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THE HYPERSONIC LEADING EDGE PROBLEM 

II. WEDGES AND CONES 

by 

Michael L. Shorenstein 

Abstract 

An analysis Is given for the viscous hypersonic flow pas;t slender 

sharp wedges and unyawed cones.  The loading odge or nose region 

treated encompasses the merged layer regime in which the shock thick- 

ness Is not small In comparison with the viscous layer thickness but 

for which in the axlsymmetric case the shock thickness Is small in 

comparison with the radius of transverse shock curvature. A Navler- 

Stokes flow Is assumed, and both the shock structure and viscous 

layer are taken to be locally-similar of boundary layer type. The 

analysis follows that used by Shorenstein and Probstein for the 

corresponding flat plate problem. For axlsymmetric cone flow, a 

modification of a transformation Introduced by Probsteln and Elliott 

is given to reduce the axlsymmetric viscous layer equations includ- 

ing transverse curvature to 'exactly" twc-dimensional form.  Results 

for the state conditions behind the shock, and the wall pressure, 

skin friction, and heat transfer rate are found to be in good agree- 

ment with available experimental data. 

* The author wishes to thank sincerely Professor Ronald F. Probstein 
of M.I.T. for his support during the course of this investigation 
and for his valuable suggestions and criticisms. This research was 
supported by the Advanced Research Projects Agency and was tech- 
nically administered by the Office of Naval Research under Contract 
No. NOOOl4-0204-0040, ARPA Order No. 322. 

Research Assistant, M.I.T., presently at Xorthern Research & TnRln- 
eerinR Corp., Camhrldpe, Mass. 



iwiw^!».»aeiaiiB^^ ': 

A 

B 

C 
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F 

g 

g(0) 

h 

H 

I 

j 

L 

M 
0« 

n 

N 

P 

Nomenclature 

velocity ratio, u*/U 
s " 

given by Eq. (18) 

Chapraan-Rubesln constant 

given by Eq. (20a) 

given by Eq. (20b) 

skin friction coefficient 

specific heat at constant pressure 

reduced density, P/P^ 

streamfunction given by Eq. (6) 

reduced slip velocity, u* /u* 
S Xf  s 

given by Eq. (43) 

shear stress, Nf 
nn 

value of g at body surface 

specific enthalpy, c T 

total enthalpy 

given by Eq. (11) 

index taken to be zero for two-dimensional flow and unity 
for axisynmetric flow 

arbitrary fixed reference length 

freestream Mach number 

normal coordinate for shock structure 

given by Eq. (5) 

static pressure 
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P 

Pr 

Q2(J) 

Q3(j) 

r 

R 

Re 

St 

T 

T 

X*," 

0 

u,u* 

U 
OD 

v,v* 

V 

V 

W 

x*,y* 

a 

Y 

c 

n 

s 

2 
reduced pressure, p/p U 

CO CO 

Prandtl number 

given by Eq. (28) 

given by Eq. (29) 

given by Eq. (A2) 

radius of transverse curvature, r. + y* cos 9. 
b  '     b 

gas constant 

local Reynolds number, p U x*/g 
CD 09       00 

Stanton number 

static temperature 

freestream stagnation temperature 

velocity component parallel to shock surface and to body 
surface, respectively [see Fig. 2] 

freestream velocity 

velocity component normal to shock surface and to body 
surface, respectively [see Fig. 2] 

transformed normal velocity given by Eq. (2a) 

reduced velocity, v/U 

reduced velocity, u/U 

coordinate along body surface and normal to body surface, 
respectively [see Fig. 2] 

transformed coordinates given by Eq. (2a) 

Inverse Reynolds number (p U r./vi ) 
" OD 00 Q   00 

specific heat ratio 

shock thickness 

stretched normal coordinate for shock structure, Eq. (23) 

stretched normal coordinate for viscous layer, Eq. (6) 
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n.       ■ transformed location of the body surface for the case of slip 

n       a location of the shock surface s 

6,       " body surface inclination anqle with respect to the free 
stream 

9       ■ shock, surface Inclination angle with respect to the body 
surface 

(H) ■ reduced enthalpy given by Eq. (6) 

u ■ viscosity 

JJ ■ given by transformation Eq. (2b) 

C - transformed coordinate along body surface given by Eq. (6) 

p " density 

o(j) ■ cross-section of streamtube incident to viscous layer 

*       ■ reduced enthalpy given by Eq. (23) 

3        1/2 
Y       - interaction parameter, M (C/Re . ) 
09 Ott X*^ • ^ 

Subscripts 

b * condition at the body surface 

nsi s quantity obtained from no-slip solution 

s » condition at the shock surface 

s£ ■ quantity obtained from slip solution 

n "  derivative with respect to n 

» ■ condition at the freestream 
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I. Introduction 

Two classes of continuum flow models have been Investigated 

recently for treating the hypersonic flow past sharp bodies up- 

stream of the strong Interaction regime In the merged layer [see 

Fig. 1] where the shock thickness must be considered finite In 

1-3 
comparison with the viscous l&yer thickness. One class   applies 

the full Navler-Stokes equations In finite difference form In order 

to determine to what extent a continuum may meaningfully describe 

the flow field In the merged layer. This complex scheme requires 

rather large computer storage space. 

