
IC

rH

ARPA ORDER NO.: 189-1

R-562-ARPA

August 1971

The ISPL Machine:
Principles of Operation

R. M. Balzer

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield. Va 22151

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

\3fi m

Rand
SANTA MONICA, CA 9040(.

L^™ *>b

tftf10*

tf 4W sUfl« 0\

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study
should not be interpreted as representing the official opinion or policy of Rand
orofARPA.

DOCUMENT CONTROL DATA

1. ORIGINATING ACTIVITY 1 2a. REPORT SECURITY ClASSIFICATION

' The Rand Corporation

UNCIASSTFIED
2b. GROUP

3. BEPORf TITLE

THE ISPL MACHINE: PRINCIPLES OF OPERATION

4. AUTHOR|S)(loil name, fiul name, initial)

I Balzer, R. M.

i. REPORT DATE 6o. TOTAl NO. OF PAGES Ob. NO. OF REFS.

August 1971 36 2

7. CONTRACT OR GRANT NO. 8 ORIGINATOR'S REPORT NO.

DAHC15 67 C 0141 R-562-ARPA

<fo. AVAIIABIUTY/UMITATION NOTICES 9b. SPONSORING AGENCY

DDC-A advanced Research Projects Agency

10 ABSTRACT
/

11. KEY WORDS

1 The first of a series conceptually de- Computers
scribing the Incremental System Program- File Structure and Management

1 ming Language computing system, an inte- Computer Programming
grated environment for multiuser research ISPL
programming. The ISPL language and machine

i are jointly designed, with hardware pro- a
1 viding the control and scheduling facil-

ities traditionally handled by Job Control
| Language find other software. Close cor-
1 respondence between program statements and

machine actions makes for clarity and
efficiency and facilitates incremental
compilation, which in turn allows on-line,

I Interactive programming and debugging.
1 During postfix program translation, ISPL
| Inserts NEW STATEMENT operators that de-

fine inte.rruptible points. User address
'! spaces are carefully segregated. Sepa-
| rately accessed memory areas are assigned
| in logical units, with pointers. Most pro-
l grams and data remain in virtual memory;

only those portions of program and data
1 actually referenced are contained i:i real
j memory. Resources are allocated by raa-
i chine primitives called semaphores, which
| may also carry data. Data semaphores
1 compose Port«, which provide hardware/

software/user communications (described
in R-605.)

ARPA ORDER NO.: 189-1

R-562-ARPA

August 1971

The ISPL Machine:
Principles of Operation

R. M. Balzer

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA '"0406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-iii-

PREFACE

This report describes the Incremental System Programming Language

(ISPL) machine, which was designed specifically to run the ISPL lan-

guage. Together, the language and the machine comprise a complete

system for producing a programming laboratory at Rand. The ISPL ma-

chine directly executes the postfix representation of the ISPL language

and includes many functions, such as page-table maintenance, normally

found in software. For a clear picture of the ISPL system, this report

should be read in conjunction with its companion paper, R-563-ARPA,

The ISPL Language Speoifiaations. However, both report-j should be

viewed as specification documents only, as the system has not yet been

Implemented.

Work on ISPL was sponsored by the Department of Defense's Advanced

Research Projects Agency (ARPA) as an integral part of both Rand's and

the client's overall program to explore current computer technology.

The present report should be of interest to those concerned with ma-

chine design and the integration of hardware and software systems.

-v-

SUMMARY

The design of the ISPL machine has been integrated with the design

of the ISPL language Together, they comprise a complete system for

producing a programming laboratory. The facilities incorporated in the

machine allow for the direct execution of the ISPL language at the post-

fix level. This simplifies compilation of the language and facilitates

incremental compilation. The postfix execution unit includes debugging

capabilities for dynamic type checking and pointer verification.

The addressing structure is based on variable-length segments

accessed through pointers, which also contain read/write capability in-

formation. Remote segments enable the sharing of segments and of data

structures, which themselves contain pointers.

The machine has operations for scheduling core and central proces-

sing unit resources, and handles all interrupts and communications

through semaphores, which exist as machine primitives.

-Vil-

ACKNOULEDGMENTS

Many of the ideas contained herein arose during the ISPL study

group meetings. As such, it is impossible to individually credit each

idea, but my thanks to the members: Richard Bisbey, Rod Fredrickson,

Will -Josephs, Larry Lewis, and Tom Wall.

My special thanks to Bill, who started the project with me and

helped crystallize many of the notions upon which the ISPL machine

and language are based.

-ix-

CQNTENTS

PREFACE iii

SUMMARY v

ACKNOWLEDGMENTS vii

Section
I. INTRODUCTION 1

II. PROGRAM EXECUTION 2
Literal 4
Offset In Static 4
Offset in Current Record 4
Offset In Record 5
Literal 5
Offset In Static 6
Offset In Current Record 6
Offset In Record 6

III. ADDRESSING 7

IV. SEGMENT-TABLE OPERATIONS 14
Create Segment 14
Destroy Segment 14
Give Segment 15
Retrieve Segment 15
Make Process Inactive 17
Make Process Active 17
Process Monitor 17

V. MULTITASKING. SCHEDI'LING, PORTS, AND INTERRUPTS ... 18
PCB 20
EEB 20
IEB 21

REFERENCES 27

Published by The Rand Corporation

-1-

INTRODUCTION

The Incremental System Programming Language (ISPL) machine has

been expressly designed to execute programs written in ISPL. Our goal

was to execute these programs efficiently, with as much dynamic error

checking as possible and so that they resembled as closely as possible

the ISPL source language. This goal is designed to foster an environ-

ment in which att our programming work can be done in ISPL because

(1) it is efficient, (2) it has powerful debugging techniques built

in; and (3) its close correspondence to machine actions makes errors

easily interpretable in source form and provides easy and efficient

handling of incremental compilation of programs to allow on-line, in-

teractive programming and debugging.

