
ARPA ORDER NO.: 189-1

00

CO

iJtfc ■II II

R-603-ARPA

August 1971

The ISPL Basic File System and
File Subsystem for Support of

Computing Research
E. F. Harslem and]. F. Heafner

D;D c
OCT ** 1971

xsisnnaty
B

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va 221SI

Rand
SANTA MONICA, CA. 90406

^

MISSING PAGE

NUMBERS ARE BLANK

AND WERE NOT

FILMED

--

\jUSiliXAllM

tut * w*-'*"9*'*1^

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study
should not be interpreted as representing the official opinion or policy of Rand
orofARPA.

t ^ »-v, » ■■-'"'tfi^m^mm - ■,,, v.-... ;-■'■ ■:■:■■ > ;•-•••■:■: ■■'■•■ :s ■■•?■ ■-;• ,-. ■;:■: .■■ fA::^t=x^f^V'':<':-' : ■■"/■■'*'■ ' .'

DOCUMENT CONTROL DATA

I, ORIGINATING ACTIVITY

The Rand Corporation

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3. REPORT TITlt

THE ISPL BASIC FILE SYSTEM AND FILE SUBSYSTEM FOR SUPPORT OF ODMPUTING RESEARCH

4. AUTHOR(S| (last name, firil name, initial)

Harslem, E. F., J. F. Heafner

5. REPORT DATE

August 1971
6a. TOTAl NO. OF PAGES

48
6b. NO. OF REFS.

7. CONTRACT OR GRANT NO.

DAHCIS 67 C 0141

8. ORIGINATOR'S REPORT NO.

R-603-ARPA

9o. AVAIIABIUTY/UMITATION NOTICES

DDC-A advanced Pesearch Projects Agency

9b. SPONSORING AGENCY

x^
Jfi. ABSTRACT j

functional specification of the Basic File
System and one of several file subsystems
envisioned for the ISPL computing system
describ»din-R-562. A generalization of
the GRAIL logical input/output system (»ee
RM-^S?), the software package is described
in its ISPL context. The BFS, as a resi-
dent part of the ISPL Operating System,
creates, modifies, deletes, and keeps di-
rectories of file subsystems, allocates
their secondary storage space, and handles
their I/O transmissions. BFS is unconcerned
with file structure, which is separately
determined by each FSS. Any console or
program can address any file by giving its
name, FSS, and a qualifier. Further com-
munication is determined by the rules of
that particular FSS. All BFS procedures
report whether and why an operation failed.
An ARPA research file, FSS1, is described
in its temporary IBM 360 implementation,
with indications of probable changes in
the ISPL environment./

n. KEY WORDS

File Structure and Management
Computers
ISPL
GRAIL

,•.-,... .: ...-.■■... ...-. ■ ■ ■ ■

-vmmmmmmmmMM

,..,.,

ARPA ORDER NO.; 189-1

R-603-ARPA

August 1971

The ISPL Basic File System and
File Subsystem for Support of

Computing Research
E. F. Harslem and |. F. Heafner

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA CA 90406

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

kh' "IMIilHIIMlilWllili "i ' "

, ,,v -.. «ratf*

-111-

PREFACE

This Report is a functional specification of software

development for the Incremental System Programming Language

(ISPL) Operating System and support programs. The work was

sponsored by the Department of Defense's Advanced Research

Projects Agency (ARPA) and is an integral part of both Rand's

and the client's overall program to explore current computer

technology. Specifically, the work is directed toward pro-

viding an ISPL to be used as a tool for further computer-

based research.

This Report describes the Basic File System (BFS) and

one of several envisioned file subsystems for the ISPL ma-

chine. The primary audience for this Report is the software

development group and others responsible for the design and

use of the ISPL Operating System. Therefore, the reader is

assumed to be familiar with the companion documents: R. M.

Balzer, The ISPL Machine: Principles of Operation, The Rand

Corporation, R-562-ARPA, August 1971; and R. M. Balzer, The

ISPL Language Specifications, The Rand Corporation, R-563-

ARPA, August 1971.

Although the file organization presented here was gen-

erated as a specification for ISPL, its wider applicability

should be noted. It is consistent with, but not bound to,

the ISPL philosophy.

■

-v-

SUMMARY

This Report is a functional specification of a file

system and subsystem. It was provided as a segment of a

proposed computing research environment [1,2]. These spec-

ifications are a generalization of an earlier research

tool [3] and as such can be considered an independent pack-

age for file organization and management. However, the

specifications are described in terms of an initial version

of the Incremental Systeir Programming Language (ISPL) ma-

chine assemblage.

The Basic File System (BFS), which is a special file

subsystem (ESS), couples the hardware to other FSSs. It

is responsible for the actual execution of input/output

(I/O) transmission and also for the allocation of secondary

storage space to other FSSs.

FSSs manage the actual files. They can be user-written

to organize and access files in a way most amenable to pro-

cessing by user application programs. The particular FSS

described here was included to satisfy the needs of two

projects sponsored by the Advanced Research Projects Agency

(ARPA).

Thus, the organization of a file is directly determined-

by the FSS used. To assist in processing, FSSs will typi-

cally describe the file's contents by some structural or

tabular header information. The BFS guarantees that secon-

dary storage space allocated to one FSS will not be accessed

by another. Beyond that, the security and privacy of a file

must be guarded by the FSS under which it operates.

The BFS and subsystems communicate secondary storage

addresses via file pointers (FPs). The FP is a new ISPL

data type that was not defined in Refs. 1 and 2.

This Report describes the BFS procedures that have

been implemented in ISPL. These procedures allow 1) the

, , ■■ ; •.* -

'■

-vi-

creation, modification, and deletion of subsystems; and

2) secondary storage allocation to subsystems. They also

support application program transactions with a subsystem

by maintaining directories of information about files for

the subsystems.

The FSS described here provides direct and sequential

accesJ to file data. It permits scattered read and write

operations of variable-length data—a fundamental necessity

for some planned application programs. The FSS either re-

tains the secondary storage location (FP) of all data in

a file or allows the application program to record this

information. Allowing the application program to do this

bookkeeping gives the application program greater flexi-

bility in structuring a file to meet user requirements. The

subsystem procedures allow application programs to create,

destroy, and access the data in a file.

This Report gives the detailed specifications of both

the BFS and subsystem's secondary storage organization.

Each record type is diagrammed, along with commertary on

its use.

