by Eq.(2.3-14), The value of Jg is to be compared with the empirically
determined average value of J,, denoted by .'1-20, obtained by using the non-
linear control sequence {uj, } given in Eq. (2.3-16);

3 For s ol 3.2-3)
Jy = X,(tg) +r u, 3.2-3
20 1 i=0 o

where the overbars denote averages over twenty-five Monte Carlo runs.

The values of Jg and Jp  are shown in Fig. 3.2-5 for the different launch
times used in the simulaticns for Fig. 3.2-1, Evidently the performance
predicted by the linear theory (J9) is much better than that obtained when
the control surface deflection constraint is imposed. This emphasizes the
fact that in order to obtain a realistic indication of actual guidance accuracy,
simulations must be performed with control level constraints included;

; analyses based exclusively upon linear theory tend to be quite inaccurate.
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Figure 3.2-5 Values of the Quadratic Performance Index
With and Without Control Surface Limiting {

A number of other simulations were performed with different [ '
values assigned to various parameters -- such as homing sensor noise
level, rms target acceleration, 10aximum control surface deflection, etc, i
The qualitative behavior of the data obtained is similar to that shown in
Figs. 3.2-1 through 3.2-5. The conclusions reached thus far are sum-
marized below for convenient reference:
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e The terminal accuracy achieved by the optimal
nonlinear guidance law is not substantially better
(usually less than ten percent better) than that

N provided by the suboptimal technique,

o The suboptimal law uses much less control effort --
i about one~-tenth as much as the optimal law; the
L. latter is bang-bang in nature, a fact that may be im-
portant when significant bending modes are present.

¢ The levels of rms peak airframe laterai accelera-
tion generated by each method are approximately
the same; however situations can occur where
potentially unacceptable levels (thirty to ninety g's)
occur,

J e As pointed out in Chapter 2, the gains (d i) asso-
] ciated with the optimal law are more easily derived
l than those (c ;) for the suboptimal law.

g The above conclusions do not establish a definite preference for
j either guidance policy. A decision cannot be made between the two guid-
ance laws on the basis of terminal accuracy because the optimal law is
only slightly better in this respect. The optimal law is more easily mech-
anized but, against this advantage one must weigh the advantage that the
s suboptimal law requires lower controi levels, However, one important

i : question must be resolved before a definitive judgement can be made about
‘- either guidance technique. Namely, the simulations must account for the
fact that the maneuvering acceleration available is limited by physical

constraints in any practical application. For the case considered here --

; : i.e., a missile using aerodynamic lLift to develop maneuvering force --
some method of preventing each guidance law from developing excessive
| airframe lateral acceleration must be provided. Consequently, the re-
mainder of this chapter is concerned with methods for limiting accelera-

S tion. This investigation will lead to more distinctive comparisons between
' guidance laws.
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3.3 A PREDICTIVE ACCELERATION LIMITER

The most straightforward approach for limiting airframe lateral
acceleration is to include a constraint of the form

E{lay®1}= D,

in the design criteria for the guidance problem, where Da is the maximum
permissible acceleration. This type of "state variable constraint” can
easily be included within the framework of the problem formulated in
Section A.3. However, the simplifications described in Section A.4 which
allow the optimal controls to be derived analytically cannot be applied.
Consequently the control law must be computed numerically, a task that is
currently impractical to accomplish, Therefore we must settle for some
other technique to constrain acceleration.

Another approach that could be taken is to artificially limit the
control surface deflection, uj, at some value which physically tends to
prevent large accelerations from being generated. For example, guidance
law performance data are given in Fig. 3.3-1 with the same simulation i
parameter values used in Section 3.2, except that the value of D is reduced
from 0.2 to 0.1 radian. Comparing these results with Figs. 3.2-1(a) and I
(b), we find a general increase in the level of rms terminal miss distance
and a corresponding decrease in the rms peak acceleration. However, this f :
method of effecting a reduction in acceleration tends to be cxcessively con-
servative., Intuitively it seems desirable to restrict luil only when the air- L
frame accclerition approaches the danger level; when it is well within the
safe operating limits, the maximum available control surface deflection

4 should be allowed. This reasoning leads us to seek a more efficient method _
for limiting acceleration; one such technique is presented in this section. {
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Figure 3.3-1 Guidance Law Performance Averaged
Over 25 Monte Carlo Runs: D = 0,1 rad
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Suppose a value of control surface deflection, U, is computed at
time t; by either ane of the procedures given in Egs. (2..2-10) and (2. 3-186).
We wish to determine whether to apply uy to the airframe or to take some
other action that will limit the buildup in lateral acceleration. At time ti
an estimate, X p» Of the state of the guidance system is also available from
the Kalman filter, based on previous measurements and applied controls.
In order to arrive at an appropriate decision about implementing u,, the
predicted acceleration level at some specified future time, ti +7T P’ caused
by 31 and the control u, is computed and compared against the desired
bound, Da' If the predicted acceleration is too large, u should be altered
to prevent the bound from being exceeded. A procedure for carrying out
this policy is described below,

For a prediction interval of variable length 7, the predicted state,

g?_(ti+'r), satisfies a differential equation similar to Eq. (2.1-7);

?.%[3(ti+r)] = FA(tj+7) + gulty+7)
{ui; 0 <7 <At
u(t, +7) = 3.3-1)
1 L 0; At =T (

where u(t) is assumed to be zero after the application of u,. Therefore
X(t;+7) is given by

" F‘r A ti+T F(ti“’"f'k)
Atier) = e a@)+ [ e g u(r) dr
ti
where eFT is the matrix exponential series for Fr; it is also the transition

matrix & (r,0) given analytically by Eqs. (2.2-12) and (2.2-13). Assuming
that r > At and recognizing that u(ti+ r) = 0 when 7 > At we have

3-20

o m————-

# e

Bas




i1
i

e

T
| S

THE ANALYTIC SCIENCES CORPORATION

At
eF‘ri(ti) +S oF(T=2) gy, d
0

x(tj +7)

o

At
= ef7 _:E(ti)+S e FA gy, dx
0

P

At
-F -
AtS eF(Ai: X)g

0

= eFT | Rty +e wdr|  (3.3-2)

Comparing the last equality in Eq. (3.3-2) with Eq. (2.1-14) and setting

T= Tp’ a sperified interval, we see that

Fr F('rp - At)
e P +e an

-% (ti +'rp)

L}

& (7, 0) x(t;) +o (rp-at, 0) yu,  (3.3-3)

Now because missile acceleration due to lift is the nth state variable in
Eq. (2.1-6), let nbe a column vector formed from the bottom rcw of
&('rp, 0) and let 9 o Pe the last element of the vector d»('rp - At, 0} y. Then
if o > At, it follows that the predicted airframe lateral acceleration,

a m(ti +rp), is given by

R _ ,Ta
am<ti+fp) L TR AN (3.3-4)
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Once the prediction interval rp ia selected, nand 1, can be computed from
knowledge of both the transition matrix and the vector y and programmed
into the guidance controller as constant gains, or possibly as time-varying

gains if the parameters defining the transition matrix wary in a known manner.*

Having the predicted acceleration, we can determine whether
its magnitude exceeds the specified bound, Da' If it does, the value
of u, should be modified to reduce |a(ti + rp) |, taking care to ensure that
|u;| does not exceed the control surface deflection limit D. This se-
quence of logical tests is accomplished with the aid of Eq. (3.3-4) as
follows:

{u? s Optimal Law
u, 1
' ly ; Suboptimal Law

)
L Da- |am(ti +'rp)| 20
A TA
W= D, sen [a'm(ti +TP)] g 51] /’00
1 - by .
or equivalently D,- kytitrp)| <0
w -{am(ti +7'p) - D, sgn [am(ti+1-p)] }/no
uf ; D-lu| 20
u’ =
1 \
Demi D lufl <0 5.5

*Again we note that if the missile airframe dynamics are identified
on line, then the analytical expressions for n and 1 must be
gtored and evaluated on-line as parameters are identified.
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——

The quantity ui’ is generated to reduce the Jevel of predicted acceleration

if the latter is too large. The resulting level of ui' required to correct the

acceleration could exceed the control surface deflection limits; this possi-
. bility is prevented by calculating ui" which is the new control surface de-

{ 1 flection command. The operations are illustrated in Fig. 3.3-2.
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Figure 3.3-2 Mechanization of the Predictive
Acceleration Limiter

p——

It is emphasized that the method described above for limiting air-
frame lateral acceleration is not necessarily an optimal procedure, although
it is a physically reasonable one. The choice of the prediction interval r
is somewhat subjective. If it is too small, the airframe acceleration may
overshoot the bound; if it is too large, limiting action may occur before it
is actually necessary. In these simulations, rp = 0.2 sec was found to
be satisfactory.

prom———
i
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To implement the acceleration limiter represented by Eq.(3.3-5),
the quantities -- D, n and N, =~ are needed. The airframe structural
limits dictate the vaiue of Da; 7 and 1, a¥e specified by the transition
matrix, exp (Fr p), according to Eqs. (3.3-3) and (3.3-4). The computa-
tion required for the limiter is a minor part of the total needed to generate
the control commands.