The third major component, after the language and the machine,

is the control program to coordinate the two. The language design

specifically includes the facilities needed by the control program,

and the machine is designed to easily express these control functions.

In addition, many facilities in both the language and the control pro-

gram that have traditionally been implemented in software have been

designed as part of the ISPL machine.

This intense integration simplifies the design, implementation,

efficiency, and understanding of the system. However, it makes the

description of one of these components without the others virtually

impossible. Thus, The ISPL Language Speaifiaations [1] should be con-

sidered as a companion report. Each relies heavily on the other.

-!

II. PROGRAN EXECUTION

The control program schedules units (called PROCESSES) for execu-

tion on the ISPL machine. A PROCESS is a set of cooperating, independent

control paths (called TASKS) through programs sharing a common address-

ing space tor programs and data. The ISPL machine is responsible for

scheduling and controlling the TASKS within a PROCESS; this is described

in Sec. V. Processes are created via a form of the INITIATE_P,-,OCESS

machine operation, which causes a series of control blocks to be formed

that contain all the necessary context and control information for the

process anc. each of its tasks.

To start a process in execution, the DISPATCH_PROCESS operation is

used, which specifies a PCB to be dispatched. The machine context of

the current process (the one that issued the DISPATCH_PROCESS operation)

is stored in its PCB, the dispatched process is marked in the DISPATCHED

field and its machine context is loaded into the ISPL machine. This

machine context consists of:

1. Process number, which indicates which process is running.

2. Segment table pointer, used for translating virtual addresses
(see pp. 7-11).

j. Top of stack pointer, which indicates the location of the top
of the stack.

4. Interpretation pointer, which indicates the procedure context
in which operands are to be interpreted (see p. 4).

5. Syllable pointer, which indicates where execution is to be
resumed.

After completion of the DISPATCH operation, the dispatched process

is running and syllables are fetched and executed sequentially, starting

at the location specified by the syllable pointer. These syllables are

the basic instructions of the ISPL machine. They are either operands

or operators and are the Polish Postfix translation of the correspond-

ing source statement. A syllable has the following format:

t
The exact format of this information is described in Sec. V;

until then, we refer to these blocks collectively as a Process Control
Block (PCB).

-3-

Operator syllable (1 or 1 bytes)

operator bit 1 bit

operator type 7 bits

If operator type = SWF', then the next byte contains the

operator type (all 8 bits are concatenated with a high-urder

bit (value, 1) to form the operator type).

Operand syllable (2 to 5 bytes)

operand bit 1 bit

value or address desired 1 bit

location of operand 2 bits

literal 00

offset In static 01

offset in current record 10

offset in record 11

data type of operand 4 bits

The second part of the operand syllable is determined by the

LOCATION OF OPERAND value in the first part. It will be one

of the following:

literal

literal value 8 bits

offset in static

offset value 16 bits

offset in current record and offset in record

record type of record in which operand 8 bits
occurs

offset within record

If high-order bit is off 8 bits

if high-order bit is on and next 16 bits
highest order bit is off

if high-order bit is on and next 24 bits
highest order bit is on

The action of the ISPL machine when executing a syllable depends

upon the type of syllable and the options selected within it. In

general, operand syllables cause either the address or value (as de-

termined by the adHress-or-value bit within the operand) to be added

-4-

to the top of the process stack. Operator syllables also cause the

corresponding ISPL-machine operator to be executed, which uses and

removes the top N (usually two) operands from the process stack and

replaces them with M results (usually one or zero).

Execution of the process continues until (1) it completes, (2) an

interrupt occurs, or (3) it waits for an event that has not yet occurred,

In each case, the machine context of the running process is saved. The

first two cases are handled by the interrupt-processing mechanism in

the ISPL machine (described in Sec. V). In the third case, the process

that dispatched the running process is dispatched at the syllable fol-

lowing the ÜISPATCH_PRÜCF,SS operator, which it used to dispatch the

waiting process.

Consider a process that has been dispatched and is now running.

We describe the actions of the ISPL machine in decoding and accessing

each of thfi operand syllables.

First, we assume the VALUE_Oi;_ADDRESS bit specifies address.

LITERAL

A program error occurs. Literals must be specified as values.

OFFSET IN STATIC

The 16-bit offset is pointer-added (pointer addition is defined

on p. 12) with the STATIC SEGMENT pointer from the PCB to form the

required address and is pushed onto the top of the PROCESS STACK.

OFFSET IN CURRENT RECORD

The INTERPRETATION POINTER in the PCB points at a procedure entry

in the PROCESS STACK; this entry contains the address of the DISPLAY

for that procedure. The DISPLAY contains the address of the current

member of each record declared in the compilation in which the pro-

cedure occurs. When a procedure is entered, its DISPLAY is initialized

to that of its calling program if they are in the same compilation.

Otherwise, its DISPLAY is set to all NULL. When a process is dis-

patched, the INTERPRETATION POINTER is used to obtain the address of

the associated DISPLAY. This address is kept in the CURRENT DISPLAY

REGISTER.

The 8-bit record_type is multiplied by 4 and pointer-added to the

contents of Ihe CURRENT DISPLAY REGISTER; the contents of the cell

referenced by the. resulting pointer is accessed and pushed onto the

top of the PROCESS STACK. This is the reference to the current in-

stance of the specified record_type.

Processing now continues as for OFFSET IN RECORD.

OFFSET IN RECORD

The 8-bit record_type in the operand SYLLABLE is compared with

the 8-bit record_type in the pointer at the top of the PROCESS STACK.

If they do not agree or if a pointer is not at the top of the PROCESS

STACK, a program error occurs.

