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PREFACE 

This report describes the Incremental System Programming Language 

(ISPL) machine, which was designed specifically to run the ISPL lan- 

guage.  Together, the language and the machine comprise a complete 

system for producing a programming laboratory at Rand. The ISPL ma- 

chine directly executes the postfix representation of the ISPL language 

and includes many functions, such as page-table maintenance, normally 

found in software.  For a clear picture of the ISPL system, this report 

should be read in conjunction with its companion paper, R-563-ARPA, 

The ISPL Language Speoifiaations.    However, both report-j should be 

viewed as specification documents only, as the system has not yet been 

Implemented. 

Work on ISPL was sponsored by the Department of Defense's Advanced 

Research Projects Agency (ARPA) as an integral part of both Rand's and 

the client's overall program to explore current computer technology. 

The present report should be of interest to those concerned with ma- 

chine design and the integration of hardware and software systems. 
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SUMMARY 

The design of the ISPL machine has been integrated with the design 

of the ISPL language Together, they comprise a complete system for 

producing a programming laboratory. The facilities incorporated in the 

machine allow for the direct execution of the ISPL language at the post- 

fix level. This simplifies compilation of the language and facilitates 

incremental compilation. The postfix execution unit includes debugging 

capabilities for dynamic type checking and pointer verification. 

The addressing structure is based on variable-length segments 

accessed through pointers, which also contain read/write capability in- 

formation.  Remote segments enable the sharing of segments and of data 

structures, which themselves contain pointers. 

The machine has operations for scheduling core and central proces- 

sing unit resources, and handles all interrupts and communications 

through semaphores, which exist as machine primitives. 
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INTRODUCTION 

The Incremental System Programming Language (ISPL) machine has 

been expressly designed to execute programs written in ISPL.  Our goal 

was to execute these programs efficiently, with as much dynamic error 

checking as possible and so that they resembled as closely as possible 

the ISPL source language.  This goal is designed to foster an environ- 

ment in which att  our programming work can be done in ISPL because 

(1) it is efficient, (2) it has powerful debugging techniques built 

in; and (3) its close correspondence to machine actions makes errors 

easily interpretable in source form and provides easy and efficient 

handling of incremental compilation of programs to allow on-line, in- 

teractive programming and debugging. 

The third major component, after the language and the machine, 

is the control program to coordinate the two. The language design 

specifically includes the facilities needed by the control program, 

and the machine is designed to easily express these control functions. 

In addition, many facilities in both the language and the control pro- 

gram that have traditionally been implemented in software have been 

designed as part of the ISPL machine. 

This intense integration simplifies the design, implementation, 

efficiency, and understanding of the system.  However, it makes the 

description of one of these components without the others virtually 

impossible. Thus, The ISPL Language Speaifiaations  [1] should be con- 

sidered as a companion report. Each relies heavily on the other. 
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II.  PROGRAN EXECUTION 

The control program schedules units (called PROCESSES) for execu- 

tion on the  ISPL machine.  A PROCESS is a set of cooperating, independent 

control paths (called TASKS) through programs sharing a common address- 

ing space tor programs and data.  The ISPL machine is responsible for 

scheduling and controlling the TASKS within a PROCESS; this is described 

in Sec. V.  Processes are created via a form of the INITIATE_P,-,OCESS 

machine operation, which causes a series of control blocks to be formed 

that contain all the necessary context and control information for the 

process anc. each of its tasks. 

To start a process in execution, the DISPATCH_PROCESS operation is 

used, which specifies a PCB to be dispatched.  The machine context of 

the current process (the one that issued the DISPATCH_PROCESS operation) 

is stored in its PCB, the dispatched process is marked in the DISPATCHED 

field and its machine context is loaded into the ISPL machine.  This 

machine context consists of: 

1. Process number, which indicates which process is running. 

2. Segment table pointer, used for translating virtual addresses 
(see pp. 7-11). 

j.  Top of stack pointer, which indicates the location of the top 
of the stack. 

4. Interpretation pointer, which indicates the procedure context 
in which operands are to be interpreted (see p. 4). 

5. Syllable pointer, which indicates where execution is to be 
resumed. 

After completion of the DISPATCH operation, the dispatched process 

is running and syllables are fetched and executed sequentially, starting 

at the location specified by the syllable pointer.  These syllables are 

the basic instructions of the ISPL machine.  They are either operands 

or operators and are the Polish Postfix translation of the correspond- 

ing source statement.  A syllable has the following format: 

t 
The exact format of this information is described in Sec. V; 

until then, we refer to these blocks collectively as a Process Control 
Block (PCB). 
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Operator syllable (1 or 1  bytes) 

operator bit 1 bit 

operator type 7 bits 

If operator type = SWF', then the next byte contains the 

operator type (all 8 bits are concatenated with a high-urder 

bit (value, 1) to form the operator type). 

Operand syllable (2 to 5 bytes) 

operand bit 1 bit 

value or address desired 1 bit 

location of operand 2 bits 

literal 00 

offset In static 01 

offset in current record   10 

offset in record 11 

data type of operand 4 bits 

The second part of the operand syllable is determined by the 

LOCATION OF OPERAND value in the first part.  It will be one 

of the following: 

literal 

literal value 8 bits 

offset in static 

offset value 16 bits 

offset in current record and offset in record 

record type of record in which operand   8 bits 
occurs 

offset within record 

If high-order bit is off 8 bits 

if high-order bit is on and next       16 bits 
highest order bit is off 

if high-order bit is on and next       24 bits 
highest order bit is on 

The action of the ISPL machine when executing a syllable depends 

upon the type of syllable and the options selected within it.  In 

general, operand syllables cause either the address or value (as de- 

termined by the adHress-or-value bit within the operand) to be added 
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to the top of the process stack.  Operator syllables also cause the 

corresponding ISPL-machine operator to be executed, which uses and 

removes the top N (usually two) operands from the process stack and 

replaces them with M results (usually one or zero). 