3.4 SIMULATION RESULTS WITH ACCELERATION LIMITING

In this section, results are presented from a number of different
Monte Carlo simulations of the guidance laws derived in Chapter 2, when
the predictive acceleration limiter defined in the preceeding section is used.

. Because the limiting procedure is not necessarily optimal, the control se-

quences actually applied as a result of either guidance laws are probably
suboptimal. They are derived by operating on {u?} and {uio } respectively,
from Eqs. (2.2-10) and (2. 3-16), with the logical tests given in Eq. (3.3-5).
The resulting sequences are designated as {u?o} and {uioo }. This notation
is suggestive cf the fact that the former is suboptimal only in its treatment
of acceleration limiting; the latter is suboptimal with respect to both con-
trol level and acceleration level limiting. For the reader's convenience,
the four guidance laws we have derived are summarized below;

{fu” }: Optimal Nonlinear Guidance Law; minimizes
terminal miss distance subject to bounded
control level. No explicit acceleration con-

straint imposed.
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{uj,}; Suboptimal Nonlinear Guidance Law; derived
using ""linear quadratic gaussian theory' and
imposing the control bound after the fact. No
explicit acceleration constraint imposed.

[U?O}; Suboptimal Law; derived by operating on {u.? }
with an acceleration limiter.

{ujo)5 Suboptimal Law; derived by operating on {uj }
with an acceleration limiter.

Each guidance law was evaluated for the five cases given in
Table 3.4-1. Under each case, twenty-five Monte Carlo simulations were
performed for each of nine cases having launch times of one through six
seconds before intercept, the same launch times used in the simulations
described in preceding sections., A number of parameters were held fixed
for all cases; these are:

Control Weighting: r = 10 #t2/rad?
RMS Measurement Noise: Ygq = 5.0 10'6(r:=1d/.¢5ec)2
ry, =10 (ft/secz)2
Ty =0; i#j
Initial State Covariance Matrix: Py = 0
Pyg =0
_ -4 2
Pyy = 1.0x10 “(rad/sec)
Pgr, = 1.0x 103(ft/sec2)2
Py =05 i#]
Control Surface Deflection Limit: D = 0,2 radian
Lateral Acceleration Limit: Da =20 g's
; i Mean Vaiue of Initial State: p=0.
: |
¢ 3"25
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TABLE 3,4-1
TRAJECTORY SIMULATION PARAMETER VALUES

1 caseNumwer ]
Simulation 1 2 o 8 4 Hi ghes
Parameter] sndara | G | ntene | “Target

Acceleration

M, - 0.455 - 0.31 - 0.455 - 0.455 - 0.455
M, - 8.4 - 7.05 - 8.4 - 8.4 -84
M, -11.2 -47.0 1.2 -71.2 -11.2
L, 10.15 7.27 10.15 10,15 10.15
L, 1.86 2.15 1.86 1.86 1.86
v 2920 1920 2920 2920 2920
f, -0.3 - 0.3 - 0.1 - 0.3 - 0.3
o 4.75 4.75 4.75 15.0 4.75
Pys 9.0x10° | 9.0x108 9.0 x 10° 9.0x10° | 3.6x 10*
v, 2000 1000 2000 2000 2000
o2 9.0 x10% | 9,0x10 9.0 x 103 9.0x10% | 3.6x10*

0.05 0.05 0.05 0.05 0.05

Case number 1 in Table 3.4-1 is referred to as the standard;
its parameter values are the same as those used in the simulation de-
scribed in Section 3.2 except that acceleration limiting has been added.
The other four cases are described rclative to the standard -- e.g., lower
missile airspeed, smaller target time constant, etc.

The performance data for case 1 are displayed in Fig. 3.4-1,
which is to be compared with Fig. 3.2-1. In general the miss distances
for both guidance laws are now larger because the missile's maneuvering
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capability has been restrictcd. However a more significant observation
is that the rms terminal miss distance (see Fig, 3.4-1(a)) achieved with
{“(i)o} is significantly lower -- as much as thirty percent lower -- than
that obtained with {uioo}. Thus when acceleration limiting is introduced
into the guidance iaws derived in Chapter 2, the performance advantage of

the optimai law impreves, Tie gyt 2at is even greater when the

levels of measurement noise and/or target acceleration are increased, as
will be seen from the results of the other cases in Table 3.4-1. To under-
stand why this improvement in relative performance of the optimal non-
linear law occurs, recall that when the acceleration limiter is absent each
new :l?lue of u(i) attempts to null the predicted terminal miss calculated at
the i

tend to reduce the terminal miss distance more gradually. These dif-

stage. On the other hand, the suboptimal nonlinear controls {uio}

ferent control actions cause the lateral acceleration history for {u? } to
have a larger magnitude than that for {uio} until near the end of the tra-
jectory (see Fig. 3.2-4). For both guidance laws, the acceleration levels
become largest near the end of the trajectory, because large accelerations
are needed to null miss distance when there is little time remaining until
intercept. Now, when acceleration limiting is introduced, the sequence
{u?o } has an advantage over [uioo}. The former, because it is derived
from the optimal nonlinear law, makes an effort to null the terminal miss
early in the trajectory where less lateral acéeleration is required than if
it waits until near the intercept point. Consequently, as the intercept point
is approached {u?o} has, on the average, already significantly reduced the
terminal miss. By comparison, {uioo}, because it is derived from the
suboptimal nonlinear law from Chapter 2, does relatively little controlling
early in flight; therefore as the intercept point is approached a relatively
large terminal miss remains to be nulled. Consequently, the acceleration

limiter, which applies limiting action primarily near the end of the
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trajectory, tends to degrade the performance of {“ioo} less than that of
{u(i)o}. Theee observatiuns suggest that the control sequence {u?o} may be
close to optimal in the presence of acceleration limiting. However, this
conjecture can be verified only by actually determining the control law that
minimizes the magnitude of the terminal miss subject to constraints on
both contrel and acceleration levels, as suggested at the beginning of
Section 3.3.

There is a property of the acceleration limiter that can degrade
the performance of {u?o} relative to {uio 0}. If the homing sensor mea-
surement noise causes an inaccurate estimate of the terminal miss dis-
tance several seconds before intercept, then the corresponding applied
control u?o may correct the missile's trajectory .n the wrong direction.

If this happens, the other control law is preferred because it tends to apply
less “'wrong control” early in the trajectory. Fortunately, this effect
apparently does not occur sufficiently often to contribute significantly to
the rms performance data in Fig. 3.4-1(a); however, it can show up in
individual trajectories.

Figure 3.4-1(b), compared with Fig. 3.2-1(b), ir-dicates that
the limiter is successful in reducing the rms peak acceleration below the
bound of twenty g's. As expected, the limiting action causes the absolute
values of miss distance to increase (compare Figs. 3.4-1(a) and 3.2-1(a)).

However, note that the predictive limiter generally achieves lov-er miss
distances than the technique of artificially reducing the bounds on control
surface deflection demonstrated in Fig. 3.3-1.

In order to provide an additional indication of the amount of con-
trol required for each guidance law, we define the control variation, v,
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N-2

v = Jugl + E |ui+1-ui| (3.4-1)
i=0

In some missiles v is a more accurate measure of the actuator energy
expenditure than is the control effort e in Eq. (3.2-1), particularly when
an electrohydraulic actuator mechanism is employed which ccnsumes

el ) i ed EER

power only when the control surface deflection is changing. In addition, in
some hydraulic systems a change in control level is achieved by movement
of fluid which is discharged overboard. In the Litter case, v represents

—A

| the amount of fluid consumed. The average value, v, of the control level
- variation, evaluated over each set of twenty-five Monte Carlo runs, is
B displayed in Fig. 3.4-1(d).
3 - The data presented for both e and v in Figs. 3.4-1(c) and (d)
! ‘i indicate that the control sequence {u?o} demands significantly more actu-
- ator energy than does {uj o o}, particularly for large iaunch ranges. This
3 { 3§ observation is consistent with the behavior of e in Fig. 3.2-1. The high
r . level of v is a result of the fact that the control action is quasi bang-bang

in nature; that is, u{’o tends to change sign frequently.

The levels of e and v required for {u;,,} remain fairly constant

B I i’ o e Y 1
€.
»

as the launch time increases; however, the curves for {u?o} increase with
launch time. This behavior can be expected from the gain histories ¢ and
d associated with each law which are illustrated in Fig. 3.2-2. For long
trajectories {u; o o} may be preferred, at least until the missile is close

_ enough to the target so that sufficient control surface actuation capability

; : remains to permit the use of {u?o}. Thus some type of dual-mode guid-

F ance laws discussed in this report may be desirable., There are a variety
h of methods one could use to accoraplish this; the particular one selected

.‘
[ T2
e~

T

Log S ~aus s

-t

would be strongly dependent upon the type of mission -~i.e., long-range
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or short-range -- under consideration. This is a subject which merits
further investigation.

