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THE HYPERSONIC LEADING EDGE PROBLEM
II. WEDGES AND CONES
by

*
Michael L. Shorenstein

Abstract

An analysis is given for the viscous hypersonic flow past slender
sharp wedges and unyawed cones. The lecading vdge or nose region
treated encompasses the merged layer regime in which the shock thick-
ness 1is not small in comparison with the viscous layer thickness but
for which in the axisymmetric case the shock thickness is small in
comparison with the radius of transverse shock curvature. A Navier-~
Stokes flow is assumed, and both the shock structure and viscous
layer are taken to be locally-similar of boundary lazyer type. The
analysis follows that used by Shorenstein and Probstein for the
corresponding flat plate problem. For axisymmetric cone flow, a
modification of a transformation introduced by Probstein and Elliott
is given to reduce the axisymmetric viscous layer equations includ-
ing transverse curvature to '‘exactly’ twc-dimensional form. Results
for the state conditions behind the shock, and the wall pressure,
skin friction, and heat transfer rate are found to he in good agree-
ment with available experimental data.
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Nomenclature

velocity ratio, u:/U°°

given by Eq. (18)
Chapman-Rubesin constant

given by Eq. (20a)

given by Eq. (20b)

skin friction coefficient
specific heat at constant pressure
reduced density, o/p_
streamfunction given by Eq. (6)
reduced slip velocity, ugzlu;
given by Eq. (43)

shear stress, ann

value of g at body surface
specific enthalpy, cpT

total enthalpy

given by Eq. (11)

index taken to be zero for two-dimensional flow and unity
for axisymmetric flow

arbitrary fixed reference length
freestream Mach number

normal coordinate for shock structure
given by Eq. (5)

static pressure



Pr

Q, (1)
Q, (1)
Q, ()

reduced pressure, p/pupi

Prandtl number

given by Eq. (28)

given by Eq. (29)

given by Eq. (42)

radius of transverse curvature, L% + y* cos eb
gas constant

local Reynolds number, p U_x*/u_
Stanton number

static temperature

freestream staguation temperature

velocity component parallel tc shock surface and to body
surface, respectively {see Fig. 2]

freestream velocity

velocity component normal to shock surface and to body
surface, respectively [see Fig. 2]}

transformed normal velocity given by Eq. (2a)
reduced velocity, v/U
reduced velocity, u/U_

coordinate along tody surface and normal to body surface,
respectively [see Fig. 2]

transformed coordinates given by Eq. (2a)
inverse Reynolds number (pauwrb/uw)-l
specific heat ratio

shock thickness

stretched normal coordinate for shock structure, Eq. (23)

stretched normal coordinate for viscous layer, Eq. (6)




ns =

Gb =

3] =
S

. -
M =
5 -
0 -
o (i) =
[} -
;m =
Subscripts

b =

nst =

st =

transformed location of the body surface for the case of slip
location of the shock surface

body surface inclination angle with respect to the free
stream

shock surface inclination angle with respect to the body
surface

reduced enthalpy given by Eq. (6)

viscosity

given by transformation Eq. (2b)

transformed coordinate along body surface given by Eq. (6)
density -

cross-section of streamtube incident to viscous layer
reduced enthalpy given by Eq. (23)

interaction parameter, M:(C/Rex* m)ll2
?

condition at the body surface

quantity obtained from no-slip solution
condition at the shock surface

quantity obtained from slip solution
derivative with respect to n

condition at the freestream
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I. Introduction

Two classes of continuum flow models have been investigated
recently for treating the hypersonic flow past sharp bodies up~-
stream of the strong interaction regime in the merged layer [see
Fig. 1] where the shock thickness must be considered finite in
comparison with the viscous layer thickness. One classl-a applies
the full Navier-Stokes equations in finite difference form in order
to determine to what extent a continuum may meaningfully describe
the flow field in the merged layer. This complex scheme requires

rather large computer storage space.

