
CO

egg

ARPA ORDER NO.: 189-1

R-622-ARPA

August 1971

On the Future of Computer
Program Specification

and Organization D r

R. M. Balzer
iffilr7!

^
r 1 > il ,-rr-Td^

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

■

Ropioduced bv .. _ . ,
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va 2215'

Rand
SANTA MONICA, CA 90406

^

y

MISSING PAGE

NUMBERS ARE BLANK

AND WERE NOT

FILMED

■

s t

(, . 'I
In vi

5*
kst

y-i •K' .;.'J

- 1 > m

sre^fl «I ■f ii.i.-.''m

»IT!, , ^
i/»il. i»" '

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study
should not be interpreted as representing the official opinion or policy of Rand
or of ARPA.

DOCUAAENT CONTROL DATA

I. ORIGINATING ACTIVITY

The Rand Corporation

2a. REPORT SECURITY C ASSIFICATION

UNCLASSIFIED
2b. GROUP

3. REPORT TITLE

ON THE FUIURR OF COMPUTER PROGRAM SPECIFICATION AND ORGANIZATION

4. AUTHOR(Sj (Last name, lint name, initial)

Balzer, R. M.

5. REPORT DATE

August 197J

6a. TOTAl NO. Oc PAGES

23

6b. NO. OF REPS.

7. CONTRACT OR GRANT NO

DAHCIB 67 C 0141
8. ORIGINATORS REPORT NO.

R-622-ARP.A

9a. AVAltABUITY/UMITATlON NOTICES

DDC-A

9b. SPONSORING AGENCY

Advanced Research Projects Agency

10. ABSTRACT II KEY WORDS

I

Summarizes the currently available methods
of organizing computer programs—subroutine
pyramid, generators, co-routines, and
passed subroutines -and presents an alter-
native concept, program Integration, based
on use of the total context rather than
specific procedures. Most of a typical
program is devoted to housekeeping
data—subroutine save areas, parameter
passing mechanisms, indices, pointers,
tree and list structures, dictionaries
—that have nothing to do with the specif-
ic problem but rather with its computer
solution. Programs expressed entirely in
problem-specific terms require implied
rather than specified processing; logical
process specifications not affected by
data representation; dynamic linkage by
the system of separate specifications,
with dynamic adaptive modification at ex-
ecution; and dynamic requesting of infor-
mation as required from the current con-
text. Steps in this direction include
CORC, DWIM, VERS, question-answering sys-
tems, PL/I ON-UNITS, "Dataless Programming'*
(daseribed in RM-5290) and Ports ^de-
scribed in R-605K The field is rip«/ for
a breakthrough.

Computer Programming
File Structure and Management

:;. .v:!;i.;.V ,, }

i

■ ■. R---1ro;.K,*-K-.- ■

ARPA ORDER NO.: 189-1

R-622-ARPÄ

August 1971

On the Future of Computer
Program Specification

and Organization
R. M. Balzer

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA. CA 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

:■■ . -

1

-iii-

PREFACE

This report subjectively summarizes the state of the

art In computer program organization and specification.

It suggests that evolutionary progress from this base Is

inappropriate and that a breakthrough in an alternative

direction is imminent. The report characterizes this

alternative direction through the current research efforts

and describes its advantages.

As part of Rand's continuing effort in man-machine

communication for the Advanced Research Project« Agency,

this report should be of Interest to those working in the

areas of computer program organization f.nd specification,

and to policymakers directing such research.

i

■ :-

WWWW!^WTWPW?--a^

■ ■

-v-

SUMMARY

This report summarizes the currently available methods

of program organization: subroutine pyramid, generators,

co-routines, and passed subroutines. It suggests that the

procedure concept upon which these methods are based in-

herently limits program flexibility and necessitates a

level of detail artificial to the problem being solved.