Again, this file management system is a research tool;

access methods to support production programs, such as

those typically written in COBOL, are beyond the intended

purview.

WMMSMOBUnHHi

mtmamv***^ ■

-vii-

ACKNOWLEDGMENTS

The authors thank Rand colleagues Robert M. Balzer,

J. Cliff Shaw, and William L. Sibley for contributing to

these specifications.

&jM&d^&*i*^to*'*i^:^%''
.^;.;;.;."i—■■

■
--■VL'i?.

-ix-

CONTENTS

PREFACE

SUMMARY ,

ACKNOWLEDGMENTS

FIGURES

Section
I. INTRODUCTION

II. OVERVIEW
Caveat
Files
The BFS
FSS
Initial Implementation of the BFS on an

Intermediate Machine ,
File Security and Privacy ,
File Pointer <

III. BASIC FILE SYSTEM (BFS) PROCEDURES
Procedures for Establishing and
Maintaining a File Subsystem (FSS)

Procedures for an FSS to Obtain and
Release Secondary Storage Space from
the BFS

FSS Procedures for User File Manipulation
BFS Procedures That Allow an FSS to

Implement User File Operations
BFS Procedures Used Internally
Typical FSS Field Information ,

IV. A PARTICULAR FILE SUBSYSTEM (FSS1) FOR
THE ISPL MACHINE ■

FSS1: Characteristics and Limitations ..,
Structure of an FSS1 File
Identifying Data to FSS1
Fixed Identifier
File Pointer

Access Techniques
Scatter Read/Write
Declarations for Processing LRs
Formats of User File Operations

V. DETAILED ORGANIZATION OF THE BASIC FILE
SYSTEM (BFS)

The BFS Master File

iii

v

vii

xi

3
3
3
3
4

4
4
5

6

6

7
9

11
14
14

16
16
16
16
17
17
17
17
18
18

21
21

■"

, -■■ ,-..

-X-

Track Acquisition for the BFS Master
File 21

The Pack Identity and Track Matrix
Records 21

The Master Directory Record 22
The BFS Record of FSSs 23
The BFS File Root-Directory: Format

and Contents 24
The BFS Records of File Index
Parameter Fields 24

The BFS Available Parameter-Fields
Descriptor 24

Data Maintained in Primary Storage
by the BFS 24

VI. DETAILED ORGANIZATION OF THE FSS1
SUBSYSTEM 28

The FSS1 Master File and User Files ... 28
Track Format for FSSl-Type Files 28
The Format of FSS1 Subsystem Logical

Records 28
File Codes 28
The Parameter Field of the BFS's File

Index Entry for the FSS1 Master File 28
Parameter Field of File Index Entry of
All FSS1 User Files 31

Track Acquisition for Files Operating
under FSS1: The FSS1 Master File's
Space Allocation LR 32

Space Allocation by FSS1 32
The Bookkeeping and Space Allocation LR

and Its Usage 33
Open Files Table 34
FSS1 Primary Storage Usage 35
Operations Required for FSSl Functions 35

REFERENCES 37

-xi-

FIGURES

1. Pack Identification and Track Matrix Records

2. Track Matrix

3. Master Directory Record

4. File Subsystems Record

5. File Root-Directory

6. File Index Parameter Fields

7. Available Parameter-Fields Descriptor

8. Track Format and Organization

9. Logical Record Format

10. FSS1 Master File's Parameter Field

11. User's Files Parameter Field

12. FSS1 Master File Space Allocation LR

13. Bookkeeping and Partially Available Space LR

21

22

23

23

25

26

27

29

30

31

31

32

33

mmmmmmmaimmmmm» ifej^'&||

b-.,- ,, .■ ■

-1-

I. INTRODUCTION

This Report describes a Basic File System (BFS) and

a file subsystem (FSS). The BFS is a unique entity with-

in the environment in which it operates, i.e., it has no

brother systems performing similar functions, nor is it

superimposed on a more basic secondary storage access

method. The FSS described is one of many subsystems, each

supporting a different form of file use.

This two-level hierarchy of file management (system

and subsystem) is intended for implementation on a "raw

machine." That is, the BFS should directly cause perfor-

mance of the appropriate file I/O operation. The imple-

mentation of this hierarchy "on top" of an existing file

system might introduce an unacceptable overhead.

The specifications in this Report are oriented toward

an initial, temporary version of this implementation on an

IBM 360 using IBM 2314 disk drives for file storage. Thus,

a good deal of the nomenclature and description (but not

the design philosophy) leans toward this configuration.

Therefore, this initial description does not take into

account the parallel processing notation of the Incremen-

tal System Programming Language (ISPL) 11-2]. Aestheti-

cally the details suggested for implementation should be

passed over and attention given to file structuring and

managing techniques.

This file organization is not intended to support

production systems with production goals. Rather, it is

designed to support interactive experimental programming

systems. Evidence of the viability of this approach to

file management is the Rand-developed GRAIL System [3].

It should be noted that the BFS leans toward dis-

tributed rather than centralized knowledge of files—their

existence, location, and structure. The BFS merely allo-

cates space to FSSs and performs requested I/O functions.

.^iilipiMnirmnwniitwwtii»»»^ *—»».,.

-2-

From the standpoint of the user, the FSSs are completely

responsible for file creation and manipulation. This

allows great flexibility in each ESS so that they can be

tailored to the specific needs of their individual

applications.

.,,,.„.,,,„«„,:„,»:,,...,

-3-

II. OVERVIEW

CAVEAT

These notes pertain primarily to the Basic File Sys-

tem (BFS) used with the initial ISPL implementation. Indi-

cated are those BFS procedures that should be transferable

to the ISPL machine, those that should be made obsolete by

the ISPL port mechanism, and the ISPL subroutine calls that

will be replaced by language constructs.

FILES

The ISPL file system permits users to create files,

name them, store data in them, recall data from them, and

save them for later use. All files are catalogued files;

i.e., with respect to the BFS they are permanent and must

be explicitly purged by the user through a file subsystem

(FSS). A file is a collection of data whose gross internal

organization is known to a particular FSS, and whose more

detailed intra-organization is known only to the user and

his procedures. Unlike conventional file systems, the BFS

has no knowledge of the file's organization.

THE BFS

The BFS is a resident part of the ISPL Operating Sys-

tem (OS). It 1) invokes FSS procedures to carry out user

file requests (this may also be done by the OS); 2) main-

tains the necessary directories of file and FSS information;

and 3) allocates secondary storage for further suballocation

for files by FSSs.