Another class of merged layer modelsa_6 uses the Navier-Stokes
equations but assumes 'local similarity" to apply in both the
viscous layer and shock wave, that 18, streamwise variations of all
properties are taken to be sufficiently small, so that the Navier-
Stokes equations, when applied locally, can be approximated by l
ordinary differential equations. This descripticn of the merged
viscous shock layer 1is obtained from locally-similar solutions
"patched’ at the interface between the outer shock structure portion
and the inner viscous layer portion in which the equations are taken
to be of boundary layer type with normal pressure gradient effects
neglected. Results in Ref. 6 from such a merged layer model for a
flat plate have compared well with experimental data7-9. The

theoretical calculations have shown tne relative importance of

several rarefaction effects over a cold sharp flat plate aligned



parallel to the hypersonic freestream. Dominant among these effects
was shown to be the finite shear at the interface between the back
of the shock and the outer edge of the viscous layer. The effect of
including velocity slip and temperature jump at the body surface was
shown to be smaller but non-negligible, while the effect of including
longitudinal shock curvature was found in comparison to be negligible.
The present analysis extends this flat plate continuum merged
layer model of Ref. 6 to wedge and axisymmetric conical flows by in-
vestigating the additional effects of body slope and, for conical
flow, the effects of axial symmetry and transverse curvature effects.
Longitudinal shock curvature effects are neglected as small based on
the results of Ref. 6. Body slope effects are characterized by the
» Where ©

parameter 6 is the half angle of the wedge or unyawed

b b
cone. The analysis is extended only to slender bodies with eb << 1
for which the normal component of the viscous.layer velocity can be
neglected compared to the tangential component. This restriction is
introduced in order to solve the viscous layer problem by the méthod
of Ref. 6.

In the axial symmetric case, a modification of a rangler type
transformation given by Probstein and Elliottlo is introduced to
reduce the axisymmetric viscous layer equations to an "exactly'" two-
dimensional form. The modification involves a transformation applied

to the viscosity coefficient, and this transformation is shown to

include the effects of transverse curvature characterized by the



parameter M“g. Here o is an inverse Reynolds number based on the body
radius L2 of transverse curvature, and M_ is the freestream Mach
number. A new term proportional to M o is found to modify the reduced
viscous layer momentum equation of Ref. 6 and is shown to account for
transverse curvature effects.

For the present investigation, two regimes of M o are dis-
tinguished: 1, a regime immediately adjacent to the sharp nose where
Magl and 11, a regime downstream of the sharp nose where Mo << 1.
Only the second regime is treated here. This restriction is introduced
to obtain a simple closed form shock structure solution by a method
analogous to Ref, 6. In the conical shock structure equations,
transverse shock curvature terms are of order As/rs where As is the
shock thickness and T, is the radius of transverse shock curvature.

It is found that if M_a << 1, then terms of order As/rs are
negligible compared to the other terms in the shocl. structure
equations. These equations can then be reduced to the form of the

"zero-order" chock equations solved in Ref. 6.

II. Viscous Layer

As in Ref. 6, the merged shock layer is described by a viscous
layer of boundary layer type patched at an outer interface (the "shock
surface') to a thick shock structure. The velocity and state
variables from the solution of the viscous layer equations are matched
locally at the shock surface to the corresponding quantities from the

solution of the shock structure equations.




The governing equations for the viscous layer written in the local

body-centered coordinate frame (x*,y*) depicted in Fig. 2 are

gx* (rjpu*) + ay* (rjpv*) =0 (1a)
du* x JUk. -9p_ aL* E.ar oqu*
*

dh oh d 1
ook G+ vh R T W Gt e Lo

(u

oy* ay*

.H.it__a_b_] + (au* 2

s i G (1c)

where j = 0 for two-dimensional flow and j = 1 for axisymmetric flow,
with r(x*,y*) = rb(x*) + y* cos eb the local radius of transversa

curvature for the case of axisymmetric flow with 6, the body slope

b
relative to the freestream direction. The tangential and normal com-
ponents of velocity are u* and v*, respectively [see Fig. 2]}, h is
the specific enthalpy, p is the pressure, uis the viscosity, and Pr
is the Prandtl number taken to be a constant.