4-6 
Another class of merged layer models   uses the Navler-Stokes 

equations but assumes "local similarity" to apply In both the 

viscous layer and shock wave, that Is, streamwlse variations of all 

properties are taken to be sufficiently small, so that the Navler- 

Stokes equations, when applied locally, can be approximated by 

ordinary differential equations. This description of the merged 

viscous shock layer Is obtained from locally-similar solutions 

"patched" at the Interface between the outer shock structure portion 

and the Inner viscous layer portion In which the equations are taken 

to be of boundary layer type with normal pressure gradient effects 

neglected. Results In Ref. 6 from such a merged layer model for a 

7-9 
flat plate have compared well with experimental data  . The 

theoretical calculations have shown cne relative Importance of 

several rarefaction effects over a cold sharp flat plate aligned 
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parallel to the hypersonic freestream. Dominant among these effects 

was shown to be the finite shear at the Interface between the back 

of the shock and the outer edge of the viscous layer. The effect of 

Including velocity slip and temperature Jump at the body surface was 

shown to be smaller but non-negligible, while the effect of Including 

longitudinal shock curvature was found in comparison to be negligible. 

The present analysis extends this flat plate continuum merged 

layer model of Ref. 6 to wedge and axisymmetric conical flows by in- 

vestigating the additional effects of body slope and, for conical 

flow, the effects of axial symmetry and transverse curvature effects. 

Longitudinal shock curvature effects are neglected as small based on 

the results of Ref. 6. Body slope effects are characterized by the 

parameter 6. , where 6. is the half angle of the wedge or unyawed 

cone. The analysis is extended only to slender bodies with 6. « 1 

for which the normal component of the viscous layer velocity can be 

neglected compared to the tangential component. This restriction is 

introduced in order to solve the viscous layer problem by the method 

of Ref. 6. 

In the axial Symmetrie case, a modification of a Mangier type 

transformation given by Probstein and Elliott  is introduced to 

reduce the axisymmetric viscous layer equations to an "exactly" two- 

dimensional form. The modification Involves a transformation applied 

to the viscosity coefficient, and this transformation is shown to 

include the effects of transverse curvature characterized by the 

■  v  . ■  ■ . .... 
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parameter M a. Here a is an Inverse Reynolds number based on Che body 

radius r. of transverse curvature, and M is the freestream Mach 

number. A qew term proportional to M a Is found to modify the reduced 

viscous layer momentum equation of Ref. 6 and Is shown to account for 

transverse curvature effects. 

For the present Investigation, two regimes of M a are dis- 
CD 

tlngulshed:  I, a regime Immediately adjacent to the sharp nose where 

M a £.1 and II, a regime downstream of the sharp nose where M a << 1. 
oo   » to 

only  the second regime Is treated here. This restriction Is Introduced 

to obtain a simple closed form shock structure solution by a method 

analogous to Ref. 6. In the conical shock structure equations, 

transverse shock curvature terms are of order A /r where A Is the 
s s      s 

shock thickness and r Is the radius of transverse shock curvature. 
s 

It Is found that If M o << 1, then terms of order A /r are 
•     ' s s 

negligible compared to the other terms In the shock structure 

equations. These equations can then be reduced to the form of the 

"zero-order" £hock equations solved In Ref. 6. 

II. Viscous Layer 

As In Ref. 6, the merged shock layer 1? described by a viscous 

layer of boundary layer type patched at an outer Interface (the "shock 

surface") to a thick shock structure. The velocity and state 

variables from the solution of the viscous layer equations are matched 

locally at the shock surface to the corresponding quantities from the 

solution of the shock structure equations. 
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The governing equations for Che viscous layer written In the local 

body-centered coordinate frame (x*,y*) depicted In Fig. 2 are 

fe* (rJpu*) + IT* (rJPV*) - 0 (la) 

pOi-^ + v*^) dx* 
, 3  ,    3c*. . 4 u 3r 3u*  n. v 

/ j. 3h  .  * 3h » p(u* ^f + v* —) 
dx*  Pr l3y* lw 3y*; 

J r 3y* 3y*J  pv3y*' (lc) 

where J ■ 0 for two-dimensional flow and j " 1 for axlsyimnetrlc flow, 

with r(x*,y*) - rb(x*) + y* cos 6. the local radius of transverse 

curvature for the case of axlsymmetrlc flow with 9. the body slope 

relative to the freestream direction. The tangential and normal com- 

ponents of velocity are u* and v*, respectively [see Fig. 2], h Is 

the specific enthalpy, p is the pressure, yis the viscosity, and Pr 

is the Prandtl number taken to be a constant. 