In presenting performance data for the other cases given in
Table 3.4-1, only the rms terminal miss distance and peak acceleration
are displayed. In all cases the behavior of ¥ and € is qualitatively the
same as in Fig. 3.4-1.

Case 2 in Table 3.4-1 is characterized, relative to Case 1, by
a lower missile airspeed, V. This change also affects other parameters -~
riamely the airframe stability derivatives, which are dependent upon Mach
number, and the ciosing velocity. For the particular airframe data used
here, the decrease in V alters the airframe dynamics so that the control
surface effectiveness is reduced and the distance between the airframe-~
wing center of pressure and the missile center of gravity is increased.
This reduces the airframe capability to generate lift (lateral acceleration)
and tends to cause an increase in the miss distance compared with Case 1.
On the other hand, if we assume that the closing velocity is reduced by the
same amount as the airspeed, then for a given launch range, the total
nu:nber of measurements taken over the entire trajectory increases. Con-
sequently, more averaging of measurement errors is performed by the
Kalman filter in the guidance controller, giving potentially better estimates
of the system state variables. Thus a decrease in closing velocity may tend
to reduce miss distance.

For the particular parameter values in Case 2, the adverse
effect on miss distance produced by the changes in airframe dynamics
dominates any improvement obtained with a smaller closing velocity, as
seen by comparing Figs. 3.4-1(a) and 3.4-2(a) at the same values of
launch range. The reduction in the airframe's ability to generate lateral
acceleration is evident from a comparison of Figs. 3.4-1(b) and
3.4-2(b).
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The effect of increasing the target time constant (1/1;) is illus-
trated by Case 3 in Table 3.4-1. This change implies that the target
acceleration changes more slowly than in Case 1. Thé:effect on the guid-
ance system is that the Kalman filter can track the target acceleration
more accurately because it is more nearly constant. Consequently, with
all other parameter values being vnchanged, the miss distance for Case 3
should be somewhat smaller than for Case 1. This expectation is veri-
fied by comparison of Figs. 3.4-1(a) and 3.4-3(a).

The effect of an increase in the homing sensor measurement
noise level is domonstrated by Case 4 where the target dimension param-
eter, L is increased to 15 feet. Recall that g represents the average
Jdistance normal to the line-of-sight between reflecting points in the target.
The effect of this change is to increase the value of 11 by a factor of ten.
Evidently, comparing Figs. 3.4-1(a) and 3.4-4(a), much larger miss dis-
tances arc incurred for both guidance laws; however, the difference be-
tween the performance of {u?o} and {uioo} increases. The former yields
ar. rms miss distance that is as much as fifty percent less than that pro-
vided by {uioo}. It is also noted, comparing Figs. 3.4-1(b) and 3. 4-4(b),
that Jarger acceleration levels are needed; these are attribited to the in-
creased rms error in estimating the guidance state variables.

Finally, Case 5 represents the effect of an increase in rms tar-
get acceleration, o, from about 3 g's to about 6 g's. The corresponding
eirzct on terminal miss distance and lateral acceleration is shown in Fig.
3.4-5. Relative to Case 1, the miss distance increases for both guidance
laws; however, there is a widening of difference between the performance
of {u‘i)o} and {uj,, .. The required lateral acceleration levels also increase
for both guidance laws.
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Summarz - This section (3.4) has presented an evaluation of the
guidance laws derived in Chapter 2, modified with the predictive accelera-
tion limiter described in Section 3.3. In all simulations it is found that
the limiter successfully maintains the rms acceleration level below the
prescribed bound. In addition, the terminal miss distance achieved with
{u?o} is as much as fifty percent less than that produced by {u; }. This
comparison substantially reverses the conclusion in Section 3.2 that the
optimal nonlinear guidance law (without acceleration limiting) offers in-
significant improvement over the suboptimal law. The amount of control

energy, as measured by either the "effort" e or the "variation" v required
is much greater for {u?o} than it is for {uj_}; this difference becomes

F more pronoimced the further the missile is from the target at the beginning
of the homing guidance phase. Although we have stated that terminal miss
distance is the primary basis for comparing guidance laws, the control
energy requirements cannot ke ignored. In some applications it may be
advisable to combine the advantages of each guidance law in one dual-mode
technique.

’

The mathematical model used here to evaluate guidance laws is

4 sufficiently realistic to indicate that the optimal guidance law derived in
Chapter 2 can offer substantial performance benefits over suboptimal laws de-
rived by minimizing a quadratic performance index, when acceleration
limiting is required. To obtain a better knowledge of perfcrmance capa-
bility, homing sensor noise models with time-varying statistics should be
investigated. In addition, sensitivity studies should be made to determine

§ the amount of performance degradation caused by inaccurate modeling of

1 the guidance dynamics and by the intentional use of more simplified (e.g.,
constant gain) control laws. These topics will be the subject of further

E study.

RARE Sl
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'1 4, SUMMARY AND CONCLUSIONS

| 4.1 SUMMARY

This report is concermed with guidance laws for tactical missiles
which account for the presence of random target acceleration, homing sensor
measurement errors, a constraint on the maximum control level and a con~
straint on the maximum airframe lateral acceleration. Emphasis is placed
upon those techniques which can potentially be applied in practical tactical
missile weapons systems in the next ten to twenty years, especially those
1 which can take advantage of the rapid improvement in computer hardware
- technology. The particular missile considered for this investigation has an
i aerodynamically controlled airframe with fixed wings and tail-mounted con-
| trol surfaces. However, the conclusions obtained here apply to other types

U of missiles as well.
In Chapter 2 the tactical missile guidance problem is formulated
s U in the context of optimal stochastic control theory and two different guid-
4 o . ance laws are derived, each being associated with somewhat different
L problem formulations. An optimal nonlinear guidance law is determined

which minimizes the expected value of the squared terminal miss,
subject to a constraint on the missile control surface deflection angle. This
law results in the sequence of optimal control commands designated as

L fu}. The other guidance law is one which minimizes the expected value of
E’ . a weighted sum of the squared terminal miss distance and a quadratic
| L penalty on the control; in this case the control level limit is ignored in

deriving the optimal control sequence. Then the latter is passed through
- a limiter which ‘'clips" the excess control magnitude resulting in a sub-

i optimal nonlinear guidance law represented by {uj ].

= Simulations of both of the above mentioned guidance laws are
= described in Chapter 3. It was found that both laws tend to call for large

| 4-1




THE ANALYTIC SCIENCES CORPORATION ' ’

airframe lateral accelerations that could be excessive in some practical i
applications. Consequently a predictive acceleration limiter was devised :
for modifying each control sequence to prevent excessive acceleration
build-up; this procedure is described in Section 3.3. The modified con-
trol sequences are designated as follows: . {

(1] Acceleration o
(03— " Limiter > }

Acceleration .
{uio}——> Limiter ————-»(uioo}

The sequences {ufo} and {uj,,} are regarded as two additional suboptimal
nonlinear guidance laws; they are both suboptimal because the limit on
acceleration has been imposed "after the fact, " rather than being part of
the guidance law design criterion. To further aid in distinguishing the
guidance laws, it is useful to define the followirz two categories of se-
quences of control commands:

prmm— g

Type ILaws Type II Laws L
{ug,)} {u} '

fug ) {ufg

The type I laws are derived by applying the theory of linear gaussian
i systems having quadratic performance indices. The control sequences !
: associated with the type II laws are derived by ncluding an explicit con-
straint on control level in the guidance problem formulation.
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4.2 CONCLUSIONS

The important coanclusions deduced from computer simulation
results about the various guidance laws are summarized below:

s

When the acceleration limiter is active -- i.e.,
whcn ["10} and {w ] differ significantly from
{nll and- {u,O} respectively --.the type II guid-
ance law, h’o} provides a substantially smaller
miss distance (as much as fifty percent smaller)
than the type I law, [uloo}.

- The type II laws are significantly simpler to

mechanize than the type I iaws; the feedback
gains for the former are derived analﬁgcanz
by solving appropriate algebraic equations,
whereas the gains for the latter are determined

mune by iteratively processing the re-

diﬂermce equations

The type II laws call for average control levels
that are:much larger than those associated with
the: type Liaws - typically ten times larger.
Allo the type I laws are bang-bang in nature,

a fact that may have an adverse effect where
significant body bending modes exist.

The predictive acceleration limiter success-
fully provides the desired control over air-
frame acceleration level.

The observations that a type I guidange law ({ufn})can perform signifi-

cantly better and is also more easily mechanized than the corresponding

type 1 ({“kﬂ) law are important developments from this research.