Probstein and Ell:lott10 introduced a generalized Mangler trans-

formation which reduced Eqs. (1) to an almost two-dimensional form

by applying the transformations

r —
— . (b2 . by2ya 0y,
dx (L ) N < T Py ( ) = + J(ax*) =
dy= @lap o @IT (2a)

dy

veEnl s .ﬂ(" 220y
l'

b



where L is an arbitrary fixed reference length. By also introducing

the transformation

_ 2jL ¥ cos Ob
W ———) u (2b)

Ty

Eqs. (1) can be reduced "exactly" to two-dimensional form. This

follows from the fact that eb and r, are functions of x oﬁly, so

b
that Eqs. (1) when transformed by means of Eqs. (2) give the

homogenecous system

L (our) + L (ov) = 0 (3a)
ax Yy
* — t ] —_— *
puv 25, T A5, L2 G L dR. (3b)
ax ay ay dy dx
— = - Ak
o(u*%+v32) -;—ra—_(u%) -u(é-_‘:—)z-u*g_l’:-o (3c)
ax ay ay dy ay dx

which are "two-dimensional" in form. It must be pointed out, how-
ever, that the parameter ;} although having the dimensions of a
viscosity, is not a true state variable since it depends not only

upon temperature but also on the geometry of the system. Still,

Eqs. (3) can be interpreted as mathematically @nalogous to the

equations of two-dimensional flow. Furthermore, Eqs. (3) can be
solved by the method used in the viscous layer problem of Ref. 6

if v can be taken as small compared to u*. The present work




therefore extends the merged layer model of Ref. 6 only to slender
bodies (eb << 1) for which the viscous layer streamline curvature
dy*/3x* can be ignored and for which v* is negligibly small com-
pared to u*. For such bodies, by Eq. (2a), v << u*,

With the governing equations in two-dimensional form and with
v << u*, the analysis can more directly parallel that of Ref. 6.
Following this reference, the viscous layer adjacent to the body is
assumed locally similar, and for a calorically perfect gas with a

Prandtl number of unity, Eqs. (3b) and (3c) then reduce to

(ann)n + ffnn =0 (4a)

a@), + £®), =0 (4b)
where

N= oulobub (5)

and where the dimensionless independent and dependent variables are

u*
n= “—":75 J ody E(x) = J ob-ﬁbu: dx
2ot ] .
[ (6)
H-1
£(n) -H—} dn @D = 2
H

o ° s Hb

Here H is the total enthalpy in the barred system (with V << u¥*) and



=10~

the subscripts '"s'" and "b" denote quantities at the shock surface and
body surface, respectively.

Following Ref. 6, we first consider the problem neglecting
velocity slip and temperature jump at the body surface. With the

body temperature T, constant, the boundary conditions are then

b

f=f =0 @-o at n =0

)

£ =1 @-1 at n=n

Consider now the energy equation (4b) which is satisfied by
the Crocco integral (:) = fn' From the definition of total enthalpy

(with v << u*)

T

T 2 ,°0

T " Q-f£)[1+4 (fb-) £] (8)
where

A(x) = ur/u (9)

with U_ the freestream velocity. For the hypersonic conditions con-

sidered, the freestream stagnation temperature TO is given by
2
T, Uwfch'
Consider next the viscous layer momentum equation (4a). An

expression for N is sought sc that Eq. (4a) can be expressed in

terms of the streamfunction f(n) and its derivatives and in terms
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of the local boundary conditions at the shock surface and the body. As
shown in Pan and Probsteina, the normal pressure gradient across the
viscous layer is negligible when viscous layer streamline curvature

is negligible. Thus, by p = pRT, pb/o = T/Tb so that from the defini-

tion of n[Eq. (6)] it follows from Eq. (8) that at any given x

1/2

y = [(26)"" /o, ut] 1(n) (10)

where

n
9 4
I(n) J - fn) {1 +A (TO/Tb) fn] dn (11)
0
llence, from Eq. (i0) and from the definition of y [Eq. (2)]

w/u =1+ BI(n) | (12)

where B is a function of the boundary conditions at n = 0 and

n=ng. SinceN = (p/py)(u/uy) = (T,/T)(uluy) = (T /T) (w/u) (w/u) and

if a viscosity-temperature relation of the form u « '1‘1/2 is assumed,
then by Eq. (12)
N = (1, /D2 1+ 1) 13)

