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I ABSTRACT

Guidance laws are developed for tactical
missiles which take into account the following important
dynamic and random effects: random target motion,
homing sensor measurement noise, bounded control
level, bounded acceleration level, and missile autopilot
dynamics. Several different guidance laws are derived

* I.using optimal stochastic control theory and evaluated
by computer simulation. An important conclusion of
this work is that when intercept accuracy is appreciably
limited by missile maneuvering capability, a control
policy obtained by taking control saturation into account
can yield significantly better performance than control
policies derived assuming that control levels are un-
constrained.
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I
1. INTRODUCTION

I
1.1 BACKGROUND AND OBJECTIVES

The task ol guiding a tactical missile to a target is affected by a

Inumber of factors and constraints -- e.g., target maneuvering capability,

homing sensor measurement errors, missile autopilot dynamics, bounded

I control variables, limited missile maneuvering capability, and launch ini-

tial conditions. To overcome those effects, a number of guidance tech-

jniques have been developed and evaluated (Refs. 1, 2, 3,4. 5,6). Heretofore,

most guidance laws have been derived assuming fairly simple mathematical

jmodels of the missile-target engagement problem. A familiar example is

so-called proportional guidance which is designed primarily for constant

I velocity targets and unconstrained missile controls. It is frequently found

that guidance laws derived in this fashion yield terminal miss distances that3are unacceptable when applied in situations where target maneuvers, etc.,

exist. Consequently one is motivated to obtain improved performance by

including within the guidance problem form.:.tion more of thnse factors

which affect the missile's interception capability.

*In Ref. 6 a number of guidance laws which offer improvements

over conventional proportional guidance are evaluated. These laws are

derived with the aid of optimal control theory from mathematical models

that include the effects of initial condition errors, missile airframe dynam-

ics, constant target acceleration and a penalty on the amount of control

effort consumed. This report represents a continuation of that effort;

guidance laws are developed which include the effects of measurement

noise, bounded control levels, bounded maneuvering acceleration level and

random time-varying target maneuvers. Emphasis is placed upon those

vi 1-1
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techniques which can potentially be applied in practical tactical missile

weapons systems in the next ten to twenty years, especially those which

can take advantage of the rapid improvement in computer hardware tech- I

nology.

In Chapter 2 guidance laws are derived using some results from

optimal stochastic control theory described in Appendix A, which account

for measurement noise, random target acceleration, and boundid missile

control variables. Performance results for these laws, obtained by com- I
puter simulation, are presented in Chapter 3. In addition, an acceleration

limiting technique is developed and evaluated in Chapter 3, its purpose j
being to prevent the missile lateral acceleration from exceeding pre-

scribed limits. A suwmmary of the results and major conclusions are

given in Chapter 4.

1-2
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II2. OPTIMAL STOCHASTIC GUIDANCE LAWS

In this chapter stochastic guidance problems for a tactical mis-

sile, ncluding the effects of bounded control variables and sensor measure-

ment errors, are formulated and solved. First a mathematical model is

developed which provides a standard description of the guidance system

dynamics for use throughout the report. Then both optimal and suboptimal

nonlinear guidance laws are derived; the performance of each law is sub-

sequently evaluated in Chapter 3 by digital computer simulations of the sys-

[il tern model.

LI
2.1 PROBLEM FORMULATION

The equations of motion for the missile guidance problem are

LI derived assuming motion is confined to a single plane and neglecting forces

caused by gravity and aerodynamic drag. * Referring to Fig. 2.1-1, a non-

j rotating orthogonal coordinate system is defined with the X-axis chosen

along the line-of-sight (LOS) between the interceptor and the target at the

beginning of the engagement. The center of the coordinate system moves

with the target but the coordinate axes do not rotate.

* In actual applications, drag can significantly reduce the airspeed of
[a coasting missile, thereby adversely affecting guidance accuracy.

The exclusion of this effect here is justified on the basis that we are
seeking guidance law design criteria that offer improvement overgconventional methods with respect to more significant guidance error
sources. However, a more complete system evaluation of the methods
resulting from this study would certainly include aerodynamic forces,
as well as otier factors neglected in this simplified investigation.

2-1
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Subscript m denotes missile
Subscript t denotes target y
v: velocity
a acceleration
X line-of-sight angle
8 missile acceleration

orientation angle
MISSILE POSITION MISSILE POSITION

AT -- AT TIME t

TA RGET

vm()) -'t 1 *(t) / Vm(t)

MISSILE
TRAJECTORY

Figure 2.1-1 Relative Coordinate System

If the guidance system works well, a reasonable conjecture is

that the LOS rotates very little along the missile's trajectory, except near

the end when the range becomes small (less than 100 feet). This assump-

tion is suggested by the similarity between optimal linear deterministic

guidance laws and conventional proportional guidance in that all such tech-

niques tend to achieve a small LOS angular rate (Refs. 5, 6). Consequently

at the terminal time tf, the missile trajectory intersects the y-axis in

Fig. 2. 1-1 almost perpendicularly and the terminal miss distance is

approximately y(tf). Therefore, the missile's motion parallel to the y-axis

is of primary interest.

We shall assume that the control variable available for the guid-

ance law is the output u(t) of the missile's control actuation mechanism --

e. g., a control surface deflection. * The latter, acting through the missile

This assumption neglects actuator dynamics which typically have much

faster response characteristics than the missile rotational dynamics.

2-2
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I
rotational dynamics, provides an acceleration vector am that changes the
interceptor's flight path. In a nonthrusting drag-free vehicle, a m is

japproximately perpendicular to the missile's velocity as indicated in
Fig. 2.1-1. Only the y-component of a m, given by

aM = -am(t) cose (2.1-1)amy

w',ere am(t) = 1am(t) I, is important for controlling terminal miss. If
the oentation of vm is assumed to be slowly varying, cos 8 can be treated
as a known scale factor; throughout this discussion we assume cos 8 1.

In many applications the missile rotational equations of motion
can be modeled as being linear; therefore they can be written in state

Ivariable form as

{ _(t) = Fmxm(t) +mu(t)

am(t) = C x (t) + du(t) (2.1-2)

I/ where the acceleration is regarded as an output variable that iR general
can be a function of both the state x m(t) and the control u(t).* In this re-
port Fmo gm' -m' and d are assumed to be constant arrays, a condition
that needs some elaboration. In many applications missile dynamic char-
acteristics vary rapidly because of changing flight conditions, especially
when thrusting at a high g-level. In these situations, the parameters in
Eq. (2.1-2) may be treated as constant if an adaptive autopilot has been de-
signed which maintains known, uniform dynamic characteristics.

For example, in a tail-controlled lifting vehicle u(t) can represent
the control surface deflection which contributes directly to missile
lateral acceleration.

2-3
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Alternatively, when the elements of Fmy etc., are time-varying, they can F
be estimated on-line by a parameter identification technique which can r
track time-varying parameters. In either case, the subsequent develop-

ment has application; however we shall see that if the airframe param-

eters are known a priori, certain feedback control gains can be determined
off-line and stored in the guidance computer. If the parameters are iden-

tified in flight, then the control gains must be calculated on-line.

In addition to the missile's acceleration, the target acceleration

at(t) has an effect on the guidance dynamics. In particular, from Fig. 2.1-1
it follows that

y(t) = at (t) +am (t) (2.1-3)
y y

where aty(t) is the component of at along the y-axis. We shall assume that

the target accelerates randomly according to the relations

x-t = Ftxtft) + w-t(t)

aty(t) = tt(t) (2.1-4)

where wt(t) is a gaussian white noise process having statistics described

by*

E f 4(t)I = o L
E {wt(t)wt(,r)T} = Qt6 (t- ') (2.1-5)

A nonzero, known mean can readily be included in the development.

2-4
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I

I and Ft and ct are known constant arrays. The matrix Qt is constant

and positive semidefinite, and 8 (t -,r) is the unit Impulse function. This

Imodel represents the target's acceleration as the output of a linear

system driven by white noise. It is a good representation insofar

I Ias the target maneuvers appear to be random and correlated in

time. The correlation characteristics of atv(t), which determine

the extent to which the target's future maneuvers can be predicted

from previous measurements of target motion, are determined by

Ft.

Random maneuvers are frequently used by aircraft flying in a

region where they are subject to attack by missiles, especially by surface-

ito-air missiles (SAM's) (Ref. 7). The pilot's purpose is to prevent SAM

radar trackers from acquiring a fix on the aircraft. However, if the pilot

I knows a SAM has been launched, he is more likely to employ one of several

deterministic-type maneuvers which have been historically successful in

?LI avoiding intercepts. To analyze the latter situation, game theory may allow

La more realistic problem formulation in that the target aircraft can be

modeled as an intelligent evader whose objective is to maximize the ter-

minal miss distance. In this report only random target motion is con-

Li sidered; the application of game theory is an important topic for future

Li investigation.

Combining Eqs. (2.1-2), (2.1-3), and (2.1-4) the complete set

LI of state equations for the guidance problem can be written as*

The symbols 0 and [0] denote respectively a vector and a matrix
having all elenents zero.

2-5
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y(t) 0 1 0T 0T y(t) 0 0

(t) 0 0 T _CT NO -d 0d S t - () + u(t) +
dt 0 0 t Ft [0] jt(t) 0 w (t) (2.1-6)

xm(t) 0 0 [0] F Lxm(t) ~m0

or more compactly as

i(t) =FxS(t) + ru(t) + w(t) (2. 1-7)

where* 1
y(t) 0

0

~~m ~ t) 0

T T'

E (t() T} ~Q6(t-T)= 0 0  ~ 8(t -'r) (2.1-8)
O Qt [0]

0 0 [0] [0] h

and F and j are identified as the matrix and vector coefficients of x(t) and

u(t) respectively, in Eq. (2.1-6). The initial value of x(t) is assumed to

be a vector gaussian random variable with known statistiss given by

The notation 0 and [0] denotes respectively a vector and a matrix
having ali zero elements.

2-6
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Ii

E (x(O))

Ef E(O) - j] [?(O) !~]T PO

TThe objective in designing the guidance system is to derive a

feedback control law for u(t) having performance that is optimum in some

isense. In order to provide feedback, measurements related to the ele-

ments of x(t) must be available. It is usually realistic to assume that mea-

surements of line-of-sight angle or angle rate are available from a homing

sensor. From Fig. 2.1-1, the LOS angle X(t) is given approximately by

X Vc(tf t) (2.1-9)

Iwhere tf is the terminal time and vc is the magnitude of the closing velocity

which is assumed to be constant. If Eq. (2.1-9) is differentiated with respect

Jto time, the result is

1 1 (t) +(tt)] (2.1-10)

vc I (tf-t)J

Consequently, within the limits of the approximation stated in Eq. (2.1-9), an

LOS rate measurement is linearly related tothe state variables y(t) and t(t).

In addition, linear measurements of some of the missile airframe state vari-

LI ables xm(t) (pitch rate, lateral acceleration, etc.) are also generally avail-

able. The set of all these measurements, z(t), is considered to be available

LIat discrete times ti and corrupted by additive gaussian noise; thus z(t i ) can

be expressed as

z(t1  F4 = Hil + (-

2-7

L

V

L _



THE ANALYTIC SCIENCES CORPORATION

where [1/vcit) i/v(tf-_t,) OT OT]
o 0 [0] ]

Efv~]0

Evi_  - _o ii

Xj enesxt vin j Eq=217 n h arxE ecie (2.1-12)

and Ri is a positive definite matrix that can vary with time. The quantity
xi denotes x_(ti) in Eq. (2..1-7) and the matrix Hm describes the linear rela-

tion between the missile airframe state variables and the measurements.

In situations where the homing sensor output is interpreted as an

LOS angle, H1i takes the form Li
rl/vc(tf-ti) 0 0 T 0 TH, = I ° 1: °]:

0 ~0 [ 0] Em

In this report we use Eq. (2.1-12) as the sensor model.

In order to guide the missile, the measurement data is to be

used for computing control commands. To allow for the time required

to make the necessary calculations, it is assumed that a new value of the

control can be computed only at each measurement time ti. Thus on the

interval t, g t s ti+,, u(t) is held coastant at the value of u(ti). Because

both the measurements and the controls are generated at discrete points

in time, we use the discrete equivalent of Eq. (2.1-7):

u(ti); xi f x(t i )

K 1 4 1 ~~X 1+y1 1 +w ~(2.1-13)X~ 'i~ ii + "i ui + wi(2I-)

2-8
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j where fi' 2i, and wi are determined from F, g, and w(t) according to

Eqs. (A. 1-12) and (A. 1-13) of Appendix A. For this application the inter-

val between measurements is assumed to be of uniform length, At,

At 4 ti+17ti; i=, 1, ... , N-1

with tN _ tf. Therefore, because the dynamics in Eq. (2.1-7) and the sta-

tistics of w(t) are constant, Eqs. (2.1-13), (A.1-12) and (A.1-13) can be

written as

i FAt
_ AteF(At-T) d

_o Atd

Sxi+1 = *i+ u.+; i=0,1,..., N-1 (2.1-14)

where I is a gaussian random sequence satisfying

E/wiwT} A Qd =1teF(At ) Q (eF(At- r))T

0

E11 TJ = 0; i9j(2.1-15)I
Having Eqs. (2.1-11) and (2.1-14) describing the measurement

sequence and the discrete time dynamics, we desire to establish rational

performance criteria for determining each control ui . In many applications

the most important objective is that the terminal miss distance be made as

2-9
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small as possible. More precisely, if we define a loss function of the ter-

minal miss distance f(xl(tf)), where x is the first element of the state vec-

tor x -- i. e., the quantity y in Fig. 2. 1-1 -- and tf is the terminal time,

then we say that guidance performance is optimized if the index

J =E If(xj(tf))l

is minimized. The designer's objective is to determine the sequence of

optimal control commands which accomplishes this goal. In this report the

loss function used is the square of the miss distance so that the perform-

ance index becomes

J1 = E x1 (t)2} (2.1-16)

In practical applications the allowable values of the control are bounded in

magnitude; typically for tactical missiles the control surface deflection is 1
limited to a few degrees. Thus, our objective is to minimize J1 subject

to the constraint*

Juij ' D ; i = 0,1,...,N-1 (2.1-17)

It is subsequently demonstrated that this problem formulation leads to an

optimal nonlinear stochastic control law; i.e., ui is a nonlinear function H
of past measurements.