Probstein and Elliott  introduced a generalized Mangier trans- 

formation which reduced Eqs. (1) to an almost two-dimensional form 

by applying the transformations 

r. 
dx &» ix* 

dy - (^)J dy* 

3  
3x* 

3  
3y* 

(~)2Ji=+J(^) 
3x 3X* 37 

L ay 
(2a) 

(-PJ ^ + J((r-)2I&1 u* ^)j 

rb 
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where L Is an arbitrary fixed reference length. By also Introducing 

the transformation 

_      2JL y cos e. 
y - (1 + 2  > u (2b> 

rb 

Eqs. (1) can be reduced "exactly" to two-dimensional form. This 

follows from the fact that 0. and r are functions of x only, so 

that Eqs. (1) when transformed by means of Eqs. (2) give the 

homogeneous system 

i_ (pu*) + !_ (pV) . 0 (3a) 
3x       dy 

/ *  3u* . — 3u*x  3 .- au* v .dp  . p(u* ~^- + v -3-) ~ (v "IT") + _ " 0 
3x     3y    3y   3y    dx 

(3b) 

/ * 3h . - 3hv  1 3 ,- 3hN  -/3u*x2   .dp  -  /_ . 
P(U* — + v -^3) - pT — (P -z) - y(-ir) - u* ^ - 0  (3c) 

3x    3y     3y   3y     3y       dx 

which are "two-dimensional" In form.  It must be pointed out, how- 

ever, that the parameter M> although having the dimensions of a 

viscosity, is not a true state variable since it depends not only 

upon temperature but also on the geometry of the system. Still, 

Eqs. (3) can be interpreted^as--inathema^tcallynrnaldgous ^o the 

equations of two-dimensional flow. Furthermore, Eqs. (3) can be 

solved by the method used in the viscous layer problem of Ref. 6 

if v can be taken as small compared to u*. The present work 
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Cherefore extends the merged layer model of Ref. 6 only Co slender 

bodies (6. « 1) for which Che viscous layer streamline curvature 

3y*/9x* can be ignored and for which v* is negligibly small com- 

pared to u*. For such bodies, by Eq. (2a), v « u*. 

Wich Che governing equations in two-dimensional form and with 

v « u*, the analysis can more directly parallel that of Ref. 6. 

Following Chis reference, Che viscous layer adjacenC Co Che body is 

assumed locally similar, and for a calorically perfecc gas wich a 

Prandcl number of unity, Eqs. (3b) and (3c) then reduce to 

(Nf ) + ff  - 0 
nn'n   no (4a) 

where 

CN®)n + f®n -0 (4b) 

N " Pu/PbUb (5) 

and where the dimensionless independent and dependent variables are 

f(n) 

(2?) 

f "1 
j ü* 
»   e 

U*    f 

■M J ody 

dn 

ax) - I PbMbu* dx 

®(n) 
H - H 

**'% 

(6) 

Here H is the total enthalpy in the barred system (with v << u*) and ■" 

. 
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the subscripts "s" and "b" denote quantities at the shock surface and 

body surface, respectively. 

Following Ref. 6, we first consider the problem neglecting 

velocity slip and temperature jump at the body surface. With the 

body temperature T. constant, the boundary conditions are then 

f-f-0    ®"0    atn-0 

(7> 

fn - 1   ®. 1    at n - ns 

Consider now the energy equation (4b) which Is satisfied by 

the Crocco Integral nn ■ f . From the definition of total enthalpy 

(with v << u*) 

X 
|- - (1 - f ) [1 + A2 (-0-)  f ] (8) 
Tb       n Tb  n 

where 

A(x) - u*/Um (9) 
s •» 

with U the freestream velocity. For the hypersonic conditions con- 

sidered, the freestream stagnation temperature T-. is given by 

T. - U2/2c . 
0   »  p 

Consider next the viscous layer momentum equation (Aa). An 

expression for N is sought so that Eq. (4a) can be expressed in 

terms of the streamfunction f(n1 and its derivatives and in terms 
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of the local boundaty conditions at the shock surface and the body. As 