To complete this expression for N, we now obtain B in terms
of the local boundary conditions at the shock surface and the body.

This 1is done by first applying local conservation of mass flux
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across the shock and into the viscous layer by use of

o U9 = @) | our dy = 2?2002 £(n)

OV——— |

where o0(j) 1s the cross-section of the incident streamtube given

by

o(j =0) = [1+ % (cot es - tan eb) sin 2eb] y:/cos eb
o(j = 1) = wrz

Now, from the definitions of x [Eq. (2)] and of £(x) [Eq.

(6)], it can be shown that
2
26 = 2phubu: (A - 2j3/3) (rb/L) ] x*

where r, = x* sin eb [see Fig. 2] has been used. Next, dividing

Eq. (l4a) by Eq. (15) for the case j = 1, Eq. (10) becomes
¥ = (L2, E(n ) /o U] (r/r )% (2x%/3L)} 1(n)

Finally, neglecting longitudinal shock curvature, we set

X/xk =
ys/x tan 6_ so that

(l4a)

(14b)

(l4c)

(15)

(16)

X = * =
rS/x (rb + y* cos eb)/x* [1 + (tan es/tan eb)] sin o

an




and by comparing Eq. (12) to the definition (2b) of u by the use of

Eqs. (16) and (17), we find
B = {8jub/3u°° tan eb [1 + (tan Gsltan eb)lz} f(ns) a (18)

Here a is the inverse Reynolds number (mewrb/uw)-l based on free-
stream conditions and the local radius rb(x*) of transverse body
curvature. From Eq. (18), B vanishes for two-dimensional flow
(G =0.

From the energy equation in the form of Eq. (8), from
BN TI/Z, and from Eqs. (i3) and (15) which together relate the
parameter N to the streamfunction f(n), to its derivatives, and to

the local boundary conditions on the viscous layer, the viscous

layer momentum equation (4a) now reduces to

_.{1 + CZI(n)} fnm‘

{1 - fn)(l + len]}

1/2]n + ffﬂﬂ =0 (19)

where

2
C1 = A (TO/Tb) (20a)

T
c, = gyl f:—)m £(n)/3tan 6, [1 + (tan 6_/tan 6,)1%} M a (20b)

Equation (19) differs from the reduced viscous layer momentum equation

of Ref. 6 only by the appearance of the new term CZI(n). This ferm
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introduces the effects of transverse curvature characterized by the
parameter Mma, and it vanishes for the case of twe-dimensional flow.
For the case of axial cyumetric flow, only the regime Ma<<llis
treated in this work. The reason for this will be discussed in con-
junction with the shock structure analysis.

Now, 1if C1 and C2 were to be treated as parameters, then for
each value of (fnn)b greater than the value which gives the boundary
layer solution (ns + =), a viscous layer solution would be obtained
with finite shear (proportional to ann) at the shock surface n = ng
where fn = u*/u; = 1. The shock surface coordinates x*, y; corres-
ponding to ng are determined by 1) employing Eq. (l4a) which states
that mass flux into the viscous layer between the body and shock
surface is conserved and 2) by matching the velocity u* and its
gradient 3u*/3y* obtained wich finite shear at the outer edge of the
viscous layer to the respective quantities obtained at the inner edge
of the shock from the shock structure solution.