Depending upon the type of control actuation mechanism in use,

it may be desirable to restrict other variables as well, say
du/dt. Such a requirement can complicate the task of finding
the optimal control law and the designer may have to settle for a
suboptimal law that satisfies the constraints but which does not
exactly minimize J1 .

2-10
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If the energy expended by the control law is of no importance,

j as may be the case in short range missions or near the end of a long range

mission, the above problem formulation is quite realistic. Its solution

will indicate the ultimate guidance accuracy that can be achieved for a

given target engagement situation when control level is bounded. However,

Hfor comparison purposes it is convenient to consider alternative perform-

ance criteria that have been advocated for the guidance problem.

In (Ref. 6) linear guidance laws for a continuous-time, deter-

ministic problem formulation are evaluated. These laws are chosen to

minimize a quadratic performance index of the form

tfJ = + r 2 (2.1-18)

for various models of the missile autopilot dynamics and target maneuver-
ing capability, but without any direct constraint on j(t)j. This performance

criterion has one advantage over that outlined above, in that the presence

of u(t) in the definition of J results in a guidance law that tends to con-

serve missile energy. * However, it lacks a capability for directly

This statement must be qualified with respect to the type of energy
consumption one is talking about. If the control surface actuator is
electromagnetic, a constant electric current must be provided to main-
tain a constant control surface deflection and f u(t)2 dt is proportional
to the electrical energy consumed. However, in electrohydraulic sys-
tems power is required only when the control surface Is in motion so
that fii(t)2 dt is a better measure of energy. In addition, some sys-
tems pump hydraulic fluid into the atmosphere; in this case f Ifi(t)Idt
represents the amount of fluid expended. Besides actuator energy/tluid
losses, the missile incurs a kinetic energy loss proportional to fIa(t) I dt
when it performs a maneuver at constant altitude. Although J in Eq.
(2.1- 18) is directly related only to energy used by the electromagnetic
type of actuator? it is frequently observed that utilizing a penalty on the
integral of u(t)2 produces a control law that also tends to limit all of the
other losses mentioned above. Therefore we are qualitatively correct in
saying that minimization of J in Eq. (2.1-18) tends to conserve missile
energy.

2-11
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constraining control magnitude. Therefore the zontrol levels called for

can exceed any limit which may exist; this condition tends to occur most

frequently near the expected time of intercept when the observed line-of-

sight angular rate tends to become large.

By analogy with Eq. (2.1-18), in thfis study we ivestigate a

performance index having a quadratic penalty on control level, to be com-

pared with J in Eq. (2.1-16). Namely, we seek these unconstrained con-

trols u. which minimize the index
1

N-1
J2 = E x1 (tf) + r I(2.1-19)

This design criterion ordinarily leads to a linear stochastic control law;

i.e., ui is a linear function of the measurements. However, because the

actual missile control capability is constrained according to Eq. (2.1-17),

the control sequence obtained by minimizing J2 is "clipped" when applied

in the actual guidance system resulting in a suboptimal nonlinear stochastic

guidance law.

The solutions to the above two guidance problems are given in

the next two sections.

2.2 OPTIMAL NONLINEAR STOCHASTIC GUIDANCE LAW

The optimal stochastic guidance problem associated with Eqs.

(2.1-16) and (2.1-17) is summarized as follows:

Given the linear discrete time dynamic relations

xi+1 = *x i +vu i +w i  (2.2-1)

with linear measurements

zi = Hix i +v. (2.2-2)

2-12
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*0

determine the optimal sequence of controls* Uj
I (i= 0,1,... ,N-1) such that the performance index

= E x 1 (t ) 1 (2.2-3)

is minimized, subject to the constraint

1 9 [ D ; for all i (2.2-4)

j Definitions of the quantities 0, Z, Hi, wi , and vi are available in Eqs.

(2.1-12), (2.1-14) and (2.1-15). The above problem formulation is

a discrete-time generalization of the case treated by Nahi and Swo-der

(Ref. 8); the latter is a continuous time problem which does not take into

iiaccount target or autopilot dynamics. Fortunat, ly the optimal guidanee

law is readily obtained as described in Appendix A. Its mechanization can

be described s two separate fMctions.

First, a conventional Kalman filter is implemented to obtain an

estimate xi of the state x i . The required filtering equations, taken from

Eqs. (A.2-1) and (A.2-4), are as follows:

K. =P. x .1i )
-I -1 I IL i\

P. P .(HiPHT +R)KT

Pi+l = Pi T +Qd

x = 0i+1 = +, ; i=O,1,...N-1 (2.2-5)

The superscript "o" denotes optimal.

2-13
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where 1 and P0 are the initial mean and covariance matrix of the state,

and x t and P denote respectively the estimate and its corresponding

covariance matrix just before a measurement is taken.

To obtain the second part of the solution -- i.e., the method for 10

calculating ui -- we begin by transforming xi linearly according to Eq.

(A.4-8) to obtain the quantity j; the latter is the expected value of the

terminal state, givenE (x(ti)] = xi, if no control is applied during the in-

terval ti ! t :tN . Because 0 is independent of time, Xi becomes

A = Ni (2.2-6).

where we have made the substitution

Actually only the first element, 41i, of the transformed state is needed.

If the first row of N-i is defined to be a transposed column vector, T

we have
T^

Yl i2 (2.2-)

Similarly, the vector y in Eq. (2.2-1) is transformed according to Eq. U
(A.4-6) to obtain the quantity -i' which represents the effect on the ter-

minal state of a constant control u(t) = ui applied during the interval
ti S t e. t.+; L

i = N-i-1 (2.2-8) I.

Only the first element of 6i is needed to describe the effect of the control

onthe terminal miss distance; therefore by analogy with Eq. (2.2-7) we

calculate

6 = -i y (2.2-9)
-1 +1-
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where _i+l is the first row of 0N . Now the optimal control strategy,

Ias proved In Appendix A, is to select a control such that the total predicted

terminal miss produced by both -i and ui be as close to zero as possible;

SA i.e., we desire

i + u 0

11 remembering that the constraint in Eq. (2.2-4) mustalsobe satisfied. Con-

sequently the optimalnonlinear control law (see Eq.(A.4-17)) is given by

I.si/6li Yllij = D

_1 D sgu(Yli/'i); JYli/li I > D

or alternatively

T,.x_ IdTxij s D

-Dt -VDsgn (Tx) il >

di 61 -i i= 0, 1,0, N-1 (2.2-10)

Thus the complete guidance law is represented as a linear filter

cascaded with a nonlinear control policy; the latter consists of a set of

gains di followed by an amplitude limiter. A block diagram of the system

is given in Fig. 2.2-1. We shall refer to the entire sequence of the

optimal control as [U?).

2-15
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OPTIMAL NONLINEAR STOCHASTIC s.

GUIDANCE LAW

LIMITER I MISSILE

" IE~t AFFRAME M= RAO I SSILE ,VELOCITY4i- DYNAMIS K INEMATICS ,
-- - -- LMISSILE

STATE

STATE MEASUREMENTS I AUTOPILOTETIMATES SENSORS

FILTE NOISE

SENSOR 
TARGETSESRPOSITION,

MEASURMENTSVELOCITY

INOISE

Figure 2.2-1 Optimal Nonlinear Stochastic Guidance Law
I.

At this point it is worth mentioning that the guidance law derived

above is much more general than implied by the statement of the guidance 1..
problem at the beginning of this section. It is proved in Section A. 4 that

the control sequence given in Eq. (2.2-10) minimizes any convex sym- 1,
metric function of the terminal miss distance subject to the constraint in

Eq. (2.2-4). Consequently one can say that, in a very broad sense, this

guidance law yields the best possible terminal accuracy, within the mis-

site's control capability.

The mechanization of Eqs. (2.2-5) and (2.2-10) requires corn- l
putation of both the set of Kalman filter gains Ki and the feedback gains

di, given by L

A= T =i
Ei+lZ

First, with respect to the feedback gains, both oi and + are derived .
N-i N-i-i + r eie

from the matrices N and 'Ni-. The latter usually can be determined

2-16
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analytically in this application. We have already noted that,@ is the
Ii transition matrix (tf, ti) associated with Eq. (2.1-7). Because F is time-

1H invariant, it follows that

O(f'tj) = 0(tf-t1.o) (2.2-11)

An analytice.t expression for 0(t, 0) as a function of t can be obtained by

applying Laplace transforms to the homogeneous equation

i(t) = Fx(t)

associated with Eq. (2.1-7). The result is

0(t,0) = L- 1 (Is-F)"  (2.2-12)

where

1 T (s t) 1 T(I s F~

11 T (Is-F)- I cT (Is--F

(IS- F) " S (2.2-13)

0 0 (I - Ft[0]

0 o [0] ( F

and L 1 [ ] denotes the inverse Laplace transform. The vectors - and

Uare determined by evaluating the first row of Eqs. (2.2-12) and (2.2-13) and

by substituting respectively the quantities (tf - ti ) and (tf - ti+i) for t into

Eq. (2.2-12). Carrying out the inversion operation indicated in Eq. (2.2-12)

is straightforward and leads to fairly simple expressions for the elements

of 521 and pi+l when the dimensions of Ft and Fm are not too large.

L2
2-17
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The elements of and - vary with the index I, requiring

knowledge of time-to-go which is given by

= range-to-go

go VC

assuming that the closing velocity, vc, is constant. In practice, vc is not

exactly constant so that t must be continually estimated from measure-go
ments of range and range rate. Consequently, in the form presented here,

the optimal stochastic guidance law is applicable only for those missiles

having a radar homing sensor, or some other method of measuring range.

If various simplifications are made -- such as modeling the noise as being

independent of range, using constant filter gains, neglecting autopilot dy-

namics, etc., the requirement for range measurements can be eliminated;

however it is expected that system performance will be somewhat degraded. 1
The Kalman filter gains Ki in Eq. (2.2-5) are calculated from a

time-varying nonlinear difference equation. Generally it Is most practical L
to compute these pins on-line because Hi depends upon both the closing

velocity (see Eq. (2.1-12)) and time-to-go, which are not known before the L
mission.

L
i
L
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2.3 SUBOPTIMAL NONLINEAR STOCHASTIC GUIDANCE LAW

The optimal stochastic guidance problem associated with Eq.

£(2.1-19) is summarized as follows:

j Given the linear discrete-time dynamic relations

-i+1 -+ ui + f (2.3-1)

with linear measurements

i = Hix 1i + v i  (2.3-2)

determine the optimal sequence of controls (u?)
(1 = 0. ,..., N-i) which minimizes the per-
formance index

Li N-
J= Exi 2d +r u, (2.3-3)

where r is a weighting constant selected by the designer. Definitions of the

quantities 0, X, Hi, w, and v i are available in Eqs. (2.1-12), (2.1-14)

and (2.1-15).

The solution to the above problem can be taken directly from

Section A. 2; however, first it is convenient to modify Eq. (2.3-1) using

L the transformation technique described in Section A. 4. Specifically, we

define

4 N-i

I. Tx (2.3-4)

L
2-19
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where Y is the terminal state produced by an initial state x with no control

or random forcing function applied, Ylj is the first element of the vector

and 5eis the first row of the matrix -ON-i. Substitution from Eq. (2.3-1)

for xi+1 and xi produces

Y6= +-ut + W (2.3-5)

where 6 and wi are specified by Eqs. (A.4-6) and (A.4-7). Now the first

element of the vector xi is the terminal miss distance produced by the state

at time ti. Hence, using Eq. (2. 3-4) we have

Y N = x1(tN) (2.3-7) K

Therefore by substitution from Eqs. (2.3-4) through (2.3-7) into Eqs. (2.3-1) 1
through (2.3-3), the linear optimal stochastic guidance problem can be re- L
stated as follows:

Given the linear discrete-time dynamic relations i
xl1 = xi+vui+wi L.

x + 61 1 + W

Yli+I =Yl ui + Wi 1.

= T (2.3-8)

with linear measurements L.

= Hix i +vi (2.3-9)

determine the optimal sequence of controls fu 0

(i=0,1,...,N-i) which minimizes the perfor nce
index

2-20



THE ANALYTIC SCIENCES CORPORATION

J2= E{Y2+r N12 (2.3-10)

iAlthough the above problem statement is apparently more com-

plex than Eqs. (2. 3-1) through (2. 3-3), it permits the solution for the

Ioptimal controls to be more readily obtained. The latter follows directly

from Section A. 2. First a conventional Kalman filter is implemented to

obtain an estimate yl i of Yli. This is done by first estimating xI using

Eq. (2.2-5) and then applying the transformation

= (2.3-11)Ii 1 iE
LI This part of the solution is almost identical to that for the nonlinear

problem discussed in the preceding section; the only exception is that u

is now computed differently, as Indicated below.

Li We can derive tu ] with the aid of the scalar equation for

Yi (Eq. (2.3-8)) and the performance index in Eq. (2. 3-10). Comparing

these relations with Eqs. (A. 2-1), (A. 2-2), and (A. 2-3) and making the

identifications

VN=I

Vi=0 i0 N

Wi=r

xi (in Eq. (A.2-2)) = 1ai
for all I

=' i  1i (2.3-12)

2-21
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we obtain the optimal control law I

0
u i (2.3-13) I.

where the scalar feedback gain c is computed from the backward recur-

sion relations

C. = si+ i+ 1 + r)_

I .

si si+1 - c i +1 2 +

s =1 (2.3-14)

The control law in Eq. (2.3-13) is similar to "predictive proportional guid-

ance" (Ref. 5) in the sense that ui depends upon the predicted terminal miss
distance, ji. The solution given here is somewhat more general because

missile autopilot dynamics and target dynamics are included in the problem
formulation. U

To provide an analogy with the results obtained in the preceding

section, we combine Eqs. (2.3-11) and (2.3-13) to obtain

-o T

(2.3-15) L-i - ci -i ( - -

The gains c i are distinguished from the gains di in Eq. (2.2-10) by the [
comparison between the scalar quantities (1/61i) and ei" The latter is the

more difficult quantity to evaluate because no closed form solution is avail-
able for Eq. (2.3-14), whereas 61i is obtained analytical1y. Because the

2-22
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boundary condition on s is specified at the terminal time tN, Eq. (2.3-14)

is solved backward in time, and the feedback gain must be stored in the

fguidance computer. * This computational distinction is probably not im-

portant in applications where the dynamicoJ of the guidance problem are

fl known a priori, because the gains for each guidance law can be calculated

off-line and approximated in storage as polynomial functions of time-to-go.