The above conclusions provide several criteria for selecting a
guidance law for a particular application. If the lowest possible terminal

4-3
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miss distance is desired, without regard for the amout of control energy
expended, the type II laws are preferred. The most significant perform-
ance advantage of the latter exists in those applications where terminal
guidance accuracy is significantly limited by the maximum allowable (or
achievable) missile manetivering acceleration level. If control energy
consumption must be lower than that associated with the type II laws, the
type I laws can be used. A third possibility which combines the best of
both techniques is a dual r e procedure, using a type I law to conserve
control energy far from the target and a type II law at short range to
reduce terminal miss,

Some additional ccmments about the potential computational re-
quirements of the guidance system are in order. Both types of laws re-
quire the same time-~varying linear state estimator -- a Kalman filter.
For the planar motion problem considered in this report, a five-state
filter was employed to estimate the state variables associated with the
target, the misaile translational motion relative to the target, and the
autopilot. In an actual application it is likely that a simpler three-state
filter -- obtained by assuming that autopilot state variable measurement
errors are negligible -~ would yield satisfactory operation. In addition
to a filter, each guidance law uses a set of time-varying feedback gains
to generate the feedback commands. We have pointed out the fact that the
gains for the type II laws are more easily calculated. In circumstances
where the dynamics defining the guidance problem are known a priori,
the feedback gains required for all guidance laws can be calculated prior
to flight. Thus each gain can be approximated as a simple polynomial and
stored in the guidance computer. However if some important dynamic
parameters -- such as those associated with the missile airframe -- are
unknown and must be identified on-line, then the system gains must be
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calculated on-line. In the latter situation, the computational advantage of
the nonlinear-~type laws is quite significant.

It is likely that a number of simplifications to the above guid-
ance lawé’ could be made without seriously degrading performance.
For example, less frequent updating of filter and feedback gains can be
H tried; in some cases constant gains may be adequate. It may also be
desirable to predesign the missile autopilot (making it adaptive if necessary)
and then neglect autopilot dynamics in forinulating the guidance problem;
this is found to be a reasonable procedure in the simpler applications treated
in Ref. 6. The investigation of such modifications is a logical extension of
the work reported here.

.
=z

e

!

4.3 TOPICS FOR FUTURE RESEARCH

- The investigation described here includes many effects that are
20m actually encounteredin atactical missile engagement ~- measurement noise,
‘: target maneuvers, bo~ded controls, bounded acceleration, airframe dynam-
- ics, etc. The stuay ...uicates that guidance laws whick are derived tak-
ing into account bounded missile control level can ‘offer aignificant per-
formance advantages when realistic levels of measurement noise and tar-
get acceleration exist. However a more complete evaluation of the guid-
ance laws is needed, including the following tasks:

VT
r n—,

¢ Analysis of the sensitivity of the stochastic guid-
ance laws describes above to errors in modeling

L sensor noise, target motion, and missile auto-

pilot dynamics should be performed. The objective

is to determine which guidance law is least affected

by imperfect knowledge of the guidance equations of

motion,

.
< —
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o A detailed comparative evaluation of various guidance
laws -- including, classical methods such as pro-
portional guidance, pursuit guidance, étc. operating
in the presence of homing sensor noise, a maneu-
vering target, and control surface limiting -- should
be carried out to provide performance curves that are
useful for system specification.

The outcome of such a study would be indications of the ultimate performance
that can be achieved in a given tactical situation with a given missile design.

Another topic of interest is the derivation of guidance laws which
account for intelligent target maneuvers. This is motivated by the possi-
bility that the enemy target may know what type of guidance law ig being
used against him; therefore he may be able to employ a rational evasion
technique that will achieve larger miss distances than if he used random
maneuvers. Investigation of this problem through the use of differential
game theory is recommended.
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APPENDIX A
OPTIMAL STOCHASTIC CONTROL OF LINEAR SYSTEMS

4 b d ed S

The subject of optimal stochastic control is concerned with

determining control policies which optimize some probabilistic measure

vy

o

of performance for stochastic dynamical systems. The techniques studied
in this report apply only to systems with equations of motion that are
linear in both the state and the open loop control variables * and with obser-
vations that are also linear combinations of the state variabies. For this

(25
Sor

special case the theory of stochastic control is fairly complete for both
continuous and discrete time systems and has been extensively dccumented.

8o mveny
s

This appendix summarizes the main results for discrete time systems with
- appropriate references to the literature, omitting those mathematical

& rve nty
v

pronfs that are readily available elsewhere.

| soumateny)

It should also be mentioned that a large body of theory exists
for stochastic control systems having nonlinear equations of motion,
especially for discrete systems (e.g., Refs. 9 and 10). However, few
results are available that lead to practical control laws.

‘;L.: A.1 PROBLEM FORMULATION

5 A linear continuous stochastic dynamic system is defined by dif-
ferential equations of the form

() = F(t) x(t) + G(t) u(t) + w(t) (A.1-1)

X
That is, Eq. (A.1-1) is linear in x(t) and u(t), regardless of how u(t)
may be generated. For example, u(t) may be a nonlinear function of x(t).

A-1
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where F(t) and G(t) are imown time-varying matrices, x(t) is the =n-
dimensional state vector, u(t) is ar m-dimensional set of control variables,
and w(t) is an n-dimensional random disturbance input to the system. It is
usually assumed that w(t) is a Gaussian random process, also called
"process noise," having the following statistical characteristics:*

Mean Value: E {\_v(t)} 0

Covariance Matrix: E{\_v(t) y('r)T}. Q(t) &t -7) (A.1-2)

The quantity 6(t - ) is the unit impulse (Dirac delta) function and Q(t) is a
known positive semidefinite matrix. Although Eq. (A.1-2) specifies that
w(t) has zero mean, a nonzero mean can readily be included when it is
known.

To complete the specification of the system dynamics described
by E5. (A.1-1), the initial state must be provided. We assume that x(tp)
is a vector gaussian random variable having known mean and covariance
matrix given by

np»

£ {sto)
E{ [?E(to) - u] [E(to - E]T}

The above model defines w(t) as a "white noise" random process
which has the property that sample values taken at different time in=:ants
are uncorrelated. If the latier condition does not hold for the system under
investigation, Eq. (A.1-1) can often be modified to obtain a valid

>

(A.1-3)

%
E { ]} denotes mathematical expectation.

A-2
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el

mathematical model that does have white process noise. * The assumption

by

that the process noise is gaussian is often physically reasonable because
many random disturbances can be accurately modeled as a superposition
of a large number of statistically independent random events. The result-
ing aggregate process has a probability distribution that approaches the
gaussian distribution as the number of constituent events becomes large,

regardless of the probability distributions of the individual events. ** In
addition, gaussian processes have the desirable mathematical property
that their gaussian character is preserved when they are "passed through"
' a linear system, such as the one represented by Eq. (A.1~1). That is, if
H wi(t) and x(tp) are gaussian and u(t) is a known function of time on an inter-

valtg st s t{, then x(t1) is also gaussian; the mean value of x(t;) is deter-
: l mined by the initial mean, gy, and the known history of u(t).

‘ In order that a feedback control policy can be mechanized, mea-
= surements related to the state vector x(t) must be available. In a physical
i gsystem such measurements are typically obtained by sensors whose outputs
- are observations of known functions of the state variables corrupted by
measurement errors. Furthermore, measurements frequently can be ob-

served or accepted only at disc rete time instants, ti(i =0,1,...)either

5 ; because the sensor inherently operates as a sampler or because a digital
computer is used to prccess the measurement data. For missile appli-
cations the above conditions can usually be expressed by the linear mea-
F 1 surement equation,

z, = Hx, +v;; i=0,1,... (A.1-4)

*For example, the time-correlated process can often be regarded as
the output of a linear system driven by white noise and the state vari-
ables associated with the latter are included in the definition of x(t).

Y

**This is a paraphase of the "central limit theorem' (see Ref, 11).

Z A-3
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In Eq. (A.1-4), z i is a q-dimensional measurement vector, H; is a known
matrix and {y_i} is a gaussian white noise™ sequence specified by

E{!i}=_q for all i
R; i=j
E)X y_T‘ D (A.1-5)
- 0; i#]

where Ri is a positive definite matrix. The noise sequence accounts for
the measurement errors and H, accommodates all situations where the
measurements are linear functions of the state variables. The noise co-
variance matrix R; is assumed to be positive definite. It is also usually
reasanable to assume that the process w(t) is uncorrelated with the se-
quence {v i}; however the subsequent discussion can easily be modified if
this condition does not hold (see Ref. 12),

An optimal feedback control law is to be selected for u(t) in
Eq. (A.1-1) so that an appropriate performance index J is minimized. We
will allow u(t) to be a function of all measurements that have bezn taken up
to time t. Just as in the case of the measurements, it is usually true that
new values of the control can be computed only at discrete instants of time
because of the data processing requirements. Consequently we assume
here that u(t) is to be held constant at the value u § over the intg:val
tjst< ti + where t; is coincident with the measurement time ; therefore

*For the case where the measurement noise is known to be
correlated in time see Ref, 12,

**In some situations it may be possible to process measurements faster
than control changes can be computed; in other cases some measurements
e.g., a gyro output) may be obtainabie more frequently than others e.g., a
homing sensor output). These possibilities can readily be included in the
theory; however, for convenience of exposition, the measurement and con-
trol computation times are considered to be identical here.
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the problem of obtaining u(t) reduces to that of determining the sequence { _l_l_i]
The latter consideration motivates the following choice for the form of the
performance index. *

{ (s ty) * E L, (xtty), ul,t)} (A.1-6)

{1l

where t0 and tN are specified initial and final times. In addition there may
be a constraint on {uj} of the form**

u, € Qi (A.1-7)
where Q, is a specified region in m-dirensional euclidean space. For
example, if we require |u.| < 1 for all i, then Q; is an m-dimensional
box with sides two units long. The expectation operation is required in
Eq. (A.1-6) because the index can be minimized only in a statistical sense;

the actual value of the quantity inside the brackets cannot be evaluated be-
cause x(t) is a random process.

