
ARPA ORDER NO.: 189-1

Ports-A Method for Dynamic
Interprogram Communication

and Job Control
R. M. Balzer

NATIONATTECHNICAL
INFORMATION SERVICE

SprlngfloM, Vt. 121»

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

DIGTRIBUTIC" STATEMENT

Approved for public relaaMS
DistribuÜOD UolimitMl a o c

OCT «• Wl

BSEB

Rand
SANTA MOMCA. CA. «M06

P

DOCUMENT CONTROL DATA

| 1. OWOINATING ACTIVITY 1 2a Uf0,J *(CU*m ClASSIflCATICN

The Rand Corporation

UNCLASSIFlfcD
2b. CROUP

3. «EPORTTITll

PORTS—A METHOD FDR DYNAMIC INTERPRDGRAM OCytUNICATION A^D JOB CONTROL

4. AUTHOft(S) (IMI nom«, finl nan«, initial)

Balzer, R. M.

S. «POUTOATK öe. TOTAl NO. Of PACES 4b. NO. OF REPS.

August 1971 24 -
—

7. CONTRACT O* CHANT NO. 1. OKICINATOrS REPORT NO.

DAHC15 67 C 0141 R-605-ARPA

9o. AVAIlAHUTmiMIIATION NOTICIS 1 »b SPONSO«INO ACiNCY

DDC-A fidvanoed Research Projects Agency

\4. ABSTHACT
■ * Ti . i r

II. KEY WORDS

A^escribes Ports, a unified method for Computer Programming
communication between a computer program File Structure and Management
and terminals, files, peripheral devices. Computer Simulation
other programs, and supervisory software. ISPL

Lnnguage, described in R-563), each Job .'
has a Port named MONITOR that handles re-
source allocation: creating and deleting
files, assigning file space, core space.
processor time. This design permits a
hierarchical system of monitors, each con-
trolling the Jobs running under it. By
routing output to a user terminal. Ports
enable on-line debugging and simulation
of rewritten files of programs. The Port
concept improves modularity in 3 ways;
(ij Each connection need not be specified
by the programmer but can be decided at
execution. 4%) Linkage between programs
is co-routine rather than subroutine, which
simplifies programming, retains context.
and removes the need for hierarchical
organization^ C>) With different connec-
tions via Ports, the same system can be

1

.
used in many ways, e.g., on-line or off,
in simulation mode, audit-trailed, or data
breakpointed.

—«H-, #!$ '■•*^^'f|*f^|a»

«ab

This research is supported by the Advanced Research Projects Agency under
Contract No. OAHC15 67 C 0141. Views or conclusions runtained in this study
should not be interpreted as representing the official opinion or policy of Rand
orofARPA.

Memmw
tna wiffi
ne MV-WMIQ

D
imnum..

/

\ immmmmmmmmmmmmm

' * ARPA ORDER NO.: 189-1

R-605-ARPA

August 1971

Ports—A Method for Dynamic
Interprogram Communication

and Job Control
R. M. Balzer

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA. CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

...ÖÄM*!.»»»***

-111-

PREFACE

This report describes a unified method for communica-

tion between a computer program and files, terminals, phys-

ical devices, other programs, and the supervisor. The

report (1) defines this method and its implementation; ill)

describes and evaluates its uses for job control, debugging,

simulation, and (perhaps most importantly) modularity; and

(3) presents practical examples.

This study is part of the ARPA-sponsored research to

improve man-machine interaction. It should be of interest

to those concerned with a proper programming environment

for research and development applications.

'mmm!00*&^

-v-

SUMMARY

This report presents a unified method for communication

between a computer program and files, terminals, physical de-

vices, other programs, and the supervisor. The method con-

sists of a pair of interconnected Ports, each composed of a

pointer to the other and a data semaphore (which allows data

to be associated with a semaphore and buffers such data).

Infonoation is passed through and obtained from a Port

by the SEND and RECEIVE commands, respectively. The actual

data passed is a pointer to a parameter list. This allows

the same mechanism to be used as for subroutine arguments and

facilitates the use of Ports for co-routine linkage. The

CONNECT command is used to interconnect two Ports and can be

issued by "supervisory" programs to fit a program into its

operating environment, i.e., as a form of job control.