H However, if some important dynamic parameters -- such as those associated

with the missile airframe -- are unknzwn and must be identified on-line,

then the system gains must be calculated on-line. In the latter situation,

the computational advantage of the optimal nonlinear law is more significant.

Thus far, the guidance law derived above can be represented as

a linear filter cascaded with a linear control policy. In mechan.,zing the

guidance equations, the control is first computed according to Eq. (2.3-4).

H If u? I S: D, the linear control is applied; however, if IuI > D, the con-

trol level is "clipped" at the level Dsgn (u) by the saturation inherent in

the control actuator. Consequently, the actual applied control will in

general be nonlinear; it is also suboptimal with respect to the objective of

Iminimizing J2 . In order to distinguish the applied control surface deflec-

tion from that given in Eq. (2.2-10), we designate the entire sequence of

Ucontrols generated by the procedure described above as fUio)},

T- TA
i x i ; Ic.xi l : D

U i() -D Dsg(n i) > D (.-6

Perhaps an analytical solution can be obtained for the discrete-time
; feedback pain by making an analogy with the continuous-time case

trezted in Ref. 5. No attempt has been made here to resolve this
question.

2-23
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where the subscript "o" denotes that it is a suboptimal nonlinear guidance

law. The adjective "suboptimal" applies in two contexts -- because of the

nonlinearity in Eq.(2.3-16)(uio]does not generally achieve as low a value

of J2 as the unconstrained control; it also does not generally achieve as

low a value of J1 in Eq. (2.2-3) as the control law given in Eq. (2.2-10).

A block diagram of the above guidance law is given in Fig.2.3-1.

It is observed by comparison with Fig. 2.2-1 that the functional structure

of the suboptimal law is exactly the same as the optimal non!inear law

derived in the previous section. The difference in specific detail between

the two is, as we have already noted, the manner in which the gains operat-

ing upon xi are computed. An evaluation of the interce-t accuracy obtained

using the controls defined in Eqs. (2.2-10) and (2.3-16) is given in the next

chapter.

1.
SUBOPTIMAL NONLINEAR STOCHASTIC I.3ISb

GUIDANCE LAW

_IL"

LISITER N MISSIL E
. ACCLE O POSITION,

1 DI AI ALITY.
I21 .1 DYNAMCS KINEMATICSAIRFRAMEMMSSSIE

I STATE MEASUREMENTS1 AUTOPILOT

LESTIMATESSEOR KA MA
FILTER m NOISE .

" ', ! HOMING

MEAURMF TSSENSOR TARGET
POSITION,

MEASUREMENT VELOCITY

NOISE

Figure 2.3-1 Suboptimal Nonlinear Stochastic Guidance Law
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3. EVALUATION OF GUIDANCE LAWS

In this chapter the results of digital computer simulations of the

optimal and suboptimal nonlinear guidance laws derived in Chapter 2 are

presented. In addition, a method of limiting missile airframe lateral

acceleration is proposed and evaluated. Statistical averages (root-

mean-square values) of important quantities -- terminal miss distance,

peak acceleration, etc. -- are computed from the results of twenty-five

Monte Carlo runs performed for each of several different launch times and

[1 different values of the guidance problem parameters (measurement noise

level, target acceleration level, etc.). These averages are determined

[empirically, rather than analytically, because the equations describing

their evolution along the missile's trajectory are too complex* to solve for

Uthe number of different cases which we wish to examine.

3.1 CHOICE OF MATHEMATICAL MODELS

Missile Dynamics - For this investigation the missile airframe

Udynamics are those of a vehicle that utilizes aerodynamic lift for its man-

euvering force and has tail-mounted control surfaces and fixed wings. The

Umissile is assumed to be in coasting (nonthrusting) flight with its equations
of motion in the form of Eq. (2.1-2). For this type of missile, the air-

U frame dynamic parameters are specified by

This is a consequence of the fact that the guidance laws are nonlinear.

3-1
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M M a"M
Fm =[q -Lj -mVL:L8]

1] d=VL (3.1-1)

-m

and the airframe state variables are

xm(t) L (3.1-2)

The input u(t) is the control surface deflection angle. The symbols used
in the above expressions are defined as follows:

MaMq M6, LWL 6 = Stability derivatives

V = Airspeed

q(t) = Pitch rate

a(t) = Normal acceleration produced [.
by body-wing lift

We assume that all of the above parameters are constant and kaown and
that q(t) and a(t)' can be measured from rate gyro and accelerometer*

outputs. This second order model describes the dominant planar rotational

motion of the airframe.

If an accelerometer is oriented along tha lift vector and mounted at the
missile center of gravity, its output, a(t), is related to a(t)' by the
relation (neglecting measurement noise):

a(t)' = a(t) - VL 6 ut)6-
3-2
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Target Dynamics- The target motion has the random structure

specified by Eq. (2.1-4). In this simulation the target acceleration aty is

assumed to be a first-order Markov process specified by the scalar quan-

tities

1 F t=f Ct =1

Qt = 2fa2  (3.1-3)

That is, aty satisfies the differential equation

Saty = ft a + wt(t)
y y

- E wt(t)wt(r)j = 2ft 6(t-T)

ILI The covariance qt of the white noise process which drives the target dy-

namics is expressed in terms of a, the steady state root-mean-square

(rms) target acceleration; i.e.,

lim E a (t)2  = 2

Measurement Noise - The measurements available for imple-

U menting the guidance laws are described by Eqs. (2.1-11) and (2.1-12).

In this investigation it is assumed that the missile autopilot sensors directly

LiL observe both state variables, i.e.,

H = (. 1-4)

at uniform Intervals of length At. The most important element of the

measurement noise covariance matrix is rll, the mean square value of

the homing sensor noise. In a practical application, homing sensor noise

3-3
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is contributed by the sensor receiver unit, the target itself (scintillation

noise), the target environment, and the servo control loop used to direct

the sensor. Some noise components decrease as range decreases (e. g.,

radar receiver noise); others increase as range decreases (e. g., target

scintillation noise); others are range independent (e. g., sensor servo

noise). For the purpose of providing a comparative evaluation of the

guidance laws derived in Chapter 2, we choose r1 1 to be constant along a

given trajectory with a value that is inversely proportional to the square

of the launch range, r . This simulates, in part, the effect of target 1
scintillation noise, which is the most troublesome error source. The

validity of this noise model improves as the launch range decreases. The

expression from which r1 1 is calculated is

Ir 11 [r AW)] (3.1-5)

The quantity, a ./r.(At), represents the standard deviation of the scintil-

lation measurement error in line-of-sight rate at the instant of launch.

This error is caused by the fact that radar reflections are returned from

different points on the target from sample to sample because of the tar-

get's rotation relative to the missile and/or because of changes in radar

transmitter frequency. The rms values of the separation between reflect-

ing points is denoted by a . The factor of two is inserted into Eq. (3.1-5)

simply to allow for the fact that scintillation noise strength increases as

the range to the target decreases. Thus r11 represents an "average" scin- L
tillation noise along the missile trajectory. This model provides a real-

istic sensor noise level, neglecting time-variation in the noise statistics.

Some qualification is needed for the assumption that the homing

sensor noise samples in Eq. (2.1-11) are independent. This is not
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realistic if the homing sensor is a radar that operates at constant frequency

because then the scintillation effect is due solely to changes in the relative

I rotational orientation of the missile and target, which usually occur more

slowly than the pulse repetition rate, However, it is often found desirable

to use "frequency diversity" -- i.e., to change the transmitter frequency

from pulse to pulse -- to frustrate jamming countermeasures taken by the

ftarget. In this case, successive scintillation noise samples tend to be inde-

pendent. The latter situation has the more adverse effect upon guidance

Haccuracy. If the error in line-of-sight angle has significant correlation

over some number of adjacent pulses, the resulting error in measuring

LOS rate is less than if the measurement errors are uncorrelated.

Therefore, the model used here represents the worst type of scintillation

Jnoise.

BOther sources of measurement noise are the autopilot sensors

whose mean square levels are denoted by r 22 (gyro noise) and r33 (accel-

[erometer noise). These two parameters are also assumed to be constant.

All three measurement errors are assumed to be uncorrelated with each
other so that the off-diagonal terms in Ri are zero. Therefore Ri is a

constant matrix, R, of the formLI

L rll 0 0

L i = R 0 r 22  0 i=0,1,..,N-1 (3.1-6)

0 0 r33

L
L
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3.2 SIMULATION RESULTS

In this section, both the optimal and suboptimal nonlinear control

sequences derived in Chapter 2, (uO] and fujo ] respectively, are eval-

uated from computer simulation results. The values of the parameters

defined In Section 3.1 are given below:

Missile Airframe Parameters I
M = - 0. 455 L = 10.15

M = - 8.4 L 6 = 1.86

M = -71.2 V = 2920 ft/sec

Target Parameters

f =-0.3 sec 1  L
2 = 9.0 x 103(ft/sec2) 2

Measurement Parameters

At = 0.05 sec v,, 2000 ft/sec

CTs = 4.75 ft r 22  5.0 x 10- 6 (rad/sec)2

r33 = 10.0(ft/sec2)
2

3-6
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Initial Stae Statistics

0

0 0 0 0 0

0 0 0 0 0

PO = 0 0 90x 10 3 (ft/sec2)2"  0 0

00 1.0 x10 4 (rad/sec)2  0

S0 0 0 1.0 X 103(ft/sec2) 2

11 [The missile airframe parameter values given above are taken

from Ref. 6, Appendix H. The target dynamics are chosen to yield a tar-

get acceleration correlation time constant of about three seconds. The

ptwo upper-left diagonal elements of the initial state covariance matrix, P0 '
are taken to be zero, simulating the absence of an initial heading error.

This is done so that the effects of target acceleration alone on terminal
miss distance can be analyzed. Of course, appreciable heading errors

can exist at launch -- especially at close ranges -- and their presence

should be included in a complete quantitative evaluation of these guidance

laws.

Another parameter to bo selected is the weighting constant r that

1 is associated with J2 in Eq. (2.3-3) and which is needed to compute the

suboptimal control sequence fuio}, specified in Eq. (2. 3-16). The value

Uchosen for r should be such that the comparison between ( u? I and (Ui

is a fair one. For example, if r is large, the suboptimal law heavily penal-

iiizes the control level. This tends to yield small feedback gains, Ci, in

Eq. (2. 3-16) and correspondingly small values of Ui I, at the expense of a

relatively large terminal miss distance. Thus, if terminal miss distance

3-7
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is used as the basis of comparison, the optimal guidance law will be

definitely superior; if the guidance laws are evaluated on the basis of con-

trol leirel, then the suboptimal law will appear to be superior. To avoid

this ambiguity, we regard the level of terminal miss distance as the pri-

mary indicator of system performance; after all, miss distance is the sole

quantity appearing in the performance index for the optimal nonlinear guid-

ance law (Eq. (2.2-3)). We shall also be interested in the control levels

required by both guidance laws, but this consideration will be of secondary

importance. With these priorities in mind, r is chosen small enough so that

any further reduction in its value produces no significant further reductionL

in the expected terminal miss distance; the value selected was ten.

The simulation consisted of substituting fu0] and LUi ) from

Eqs. (2.2-10) and (2.3-16) for u I in Eq. (2. 2-1), beginning at a variety

of launch ranges. Twenty-five Monte Carlo computer runs were made from

each launch point; the random sequences [w1i and (vii in Eqs. (2.2-1)and [.
(2.2-2) were generated by a Gaussian rando-, number generator. Because

we are interested in the relative performance of [u?] and uiO],

identical sets of random numbers are used in the simulation of each guid-

ance law.

Figure 3.2-1 shows the performance of both guidance laws with

the maximum control surface deflection, D in Eq. (2.2-4), set equal to

0.2 radian. In Fig. 3.2-1(a) the rms values of the terminal miss distance

obtained using the optimal and suboptimal guidance laws are plotted for

launch times ranging from one to six seconds before intercept. Note that L
the optimal law gives an accuracy only slightly superior to that of the sub-

optimal law.
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I'

01-364
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I S , I

0 2000 4000 6000 8000 11000 12,000RANGE-TO-GO AT LAUNCH(ft) L.

(c) Average control effort

Figure 3.2-1(cont.) Guidance Law Performance Averaged Over
Twenty-Five Monte Carlo Runs: D = 0.2 rad

I,-

L.
Xt has been stated that terminal miss distance is of primary ima-

portance in evaluating the guidance laws. However, because the difference

between the miss distance achieved with each law is so small, other charac- L
teristics can be used as a basis of comparison. Figure 3.2-1(b) shows the

rms peak airframe lateral acceleration in g's (1g = 32.2 ft/sec) encountered

along each set of twenty-five trajectories. This peak acceleration usually

occurs at, or just before, the terminal time, when the line-of-sight rate

becomes large because of proimity to the target. Again there is little dif-

ference between the behavior of the two guidance laws. However, it is
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ii m i

B important to note that large lateral accelerations -- in excess of 30 g's --

are developed; recall that there is nothing in the guidance problem formu-

U lation presented In Chapter 2 which directly limits acceleration. If homing

sensor measurement noise or target acceleration are significantly larger

P .than the values used for this simulation (both possibilities are realistic),

lateral accelerations can be developed along the trajectory that are beyond

the aerodynamic or structural capability of the missile airframe.* Conse-

quently it will be desirable to incorporate some method of bounding accel-
eration within the control law; this is the subject of subsequent sections.

Another useful basis for comparing the two guidance laws is the

UJ amount of control used. Recall that the suboptimal law was derived by

finding the sequence of controls which minimizes J2 in Eq. (2.3-3). This

performance index differs from that for the nonlinear law (Eq. (2.2-3)) in

that it contains a term

H i=0
which is a measure of the energy expended by some types of missile actuators

Lin driving the control surface. To reflect this fact more clearly we define the

control effort e by
U N-1

e =iAt u (3.2-1)

The average value of e, denoted by e, evaluated over each set of twenty-five
I Monte Carlo runs, is shown in Fig. 3.2-1(c). Evidently the suboptimal law is

*The missile airframe aerodynamic capability can be exceeded if a lateral
acceleration requires an angle of attack that violates the linearity assump-
tions made in writing the airframe equations of motion (see Eq. (2.1-2));
the airframe structural capability is exceeded if the lateral acceleration
developed by the missile causes structural failure -- e. g., if the wings
are torn off.
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much more efficient than the optimal law in terms of the required level of

e. This might be somewhat surprising because the suboptimal law was

specified using a value of control weighting that can be considered equal to

zero for all practical purposes;that is, the form of J2 (with small r) is ap-

proximatelythe same asJ1 inEq. (2.2-3). Consequently one might expect that

the suboptimal law would be nearly identicaltothe I law;this turns out

to be a false conjecture. The reason is thatthe contr, quence (uio in Eq.