Because the performance index depends upon the state and con~
trol variables at discrete instants of time, differential equations (Eqs.
(A.1-1)) are not required to describe the dynamic behavior of the system.
Instead, difference equations -~ derived from the differential equations -~
which relate the value of the state at time t; to its value at time t,

j+1 2
sufficient. The latter are readily obtained from Eqs. (A.1-1) and (A. -2)

*The notation E { } means that the mathematical expectation is to
{x;}

be carried orut over all the random variables, x(tj)--i=0,1,...,N--
appearing within the braces.

*%k
The symbol ¢ means "is contained in."
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using the properties of the solutions of linear stochastic differential equa-
tions (see Ref. 12 or 13); these expressions together with the other rela-
tions needed for the optimization problem are summarized below:

Discrete Time Optimal Stochastic Control Problem — Determine
the optimal piecewise constant feedback control policy as a function of all
past measurements,

0 L]
u(t) = uy (—Z-j’ ti)’ hetsty
(A.1-8)

;

{z;] ; 0<jsi

which minimizes the performance index
( N-1
J = {f } f(’—‘N’tN) * P;O Ly(xpu5 fni)} (4.1-9)
24 =

for a specified value of tN’ subject to the discrete time constraint equations

§i+1 = °i§i +£igi +_vli
2y 7 Bjxry
4 e O
=p; E -
B {’—{-0} T B (50‘}!)(50"2) = %o (A.1-10)
The matrices ¢, and I, in Eq. (A.1-10) are related to the parameters in

i i
Eqs. (A.1-1) and (A.1-2) by

¥
The superscript "o denotes an optimai control. The symbol Z; denotes
the sequence of all measurements observed up through time t;.

A-6
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¢ £ ol )
$(t;) - F(t) . ) ; O(ti,ti) =1 (A.1-11)
ti+1
r, ¢ St o(t,,,,7) Glr) dr (A.1-12)

1

The sequences {w;} and {v;} are gaussian white noise sequences satisfy-
ing the conditions,

£
i+l T

ot 7) Q) &t 7) ar; i=
i

Yot

t
E zlvi-“-,j i
0 ; i#]
R, ; i=j
T 1
E 321!12 = (A.1-13)
0 ; i#]j

- The above discrete time formulation is used throughout this report.
An analogous development for continuous systems is available in the cited

references.
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A.2 QUADRATIC PERFORMANCE INDICES AND
UNCONSTRAINED CONTROL VARIABLES

: A particularly important case of the discrete time optimal
control problem formulated in the preceding section occurs when the per-
formance index in Eq. (A.1-9) is a quadratic function of the state and
controt; i.e.,

N-1
T T T
J = {xi}{ 2y 2; [xiV X, tu, Wigi]} (A.2-1)

where Vi --i=0,1,...,N -- are positive semidefinite matrices and

Wi --i=0,1,...,N-1 -~ are positive definite matrices. In addition, we
assume the control variables are unconstrained; i.e., Q i in Eq. (A.1-10)
is the entire m-dimensional euclidean space. This type of performance
index is often chosen when the objective is to reduce the magnitude of the

4 state without using excessive amounts of control. It tends to limit
energy expenditure and it also tends to limit the magnitude of the required
control level, although it does not explicitly bound the latter. Perhaps a
more important reason for its popularity is that the optimal feedback con-
trol is linear and readily computed, * as demonstrated below.

Because the dynamics and measurements in Eq. (A.1-10) are
linear, the optimal control sequence {uio} that minimizes J can be deter-
mined analytically (Ref. 12) in the form:

o ——y

i s .4

*
This is a relative judgement; it is readily computed compared with
solutions to many more general control problems.

A-8
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Fz\r-'r'

0 = - a
4 = -GE
~ A 0 . ~ - _
Xiyg = X tTyU5 Xg = p (A.2-2)
where
- (+T -1 7
G = (FiSpg Ty* W) T8¢
- al T
57 %5 S - Cl( W rl Sin ri)ci+ v
Sy = Vn (A.2-3)
and
T -1
K = P H (HIPIHI +R)
ﬁ = Q P QT +Q * ’5 =P
i T HR% Y Bt Ry
Pi = P]. Ki (H1P1H1 + R ) K (A. 2_4)

The associated minimum value of the performance index in Eq. (A.2-1),
J; is given by”*

N-1
PO - Tr{So (2, + us") +i;0 5., (@+TCP, ¢>'ir)} (A.2-5)

*The notation Tr { } denotes the trace of the matrix (sum of its
diagonal elements) within the braces.
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The quantity 5& in Eq. (A.2-2) is the conditional mean of the
gaussian vector .9 g1ven knowledge of the control and measurement -
histories up through time t . The conditional mean has the property that
it is the best possible estlmate of x, under a wide variety of estimation
criteria’* Equations (A.2-2) and (A 2-4) consutitute a discrete Kalman
filter which recursively calculates xi in terms of the known controls {u 1,
the system dynamics, the random process statistics, and the measure}nents.
The matrix X, is referred to as the Kalman gain. 5

The gain matrix C; determined from Eq. (A.2-3) is identical to
that associated with the optimal control law that minimizes the deterministic
performance index.

5 §+Z(x V.x, uWu) L

assuming the process and measurement noise sequences in Eq. (A.1-10) s .
are absent. Consequently the optimal stochastic controller is mechanized
by two distinct operations -- an optimal linear estimator (Kalman filter)
that is independent of the performance index weighting matrices, and an
optimal feedback control law whose gains (Eq. (A.2-3)) are independent of L.
the random process statistics. This is the so-called separation property
for linear systems with quadratic performance indices and unconstrained
controls; the structure of the controller is illustrated in Fig. A,2-1.

% *The conditional mean includes the effect cn the state in Eq. (A.1-10)
: of a known control input as well as the unknown initial conditions and
the unknown process noise. -

% %k PS -
For example, x i is the value of .9 which minimizes

% E;(Ei'gi)'r A(Ei'ii)§

where A is any positive semidefinite matrix.

A-10
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{Vi}d {Wi}o{¢> i} {Fi} {!,'.} ony

4 o
OPTIMAL {u} LINEAR
— Nt |

LINEAR P
CONTROLLER {oi}{ri}

! Vi LINEAR
tu) w8~ | eirenes [
HLTER +
' {Hi}

Rl @)} ma {ei}

Figure A.2-~1 Structure of the Optimal Stochastic Controller for a
Linear Plant with a Quadratic Performance Index

The linear control law described above is relatively simple to
implement. When the parameters defining the matrices ¢i, T‘i, ete. in
Egs. (A.2-2) through (A.2-4) are known apriori, * the gains Ci and Ki can
be precomputed and stored in a computer so that the only on-line calcula-
tions required are those specified in Eq. (A.2-2). However, the assump-
tions of a quadratic performance index and an unconstrained control level
are unrealistic for some problems. In the next section more general de-
sign criteria are considered.

X
The parameters of a tactical missile guidance problem are not always known
apriori; this point is discussed in Section 2.1.

**Often simple polynomial approximations to the gain histories
are adequate.

A-11
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A.3 GENERAL PERFORMANCE INDICES AND
CONSTRAINED CONTROL VARIABLES

This section outlines the method of solving the discrete optimal
control problem posed in Section A.2 for a linear system with the perform-

ance index

{ﬁi}

N-1
I= E {f(gN,tN> +i§0 Li(_J_t_i, g ti)} (A.3-1)

The derivation presented here uses a dyramic programming approach, as
in Ref.14. We first assume time t has occurred and the complete optimal
control ]sequence {9_(;} has been applied using the observed measurements

(z i}. Then proceeding backward from stage to stage, we determine the
individual commands 21?1-1’ 50‘1-2’ ... Needed to minimize the '"cost to com-

J. defined by

plete the process' J. N-27°°*

N-1’

N-1
Ty © ) {f(EN’tN)+ 2, Li(zi’gi’ti)}

{x4 i=N-j
N-j<i<N-1

In this way we can derive a recursive expression from which each optimal
control command can be derived in terms of the control commands and

; measurements that preceded it in time, providing a feedback control law.

| In the general case this reeursive relation is difficult to solve, requiring
extensive numerical calculation; however we shall see that the guidance
problem posed in Chapter 2 can be solved analytically. To aid the discussion
it is convenient to use the notation

v f gl s osisk
z 8z} 5 0sisk
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i That is, Ul(: and Zk denote the sequences of .11 optimal controls that have
been applied and all measurements that have been observed up through