The report then presents an alternative method of organ-

ization and specification, "program integration," based upon

implied processing to eliminate housekeeping data, their

representations, and maintenance; logical process specifi-

cation to suppress representational dependencies; dynamic

linkage of separate specifications as integrated by the

system; dynamic adaptive modifications of such specifica-

tions; and dynamic requesting of information as required

from the current "context." These capabilities are illus-

trated through current research efforts and the author

suggests that the field is ripe for a breakthrough through

what may be a synergistic combination of these capabilities.

BliWfii'«iilffiWtt'"imnf'-^ •iiitir~*'*frimm "r"*
ä*'*«*"v- - . < ■ * u

r
.

■ ,

-vii-

CONTENTS

PREFACE

SUMMARY

Section
I. INTRODUCTION

II. CURRENT STATUS
Pyramid Approach
Generator Approach
Co-Routines
Passed Subroutines

III. INTEGRATED PROGRAM SPECIFICATION AND
ORGANIZATION: THE BEGINNINGS ..

IV. CONCLUSION

REFERENCES

iii

v

2
2
4
4
5

7

12

15

.'

■

^$P!li?!ii^^ ■ ■

-i-

I. INTRODUCTION

Since electronic computation began in the late 1940s,

we have been faced with controlling and utilizing the ever-

increasing computational power of computers. Efficiency

considerations and lack of understanding of alternatives

led to the development of the current family of computer

languages. The highly structured nature of these languages

and the detailed specification they require has largely

obscured the alternatives.

Dreyfus' famous question of artificial intelligence,

"Can we reach the moon by climbing up the branches on a

tree?" [1] might validly be directed at the major effort

in programming tool enhancement, the continued development

of more powerful and general-purpose languages built upon

the same data elements and organizational techniques.

Few of these enhancements can properly be called

breakthroughs or the products of research. Instead, they

are the technological outpouring characteristic of engi-

neering disciplines. For this reason, the term "Software

Engineering" has been coined for this activity. This is

not to minimize past progress and achievements, but rather

to suggest that the field is ripe for a breakthrough. This

report 1) summarizes the current status, 2) Indicates the

possible beginnings of this breakthrough, and 3) proposes

some breakthrough characteristics and methods of achieve-

ment. This report is naturally biased by the author's

deep involvement in, and commitment to, the development of

this area.

\ mmm

-2-

II. CURRENT STATUS

For almost every computer language, the basic unit

of composition is the procedure or function. Almost uni-

versally, it is the basic organizational building block

for programs. Although the form and internal composition

of these units are highly language-dependent, they have

certain broad characteristics in common:

1) They are composed of a linear sequence of state-

ments or operations, some of which may affect

the execution order of the sequence.

2) The domain of elements that the routine manipu-

lates is composed of a set of background elements

bound to the routine, and a set of arguments

"passed" to the routine at the time of invocation,

3) The binding mechanisms are quite varied; they

range from the static compile-time binding of

FORTRAN [2], to the block-structured binding of

ALGOL [3], to the dynamic-instance binding of

LISP [4] .

4) Except for constants, all the domain elements can

normally be both read and written.

5) Upon its completion, the routine can (and in some

languages must) return a value to the invoker.

This almost universal existence of the procedure or

function as the basic organizational building block is one

of programming"s most striking characteristics—and one

which must be radically altered if a specification and or-

ganizational breakthrough is to occur. Section III dis-

cusses this issue. First, we examine each of the four

currently available organizational methods.

PYRAMID APPROACH

The subroutine pyramid approach is the most prevalent

(and probably the earliest) form of program organization.

•.■--.,.,.,,.,.-,»*,.-., :,,-,.

-3-

In this method, a main procedure invokes a subprocedure,

which completes its operation before returning to its in-

voker. To perform its function, this subprocedure may

invoke other subprocedures, which may, in turn, invoke

further subprocedures, and so on. This hierarchical struc-

turing typically involves the simpler operations at the

lowest levels, with higher levels combining one or more

lower-level routines. Programs can thus be written as a

series of levels, each treating lower-level routines as

basic operations that can be used to build more complex

operations.