Execution of the process continues until (1) it completes, (2) an 

interrupt occurs, or (3) it waits for an event that has not yet occurred, 

In each case, the machine context of the running process is saved.  The 

first two cases are handled by the interrupt-processing mechanism in 

the ISPL machine (described in Sec. V).  In the third case, the process 

that dispatched the running process is dispatched at the syllable fol- 

lowing the ÜISPATCH_PRÜCF,SS operator, which it used to dispatch the 

waiting process. 

Consider a process that has been dispatched and is now running. 

We describe the actions of the ISPL machine in decoding and accessing 

each of thfi operand syllables. 

First, we assume the VALUE_Oi;_ADDRESS bit specifies address. 

LITERAL 

A program error occurs.  Literals must be specified as values. 

OFFSET IN STATIC 

The 16-bit offset is pointer-added (pointer addition is defined 

on p. 12) with the STATIC SEGMENT pointer from the PCB to form the 

required address and is pushed onto the top of the PROCESS STACK. 

OFFSET IN CURRENT RECORD 

The INTERPRETATION POINTER in the PCB points at a procedure entry 

in the PROCESS STACK; this entry contains the address of the DISPLAY 

for that procedure.  The DISPLAY contains the address of the current 

member of each record declared in the compilation in which the pro- 

cedure occurs.  When a procedure is entered, its DISPLAY is initialized 

to that of its calling program if they are in the same compilation. 

Otherwise, its DISPLAY is set to all NULL.  When a process is dis- 

patched, the INTERPRETATION POINTER is used to obtain the address of 



the associated DISPLAY.  This address is kept in the CURRENT DISPLAY 

REGISTER. 

The 8-bit record_type is multiplied by 4 and pointer-added to the 

contents of Ihe CURRENT DISPLAY REGISTER; the contents of the cell 

referenced by the. resulting pointer is accessed and pushed onto the 

top of the PROCESS STACK.  This is the reference to the current in- 

stance of the specified record_type. 

Processing now continues as for OFFSET IN RECORD. 

OFFSET IN RECORD 

The 8-bit record_type in the operand SYLLABLE is compared with 

the 8-bit record_type in the pointer at the top of the PROCESS STACK. 

If they do not agree or if a pointer is not at the top of the PROCESS 

STACK, a program error occurs. 

If the record_types agree and a pointer is at the top of the 

stack, the offset specified in the operand SYLLABLE is pointer-added 

to the value at the top of the stack and replaces it at the top of 

the stack. 

***** 

In each of the cases above, except for the illegal case of 

literals as addresses, the resulting value at the top of the stack is 

a pointer and is so marked by the 4 control bits in the stack entry. 

The :ecord_type of the pointer value is set to the primitive data- 

type specified by the 4-bit data_type specified in the first part of 

the operand SYLLABLE. 

If the VALL'E_OR_ADDRESS bit specifies that the value is dos nod, 

the processing for each of the cases is as follows. 

LITERAL 

The 8-bit literal (as the low-order 8 bits of the 32-bit stack 

entry) is pushed onto the top of the stack.  The control hits of thi 

entry are the data_type bits specified in the operand SYLI.Vhl.K. 
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OFFSET IN STATIC 

OFFSET IN CURRKNT RECORD 

OFFSET IN RECORD 

In each case, after processing the individual cases as described 

above for address operands, the resulting pointer at the top of the 

stack is replaced by the value referenced by this pointer.  The control 

bits of this entry are the right-most 4 bits of the pointer's record_ 

type (the other 4 bits should all be zero). 



-7- 

III.  ADDRESSING 

Section 11 completes the description of the logical addressing 

scheme for the ISPL machine.  This would suffice if a REAL, as opposed 

to a VIRTUAL, addressing scheme were used.  The ISPL machine has been 

designed as a multiuser research machine in which programs cannot b1 

assumed to work correctly.  Therefore, the address spaces of separate 

users must be kept disjoint.  Furthermore, a mechanism is needed to 

more effectively use one of the machine's scarcest resources--real 

memory.  A number of VIRTUAL addressing schemes satisfy the first re- 

quirement.  Those schemes that also divide this virtual address space 

into separately accessed pieces allow the machine to run a program with 

only the actually referenced portions of a program and its data in 

real core.  This Is especially important to us because our programs 

tend to be large compared with our available real core.  Within these 

major constraints, we based our choice of a virtual addressing mechan- 

ism upon the following critical requirements: 

1. Units of physical addressing space should correspond to 
logical units of a user's program and/or data. 

2. Addresses are a separate data type and have their own oper- 
ators; they are not a form of integer data. 

3. The address spaces of separate processes must be protected 
from each other while still allowing data and program sharing. 

4. The addressing structure must allow subsystems to be built 
that have direct control of their user's address space and 
allocation., but that cannot affect other users' address space. 

All addresses, whether in the stack or in pointer variables, are 

virtual addresses and must be transformed into real addresses before 

being used.  Each virtual address is part of a pointer value, which 

has the following format: 

8 bits 2 bits 22 bits 

record 
type 

read/write 
capability 

virtual address 
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For the moment, we assume that the virtual-address portion is 

divided into two parts—a segment number and an offset (in bytes) 

within that segment. 