If the record_types agree and a pointer is at the top of the

stack, the offset specified in the operand SYLLABLE is pointer-added

to the value at the top of the stack and replaces it at the top of

the stack.

In each of the cases above, except for the illegal case of

literals as addresses, the resulting value at the top of the stack is

a pointer and is so marked by the 4 control bits in the stack entry.

The :ecord_type of the pointer value is set to the primitive data-

type specified by the 4-bit data_type specified in the first part of

the operand SYLLABLE.

If the VALL'E_OR_ADDRESS bit specifies that the value is dos nod,

the processing for each of the cases is as follows.

LITERAL

The 8-bit literal (as the low-order 8 bits of the 32-bit stack

entry) is pushed onto the top of the stack. The control hits of thi

entry are the data_type bits specified in the operand SYLI.Vhl.K.

-6-

OFFSET IN STATIC

OFFSET IN CURRKNT RECORD

OFFSET IN RECORD

In each case, after processing the individual cases as described

above for address operands, the resulting pointer at the top of the

stack is replaced by the value referenced by this pointer. The control

bits of this entry are the right-most 4 bits of the pointer's record_

type (the other 4 bits should all be zero).

-7-

III. ADDRESSING

Section 11 completes the description of the logical addressing

scheme for the ISPL machine. This would suffice if a REAL, as opposed

to a VIRTUAL, addressing scheme were used. The ISPL machine has been

designed as a multiuser research machine in which programs cannot b1

assumed to work correctly. Therefore, the address spaces of separate

users must be kept disjoint. Furthermore, a mechanism is needed to

more effectively use one of the machine's scarcest resources--real

memory. A number of VIRTUAL addressing schemes satisfy the first re-

quirement. Those schemes that also divide this virtual address space

into separately accessed pieces allow the machine to run a program with

only the actually referenced portions of a program and its data in

real core. This Is especially important to us because our programs

tend to be large compared with our available real core. Within these

major constraints, we based our choice of a virtual addressing mechan-

ism upon the following critical requirements:

1. Units of physical addressing space should correspond to
logical units of a user's program and/or data.

2. Addresses are a separate data type and have their own oper-
ators; they are not a form of integer data.

3. The address spaces of separate processes must be protected
from each other while still allowing data and program sharing.

4. The addressing structure must allow subsystems to be built
that have direct control of their user's address space and
allocation., but that cannot affect other users' address space.

All addresses, whether in the stack or in pointer variables, are

virtual addresses and must be transformed into real addresses before

being used. Each virtual address is part of a pointer value, which

has the following format:

8 bits 2 bits 22 bits

record
type

read/write
capability

virtual address

-8-

For the moment, we assume that the virtual-address portion is

divided into two parts—a segment number and an offset (in bytes)

within that segment.

To transform the virtual address, the ISPL machine uses the seg-

ment number to index a table, the SEGMENT TABLE, pointed to by the

SEGMENT_TABLE_POINTER in the process' PCB. Each entry in this table

is a double word, as shown in Fig. 1.

In the first case, REAL SEGMENT, the ISPL machine multiplies the

SEGMENT SIZE field of the entry by 8 to convert it to a byte length

and compares this with the offset in the virtual address. If it is

larger, a segment-overflow program-error occurs. If not, the REAL

SEGMENT BASE field of the entry is multiplied by 8 to convert it to a

byte address and the offset in the virtual address is added to this

value to create the resultant real address.

If a store operation is being done and the SEGMENT TYPE is DATA

AND PROGRAM UNMODIFIED, the SEGMENT TYPE is changed to DATA AND PROGRAM

MODIFIED.

The second case is tne PSEUDO-SEGMENT. The transformation is the

same as in the first case except that the result, nt address is a vir-

tual address in the same address space and must be decoded again as

explained in this section. PSEUDO-SEGMENTS are segments overlayed on

all or part of a REAL or REMOTE segment; they are created by a user

for his own convenience, usually protection. They never represent

separate addressing space and play no part in core allocation, sched-

uling, or swapping.

In the third case, the segment-table entry is a REMOTE SEGMENT.

This indicates that the resultant address of the transformation will

not be a real address but a virtual address in the address space of

the process specified by the REMOTE PROCESS NUMBER field in the entry.

The read/write capability specified in the entry is combined, by the

rules of read/write capability combination described above, with the

See p. 11 for a discussion of how this address is transformed into
a real address.

-9-

FIRST WORD

15 18

I] REAL
SEGMENT EGMENT) tyj

segment
type

segment size (double words) 256K real segment base (double worüw^ ?M

1C

1100

00 DATA AND PROGRAM UNMODIFIED
01 DATA AND PROGRAM MODIFIED
10 STACK
11 SEGMENT TABLE

2 15 19
PSEUDO-
SEGMENT

segment size (double words) 256K virtual segnnnt base (double words) 4M

4 2 12 18
REMOTE
SEGMENT

read/write
capability remote process number remote segment number

12 12
SEGMENT
NOT IN
CORE

process number of retriever semaphore process number semaphore count

1101 FREE SEGMENT
1110 CORE NOT YET ALLOCATED
1111 SEGMENT ON SECONDARY SloKAGE

SECOND WORD

32
saved
segment
type

not
used file pointer

Same as segment type for REAI SEGMENTS

Fig. 1—Format of Segment Table

■10-

read/write capability of the pointer value being transformed, co form

the resultant read/write capability. The REMOTE PROCESS specified

becomes the base for further transformation; the offset in the pointer

value is then combined with the remote-segment number to form the re-

sultant virtual address; and the transformation, using the REMOTE

PROCESS'« segment table, continues as above.