The facilities provided by Ports were obtained by com-

bining into a single mechanism three powerful software tech-

niques: co-routine, indirect specification, and communica-

tions commonality.

■ ■ .■..., i

-vii"

CONTENTS

PREFACE iii

SUMMARY V

Section
I. INTRODUCTION 1

II. EVOLUTION OF PORTS 3

III. DEFINITION AND IMPLEMENTATION 7

IV. USAGE 13

REFEREMCES 17

-1-

I. INTRODUCTION

Without communication mechanisms, a program is useless.

It can neither obtain data for processing nor make its re-

sults available. Thus, every programming language has con-

tained communication mechanisms, which have traditionally

been separated into five categories based on the entity with

which the program communicates: (1) physical devices (print-

ers, card readers, etc.), (2) terminals (although these are

physical devices, they are usually treated separately) , (3)

files, (4) other programs, and (5) the monitor. One or more

communication mechanisms correspond to each of these cate-

gories; some mechanisms may be shared between categories.

The "alphabet soup" in the example below indicates how

diverse communication mechanisms have become. In IBM'S

OS/360 [11 , communication with physical devices is through

either BSAM (Basic Sequential Access Method) or QSAM (Queued

Sequential Access Method); terminals use BTAM (Basic Tele-

communications Access Method), QTAM (Queued Telecommunica-

tions Access Method), or GAM (Graphics Access Method); files

utilize BSAM, QSAM, BDAM (Basic Direct Access Method), BISAM

(Basic Indexed Sequential Access Method), or QISAM (Queued

Indexed Sequential Access Method); communication with other

programs is through subroutine calls, and with the monitor

through supervisor calls. There are ten different mechanisms

for the five categories; each mechanism has different com-

mands for using the communication mechanism.

We propose to show that Ports offer a single unified

mechanism for communicating with any of the five entities.

Besides simplifying communications, this unification allows

the dynamic specification of the entity being communicated

with at execution time. This delayed binding can be effec-

tively used both to debug and build more flexible programs

and to create modular programs that can be easily plugged

_, ■..,.■..■■. .'.-.■... :■■..: ■ ^ ^-«-fr..«^-^^^^ .. ., «^.e^L.»^^...^.^ .|Wrf^M)WM^ft^t!||^

-2-

together to form systems. The remainder of this report de-

fines Ports, explains their use, and attempts to justify the

above claims.

-3-

II. EVOLUTION OF PORTS

The concept of Ports evolved from work on a somewhat

mistitled study, "Dataless Programming" [2], which tried to

develop a programming language that would enable representa-

tions for data structures to be selected after a program was

completed rather than before it was begun. Selection of a

representation after a program is written is much more ap-

propriate because at that point the programmer knows exactly

how the data is used; beforehand, he must predict actual

usage. The different syntactic forms used in common pro-

gramming languages for the different representations force

the decision to be made at coding time. "Dataless Program-

ming," by using a common syntactic form and extending the

operations across all the representations, allows the deci-

sion to be delayed until after coding is completed. In ad-

dition to the chosen set of standard representations, the

user can create his own representations by supplying the

necessary manipulative routines for use by the compiler in

accessing, updating, adding, deleting, or inserting an ele-

ment from the representation, or obtaining the next or pre-

vious element.

Because "Dataless Programming" was never implemented as

a system, we tried other ways to test its ideas. The key

concept was the ability to invoke a routine, either standard

or supplied by the programmer, whenever a data structure was

used. Not desiring to write a compiler, we looked for a

centralized mechanism that could be controlled to invoke the

proper manipulative routines. Such a mechanism exists in

IBM's OS/360 [3]—the Data Control Block (DGB) used for

files. Whenever an action is required on the file (e.g.,

read or write), the address of the appropriate routine is

obtained from the DCB. These addresses are placed in the

DCB when the file is opened. The open process was modified

so that, for selected files, the address of an interface

: . . mm ■ ■ ..■ , ^^S^lÄ^ärÄ^^^L^^rt^^^jSjifc^yjjß^j

■

-4-

program, JOINER, was placed into the DCB rather than the ad-

dress of a standard OS access method.

The JOINER program acted as an interface and controller

between two DCBs that it had logically connected. Thus, the

output of one program was available as input to another pro-

gram. Each program acted as the access method for the other.