To transform the virtual address, the ISPL machine uses the seg- 

ment number to index a table, the SEGMENT TABLE, pointed to by the 

SEGMENT_TABLE_POINTER in the process' PCB.   Each entry in this table 

is a double word, as shown in Fig. 1. 

In the first case, REAL SEGMENT, the ISPL machine multiplies the 

SEGMENT SIZE field of the entry by 8 to convert it to a byte length 

and compares this with the offset in the virtual address.  If it is 

larger, a segment-overflow program-error occurs.  If not, the REAL 

SEGMENT BASE field of the entry is multiplied by 8 to convert it to a 

byte address and the offset in the virtual address is added to this 

value to create the resultant real address. 

If a store operation is being done and the SEGMENT TYPE is DATA 

AND PROGRAM UNMODIFIED, the SEGMENT TYPE is changed to DATA AND PROGRAM 

MODIFIED. 

The second case is tne PSEUDO-SEGMENT.  The transformation is the 

same as in the first case except that the result, nt address is a vir- 

tual address in the same address space and must be decoded again as 

explained in this section.  PSEUDO-SEGMENTS are segments overlayed on 

all or part of a REAL or REMOTE segment; they are created by a user 

for his own convenience, usually protection.  They never represent 

separate addressing space and play no part in core allocation, sched- 

uling, or swapping. 

In the third case, the segment-table entry is a REMOTE SEGMENT. 

This indicates that the resultant address of the transformation will 

not be a real address but a virtual address in the address space of 

the process specified by the REMOTE PROCESS NUMBER field in the entry. 

The read/write capability specified in the entry is combined, by the 

rules of read/write capability combination described above, with the 

See p. 11 for a discussion of how this address is transformed into 
a real address. 
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FIRST WORD 

15 18 

I] REAL 
SEGMENT EGMENT  ) tyj 

segment 
type 

segment size (double words) 256K real segment base (double worüw^ ?M 

1C 

1100 

00 DATA AND PROGRAM UNMODIFIED 
01 DATA AND PROGRAM MODIFIED 
10 STACK 
11 SEGMENT TABLE 

2 15 19 
PSEUDO- 
SEGMENT 

segment size  (double words) 256K virtual segnnnt base (double words) 4M 

4 2 12 18 
REMOTE 
SEGMENT 

read/write 
capability remote process number remote segment number 

12 12 
SEGMENT 
NOT IN 
CORE 

process number of retriever semaphore process number semaphore count 

1101  FREE SEGMENT 
1110 CORE NOT YET ALLOCATED 
1111 SEGMENT ON SECONDARY SloKAGE 

SECOND WORD 

32 
saved 
segment 
type 

not 
used file pointer 

Same as segment type for REAI SEGMENTS 

Fig. 1—Format of Segment Table 
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read/write capability of the pointer value being transformed, co form 

the resultant read/write capability.  The REMOTE PROCESS specified 

becomes the base for further transformation; the offset in the pointer 

value is then combined with the remote-segment number to form the re- 

sultant virtual address; and the transformation, using the REMOTE 

PROCESS'« segment table, continues as above. 

The remote-segment concept is very important to the ISPL machine's 

addressing mechanism.  It allows two arbitrary processes to share pro- 

grams and data, including pointer-linked data, without special program- 

ming conventions or restrictions.  Remote segments are built by the 

ISPL machine whenever a pointer is passed (i.e., stored) from one 

addressing space to another.  When such a transfer occurs between two 

processes that use different segment tables, the ISPL machine creates 

a remote segment in the receiving segment table and changes the passed 

pointer to reference the newly created remote-segment entry. 

In order to tell when pointer values are stored in a different 

addressing space, an indication of its addressing space must be kept 

with each pointer value.  For normal pointer values—those for which 

the initial address transformation is not remote—the indication is 

implicit in the control bits that indicate the entry is a pointer value. 

For remote pointer values—those for which the initial address trans- 

formation is remote™the control bits indicate a new stack type (remote 

pointer value) and the next entry indicates the process number of the 

process from whose addressing space the pointer value was obtained. 

Before a pointer store is done, a remote segment is created .ns de- 

scribed above if the process number of Lhe pointer value and the pro- 

cess number of the address space in which the destination is real (i.e., 

not remote) are different. 

Pointer comparison is always done by comparing real addresses; 

therefore, it is insensitive to t?mote segments.  The only other pointer 

operation is POINTER FOLLOWING (picking up successive pointers through 

consecutive OFFSET IN RECORD operand SYLLABLES); it is also not modi- 

fied.  However, because all address transformations must begin with the 

process' addressing space from which the pointer value was obtained, 

the decoding mechanism must handle both normal and remote pointers. 
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Because both segment tables and stacks utilize all 36 bits of a 

word, the ISPL machine contains special operations to allow manipula- 

tion of these segments under program control.  These operations are de- 

tailed on pp. 14-16; the relevant issue here is that only the operation 

that frees the entry involves remote segments.  Thus, processes can 

neither create nor modify these crucial links between iddress spaces. 

Finally, in the last case, the segment-table entry is a SEGMENT 

NOT IN CORE entry.  If the entry is a FREE SEGMENT, a program error, 

ADDRESSING NON-EXTSTENT SEGMENT, is generated.  Otherwise, the segment 

is either on secondary storage or has not yet been allocated.  In 

either case, real core must be allocated to the segment before the pro- 

cess can continue.  Therefore, the ISPL machine issues a P operation 

for the dispatched process on the semaphore in the segment-table entry 

and generates a SEGMENT REQUESTED interrupt for the process that RE- 

TRIEVED the real core allocated to the segment (see pp. 15-16). 