The remote-segment concept is very important to the ISPL machine's

addressing mechanism. It allows two arbitrary processes to share pro-

grams and data, including pointer-linked data, without special program-

ming conventions or restrictions. Remote segments are built by the

ISPL machine whenever a pointer is passed (i.e., stored) from one

addressing space to another. When such a transfer occurs between two

processes that use different segment tables, the ISPL machine creates

a remote segment in the receiving segment table and changes the passed

pointer to reference the newly created remote-segment entry.

In order to tell when pointer values are stored in a different

addressing space, an indication of its addressing space must be kept

with each pointer value. For normal pointer values—those for which

the initial address transformation is not remote—the indication is

implicit in the control bits that indicate the entry is a pointer value.

For remote pointer values—those for which the initial address trans-

formation is remote™the control bits indicate a new stack type (remote

pointer value) and the next entry indicates the process number of the

process from whose addressing space the pointer value was obtained.

Before a pointer store is done, a remote segment is created .ns de-

scribed above if the process number of Lhe pointer value and the pro-

cess number of the address space in which the destination is real (i.e.,

not remote) are different.

Pointer comparison is always done by comparing real addresses;

therefore, it is insensitive to t?mote segments. The only other pointer

operation is POINTER FOLLOWING (picking up successive pointers through

consecutive OFFSET IN RECORD operand SYLLABLES); it is also not modi-

fied. However, because all address transformations must begin with the

process' addressing space from which the pointer value was obtained,

the decoding mechanism must handle both normal and remote pointers.

-11-

Because both segment tables and stacks utilize all 36 bits of a

word, the ISPL machine contains special operations to allow manipula-

tion of these segments under program control. These operations are de-

tailed on pp. 14-16; the relevant issue here is that only the operation

that frees the entry involves remote segments. Thus, processes can

neither create nor modify these crucial links between iddress spaces.

Finally, in the last case, the segment-table entry is a SEGMENT

NOT IN CORE entry. If the entry is a FREE SEGMENT, a program error,

ADDRESSING NON-EXTSTENT SEGMENT, is generated. Otherwise, the segment

is either on secondary storage or has not yet been allocated. In

either case, real core must be allocated to the segment before the pro-

cess can continue. Therefore, the ISPL machine issues a P operation

for the dispatched process on the semaphore in the segment-table entry

and generates a SEGMENT REQUESTED interrupt for the process that RE-

TRIEVED the real core allocated to the segment (see pp. 15-16).

The SEGMENT TABLE POINTER in the PCB represents the real-core ad-

dress of the segment table. Since all address transformation is through

the segment table, a method of addressing it cannot require information

within it. The simplest such method is the use of an absolute address.

Since entries in the process' segment table represent all real core

GIVEN to a process, it does not make sense to RETRIEVE the segment

table if it contains any real core because that real core would not be

retrievable or usable without the segment table. Thus, two special

segment-table operations are defined to control the allocation of seg-

ment tables, MAKE PROCESS INACTIVE and MAKE PROCESS ACTIVE; these are

explained on p. 17.

One cinal complication remains. With only 22 bits available for

segment numbers and offsets, no fixed division allows enough flexibility

for a wide range of applications. We adopted the following mechanism

as a more flexible alternative. The 22-bit field is dynamically divided

into the segment number and the offset portions on the basis of actual

need, as evidenced by the largest segment number actually used. Even-

tually, as larger segment numbers are used, the binary representation

of the largest will not fit into the allocated portion of the 22-bJ.t

-12-

field. Therefore, the ISPL machine dynamically increases the portion

allocated to segment numbers. In order to preserve the validity of

pointers already generated with the old boundary, the bit representa-

tion of the segments and offsets has the low-order end of each number

at the outside of the 22-bit field and the high-order end toward the

center. Thus, as the boundary dynamically shifts, it has no effect on

existing pointer values because high-order zeros are either being added

or deleted from the two parts. This remains true as long as the total

number of bits needed to represent the maximum segment number and off-

set used is not greater than the 22 bits available.

If this condition is exceeded, an ADDRESS SPACE OVERFLOW program

error occurs. The ADDRESS BOUNDARY REGISTER for each process is kept

in its PCB and used to decode all pointer values occurring in its ad-

dress space. The maximum-length segment used is kept in the header of

the segment table. Since the maximum-size segment is 256K bytes, the

ADDRESS BOUNDARY REGISTER is initialized to provide 18 bits for the

offset and 4 bits for the segment number.

Finally, when an offset is added to a pointer, i.e., POINTER ADDED,

a SEGMENT OVERFLOW program error occurs if an overflow occurs from the

offset portion.

The read/write capability is a discrete value from the read_write_

capability range consisting of the values read_only, read, read_write,

and modal. These values are given in decreasing order of restrictive-

ness; therefore, in following a pointer chain or path, the resulting

read/write capability is the more restrictive of the accessing and the

accessed capability, as for example, in the pointer chain

PI(MODAL)->P2(READ_WRITE)->P3(READ_ONLY)->
P4(READ WRITE)->J

In this example, the values In parentheses indicate the read/write capa-

bility of the pointers. Some implicit pointer is used to access PI,

and we assume its capability Is modal. P2 is also accessed with modal

capability, P3 with the more restrictive read_write capability, P4 with

-13-

the most restrictive read_only, and J with this same read_only capa-

bility even though P4 has read write capability. Thus, protection

can be assured by starting with, or encountering, the proper capabil-

ities in a pointer chain or path.

There is one exception to these precedence relationships: when

a read capability encounters a read_write capability, it becomes a

read_write capability. Thus, local read(only) protection can be given

that, via an appropriate pointer, leads to a read write capability.

This is important for system blocks that must be protected but that

lead to writable blocks in a user's space.