For example, in Fig. 1, Program A has a DCB, called OUT, used

for output that has been joined to a DCB, called IN, used for

input to Program B.

JOINER

1
n PROGRAM B

Flg. 1--J0INER Example

Assume JOINER has loaded Programs A and B, and has

started A. Program A will open DCB OUT, and the address of

JOINER will be placed in this DCB. Eventually, A will try

some output through the OUT DCB, invoking JOINER. JOINER

now starts B, and when B performs an input operation on its

IN DCB, JOINER gives B the output from Program A. When B

asks for the next input, JOINER suspends the program and re-

starts A to obtain more output to give B as input. JOINER

thus coordinates the two programs and allows each to be used

as the other's access method. Note that a type of co-routine

-5-

relationship is established between the programs [4]. This

relationship is called Data-Directed Co-Routines because con-

trol is switched back and forth between the two programs as

data is produced and required. The connection between the

two programs exists outside of each of them, and they are un-

aware of what they are communicating with.

The JOINER system described above contains the key ele-

ments of Ports (defined in Sec. III). However, because it

tested the ideas in "Dataless Programming," we needed to dem-

onstrate some practical uses for this system.

We first added some macros to IBM's assembly language,

which gave it a control-block structure. Thet'e macros are

IF, ELSE, and ENDIF [5]. The IF macro begins a control block

that is executed only if the condition tested by the macro is

true. This control block is ended by either an ELSE or ENDIF

macro. The ELSE macro ends the IF control block and starts

an ELSE control block that is executed only if the condition

tested by the IF macro is false. Because these macros can be

nested, a noniterative control structure analogous to those

of PL/1 or ALGOL is created. These macros are very heavily

used and the nesting levels often extend ten levels and be-

yond. Hence, to make the program more readable, we built a

formatting program that names the levels and indents the list-

ing according to these levels.

Then, with JOINER, we connected the output of the assem-

bler with the input of the format program. The connection is

specified to JOINER and neither program is altered. Joining

these two programs reduces (1) CPU and I/O charges, and (2)

the elapsed time needed to run the job.

The second application of JOINER is even more important

because it is the basis for an entire time-sharing system

built under 0/S. The Rand-built system is called Simultane-
t ous Graphics System (SGS). When a job is to be started, SGS

T SGS is an internal Rand time-sharing system.

lummminMM*-!»!*****»**** '■-■i''ViJii^itiBI'fil»ii8M

^))IWItlW!BiJMW!«.till>lllltWi

-6-

joins the input of an 0/S reader to the output of a spool

program. The spool program is necessary because the source

files are kept on the disc in compressed form as a linked

list so that they can be very rapidly updated. The spool

program follows the linked list and converts the file to the

required sequential set of 80-character card images. When

the job is running and requires input from or output for

the SGS file system, its DCBs are joined with the spool pro-

gram to provide the needed conversions. In this way, we are

able to run unmodified, standard OS/360 programs that utilize

the SGS file system, including such IBM processors as the

PL/1 compiler and the assembler.

•CWH

-7-

III. DEFINITION AND IMPLEMENTATION

As presented in Sec. II, Ports can be defined as a

data element used for communication with files, terminals,

physical devices, other programs, and the monitor. Four

basic operations can be performed on Ports. A Port can be

CONNECTed to or DISCONNECTed from another Port, and data

can be sent (SENDed) or RECEIVEd through a Port. REQUEST,

a compound operation consisting of a SEND followed by a

RECEIVE, is used for requesting certain data. The reverse

sequence, a RECEIVE followed by a SEND, used for replying

to a REQUEST, does not exist as a single operation because

an arbitrary amount of processing may be needed between the

RECEIVE and the answering SEND.

This definition, although containing the essence of

Ports, does not answer many questions about Ports and their

operation. For example, we nr d to know how data is passed

through a Port; when control is transferred to the co-rcu-

tine; what happens if two SENDs occur before the co-routine

processes the first one; if two Ports can be connected to a

third; and how Ports are connected to a terminal, physical

device, or file. Ports can be logically implemented in dif-

ferent ways; each way might provide different answers to

such questions. Each way is a logical implementation—one

that produces logically different behavior as a result of

the operations. We describe Ports in terms of one such

logical implementation, ISPL [6-7], rather than JOINER, in

which we are severely limited by the environment.