4 
shown In Pan and Probsteln , the normal pressure gradient across the 

viscous layer Is negligible when viscous layer streamline curvature 

is negligible. Thus, by p - pRT, p./p - T/T. so that from the defini- 

tion of n[Eq. (6)] It follows from Eq. (8) that at any given x 

y - [(2c)1/2/pbu*J Kn) (10) 

where 

Kn) / (1 " fn ) [1 + A^(T0/Tb) y dn (11) 

Hence, from Eq. (x0) and from the definition of y [Eq. (2)] 

u/u - 1 + BI(n) (12) 

where B is a function of the boundary conditions at n " 0 and 

n - ns. Since N - (p/pb)(M/üb) - (Tb/T)(i7/wb) - (Tb/T) (u/^HÜ/p) and 

1/2 
if a viscosity-temperature relation of the form p « T 'Is assumed, 

then by Eq. (12) 

N - (Tb/T) 
1/2 

[1 + BKn)] (13) 

To complete this expression for N, we now obtain B in terms 

of the local boundary conditions at the shock surface and the body. 

This is done by first applying local conservation of mass flux 

■ ■ 
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across the shock and into the viscous layer by use of 

*s 

P " 0(J) " (2lfL)J 1 Put dy - ^L^ {201/2  f (na)    (Ua) 
0 

where a(j) Is the cross-section of the Incident streamtube given 

by 

a(J - 0) - [1 + ^ (cot 6 - tan 9. ) sin 26. ] y*/cos 6.  (l^ib) 
2 3 O DSD 

o(j - 1) - vrl (14c) 
s 

Now, from the definitions of x [Eq. (2)] and of £(x) [Eq. 

(6)], it can be shown that 

25 - 2ptubu* [(1 - 2J/3) (rb/L)
2J] x* (15) 

where r. ■ x* sin 6. [see Fig. 2] has been used. Next, dividing 
D D 

Eq.   (14a) by Eq.   (15) for the case j ■ 1,  Eq.   (10) becomes 

y -  {[2wbf(ns)/paoU<o]   0rb/rs)2  (2x*/3L)} I(n) (16) 

Finally, neglecting longitudinal shock curvature, we set 

y*/x* • tan 0    so that Js a 

T /x* -  (r.   + y* cos 0. )/x* -  [1 + (tan 0 /tan 0. ))  sin 0. 
S DSD SD D 

(17) 
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and by comparing Eq. (12) to the definition (2b) of u by the use of 

Eqs. (16) and (17), we find 

B - {Sjw./Sy,., tan 9. [1 + (tan 6 /tan e.)]2} f(n ) a  (18) 
D   ee       D 8       D S 

Here a is the inverse Reynolds number (p U r./w )  based on free- 
00 00  Q   DO 

stream conditions and the local radius r. (x*) of transverse body 
b 

curvature. From Eq. (18), B vanishes for two-dimensional flow 

(j - 0). 

From the energy equation in the form of Eq. (8), from 

1/2 
U ^ T  , and from Eqs. (13) and (IS) which together relate the 

parameter N to the streamfunction f(n), to its derivatives, and to 

the local boundary conditions on the viscous layer, the viscous 

layer momentum equation (4a) now reduces to 

{1 + C,I(n)} f 

[ " ^-THK  
+ "nn " 0 (19) 

{(1 - f )[1 +c f j}1/2 n   nn 

where 

C1 - A
2(T0/Tb) (20a) 

T 
C2 - {8j(

x-2--~)1/2 f(ns)/3tan eb [1 + (tan es/tan eb)I
2} M^a  (20b) 

0 

Equation (19) differs from the reduced viscous layer momentum equation 

of Ref. 6 only by the appearance of the new term C?I(ri). This f:erm 
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introduces the effects of transverse curvature characterized by the 

parameter M a, and It vanishes for the case of twc-dimensional flow. 
00 

For the case of axial Symmetrie flow, only the regime M a << 1 is 

treated in this work. The reason for this will be discussed in con- 

junction with the shock structure analysis. 

Now, if C and C? were to be treated as parameters, then for 

each value of (f ) greater than the value which gives the boundary 

layer solution (n -»•«■), a viscous layer solution would be obtained 

with finite shear (proportional to Nf ) at the shock surface n ■ n 
nn s 

where f ■ u*/u* ■ 1. The shock surface coordinates x*, y* corres- 
n s 's 

ponding  to  n    are determined by 1)  employing Eq.   (14a)  which states 
s 

that mass flux into the viscous layer between the body and shock 

surface is conserved and 2) by matching the velocity u* and its 

gradient 3u*/3y* obtained with finite shear at the outer edge of the 

viscous layer to the respective quantities obtained at the inner edge 

of the shock from the shock structure solution. 