The BFS consists of 1) the nucleus of a particular FSS

that maintains a file containing directories of file data,

matrices of available and assigned track space, etc., and

2) a set of assembler-coded subroutines for channel program

construction and I/O transmission management.

MMiMKäü^w , ,

-4-

FSS

An FSS is a collection of seven primary procedures

(see p. 9), declared to the BFS, that process user file

operations. An FSS is characterized by a high-level data-

structure organization, perhaps known to its users, super-

imposed upon the intra-organization of all files operating

under that FSS. It is further characterized by the kinds

of operations it affords its users. FSSs are not part of

the BFS nor of the OS.

INITIAL IMPLEMENTATION OF THE BFS ON AN INTERMEDIATE MACHINE

The physical I/O routines are ISPL-callable subroutines

written in assembler language with coding conventions closely

related to the standards for the intermediate machine.

The remainder of the BFS is a collection of ISPL pro-

cedures. The user's interface with BFS is through ISPL pro-

cedure calls, assignment statements, and ISPL language

constructs. All BFS procedures have one parameter that in-

dicates whether the operation succeeded or failed, and if it

failed, why. Unless otherwise stated, all input parameters

are treated by the procedures as read-only.

FILE SECURITY AND PRIVACY

The requirements for a private and secure schema for

files vary with an individual's needs for each of his files.

The BFS circumvents this complex problem by simply relega-

ting such authority and responsibility to FSSs. The BFS

allows the console or program to communicate with an FSS if

the console or program supplies a valid triplet of file-

name, qualifier, and FSS-name, Further scrutiny of the

user and discrimination of his access privileges to the file

are determined by FSS/user protocol.

 1
The qualifier is an eight-byte field whose contents

are legislated external to the OS. It has been suggested
that it represent man number and project number where either
may be null.

WBmmKff^^^f^^^^1^^?^''

-5-

FILE POINTER

A file pointer (PP) is one of the ISPL pointer types.

It can be translated by the BFS to an absolute secondary

storage address.

There will be a different FP type for each secondary

storage medium. We discuss FPs for IBM 2314 disk drive

storage.

There are two candidates for the complete format of

this FP. An FP may be a four-byte pointer that addresses

a second four-byte file data item, shown below. The alter-

native is an eight-byte FP that includes the four-byte file

data item.

i Pack
| Number

Cylinder
Number

Track
Number

Record
Number

File Data Item of an FP

■mmmaummmn:..

 _.- ..

-6-

III. BASIC FILE SYSTEM (BFS) PROCEDURES

PROCEDURES FOR ESTABLISHING AND MAINTAINING A

FILE SUBSYSTEM (FSS)

The following procedures allow a program to create,

destroy, and update an FSS. The program's interface is

initially through the ISPL call statement. Declaration

statements will be provided in the language for the ISPL

machine. These procedures should transcend the move to

the ISPL machine.

1) Function: Institute a new FSS.

Form: CALL BFSCFSS (PASSWD, SUBSYS, ADDRS, IND)

Inputs: PASSWD and SUBSYS are ISPL varying

character strings of maximum length 20.

They speedfy a password and the FSS

name, respectively. ADDRS is a loca-

tion in an ISPL record containing an

ordered list of seven primary procedure

addresses (or load-module names) for

user file operations.

Outputs: IND is an ISPL discrete valued variable

used as a success/fail (S/F) indicator.

2) Function: Purge an FSS.

Form: CALL BFSDFSS (SUBSYS, PASSWD, IND)

Inputs: SUBSYS and PASSWD have the same meaning

as in 1), above.

Outputs: IND is the S/F indicator.

3) Function: Replace a component (one of the seven

procedures) of an FSS.

Form: CALL BFSREP (SUBSYS, PASSWD, ADDRS, IND)

Inputs: SUBSYS and PASSWD have the same meaning

as in 1) and 2), above. ADDRS points

to the new component, followed by an

fS^lt^^^f^sß^-----

-7-

Outputs:

integer specifying its position in the

ordered list.

IND is the S/F indicator.

PROCEDURES FOR AN FSS TO OBTAIN AND RELEASE

SECONDARY STORAGE SPACE FROM THE BFS

The BFS allocates space to an FSS, which in turn pro-

vides space for files operating under it. Space allocation

and file creation are independent as far as the BFS is con-

cerned. File purge and space release to the BFS are also

independent with respect to the BFS.

The BFS procedures listed below allocate and de-allocate

secondary storage space to an FSS. The basic unit of space

in these transactions is a track. The FSS interface is the

ISPL call statement. The calls will later be superseded

by ISPL resource-allocation constructs similar to those

extant for primary storage. These procedures should survive

the ISPL machine transition.

1) Function:

Form:

Inputs:

Outputs:

2) Function:

Option A

Form:

Request currently mounted pack IDs and

their residency status.

CALL BFSPACKS (P, IND)

None.

P contains a list of the following

pairs: fixed-length character string

specifying pack ID, and discrete valued

variable indicating residency status.

IND is a discrete valued variable used

as an S/F indicator.

Request available secondary storage

space to be assigned.

Assign consecutive tracks within a

cylinder.

CALL BFSASSGN (OPTION, NAME, IDENT,

AMNT, F, IND)

* t'K'H M^& , } , .. ^

-8-

Inputs: OPTION is a discrete valued variable

specifying the option code. NAME is

a varying character string of maximum

length 20 that gives the FSS name.

IDENT is a fixed-length character

string specifying the pack ID. AMNT

is a half-word integer specifying the

number of tracks.

Outputs: F is an FP, i.e., the starting track

address. IND is the S/F indicator.

Option B Assign consecutive tracks.

Form: Same as option A.

Inputs: Same as option A.

Outputs: Same as option A.

Option C Assign consecutive cylinders.

Form: Same as option A.

Inputs: Same as option A.

Outputs: Same as option A.

Option D Assign tracks.
Form: Same as option A.

Inputs: Same as option A.

Outputs: F is a pointer to an ISPL record that

contains an integer count of "pairs,"

followed by the pairs. A pair con-

sists of a fixed-length character

string specifying pack ID and an FP.

Note: If all tracks cannot be assigned on

the specified requested pack, the

overflow is assigned on a resident

pack.

Option E Assign consecutive tracks "horizontally.

Form: Same as option A.

Inputs: Same as option A.