III. Shock Structure

Since the flow at the shock surface has been assumed locally
similar within the viscous layer model, all shock structure variables
at the inner edge of the shock are single-valued functions of Ng*

The shock transition equations in the coordinate frame centered
at the shock surface are illustrated by the continuity and tangential

momentum equations
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I -
™ (r-pov) 0 (21a)
du 1 93 3 3u "
Y D vy (21b)

where n is the coordinate in the direction measured normal from the
shock surface to the freestream, and the velocity components u and

v are taken normal to and parsllel to n, respectively [see Fig. 2].
Based on the results of Ref. 6, the effects of including longitudinal
shock curvature terms in Eqs. (21) have been neglected as small.

Integrating the continuity equation (2la) yields
rjpv = constant = rjp v = rjp v (22a)
sss o o o

Substituting Eq. (22a) into Eq. (21b) and multiplying by (r/rs)zj,
the tangential momentum equation (21b) becomes
r .j du

'r—) —_— (22b)
-]

v (3 o Iyl Loyl Ay
]

s sTr In
s

To solve these shock structure equations, the following reduced,

dimensionless variables are introduced:

u L5 Un Uu
0 (23)
h + % v2
P = —2—2- D= _O_ O = 2
o U ™ U
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The dimensionless forms of Eqs. (22) by (23) are then

DV, = [1+3(a /r )] DV, (24a)
2% W
-a-c—z - sts T 0 (24b)

where AS (r_ - rs) denotes shock thickness. Equations (24) differ
from the '"zero-order'’ shock transition equations of Ref. 6 only by
the appearance of the transverse shock curvature parameter Aa/rs’

If however M _a << 1, then As/rs << 1 and a simple closed form solu-~
tion to Eqs. (24) can Se readily obtained analogous to the ''zero-
order' shock solution in Ref. 6. In the present model, Mo <<1is

satisfied and tcansverse shock curvature terms are neglected as

smail in the shock structure equations. Equations (24) then become

sts = DwVw (25a)
22w W
2 DVear =0 | (25b)

and in similar manner the normal momentum equation and the energy

equation for the shock structure become

W 3P 4 3%V
DV, T + 3% "3 .2 0 (25¢c)
14
DV ﬂ_ii{g.‘.nvwﬂ-ﬂ(wa—w-)-o (25d)
ssag 3.2 s s d3f 9o 14
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The shock structure is taken to extend from the outer edge of the
viscous layer { = 0 to the freestream Z + «, At the shock surface,
the shock structure flow variables and their normal gradients are re-
quired to match the corresponding viscous layer values at n = ng as
given by the solution to Lq. (19).

Following Ref. 6, we now illustrate this matching procedure at
the shock surface for the case of the finite tangential shear stress

(

In terms of viscous layer variables, this stress may be

ay*
written
- gL
(ay* = (w/w) (ay* (u = )g (26)
y
or
e Vf )
(w5500 = ) Q1) ol 2u5t, (27)
where

([1 + % (cot es - tan eb) sin 26bl (tan es/cos eb) for j = 0
Q1) =y
[1+ (tan 0_/tan eb)]2 (3L/2x*) for § = 1 i

(28)

sin e (1 + tan 6 /tan ] )(x*/L)
Q) = {33 2(tan 5_/tan 6 )[1 T (tan 6 /2tan © )1

(29)

On the other hand, at the inner edge of the shock. the shear 1is
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u* 2 aw du¥ 2,00
(o 5oRg = PIIGD, GED G = 0 u2Eh, (30)
with the subscript "s' here denoting conditions at 7 = 0. Equat-
ing Eq. (27) to Eq. (30)

&, = o) ()A(f =i (31)
50s = Q) 0,0

This matching of viscous layer solution to shock structure
solution at the shock surface is shown next for the case of the
shock surface velocity u:. First, recognizing from Fig. 2 that at
the freestream W_ = cos (6s + eb) and V_ = - sin(es + eb), and at
the shock surface Ws = (u:/UQ) (us/u:) = A cos es, the tangential
momentum equati~n (25b) is integrated once with the result