III.  Shock Structure 

Since the flow at the shock surface has been assumed locally 

similar within the viscous layer model, all shock structure variables 

at the inner edge of the shock are single-valued functions of n . s 

The shock transition equations in the coordinate frame centered 

at  the shock surface are illustrated by the continuity and tangential 

momentum equations 
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h <r:,pv> - 0 
on 

(21a) 

pv 3u  1 3 
3n J 3n ^ * t (21b) 

where n Is the coordinate in the direction measured normal from the 

shock surface to the freestream, and the velocity components u and 

v are taken normal to and parallel to n, respectively [see Fig. 2]. 

Uased on the results of Ref. 6, the effects of including longitudinal 

shock curvature terms in Eqs. (21) have been neglected as small. 

Integrating the continuity equation (21a) yields 

rJpv ■ constant - rJp v ■ r^p v 
S S S    arm to (22a) 

Substituting Eq. (22a) into Eq. (21b) and multiplying by (r/r )2^t s 

the tangential momentum equation  (21b)  becomes 

,r .j  3u      .r vj  3    r   /^ >j  3ui 
"sVr*     3^-  ^     3^u(F-;     3^ (22b) 

To solve  these shock structure equations,   the following reduced, 

dimensionless variables are introduced: 

f P U      r 
— (- I      u     r 

^)J dn 

ou2 
00    OS 

w . H_ w    u 

D-fi- * - 

v_ 
Ü 

h^-v2 

U2 

(23) 

■' 
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The dimenslonless forms of Eqs. (22) by (23) are then 

D V - [1 + j(A /r )] D V 
S S   l    •'  8  S J  " " 

(24a) 

H2   a a H 
(24b) 

where A = (r - r ) denotes shock thickness. Equations (24) differ 
8     »    S 

from the "zero-order" shock transition equations of Ref. 6 only by 

the appearance of the transverse shock curvature parameter A /r . 
8  8 

If however Ma << 1, then A /r << 1 and a simple closed form solu- 

tlon to Eqs. (24) can be readily obtained analogous to the "zero- 

order" shock solution In Ref. 6. In the present model, M a << 1 Is 

satisfied and transverse shock curvature terms are neglected as 

small In the shock structure equations. Equations (24) then become 

D V - D V 
8 8    m  o 

(25a) 

H2        s  s H (25b) 

and In similar manner the normal momentum equation and the energy 

equation for the shock structure become 

DV f+ f 
s s 3C  3C 

4 jTV 
3  2 0 (25c) 

D v *♦ - i l2* + D v W ^ - ^ (W ^) 
ss as  3 a 2   as 3?  3i; ^W 3?' 

(25d) 
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The shock structure Is taken to extend from the outer edge of the 

viscous layer c ■ 0 to the freestream g -*■ <». At the shock surface, 

the shock structure flow variables and their normal gradients are re- 

quired to match the corresponding viscous layer values at n ■ n as 
s 

given by the solution to Eq. (19). 

Following Rfef. 6, we now Illustrate this matching procedure at 

the shock surface for the case of the finite tangential shear stress 

M (T"*) *  "n teTms  of viscous layer variables, this stress may be 

written 

s ay* s      s   ay* s    a- s (26) 

or 

Si 
(27) 

where 

([I + -z (cot 6    - tan e. )  sin 28. J   (tan 9 /cos 9. )    for j - 0 
I / S O DSD 

Q^J)-^ 

0 [1 + (tan 9g/tan 9b)]'  (3L/2x*) for j  - 1 

(28) 

sin 9.    (1 + tan 9  /tan 9. )(x*/L) . 

^2U/       \1 + 2(tan e /tan 9,)[1 + (tan 9  /2tan Q.)]' 
s     b s      b 

(2P) 

On the other hand, at the Inner edge of the shock, the shear Is 

■ 3 -;i- •       •   -: w. 
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wich the subscript "s" here denoting conditions at r, - 0, Equat- 

ing Eq. (27) to Eq. (30) 

3W Nfrm 
(f)s - Q^J) Q2(.1) A(-If)8 (31) 

This matching of viscous layer solution to shock structure 

solution at the shock surface is shown next lor the case of the 

shock surface velocity u*. First, recognizing from Fig. 2 that at 
5 

the freestream W - cos (6 + 6. ) and V ■ - sin(e + 9. ), and at 
«o       s   b     «»        s   b 

the shock surface W - (u*/U ) (u /u*) - A cos 6 , the tangential 
s    s «   s s s 

momentum equation (25b) is integrated once with the result 

aw 
(fr) - tcos (6^ + 9. ) - A cos ee] sin (6., + 6. )     (32) og s        so s      s   b 

Substituting Eq. (32) into Eq. (31) and solving for the reduced 

velocity A at the shock surface 

u* cos es 2Q1(j)  Q2(j)        Nfnn      _1 
A " IT "  {cos  (6    + 6. ) + sin [2(0    + ej ]   (~Zr)s} (33) 

oo so s b 

For the case of flat plate flow j - 0 and 6.   - 0, Eq.   (33) reduces 
b 

to the result of Ref. 6. 