(2. 3-16) is really a suboptimal mechanization of the ear law in Eq. (2.3-15).

The latter implicitly assumes that nny value of ui  e realized at any time

since no explicit constraint is imposed upon the control level. Fvr. the

purpose of minimizing J2 ' even as r approaches zero, it is most efficient

to utilize large levels of control only near the end of the trjectory. By

comparison, each time the optimal law computes a new value of u, it tries

to completely null the predicted terminal miss distance y1 i in Eq. (2.2-7).

This tends to require larger control levels than the suboptimal law, especially

during the initial portion of the trajectory. The differences between the

two guidance laws are illustrated in Figs. 3.2-2 and 3.2-3 where represen-

tative gain histories and the rrns control level, lI uiIrms, are shown for

trajectories initiated at six seconds before intercept.

In Fig. 3.2-2, the third elements, di3 and ci 3 , of di and c.; respec-

tively in Eqs. (2. 2-10)and (2.3-16) are plotted; the relative behavior of these L.

two quantitives is characteristics of all the feedback gains. Observe that the

optimal gain, di 3 , is much larger than suboptimal gain ci 3 near the beginning L
of the trajectory. If the weighting constant r were reduced below the value

ten, the effect on c13 would be a noticeable increase for small values of time-

to-go but essentially no change during the earlier portion of the trajectory.

In the presence of control surface limiting, the latter behavior has no appre-

ciable effect on the terminal guidance accuracy provided by the suboptimal law.

Figure 3.2-3 compares the .:ms control levels (averaged over

twently-f',,e Monte Carlo runs) for both control laws. These curves reflect
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Figure 3.2-2 Representative Feedbac.:. Gain Histories for Optimal
and Suboptimal Guidance Laws: Trajectories
Beginning Six Seconds Before Intercept

] L the fact that the feedback gains for the optimal law are substantially larger,

especially during the first part of the trajectory. It is also generally true

L that the control command frequently changes sign so that the airframe input

is subjected to an input having a "bang-bang" character. This may be un-

desirable for applications where the missile airframe has serious bending

modes that can be excited by the control switching action.

Li The fact that the control levels are generally larger during the

first part of the missile trajectory for the optimal guidance law than they

are for the suboptimal law provides a corresponding difference in the level

airframe lateral acceleration. This is indicated in Fig. 3.2-4, where rms

--~ aczeleration histories beginning at six seconds before intercept are plotted

for both guidance laws. (This figure cannot be deduced from Fih. 3.2-1(b),

which shows only rms peak acceleration). Again, there is direL ddence

of the fact that the optimal law works harder, earlier, to null the terminal
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Figure 3.2-4 RMS Acceleration Level: Trajectories
Beginning Six Seconds Before Intercept
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miss distance. Notice also that, as mentioned previously, the peak accel-

eration levels for both laws occur at the end of the trajectory. One con-

sequence of these observations is that the missile velocity losses caused

by induced drag will be greater for the optimal law. This may be an im-

portant consideration, especially in long range missions or for missiles

I having a low lift/drag ratio.

Another interesting point to be made here is the comparison

I between the linear steering law given by Eq. (2.3-15) and the suboptimal

nonlinear law in Eq. (2.3-16). Suppose there actually were no constraint

a. on control surface deflection; then how well would the linear law perform?

This question can be most readily answered by evaluating J2 in Eq.

ii (2.3-3), using the expression in Eq. (A. 2-5). The latter becomes
N-i

0T= + (TN-1T d + ciT Pi) (3.2-2)H 2 0- P0TO += 'Si' +l Q~+ +1

fwhere the matrix Qd is obtained by substiuting from Eqs. (3. 1-3) and (2. 1-8)

into Eq. (2.1-15), the matrices Pi are obtained from the Kalman filter equa-

tions (Eq. (2.2-5)), 61i is given by Eq. (A. 4-6), and ci and s i are determined

by Eq. (2.3-14), The value of Jo is to be compared with the empirically

Ldetermined average value of J2, denoted by J20 obtained by using the non-

linear control sequence fuio ] given in Eq. (2.3-16);

L2 - = (f 2 N-i 2= (3.2-3)
0 i=O o1

where the overbars denote averages over twenty-five Monte Carlo runs.

Ij The values of Jo. and J2o are shown in Fig. 3.2-5 for the different launch

times used in the simulations for Fig. 3.2-1. Evidently the performance

predicted by the linear theory (12) is much better than that obtained when

the control surface deflection constraint is imposed. This emphasizes the

fact that in order to obtain a realistic indication of actual guidance accuracy.

simulations must be performed with control level constraints included;

analyses based exclusively upon linear theory tend to be quite inaccurate.
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Figure 3.2-5 Values of the Quadratic Performance Index
With and Without Control Surface Limiting

A number of other simulations were performed with different
values assigned to various parameters -- such as homing sensor noise

level, rms target acceleration, maximum control surface deflection, etc.

The qualitative behavior of the data obtained is similar to that shown in
Figs. 3.2-1 through 3.2-5. The conclusions reached thus far are sum-

Marized below for convenient reference:
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* The terminal accuracy achieved by the optimal
nonlinear guidance law is not substantially better
(usually less than ten percent better) than that

I i pprovded by the suboptimal technique.

The suboptimal law uses much less control effort
about one-tenth as much as the optimal law; the

. latter is bang-bang in nature, a fact that may be im-
portant when significant bending modes are present.

* .The levels of rms peak airframe lateral accelera-
tion generated by each method are approximately
the same; however situations can occur where
potentially unacceptable levels (thirty to nmetfl gT

occur.

1 As pointed out in Chapter 2, the gains (d) asso-
ciated with the optimal law are more easily derived

r'l than those (ci) for the suboptimal law.

The above conclusions do not establish a definite preference for

Ueither guidance policy. A decision cannot be made between the two guid-

ance laws on the basis of terminal accuracy because the optimal law is

only slightly better in this respect. The optimal law is more easily mech-

anized but, against this advantage one must weigh the advantage that the

suboptimal law requires lower control levels. However, one important

* question must be resolved before a definitive judgement can be made about

.either guidance technique. Namely, the simulations must account for the
fact that the maneuvering acceleration available is limited by physical

constraints in any practical application. For the case considered here --

Si.e., a missile using aerodynamic lift to develop maneuvering force --

- some method of preventing each guidance law from developing excessive

airframe lateral acceleration must be provided. Consequently, the re-

mainder of this chapter is concerned with methods for limiting accelera-

* tion. This investigation will lead to more distinctive comparisons between

guidance laws.
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3.3 A PREDICTIVE ACCELERATION LIMITER I:

The most straightforward approach for limiting airframe lateral

acceleration is to include a constraint of the form I
E{Ia m(t) I}'s Da

in the design criteria for the guidance problem, where Da is the maximum i

permissible acceleration. This type of "state variable constraint" can

easily be included within the framework of the problem formulated in

Section A. 3. However, the simplifications described in Section A. 4 which

allow the optimal controls to be derived analytically cannot be applied. I
Consequently the control law must be computed numerically, a task that is

currently impractical to accomplish. Therefore we must settle for some

other technique to constrain acceleration.

Another approach that could be taken Is to artificially limit the

control surface deflection, ui, at some value which physically tends to

prevent large accelerations from being generated. For example, guidance

law performance data are given in Fig. 3.3-1 with the same simulation

parameter values used in Section 3.2, except that the value of D is reduced

from 0.2 to 0.1 radian. Comparing these results with Figs. 3.2-1(a) and iL.o
(b), we find a general increase in the level of rms terminal miss distance

and P corresponding decrease in the rms peak acceleration. However, this V
method of effecting a reduction in acceleration tends to be cxcessively con-

servative. Intuitively it seems desirable to restrict JuiI only when the air-

frame acezlert'tion approaches the danger level; when it is well within the

safe operating limits, the maximum available control surface deflection

should be allowed. This reasoning leads us to seek a more efficient method

for limiting acceleration; one such technique is presented in this section.
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Suppose a value of control surface deflection, u, is computed at

time ti by either one of the procedures given in Eqs. (2.2-10) and (2.3-16).

We wish to determine whether to apply ui to the airframe or to take some

other action that will limit the buildup in lateral acceleration. At time ti

an estimate, i'. of the state of the guidance system is also available from

the Kalman filter, based on previous measurements and applied controls.

In order to arrive at an appropriate decision about implementing ui, the i
predicted acceleration level at some specified future time, ti + rp, caused

by i and the control ui is computed and compared against the desired

bound, Da . If the predicted acceleration is too large, ui should be altered

to prevent the bound from being exceeded. A procedure for carrying out

this policy is described below.

For a prediction interval of variable length r, the predicted state,

_(ti+r), satisfies a differential equation similar to Eq. (2.1-7);

d [ t, +r)] T) + .U(ti +r)

u(ti +T) =  (3.3-1) -
10 At :9T

where u(t) is assumed to be zero after the application of ui . Therefore
i(tj+r) is given by

t+ F(ti+'r X)
x(ti+,r) = eFr  e+ eu(X) C

tii

where e is the matrix exponential series for Fr; it is also the transition

matrix 0(r,0) given analytically by Eqs. (2.2-12) and (2.2-13). Assuming

that r > At and recognizing that u(t.+ r) = 0 when r > At we have
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fl 0

F At
e eFr [j(tj) + Se-'X gu idX]

L1 0

:e -FAt F(At- X) guidj (332)

jj Comparing the last equality in Eq. (3.3-2) with Eq. (2.1-14) and setting

= Tp, a sperified interval, we see that

A(t +-) = F (t ('rp -At)

t -rp 0~~) (tp)+ 0(r - At, )Y (3.3-3)

_ Now because missile acceleration due to lift is the nth state variable in
Eq. (2.1-6), let _n be a column vector formed from the bottom row of

I L4(r , 0) and let 77 be the last element of the vector 0(,p - At, 0) y. Then

if r > At, it follows that the predicted airframe lateral acceleration,
p

am(ti +Tp), is given by

mam +rp = 1 0 1ui (3.3-4)
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Once the prediction interval p is selected, i and q can be computed from

knowledge of both the transition matrix and the vector y and programmed

into the guidance controller as constant gains, or possibly as time-varying

gains if the parameters defining the transition matrix wary in a known manner.*

Having the predicted acceleration, we can determine whether

its magnitude exceeds the specified bound, Da . If it does, the value

of ui should be modified to reduce I a(ti + rp) j, taking care to ensure that
1P

uiI does not exceed the control surface deflection limit D. This se-

quence of logical tests is accomplished with the aid of Eq. (3.3-4) as

follows:

0I

u. Optirtial Law
Ui o 1 Suboptimal Law

a  am(. +p) 0

D. a D M I (ti +Tpr < 0

or equivalently Da - I&(ti+Tp)<

u {am(ti,+Trp) - Da sgn Pm(ti +Tp)]}no L

U.! ; D- IuI 1 0
u.? = ,,
1 Dsga(uj); D - Iu ' < 0 (3.3-5) L.

I.

*[

Again we note that if the missile airframe dynamics are identified
on line, then the analytical expressions for tl and i? must be
stored and evaluated on-line as parameters are idtified.
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IiThe quantity u.' is generated to reduce the level of predicted acceleration1

if the latter is too large. The resulting level of u.' required to correct the

Il acceleration could exceed the control surface deflection limits; this possi-

bility is prevented by calculating u1' which is the new control surface de-

flection command. The operations are illustrated in Fig. 3.3-2.

i.~~~~ u"="-;' i 1AIRFRAME t

~NOISE

" HOMING TARGET MOTION

TO t OS

GUIDANCE 

NI

LAW COMPUTER

Figure 3.3-2 Mechanization of the Predictive
Acceleration Limiter

It is emphasized that the method described above for limiting air-r . frame lateral acceleration is not necessarily an optimal procedure, although

it is a physically reasonable one. The choice of the prediction interval r

is somewhat subjective. If it is too small, the airframe acceleration may

overshoot the bound; if it is too large, limiting action may occur before it

is actually necessary. In these simulations, rp 0.2 sec was found to

be satisfactory.
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To implement the acceleration limiter represented by Eq. (3.3-5), 1
the quantities -- Da,_ and no -- are needed. The airframe structural

limits dictate the value of Da; 77 and °0 are specified by the transition

matrix, exp (Fr ), according to Eqs. (3.3-3) and (3.3-4). The computa-
p

tion required for the limiter is a minor part of the total needed to generate

the control commands.

!
3.4 SIMULATION RESULTS WITH ACCELERATION LIMITING

In this section, results are presented from a number of different

Monte Carlo simulations of the guidance laws derived in Chapter 2, when

the predictive acceleration limiter defined in the preceeding section is used.

Because the limiting procedure is not necessarily optimal, the control se-

quences actually applied as a result of either guidance laws are probably

suboptimal. They are derived by operating on (u?] and UiO ] respectively,

from Eqs. (2. 2-10) and (2. 3-16), with the logical tests given in Eq. (3. 3-5).

The resulting sequences are designated as (u o and [uioo ]. This notation

is suggestive of the fact that the former is suboptimal only in its treatment

of acceleration limiting; the latter is suboptimal with respect to both con- j
trol level and acceleration level limiting. For the reader's convenience,

the four guidance laws we have derived are summarized below:

fu?): Optimal Nonlinear Guidance Law; minimizes
terminal miss distance subject to bounded

control level. No explicit acceleration con-
straint imposed. 1
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(ulo ); Suboptimal Nonlinear Guidance Law; derived
using "linear quadratic gaussian theory" and
imposing the control bound after the fact. No
explicit acceleration constraint imposed.

(U9o3; Suboptimal Law; derived by operating on [u0)

with an acceleration limiter.

*Uioo); Suboptimal Law; derived by operating on fuio I
with an acceleration limiter.