This structuring capability allows suppression of the

details of the defined operations invoked (within the levels

in which they are used); this keeps the specified processing

manageable. This ability to build upon lower-level defined

operations represents the main logical benefit of this

approach. (It also reduces the memory space required for

the program and saves programmer writing time.)

Because it tends to isolate functions into single

centralized procedures, this method furthers program "mod-

ularity," i.e., programs that have reusable parts and that

are easily modified. This modularity, which is critical

to a flexible organisational structure, is limited by four

factors:

1) The inflexible method of argument specification

used in almost every language, i.e., positional

correspondence between arguments and formal param-

eters, makes it awkward to use optional arguments

or arguments that are only required in certain

subroutine uses.

2) Possible side effects, i.e., the modification of

data not local to the subroutine, prevent the

subroutine from being handled as a basic unit be-

cause one must account for its interaction with

other units using such data.

, -,■....■.■ ■..

■.,..;.... . ,. ■ . . .

-4-

3) The sequential and highly Interdependent nature

of the statements within the subroutine produce

local Interactions, or "side effects," that limit

the ease with which such subroutines can be In-

ternally modified.

4) This rigid compartmentallzatlon hampers modifica-

tion spanning subroutine boundaries.

The three other methods of program organization are modi-

fications of this subroutine pyramid approach.

GENERATOR APPROACH

The generators commor, in list-processing languages,

such as IPL-V [5], are subroutines that retain enough "con-

text" from one Invocation to the next to sequence through

an explicit or dynamically computed set, returning a

separate set element for each Invocation. Generators thus

represent an extension of the simple pyramid approach.

However, they do not affect the hierarchical structure.

CO-ROUTINES

Co-routines [6], unlike generators, do affect the

hierarchical structure. Not only do they retain context

between Invocations, they also resume execution from the

point at which It was suspended on the previous Invocation.

Thus, a RETURN from co-routine B to co-routine A, which

called It, has the same effect as a CALL of co-routine A

from B. In either case, A continues from the statement

following the Invocation of B with Its context restored.

In addition, the co-routine Invocation allows arguments to

be passed back and forth between the two routines. Because

the routines Invoke each other, no hierarchical relation-

ship exists between them. Each uses the other to obtain

or provide elements for processing, a simpler and more

natural organization In pipeline or multi-pass applications.

^KfSipBFSPSÄ»''■

-5-

PASSED SUBROUTINES

More than the others, this approach fulfills the re-

quirements for more flexibility, i.e., for modifying the

behavior of a subroutine upon the determination of its

invoker. Therefore, it offers a better basis for organiza-

tional improvements. The method is based on the realiza-

tion that much flexibility can be obtained by having the

subroutine invoke a routine, specified by its invoker, at

an appropriate spot or spots within its operation. For

example, this method of passed subroutines can be used to

add specific processing to a basic tree-walking program to

effect search, copy, or destroy algorithms. The; ON-UNITS

of PL/1 [7] are a small extension to this approach that

allow the specified processing to be invoked whenever their

associated special conditions occur, without explicitly

being passed down to each routine. This represents a two-

fold advantage:

1) Because the specified processing is set up once

and not explicitly passed down to lower levels,

these routines need not be concerned with or aware

of any "special condition" processing that might

occur while they are running.

2) These ON-UNITS are not invoked at any particular

spot in the lower levels; they are invoked when-

ever their special condition arises.

This approach also has two limitations. The special

conditions are either limited to hardware-detectable con-

ditions, such as zero-divide or end-of-file, or must be

explicitly signaled by the program. Secondly (and this is

really the crux of the matter), the specified processing

is "pointwise applicable," that is, either the subroutine

or the specified processing is running. The ON-UNIT is a

separate entity that is invoked at a point and has a very

limited ability to affect the processing of the interrupted

'^^■WWlg^ll^BS^^WWS^^yi^^)

-6-

routine once it has completed. Our technology has not

provided any means of combining the two into an integrated,

coordinated unit in which each can affect the global rather

than pointwise behavior of the other. This global integra-

tion between separate units is the goal of our research in

program organization; it is treated in Sec. III.