; time tk

To begin, we assume that all stages of the process have been
completed and we are at time tN There are no more optlmal controls to

i % be computed and the optimal value of the terminal cost, JN, is defined by

o

N )
iy & E {f(gN)l gy ZN} (A.3-2)
N

which is shorthand notation for the expectation operation

l iy = oo 1) p(EN{UgI-rZN‘)dEN (4.3-3)

; ‘ The quant1ty p(x,ql N-1’ N) is the conditional probability density func-
tlon of X\ a8 determined by the known measurement and control se-
quencee, and d_:gN denotes the n-dimensional "volume' element dx, (ty)
dxo(ty). . . dx, (ty). The limits of integration on each integral in Eq.

foremenae
Fovmmarn e

‘ ; (A.3-3) are from minus infinity to plus infinity; for convenience, they are
' omitted from the notation throughout this discussion, always being under-
, stood as infinite, Now at time tN, N is a random variable whose mean

value is a function of the control history, the observed measurement his-

"y tory, the statistics of the initial state x, in Eq. (A.1-3), and the statistics

“ =0

kE *Througnout this report, a function of the form p(x|y) denotes the con-

] dition4l probability density of X, depending upon a known value of y. This

1 is an abuse of conventional notation which uses the symbol, px XI

b where £ and 7 denote particular values of x and y, respectively The
shortened notation used here should be clear to the reader, keepmg in
mind the fact that p(y|x) and p(x ly) are two different functions of the
same variables, x and y; that is, p(y|x) # p(x|y)

y-x,x*y

A-13
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of the measuremer:t and process noise sequences. ¥ In addition the fol-
lowing important conditions are satisfied at time tN:

e The random sequences [w }and {v } in Eq. (A.1-10)
are gaussian.

¢ The control and measurement histories, UN 1 and
ZN, are knovn.

¢ Both the process dynamics and the measurements
(Eq. (A.1-10)) are linear functions of the state.

Therefore, 3% is "conditionally gaussian;" i.e.,p(x L -1 N) is a
gaussian jfunction that is completely specified by the condltzonal mean -’EN

and covariance matrix PN of XN defined by

i
i

Ne‘ f INP N| N-1° N)"EN

Py T _f," (§N‘:N)(5N‘3N) ‘P(EN!Ug-l’ZN)dEN

i

The functional form of p(x lU° Z..), expressed in terms of X, and
=~N'"N-1,"N =N
PN’ is given by

(NI N-1 N) - 2™2| e N|~1/2 exp{ 2(xnEy) Py (EN'%N)}

*As in Section A.2, the mean of the state at any time t contains a
component produced by the known contro! sequence applied up
through time t as well as a component derived from previously
observed measurenient data.

A-14
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Now because of the three conditions listed immediately above, _JEN can be

determined by a Kalman filter acting nn the measurement data ZN and known
controls UgT-l as specified by Eqs. {A.2-2) and (A. 2-4); furthermore,

PN is a deterministic quautity (i.e., it i8 independent of the measurements)
provided by Eq. (A.2-4) at stage i = N. Therefore, substituting the above
expression for p( _x_NI 0 ZN) into Eq. (A.3-3), J; can be calculated as

h Uyn-12
a function of x N

15>

o — £ -
Iy = f(zy) (A.3-4)
The over-bar notation refers to the averaging operation performed in
Eq. (A.3-3). The significant property of Eq. (A.3-4) is that the depend-
ence of ng on all randoin variables can be expressed solely in terms of
g N and a numbes of deterministic quantities such as covariance matrices,

plant dynamics, etc. The latter are suppressed in the notation,

Next suppose that all but the last step of the process defined by
Eq. (A.1-10) has been completed using the collections of known optimal
controls and measurements, 0%_2 and Z
. . o
Eq. (A.3-1), at time ty-1 Ve need to determine the value of u o .,uy .,
which mirimizes the cost to complete the process,

N-1° Therefore referring to

N1 7 F x {f(?fN) +;LN-1(§N-1’EN-1’ t1«-1)}
XN-1EN '

This minimization is indicated by defining the optimal cost o complete
the process by*

“The notation min { }means thas the value of a within the set A is
o€A
to be determined which minimizes the quantity inside the braces.

A-15
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L T,

Un-1€ Ono1(BN-172N
(A.3-5)

where the notation -- I N-2° N ' emphasizes that the known controls
and measurements are used to define the conditional probability density
functions for x,._, and X,.

Equation (A. 3-5) can be investigated in two parts. By applying
the same argument used for Eq. (A. 3-2) and assuming for the moment
that the minimization over u,._; has been carried out so that u,. , = E(;I-l

is known, the first expectation in Eq. (A.3-5) can be written as

t(’:‘N-PE:r-rtN-l)exN { N-1(EN-12N-1 7t 1)| N-2'ZN- 1}(“ 3-6)

AN-1

because Ly _, is independent of N Just as we found at the N measure-

ment time, X 4 is a gaussian random variable and its conditional mean
—N 1 is provided by a Kalman filter operating on the measurement history
ZN 1and the control history ° N-2 (note that xN 1 is independent of “N 1)
Continuing with our assumption that u N-1 is known, the second expectation

in Eq. (A.3-5) can be expressed as follows:

e E {f(§N)|UgI-2’ZN-1} - E {f(EN( 1) [z 1}
X N
= E gf(ﬁN) |U§I-2’E(;I-1’ZN-1} (4.3-7)
EN

A-16
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The sequence of equalities in Eq. (A.3-7)* holds because Xy can be regarded
as a function of the control g§_1 (zssumed known as a function of ZN-I);
therefore each term is an equivalent expression for the expectation condi-
tioned on UN Y uN 1 and ZN 1" Now compare Eq. (A.3-5) W1th Eqgs.
(A.3-6) and (A.3-T), where we have assumed throughout that ‘—I-N 1 is known,
and observe that

JO

N-1- L ( Zn-17 Yoy N-1)+JN (A.3-8)

Using the identity

pxly) = {-..f p(zly, 2)pie Iy @z # E{p(zly, 2) |y} (a.3-9)
Z

for probability density functions of the random vectors x and z, given a
known value of y, Eq. (A.3-7) can be expanded as follows

(o (o]
i {f(EN) lUN-z’EN-l’ ZN-I}

=N

fj( N{ (ENIUO 2"‘N 12N )

IN

(o]
N-22% -1’ZN-1}d5N

- (0] 0 o (0]
Ny {f(iN) 'UN-z’l‘-N-l’ ZN}IUN~2’ UN-1 ZN-1
In(En

(A.3-10)

Compare Eq. (A.3-7) with Eq. (A.3-3) and note that JN is different
from JQ because 3'N is conditioned on the measurements only up to
time ty_1 whereas J° is conditioned on the measurements up to

time tN

A-117
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A comparisen of the last line of Eq. (A.3-7) with Eqs. (A.3-2) and (A.3-4)
reveals that

u? o } (A.3-11)

~ _ 0/~
IN=F {JN(-’EN)_ N-2’ BN-10 ZN-1

ZIN

Substitution of Eq. (A.3-11) into (A.3-8) produces

() _ 3 o o) L0 I ] 0] o
I8-1 = Ty Baver 2o tyn) * = {JN(EN)|UN-2' UN-1 ZN-I}
N

- (A.3-12)

Now recall our assumption that the optimal control g%_l at stage
N-1 is known; however, in fact our objective is to determine it from the
functional form of J(IZI-I’ This is accomplished by rewriting Eq. (A.3-12)
in the equivalent form

0 = A (0 ] 0
= min {Ey (g iy ty)t B {JN(’-‘N)IUN-z' UN-1 ZN-I}
UN-1¢ N1 EN

(A.3-13)

and by carrying out the indicated minimization over u N-1° Equation
(A.3-13) has the important property that the optimal cost to complete the

process at stage N-1 can be expressed in terms of the "incremental cost"

= o

LN-l and the optimal terminal cost JN which we computed at stage N

(see Eqs. (A.3-2) through (A. 3-4)). This has the recursive form which
we desire; now we proceed to show that the dependence of E(l’\l-l upon pre-
vious controls and measurements can be expressed solely in terms of

AN-1°

. 0
In order to determine u N-1

averages defined in Eq. (A.3-13). This can be done using the properties

we must be able to compute the

A-18
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of Eqs. (A.3-6) and (A.3-11). From Eq. (A.3-6) we have

L(Ey-pr g tyer) = § oS 1‘N-1(—N-1’-N-1"N-1)"(5N-1|“§-2' ZN-1) N1

ool et (B g Mo tyea) °"pi i Xn-1"%N- Q Pae(Zn-g —N-l)i dXN-1
@i Toalrn)

(A.3-14)

where X, . and P, . are provided by the Kalman filter equations --
Eqgs. (A.2-2) and (A. 2-4) -~ operating on the measurement and control
histories, ZN-I and UN 9° To compute the second expectation in Eq.
(A.3-13), recall from Eq. (A.2-2) that the Kalman filter output at stage