•14-

iv. SF.CMI:NT-TABLE OPERATIONS

CP-EATE JvKf^]KNT

length (I), pointer to base (P) '
Fo f':a l:

pointer to base of new segment (P)

This operation creates a new entry in the segment table of the

process Issuing the operation and returns a pointer to it. It can

only be used to create a data and program segment. The read/write

capability of the returned pointer is t..^ same as that in the supplied

pointer. If the pointer value supplied is not NULL, the newly created

segment is a pseudo-augment (it can only be created on a data and pro-

gram segment). '.Ihen the supplied pointer is NULL, the new segment is

a real segment for which core has not yet been allocated. A CORE NOT

YET ALLOCATED entry is made, the process number of the retriever (see

p. 16) is set to the monitor of the process that issued the operation,

and the DATA AND PROGRAM UNMODIFIED segment-type is put into the SAVED

SEGMENT TYPE field in the second word of the entry. When the segment

is actually accessed, a SEGMENT FAULT occurs and the process' monitor

must allocate core for the segment before the process may continue.
i

DESTROY SEGMENT

Format: pointer to segment (PW)|

T^: supplied pointer must have write capability. It cannot des-

troy a segment table or stack segment. The indicated segment is freed.

Any disc space (see p. 16) allocated to the segment is freed. If the

segment has real core allocated to it at the time the destroy is issued

(i.e., if it is a real segment), a DESTROYED SEGMENT interrupt is gen-

erated for the process' monitor.

GIVE SEGMENT

process number of receiver (I), receiving

Format: segment number (I), pointer to segment

to be given (PW)|

The process specified (Process B) must be an immediate subprocess

(see p. 18) of the process that issued the operation (Process A). If

the segment being GIVEN is a SEGMENT ON SECONDARY STORAGE or a CORE

NOT YET ALLOCATED entry, a SEGMENT FAULT occurs and, as described

earlier, processing of the issuing process (Process A) is suspended

until the segment becomes a REAL SEGMENT. If the receiving segment

number specifies a FREE SEGMENT, a REAL SEGMENT, a PSEUDO SEGMENT, or

a REMOTE SEGMENT to a process that is not an immediate subprocess of

Process B, or if the segment being GIVEN is a FREE SEGMENT, a REMOTE

SEGMENT, a PSEUDO SEGMENT, or a REAL SEGMENT that is not a DATA AND

PROGRAM segment, then an INVALID GIVE program error occurs. If the

receiving segment number specifies a REMOTE SEGMENT to an immediate

subprocess of Process B, that process and segment become the receivers

of the operation and the new receiving segment is processed as described

above.

Ultimately, either an INVALID GIVE occurs, which halts the op-

eration, or a SEGMENT NOT IN CORE entry is found. In the latter case,

the ultimate receiving segment is read into the real core if it is a

SEGMENT ON SECONDARY STORAGE. Any processes waiting for the segment

(i.e., any that are P'ed on the semaphore in the segment-table entry)

are V'ed. The entry is changed to a REAL SEGMENT representing the real

core In the segment being given, the SEGMENT TYPE is set to the SAVED

SEGMENT TYPE, and the segment being GIVEN is changed to a REMOTE SEGMENT

to the original receiving segment and process.

RETRIEVE SEGMENT

Format: pointer to segment (P) |

-16-

The segment specified must be a REMOTE SEGMENT to an immediate

subprocess (Process B) of the process (Process A) issuing the opera-

tion. An INVALID RETRIEVE program error occurs if the segment being

retrieved is a 1SEUDO SEGMENT, a REMOTE SEGMENT to a process that is

not an immedLice subprocess of Process B, a FREE, or a CORE NOT YET

ALLOCATED segment. If the segment being retrieved is a REMOTE SEGMENT

to an immediate subprocess of Process B, then that segment becomes the

operand of the operation and the segment being retrieved is processed

as described above.

Ultimately, either (1) an INVALID RETRIEVE must occur that halts

the operation, or (2) either a REAL SEGMENT or a SEGMENT ON SECONDARY

STORAGE entry must be found. If a modified REAL SEGMENT is found,

it is copied lo the location specified by the file pointer in the

second word of this entry. If the file pointer is null, before the

copy operation is performed, an area of secondary storage of sufficient

length is allocated and a file pointer to it is placed in the second

word of the entry. After the copy operation, if necessary, the initial

REMOTE SEGMENT in Process A is changed to a REAL SEGMENT representing

the real core; the segment type is picked up from the SAVED SEGMENT

TYPE field of the second word of the entry; and the retrieved segment

is changed to a SEGMENT ON SECONDARY STORAGE entry, its SEMAPHORE PRO-

CESS NUMBER and SEMAPHORE COUNT are set to zero, and its PROCESS NUMBER

OF RETRIEVER is set to the process number of the process that issued

the operation (Process A).

If a SEGMENT ON SECONDARY STORAGE entry is found, some process for

which Process A is a subprocess has already retrieved the real core

associated with the segment. The initial remote segment in Process A

is changed to a SEGMENT ON SECONDARY STORAGE entry; its SEMAPHORE PRO-

CESS NUMBER and SEMAPHORE COUNT are set to zero; its PROCESS NUMBER OF

RETRIEVER is set to the PROCESS NUMBER OF RETRIEVER in the entry found;

the PROCESS NUMBER OF RETRIEVER in the entry found is set to the process

number of th.e process that issued the operation (Process A); and, if any

processes are waiting on the entry found, a SEGMENT REQUESTED interrupt

is generated for Process A (which informs it that the retrieved segment

has been requested).

-17-

MAKE PROCESS INACTIVE

Format: process number |

The indicated process must be an Immediate subprocess of the pro-

cess that Issued the operation. All the real core given to the sub-

process is retrieved and the segment tables for that subprocess and any

of Its subprocesses are retrieved by the ISPL machine, forcing them to

be saved on secondary storage. The FILE POINTER to the location of the

segment table replaces the value of the SEGMENT TABLE POINTER in the

PCB.