The SEGMENT TABLE POINTER in the PCB represents the real-core ad- 

dress of the segment table.  Since all address transformation is through 

the segment table, a method of addressing it cannot require information 

within it.  The simplest such method is the use of an absolute address. 

Since entries in the process' segment table represent all real core 

GIVEN to a process, it does not make sense to RETRIEVE the segment 

table if it contains any real core because that real core would not be 

retrievable or usable without the segment table. Thus, two special 

segment-table operations are defined to control the allocation of seg- 

ment tables, MAKE PROCESS INACTIVE and MAKE PROCESS ACTIVE; these are 

explained on p. 17. 

One cinal complication remains.  With only 22 bits available for 

segment numbers and offsets, no fixed division allows enough flexibility 

for a wide range of applications. We adopted the following mechanism 

as a more flexible alternative. The 22-bit field is dynamically divided 

into the segment number and the offset portions on the basis of actual 

need, as evidenced by the largest segment number actually used.  Even- 

tually, as larger segment numbers are used, the binary representation 

of the largest will not fit into the allocated portion of the 22-bJ.t 
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field.  Therefore, the ISPL machine dynamically increases the portion 

allocated to segment numbers.  In order to preserve the validity of 

pointers already generated with the old boundary, the bit representa- 

tion of the segments and offsets has the low-order end of each number 

at the outside of the 22-bit field and the high-order end toward the 

center.  Thus, as the boundary dynamically shifts, it has no effect on 

existing pointer values because high-order zeros are either being added 

or deleted from the two parts.  This remains true as long as the total 

number of bits needed to represent the maximum segment number and off- 

set used is not greater than the 22 bits available. 

If this condition is exceeded, an ADDRESS SPACE OVERFLOW program 

error occurs. The ADDRESS BOUNDARY REGISTER for each process is kept 

in its PCB and used to decode all pointer values occurring in its ad- 

dress space. The maximum-length segment used is kept in the header of 

the segment table. Since the maximum-size segment is 256K bytes, the 

ADDRESS BOUNDARY REGISTER is initialized to provide 18 bits for the 

offset and 4 bits for the segment number. 

Finally, when an offset is added to a pointer, i.e., POINTER ADDED, 

a SEGMENT OVERFLOW program error occurs if an overflow occurs from the 

offset portion. 

The read/write capability is a discrete value from the read_write_ 

capability range consisting of the values read_only, read, read_write, 

and modal.  These values are given in decreasing order of restrictive- 

ness; therefore, in following a pointer chain or path, the resulting 

read/write capability is the more restrictive of the accessing and the 

accessed capability, as for example, in the pointer chain 

PI(MODAL)->P2(READ_WRITE)->P3(READ_ONLY)-> 
P4(READ WRITE)->J 

In this example, the values In parentheses indicate the read/write capa- 

bility of the pointers. Some implicit pointer is used to access PI, 

and we assume its capability Is modal. P2 is also accessed with modal 

capability, P3 with the more restrictive read_write capability, P4 with 
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the most restrictive read_only, and J with this same read_only capa- 

bility even though P4 has read write capability.  Thus, protection 

can be assured by starting with, or encountering, the proper capabil- 

ities in a pointer chain or path. 

There is one exception to these precedence relationships: when 

a read capability encounters a read_write capability, it becomes a 

read_write capability. Thus, local read(only) protection can be given 

that, via an appropriate pointer, leads to a read write capability. 

This is important for system blocks that must be protected but that 

lead to writable blocks in a user's space. 
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iv.   SF.CMI:NT-TABLE OPERATIONS 

CP-EATE JvKf^]KNT 

length (I), pointer to base (P) ' 
Fo f':a l: 

pointer to base of new segment (P) 

This operation creates a new entry in the segment table of the 

process Issuing the operation and returns a pointer to it.  It can 

only be used to create a data and program segment.  The read/write 

capability of the returned pointer is t..^ same as that in the supplied 

pointer.  If the pointer value supplied is not NULL, the newly created 

segment is a pseudo-augment (it can only be created on a data and pro- 

gram segment).  '.Ihen the supplied pointer is NULL, the new segment is 

a real segment for which core has not yet been allocated.  A CORE NOT 

YET ALLOCATED entry is made, the process number of the retriever (see 

p. 16) is set to the monitor of the process that issued the operation, 

and the DATA AND PROGRAM UNMODIFIED segment-type is put into the SAVED 

SEGMENT TYPE field in the second word of the entry.  When the segment 

is actually accessed, a SEGMENT FAULT occurs and the process' monitor 

must allocate core for the segment before the process may continue. 
i 

DESTROY SEGMENT 

Format:     pointer to segment (PW)| 

T^: supplied pointer must have write capability.  It cannot des- 

troy a segment table or stack segment.  The indicated segment is freed. 

Any disc space (see p. 16) allocated to the segment is freed.  If the 

segment has real core allocated to it at the time the destroy is issued 

(i.e., if it is a real segment), a DESTROYED SEGMENT interrupt is gen- 

erated for the process' monitor. 