( = [cos (es + eb) - A coa es] gin (es + eb) (32)

ar’s

Substituting Eq. (32) into Eq. (31) and solving for the reduced

velocity A at the shock surface

u* cos 6_ 2Q1(j) Qz(j) Nf

A=y ™ {cos (6s + 0 + sin [2(0s +0 )] (

i DY R € )

b’

For the case of flat plate flow § = 0 and eb = 0, Eq. (33) reduces

to the result of Ref. 6.
The shock angle in terms of the density and pressure behind

t-e shock is obtained next by integrating the normal momentum
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equation (25¢) once and applying freestream boundary conditions. Neglect-

ing the gradient term (%%)s as small compared to Vs [see Ref. 5]

2 1
sin (es + eb) Vs = Ps - sin (es + eb) - YMZ (34)

Eliminating Vs by means of Eq. (25a), the shock angle is then given

by
sin2 (6 +0)=D (P - 1/7.\12)/(1) - 1) (35)
s b s 8 e s

The reduced enthalpy behind the shock 1is sought next. Integrat-
ing Eq. (25b) twice, substituting the resulting velocity profile
W(z) into the energy equation (25d), and integrating twice, we

obtain the result

1 2 2
¢ =3 {[1 - A cos es/cos (es + eh)] cos (e8 + eb)

+stn® (0 +0.) + 2/(y - 1) M2} (36)
where the gradient term (%%)s has been neglected compared to @s b
[see Ref. 5], and where the term (%%)s has been eliminated by use
of Eq. (32).

In order to obtain the density ratio across the shock, another

expression for sin2 (es + eb) is first found by substituting ¢s
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from Eq. (36) and Vs from Eq. (25a) into the reduced equation of state

«aY=-1 _
Ps 7y Ds(2¢s vs) (37)

Equating the resulting expression to Eq. (35)

p [(+ /G - DI B+ 1/l

* P P, + [1 - A cos @ /cos (8 + eb)]2 + (IIYM:)(Y +1)/(y - 1)

(38)

We note here that in order to avoid the solution of a cubic equation,
a term Di[l - A cos es/cos (e8 + eb)lz, which appears after equating
the expressions for sin2 (9s + eb), has been neglected in comparison
with (Di - 1). This is justified on the basis that since the re-
duced shear (ann)s is finite but always small compared to unity,
then by Eq. (33) A cos es = ws is always close to W_ = cos (e8 + eb);
and the larger Ds’ the closer ws is to W_. This 1is borne out by the
numerical results.

The reduced pressure Ps[ns(;)] at the shock surface has, as
stated before in conjunction with Eq. (10), been assumed equal to
the reduced pressure Pb(;) on the body at the same value of X.

From Eq. (10) written in the form

o= 1/2
Vg " {(2¢) Tb/(psugTs)] I(ns) (39)

and from the definition of ;'[Eq. (2a)] written in the form

SN TR “{'ﬂ}m "‘\F‘W




t
|
|

=21~

- b - 2
y [(rb + y; cos eb)/L] dy* [(rs + rb) x* tan OS/ZLy;] y; (40)
0

we have upon elimination of ;; and the use of Eq. (14)

% -1 F
= - - l_ I
where
cot 8 for j =0
Q1) = @
2(x*/L) cos 8,
3(2 + (tan Os/tan eb)] (tan es/tan eb) for j = 1
and where

EE I(ns)
Ty f(ns)

F = (43)
Therefore, if from Eq. (19) a streamfunction f(n) and its derivatives
were to be known at n = Ngs the relations (33), (35), (38) and (41)
would form a closed system of four equations in the four unknowns

A, es, Ds’ and Ps.

IV. Method of Calculation

The model as formulated imposes the following restrictions on
the input gas and body properties: M_ sufficiently large such that
2
cpT0 R U_/2, Tb/TO << 1, y = constant, Pr = 1, and B, << 1.