Outputs: Same as option A.

:■ . ■ • ■ . ■■.-■.--■ •■ ■ ■ ■ ■

-9-

3) Function: Release assigned tracks to the BFS.

Form: CALL BFSRETN (NAME, IDENT, AMNT, F, IND)

Inputs: Same as the correspondingly labeled

arguments in 2), above.

Outputs: IND is the S/F indicator.

FSS PROCEDURES FOR USER FILE MANIPULATION

The following procedures support functions that an FSS

makes available to users. These FSS functions are further

described below (see pp. 18-20); however, they are included

here to illuminate the discussion in this section.

The procedures listed below allow users to access files.

They will not survive the definition of the port mechanism.

ISPL will be extended to encompass multiplexing over ports

and other primitive port operations.

These operations may logically be thought of as invok-

ing the BFS or the Operating System (OS). They will prob-

ably be implenented so that CREATE and CONNECT invoke the

OS; the other operations will then directly invoke the

appropriate FSS procedure.

1) Function: Create a file.

Form: CREATE FILE (P-»Af P-^B, C, P*D, P-»-E, IND)

Inputs: A contains a file qualifier whose con-

tents have not been specified. They

will be specified in terms of opera-

tional requirements, i.e., individuals

and projects. B is a varying charac-

ter string, of maximum length 20, spec-

ifying a file name. C is a varying

character string, of maximum length 20,

specifying an FSS name. D is a param-

eter list interpreted by the FSS.

Outputs: E is a parameter list interpreted by

the user. IND is a discrete valued

variable used as an S/F indicator.

... ■.- : ■ ■ , ;..,,„■ :■:■ .. .

, , .

■ "

mmmmmill**l9IMBI>immmimmw****n..

-10-

.

2) Function:

Form:

Inputs:

Outputs:

3) Functions

Form:

Inputs:

Outputs:

4) Function:

Form:

Inputs:

Outputs;

5) Function:

Form:

Inputs:

Outputs:

6) Function:

Form:

Inputs:

Outputs:

Function:

Form:

Inputs:

Outputs:

Note:

7)

Destroy a file.

DESTROY FILE (P->A, P-*-Br P-^D, P-^E, IND)

Same as 1), above, with the exclusion

of C.

Same as 1), above.

Connect a "port" to a file.

CONNECT FILE (P-^A, P-'-B, C, P-*-D, P-*-Ef IND)

Same as 1)/ above.

Same as 1), above.

Disconnect a file from a "port."

DISCONNECT FILE (P-*Af P-^B, P-^D, P->E, IND)

Same as 2), above.

Same as 1), above.

Send to a file.

FILE (P-^A, P-^B, P-^D, IND) = Q. Q is

an ISPL record.

Same as 2), above, with the omission

of E.

IND is the S/F indicator.

Receive from a file.

Q = FILE (P-»-A, P-»-B, P-*-D, IND) . Q is

an ISPL record.

D is a parameter list interpreted by

the FSS. A and B are the same as in

2), above.

D will also receive the file data.

IND is the S/F indicator.

Communicate with FSS.

COMMUNICATE (P-»-A, P-*-B, P*D, P-*-E, IND)

Same as 2), above.

Same as 1), above.

This procedure permits communications

between the user and an FSS for queries,

error reporting, etc.

't^fäsiwm ^^»{safwffflwRp ■'■'""■'■'^H^Pffil

-ll-

BFS PROCEDURES THAT ALLOW AN FSS TO IMPLEMENT

USER FILE OPERATIONS

The BFS procedures listed below are called from an FSS

by the ISPL call statement. They should partially survive

over the port mechanism definition.

The procedures outlined here are not in one-to-one

correspondence with the procedures listed above for user

file manipulations.

1) Function: Create a file index entry.

Note: The BFS maintains a directory of file

information whose entries are created

by this procedure. Recall, however,

that only an FSS creates a file or

knows its actual location.

Form: CALL BFSCFIE (QUAL, NAME, SUBSYS, PFC,

PFPTR, RDPP, IND)

Inputs: QUAL contains a file qualifier whose

contents have not been specified.

They will be specified in terms of

operational requirements, i.e.,

individuals and projects. NAME is

a varying character string, of maximum

length 20, specifying a file name.

SUBSYS is a varying character string,

of maximum length 20, specifying an FSS

name. PFC is a variable-length field

(varying character) whose content is

known only to the FSS. PFPTR is a

half-word integer giving the length

of the PFC field.

Outputs: RDFP is an FP for later accessing the

FSS field. IND is a discrete valued

variable used as an S/F indicator.

» . ..,.,■

-12-

2) Function!

Form:

Inputs:

Outputs:

3) Function;

Form:

Inputs:

Outputs:

4) Function:

Form:

Inputs:

Outputs:

5) Function!

Form:

Inputs:

Outputs:

Delete a file index entry.

CALL BFSDFIE (QUAL, NAME, SUBSYS, F, IND)

QUAL, NAME, F, and SUBSYS have the same

meanings as in 1), above.

IND is the S/F indicator.

Access an FSS field.

CALL BFSGETPF (QUAL, NAME, SUBSYS, PFC,

RDFP, IND)

QUAL, NAME, SUBSYS, and RDFP have the

same meanings as in 1), above. RDFP

is an option, but providing the FP

saves secondary storage read and search

time.

PFC and IND have the same meanings as

in 1), above.

Replace an FSS field.

CALL BFSPUTPF (QUAL, NAME, SUBSYS, PFC,

RDFP, IND)

QUAL, NAME, SUBSYS, PFC, and RDFP have

the same meanings as in 1), above.

Again, RDFP is an option.

IND is the S/F indicator.

Change a file name and/or qualifier.

CALL BFSMODFY (OLDQUAL, OLDNAME, SUBSYS,

NEWQUAL, NEWNAME, IND)

OLDQUAL, OLDNAME, and SUBSYS have the

same meanings as in 1), above. NEWNAME

is a varying character string of maxi-

mum length 20 specifying a new file

name. NEWQUAL is an optional new

qualifier.

IND is the S/F indicator.

v.,f,:>;-.*.;;;vcr..::;..^.^^ ■ iVt \!}^^§^^0^l^^^

-13-

6) Function;

Form:

Inputs:

Outputs:

Note:

7) Function:

Form:

Inputs:

Outputs:

Note:

8) Function;

Form:

Write data in file.