N is given by

AN T ON-12N-1" TN-18n-1 BN [5N'HN (°N-1 EN-17 TNt BN'l)]

(A.3-15)

In addition, using Eq. (A.1-10) note that the measurement z ., can be

=N
written as

Z = o X + T u +W
=N H'N( N~-1-N-1 "N-1-N-1 —N-l) IN-1 (A.3-16)

Now regarding u Uy.p282 set of parameters to be determined and knowing

that XN-1’ LAY -1’ and v are all independent gaussian random variables,

~N-1
it follows tha)t Z,; i a gaussian random variable whose mean dnd covariance

can be derived directly from Eq. (A.3-16);
A~ _ <
Elan} & £y = Hy(@g g Enog* TnorBne)

E{(EN--Z‘:N)(Z—N--E—N)T} & oy = Hy(ey_, Pyoy °§-1+QN-1)HI‘TI+ Ry-1

(A.3-17)
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If we define

A~

4

En T Zy-iy. (A.3-18)

and substitute Eqs. (A.3-16), (A.3-17), and (A.3-18) into Eq. (A.3-15)
the result is

A

Xy = ON-1EN-1 TN 8N-1t BNdw (A.3-19)

where §N’ the so-called measurement residual, is a zero mean gaussian
random variable having covariance equal to EN in Eq. (A.3-17), There-
fore the second expectation in Eq. (A.3-13) can be written as

{ N(‘N) I N-2’ ¥N-17 1} LLN(°N 12817 N 13N- 1**)em§-%f A”lid&
=N et @n™3 [Det(n)

A @ Ky Tyky

2 % Kyly (A.3-20)

Equations (A.3-13), (A.3-14), (A.3~17), and (A 3-20) provide
all the relations needed to calculate the optimum control uN 1 as a func-
tion of xN 1 conditioned on UN 9 and ZN-l' Furthermore it is clear that
the dependence of JN 1 upon U; 2 and ZN 1 can also be expressed com-
pletely in terms of xN v just as J depends only upon xN in Eq.(A.3-4).
Therefore, by induction it can be estabhshed that Eqs. (A.3-13) through

(A.3-20) hold if the index N is changed as follows:

N-’j; j=N,N"1,aoo,1

A-20
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Consequently by recursively carrying out the minimization specified in
Eq. (A.3-13), the entire set of optimal controls can be generated with

each control g? being a function of gi' This method of solving the con-
trol problem is referred to as dynamic programming.*

Notice that a form of separation principle holds for the above
optimal control law in the sense that g? is always a function of the condi-
tional mean (optimum estimate) of the state. The latter is provided by a
Kalman filter in the same fashion described for quadratic performance
indices in Section A.2. However, the optimal controls are not generally
linear functions of the estimated state nor are they independent of the sta-
tistics of the random processes as evidenced by Egqs. (A.3-14) through
(A.3-20). The mechanization of the optimal controller is illustrated in

Fig. A.3-1; this should be compared with the linear system in Fig. A.2-1.

{Vi}'{wi}'{oi}'gi}o{Ri}. {Qi}.{r;} {w} searsr .o

OPTIMAL (i} [ unem | {x}
NONLINEAR PLANT | .

CONTROLLER

oir) | —

LINEAR
MEASUREMENTS =1

{i}

{mHai} o} Emhide {ui)

Figure A, 3~1 Structure of the Optimal Stochastic Controller for
a Linear Plant with a General Performance Index

*See Ref. 15 for a discussion of dynamic programming applied to
stochastic control problems.
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Except in special cases, the optimal controls determined from
Eq. (A.3-13) cannot be determined analytically; often the dynamic pro-
gramming equations must be solved numerically and the optimal control
variables stored as functions of the estimated state. A great deal of com-
putational effort and computer storage may be required to accomplish this
task because of the multidimensional integrals in Eqs. (A. 3-14) and (A. 3-20)
that must be evaluated. Some simplification can be gained by expressing
these integrals as solutions to the corresponding multidimensional diffu-
sion partial differential equation (Ref. 14). However, the amount of com-
putation required for more than two variables of integration is still formid-
able. Consequently, in formulating an optimal control problem for a linear
system with nonquadratic performance indices and/or constrained control
variables, an effort must be made to limit the number of integrations re-
quired in Egs. (A.3-14) and (A.3-20). Situations where this objective can
be achieved are described in Section A.4. '

A.4 COMPUTATIONAL CONSIDERATIONS

In the preceding section it is pointed out that there are large
computational requirements associated with solving the optimal stochastic
control problem for a linear system with an arbitrary performance index.
To minimize the amount of computation, the dimensionality of the integrals
in Eqs. (A.3-14) and (A.3-20) must be kept as low ag possible. This can
be accomplished by choosing a performance index that depends on as few
variables as possible at each stapge of the backward recursion in Eq.
(A.3-13). To illustrate, suppose that L; = 0 for all i in Eq. (A.2-5) and

7= mlf = el o) (641

A-22
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where xl(tN) denotes the first element of XN. That is, the indexis a
function of only one state variable at the terminal time and is independent
of the state and control variables at other times. In addition, specialize
Eq. (A.1-10) to the case where the control input is a scalar,

e ki
EM‘

X T %% TY YW, (A.4-2)

and impose the constraint

[}

. |ui| s D; foralli (A.4-3)

L where D is a specified constant. The above design criteria are realistic

. for the two dimensional guidance problem for a tactical missile, where

| _:gl(tN) corresponds to the terminal miss distance and u, is the control sur-

face deflection.

In order to exploit the form of Eq. (A.4-1), it is necessary to
define a new state vector ¥; by the linear transformation

>

: % = elyt)x;
i o(t,,t,) =

The matrix é(tN, ti) is the transition matrix from time ti to time tN asso-
ciated with Eq. (A.4-2) and determined by*

i
—

(A.4-4)

_ @(tN,ti) = j;rll-‘l;l o, (A.4-5)

® ¢

L * . m
- The notation jﬂ;m Oj means the product, ¢n¢n_1. o ®1%m
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Therefore y, is the value of the state at the terminal time produced by an
initial condition x, at time ¢; with the control and process noise in Eq.
(A.4-2) equal to zero. Substitution for x, and x, . from Eq. (A.4-4) into

Eq. (A.4-2) produces

1

Yivg = Ty vO5 0ty
A
5; © °(tN’ti+1)Zi (A.4-6)

where w, is a zero-mean gaussian vector random variable with covariance
matrix

E;-“iiﬁﬂ - °(tN’ti+1) Qi"(tN’ ti+1)T (A.4-7)

and Qi is defined in Eq. (A.1-13). Because the transformation in Eq. b
(A.4-4) is nonsingular,* Eq. (A.4-6) is equivalent to Eq. (A.4-2) in des-
cribing the system dynamics.

The important thing about Eq. (A.4-6) is that the first element ; ‘
yl(ti+1) of yi+1 is independent of the last n-1 elements of AT Therefore, .
if the performance index in Eq. (A.4-1) is expressed in terms of the vari- '
ables Yy the integration in Eq. (A.3-20) is performed over only one state -
variable. To prove this assertion it i8 convenient to use the fact that the
optimum (Kalman filter) estimates of x and y are also related by Eq.
(A.4-4) (see Ref. 13);

1; = oyt (A.4-8)

%
The discrete time transition matrix is always nonsingular when Ai in Ec.
(A.4-2) is derived by aiscretizing a continuous time system.
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Applying Eq. (A.4-8) to Egs. (A.3-15) through (A, 3-19) it follows that

A A

Iy = g * 050 % *olet) 534 (4.4-9)

where 51 is given by Eqs. (A.3-15) and (A.3-16). The dynamics of the
estimate of the first element, yli, ofy ; are therefore given by the scalar
equation

u, L +a, (A.4-10)
i+l i-1 i

where oy is a zero mean gaussian random variable and 61. 1 is the first
1-

element of § i-1° The me2n square value of ay is given by

E{“iz} e °12 = !'11‘ °(tN’ti) K, % K;r °(tN’ti)T‘51

2 %010, . 0] (A.4-11)

where I, is defined by Eq., (A.3-15) with N - i, Observe that the only ele-
ment of i1 appearing in Eq. (A.4-10) is V1.1

We also know that

J = E%f(gN)g = E 3f(gN)€ (A.4-12)

because INTEN according to Eq. (A.4-4). Combining Egs. (A.4-1),
(A.4-10) and (A.4-12) with Eqs. (A.3-13) and (A. 3-20), letting N -~ i and

setting Li-l =0 in Eq. (A.3-13) produces
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min 1 S i(
Y1 J 2 o;
lugq l<D |

(A,4-13)

Thus we have reduced the probiem of finding the optimal conirol to that of
solving Eq. (A.4-13) recursively, a task that requires avaraging over only
one variable, o, as opposed to averaging over n variables, A, in Eq.
(A.3-20).