GIVE SEGMENT 

process number of receiver (I), receiving 

Format: segment number (I), pointer to segment 

to be given (PW)| 

The process specified (Process B) must be an immediate subprocess 

(see p. 18) of the process that issued the operation (Process A).  If 

the segment being GIVEN is a SEGMENT ON SECONDARY STORAGE or a CORE 

NOT YET ALLOCATED entry, a SEGMENT FAULT occurs and, as described 

earlier, processing of the issuing process (Process A) is suspended 

until the segment becomes a REAL SEGMENT.  If the receiving segment 

number specifies a FREE SEGMENT, a REAL SEGMENT, a PSEUDO SEGMENT, or 

a REMOTE SEGMENT to a process that is not an immediate subprocess of 

Process B, or if the segment being GIVEN is a FREE SEGMENT, a REMOTE 

SEGMENT, a PSEUDO SEGMENT, or a REAL SEGMENT that is not a DATA AND 

PROGRAM segment, then an INVALID GIVE program error occurs.  If the 

receiving segment number specifies a REMOTE SEGMENT to an immediate 

subprocess of Process B, that process and segment become the receivers 

of the operation and the new receiving segment is processed as described 

above. 

Ultimately, either an INVALID GIVE occurs, which halts the op- 

eration, or a SEGMENT NOT IN CORE entry is found.  In the latter case, 

the ultimate receiving segment is read into the real core if it is a 

SEGMENT ON SECONDARY STORAGE.  Any processes waiting for the segment 

(i.e., any that are P'ed on the semaphore in the segment-table entry) 

are V'ed.  The entry is changed to a REAL SEGMENT representing the real 

core In the segment being given, the SEGMENT TYPE is set to the SAVED 

SEGMENT TYPE, and the segment being GIVEN is changed to a REMOTE SEGMENT 

to the original receiving segment and process. 

RETRIEVE SEGMENT 

Format:    pointer to segment (P) | 
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The segment specified must be a REMOTE SEGMENT to an immediate 

subprocess (Process B) of the process (Process A) issuing the opera- 

tion.  An INVALID RETRIEVE program error occurs if the segment being 

retrieved is a 1SEUDO SEGMENT, a REMOTE SEGMENT to a process that is 

not an immedLice subprocess of Process B, a FREE, or a CORE NOT YET 

ALLOCATED segment.  If the segment being retrieved is a REMOTE SEGMENT 

to an immediate subprocess of Process B, then that segment becomes the 

operand of the operation and the segment being retrieved is processed 

as described above. 

Ultimately, either (1) an INVALID RETRIEVE must occur that halts 

the operation, or (2) either a REAL SEGMENT or a SEGMENT ON SECONDARY 

STORAGE entry must be found.  If a modified REAL SEGMENT is found, 

it is copied lo the location specified by the file pointer in the 

second word of this entry.  If the file pointer is null, before the 

copy operation is performed, an area of secondary storage of sufficient 

length is allocated and a file pointer to it is placed in the second 

word of the entry. After the copy operation, if necessary, the initial 

REMOTE SEGMENT in Process A is changed to a REAL SEGMENT representing 

the real core; the segment type is picked up from the SAVED SEGMENT 

TYPE field of the second word of the entry; and the retrieved segment 

is changed to a SEGMENT ON SECONDARY STORAGE entry, its SEMAPHORE PRO- 

CESS NUMBER and SEMAPHORE COUNT are set to zero, and its PROCESS NUMBER 

OF RETRIEVER is set to the process number of the process that issued 

the operation (Process A). 

If a SEGMENT ON SECONDARY STORAGE entry is found, some process for 

which Process A is a subprocess has already retrieved the real core 

associated with the segment.  The initial remote segment in Process A 

is changed to a SEGMENT ON SECONDARY STORAGE entry; its SEMAPHORE PRO- 

CESS NUMBER and SEMAPHORE COUNT are set to zero; its PROCESS NUMBER OF 

RETRIEVER is set to the PROCESS NUMBER OF RETRIEVER in the entry found; 

the PROCESS NUMBER OF RETRIEVER in the entry found is set to the process 

number of th.e process that issued the operation (Process A); and, if any 

processes are waiting on the entry found, a SEGMENT REQUESTED interrupt 

is generated for Process A (which informs it that the retrieved segment 

has been requested). 
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MAKE PROCESS INACTIVE 

Format:     process number | 

The indicated process must be an Immediate subprocess of the pro- 

cess that Issued the operation.  All the real core given to the sub- 

process is retrieved and the segment tables for that subprocess and any 

of Its subprocesses are retrieved by the ISPL machine, forcing them to 

be saved on secondary storage.  The FILE POINTER to the location of the 

segment table replaces the value of the SEGMENT TABLE POINTER in the 

PCB. 

MAKE PPOCESS ACTIVE 

Format:     process number | 

The indicated process must be an immediate subprocess of the pro- 

cess (Process A) that issued the operation.  The segment tables for 

that process and any of its subprocesses that were made inactive by 

Process A are brought back into core in segments GIVEN by the ISPL 

machine.  The size for each segment table is picked up from the PCB 

(in the MAX_SEGMENT_SIZE_USED field).  Finally, the absolute address 

of the segment table is placed in the SEGMENT TABLE POINTER field of 

the PCB. 

PROCESS MONITOR 

Format:     process number | process number of monitor 

The PROCESS MONITOR operation returns the process number of the 

monitor of the specified process. 
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V.  MULTITASKING. SCHEDULIMC, PORTS, AND INTERRUPTS 

In the ISPL machine, multitasking, scheduling, Ports, and inter- 

rupts are intimately related.  They are the mechanisms that coordinate 

and control asynchronous processes.  As explained earlier, a process 

is one or more logical lines of control flow in a common address space. 