CALL BFSWRITE (SUBSYS, I, RDFP, COUNT,

KEY, IND)

SUBSYS and RDFP have the same meanings

described in 1), above. I is an ISPL

pointer followed by an integer count

of ISPL descriptors. The descriptors

consist of a pointer and an integer

length. COUNT and KEY are optional;

they correspond to a track's count and

key fields, respectively.

IND is the S/F indicator.

An initial restriction is that only a

single physical record on a single

track may be written for each instance

of the procedure. Note that I provides

for scatter write from primary storage.

Read data from file.

CALL BFSREAD (L, RDFP, COUNT, KEY, IND)

RDFP is the same as described in 1),

above. L contains a pointer and an

integer length for the read.

L indicates the location and amount of

data to be received. COUNT and KEY

have the same meanings as in 6), above,

and are optional. IND is the S/F

indicator.

An initial restriction is that only a

single physical record on a single

track may be read for each instance of

the procedure.

Query file information.

CALL BFSQUERY (QUAL, NAME, SUBSYS, M,

RDFP, INDEX, IND)

mmm&mmii&m . ■ .

■ ■

. ■ ,.„,...,.. mrmmmmmmim mmnmm*

-14-

Inputs: QUAL is a file qualifier whose left or

right half may be ignored as a func-

tion of INDEX. SUBSYS is an FSS name.

INDEX is a discrete valued variable

used as an index to specify the search

options, which are:

a) Match on left half of qualifier.

b) Match on right half of qualifier.

c) Match on entire qualifier.

d) Match only on FSS name.

These options imply a match on FSS name

as well.

M is a triplet: file name, qualifier,

FP to parameter field.

Note: M specifies a starting point for the

search, and the next "match" is the out-

put. If M is null, the search starts at

the beginning of the directory.

Outputs: M contains the triplet. IND is the

S/F indicator.

BFS PROCEDURES USED INTERNALLY

1) Read key and data of a track.

2) Initialize the primary resident 2314 pack for the

BFS.

3) Initialize, terminate, or update the BFS.

4) Change count of open files on a given pack.

TYPICAL FSS FIELD INFORMATION

The following information is shown as the suggested or

typical contents of an FSS field of a file index entry.

1) User-specified password.

2) User-specified access information.

tswwwww ■

-15-

3) Pack ID and FP where file is stored, or an FP to

a sub-directory containing more information about

a file.

4) File size and last-accessed date.
5) User-specified field (similar to the FSS field

itself).

i~i-4iäU"ii''■S-.-'M^-'- iiA'V^': '

?»*n im ■■niuiniii.im ■^«■«■■■■■■■■■■■iwwMWiiiiiiiwwil.iili^.M

-16-

IV. A PARTICULAR FILE SUBSYSTEM (FSS1) FOR

THE ISPL MACHINE

FSS1; CHARACTERISTICS AND LIMITATIONS

FSS1 (implemented in ISPL) interfaces with users via

ISPL calls, assignment statements, and other language con-

structs. It interfaces with the ISPL Operating System (OS)

and one OS component, the Basic File System (BPS), through

the ISPL call statement. •

Described here is the initial version of FSSl. The

interfaces will presumably change in the transition to the

ISPL machine. However, the concept of file subsystems and

the bulk of this implementation should remain intact.

FSSl provides random and sequential access, and scat-

ter I/O of variable-length data.

STRUCTURE OF AN FSSl FILE

A file known to FSSl has the following structure. A

file is composed of variable-length logical reoorde (LRs).

The LRs are the units for storing and retrieving file data.

An LR is composed of variable-length eegmente. Segments

of LRs are subunits identifiable for the purpose of spec-

ifying parts of an LR in disjointed primary storage loca-

tions for scatter read/write. The user may read or write

a single segment only if the LR consists of a single seg-

ment. That is, the user specifies an LR (not a segment)

for an I/O transaction.

IDENTIFYING DATA TO FSSl

A variable-length LR is a collection of data identi-

fied by the user to FSSl for reading or writing. Specifi-

cally, with regard to variable length, a given LR may be

read, changed in length, and rewritten.

■ mmm

-17-

LRs are identified to FSS1 in one of two ways, i.e.,

by fixed identifier (FI) or file pointer (FP). When the

LR is first written, FSS1 generates an FI once for each

LR. FSS1 may output a different FP to the user each time

the LR is written.

Fixed Identifier

FSS1 generates an FI (name), unique within the file

for each new LR. The user can store and retrieve LRs by

name, i.e., PI. Since the FI for an LR does not change,

the user can form intra-file (inter-LR) hierarchies where

the name of one LR is kept as part of another LR. When

using FIs, FSS1 automatically maintains a correspondence

between the FI and the current secondary storage location

(FP) for each LR of the file.

File Pointer

FSS1 can output an FP each time an LR is written.

(The BFS can arithmetically convert the FP to Pack ID and

physical secondary storage address.) Because the FP value

for a given LR can change each time the LR is stored, it

is impractical to use it as an intra-file structural con-

nector. However, the FP is more efficient than the FI.

ACCESS TECHNIQUES

LRs may be accessed randomly, sequentially, or indexed

sequentially, For example, an LR is retrieved randomly

by specifying either FI or FP; sequentially by requesting

the next LR; and indexed sequentially by requesting the

nth LR. The access technique is specified for individual

operations only, as opposed to when the file is "opened."

SCATTER READ/WRITE

An LR may be dispersed in primary storage on input

and, likewise, collected from primary storage for output.

■ ■■ ■ .•. ■■...■

■ ■ . . I I .■■ ■■ ■ ■

-18-

The user's invoking process supplies a table of pointers

(and lengths for output). Scatter I/O is implied with each

read/write operation.

The scattered groups of data are called LR segments.

FSS1 records the LR as a contiguous unit on secondary

storage; it also appends a header of segment lengths to

facilitate the scatter reading operation.

DECLARATIONS FOR PROCESSING LRs

When a file is created, the user must declare the

bookkeeping arrangement. The user can request that:

1) FSS1 do bookkeeping: for each write operation

only the FI is normally output to the user.

2) The user do bookkeeping: for each write both

FI and FP are normally output.

In either case, FSS1 automatically maintains an ordered

list of FI versus FP. Regardless of bookkeeping technique,

the user may request either FI, FP, or both as output from

any given write operation. Thus, the user can save the FI

or FP of a specific LR of interest to him in a sequential

file, and later treat the file as random for initial posi-

tioning. If the FP is supplied on input for a read opera-

tion, FSS1 will not reference the bookkeeping table (FI

versus FP).