Each guidance law was evaluated for the five cases given in

Table 3.4-1. Under each case, twenty-five Monte Carlo simulations were

performed for each of nine cases having launch times of one through six

seconds before intercept, the same launch times used in the simulations

described in preceding sections. A number of parameters were held fixed

for all cases; these are:

Control Weighting: r = 10 ft 2 /rad2

RMS Measurement Noise: r 2 2 = 5.0 x 106(rad/sec)2

r3 3 = 10 (ft/sec2)2

0. ; i j

Initial State Covariance Matrix: P1 1 = 0

P22 0

P4 4  1.0 x 104(rad/sec)

P55 = 1.0 x 103 (ft/sec2)2

SPij = 0 ;  i /

Control Surface Deflection Limit: D = 0.2 radian

Lateral Acceleration Limit: Da = 20 g's

Mean Value of Initial State: 0.
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TABLE 3.4-1

TRAJECTORY SIMULATION PARAMETER VALUES

Case Number

Simulation 1 2 3 4 5
Parameter Lower Missile Smaller Target Larger Homing Higher rms

Standard Airspeed Time Constant Sensor Noise Target
______________Acceleration

Mq - 0.455 - 0.31 - 0.455 - 0.455 - 0.455

Ma - 8.4 - 7.05 - 8.4 - 8.4 - 8.4

M -71.2 -47.0 -71.2 -71.2 -71.2

L 10.15 7.27 10.15 10,15 10.15

L 1.86 2.15 1.86 1.86 1.86

V 2920 1920 2920 2920 2920

It - 0.3 -0.3 - 0.1 -0.3 - 0.3

a 4.75 4.75 4.75 15.0 4.75

3 334P3 3  9.0 x10 9.0 x10 9.0 x 10 9.0 x 103  3.6 x 10

vc  2000 1000 2000 2000 2000

o2 9.0 x 10 3  9.0 X10 3  9.0 x 103  9.0 x 10 3  3.6 x 10 4

At 0.05 0.05 0.05 0.05 0.05
- -•

Case number 1 in Table 3.4-1 is referred to as the standard;

its parameter values are the same as those used in the simulation de-

scribed in Section 3.2 except that acceleration limiting has been added.

The other four cases are described rclatlve to the standard -- e.g., lower

missile airspeed, smaller target time constant, etc.

The performance data for case 1 are displayed in Fig. 3.4-1,

which is to be compared with Fig. 3.2-1. In general the miss distances

for both guidance laws are now larger because the missile's maneuvering
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capability has been restricted. However a more significant observation

is that the rms terminal miss distance (see Fig. 3.4-1(a)) achieved with

fu?) is significantly lower -- as much as thirty percent lower -- than

that obtained with Uiood. Thus when acceleration limiting is introduced

into the guidance laws derived in Chapter 2, the performance advantage of

the putimai law imprcves. Ti J its - i ,it is even greater when the

levels of measurement noise and/or target acceleration are increased, as

will be seen from the results of the other cases in Table 3.4-1. To under-

stand why this improvement in relative performance of the optimal non-

linear law occurs, recall that when the acceleration limiter is absent each

new value of u0 attempts to null the predicted terminal miss calculated att
the ith stage. On the other hand, the suboptimal nonlinear controls fUio0

0
~tend to reduce the terminal miss distance more gradually. These dif-

ferent control actions cause the lateral acceleration history for fu?] to

have a larger magnitude than that for fuio until near the end of the tra-

jectory (see Fig. 3.2-4). 'For both guidance laws, the acceleration levels

become largest near the end of the trajectory, because large accelerations

are needed to null miss distance when there is little time remaining until

intercept. Now, when acceleration limiting is introduced, the sequence

U9 ) has an advantage over [uioo). The former, because it is derived

from the optimal nonlinear law, makes an effort to null the terminal miss

early in the trajectory where less lateral acceleration is required than if

it waits until near the intercept point. Consequently, as the intercept point

is approached (u9 I has, on the average, already significantly reduced theis0

terminal miss. By comparison, fuioo3, because it is derived from the

suboptimal nonlinear law from Chapter 2, does relatively little controlling

early in flight; therefore as the intercept point is approached a relatively

large terminal miss remains to be nulled. Consequently, the acceleration

limiter, which applies limiting action primarily near the end of the
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trajectory, tends to degrade the performance of fuioo] less than that of

fu. . These observatiums suggest that the control sequence fuo) may be

close to optimal in the presence of acceleration limiting. However, this

conjecture can be verified only by actually determining the control law that

minimizes the magnitude of the terminal miss subject to constraints on

both control and acceleration levels, as suggested at the beginning of

Section 3.3.

There is a property of the acceleration limiter that can degrade

the performance of (U0o] relative to No]. If the homing sensor mea-

surement noise causes an inaccurate estimate of the terminal miss dis-

tance several seconds before intercept, then the corresponding applied
0control uio may correct the missile's trajectory .n the wrong direction.

If this happens, the other control law is preferred because it tends to apply

less "wrong control" early in the trajectory. Fortunately, this effect

apparently does not occur sufficiently often to contribute significantly to

the rms performance data in Fig. 3.4-1(a); however, it can show up in

individual trajectories.

Figure 3.4-1(b), compared with Fig. 3.2-1(b), lidicates that

the limiter is successful in reducing the rms peak acceleration below the

bound of twenty g's. As expected, the limiting action causes the absolute

values of miss distance to increase (compare Figs. 3.4-1(a) and 3.2-1(a)).

However, note that the predictive limiter generally achieves lov°:er miss

distances than the technique of artificially reducing the boumds on control

surface deflection demonstrated in Fig. 3.3-1.

In order to provide an additional indication of the amount of con-

trol required for each guidance law, we define the control variation, v,
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Figure 3.4-1 Performance Evaluation of Suboptimal
Guidance Laws Including Acceleration

-* Limiting: Case 1
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Guidance Laws Including Acceleration
Limiting: Case 1
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I
IN-2

v = tUoI + E ui  "uij (3.4-4)
Si=O

1 In some missiles v is a more accurate measure of the actuator energy

expenditure than is the control effort e in Eq. (3.2-1), particularly when

an electrohydraulic actuator mechanism is employed which consumes

power only when the control surface deflection is changing. In addition, in

some hydraulic systems a change in control level is achieved by movement

of fluid which is discharged overboard. In the latter case, v represents

the amount of fluid consumed. The average value, 7v, of the control level

variation, evaluated over each set of twenty-five Monte Carlo runs, is

displayed in Fig. 3.4-1(d).

The data presented for both e and v in Figs. 3.4-1(c) and (d)

indicate that the control sequence (uP ) demands significantly more actu-

.. ator energy than does Uio, particularly for large aunch ranges. This

A ;observation is consistent with the behavior of e in Fig. 3.2-1. The high

level of v is a result of the fact that the control action is quasi bang-bang

in nature; that is, u0 tends to change sign frequently.

I The levels of e and v required for fuioo ] remain fairly constant

as the launch time increases; however, the curves for fuio increase with

launch time. This behavior can be expected from the gain histories c and

d associated with each law which are illustrated in Fig. 3.2-2. For long

trajectories fuioo ) may be preferred, at least until the missile is close

* enough to the target so that sufficient control surface actuation capability

-" remains to permit the use of (u? 3. Thus some type of dual-mode guid-

ance laws discussed in this report may be desirable. There are a variety

of methods one could use to accomplish this; the particular one selected

would be strongly dependent upon the type of mission -- i.e., long-range
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or short-range -- under consideration. This is a subject which merits

further investigation.

In presenting performance data for the other cases given in

Table 3.4-1, only the rms terminal miss distance and peak acceleration

are displayed. In all cases the behavior of V and 9 is qualitatively the

same as in Fig. 3.4-1.

Case 2 in Table 3.4-1 is characterized, relative to Case '1, by

a lower missile airspeed, V. This change also affects other parameters --

namely the airframe stability derivatives, which are dependent upon Mach

number, and the closing velocity. For the particular airframe data used

here, the decrease in V alters the airframe dynamics so that the control

surface effectiveness is reduced and the distance between the airframe-

wing center of pressure and the missile center of gravity is increased.

This reduces the airframe capability to generate lift (lateral acceleration)

and tends to cause an increase in the miss distance compared with Case 1.

On the other hand, if we assume that the closing velocity is reduced by the

same amount as the airspeed, then for a given launch range, the total

number of measurements taken over the entire trajectory increases. Con-

sequently, more averaging of measurement errors is performed by the

Kalman filter in the guidance controller, giving potentially better estimates

of the system state variables. Thus a decrease in closing velocity may tend

to reduce miss distance.

For the particular parameter values in Case 2, the adverse

effect on miss distance produced by the changes in airframe dynamics

dominates any improvement obtained with a smaller closing velocity, as

seen by comparing Figs. 3.4-1(a) and 3.4-2(a) at the same values of

launch range. The reduction in the airframe's ability to generate lateral

acceleration is evident from a comparison of Figs. 3.4-1(b) and

3.4-2(b).
3-32



!1
THE ANALYTIC SCIENCES COEPOIATION

I.I.
S60

2 40 
I^

-Ui

! (a) Miss distance

M "20

Uj

-ILA {IET.GA ANC)sc

C-,

0~

CD-0

I I I I

0 1000 2000 3000 4000 5000 6000
RANGE-TO-GO AT LAUNCH (it)

(b) Acceleration

Figure 3.4-2 Performance Evaluation of Suboptimal
-. "Guidance Laws Including Acceleration

Limiting: Case 2

-3.-

3-33



THE ANALYTIC SCIENCES CORPORATION

The effect of increasing the target time constant (1/ft) is illus-

trated by Case 3 in Table 3.4-1. This change implies that the target

acceleration changes more slowly than in Case 1. The effect on the guid-

ance system is that the Kalman filter can track the target acceleration

more accurately because it is more nearly constant. Consequently, with

all other parameter values being unchanged, the miss distance for Case 3

should be somewhat smaller than for Case 1. This expectation is veri-

fled by comparison of Figs. 3.4-1(a) and 3.4-3(a).

The effect of an increase in the homing sensor measurement

noise level is demonstrated by Case 4 where the target dimension param-

eter, a., is increased to 15 feet. Recall that a s represents the average

,2itance normal to the line-of-sight between reflecting points in the target.

The) effect of this change is to increase the value of r 1 by a factor of ten.

Evidently, comparing Figs. 3.4-1(a) and 3.4-4(a), much larger miss dis-

tances are incurred for both guidance laws; however, the difference be-

tween the performance of (u ) and fui o I increases. The former yields

art rms miss distance that is as much as fifty percent less than that pro-

vided by fuioo). It is also noted, comparing Figs. 3.4-1(b) and 3.4-4(b),

tlA°t larger acceleration levels are needed; these are attribited to the in-

careased rms error in estimating the guidance state variables. -

Finally, Case 5 represents the effect of an increase in rms tar-

get acceleration, a, from about 3 g's to about 6 g's. The corresponding

eli;ct on terminal miss distance and lateral acceleration is shown in Fig.

3.4-5. Relative to Case 1, the miss distance increases for both guidance

laws; however, there is a widening of difference between the performance

of fUjo and fuioo. The required lateral acceleration levels also increase

for both guidance laws.
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Figure 3.4-3 Performance Evaluation of Suboptimal
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Summary - This section (3.4) has presented an evaluation of the

guidance laws derived in Chapter 2, modified with the predictive accelera-

tion Umiter described in Section 3.3. In all simulations it is found that

the limiter successfully maintains the rms acceleration level below the

prescribed bound. In addition, the terminal miss distance achieved with

[u? I is as much as fifty percent less than that produced by fuioo]. This

comparison substantially reverses the conclusion in Section 3.2 that the

optimal nonlinear guidance law (without acceleration limiting) offers in-

significant improvement over the suboptimal law. The amount of control

energy, as measured by either the "effort" e or the "variation" i required,

is much greater for (u) than it is for No]; this difference becomes

more pronoUnced the further the missile is from the target at the beginning

of the homing guidance phase. Although we have stated that terminal miss

distance is the primary basis for comparing guidance laws, the control

energy requirements cannot be ignored. In some applications it may be

advisable to combine the advantages of each guidance law in one dual-mode

technique.

The mathematical model used here to evaluate guidance laws is
sufficiently realistic to indicate that the optimal guidance law derived in

Chapter 2 can offer substantial performance benefits over suboptinal laws de-

rived by minimizing a quadratic performance index, when acceleration

limiting is required. To obtain a better knowledge of performance capa-

bility, homing sensor noise models with time-varying statistics should be

investigated. In addition, sensitivity studies should be made to determine

the amount of performance degradation caused by inaccurate modeling of

the guidance dynamics and by the intentional use of more simplified (e. g.,

constant gain) control laws. These topics will be the subject of further

study.
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4. SUMMARY AND CONCLUSIONS

4.1 SUMMARY

K " This report is concerned with guidance laws for tactical missiles
which account for the presence of random target acceleration, homing sensor

measurement errors, a constraint on the maximum control level and a con-

straint on the maximum airframe lateral acceleration. Emphasis is placed

upon those techniques which can potentially be applied In practical tactical

missile weapons systems in the next ten to twenty years, especially those

which can take advantage of the rapid improvement in computer hardware
technology. The particular missile considered for this Investigation has an

aerodynamically controlled airframe with fixed wings and tail-mounted con-

trol surfaces. However, the conclusions obtained here apply to other types

:Ll of missiles as well.

In Chapter 2 the tactical missile guidance problem is formulated

Li in the context of optimal stochastic control theory and two different guid-

ance laws are derived, each being associated with somewhat different

U problem formulations. An optimal nonlinear guidance law is determined

which minimizes the expected value of the squared terminal miss,

subject to a constraint on the missile control surface deflection angle. This

law results in the sequence of optimal control commands designated as

L. (u0. The other guidance law is one which minimizes the expected value of
*a weighted sum of the squared terminal miss distance and a quadratic

penalty on the control; in this case the control level limit is ignored in
deriving the optimal control sequence. Then the latter Is passed through

a limiter which "clips" the excess control magnitude resulting in a sub-

optima nonlinear guidance law represented by UiO1.

Simulations of both of the above mentioned guidance laws are

described in Chapter 3. R was found that both laws tend to call for large
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airframe lateral accelerations that could be excessive in some practical

applicatioms. Consequently a predictive acceleration limiter was devised
for modifying each control sequence to prevent excessive acceleration

tuild-up; this procedure is described In Section 3.3. The modified coa-
trol sequences are designated as follows:

lu ! i N u

Acceleration

u } Limitr
00.

The sequences [u1 and (ujoo} are regarded as two additional suboptimal

nonlinear guidance laws; they are both suboptimal becaue the limit on

acceleration has been imposed "after the fact," rather than Wing part of

the guidance law design criterion. To further aid in distinguishing the

guidance laws, it is useful to define the followin two categories of, se-

quences of control commands:

Type I Laws Type H Laws

NO~) 1110

fui~) (q?)