It is represented in the ISPL machine by a PCB that contains the 

"machine context" of the process—all the information needed to properly 

resume execution of that process.  A PCB is created by a form of the 

INITIATE operation, which sets up a separate address space.  This new 

process is controlled by, and is an immediate subprocess of, its mon- 

itor— the process that issued the INITIATE operation.  This dependence 

is recorded in the PCB so that the monitor for any process is available; 

hence, if a subprocess initiates further subprocesses and acts as their 

monitor, the ISPL machine maintains the process hierarchy. 

If a monitor has INITIATED several processes, it must allocate 

execution processing among them.  This allocation is called scheduling. 

The decision is effected through the DISPATCH command, which is the 

process-equivalent of a subroutine call. The process that issued the 

DISPATCH operation is suspended, its machine context saved, the fact that 

it DISPATCHED another process recorded, and execution of the DISPATCHED 

process resumed as indicated by the machine context.  This process con- 

tinues Li execute until it either asks for an unavailable resource or 

an interrupt occurs (such as the expiration of a timer set by the dis- 

patching process).  Process completion is treated as an interrupt. 

A request for an unavailable resource is treated as a normal re- 

turn from the dispatched process.  This process1 machine context is 

saved and the dispatching process is resumed at the syllable after the 

DISPATCH. 

The second case concerns Interrupts. An interrupt is the sudden 

availability of a resource required by a process. Resources In the 

ISPL machine are represented by a primitive data-type called a sema- 

phore.  Only certain operations are allowed with semaphores. These 

include the V operation, which makes a resource available (i.e., re- 

turns it); the P operation, which requests or obtains a resource if it 
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is available and, if it is not, waits until it is available; and the 

CONDITIONAL P operation, which performs a P operation only if the re- 

source is available. 

Thus, an interrupt is a V operation on a semaphore for which some 

process has an active P operation—i.e., one that has not yet received 

the requested resource.  Certain interrupts, such as process comple- 

tion, segment fault, and all program errors, are generated by the ISPL 

machine upon recognition of the condition indicated. Other resources 

are represented by user-created semaphores; interrupts occur when these 

semaphores are V'ed if there is an active P on the semaphore. 

The representation of and operations on all semaphores are the 

same whether they are machine- or user-created. However, the method 

of accessing the appropriate semaphore differs. User-created sema- 

phores are always accessed by the address of the semaphore.  For ef- 

ficiency, and because both the ISPL machine and programs written in 

ISPL must be able to access the machine-defined semaphores, these sema- 

phores are accessed by a machine-designated number. The MACHINE SEMA- 

PHORE PRESENCE field indicates the presence or absence of the associated 

machine-defined semaphore. A P operation on such a semaphore is always 

treated as the creation of a new semaphore to handle the condition. The 

new semaphore is added to the top of the STACK of machine-defined sema- 

phores present, and the MACHINE SEMAPHORE PRESENCE field is set to in- 

dicate the semaphore's presence.  Because the semaphore is new, it will 

never be available when requested and will cause the executing unit to 

wait for the condition. A V operation on a machine-defined semaphore 

tests for its presence in the running process.  If it is there, the 

semaphore stack is searched to find it.  Since P operations always 

create a new instance of the semaphore, which is put on the top of the 

semaphore stack, the most recent semaphore is used if there are multi- 

ple active Ps on the same machine-defined semaphore.  This is precisely 

the interpretation necessary for ON-UNITS in ISPL. If the machine- 

defined semaphore is not present in the running process, that process' 

monitor is checked for the semaphore's presence. This is repeated until 

a process that will handle the machine-defined semaphore is found.  If 

no process is found, the ISPL machine must handle the semaphore as a 

system error. 
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To handle ON-UNITS, co-routines, and independent asynchronous 

tasks that share a conunon addressing space, the control blocks for a 

process are divided into three separate blocks: 

1. The PCB, which holds all the common information about the 

process as a whole; 

2. The INDEPENDENT EXECUTION BLOCK UEB), which represents a 

single, independent, asynchronous, logical flow of control 

in the address space of the process; 

3. The EXCLUSIVE EXECUTION BLOCK (EEB).  One EEB exists for 

each of the ON-UNITS and one for the main line of the IEB. 

These EEBs contain the information local to the separate 

logical lines of control within the IEB.  Only one EEB can 

logically be executing at once. 

Each control block has the following fields: 

PCB 

IEB CHAIN (I) CURRENT IEB (I)                 | 

I PROCESS MONITOR (I) INTERRUPT PENDING IEB (I)         | 

| SEGMENT-TABLE POINTER (P)                                      I 

IEB SWITCHING 
| ENABLED (I) 

ADDRESS BOUNDARY REGISTER (B) 

SEGMENT-TABLE SIZE IN DOUBLE 
WORDS (I) 

MADE INACTIVE BY (I) 

RESERVED FOR FUTURE USE                                        1 

EEB 

EEB CHAIN (I) IEB NUMBER (I)                  | 

j DISPATCHED PCB (I) EEB PRIORITY (I) ENABLED (I)    j 

SEMAPHORE WAIT CHAIN (I OR P)                                  I 

TOP OF STACK POINTER (P) 

INTERPRETATION POINTER (P)                                     I 

SYLLABLE POINTER (P) 
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IEB CHAIN (I) CURRENT EEB (I) 

EEB CHAIN (I) INTERRUPT PENDING EEB (I) 

CREATING IEB (I) IEB PRIORITY (I)   ENABLED (I) 

EEB SWITCHING 
ENABLED (I) 