FORMATS OF USER FILE OPERATIONS

Users have seven language constructs for file opera-

tions (see p. 9). These constructs compile into either

direct calls on FSSs, or system calls that invoke the FSSs.

Shown below are the user's constructs and the subsystem

calls. The parameters unique to FSS1 are described and/or

formatted.

pssfp»^' - -

-19-

1) Construct: CREATE FILE (P-»-A, P-^B, C, P-*-D, P-^E, IND)

Compilation-. CALL label (P-»A, P-^B, C, P-^D, P-*-E, IND)

C is a character string (fixed or varying)

containing "FSS1." D is a bit string specifying

bookkeeping arrangement. E is not used.

2) Construct: DESTROY FILE (P-+A, P-'-B, P->D, P-'-E, IND)

Compilation: CALL label (P-*A, P-^B, P-^-D, P-'-E, IND)

D and E are not used.

3) Construct: CONNECT FILE (P-^A, P-^B, C, P-^D, P-^E, IND)

Compilation: CALL label (P-»A, P^-B, C, P-*-D, P-^E, IND)

D is a one-byte integer used as a code for

multiplexing over the connection. E is not initially

used, but its first byte is reserved for specifying

the FSSl-end of the connection for multiplexing.

4) Construct: DISCONNECT FILE (P-*-A, P-*-B, P^D, P-^E, IND)

Compilation: CALL label {P-*A, P->B, P-*D, P-*E, IND)

D and E have the same meanings as in 3), above.

5) Construct: FILE (P->A, P-^B, P->D, IND) = Q

Compilation: CALL label {P-»A, P->B, P-^D, IND)

D is diagrammed below. If FI is null, a new

LR is assumed. All data shown are inputs except

the FP. FP is initially output for each write.

Contents

FI

FP

port multiplex
code

unused

relative LR
number

count of pairs

Length/Type

four-byte integer

pointer

one-byte integer

three-byte integer

two-byte integer
(used only with
6), below)

two-byte integer

<mmmmm$ymwimm$^->**.-

-20-

pair 1

Contents

segment addr.

segment length

Length/Type

pointer

four-byte Integer

segment addr. pointer

pair n
segment length four-byte integer

6) Conatruatx Q = FILE (P-^A, P->-B, P-*-D, IND)
Compilation: CALL label (P-»-Af P-^B, P-»-Df IND)

D is the same list shown above. The relative

record number is a two-byte signed integer spec-
ifying an LR sequentially offset from the current
one, i.e., the one named by FI.

If the number of segments in the list is less

than the actual number of LR segments, the last
segment location specified in the list contiguously

receives the remaining LR segments. For example,
a scattered LR can be collected by writing it and
re-reading it into a single segment location.

7) Construct: COMMUNICATE (P-»-A, P-^B, P*D, V+Z, IND)
Compilation'. CALL label (P-»-A, P-^B, P-^D, P-»-E(IND)

E is not used. D contains a one-byte integer
specifying an option. The only currently defined

option is to purge an LR. D also contains either
the FI or the FP for that LR.

1 RSjIMMppiyj- ■■■-■■ ■-

-21-

V. DETAILED ORGANIZATION OF THE BASIC FILE SYSTEM (BFS)

THE BFS MASTER FILE

The BFS owns and maintains a BFS master file that

describes 1) available and assigned track space for the

entire system; 2) information about current FSSs; and

3) a small amount of data about each virtual or real file

operating under the subsystems. This section describes

the various types of records comprising the BFS master

file.

TRACK ACQUISITION FOR THE BFS MASTER FILE

The BFS gets a single track, as needed, and returns

tracks as they become unused. All BFS master-file tracks

are on resident packs, except for a single track at a

fixed location on each pack that describes the track allo-

cation on that pack and gi'.mn the pack's identification.

THE PACK IDENTITY AND TRACK MATRIX RECORDS

Each pack contains a pack identity record and a track

matrix record. These two physical records occur on the

same track at a standard, fixed location for each pack (see

Fig. 1).

ll

I Pack ID
and

Pack
Number

C
Track Matrix of
Available and
Assigned Tracks

Record Gap

Fig. 1--Pack Identification and Track Matrix Records

■'^1mtp''mmmmmm>miBimm»mmm

-22-

The pack ID for a new pack is assigned through a

utility program (as yet unspecified). The BFS assigns

the pack number.

The track matrix indicates the availability or assign-

ment of each track on the pack. For each assigned track,

the ESS to which it is assigned is indicated (see Fig. 2).

These matrices are used to allocate tracks to FSSs and to

the BFS for the master file.

Tracks/cylinder
(20 bytes)

Cylinders
(200 bytes)

•An entry: bit 0=0, available

0=1, assigned

bits 1-7 = FSS number,
if assigned

Fig. 2--Track Matrix

THE MASTER DIRECTORY RECORD

The BFS has a master directory record at a fixed loca-

tion on a resident pack. This record contains file pointers

(FPs) to the current locations of all other BFS records or

record types. Excluding the pack ID and track matrix (space

assignment), this is the only record of the BFS master file

-23-

at a fixed location. This record is physical record three

(R3) (excluding RO) of the track, which contains the pack

ID and track matrix on one of the resident packs. Figure 3

details the contents of this record.

Pack number source for creating new packs

Bit vector for determining available and assigned FSS numbers

FP of FSS record

FP of first file root-directory record

FP of record describing available parameter-fields records

Fig. 3--Master Directory Record

THE BFS RECORD OF FSSs

The BFS maintains a record on a resident pack of cur-

rent FSSs. It is formatted as one physical Rl of maximum

length? Fig. 4 shows its contents.

Number of entries I Entry length
FSS name, FSS number, password, number of tracks assigned

Fig. 4--File Subsystems Record

1 ■■- ■■■■ ■ ■■ ■..

:R'B •

-24-

THE BFS FILE ROOT-DIRECTORY; FORMAT AND CONTENTS

The root-directory record(s) contains all the infor-

mation of a file index entry except the variable-length

parameter field. Its format is one maximum-length Rl per

track (see Fig. 5).

THE BFS RECORDS OF FILE INDEX PARAMETER FIELDS

Tracks are obtained and released as needed to house

the variable-length parameter fields of file index entries.