Incremental System Programming Language (ISPL) is both

a language and an environment for programming. The ISPL

language is an incrementally compiled PL/1-like language de-

signed to run on the ISPL machine, which is designed specif-

ically to run programs written in the ISPL language and is

intended for implementation through microcode. As of this

writing, the ISPL system is being implemented by a Rand

-8-

development team. All further discussion of Ports is in

terms of this logical implementation.

In this implementation. Ports are defined in terms of

"data semaphores," an extension we have made to Dijkstra's

semaphores [8] that allows data to be associated with such

semaphores. We have extended his definition as follows

(the extensions are in italics):

Semaphores are a basic language data type used
for synchronization. A semaphore logically con-
sists of a count of the available resources of a
particular type. The only legal operations on a
semaphore are the P, V, and oonditional P opera-
tions. The P operations request one resource.
The semaphore's count is decremented by one, and
it the result is nonnegative, the requestor con-
tinues. Otherwise, the requestor must wait until
the resource is made available. The V operation
makes <. resource available. It increments the
semaphore's count by one and if the result is
nonpositive, one of the waiting requestors is re-
activated. The ccnditional P operation performe
a P operation only if the requested resource is
availablej and returns an indication of whether
the resource uas obtained or not.

Semaphores may, in additiont have a datum asso-
ciated uith the available resource. Such sema-
phores are called data semaphorest and the legal
operations for these semaphores are P datat V
data, and conditional P data* which are like their
nondata counterparts except that the V-data oper-
ation must also supply the data to be associated
uith the available resourcest and the P-data and
conditional P-data operations must specify a vari-
able to which the data associated with the re-
quested resource will be assigned. The data can
be any item in the language to which the assign-
ment operator appliest or a structure of such
items. The data can be buffered in a stack or a
queue, providing respectively, LIFO and FIFO
availability. They may also be stored unbuffered
for those data semaphores whose count is never
greater than one.

Using the definition for data semaphores, we define

Ports as a basic language data-type used for communication.

,;.- Vii-v-^r

-9-

They consist logically of a pointer to the Port to which

the connection is made and a data semaphore representing

both the availability of and the actual data being passed

through the Port. The only legal operations on Ports are

CONNECT, DISCONNECT, SEND, RECEIVE, conditional RECEIVE,

and REQUEST.

Because Ports are used for a type of co-routine call,

the same mechanism used for transmitting data to a subrou-

tine should be used for Ports. Thus, the data physically

passed through the Port (and its data semaphore) is a

pointer to an actual parameter list, the contents of which

are accessed by the receiver through a formal parameter

list. As with subroutines, a convention between the com-

municating programs establishes the data logically passed

through a Port and its interpretation.

The CONNECT command interconnects two Ports by setting

their pointers to reference each other. DISCONNECT sets

the two pointers to NULL. When two Ports are connected,

the Port specified in a SEND, RECEIVE, or REQUEST command

is referred to as the local Port and the Port it is con-

nected to is referred to as the remote Port.

The SEND command builds an actual parameter list from

the data specified in the command and performs a V-data

operation on the remote Port's data semaphore, with a

pointer to the actual parameter list as the data. The data

in the actual parameter list is now available to be re-

ceived through the remote Port. The RECEIVE command per-

forms a P-data operation on the local Port's data semaphore,

specifying an internal cell to which the parameter-list

pointer will be assigned and that will be used by the lan-

guage's standard mechanism for accessing formal parameters.

If no data is available, the requestor is suspended until

it is available. The conditional RECEIVE is similar, ex-

cept that a conditional P operation is used. The REQUEST

command is simply a SEND followed by an unconditional

RECEIVE.

ävs^s .. ttintwif» mmmuamm mmumm

MM

-10-

So far, we have described the operations on Ports in

situations where two Ports are interconnected, but have not

handled the cases where a Port is connected to a terminal,

physical device, or file. Terminals and physical devices

are handled by connecting the Port to a Port in the appro-

priate device-dependent system program, which transforms

the communication into I/O commands appropriate for the de-

vice and then requests the supervisor to perform the I/O

through the MONITOR Port (see Sec. IV).