IEB DISPATCH- 
ABLE (I)   

RESERVED FOR FUTURE USE 

MACHINE-SEMAPHORE PRESENCE (B) 

RESERVED FOR FUTURE USE 

EEBs represent separate flows of control within an IEB; only one 

can logically be operating at once.  If an ON-UNIT waits for a resource, 

the interrupted process cannot continue; it may only be resumed when the 

ON-UNIT is completed. This exclusive property and the sufficiency of a 

simple number to indicate the relative priority of EEBs enable schedul- 

ing within an IEB to be performed as an ISPL-machine function.  Similarly, 

the sufficiency of a simple numerical priority among lEBs—representing 

separate independent logical flows of control (TASKS) within a process— 

many of which can logically be executing at once, enables scheduling of 

lEBs to be performed as an ISPL-machine function.  On the other hand, 

interprocess scheduling is a monitor function because it may involve 

many variable factors.  A monitor need only concern itself with sched- 

uling its immediate subprocesses.  The internal behavior of these sub- 

processes—whether they are in the main line, an ON-UNIT, or have dis- 

patched one of their own subprocesses—is handled by the ISPL machine. 

When an interrupt occurs, an EEB that was waiting for a resource 

is now able to execute.  If it (1) is enabled and has a higher priority 

than the current EEB of that TASK (IEB) in the process (the one which 

will be in execution when the TASK is the current IEB of the process 

and the process is DISPATCHED) and (2) has a higher priority than any 

INTERRUPT PENDING EEB, then the higher-priority EEB is marked as the 

INTERRUPT PENDING EEB of the TASK. 

Although interrupts can occur (a semaphore can be V'ed) at any 

time, they are only honored between source statements in that TASK's 

current EEB.  Thus, at the point an interrupt is honored, the state of 
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both the ISPL machine and the source program is well defined.  The 

postfix translation of a program contains NEW STATEMENT operators, 

which define these points of interruptability.  (The NEW STATEMENT 

operator also helps maintain source-object correspondence and facil- 

itates incremental program editing.)  An EEB also becomes interrupt- 

able when a program error, a P operation that causes a wait, or a 

DISPATCH operation occurs.  This momentary interruptability is re- 

corded in the high-order byte of the SYLLABLE POINTER field in the 

EEB. 

When an interrupt occurs, if the TASR's current EEB is interrupt- 

able and the TASK does not have all interrupts masked, the INTERRUPT 

PENDING EEB becomes the CURRENT EEB and is reset to zero.  Only if 

this EEB switch makes the TASK dispatchable (when it was not dis- 

patchable before the switch) is the above process repeated to see if 

a TASK switch should occur.  The dispatchability of a TASK is deter- 

mined by the SEMAPHORE WAIT CHAIN field of the TASK's CURRENT EEB. 

If this field is non-zero, the EEB is waiting for a resource and the 

TASK is nondispatchable.  The TASK's dispatchability is marked in the 

IEB DISPATCHABLE field.  If the TASK was already dispatchable, no 

further interrupt processing is necessary.  The next time the affected 

TASK is the current TASK of the dispatched process, the switched EEB 

in the TASK will be the one resumed.  If the TASK was not dispatchable 

before the EEB switch, and if it is enabled and has a higher priority 

than the current IEB and any INTERRUPT PENDING IEB, then the TASK be- 

comes the INTERRUPT PENDING IEB.  If the process has TASK-switching 

enabled, the INTERRUPT PENDING IEB becomes the CURRENT IEB and is the 

TASK dispatched when the process is next DISPATCHED. 

If the process became dispatchable (i.e., the CURRENT EEB in the 

CURRENT IEB is not waiting) only as a result of the interrupt, a 

PROCESS DISPATCHABLE interrupt is generated for the process' monitor 

to inform it that one of its subprocesses is now ready to be DISPATCHED. 

If the process was already dispatchable, there is no need to inform 

its monitor that an interrupt has occurred within it since the ISPL 

machine handles the intraprocess scheduling and the process' external 

state (its dispatchability) has not changed. 
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A distinction exists between (1) an EEB that is waiting for an 

asynchronous interrupt, such as I/O complete, and that will be V'ed 

by some other process, and (2) an EEB that is waiting for a synchro- 

nous interrupt, such as zero divide, and that will be V'ed either 

directly by another EEB in the same process or as a result of some 

action of that EEB (such as dividing by zero or end-of-file reached). 

The ISPL machine must handle these cases very differently.  In the 

case of an EEB waiting for an asynchronous interrupt, the EEB remains 

as the CURRENT EEB of the process.  Because that EEB is not dispatch- 

able, the ISPL machine saves its context, indicates its interrupta- 

bility, and resumes the dispatching process at the syllable following 

the DISPATCH operation.  When the asynchronous interrupt occurs (assum- 

ing that no higher-priority EEB in that process has since become dis- 

patchable), the process' monitor is given a PROCESS D1SPATCHABLE 

interrupt; when the process is next dispatched, the suspended EEB is 

resumed. 

In the case of synchronous interrupts, the interrupt (by defini- 

tion) cannot occur until some other EEB within the process Is resumed. 

Therefore, waiting for a synchronous interrupt (a P operation on a 

synchronous semaphore) is interpreted as both a P operation and a re- 

turn from the EEB.  Until the EEB again becomes dispatchable, the 

ISPL machine schedules lower-priority EEBs in the same TASK. 