The tracks are formatted with a fixed number of equal-

length physical records/track. Each record can contain

32 bytes of parameter-field description. For file index

entries with parameter-field entries longer than 32 bytes,

an additional read is required for each 32-byte segment

(see Fig. 6).

THE BFS AVAILABLE PARAMETER-FIELDS DESCRIPTOR

The available parameter-fields descriptor is formatted

as a maximum-length Rl on a resident pack. It describes

the available and assigned parameter-field-segment records

of tracks assigned for that use (see Fig. 7).

The record subfield of the FP is zero. It is modified

by a position within the bit vector. The bit vector states

availability of each physical parameter-field record on

the track addressed by the FP.

DATA MAINTAINED IN PRIMARY STORAGE BY THE BFS

The BFS dynamically maintains a table of current pack

number vereue drives. An entry is made for a given drive

each time the drive is enabled, and deleted each time it

is disabled. The table is a vector of pack numbers in-

dexed on drive number. The BFS also keeps a copy of the

master directory record in primary storage.

Ä«Ä«*)"i*astt!«iäÄÄSS -.

■ .

■■.:.■■!;■,;: !BqsS^»aWi|i^|^p^ i,-m'mvfrm**W&*m^

-25-

(U

X
<u

<•-

+J
a>
c
a

i

v
X

«
(U 0) •
E »—■o
to •f- p—

c

<u am-
r— -C
•r- ■M t-
<*- 0)

«4- ■•-»
A O 0)

t. E
a» T3 «O
•^ t- J-
«♦- o la
•p" o a.
!-• 0)
<0 t. to
3 -
O" « ♦J >>

(- (A J-
<U I- +J

• • .a •■- c
+J E i*. a,
(U 3

r— c o X
Q. +J a>

•p- to ■o
t-«^ a. c
1- u_ U.T-

^-» ^-,
•- CM

>>
i.
o
o
<u

o
o

cm

>> M
tm 01
o •r« 01 >»
+* 1» r— 0) t-
u 4J •r* 1— +>
0) C •»- •f— c
k 0) «•- 0)
••- f
"O X +J £ X

1 01 O» +» a«
4-> ■o c o> ■o
O c -o 01 c c
O •r- fc. r— 01 v
u o f 1 r—

a» o ■u TJ >, » • • fl 1 >. 0)
** r- 0) O) a> s- XJ J- r—
X •p- i- c X +J a> +J •p-

0) «t- 0) — c x c «*-
c (/) 1— •1- (U •i- 01

•o t. •!- <*- ■o
O l- a» .c >> 4-> X X 0) (U
+J o J3 ■•-> t. V) 0) +j a, to u

u E +J i. -a UfO 3 «
a. a) 3 C c •■- c ia c c a.
U. i. z o LU U. •!- _!•«- ^ w

I
in

oi

-26-

1^

^^

C
<u
E

0)
I/)

01

i.

4->
0)

XI

0)

i-
0)
4->
0)
E
10
t-
(0
o.

IS

re
a.

c
0)

I
■o

^ £

c
<u
E
o>
01

•p
X
a>
c
o

■M

IO
3
CT

0)

E
3

in

0)

IO
3

Ü
10

(/>

c
a>
E
CT
0)
l/l

l/l

«A
01
4->
>>
Xi

CM
CO

0)
E
CT
0)
l/l

11

0)

I
t-
0)

0)
E
«
i.
10
Q.

■o

01

i-
0)

■M
01
E
IO
s-
IO

c

<u

I
vo

CT

l^^< fc^

o

01
E
CT
01
I/)

-
" ■.■ • ■■ .

-27-

Number of entries

Entry length

FP, bit vector

FP, bit vector

Fig. 7--Available Parameter-Fields Descriptor

«-«wi«ü^vMyto^i*iaä8iW.'*itei«M^iiw*fi

■-■ ■■■■ ■^■;. :■:.:-■ -*> wwaJWBSBWWWB^BIil^^

-28-

VI. DETAILED ORGANIZATION OF THE FSS1 SUBSYSTEM

THE FSS1 MASTER FILE AND USER FILES

The FSS1 subsystem owns and maintains a master file

that describes available and assigned track space for all

files operating under FSSl. The FSS1 master file has

exactly the same overall organization as user files that

operate under FSSl; that is, the master file is accessed

by FSSl using the same constructs users employ to access

their files.

TRACK FORMAT FOR FSS1-TYPE FILES

All tracks assigned by the BFS to the FSSl subsystem

are formatted alike and have similar organizations. Figure 8

shows the format and organization.

THE FORMAT OF FSSl SUBSYSTEM LOGICAL RECORDS

Figure 9 shows the format of a logical record (LR)

under the FSSl subsystem.

FILE CODES

Each file created under FSSl is assigned a file code

that is stored in the parameter field of the file index

entry in the BFS master file. The source of available

and assigned file codes is kept as a 128-bit vector in

the parameter field of the file Index entry of the FSSl

master file.

THE PARAMETER FIELD OF THE BFS'S FILE INDEX ENTRY FOR

THE FSSl MASTER FILE

Each file has a file index entry in the BFS master

file. Figure 10 shows the parameter-field part of that

entry for the FSSl master file.

^a^MaMtfa^ ^"*-«-«^«~---'-->««™-^w^^

-29-

/^n

H

%.
o

■M
0.4-*

•r- (/)

—I Uf—
a. M

•-IQ o,

0)

0)

o
o

r<

t.

dag
puoaay

0)

N

IO

1.
o

10
e
o

u
<o
t.
I-

I
I

00

o>

. Vrv

:V. .. ■ •■'::■:. y. -.. ^.„ .^ . .

\

■

-30-

Fixed Identifier (FI) for the LR

File name

File qualifier

Length of LR on this track

File Pointer (FP) to next track

Number of LR segments on this track

ISPL Descriptor of first segment

ISPL Descriptor of last segment

First segment

Last segment

-{for con-
tinuation
of LR. if
needed)

Fig. 9--Logical Record Format

.' ' ■' mmt^^W^M^W^&fl^S^^ß

-31-

FI source for LRs in the master file

The FI, FP for the LR containing the
Bookkeeping and Partially Available
Space for the master file

The FI, FP for the LR containing the
track matrix for all FSS1 subsystem
files

A bit vector denoting assigned and
available file codes

Fig. 10--FSS1 Master File's Parameter Field

PARAMETER FIELD OF FILE INDEX ENTRY OF ALL FSSl USER FILES

Each file has a file index entry in the BFS master

file. Figure 11 shows the parameter-field part of that

entry for user files under FSSl.