MAKE PPOCESS ACTIVE

Format: process number |

The indicated process must be an immediate subprocess of the pro-

cess (Process A) that issued the operation. The segment tables for

that process and any of its subprocesses that were made inactive by

Process A are brought back into core in segments GIVEN by the ISPL

machine. The size for each segment table is picked up from the PCB

(in the MAX_SEGMENT_SIZE_USED field). Finally, the absolute address

of the segment table is placed in the SEGMENT TABLE POINTER field of

the PCB.

PROCESS MONITOR

Format: process number | process number of monitor

The PROCESS MONITOR operation returns the process number of the

monitor of the specified process.

-18-

V. MULTITASKING. SCHEDULIMC, PORTS, AND INTERRUPTS

In the ISPL machine, multitasking, scheduling, Ports, and inter-

rupts are intimately related. They are the mechanisms that coordinate

and control asynchronous processes. As explained earlier, a process

is one or more logical lines of control flow in a common address space.

It is represented in the ISPL machine by a PCB that contains the

"machine context" of the process—all the information needed to properly

resume execution of that process. A PCB is created by a form of the

INITIATE operation, which sets up a separate address space. This new

process is controlled by, and is an immediate subprocess of, its mon-

itor— the process that issued the INITIATE operation. This dependence

is recorded in the PCB so that the monitor for any process is available;

hence, if a subprocess initiates further subprocesses and acts as their

monitor, the ISPL machine maintains the process hierarchy.

If a monitor has INITIATED several processes, it must allocate

execution processing among them. This allocation is called scheduling.

The decision is effected through the DISPATCH command, which is the

process-equivalent of a subroutine call. The process that issued the

DISPATCH operation is suspended, its machine context saved, the fact that

it DISPATCHED another process recorded, and execution of the DISPATCHED

process resumed as indicated by the machine context. This process con-

tinues Li execute until it either asks for an unavailable resource or

an interrupt occurs (such as the expiration of a timer set by the dis-

patching process). Process completion is treated as an interrupt.

A request for an unavailable resource is treated as a normal re-

turn from the dispatched process. This process1 machine context is

saved and the dispatching process is resumed at the syllable after the

DISPATCH.

The second case concerns Interrupts. An interrupt is the sudden

availability of a resource required by a process. Resources In the

ISPL machine are represented by a primitive data-type called a sema-

phore. Only certain operations are allowed with semaphores. These

include the V operation, which makes a resource available (i.e., re-

turns it); the P operation, which requests or obtains a resource if it

-19-

is available and, if it is not, waits until it is available; and the

CONDITIONAL P operation, which performs a P operation only if the re-

source is available.

Thus, an interrupt is a V operation on a semaphore for which some

process has an active P operation—i.e., one that has not yet received

the requested resource. Certain interrupts, such as process comple-

tion, segment fault, and all program errors, are generated by the ISPL

machine upon recognition of the condition indicated. Other resources

are represented by user-created semaphores; interrupts occur when these

semaphores are V'ed if there is an active P on the semaphore.

The representation of and operations on all semaphores are the

same whether they are machine- or user-created. However, the method

of accessing the appropriate semaphore differs. User-created sema-

phores are always accessed by the address of the semaphore. For ef-

ficiency, and because both the ISPL machine and programs written in

ISPL must be able to access the machine-defined semaphores, these sema-

phores are accessed by a machine-designated number. The MACHINE SEMA-

PHORE PRESENCE field indicates the presence or absence of the associated

machine-defined semaphore. A P operation on such a semaphore is always

treated as the creation of a new semaphore to handle the condition. The

new semaphore is added to the top of the STACK of machine-defined sema-

phores present, and the MACHINE SEMAPHORE PRESENCE field is set to in-

dicate the semaphore's presence. Because the semaphore is new, it will

never be available when requested and will cause the executing unit to

wait for the condition. A V operation on a machine-defined semaphore

tests for its presence in the running process. If it is there, the

semaphore stack is searched to find it. Since P operations always

create a new instance of the semaphore, which is put on the top of the

semaphore stack, the most recent semaphore is used if there are multi-

ple active Ps on the same machine-defined semaphore. This is precisely

the interpretation necessary for ON-UNITS in ISPL. If the machine-

defined semaphore is not present in the running process, that process'

monitor is checked for the semaphore's presence. This is repeated until

a process that will handle the machine-defined semaphore is found. If

no process is found, the ISPL machine must handle the semaphore as a

system error.

-20-

To handle ON-UNITS, co-routines, and independent asynchronous

tasks that share a conunon addressing space, the control blocks for a

process are divided into three separate blocks:

1. The PCB, which holds all the common information about the

process as a whole;

2. The INDEPENDENT EXECUTION BLOCK UEB), which represents a

single, independent, asynchronous, logical flow of control

in the address space of the process;

3. The EXCLUSIVE EXECUTION BLOCK (EEB). One EEB exists for

each of the ON-UNITS and one for the main line of the IEB.

These EEBs contain the information local to the separate

logical lines of control within the IEB. Only one EEB can

logically be executing at once.

Each control block has the following fields:

PCB

IEB CHAIN (I) CURRENT IEB (I) |

I PROCESS MONITOR (I) INTERRUPT PENDING IEB (I) |

| SEGMENT-TABLE POINTER (P) I

IEB SWITCHING
| ENABLED (I)

ADDRESS BOUNDARY REGISTER (B)

SEGMENT-TABLE SIZE IN DOUBLE
WORDS (I)

MADE INACTIVE BY (I)

RESERVED FOR FUTURE USE 1

EEB

EEB CHAIN (I) IEB NUMBER (I) |

j DISPATCHED PCB (I) EEB PRIORITY (I) ENABLED (I) j

SEMAPHORE WAIT CHAIN (I OR P) I

TOP OF STACK POINTER (P)

INTERPRETATION POINTER (P) I

SYLLABLE POINTER (P)

.■:■:■ ■ . ■: .- - . .