■

I

"t'ieiitkam.tmmmMm

-%!^S?^*SK'ft
Wlßimi!fßmmi,!immfm^mmm.\t\ijmu- "'i "im ii umiiii ■mmniiiiiiwrwiiiiiHiiiii ■ i . i i l^lllT."^ll^lrrr^T~'|•T-^•^^r^•T^"^^^^^'•^^^•^•^• •'••••

-7-

III. INTEGRATED PROGRAM SPECIFICATION AND ORGANIZATION;

THE BEGINNINGS

Although the passed subroutine approach is limited,

it appears to represent the best approach to program organ-

ization for which language facilities are generally avail-

able. However, there are some special systems that have

gone beyond these techniques and that represent the evidence

of our effort and the start of our progress in an area of

program organization best described as "integrated." This

report uses these systems to help characterize and define

this area, which the author feels represents the future of

program specification and organization.

The simplest efforts, Cornell University's CORC system

and Bolt» Beranek and Newman's DWIM (Do What I Mean) sys-

tem, correct spelling and keyboard entry mistakes [8-9] .

These systems are interesting because they attempt to cor-

rect certain discovered errors on the basis of the objects

under discussion, i.e., the context. They represent the

simplest instances of systems that resolve local difficulties

through the global context; that is, they amalgamate all

global information rather than using a particular item of

global information, for example, the declared attributes

of a given variable.

This use of the total picture for resolving difficulties

is the basic characteristic of program integration. The ab-

sence of this capability characterizes, and inherently

limits, the program organization methods discussed in Sec. II

"Dataless Programming" [10] and Jay Barley's VERS [11]

represent a separate line of development. Both attempt to

express programs by the logical processing required rather

than as dictated by a particular data representation. A

separate program part contains the processing specification

needed to particalarize the logical processing for a chosen

representation. Both systems use a common syntactic form.

■ ■ ■ ■ ■■■■■-

-8-

which can express any particular representation, to specify

the logical processing. Extension capabilities are provided

by allowing the programmer to specify the manipulatory

routines the system needs to perform the logical processing

specified. This allows some "data items" to be calculated

as needed rather than being explicitly present. Clearly,

future systems in this area will automatically determine an

appropriate representation based on the operations required

by the logical processing.

Design of the Dataless Programming and VERS systems was

motivated by the desire to simplify programming by removing

representation details from the specification and by deter-

mining appropriate representations after all the logical

requirements were known. Although unimplemented, these sys-

tems clearly satisfy these requirements. But much more is

required for program integration. Programming can be further

simplified by completely eliminating "housekeeping" data and

their representations rather than merely removing representa-

tional details. "Housekeeping" data refer to those data that

are not part of the problem but that facilitate the algo-

rithmic solution specified. Unfortunately, these include

most of the data items in typical state-of-the-art programs,

e.g., subroutine save areas and parameter passing mechanisms,

indices to arrays, pointer variables, most tree and list

structures, and dictionaries.

The inclusion of such housekeeping data critically

limits contemporary programming and severely complicates the

specifications of the logical processing desired. To fa-

cilitate the logical processing specified, the system should

imply such housekeeping data, their representation, and main-

tenance. For instance, if the user specifies that the

largest unfilled order should be scheduled first, the sys-

tem should organize and maintain a housekeeping representa-

tion that allows it to execute this command when necessary.

Several possible representations exist: a table of all

-9-

orders that coald be searched for the largest unfilled one;

a list of unfilled orders ordered by size, from which the

largest can easily be selected; or simply a reference to

the largest unfilled order. As new orders come into the
i

system and existing ones tjet filled, each representation

must be maintained to indicate the current status. But the

system—not the user—should provide this maintenance. Be-

cause it introduces an artificial level into the solution

specification, the inclusion of such housekeeping data, their
t

representation, and maintenance in contemporary programs

makes programming a professional rather than a lay activity.