The shock angle in terms of the density and pressure behind 

tv<> shock is obtained next by integrating the normal momentum 
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equatlon (25c) once and applying freestream boundary conditions. Neglect- 

Ing the gradient term Crr) as small compared to V [see Ref. 5] 
d t S S 

iin (e^ + e.) v - p - sm2 (ee + e.) - -^ S    D   S    S S    D     .,1 
(34) 

Eliminating V by means of Eq. (25a), the shock angle is then given 
s 

by 

sin2 (es + 9b) - D8(P8 - 1/YM
2
)/(D8 - 1) (35) 

The reduced enthalpy behind the shock is sought next. Integrat- 

ing Eq. (25b) twice, substituting the resulting velocity profile 

U(c) into the energy equation (25d), and integrating twice, we 

obtain the result 

♦ - i {[1 - A cos 6 /cos (9 + 6. )12 cos2 (6 + 6. ) 
8   Z S        St) S    D 

+ sin2 (6 + 8.) + 2/(Y - 1) M2} 
s   b •» 

(36) 

34 
where the gradient term (—) has been neglected compared to * 

3W 
[see Ref. 5], and where the term (—) has been eliminated by use 

OX,   S 

of Eq. (32). 

In order to obtain the density ratio across the shock, another 

2 
expression for sin (G + 9. ) is first found by substituting * 

S     D S 

'■■   -■■■■■'■■  --■■        ■ ■■     .  -:•  ■■ ■,.....■, 
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from Eq. (36) and V from Eq. (25a) Into the reduced equation of state 

s    Zy    S   S    S 

Equating the resulting expression to Eq. (35) 

P0           [(Y + 1)/(Y - D] Pa + Uy^l 
1) _ _?. _ §__ Ü  

s    p»    PS + [i - A cos eg/cos (0g + eb)]z + O/YJTHY + I)/(Y - D 

(38) 

We note here that In order to avoid the solution of a cubic equation, 

2 2 a term D [1 - A cos 9 /cos (6 + 6. )] , which appears after equating 
S 9 5     D 

2 
the expressions for sin (6 + e. ), has been neglected In comparison 

S     D 
2 

with (D - 1). This Is justified on the basis that since the re- 
s 

duced shear (Nf ) Is finite but always small compared to unity, 

then by Eq. (33) A cos 6 » W Is always close to W ■ cos (9 + 9, ); 
S    S " 8    0 

and the larger D , the closer W Is to W . This Is borne out by the 
S s oo 

numerical results. 

The reduced pressure P [n (x)] at the shock surface has, as 
s  s 

stated before In conjunction with Eq. (10), been assumed equal to 

the reduced pressure Pu(x) on the body at the same value of x. 

From Eq. (10) written In the form 

y' - [(201/2 T./(p u*T )] I(n ) (39) 
S Ü   s s s      s 

and from the definition of y [Eq. (2a)] written in the form 
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K 
[(rb + y* cos eb)/L]

J dy* - [(r + r ) x* tan 6 /2Ly*]-y* (40) 
s' s 

wc have upon elimination of y and the use of Eq. (14) 
s 

pb - -72 - VJ> VJ> ^ 'f' 
p Ü ' 
«O 00 

(41) 

where 

(cot 9 s 

Q3(j) 
2(x*/L) cos 8. 

^[2 + (tan 9 /tan 9. )] (tan 9 /tan 9. ) 
so s    b 

for j - 0 

for j - 1 

(42) 

and where 

F - 
Tb I(V 
T0 *<%> 

(43) 

Therefore, if from Eq. (19) a streamfunction f(n) and its derivatives 

were to be known at n ■ n , the relations (33), (35), (38) and (41) 
s 

would form a closed system of four equations in the four unknowns 

A, 9 . D . and P . 
s  s     s 

IV. Method of Calculation 

The model as formulated imposes the following restrictions on 

the input gas and body properties: M sufficiently large such that 

2 
c TA % U /2, T./T. « 1, Y ■ constant, Pr - 1, and 8. « 1. 
p U    •      D  U D 

The solution for the viscous layer streamfunction f(n) and for 

the various flow properties of interest proceeds by first 
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transformlng Eq.   (19)  to the following set of first order differential 

equations as  In Ref.  6: 

f    - J      J    - Z 1/2 
(1 + C.I)'1 g      g    - - Z1/2(l + C,!)"1 fg (A4) 

where 

|1 - J|  (1 +c2J) = in (A5) 