■

IEB

-21-

IEB CHAIN (I) CURRENT EEB (I)

EEB CHAIN (I) INTERRUPT PENDING EEB (I)

CREATING IEB (I) IEB PRIORITY (I) ENABLED (I)

EEB SWITCHING
ENABLED (I)

IEB DISPATCH-
ABLE (I)

RESERVED FOR FUTURE USE

MACHINE-SEMAPHORE PRESENCE (B)

RESERVED FOR FUTURE USE

EEBs represent separate flows of control within an IEB; only one

can logically be operating at once. If an ON-UNIT waits for a resource,

the interrupted process cannot continue; it may only be resumed when the

ON-UNIT is completed. This exclusive property and the sufficiency of a

simple number to indicate the relative priority of EEBs enable schedul-

ing within an IEB to be performed as an ISPL-machine function. Similarly,

the sufficiency of a simple numerical priority among lEBs—representing

separate independent logical flows of control (TASKS) within a process—

many of which can logically be executing at once, enables scheduling of

lEBs to be performed as an ISPL-machine function. On the other hand,

interprocess scheduling is a monitor function because it may involve

many variable factors. A monitor need only concern itself with sched-

uling its immediate subprocesses. The internal behavior of these sub-

processes—whether they are in the main line, an ON-UNIT, or have dis-

patched one of their own subprocesses—is handled by the ISPL machine.

When an interrupt occurs, an EEB that was waiting for a resource

is now able to execute. If it (1) is enabled and has a higher priority

than the current EEB of that TASK (IEB) in the process (the one which

will be in execution when the TASK is the current IEB of the process

and the process is DISPATCHED) and (2) has a higher priority than any

INTERRUPT PENDING EEB, then the higher-priority EEB is marked as the

INTERRUPT PENDING EEB of the TASK.

Although interrupts can occur (a semaphore can be V'ed) at any

time, they are only honored between source statements in that TASK's

current EEB. Thus, at the point an interrupt is honored, the state of

-22-

both the ISPL machine and the source program is well defined. The

postfix translation of a program contains NEW STATEMENT operators,

which define these points of interruptability. (The NEW STATEMENT

operator also helps maintain source-object correspondence and facil-

itates incremental program editing.) An EEB also becomes interrupt-

able when a program error, a P operation that causes a wait, or a

DISPATCH operation occurs. This momentary interruptability is re-

corded in the high-order byte of the SYLLABLE POINTER field in the

EEB.

When an interrupt occurs, if the TASR's current EEB is interrupt-

able and the TASK does not have all interrupts masked, the INTERRUPT

PENDING EEB becomes the CURRENT EEB and is reset to zero. Only if

this EEB switch makes the TASK dispatchable (when it was not dis-

patchable before the switch) is the above process repeated to see if

a TASK switch should occur. The dispatchability of a TASK is deter-

mined by the SEMAPHORE WAIT CHAIN field of the TASK's CURRENT EEB.

If this field is non-zero, the EEB is waiting for a resource and the

TASK is nondispatchable. The TASK's dispatchability is marked in the

IEB DISPATCHABLE field. If the TASK was already dispatchable, no

further interrupt processing is necessary. The next time the affected

TASK is the current TASK of the dispatched process, the switched EEB

in the TASK will be the one resumed. If the TASK was not dispatchable

before the EEB switch, and if it is enabled and has a higher priority

than the current IEB and any INTERRUPT PENDING IEB, then the TASK be-

comes the INTERRUPT PENDING IEB. If the process has TASK-switching

enabled, the INTERRUPT PENDING IEB becomes the CURRENT IEB and is the

TASK dispatched when the process is next DISPATCHED.

If the process became dispatchable (i.e., the CURRENT EEB in the

CURRENT IEB is not waiting) only as a result of the interrupt, a

PROCESS DISPATCHABLE interrupt is generated for the process' monitor

to inform it that one of its subprocesses is now ready to be DISPATCHED.

If the process was already dispatchable, there is no need to inform

its monitor that an interrupt has occurred within it since the ISPL

machine handles the intraprocess scheduling and the process' external

state (its dispatchability) has not changed.

-23-

A distinction exists between (1) an EEB that is waiting for an

asynchronous interrupt, such as I/O complete, and that will be V'ed

by some other process, and (2) an EEB that is waiting for a synchro-

nous interrupt, such as zero divide, and that will be V'ed either

directly by another EEB in the same process or as a result of some

action of that EEB (such as dividing by zero or end-of-file reached).

The ISPL machine must handle these cases very differently. In the

case of an EEB waiting for an asynchronous interrupt, the EEB remains

as the CURRENT EEB of the process. Because that EEB is not dispatch-

able, the ISPL machine saves its context, indicates its interrupta-

bility, and resumes the dispatching process at the syllable following

the DISPATCH operation. When the asynchronous interrupt occurs (assum-

ing that no higher-priority EEB in that process has since become dis-

patchable), the process' monitor is given a PROCESS D1SPATCHABLE

interrupt; when the process is next dispatched, the suspended EEB is

resumed.

In the case of synchronous interrupts, the interrupt (by defini-

tion) cannot occur until some other EEB within the process Is resumed.

Therefore, waiting for a synchronous interrupt (a P operation on a

synchronous semaphore) is interpreted as both a P operation and a re-

turn from the EEB. Until the EEB again becomes dispatchable, the

ISPL machine schedules lower-priority EEBs in the same TASK.