Three advances should be noted in the area of house-

keeping elimination: 1) Present higher-level languages

have eliminated the subroutine save area and parameter

passing mechanisms from the problem specification domain.

2) Carl Hervitt's PLANNER system eliminates hhe specifica-

tion of tree-walking and backup mechanisms for searching

through a goal-oriented problem space [12]. 3) The whole

area of question-answering, characterized by such systems

as Fred Thompson's PEL and Stanford Research Institute's

QA4, also eliminates search mechanisms from the problem

specifications [13-14].

These question-answering systems also represent the

best efforts in another, related area of program integra-

tion—obtaining information upon demand from a data base.

Currently, when a subroutine requires a context-dependent

data item, the invoking routine explicitly passes the item

to the subroutine. This fixed-information interface over-

restricts the range of environments in which the subroutine

can be easily usad. This is especially true for applica-

tions in which the required types and amounts of informa-

tion differ from invocation to invocation. Furthermore,

each invoker of the subroutine imst explicitly be aware

of the subroutine's informaticn requirements. Using the

techniques being developed by question-answering systems.

-10-

the subroutine should request information, as needed, from

the current context. When the same information is always

required, tht system could specify it at the point of in-

vocation. The user could then write specifications that

eliminate another housekeeping function—the passing of

required contextual information. The system could then

provide this information as needed by the subroutine.

This leads us to the final program integration area,

dynamic program modification. We have considered routines

as separate closed units, invokable in a pointwise manner

and having a well-defined interface active only at the

invocation and return points. Dynamically requesting infor-

mation broadens the interface between the two routines, and

eliminating housekeeping data broadens the interaction be-

tween the processing requirements of individual statements.

We now seek to similarly broaden the interaction between

routines.

Instead of separate, closed units, routines should be

the specification of a service invoked by the system when

needed. This specification should first be integrated with

the conditions and restrictions existing at the time of

invocation to provide an adapted service coordinated with

the total process performed. For example, the system

should be capable of dynamically modifying a SORT routine

to 1) sort ascendingly or descendingly, 2) sort specified

objects by a specified attribute, 3) break ties by a speci-

fied function, and 4) sort only the largest or smallest

N objects rather than the entire set.

Three efforts represent the progress in this area:

1) A concept called "Ports" [15] generalizes the

binding between routines. Ports evolved from

"Dataless Programming." The concept involves

a co-routine linkage, but the routine invoked is

mmmmmm&mmmm. mmgmmmmmm^r^'-

-11-

remotely determined, i.e., the invoking routine

does not know to what routine it is bound. The

invoking routine knows a particular service it

expects performed and is invoking that service

rather than a particular routine. A separate

ISPL command, CONNECT, interconnects a port with

another port, a file, or a terminal.

2) For hardware conditions, the ON-UNITS of PL/1

(see p. 5) allow remote processing specification.

3) Finally, Warren Titleman's ADVISE system allows

a routine to be dynamically inserted before, after,

or instead of the invocation of a specified func-

tion [16]. In LISP, this capability permits

fairly general and extensive program modifications

because almost all useful work is associated with

a function invocation. Impressive as this system

is, in our context it must be regarded merely as

a sophisticated text-editing system, explicitly

driven by the user and relying on the structure

of the LISP language, rather than as a system

capable of integrating conditions, modifications,

and separate procedure specifications into a co-

ordinated whole.

.

-

-12-

IV. CONCLUSION

The previous sections described the current status of

program organization and,, through some promising efforts,

characterized a goal organization: a programming system

based on individual actions expressed entirely in problem-

specific terms integrated by the system to perform the

desired actions. Also discussed were the key capabilities

required to achieve such a goal:

1) Implied processing to eliminate housekeeping data

representations and their maintenance;

2) Logical processing specification to supress repre-

sentational dependencies in the specification;

3) Dynamic linkage of separate specifications as

integrated by the system ratler than explicitly

specified by the user;

4) Dynamic modification of such specifications by

the system to fit or adapt them into the desired

environment, conditions, and restrictions;

5) Dynamic requests of information to enable processes

to obtain information as required from the current

context through search or discourse if necessary,

rather than relying only on the information pro-

vided by the invoker.