The no-sllp boundary conditions 

f(0)  - J(0) -  1(0) - 0 at n - 0 

(46) 

J(n8) - 1 at n " n 

are then Imposed. Now, for values of the wall shear g(0) ■ (f ). 
nn b 

greater than the value which gives an Invlscld flow region at the 

outer edge of a boundary layer (n -*«>), a velocity profile with 

finite shear g(n ) " (Nf ) at the shock surface can be obtained 
s     nn s 

for each station along the body within the merged layer. At each 

such value of g(0), the no-sllp boundary conditions are fully 

specified.  Beginning then at n " 0 with a value g(0) » [g(0)] 
S 

only slightly larger than the value [g(0)]    which gives the 
s 

boundary layer solution (n -►<»), Eqs. (44) - (45) are simultaneously 
s 

Integrated out from the body surface to the shock surface for fixed 



mmmmmmmmmmmmmmmmmmmmmmfmmmmMmi winiwuiiBiuMWiwiii 

-23- 

local values of C^ and C.. The Initial guesses for these parameters 

are obtained from the boundary layer limit n -»"»with 6 guessed to s s 

be eo - eD   where 0o   - 6    (y. M , e. , j) Is the Invlscld s     "j— S.       8. oo|j Inv       Inv    Inv 
shock layer value for wedges and cones given In Ref. 12. As shown 

in the Appendix 

T cos (e8  + eb) 

ci|      -TT'-^rr1 >2 <"> 'n ■* *  b       s. s inv 

e - e s   s. inv 

c2\ " 0 (48) 
s 

e - e 

provide a better value of eg from Eqs. (35), (38) and (Al).  Better 

values for the local parameters C. and C- are next obtained from 

s   s. inv 

The numerical integration of Eqs. (44) - (45) is stopped at the first 

point n reached within the viscous layer where J - f ■ u*/u* ^ 1. 
n     s 

The coordinate n is the finite value of n at this point, and the 

resulting finite values of f(n ), g(no) and I(n ) are used to com- s     s       s 

pute A and F in approximate form from [see Eq. (33)] 

COS 98lnv        2Q1(J) Q2(j) 1 
A " f^nr     +TT + iiiTTife       +JJ (2f^-n 1      (49) 

S
lnv   b sinv   b       s 

and the relation given by Eq. (43). These results are then used to 

y 



'^^ 

-24- 

the relations [see Appendix] 

io   C08 es       2Qi<J) Q2(J)    £_    -2 
Cl " T. {cos (6 + 8. r + sin [2(6 + 9V)] ^f^-n 

}   (50) 

b      s   b       l  s   b        s 

[2 + (tan 9 /tan 0. )] (tan 9 /tan 9. ) 

C2 I(n ) f(n) (51> 

s    s 

and beginning again at n - 0 with g(0) - [g(0)]     • Eqs. (44) - 
s 

(45) are re-Integrated from the body to the shock surface n ■ n . 

When after such successive Iterations the results at the shock 

surface from one cycle agree sufficiently with those values from 

the previous cycle, the local no-sllp viscous layer solution Is 

available. The effects of small local velocity slip and tem- 

perature jump are then computed as local perturbations from the no- 

sllp results. The method for obtaining the local slip solution Is 

entirely analogous to that given In Ref. 6 except that Eqs. (47) - 

(48) of that reference are replaced by 

u*« sin 9. _. .        T. . ,„ 

u*   Un;b  l(3L/x*)J  lU  3 ' ^3  U'J   l(Y - 1) Tn
J 

A 

2fn.^ Fns£ n ns   nS* nn n 0 
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cos 6 . cos 6 
A  & / Jisi  . nsfc {_1 snsl        ,,-1 ,„. 
si    lcos (6)   + eu) 

r f  1
A „  cos (e   + eL)

J/n-n   (   ' s—.«   b nsÄ       s  .   b     s ns£ nsi 

and the rarefaction parameter [Eq. (35) of Ref. 6] Is replaced by 

M,cl/2 QiO) W2    x* 8in eb i 
-TTT" [ 2i— J      f—u—-r/fOU ^4) 
Re ■;:«   d-r) Qa^xy-D F 