The distinction between synchronous and asynchronous semaphores

is made in the ISPL machine by the SEMAPHORE TYPE field within the

semaphore. This field Is set when the semaphore is created. It

indicates not only the synchronous-asynchronous status, but also

whether or not the semaphore has any associated data. Some semaphores

are used only to synchronize a set of processes, to signal an event,

or to obtain exclusive access to a nonsharable resource. Other sema-

phores not only perform these functions, but also make available an

item of data when the P operation is successfully completed. The

meaning of this data is established, as is the meaning of the semaphore

itself, by convention between the processes or EEBs that P and V the

semaphore. For example, it might indicate where a zeio divide

occurred, which disc track is available, or which process became

-24-

dispatchable. Three separate methods are provided fo' holding the

data. UNBUFFERED semaphores have the data stored immediately following

the semaphore. Such semaphores must be used so that no more than one

data item is simultaneously stored with the semaphore (i.e., the count

is never greater than one). The other two methods for holding the data
t

make use of the STACK and QUEUE list processing structures to provide,

respectively, last-in-first-out and first-in-first-out buffering of the

data.

Operations on data semaphores are somewhat different from nondata

operations. When a V operation is performed, the data to be associated

with the semaphore must also be supplied, and when a P operation is

performed, the address of a variable to which the obtained data is to

be assigned must be supplied.

One particular use of data semaphores bears special attention.

FORTS, which are a central concept in the ISPL machine, are composed

from data semaphores. PORTS are a program's or process1 method of

communicating with the outside world and of establishing co-routine

linkage both within and between processes. A PORT is one end of a

two-way commv.nicatlon path. The CONNECT machine-operation establishes

this path between two PORTS. The PORT is a primitive ISPL-machine

Flex; it is composed of a pointer to the FORT on the other end of the

communication path (i.e., the connected or remote PORT) and a data

semaphore for which the data is a pointer to a parameter_llst (tech-

nically, an array of argument descriptors) that represents the data

logically being passed through the PORT. The data may be stored in

any of the allowed methods for data semaphores, UNBUFFERED or buffered

in a STACK or QUEUE. A PORT is like a subroutine CALL in that (1) any

number and type of arguments can be passed at once, and (2) the meaning

of these arguments is established by convention between the caller

(sender) and callee (receiver). PORTS and subroutine calls are also

alike in that they both physically involve the passing of a single

pointer to the parameter list.

PORTS' and subroutine calls differ greatly In the way they affect

control flow. Subroutine calls are always synchronous. The calling

program Is suspended; the called program is started (not resumed) at

See Ref. 1, pp. 16-17.

-25-

its entry point (i.e., its PROCEDURE statement), runs to completi' n,
t

and returns to the calling program, which then resumes execution.

PORTS involve a much more flexible control flow. Sending data through

a PORT is simply a V operation on the remote PORT's data semaphore,

supplying the parameter list pointer as data. Thus, the SEND opera-

tion merely makes the data available. Control-flow is determined by

the rules ^f semaphore synchronization (see pp. 21-22). Briefly, if the

V'ed semaphore does not have an active P, the sending program continues.

If the V'ed semaphore has an active . from an EEB in the same process

as the sending EEB, and if it has a lower priority or is not enabled,

the sending EEB continues. If the V'ed EEB has a higher priority than

both the sending EEB and the INTERRUPT PENDING EEB, it becomes the

INTERRUPT PENDING EEB. The next point of interruptability (NEW STATE-

MENT operator) at which interrupts are enabled for the process causes

an EEB switch within the process by the ISPL machine. Finally, if

the V'ed semaphore has an active P from an EEB in a process different

from the sending EEB, the same rules determine whether an EEB switch

should occur within that process. If that process' CURRENT EEB is

nondispatchable (i.e., waiting), the EEB switch occurs immediately.

(Execution is not resumed in the process, its CURRENT EEB and INTER-

RUPT PENDING EEB are merely updated.) If a previously undispatchable

process is now dispatchable—either as a result of an EEB switch or

because the CURRENT EEB was the one that was P'ed on the V'ed sema-

phore—the ISPL machine generates a PROCESS DISPATCHABLE interrupt for

that process' monitor to inform it of the change in status. Control-

flow between these and other processes is the responsibility of the

process' monitors.

Similarly, receiving data through a PORT is simply a P operation

on the PORT's data semaphore, followed by the assignment of the pointer

as the CURRENT instance of the parameter list being received. This

makes the passed arguments accessible to the receiving program. Again,

t
Systems that have co-routines also employ the subroutine call

and return mechanism for this purpose. We feel that this facility is
more naturally a part of the semaphore synchronization process. It is
therefore a particular use of PORTS as explained below.

•26-

control-flow is determined by the availability of the semaphore and

the rules of semapho.e synchronization.
t

PORTS always involve a form of co-routine linkage because

(1) they pass information back and forth between EEBs in the same

or different processes; (2) EEBs maintain the machine context of a

logical flow of control in a process; and (3) whei: the EEB is resumed,

control continues at the SYLLABLE following the SYLLABLE at which the

EEB was suspended. Whether the co-routines are synchronous or not

depends on whether the sending and receiving EEBs are in the same pro-

cess, what the relative priorities between them are if they are in the

same process, and what the scheduling algorithms of their monitor or

monitors are if they are not in the same process.

As originally defined by Conway [2].

-27-

REFERENCES

1. Balzer, R. M., The ISPL Language Speoifiaations, The Rand Corpora-
tion, R-563-ARPA, August 1971

2. Conway, M., "Design of a Separable Transition-Diagram Compiler,"
Cammuniaatione of the ACM, Vol. 6, No. 7, July 1963, pp. 396-398.