Although it is clearly related to our goal, the term

"non-procedural language" was studiously avoided because

of the inconsistency and lack of precision with which it

is used. Also, the syntax used for program specification

was not discussed because it falls outside the bounds of

this report and because the ultimate syntax, "natural lan-

guage input," necessitates the prior existence of a system

such as the one described herein.

The goal of program integration is distant enough from

our current capabilities that the correct path is not evident.

""7"* ... ,

-13-

However, the author holds two unsupported but strong be-

liefs. First, that such a system is highly synergistic;

as such, it is easier to tackle the entire problem than

to work on one aspect and try to implement it within an

otherwise contemporary system. Second, although it is

evident that the system must contain a problem-solver, it

is the flexibility rather than the problem-solving power

of this unit that will make or oreak the system.

I

1 ■,,,..,

-15-

REFERENCES

1. Dreyfus, H. L., Alchemy and Avtifioial Intelligenae,
The Rand Corporation, P-3244, December 1965.

2. VSA Standard FORTRAN, United States of America Stan-
dards Institute, USAS X3.0-1966, New York, March
1966.

3. Naur, P. (ed.), "Revised Report on the Algorithmic
Language ALGOL 60," Comm. ACM, Vol. 6, No. 1,
January 1963, pp. 1-17.

4. Berkeley, E. C, and G. D. Bobrow (eds.). The Program-
ming Language LISP--It8 Operation and Applications,
MIT Press, Cambridge, Massachusetts, 1966.

5. Newell, A., et al. (eds.). Information Processing
Language-V Manual, 2nd ed., Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1965.

6. Conway, M., "Design of a Separable Transition-Diagram
Compiler," Comm. ACM, Vol. 6, No. 7, July 1963, pp.
396-398.

7. IBM System/360 PL/1 Reference Manual, IBM Corp., C28-
8201-0, Data Processing Division, White Plains, New
York, 1967.

8. Freeman, D. N., "Error Correction in CORC, The Cornell
Computing Language," Proc. FJCC, Vol. 26, Pt. 1,
1964, pp. 15-34.

9. Bobrow, D. G., D. L. Murphy, and W. Titleman, The
BBN LISP System, Bolt, Beranek and Newman, Inc.,
April 1969.

10. Balzer, R. M., Dataless Programming, The Rand Corpora-
tion, RM-5290-ARPA, July 1967. (Alsu published in
AFIPS Conference Proceedings, Vol. 31, Thompson
Books, Washington, D. C. 1967, pp. 535-545.)

11. Earley, Jay, Toward an Understanding of Data Structure,
Internal Computer Science Department paper, univer-
sity of California, Berkeley.

12. Hewitt, Carl, PLANNER: A Language for Manipulating
Model and Proving Theorems in a Robot, Massachusetts
Institute of Technology, Project MAC, Artificial
Intelligence Memo-168, Revised August 1970.

13. Thompson, F. B,, P. C. Lockermann, B. Dostert, and
R. S. Deverill, "REL: A Rapidly Extensible Language
System," Proceedings of 2^th National Conference,
Association for Computing Machinery% ACM Publication
P-69, pp. 399-417.

P
rm »■« /»i j»n rr. "t jr •

RtliüUaW Tau! BLANK

,

-16-

14. Rulifson, John F., Richard J. Waldinger, and Jan
Derksen, A Problem Solving Language, Technical Note
48, Stanford Research Institute, November 1970.

15. Balzer, R. M., Port8~-A Method for Dynamic Interpro-
gram Communication and Job Control, The Rand Corpo-
ration, R-605-ARPA, August 1971.

16. Titleman, Warren, "Toward a Programming Laboratory,"
Proceedings of the International Joint Conference
on Artificial Intelligence, Washington, D. C, May
1969, pp. 1-9.