The type I laws are derived by applying the theory of linear gmssian

systems having quadratic performance indices. The control sequences

associated with the type II laws are derived by incldting an explicit con-

straint on control level in the guidance problem formulation.
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5.40-. CQNCLUBSIS

The ;mportant conclusions deduced from computer simulation
results abo~the various guidance laws are summarized below:

*When the acceleration limiter ts active - - i.e.,
'when 0 ?1 and (uoo) differ significantly from

ththe tp law, (ui,1.

The type II laws are significantly simpler to
mechanize than the type I laws; the feedback

II pin for the former are derivedgQ cally
by solving appropriate algebraic equtins
whereas the gains for the latter are determined
nueia b~y iteratively processing the re-

nudrixh difference equations.

[10 The Ujliawiscillfor average control levels
that are much larger than those associated with
Ithe tYie'*lws -- tyy~cally ten times larger.

~i3 Also th#tpe II laws are bang-bang in nature,
a fact tha may have an adverse effect where-II significant body bading modes eist.

* The predictive acceleration limiter success-
fully provides the desired control over air-
frame acceleration level.

U ~The obseriaticns that a-type 11 guidance law ((u?0,))can perform signifi-
cantl better and 4is also more easily mechanized than the correpndin

U type I ([%j)) law are Important developments from this research.

JJ The above conclusions provide several criteria for selecting a
guidance law for a particular aplcton. If the lowest possible terminal
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miss distance is desired, without regard for the amount of control energy

expended, the type I laws are preferred. The most significant perform-

ance advantage of the latter exists In those applications where terminal

gidance accuracy is significantly limited by the maximum allowable (or

achievable) missile maneuvering acceleration level. If control energy
consumption must be lower than that associated with the type II laws, the

type I laws can be used. A third possibility which combines the best of

both techniques is a dual r ,de procedure, using a type I law to conserve

control energy far from the target and a type I law at short range to

reduce terminal miss.

Some additional comments about the potential computational re-

quirements of the guidance system are In order. Both types of laws re-

quire the same time-varying linear state estimator -- a Kalman filter.

For the planar motion problem considered in this report, a five-state
filter was employed to estiihate the state variables associated with the

target, the missile translational motion relative to the target, and the

autopilot. In an actual application it is likely that a simpler three-state

filter -- obtained by assuming that autopilot state variable measurement I

errors are negligible -- would yield satisfactory operation. In addition
to a filter, each guidance law uses a set of time-varying feedback gains L
to generate the feedback commands. We have pointed out the fact that the

gains for the type 11 laws are more easily calculated. In circumstances

where the dynamics defining the guidance problem are known a priori,

the feedback gains required for all guidance laws can be calculated prior L

to flight. Thus each gain can be approximated as a simple polynomial and

stored in the guidance computer. However If some important dynamic

parameters -- such as those associated with the missile airframe -- are

unknown and must be identified on-line, then the system gains must be
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calculated on-line. In the latter situation, the computational advantage of

the nonlinear-type laws is quite significant.

It is likely that a number of simplifications to the above guid-

i ance laws could be made without seriously degrading performance.
For example, less frequent updating of filter and feedback gains can be

11 tried; in some cases constant gains may be adequate. It may also be

desirable to predesign the missile autopilot (making it adaptive if necessary)

and then neglect autopilot dynamics in formulating the guidance problem;

this is found to be a reasonable procedure in the simpler applications treated

I I in Ref. 6. The investigation of such modifications is a logical extension of

the work reported here.

4.3 TOPICS FOR FUTURE RESEARCH

The investigation described here includes many effects that are
Li actually encounteredin atactical missile engagement--measurement noise,

target maneuvers, bcr,:ded controls, bounded acceleration, airframe dynam-

ics, etc. The stuay .Aicates that guidance laws which are derived tak-

ng into account bounded missile control level can offer signiflcant per-

formance advantages when realistic levels of measurement noise and tar-

get acceleration exist. However a more complete evaluation of the guid-
ance laws is needed, including the following tasks:

i
0 Analysis of the sensitivity of the stochastic guid-

ance laws descrtbe, above to errors in modeling

UI sensor noise, target motion, and missile auto-
pilot dynamics should be performed. The objective
Is to determine which guidance law is least affected
by imperfect knowledge of the guidance equations of
motion.
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A detailed comparative evaluation of various guidance
laws -- including, classical methods such as pro-
portional guidance, pursuit guidance, etc. operating
in the presence of homing sensor noise, a maneu-
vering target, and control surface limiting -- should
be carried out to provide performance curves that are
useful for system specification.

The outcome of such a study would be indications of the ultimate performance

that can be achieved in a given tactical situation with a given missile design.

Another topic of interest is the derivation of guidance laws which

account for intelligent target maneuvers. This is motivated by the possi-

bility that the enemy target may know what type of guidance law is being

used against him; therefore he may be able to employ a rational evasion

technique that will achieve larger miss distances than if he used random

maneuvers. Investigation of this problem through the use of differential

game theory is recommended. L

..

L

I •

L

.
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I APPENDIX A

OPTIMAL STOCHASTIC CONTROL OF LINEAR SYSTEMS

'I The subject of optimal stochastic control is concerned with

determining control policies which optimize some probabilistic measure

of performance for stochastic dynamical systems. The techniques studied

- in this report apply only to systems with equations of motion that are

linear in both the state and the open loop control variables * and with obser-

vations that are also linear combinations of the state variabies. For this

special case the theory of stochastic control is fairly complete for both

continuous and discrete time systems and has been extensively documented.

This appendix summarizes the main results for discrete time systems with

appropriate references to the literature, omitting those mathematical

-! pronrfs that are readily available elsewhere.

It should also be mentioned that a large body of theory exists

for stochastic control systems having nonlinear equations of motion,

especially for discrete systems (e.g., Refs. 9 and 10). However, few

results are available that lead to practical control laws.

I ii

: ~~ A. 1 PROBLEM FORMULATION

A linear continuous stochastic dynamic system is defined by dif-

ferential equations of the form

i(t) = F(t) x(t) + G(t) u(t) + w(t) (A. 1-1)

That is, Eq. (A. 1-1) is linear in x(t) and u(t), regardless of how u(t)Imay be generated. For example, ii(t) may-be a nonlinear function -of x(t).

-jA-1
-
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where F(t) and G(t) are !mown time-varying matrices, x(t) is the n-

dimensional state vector, u(t) is an m-dimensional set of control variables,

and w(t) is an n-dimensional random disturbance input to the system. It is

usually assumed that w(t) is a Gaussian random process, also called

"process noise," having the following statistical characteristics:*

Mean Value: E w = 0

Covariance Matrix: Efw(t) w(T)T}. Q(t) 6(t -T) (A. 1-2)

The quantity 6(t - r) is the unit impulse (Dirac delta) function and Q(t) is a

known positive semidefinite matrix. Although Eq. (A. 1-2) specifies that

w(t) has zero mean, a nonzero mean can readily be included when it is

known..

To complete the specification of the system dynamics described

by E.%. (A. 1-1), the initial state must be provided. We assume that x(tg)

is a vector gaussian random variable having known mean and covariance

matrix given by

_IT P0

E [x(to)- ][(to- P0  (A. 1-3) .

The above model defines w(t) as a "white noise" random process

which has the property that sample values taken at different time ine&ats

are uncorrelated. If the latter condition does not hold for the system under

investigation, Eq. (A. 1-1) can often be modified to obtain a valid

E f I denotes mathematical expectation.
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mathematical model that does have white process noise. The assumption
that the proceis noise is gaussian is often physically reasonable because

11 many random disturbances can be accurately modeled as a superposition

of a large number of statistically independent random events. The result-

jj ing aggregate process has a probability distribution that approaches the

gaussian distribution as the number of constituent events becomes large,

ii regardless of the probability distributions of the individual events. ** In

addition, gaussian processes have the desirable mathematical property

that their gaussian character is preserved when they are "passed through"

a linear system, such as the one represented by Eq. (A.1-1). That is, if

]i w(t) and x(t0 ) are gaussian and u(t) is a known function of time on an inter-

val to : t r t, then x(t1 ) is also gaussian; the mean value of x(tl) is deter-

mined by the initial mean, p, and the known history of u(t).

In order that a feedback control policy can be mechanized, mea-

ii surements related to the state vector x(t) must be available. In a physical

system such measurements are typically obtained by sensors whose outputs

are observations of known functions of the state variables corrupted by

measurement errors. Furthermore, measurements frequently can be ob-

served or accepted only at disc rete time instants, ti(i = 0, 1, ... ),either

because the sensor inherently operates as a sampler or because a digital

computer is used to precess the measurement data. For missile appli-

cations the above conditions can usually be expressed by the linear mea-

surement equation,
z.i = H ix i + v; i = 0, 1,. (A. 1-4)

For example, the time-correlated process can often be regarded as
the output of a linear system driven by white noise and the state vari-
ables associated with the latter are included in the definition of x(t).

This is a paraphase of the "central limit theorem" (see Ref. 11).
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In Eq. (A. 1-4), z, is a q-dimensional measurement vector, Hi is a known

matrix and (v i is a gaussian white noise* sequence specified by

E v J " 0 for alli

E ) VT = R; I j (A. 1-5)

where R is a positive definite matrix. The noise sequence accounts for

the measurement errors and Hi accommodates all situations where the

measurements are linear functions of the state variables. The noise co-

variance matrix Ni is assumed to be positive definite. It is also usually

reasonable to assume that the process w(t) is uncorrelated with the se-

quence [vi); however the subsequent discussion can easily be modified if

this condition does not hold (see Ref. 12).

An optimal feedback control law is to be selected for u(t) in

Eq. (A. 1-1) so that an appropriate performance index J is minimized. We

will allow u(t) to be a function of all measurements that have been taken up

to time t. Just as in the case of the measurements, it Is usually true that

new values of the control can be computed only at discrete instants of time

because of the data processing requirements. Consequently we assume

here that u(t) is to be held constant at the value uI over the interval

ti s t < ti+ 1 where ti is coincident with the measurement time**; therefore

For the case where the measurement noise is known to be
correlated in time see Ref. 12.

In some situations it may be possible to process measurements faster
than control changes can be computed; in other cases some measurements
e. g., a gyro output) may be obtainable more frequently than mthers e. g., a
homing sensor output). These possibilities can readily be included in the
theory; however, for convenience of exposition, the measurement and con-
trol computation times are considered to be identical here.
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11the problem of obtaining u(t) reduces to that of determining the sequence fui)

The latter consideration motivates the following choice for the form of the

ii performance index. *

iiJ E Ef (S&t),tQ)+ Li(x(ti), uilti)j A 16
(x i ) ii0

where t0 and tN are specified initial and final times. In addition there may

be a constraint on fui3 of the form**

U. C (A. 1-7)

[1 where Gi is a specified region in n-dinensional euclidean space. For

example, if we require Jui I 1 for all i, then 0 i is an m-dimensional

Ut box with sides two units long. The expectation operation is required in

Eq. (A. 1-6) because the index can be minimized only in a statistical sense;

ii the actual value of the quantity inside the brackets cannot be evaluated be-

cause x(t) is a random process.

LBecause the performance index depends upon the state and con-

trol variables at discrete instants of time, differential equations (Eqs.

(A. 1-1)) are not required to describe the dynamic behavior of the system.

Instead, difference equations -- derived from the differential equations --

which relate the value of the state at time ti to its value at time ti 1 are
sufficient. The latter are readily obtained from Eqs. (A. 1-1) and (A. 1-2)

The notation E 3 means that the mathematical expectation is to

be carried out over all the random variables, x(ti ) -- i= 0,1,..., N--
appearing within the braces.

The symbol c means "is contained in."

I
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using the properties of the solutions of linear stochastic differential equa-

tions (see Ref. 12 or 13); these expressions together with the other rela-

tions needed for the optimization problem are summarized below:

Discrete Time Optimal Stochastic Control Problem - Determine

the optimal piecewise constant feedback control policy as a funbtion of all

past measurements,*

u(t) -- _ i ti ; ti ! t gt i +
1

(A. 1-8)
Z zi zj) 0; 1 oj g

which minimizes the performance index

J E x N- L(. :o'(-S'u i  (A.'1-)
Nf tN t

for a specified value of tN9 subject to the discrete time constraint equations

Em~ 4b i x i + r 'i u "i +w.

Z.= H.x.+v.
- 1-1 -1I

E {1sol y E)(x 0 -.M)(x 0O4TE P0  (A. 1-10)

The matrices i and r i in Eq. (A. 1-10) are related to the parameters in

Eqs. (A.1-1) and (A.1-2) by

The superscript "o" denotes an optimal control. The symbol Zi denotes

the sequence of all measurements observed up through time ti.
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(t ti ~)0(,t0(, , I(.1-1
!i.

t.
r i (ti,,lT ) G(r)d1" (A. 1-12)

I1

3 The sequences w] and fv i ] are gaussian white noise sequences satisfy-

ing the conditions,

EIwi} E{vi} 0

t i+
1 0

SQ i l (ti+l, Tr) Q(Tr)' (ti+1 ,r)T1 TT

i _w =

I i.; i =j
Tv (t  Ri 

(A. 1-13)

0 ; j

The above discrete time formulation is used throughout this report.
I An analogous development for continuous systems is available in the cited

references.
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A. 2 QUADRATIC PERFORMANCE INDICES AND
UNCONSTRAINED CONTROL VARIABLES

A particularly important case of the discrete time optimal

control problem formulated in the preceding section occurs when the per-

formance index in Eq. (A. 1-9) is a quadratic function of the state and

control; i.e.,

J= E TNVN N + +xu V i+ Wi i  (A.2-1)-xi N =E -i -~iu

where V. -- i = 0, ... ,N -- are positive semidefinite matrices and

W i -- i = 0,1, ... ,N-1 -- are positive definite matrices. In addition, we

assume the control variables are unconstrained; i.e., f i in Eq. (A. 1-10)

is the entire m-dimensional euclidean space. This type of performance

index is often chosen when the objective is to reduce the magnitude of the

state without using excessive amounts of control. It tends to limit

energy expenditure and it sbo tends to limit the magnitude of the required

control level, although it does not explicitly bound the latter. Perhaps a

more important reason for its popularity is that the optimal feedback con-

trol is linear and readily computed, as demonstrated below.

Because the dynamics and measurements in Eq. (A. 1-10) are

linear, the optimal control sequence [u° 0 that minimizes J can be deter-1
mined analytically (Ref. 12) in the form:

This is a relative judgement; it is readily computed compared with
solutions to many more general control problems.
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0 
u. = -Cx-1 i

x =x + K Hz Hx.

i+l = *- +riu-; x 0 = p (A. 2-2)

T ( where

(r s+ 1 r +w -T i .