Files are handled similarly, except that the type of

file specified determines the program to which the connec-

tion should be made. The ISPL file system [9] is based on

the "Dateless Programming" principle that representation-

extension capabilities should be provided by allowing the

user to supply the manipulative routines necessary to im-

plement the new representation. Thus, corresponding to

each type of file, there exists a set of manipulation rou-

tines for creating, destroying, connecting, disconnecting,

and communicating with files of that type. When the CON-

NECT command is issued, the file name is found in the mas-

ter directory and its file type is used to access and

execute the connect routine and to access the comnunication

routine connected to the specified Port. Thus, Ports are

always connected to other Ports. For terminals, physical

devices, and files, the remotely connected Port is in a

program selected by the system on the basis of terminal,

physical device, or file characteristics.

We have answered the questions on detailed Port be-

havior posed in this section, except for specifying when

control is transferred to the co-routine. To provide the

required flexibility, ISPL's con rol structure is necessar-

ily complex. Scheduling decisions e.re made at three lev-

els: process, task, and exclusive-execution block. In

ISPL, a process is a set of independent tasks that share a

separate, unique, addressing space. It roughly corresponds

'«WwSiaÄÄ^fei-ü'

imtmmm^KmtmmtHM

-11-

to a job. Processes are scheduled by their supervisors,

which are informed via an interrupt when one of their pro-

cesses waiting for some resource is again able to run.

Nothing more can be said about process scheduling because

each supervisor can use its own arbitrary scheduling

algorithm.

The ISPL machine controls all scheduling within a pro-

cess. Each task within a process is a logically independ-

ent flow of control that could be executed simultaneously

with other tasks if multiprocessors were available. Each

task has a relative priority, and the ISPL machine sched-

ules the task with the highest relative priority that is

not waiting.

Tasks, in turn, are composed of exclusive-execution

blocks, which are separate flows of control; even in a

multiprocessor system, only one exclusive-execution block

can logically be executing at a time. As with tasks, the

ISPL machine schedules exclusive-execution blocks within a

task on the basis of their relative priority among those

not waiting. The important difference between the two is

that if an exclusive-execution block is interrupted by one

with a higher priority, it will not be resumed when the

higher-priority one waits for some resource, as is the case

for tasks, but must wait for the higher-priority exclusive-

execution block to exit. This control structure is required

for the implementation of co-routines and the on-units of

PL/1 [10]. An exit occurs when a program completes or per-

forms a P operation on a synchronous semaphore—one which

will not asynchronously be V'ed. Because it will not be

V'ed asynchronously, it must be an exit so that some other

exclusive-execution block in the task can cause it to be

V'ed. In ISPL, each semaphore and Port can be either syn-

chronous or asynchronous. Thus, the control flow resulting

from SEND and RECEIVE operations on Ports depends upon (1)

whether the remote Port is in the same process or the same

Mjilii^ifiilg^ ' " '••"»'■M-Miiiiiir.wi.niniiirii^iHi

mmmmmm—m

-12-

task, and (2) what its priority Is relative to the executing

exclusive-execution block. This structure enables KM to

build control structures ranging from completely asynchro-

nous execution to those that switch control every time a

SEND or RECEIVE Is executed.

-13-

IV. USAGE

Obvicisly, Ports can be used to communicate between

programs. But the capability to externally specify the con-

nection and the arbitrary nature cf the program to which

the connection is made enable the Port mechanism to be used

for a variety of other purposes.

Since batch and multiprogrammed monitors, job control

has traditionally been handled through a special language.

Thin job-control language has two main functions, allocation

of resources and fitting the job into an environment. Fit-

ting the job into an environment consists of setting up the

communication paths between the job and the files, terminals,

physical devices, programs, and monitor with which it is to

communicate. This is precisely what Ports are designed for;

the CONNECT command specifies this function. In ISPL, each

job has a Port named MONITOR, which is used for all communi-

cation with the job's monitor. Because any program can be

connected to this Port, this design allows for a hierarchical

system of monitors, each controlling the jobs running under

it. Naturally, ISPL's hierarchical design relies on much

more than the Port mechanism, but Ports solved the system's

communications requirements.