The solution for the viscous layer streamfunction f(n) and for

the various flow properties of interest proceeds by first



transforming Eq. (19) to thz following set of first order differential

equations as in Ref. 6:

- 221 + ¢, ¢ g, = - 221 + c21)‘1 fg (44)

z=|1-3] Q+ C9) = 1 (45)

The no-slip boundary conditions

£(0) = J(0O) = I(0) = O atn=20
(46)
J(ns) =1 at n = n_
are then imposed. Now, for values of the wall shear g(0) = (fnn)b

greater than the value which gives an inviscid flow region at the
outer edge of a boundary layer (ns + =), a velocity profile with
finite shear g(ns) = (ann)s at the shock surface can be obtained
for each station along the body within the merged layer. At each
such value of g(0), the no-slip boundary conditions are fully
specified. Beginning then at n = () with a value g(0) = [g(O)]: .
only slightly larger than the value [g(O)]n + oWhich gives the °

s

boundary layer solution (ns + @), Eqs. (44) - (45) are simultaneously

integrated out from the body surface to the shock surface for fixed
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local values of ¢, and Cz. The initial guesses for these parameters
are obtained from the boundary layer limit g +owith es guessed to
be es - es where es = es (v, M_, eb, j) 1is the inviscid

inv inv inv

shock layer value for wedges and cones given in Ref. 12. As shown

in the Appendix

To cos (esinv + eb) )
c1 o~ = f; ( cos es ] (47)
ns inv
es - es
inv

s
6 =9

g s1nv

The numerical integration of Eqs. (44) - (45) is stopped at the first

point n reached within the viscous layer where J = fn = u*/ug 2 1.

The coordinate g is the finite value of n at this point, and the
resulting finite values of f(ns), g(ns) and I(ns) are used to com-

pute A and F in approximate form from [see Eq. (33)]

¢ O, , 20,0 Q¥
[cos (9s + eb) + sin 2(9s + Ob) (Zf)n'ns]
inv inv

(49)

and the relation given by Eq. (43). These results are then used to
provide a better value of 9s from Eqs. (35), (38) and (41). Better

values for the local parameters C1 and C2 are next obtained from
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the relations [see Appendix]

. . EQ ( cos 6 . 2Q, (1) Q,(1) s 12 (s0)
1 Tb cos (BS + Ob) sin [2(98 + Bb)] 2f n=ng
c - [2 + (tan 9§/tan eb)] (tan Bs/tan eb) 1)
2 I(n)) £(n,)
and beginning again at n = 0 with g(0) = [g(O)]: + o Eas. (46) -

(45) are re-integrated from the body to the shock surface n = Nge
When after such successive iterations the results at the shock
surface from one cycle agree sufficiently with those values from
the previous cycle, the local no-slip viscous layer solution is
available. The effects of small local velocity slip and tem-
perature jump are then computed as local perturbations from the no-
slip results. The method for obtaining the local slip solution is
entirely analogous to that given in Ref. 6 except that Eqs. (47) -

(48) of that reference are replaced by

u* sin © T
LI ¥ Db 4] _ 2 -1 1y __ "b,1/2
.Y SRR (52)
F n=n nsf’nn n=0

nsf nsi [
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cos © £ cos 68
L nsf 1 nsf -1
A ¥ = + R 1} (53)
sk cos (es + eb) f Ansl cos (9s + eb) n=n_
nsi nsf

and the rarefaction parameter [Eq. (35) of Ref. 6] is replaced by

chllz Q, ]1/2 x* gin 6

- [
1/2 2 3L
reliZ, -3y oo -

2378 (n) 54)

The final results at g(0) = [g(O)]: + o Constitute the lccal
k solution at the downstream end of the merged layer. The final
values there for C1 and C2 become the initial guesses for these
parameters at the adjacent station a small distance upstream. The

viscous layer equations are integrated here from n = 0 with

» T 08(0), where Ag(0) is a small increment in

->

2(0) = [g(0)]7
s
the surface shear g(0). Through this stepwise upstream marching
method, with successive iteration cycles at each step, the velocity
and state variables are computed at several stations x* within the
meried layer regime. The computation is stopped at the upstream end
when the condition M“g << 1 or the condition (fn)b << 1 1s no longer
satisfied. If the computation is carried to stations x* farther
upstream, the present model breaks down as the calculated values of
ps/pm become less than unity. This occurs at values of the rarefac-

1/2

tion parameter MQ(C/Rex* o) of the order of unity.
]
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VI. Results and Discussion

Computations have been carried out in the manner indicated in the

previous section. The cases considered cover the range 20 s M ¢ 25,

b € 20°.