The final results at g(0) - [g(0)]      constitute the local 
S 

solution at the downstream end of the merged layer. The final 

values there for C. and C. become the Initial guesses for these 

parameters at the adjacent station a small distance upstream. The 

viscous layer equations are integrated here from n ■ 0 with 

g(0) ■ [g(0)]  _ _ + Ag(0), where Ag(0) Is a small Increment in 
s 

the surface shear g(0). Through this stepwise upstream marching 

method, with successive iteration cycles at each step, the velocity 

and state variables are computed at several stations x* within the 

merged layer regime. The computation is stopped at the upstream end 

when the condition M a << 1 or the condition (f ). << 1 is no longer «o n'b 0 

satisfied.  If the computation is carried to stations x* farther 

upstream, the present model breaks down as the calculated values of 

p /p become less than unity. This occurs at values of the rarefac- 

1/2 tlon parameter Mo>(C/Re A „,)   of the order of unity. 
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VI. Results and Discussion 

Computations have been carried out In the manner Indicated in the 

previous section. The cases considered cover the range 20 $ M $ 25. 

0.06 $ T./T ^ 0.15 and 0° $ 0. ^ 20°. 
b 0 o 

In Figs. 3-5 the density at the shock surface for sharp wedges 

is compared with measured values obtained by McCroskey, Bogdonoff and 

14 
Genchi . Considering the scatter in the data, the agreement with 

theory would appear to be good. The theoretical shock density ratio 

for a 10 cone is shown compared with the data in Fig. 6. In contrast 

with a wedge having the same flow conditions and comparable angle 6. , 
D 

the shock at the same distance x* from the leading edge is weaker on 

the cone.  This is due to the circumferential spreading of the flow 

around the cone, bringing the shock wave closer to the body surface 

and causing the merged layer to extend farther downstream than on 

the wedge. 

Fig. 7 presents the wedge surface pressures given by Vidal and 

9 
Uartz in Citnparison with the theory for several values of 9, . The 

D 

strong interaction and free molecule limits given by Hayes and 

13 Probstein  are also shown.  Both the present theory and the data 

lie below the result predicted by strong interaction theory. This is 

also seen to be true for sharp cones as shown in Fig. 8 where the 

cone surface pressure by the present theory and by the strong inter- 

19 action theory of Mirels and Elllnwood  are compared to the experi- 

mental data In the form presented by Waldron  and by Hofland and 

Click18' 
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On Figs. 9-10 Che experimental skin friction and heat transfer 

9 
data obtained hy Vidal and Bartz on wedges is compared with the 

theory, and the agreement appears to be quite good. The theoretical 

result for cones is given in Fig. 11 compared to experiment in the 

form presented by Waldron . 

In view of the reasonable agreement of experimental data with 

the theory it would appear that the present continuum merged layer 

model is a satisfactory one up to rarefaction parameters 

1/2 
M<io(C/Re * „,)   ^ 1. This limit would correspond to distances 

back from the leading edge of the order of M mean free paths. 

Appendix 

THE PARAMETERS C^ AND Z 

By Eq. (33), the parameter C. is 

2^0  ^0    C08 e
a       ZQ^J) Qzt»)   £_     -2 

Cl " A T. " T. ' ,os (ea + e. ) + sin [2(9 + 9. )] ^f^-n^     (A"1) 
Do S    D S    D S 

To find C, an expression for the parameter M a is first re- 

quired. To obtain this, we eliminate C between Eqs. (1A) and (15) 

1/2 
for the case of j - 1 and note that p.y./p p - yM P 2T_/(y - 1) T ' 

1/2 
from y « T   and the equation of state, with the result- 

2 
3 cos 9. (tan 9 + tan 9.)[1 + (tan 9 /tan 9,)]      , T. , ,. 
Mb     s       t s     b   fY-lb.i/i 

o» 2 l  2   T J 

8YPsAf
2(ns) 

To 

(A-2) 
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Uslng Eqs. (28) and (41) - (43) Co eliminate P , we obtain then 
s 

C2 - [2 + (tan es/tan eb)] (tan eg/tan eb)/I(ng) f(ns) (A-3) 

from Eq. (20b). 

In the boundary layer limit n "*■ " and g(n ) ■* 0, we find that 
s s 

since f ^1 when n ^ n 
n s 

ns 

[f(ns)]|    - [) f dn].   - - (A-4) 

ns 

(1 - f ) (1 + C.f ) dn],    - finite     (A-5) 
k '    in ♦ öD V-  o 

so that taking 0-6   , Eqs. (A-l) and (A-3) yield 
inv 

_ cos (9    + 6, ) 
In S.       n      - 

■Tt-^rr 12 <*-'> b       s, 'n ->■ " inv 
a 

e -»e s  s. 
xnv 

C.       - 0 (A-7) 
2| 

s 

e =9 
s s. 

mv 

Here 9    (Y» M , 6. , 1) is the inviscid shock layer value for 9 
S. w   D S inv 

obtained from Ref. 12. 
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