Si T . T(+T i+ric

Si Si=lV i + vi

SN = VN (A. 2-3)

and

Ki= Pi H Ti PiHT + Ii)

_ T_Pi = fiPiT P = P

P.P-K(H T )K T  (A. 2-4)
1 1

The associated minimum value of the performance index in Eq. (A. 2-1),
J; is given by*

J Tr{s0 (P0 + + T) +. S i+l(Qi+ riciPiT)} (A.2-5)

i=O

The notation Tr f I denotes the trace of the matrix (sum of its
diagonal elements) within the braces.

A-9
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The quantity xi in Eq. (A. 2-2) is the conditional mean of the

gaussian vector xi, given knowledge of the control and measurement

histories up through time t* . The conditional mean has the property that

it is the best possible estimate of x under a wide variety of estimation

criteria!* Equations (A. 2-2) and (A. 2-4) contitute a discrete Kalman

filter which recursively calculates i in terms of the known controls fu°],

the system dynamics, the random process statistics, and the measure nents.

The matrix Xi is referred to as the Kalman gain.

The gain matrix Ci determined from Eq. (A. 2-3) is identical to

that associated with the optimal control law that minimizes the deterministic

performance index.

T T T Kx N TNx N + x Vix i +u .u°
-N E i i N-N \ - i Wi-ii= !

assuming the process and measurement noise sequences in Eq. (A. 1-10)

are absent. Consequently the optimal stochastic controller is mechanized

by two distinct operations -- an optimal linear estimator (Kalman filter)

that is independent of the performance index weighting matrices, and an

optimal feedback control law whose gains (Eq. (A. 2-3)) are independent of

the random process statistics. This is the so-called separation property

for linear systems with quadratic performance indices and unconstrained

controls; the structure of the controller is illustrated in Fig. A. 2-1.

The conditional mean includes the effect on the state in Eq. (A. 1-10)
of a known control input as well as the unknown initial conditions and
the unknown process noise.

For example, xi is the value of x which minimizes

where A is any positive semidefinite matrix.

A-10



in
THE ANALYTIC SCIENCES CORPORATION

{v .{w1},{W } {rd {_lI} "'

OPTIMAL {}LINEAR {i
LINEAR PANT

CONTROLLER

{~}KALMAN IQ.~ + LINEAR T

Figure A. 2-1 Structure of the Optimal Stochastic Controller for a
Linear Plant with a Quadratic Performance Index

The linear control law described above is relatively simple to

implement. When the parameters defining the matrices 0i, TI, etc. in*1 1

Eqs. (A. 2-2) through (A. 2-4) are known apriori, the gains C. and K. can
be precomputed and stored in a computer so that the only on-line calcula-

tions required are those specified in Eq. (A. 2-2). However, the assump-

tions of a quadratic performance index and an unconstrained control level

are unrealistic for some problems. In the next section more general de-

sign criteria are considered.

The parameters of a tactical missile guidance problem are not always known
apriori; this point is discussed in Section 2.1.
**Often simple polynomial approximations to the gain histories
are adequate.
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A. 3 GENERAL PERFORMANCE INDICES AND
CONSTRAINED CONTROL VARIABLES

This section outlines the method of solving the discrete optimal

control problem posed in Section A. 2 for a linear system with the perform-

ance Index

N-i
JT= EI f (ENtN) +Z L.(x, u ti)j (A.31){xi} N '  =0L 'u'(.31

The derivation presented here uses a dynamic programming approach, as

in Ref. 14. We first assume time tN has occurred and the complete optimal

control 1sequence fu ) has been applied using the observed measurements

(zi). Then proceeding backward from stage to stage, we determine the0 0

individual commands u 0 0 ." needed to minimize the "cost to com-

plete the process" JN-I' JN-2' defined by

{xi }  iN-J E 5 fx~ + N-L
JN-j (X) i (E-"QN = N-j iEp!t)

N-j is N-1

In this way we can derive a recursive expression from which each optimal

control command can be derived in terms of the control commands and

measurements that preceded it in time, providing a feedback control law.

In the general case this recursive relation is difficult to solve, requiring

extensive numerical calculation; however we shall see that the guidance

problem posed in Chapter 2 can be solved analytically. To aid the discussion

it is convenient to use the notation

=d Au ( ; 0 it i k

Zk z} ; 0 ! i 'k
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That is, U and Z denote the sequences of 11 optimal controls that havek kbeen applied and all measurements that have been observed up through

time.t k .

To begin, we assume that all stages of the process have been

completed and we are at time tN. There are no more optimal controls to

be computed and the optimal value of the terminal cost, JN, is defined by

= EI ,  (A. 3-2)
x N

1.1 which is shorthand notation for the expectation operation

I = ... f f(N) P_ UN_ZN) dxN (A.3-3)

The quantity p(xNI, ZN) is the conditional probability density func-

tion* of xN , as determined by the known measurement and control se-

Lquences, and dx denotes the n-dimensional "volume" element dxl(tN)

dx2(tN).., dxn(tN). The limits of integration on each integral in Eq.

(A. 3-3) are from minus infinity to plus infinity; for convenience, they are

omitted from the notation throughout this discussion, always being under-

stood as infinite. Now at time tN, xN is a random variable whose mean

value is a function of the control history, the observed measurement his-

tory, the statistics of the initial state x in Eq. (A. 1-3), and the statistics

*"

Throughout this report, a function of the form p(xly) denotes the con-
ditionhl probability density of x, depending upon a known value of . This• is an abuse of conventional nofi-tion which uses the symbol, tl (Pr ' ) ,

where I and _7 denote particular values of x and y, respectiv.. - The
shortened notation used here should be clear to the reader, keeping in
mind the fact that p(yIx) and p(x Iy) are two different functions of the
same variables, x and-y; that is, P(yI I_) p(XI Y)I
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of the measurement and process noise sequences.* In addition the fol-

lowing important conditions are satisfied at time tN:

* The random sequences (wi] and (vi] in Eq. (A. 1-10)
aQre gaussian.

0 The control and measurement histories, U0 1 and
ZN, are knom.

* Both the process dynamics and the measurements
(Eq. (A. 1-10)) are linear functions of the st,ite.

Therefore, XN is "conditionally gaussian;" i.e., p(xN IUN.1, ZN) is a

gaussian jumction that is completely specified by the conditional mean xN

and covariance matrix PN of XN, defined by

x 2,N P( x NJ ., Z.) d%-N

J..JX XN( ~ N) kN Uil Z )dxN

The functional form of p(XNI U. 1 ,ZN), expressed in terms of _N and

PN is given by

P(~ Z~) -n/21~ PN1/2 ex ~~-~T (x.7N) I

As in Section A. 2, the mean of the state at any time t contains a L
component produced by the known control sequence applied up
through time t as well as a component derived from previously
observed measurement data.
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IA

Now because of the three conditions listed immediately above, xN can be

determined by a Kalman filter acting nn the measurement data ZN and known

controls UN 1 as specified by Eqs. (A. 2-2) and (A. 2-4); furthermore,

PN is a deterministic quaatity (i. e., it is independent of the measurements)

Iprovided by Eq. (A. 2-4) at stage i = N. Therefore, substituting the above

expression for p (x4 IU.1, ZN) into Eq. (A.3-3)1 N can be calculated as

Sa function of N;

= (A. 3-4)

I The over-bar notation refers to the averaging operation performed in
Eq. (A. 3-3). The significant property of Eq. (A. 3-4) is that the depend-

ence of Ji on all random variables can be expressed solely in terms of

XN and a number of retermjlPistic quantities such as covariance matrices,

t plant dynamics, etc. The latter are suppressed in the notation.

Next suppose that all but the last step of the process defined by

Eq. (A. 1-10) has been completed using the collections of known optimal

controls and measurements, 0_- and ZN . Therefore referring to
rN-2 N-1

Eq. (A. 3-1), at time tN 1 we need to determine the value of UN-l,UNl,
which minimizes the cost to complete the process,

JN = E f LN_(SNl!N1t-)NN-IiN

This minimization is indicated by defining the optimal cost to complete

the process by*

The notation min means that the value of a within the set A is

to be determined which minimizes the quantity inside the braces.
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N'i N-i i'-XN(A.3-5)

where the notation -- I U 2 , ZNI -- emphasizes that the known controls

and measurements are used to defne the conditional probability density I

functions for XN 1 and xN .

Equation (A. 3-5) can be investigated in two parts. By applying

the same argument used for Eq. (A. 3-2) and assuming for the moment I
thathe minimization over u has been carried out so that uN-1 -N-

is known, the first expectation in Eq. (A. 3-5) can be written as

0 N XN1,UN1lEtNil N2,ZN (A, 3-6)

th 1
because LN is independent of x Just as we found at the N measure-

ment time, XN 1 is a gaussian random variable and its conditional mean

-N-i is provided by a Kalman filter operating on the measurement history

ZN1 and the control history U.0 (note that XNi is independent of u. )N-1 N-2 0N-
Continuing with our assumption that is known, the second expectation

!!N-i thIeodepcain-
in Eq. (A. 3-5) can be expressed as follows:

0 L=N N)E -X U - 1  N (N U Z-

L

= E f U0,u (A.3-7)
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The sequence of equalities in Eq. (A. 3-7)* holds because xN can be regarded

as a function of the control u. 1 (assumed known as a function of ZNI)

therefore each term is an equivalent expression for the expectation condi-

tioned on U_ 2 , U and ZN. Now compare Eq. (A. 3-5) with Eqs.

(A. 3-6) and (A. 3-7), where we have assumed throughout that uN-1 is known,

and observe that

0 -lt/N(. 8
-l LiN-1' !!N1N-1) + (

Using the identity

p(Xl1yi) = 5...5p(xIjy p(z ly) dz E E{p(x l, z)I4 (A. 3-9)
z

* for probability density functions of the random vectors x and z, given a

known value of y, Eq. (A. 3-7) can be expanded as follows

N {(x) E o
IN 2 uNi ,  l -ZN1}

!EN

jx)E { 0 I U o-Zo- dxN

(A. 3-10)

*Compare Eq. (A. 3-7) with Eq. (A. 3-3) and note that JN is different
from JO because YN is conditioned on the measurements only up to

Ntime tl.1 whereas jN is conditioned on the measurements up to
time tN.
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A comparison of the last line of Eq. (A. 3-7) with Eqs. (A. 3-2) and (A. 3-4)

reveals that

JN ZN { i!!N-i' N1

Substitution of Eq. (A. 3-11) into (A. 3-8) produces

1 T- L! N-1' N. ) + E Ju(,N)I .-2, N-i' ZN-

(A. 3-12)

Now recall our assumption that the optimal control 0 at stage-N- I
N-I is known; however, in fact our objective is to determine it from the

0functional form of JN-1 This is accomplished by rewriting Eq. (A. 3-12)

in the equivalent form

N -1 U f 0 N -1 ( i -1 ' ! ! N - t N -1 ) + F -J N W U 2 ' ! 1 Z - 1
~N- 1 1 EN N)U2J

(A. 3-13)

and by carrying out the indicated minimization over UN.1. Equation

(A. 3-13) has the important property that the optimal cost to complete the

process at stage N-1 can be expressed in terms of the "incremental cost"
0

L and the optimal terminal cost J which we computed at stage N
N-i N

(see Eqs. (A. 3-2) through (A. 3-4)). This has the recursive form which
0

we desire; now we proceed to show that the dependence of UN 1 upon pre-

vious controls and measurements can be expressed solely in terms of
A

XN-

0
In order to determine uN- 1 we must be able to compute the

averages defined in Eq. (A. 3-13). This can be done using the properties
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of Eqs. (A.3-6) and (A.3-11). From Eq. (A. 3-6) we have

.(-1., ,,,,., ,,,,.,) . ',1' - -,- - N-1 -),(-N Ib -,, N- 1 )d,1) % -I

, T -X,

j S... Si .,.N-1.,.tN l)exp HI (N1-,N,- P !(, !N,--),, N-I1
(2U)/" JDt (PN.1)

(A. 3-14)

where -N-i and PN-1 are provided by the Kalman filter equations --
Eqs. (A. 2-2) and (A. 2-4) -- operating on the measurement and control0
histories, ZNi and UN 2 . To compute the second expectation in Eq.

(A. 3-13), recall from Eq. (A. 2-2) that the Kalman filter output at stage

N is given by
-N Ni-- -INI [- ( •i' u i
?SN =~ %- - +r N- U -+KN !NN N~-^N-i+ N-i -!N-i1

j(A. 3-15)
In addition, using Eq. (A. 1-10) note that the measurement zN can be

written as

ZN = HN( xN-lXN-1 + TN-lUN W-1) + VN-1 (ij- \--- Ni (A. 3-16)

Now regarding UN- 1 as a set of parameters to be determined and knowing

_i that XNi, WNI, and VN 1 are all independent gaussian random variables,

it fillows that zN is a gaussian random variable whose mean vind covariance

can be derived directly from Eq. (A. 3-16);

L E{ZN 1 __ = HNkQN.INI+ rNlUNI)

E{z T = H T(i +QNI)H+ RNi1 N-ZNA N- N N HN (N-I PN-I @N-I N

(A. 3-17)

A-19



THE ANALYTIC SCIENCES CORPORATION

If we define
A

IN= ZN "N. (A.3-18)

snd substitute Eqs. (A.3-16), (A.3-17), and (A.3-18) into Eq. (A.3-15)

the result is

AA

-N -N-1iN-i + N-i-N- 1 KNN (A.3-19)

where N' the so-called measurement residual, is a zero mean gaussian
random variable having covariance equal to '"N in Eq. (A. 3-17). There-

fore the second expectation in Eq. (A. 3-13) can be written as

E {.-(N) iu 2, N-1'Z-1}J
-N (2wf/2 I1 Dot (A)

A N KEN%

KNI (A. 3-20) I
Equations (A. 3-13), (A. 3-14), (A. 3,-17), and (A. 3-20) provide Io

all the relations needed to calculate the optimum control UN 1 as a func-

tim of xN-1 conditioned on UN -2 and ZN- 1 Furthermore it is clear that

the dependence of JN- upon UN 2 and ZNi can also be expressed com-

pletely in terms of Ni just as depends only upon x in Eq. (A. 3-4).