FI source for LRs in the file

FI, FP for the LR containing the Book-
keeping and Partially Available Space
information

The file code

Fig. ll--User's Files Parameter Field

(yUaÜÖjHMaÄÄ***«^*.;«««*^«»-
■' ■ • ■ ■ .. ■

-

SPsSS

-32-

TRACK ACQUISITION FOR FILES OPERATING UNDER FSS1;

THE FSS1 MASTER FILE'S SPACE ALLOCATION LR

FSS1 gets a block of contiguous tracks, as needed, from

the BFS for further suballocation to the FSS1 master file

and its user's files. An LR in the FSS1 master file de-

scribes this space; its format is shown in Fig. 12.

FP to first track Number of tracks Byte vector

The byte vector contains a byte for each track. Its format

is:

bit 0=0, available

bit 0 ■ 1, assigned

bits 1-7 ■ file code to which track assigned
These fields are repeated for each contiguous block of

tracks.

Fig. 12--FSS1 Master File Space Allocation LR

SPACE ALLOCATION BY FSS1

FSS1 assigns space, in units of a track, to individual

files as needed. When a track is assigned, it is so marked

in the byte vector of the Space Allocation LR in the FSS1

master file, and the file's code is inserted in the low-

order bits of the byte.

As tracks become available (due to rewriting or purging

of LRs), they are returned to FSS1 and so marked in the

appropriate byte of the Space Allocation LR in the FSS1

master file.

HHHMMl ■

-33-

THE BOOKKEEPING AND SPACE ALLOCATION LR AND ITS USAGE

There is an LR for each FSS1 file (including the FSS1

master file). This LR contains 1) the bookkeeping corre-

spondence of FI versus FP for each LR of the file, and 2) a

partially available space count for each track assigned to

the file. When a file is created, FSS1 constructs this

LR with one FI versus FP entry (for the record itself), and

one partially available space entry for the track on which

it is written. The BFS maintains the FP for this LR in the

parameter field of the file index entry. Figure 13 shows

the format of this LR.

File name

File qualifier

FI source for LRs in this file

Number entries

Number tracks assigned

FI versus FP

FI versus FP

FP to track; count available

FP to track; count available

Fig. 13--Bookkeeping and Partially Available Space LR

*mmmmmmKlfllfMKtlS&$i^fiißwmim>..

-34-

This LR is updated each time an LR is purged or re-

written in a new physical location; it is also updated each

time a new LR is written into the file.

The first half of thic LR is vsed to obtain FP, given

FI. The second half is used to:

1) Purge LR—all freed space is added to the counts

for the appropriate tracks.

2) Rewrite LR in a new location—if LR is same size,

rewrite in same location; if not, free space from

old LR and do 3), below.

3) Write a new LR—a) If more than one track is needed,

get it from FSS1 and add an entry with FP, count = 0.

Repeat the above until less than one track is needed,

b) Search the FP versua free-count table for an

amount > the residual. If not successful, repeat

part a), above, c) Deduct the amount needed for

the residual, d) Write the LR.

In cases 1) and 2), if the count reaches a complete track,

delete the FP versus free-count entry and return the track

to FSSl's available space.

OPEN FILES TABLE

In a primary storage ISPL record, FSS1 maintains a

table with an entry for each open file. An entry contains:

1) File name.

2) File qualifier.

3) Process name or port name and multiplex code.

4) Current FI, FP record read.

5) Current FI, FP record written.

6) FP to the parameter field in the directory.

7) The parameter-field contents.

^sjmpmmmmmmmmmmmmMmmmmB^^

-35-

FSS1 PRIMARY STORAGE USAGE

1) The Open Files table is maintained in primary

storage.

2) The Bookkeeping and Partially Available Space LR

for the most recent transaction is in primary

storage. It is rewritten at least after each

CREATE, DESTROY, and CLOSE operation. Since the

Bookkeeping/Partially Available Space LR last

used is kept in primary, a user who writes or

reads in a burst may not need to repeatedly bring

this record into core.

OPERATIONS REQUIRED FOR FSS1 FUNCTIONS

1) CREATE a file

a) Create a BFS file index entry.

b) Write a Bookkeeping/Partially Available

Space LR in the file.

c) Write the FSS1 Space Allocation LR.

2) DESTROY a file

a) Mark all tracks assigned to this file

available in the FSS1 Space Allocation LR;

rewrite this LR.

b) Destroy the BFS file index entry.

3) OPEN a file

a) Retrieve the BFS file index entry.

b) Add an entry to Open Files table.

4) CLOSE a file

a) Update the BFS file index entry.

b) Delete the entry in Open Files table.

c) Write the FSS1 Space Allocation LR.

5) SEND

a) Bring Bookkeeping/Partially Available

Space LR into primary if not there.

b) If a new LR, go to e), below.

•■":- :■■;: ...■■

■ ■■■,. ■

■36-

c) Read in old LR.

d) If same size, insert new LR, write, and exit;

if not, pack physical record rewrite, and

indicate space freed.

e) Allocate space as described on p. 34.

f) Write the record.

g) Add new FI versus FP entry, as appropriate.

6) RECEIVE

a) If given FI, FP, go to d), below; if not,

continue.

b) If it is not already there, bring Bookkeeping/

Partially Available Space LR into primary.

c) Retrieve FP.

d) Read the record.

7) PURGE LR

a) If it is not already there, bring Bookkeeping/

Partially Available Space LR into primary.

b) Read the record.

c) Update count of free space.

d) If whole track is free, return it to FSS1,

delete FP versus free-count entry and exit.

e) If track is not free, compress and rewrite

LR.

■ :■;■]: ■■ ■■ (K ' ' ' " '! '
, ■ -.- ■ - " ■■ ■ ■ ■ ■ ■ . ■■ ■

*'■— , • , ■

-i7-

REFERENCES

1. Balzer, R. M., The ISPL Machine: Prinoiplee of Opera-
tion, The Rand Corporation, R-562-ARPA, August 1971.

2. , The ISPL Language Specifications, The Rand Cor-
poration, R-563-ARPA, August 1971.

3. Ellis, T. 0., J. F. Heafner, and W. L. Sibley, The
GRAIL Logical Input/Output Proceeeee, The Rand Cor-
poration, RM-6257-ARPA, May 1970.

■ ■ -■ . . ■;