The distinction between synchronous and asynchronous semaphores 

is made in the ISPL machine by the SEMAPHORE TYPE field within the 

semaphore.  This field Is set when the semaphore is created.  It 

indicates not only the synchronous-asynchronous status, but also 

whether or not the semaphore has any associated data.  Some semaphores 

are used only to synchronize a set of processes, to signal an event, 

or to obtain exclusive access to a nonsharable resource.  Other sema- 

phores not only perform these functions, but also make available an 

item of data when the P operation is successfully completed. The 

meaning of this data is established, as is the meaning of the semaphore 

itself, by convention between the processes or EEBs that P and V the 

semaphore.  For example, it might indicate where a zeio divide 

occurred, which disc track is available, or which process became 
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dispatchable.  Three separate methods are provided fo' holding the 

data.  UNBUFFERED semaphores have the data stored immediately following 

the semaphore.  Such semaphores must be used so that no more than one 

data item is simultaneously stored with the semaphore (i.e., the count 

is never greater than one). The other two methods for holding the data 
t 

make use of the STACK and QUEUE list processing structures  to provide, 

respectively, last-in-first-out and first-in-first-out buffering of the 

data. 

Operations on data semaphores are somewhat different from nondata 

operations.  When a V operation is performed, the data to be associated 

with the semaphore must also be supplied, and when a P operation is 

performed, the address of a variable to which the obtained data is to 

be assigned must be supplied. 

One particular use of data semaphores bears special attention. 

FORTS, which are a central concept in the ISPL machine, are composed 

from data semaphores.  PORTS are a program's or process1 method of 

communicating with the outside world and of establishing co-routine 

linkage both within and between processes.  A PORT is one end of a 

two-way commv.nicatlon path.  The CONNECT machine-operation establishes 

this path between two PORTS.  The PORT is a primitive ISPL-machine 

Flex; it is composed of a pointer to the FORT on the other end of the 

communication path (i.e., the connected or remote PORT) and a data 

semaphore for which the data is a pointer to a parameter_llst (tech- 

nically, an array of argument descriptors) that represents the data 

logically being passed through the PORT.  The data may be stored in 

any of the allowed methods for data semaphores, UNBUFFERED or buffered 

in a STACK or QUEUE.  A PORT is like a subroutine CALL in that (1) any 

number and type of arguments can be passed at once, and (2) the meaning 

of these arguments is established by convention between the caller 

(sender) and callee (receiver).  PORTS and subroutine calls are also 

alike in that they both physically involve the passing of a single 

pointer to the parameter list. 

PORTS' and subroutine calls differ greatly In the way they affect 

control flow.  Subroutine calls are always synchronous.  The calling 

program Is suspended; the called program is started (not resumed) at 

See Ref. 1, pp. 16-17. 
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its entry point (i.e., its PROCEDURE statement), runs to completi' n, 
t 

and returns to the calling program, which then resumes execution. 

PORTS involve a much more flexible control flow.  Sending data through 

a PORT is simply a V operation on the remote PORT's data semaphore, 

supplying the parameter list pointer as data.  Thus, the SEND opera- 

tion merely makes the data available.  Control-flow is determined by 

the rules ^f semaphore synchronization (see pp. 21-22).  Briefly, if the 

V'ed semaphore does not have an active P, the sending program continues. 

If the V'ed semaphore has an active . from an EEB in the same process 

as the sending EEB, and if it has a lower priority or is not enabled, 

the sending EEB continues.  If the V'ed EEB has a higher priority than 

both the sending EEB and the INTERRUPT PENDING EEB, it becomes the 

INTERRUPT PENDING EEB.  The next point of interruptability (NEW STATE- 

MENT operator) at which interrupts are enabled for the process causes 

an EEB switch within the process by the ISPL machine.  Finally, if 

the V'ed semaphore has an active P from an EEB in a process different 

from the sending EEB, the same rules determine whether an EEB switch 

should occur within that process.  If that process' CURRENT EEB is 

nondispatchable (i.e., waiting), the EEB switch occurs immediately. 

(Execution is not resumed in the process, its CURRENT EEB and INTER- 

RUPT PENDING EEB are merely updated.)  If a previously undispatchable 

process is now dispatchable—either as a result of an EEB switch or 

because the CURRENT EEB was the one that was P'ed on the V'ed sema- 

phore—the ISPL machine generates a PROCESS DISPATCHABLE interrupt for 

that process' monitor to inform it of the change in status. Control- 

flow between these and other processes is the responsibility of the 

process' monitors. 

Similarly, receiving data through a PORT is simply a P operation 

on the PORT's data semaphore, followed by the assignment of the pointer 

as the CURRENT instance of the parameter list being received. This 

makes the passed arguments accessible to the receiving program.  Again, 

t 
Systems that have co-routines also employ the subroutine call 

and return mechanism for this purpose.  We feel that this facility is 
more naturally a part of the semaphore synchronization process.  It is 
therefore a particular use of PORTS as explained below. 
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control-flow is determined by the availability of the semaphore and 

the rules of semapho.e synchronization. 
t 

PORTS always involve a form of co-routine linkage because 

(1) they pass information back and forth between EEBs in the same 

or different processes; (2) EEBs maintain the machine context of a 

logical flow of control in a process; and (3) whei: the EEB is resumed, 

control continues at the SYLLABLE following the SYLLABLE at which the 

EEB was suspended. Whether the co-routines are synchronous or not 

depends on whether the sending and receiving EEBs are in the same pro- 

cess, what the relative priorities between them are if they are in the 

same process, and what the scheduling algorithms of their monitor or 

monitors are if they are not in the same process. 

As originally defined by Conway [2]. 
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