Further simplification can be made to Eq. (A.4-13) if the index
J has certain properties. In particutar, suppose J:('r) i3 a convex, *
even function** of its argument, + & §1i’ as defined by:

Even Property: Ji°(1-) = J;’(_,,.)

. 1.0 o ofT17 72\ .
Convexity: 3 Ji(71)+ Ji(Tz) 2 Ji_'z__ ; forall ™1 and To
(A.4-14)
Now make the definition
é A
PEYL *tY L (A.4-15)

i-1 i-1

%
The results obtained here will hold under more general assumptions;
however convexity is a sufficiently broad condition for our purpose.

* %
Coavex even functions are a very broad class; some examples are

TRME 1'4, and elT!,
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go that Eq. (A.4-13) can be rewritten as

o A - 1)
Ji-1 (yi-11> o %Ji (o)
i-1
oy 4 <D
A 1 0, a2
) - SJi(p +o) exp |-y [da  (A.4-16)
27 LA 2cri

If the properties in Eq. (A.4-14) hold for J?('r) then they also hold for
.T;’(p) with respect to the variable p. The even property can be demon-
strated by substituting -p for p in Eq. (A.4-16) and changing the variable
of integration from a to A according to

-p+a = -p -\

The convexity property is established by writing

2
- _ 1
Jio@l) B J_Z;ci J?(”l”‘) exp ';:Z do

2
- 1 .
J; (pz) = o SJ io(p2 +oz) exp |- :—0?] de

21rui
<‘°1+‘°2 1 (poffLtP2 o 1
J° ) = S( —+a> exp | - —5 | da
i\ 2 Jowo 7\ 2 2of

and using the fact, taken from Eq. (A.4-14), that
1.0 1 Py " Py
2@ ) g lhlyte) J?<—r+°‘
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e s

Consequently the minimum value of ﬁg(p) in Eq. (A.4-16) is achieved with }
the value u? of u, that minimizes |p| subject to the constraint on the con-
trol level, as demonstrated by Fig. A.4-1. This value of u is easily ob- )
tained from Eqs. (A.4-3) and (A.4-15) in the following form:

y y ?
1, 1, .
__i-1 s if i-1] . D
% 5y :
i-1 i-1
\10 =
1-1
y y |
14 14
i sgn -6——" y if -6—— >D (A.4"'17)
L L |
#-4126 ;;
f D)) ‘
{
~\\\\\\\\\\///////» |
]
P

I d

Figure A.4-1 A Graphical Illustration of the Fact
that Minimizing |p| also Minimizes .
any Convex Even Function of p. P

From Eq. (A.4-17) we see that u(i)_1 is an odd function of

y ; l.e.
li_l’ ’

| £l ) = o0 (1, )
‘ i-1 1i-1 1-1 11_1

E A-28
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and therefore so is p(§r1 1 Y- 1)|'_11 L =ud . This implies that the

optimal cost in Eq. (A. 4~ 16), given by

bied B  Bemi Bt

4 0 ” = J
: I A 1(}’111) J:(p) o
i-1  i-1
gi is an even convex function of ¥, _y that is, it has the same properties

which we assumed for J°('r) Consequently, if f(x,(ty)in Eq. (A.4-1)

is a convex even function, so are the functions J?(f'li) fori=0,1,...,N

and therefore Eq. (A.4-17) holds for all values of i. This result is sig-

nificant for mechanizing the optimal control law because each u(; is given

analytically in terms of the optimal estimate of the transformed state

g variable y1 . There is no need for carrymg out the integration in Eq.
(A.4-13) unless the actual value of J is- desired for the purpose of evaluat-

:ﬂ ing performance.

z The above special case has been developed in detail here be-

’ cause it has application for tactical missile guidance systems. The dis-
§f cussion also demonstrates some systematic procedures -- i.e., state

) transformation and the use of convex, even cost functions -- that can

greatly simplify the problem solution.

| SUNROINY 1
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ANNOTATED REFERENCES

1. Stallard, D.V., '"Classical and Modern Guidance of Homing Inter-
- ceptor Missiles,'" P247, April 1968, Raytheon Company, Missile
' Systems Division, Bedford, Massachusetts.

- This is a tutorial-type of paper describing many
of the theoretical and practical aspects of homing guidance

3

k system design for tactical missiles, particularly those

‘ - which use a radar seeker. A discussion of conventiocnal
proportional guidance is provided, with brief mention of

optimal control and state estimation techniques. Some

other topics included in the paper are: guidance accuracy,

measurement noise, autopilot design, system stability,

airframe design, saturation effects.

koo

2, Stewart, E.C., "Application of Statistical Theory to Beam~Rider
Guidance in the Presence of Noise, " NACA RM A55E11, National
Advisory Committee for Aeronautics.

The application of Wiener-filter design techniques
to the problem of suppressing homing sensor measurement
noise in beam-rider type guidance systems is described.
Time-invariant models are used for the measurement noise
statistics and performance curves are given describing
miss distance as a function of noise and filter parameters.

e

3. Leistikow, L., et.al., "Optimum Control of Air-to-Surface Mis-
, siles, " Technical Report AFFDL-TR-66-64, March 1967
3 (AD 815389).

The comparison in guidance accuracy achievable
1 with pursuit, proportional, and optimal guidance laws
3 used against surface targets is investigated. The three
concepts are evaluated for a system using an inertially-aided
% TV homing guidance sensor. Effects of measurement

noise are included. In addition, a detailed treatment of
autopilot design for a missile airframe undergoing a wide
change in flight conditions is presented.
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5.

James, J.P., "Homing Guidance,'" A-62-1732,3-68, Aerospace
Corporation, September 14, 1962,

A simplified anzlytic treatment of pursuit, pro-
portional, and biased proportional guidance concepts is
presented. Each law is examined with respect to the
fuel consumption it requires; the effects of accelerating
targets are aiso investigated.

Garber, V., "Optimum Intercept Laws for Accelerating Targets, "
AIAA Journal Vol. 8, No. 11, November 1968.

Optimal Guidance Laws are derived which include
the effects of time-varying target and missile accelerations
in the problem formulation, and which impose an integral
quadratic type penalty on control level. Analytical (algebraic)
expressions for the optimal control gains as a function of
time are obtained.

Price, C.F., "Adaptive Control and Guidance for Tactical
Missiles, ' Vol. II, The Analytic Sciences Corporation,
TR~170-1, 30 june 1970,

Performance comparisons of a wide variety of .
deterministic guidance laws are given, including the effects
of autopilot dynamics, target acceleration, measurement
bias errors and modeling errors. Performance is mea-
sured in terms of miss distance achievable versus the con-
trol effort expended.

(el

Nahi, N,E, and Sworder, D.C., "An Optimum Interception Law
with Bounded Control in Presence of Noise, AD 820631,
Febzruary 1967, USCEE Report 188, Department of Electrical
Engineering, University of Southern Caiifornia, Los Angeles,
California.
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-

The optimum continuous-time stochastic guidance
law which minimizes terminal miss distance, subject to
a bounded control constraint, is derived. The mathe-
matical model assumes that the target has constant
velocity. The resulting control commands are bang-bang.

9. Sworder, D., Optimal Adaptive Control Systems, Academic
Press, New York, 1966.

A textbook that treats the problem of optimal sto-
chastic control of dicrete-time systems having unknown
parameters.

10. Aoki, M., Optimization of Stochastic Systems, Academic Press,
New York, 1967.

A textbook giving a general treatment of nonlinear
stochastic control and estimation theory for discrete-time
systems.

11. Papoulis, A., Probability, Random Variables, and Stochastic
Processes, McGraw-Hill Book Co., New York, 1965,

A textbook devoted to the fundamentals of random
variables and random processes.

12, Bryson, A.E., Jr., and Ho, Y.C., Applied Optimal Control,
Blaisdell Publishing Co., Waltham, Massachusetts, 1969,

i A textbook giving a comprehensive treatment of
v optimal deterministic control theory with numerous

; interesting examples; the theory of optimal stochastic
control for linear systems with quadratic performance
indices is included.

13. Jazwinski, A.H., Stochastic Processes and Filtering Theory,
Academic Press, New York, 1970.

A textbook covering linear and nonlinear estimation
theory from the Bayesean point of view.
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14.

15,

Deyst, J.J., Jr., "Optimal Control in the Presence of Measure-
ment Uncertainties, ' ScD Thesis, January 1967, Department of
Aeronautics and Astronautics, Wiee Massachusetts Institute of
Technology, Cambridge, Massachusetts,

The problem of optimal stochastic control of
linear systems with arbitrary performance indices is
treated. A separation principle for the control law is
derived which permits control commands to be com-
puted as a function of the conditional mean of the system
state. The theory is presented for both discrete and
continuous time systems.

Dreyfus, S.E. Dynamic Programming and the Calculus of
Variations, Acéﬂ‘emic Press, New york, 1905.

Methods of solving optimal control problems
using both the calculus of variations and dynamic
programming are presented. A particularly helpful
discussion of optimal and suboptimal solutions to
stochastic control problems obtained via dynamic
programming is included.
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