Therefore, by induction it can be established that Eqs. (A. 3-13) through

(A. 3-20) hold if the index N is changed as follows:

N - j; j = N,N-I,...,i
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I
Consequently by recursively carrying out the minimization specified in

Eq. (A. 3-13), the entire set of optimal controls can be generated with
0

each control u being a function of x.. This method of solving the con-
trol problem is referred to as dynamic programming.*

I Notice that a form of separation principle holds for the above

i optimal control law in the sense that uO is always a function of the condi-

tional mean (optimum estimate) of the state. The latter is provided by a

Kalman filter in the same fashion described for quadratic performance

indices in Section A. 2. However, the optimal controls are not generally
linear functions of the estimated state nor are they independent of the sta-
tistics of the random processes as evidenced by Eqs. (A. 3-14) through

(A. 3-20). The mechanization of the optimal controller is illustrated in

Fig. A. 3-1; this should be compared with the linear system in Fig. A.2-1.

I
-{v }. {wiI,{©i}.{Pi}.{Ri}. {Qi}.{ } { ''

OPTIMAL {vT} LINEAR {x~.}
toNONLINEAR N

Il CONTROLLER

FILTER MEASUREMENTS .

I {R,}fi} {4i} {i}.i{",}., {ji}

I Figure A. 3-1 Structure of the Optimal Stochastic Controller for
a Linear Plant with a General Performance Index

See Ref. 15 for a discussion of dynamic programming applied to
stochastic control problems.
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Except in special cases, the optimal controls determined from

Eq. (A. 3-13) cannot be determined analytically; often the dynamic pro-

gramming equations must be solved numerically and the optimal control

variables stored as functions of the estimhted state. A great deal of com-

putational effort and computer storage may be required to accomplish this

task because of the multidimensional integrals in Eqs. (A. 3-14) and (A. 3-20)

that must be evaluated. Some simplification can be gained by expressing

these integrals as solutions to the corresponding multidimensional diffu-

sion partial differential equation (Ref. 14). However, the amount of com-

putation required for more than two variables of integration is still formid-

able. Consequently, in formulating an optimal control problem for a linear K
system with nonquadratic performance indices and/or constrained control

variables, an effort must be made to limit the number of integrations re-

quired in Eqs. (A. 3-14) and (A. 3-20). Situations where this objective can

be achieved are described in Section A. 4.

A. 4 COMPUTATIONAL CONSIDERATIONS

In the preceding section it is pointed out that there are large

computational requirements associated with solving the optimal stochastic L
control problem for a linear system with an arbitrary performance index.

To minimize the amount of computation, the dimensionality of the integrals L
in Eqs. (A. 3-14) and (A. 3-20) must be kept as low as possible. This can

be accomplished by choosing a performance index that depends on as few L
variables as possible at each statp of the backward recursion in Eq.

(A. 3-13). To illustrate, suppose that Li =0 for all i in Eq. (A. 2-5) and K

J = E)f (-N) = E f (xl(tN)) (A.4-1)
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!
I where x1 (tN) denotes the first element of xN. That is, the index is a

function of only one state variable at the terminal time and is independent

of the state and control variables at other times. In addition, specialize
Eq. (A. 1-10) to the case where the control input is a scalar,

i+l = xw (A.4-2)

and impose the constraint

- ui] D; for all i (A. 4-3)

Hwhere D is a specified constant. The above design criteria are realistic
for the two dimensional guidance problem for a tactical missile, where
x 1 (tN) corresponds to the terminal miss distance and ui is the control sur-

face deflection.

In order to exploit the form of Eq. (A.4-1), it is necessary to

define a new state vector yi by the linear transformation

0* I =i I (A. 4 -4)

The ma t rix 0(tN, ti) is the transition matrix from time ti to time tN asso-
ciated with Eq. (A. 4-2) and determined by*
Lii

(t )- TF . (A.4-5)
! *(tO'ti) =NI

*m
The notation nTr 0. means the product, 40 .... l

In - i
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Therefore yi is the value of the state at the terminal time produced by an

initial condition x at time ti with the control and process noise in Eq.

(A.4-2) equal to zero. Substitution forx" and xi+1 from Eq. (A. 4-4) into

Eq. (A. 4-2) produces

Yi+l =Yi - l u 'l + - i

!1 0 1tilz A.4-6)

where w is a zero-mean gaussian vector random variable with covariance

matrix

* Ew~T~= (tNt 1 l)~~ tN' ti+l)T (A. 4-

and Q is defined in Eq. (A. 1-13). Because the transformation in Eq.

(A.4-4) is nonsingular, * Eq. (A.4-6) is equivalent to Eq. (A.4-2) in des-

cribing the system dynamics.

The important thing about Eq. (A.4-6) is that the first element

yl(ti+l) of Yi+l is independent of the last n-1 elements of yi. Therefore,

if the performance index in Eq. (A.4-1) is expressed in terms of the vari-

ables yi' the integration in Eq. (A. 3-20) is performed over only one state

variable. To prove this assertion it is convenient to use the fact that the

optimum (Kalman filter) estimates of x and y are also related by Eq.

(A.4-4) (see Ref. 13);

A

= *(tNti)~i(A.4-8)

The discrete time transition matrix is always nonsingular when Ai in Eq.
(A. 4-2) is derived by cliscretizing a continuous time system.
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Applying Eq. (A.4-8) to Eqs. (A.3-15) through (A,3-19) it follows that

y :i~ Ui.- t, (A.4-9)
-1 - + -i-1 .I & i~

where Ji is given by Eqs. (A.3-15) and (A. 3-16). The dynamics of the

-estimate of the first element, yli, of y. are therefore given by the scalar

a" equation

AA

SYli = Yli-1 + 61i ui I +a i  (A.4-10)

where oi is a zero mean gaussian random variable and 61i_1 is the first

element of - The mepn square value of ai is given by

S 0(tN, ti) K. i KTE , (tNt)xT

T &- 0 0

= [10.. 0] (A.4-11)

where E i is defined by Eq. (A. 3-15) with N -. i. Observe that the only ele-A

ment of yi- 1 appearing in Eq. (A.4-10) is 3l.

We also know that

J = E jf(?SN)( = E lfy) (A. 4-12)

because ZN =xN according to Eq. (A.4-4). Combining Eqs. (A.4-1),

(A.4-10) and (A.4-12) with Eqs. (A.3-13) and (A. 3-20), letting N -. i and

setting L 0 in Eq. (A. 3-13) produces

i-2

t' A-25



THE ANALYTIC SCIENCES CORPORATION

1.

0

ml-in E =jj

ur

min + U + exp -1L d

u 1  i -  llu i.l 1: D

(A.4-13)

Thus we have reduced the problem of finding the optimal control to that of

solving Eq. (A. 4-13) recursively, a task that requires avraging over only

one variable, o., as opposed to averaging over n variables, X, in Eq.

(A. 3-20).

Further simplification can be made to Eq. (A.4-13) if the index -

J has certain properties. In particular, suppose Ji(r) i- a convex,
even function** of its argument, 4 = y, as defined by:

Even Property: Jo(T) = jo (-T)

1 1Tr

Convexity: f d andJi(?(2)+ J ; for all Tland

(A.4-14)

Now make the definition

= Ylij +y 1 i-i ui I  (A. 4-15)

The results obtained here will hold under more general assumptions;
however convexity is a sufficiently broad condition for our purpose.
**Convex even functions are a very broad class; some examples are

*2 fII, T4 , and eli.
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*so that Eq. (A.4-13) can be rewritten as

0 min (o)

J° -i- D

fl!  i S p +01)exp d 1 d16

If the properties in Eq. (A.4-14) hold for Jj(r) then they also hold for
-0J.(p) with respect to the variable p. The even property can be demon-

strated by substituting -p for p in Eq. (A.4-16) and changing the variable

of integration from a to X according to

-P +c -p-4

The convexity property is established by writing

2ci

__ [2]
0 ?(P2 + c) exp 2x dcx

and using the fact, taken from E.q. (A.4-14), that
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Consequently the minimum value of J (o) in Eq. (A. 4-16) is achieved with

the value u? of u. that minimizes I01 subject to the constraint on the con-
I I

trol level, as demonstrated by Fig. A. 4-1. This value of ui is easily ob-

tained from Eqs. (A.4-3) and (A.4-15) in the following form:i I-1
-- i I if 6

0

till 
-

Sn i1 if i-A > D (A. 4-17)

S.!

J, (P26

Figure A. 4-1 A Graphical Illustration of the Fact
that Minimizing I pI also Minimizes
any Convex Even Function of p.

From Eq. (A.4-17) we see that u °0 is an odd function of
i-1li.i.e.,

0

Ui Iyl li01= li0 l)
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Iiand therefore so is p ui_..) 0 This implies that the

optimal cost in Eq. (A. 4-16), given by

- i-1

is an even convex function of that is, it has the same properties
which we assumed for J1r) . Consequently, if f(xl(tN)) in Eq. (A. 4-1)

is a convex even function, so are the functions J li) for i = 0, 1,...,N

and therefore Eq. (A.4-17) holds for all values of i. This result is sig-

nificant for mechanizing the optimal control law because each u°. is given

analytically in terms of the optimal estimate of the transformed state

4 variable yli o There is no need for carrying out the integration in Eq.

(A. 4-13) unless the actual value of Jo is. desired for the purpose of evaluat-

LI ing performance.

The above special case has been developed in detail here be -

cause it has application for tactical missile guidance systems. The dis-

cussion also demonstrates some systematic procedures -- i.e., state

transformation and the use of convex, even cost functions -- that can

*I ~greatly simplify the problem solution.
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r
1. Stallard, D. V., "Classical and Modem Guidance of Homing Inter-

ceptor Missiles," P247, April 1968, Raytheon Company, Missile
Systems Division, Bedford, Massachusetts.

This is a tutorial-type of paper describing many
of the theoretical and practical aspects of homing guidance
system design for tactical missiles, particularly those
which use a radar seeker. A discussion of conventionalI. proportional guidance is provided, with brief mention of
optimal control and state estimation techniques. Some
other topics included in the paper are: guidance accuracy,
measurement noise, autopilot design, system stability,
airframe design, saturation effects.

2. Stewart, E. C., "Application of Statistical Theory to Beam-Rider
Guidance in the Presence of Noise,? NACA RM A55E11, National
Advisory Committee for Aeronautics.

The application of Wiener-filter design techniques
to the problem of suppressing homing sensor measurement
noise in beam-rider type guidance systems is described.
Time-invariant models are used for the measurement noise
statistics and performance curves are given describing
miss distance as a function of noise and filter parameters.

3. Leistikow, L., et. al., "Optimum Control of Air-to-Surface Mis-
siles,? Technical Report AFFDL-TR-66-64, March 1967
(AD 815389).

The comparison in guidance accuracy achievable
with pursuit, proportional, and optimal guidance laws
used against surface targets is investigated. The three
concepts are evaluated for a system using an inertially-aided
TV homing guidance sensor. Effects of measurement
noise are included. In addition, a detailed treatment of
autopilot design for a missile airframe undergoing a wide
change in flight conditions is presented.
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4. James. J. P., "Homing Guidance," A-62-1732. 3-68, Aerospace
Corporation, September 14, 1962.

A simplified analytic treatment of pursuit, pro-
portional, and biased proportional guidance concepts is
presented. Each law is examined with respect to the
fuel consumption it requires; the effects of accelerating
targets are also investigated.

5. Garber, V., "Optimum Intercept Laws for Accelerating Targets,
AIAA Journal Vol. 6, No. 11, November 1968.

Optimal Guidance Laws are derived which include
the effects of time-varying target and missile accelerations
in the problem formulation, and which impose an integral
quadratic type penalty on control level. Analytical (algebraic)
expressions for the optimal control gains as a function of
time are obtained.

6. Price, C. F., "Adaptive Control and Guidance for Tactical
Missiles, Vol. II, The Analytic Sciences Corporation,
TR-170-1, 30 June 1970.

Performance comparisons of a wide variety of
deterministic guidance laws are given, including the effects
of autopilot dynamics, target acceleration, measurement
bias errors and modeling errors. Performance is mea-
sured in terms of miss distance achievable versus the con-
trol effort expended.

7.

8. Nahi, Ni.E. and Sworder, D.C., "An Optimum Interception Law
with Bounded Control in Presence of Noise," AD 820631,
February 1967, USCEE Report 188, Department of Electrical
Engineering, University of Southern California, Los Angeles,
California.
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The optimum continuous-time stochastic guidance
law which minimizes terminal miss distance, subject to
a bounded control constraint, is derived. The mathe-
matical model assumes that the target has constant
velocity. The resulting control commands are bang-.bang.

9. Sworder, D., Optimal Adaptive Control Systems t Academic
Press, New York, 1966.

A textbook that treats the problem of optimal sto-
chastic control of dicrete-time systems having unknown
parameters.

10. Aoki, M., Optimization of Stochastic Systems, Academic Press,
New York, 1967.

A textbook giving a general treatment of nonlinear
stochastic control and estimation theory for discrete-time
systems.

11. Papoulis, A., Probability, Random Variables, and Stochastic
Processes, McGraw-Hill Book Co., New York, 1965.

A textbook devoted to the fundamentals of random
variables and random processes.

12. Bryson, A.E., Jr., and Ho, Y. C., Applied Optimal Control,
Blaisdell Publishing Co., Waltham, Massachusetts, 1969.

A textbook giving a comprehensive treatment of
optimal deterministic control theory with numerous
interesting examples; the theory of optimal stochastic
control for linear systems with quadratic performance
indices is included.

13. Jazwinski, A.H., Stochastic Processes and Filtering Tieory,
Academic Press, New York, 1970.

A textbook covering linear and nonlinear estimation
theory from the Bayesean point of view.
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14. Deyst, J. J., Jr., "Optimal Control in the Presence of Measure-
ment Uncertainties," ScD Thesis, January 1967, Department of
Aeronautics and Astronautics, Tke Massachusetts Institute of
Technology, Cambridge, Massachusetts.

The problem of optimal stochastic control of
linear systems with arbitrary performance indices is
treated. A separation principle for the control law is
derived which permits control commands to be com-
puted as a function of the conditional mean of the system
state. The theory is presented for both discrete and
continuous time systems.

15. Dreyfus, S.E. Dynamic Programming and the Calculus of
Variations, Academic Press, New York, U65.

Methods of solving optimal control problems
using both the calculus of variations and dynamic
programming are presented. A particularly helpful
discussion of optimal and suboptimal solutions to
stochastic control problems obtained via dynamic
programming is included.

R-4