Communication with the monitor through a Port provides

the mechanism for handling the other main function of job

control, allocation of resources. The creation and deletion

of files, allocation of file space, allocation of core space

for the job, and specification of the central processor re-

quirements are all transmitted to the supervisor through the

MONITOR Port. Th; format of these specifications is a con-

vention establishnd by the supervisor.

Ports can also be used for debugging and simulation.

Because output fron a program can be routed to a terminal.

T See Ref. 7 lor a full description.

-14-

and input obtained from the terminal, a user can dynamically

supply test data based on the program's performance. The

user can also simulate the behavior of part of the system

while observing and debugging the rest. A TEST program can

be written to implement data breakpoints; that is, whenever

the data transmitted through the Port to which the TEST pro-

gram is connected satisfies the test condition, a "break"

occurs and the user at a terminal is notified or a printout

occurs. The output of the TEST program is the same as its

input so that the TEST program does not affect the logical

processing of the program being debugged. A SPLITTER pro-

gram, whose two outputs are the same as its one input, can

be used to monitor, copy, or provide an audit trail of the

data transmitted through a Port.

The last two programs mentioned, TEST and SPLITTER,

offer examples of what we hope will be the major Impact of

the Port concept—a mechanism for the construction of sys-

tems from small, general-purpose, "pluggable" programs.

Perhaps the single most important problem facing the

computer industry today is the inability to cheaply and

quickly generate debugged software systems. Many people

have proposed modularity as the solution, but such systems

have been hard to construct because of the strict hierarchi-

cal nature of subroutine calls—the only common method of

linking together such a set of programs.

The Port concept improves the construction of modular

systems in three important ways. First, the entity to which

the connection of a Port is made need not be specified with-

in that program; it can be dynamically decided at execution

time. Second, the linkage is co-routine rather than subrou-

tine, which simplifies the construction of many programs,

enables retention of context, and removes the strict hierar-

chical organization dictated by subroutine linkage. Finally,

connection of a Port can be made not only to Ports in other

programs, but also to terminals, files, and physical devices.

.' ,^w^**temmä&äimi&hM&fr

mmmmmmmmmmm mm

-15-

Thus, the same system can, with different connections, be

used in a variety of ways—on-line, off-line, audit-trailed,

data-breakpointed, or partial-user simulation.

The effectiveness of the Port concept results from the

combination into a single mechanism of three powerful soft-

ware techniques: co-routines, indirect specification, and

communications commonality. We expect to extensively test

the concept, especially its modularity potential, through

its implementation in ISPL.

""— "liTiiriii'inrwil ■■ Ml

•16-

REFERENCES

1. IBM Syafm/Zeo, Supervisor and Data Management Servioee,
Form C28-6646, IBM Corporation, PoughXeepsie, N. Y.,
1967.

2. Balzer, R. M., Dataleae Programming, The Rand Corpora-
tion, RM-5290-ARPA, July 1967. (Also published in
AFIPS Conference Prooeedinge» Vol. 31, Thompson
Books, Washington, D. C, 1967, pp. 535-545.)

3. IBM Syatem/360, System Control Blocke, Form C28-6628,
IBM Corporation, Poughkeepsie, N. Y., 1967, pp. 21-78.

4. Conway, M., "Design of a Separable Transition-Diagram
Compiler," Communioationa of the ACM, Vol. 6, No. 7,
July 1963, pp, 396-398.

5. Balzer, R. M., Blook Programming in OS/360 Aeeembly
Code, The Rand Corporation, P-3810, May 1968.

6. , The JSPL Language Speoifioatione, The Rand Cor-
poration, R-563-ARPA, August 1971.

7. , The ISPL Machine: Prinoiplee of Operation, The
Rand Corporation, R-562-ARPA, August 1971.

8. Dijkstra, E. W., "The Structure of the 'THE' - Multipro-
gramming System," Communioationa of the ACM, Vol. 11,
No. 5, May 1968, pp. 341-346.

9. Harslem, E., and J. Heafner, The ISPL Basic File Syetem
and Hie Subeyetem for Support of Computing Reaearch,
The Rand Corporation, R-603-ARPA, August 1971.

10. IBM System/Zeo, PL/1 Reference Manual, Form C28-8201,
IBM Corporation, Poughkeepsie, N. Y., 1968.