In Figs. 3 - 5 the density at the shock surface for sharp wedges

0.06 € T /T € 0.15 and ® <o

is compared with measured values obtained by McCroskey, Bogdonoff and
Genchila. Considering the scatter in the data, the agreement with
theory would appear to be good. The theoretical shock density ratio
for a 10° cone is shown compared with the data in Fig. 6. In contrast
with a wedge having the same flow conditions and comparable angle eb,
the shock at the same distance x* from the leading edge 1s weaker on
the cone. This is due to the circumferential spreading of the flow
around the cone, bringing the shock wave closer to the body surface
and causing the merged layer to extend farther downstream than on

the wedge.

Fig. 7 presents the wedge surface pressures given by Vidal and
Bart29 in c.mparison with the theory for several values of eb. The
strong interaction and free molecule limits given by Hayes and
Probstein13 are also shown. Both the present theory and the data
lie below the result predicted by strong interaction theory. This is
also seen to be true for sharp cones as shown in Fig. 8 where the
cone surface pressure by the rresent theory and by the strong inter-
action theory of Mirels and Ellinwood19 are compared to the experi-
mental data in the form presented by Waldron17 and by Hofland and

Glickls'
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On Figs. 9 - 10 the experimental skin friction and heat transfer
data obtained by Vidal and Bartz9 on wedges is compared with the
theory, and the agreement appears to be quite good. The theoretical
result for cones is given in Fig. 11 compared to experiment in the
form presented by Waldronl7.

In view of the reasonable agreement of expefimeatal data with
the theory it would appear that the present continuum merged layer
model is a satisfactory one up to rarefaction parameters

1/2

MQ(C/Rex* ) ~ 1, This limit would correspond to distances

back from the leading edge of the order of M_ mean free paths.

Appendix
THE PARAMETERS C1 AND ~
By Eq. (33), the parameter C1 is
C1 = Az ;Q = ;Q 5 osczz ei 8.) + SIZQ%;i; Qi(:))] (2f) = }-2 (A-1)
b b s b n s ' b n"Ng

To find C2, an expression for the parameter Ma is first re-

quired. To obtain this, we eliminate £ between Egs. (14) and (15)

for the case of j = 1 and note that pbub/puu°° = YMmPS 2T0/(Y - 1) Tbl/2

from y « T]'/2 and the equation of state, with the result
2
e 3 cos eb(tan es + tan eb)[l + (tan es/tan eb)] [Y -1 3211/2
= 8vP A £2 (n_) 2 T,

(A-2)
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Using Eqs. (28) and (41) - (43) to eliminate Ps’ we obtain then

02 = [2 + (tan es/tan eb)] (tan es/tan eb)/I(ns) f(ns) (A-3)

from Eq. (20b).
In the boundary layer limit ng * e and g(ns) + 0, we find that

since £ A 1 when n A n
n s

ns
= [J f dn)
0 ) |"

[£ng)]) > (A-4)
T -+ oo -+ o0
s s
n
s
I = - f + = -
SR (J (L= £) (1+CiE) dn], finite (A-5)
L * n +> o
S S
so that taking es = es » Eqs. (A-1l) and (A-3) yield
inv .
cos (8 +0,)
T b
0 inv 2 _
C1 t cos 0 ] (A-6)
| b s
n -+ w inv
s
es1es.
inv
C2| = () (A-7)
ns-b ™
0 =06
8 8,
inv
Here es (v, M_, eb, j) 1is the inviscid shock layer value for es
inv

obtained from Ref. 12.
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