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RESPONSE  OF  STRUCTURAL SYSTEMS 

TO  NONSTATIONARY RANDOM  EXCITATION* 

ABSTRACT 

In this work,  the response of lumped parameter,   second order systems to 
nonstationary random excitations is examined.    Included is a brief intro- 
duction to the probabilistic theory of structural dynamics and various 
basic concepts required for subsequent work. 

More specifically,  the second order central moment (covariance) response 
of structural systems to random excitations is studied.    In the course of 
the analysis,  an approximate method for the calculation of system re- 
sponse to a class of nonstationary excitation processes is constructed. 
This class of excitations we have called "slowly varying" nonstationary 
random processes.    By this is meant that the nonstationary variation of 
the correlation functions of the process is small compared with the time 
variation of the impulse response functions of the system considered. 

It is shown how this approximation technique may be applied to the 
estimation of inertial loads in the structural members of a payload during 
the launch phase of flight.    Employing previous rocket engine test data, 
the excitations to the payload are idealized as a "slowly varying" non- 
stationary random excitation.    An approximation procedure is then de- 
veloped for the calculation of the second-order central moments of the 
payload response. 
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CHAPTER I 

INTRODUCTION 

1.1  General Nature of the Problem 

This work is concerned with the estimation of inertial 

loads in a payload structure during the launch phase of flight. 

It has been motivated by research on this problem with regard 

to the Lincoln Experimental Satellite (LES) series for which 

the Titan III launch vehicles have been used.  Thus, it is 

toward the LES program that this thesis is generally directed. 

For LES-5, structural qualification was based on a dynamic 

analysis of the payload system which consisted of the dispenser 

truss and all satellites.  To accomplish this analysis the 

satellite contractors supplied Martin-Marietta Corporation with 

the relevant characteristics of the satellites.  Martin- 

Marietta then determined the system response to excitations 

obtained from 3 of 27 booster engine test firings.  The analysis 

was carried out only for the core engine cut-off phase of 

flight since it is during this period (approximately 2 seconds) 

that the payload is subjected to the most severe dynamic load- 

ing . 

It was subsequently assumed that: 

A.   The dynamic excitations are such that the maximum 

response of the payload system    occurs in the low frequency 



range (less than 50 Hertz). 

B.   The six components of rigid body acceleration of the 

booster/payload interface are virtually independent of the pay- 

load impedance for payloads in a given weight category.* '  Thus, 

in estimating the low frequency response of a satellite, the 

acceleration time histories at the booster/payload interface 

were assumed to be the basic dynamic inputs.  We shall adhere 

to this assumption in the following. 

In this work, we shall be dealing with the low frequency 

response of a payload to excitations obtained from the accelera- 

tion time histories mentioned above. 

1.2  Interface Accelerations Considered as Random Processes 

Typical plots of the booster/interface accelerations are 

shown on page  12.  The non-reproducibility of these data are 

to be noted.  Indeed, from the structural designers point of 

view, these time histories can only be described as random. 

The apparently random nature of the data suggest the following 

approach to the estimation of structural member loads: 

A. The 27 time histories of the six acceleration com- 

ponents are considered to be ensemble members of a nonstationary 

random process. 

B. Statistical parameters of the stochastic response of 

the payload are to be calculated with the interface accelera- 

tions considered as the stochastic inputs. 
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The most important response parameters to be obtained are 

the means and mean squares of the loads on the payload structural 

members.  For if  x  is one of the stresses in some member of 
2 

the structure, p,  the expectation value of x, and Y  the expecta- 
x x 

2 (2) 
tion of x  then in the customary notation   : 

P{|x-u | > ka} < i- (1.1) 
X k^ 

2    2    2 
n     = Y^ -  u (1.2) 
x    X    x 

2 
where  P[A] is the probability of event A, and a  is called the 

x 

variance or second central moment of x.  We thus see that a 

knowledge of U  and Y  allows us to determine an upper bound 
x     x 

to the probability that the member stresses will exceed the 

values for which failure occurs.  Since the evaluation of the 

means is relatively simple, we shall be mainly concerned with 

the determination of the variance of the member loads.  To 

obtain these it is necessary to determine the complete set of 
* 

second-order central moments of the payload displacements. 

In summary, the approach to be presented involves the 

construction of a "stochastic equivalent" to the interface 

accelerations and the subsequent evaluation of the second 

*    See reference (2), p. 24 or Chapter 2 for definition of 
second central moments.  See also Section 2.8 for a justifica- 
tion of this assertion. 



moment response of a satellite.  In general, the object of 

this thesis is the development of a plan of analysis whereby 

the approach may be conveniently applied.  The two major aspects 

of the problem are discussed in more detail below. 

1.3  Statistics of the Interface Accelerations 

In the analysis, three basic assumptions have been made 

concerning the general nature of the interface accelerations. 

A. The interface accelerations are the response of a 

lumped parameter, second order, linear system (i.e. the Titan 

III launch vehicles) to a nonstationary vector shot noise 

excitation. 

B. The intensity functions of the components of the 

vector shot noise are the same to within multiplicative con- 

stants . 

C. The excitations to different normal modes of the booster 

are statistically uncorrelated. 

In chapter VT these assumptions are discussed.  Furthermore 

it is shown that under the above assumptions, the generalized 

spectral density matrix of the six booster-payload interface 

accelerations can be determined from the general properties of 

the time histories and appropriate averages of the Fourier 

transforms of these time histories. 

*    For definitions of statistical terms, see references (3), 

(2) or (4). 



1.4  Evaluation of Second Moment Response 

The techniques for the calculation of the response of a 

system to both stationary and non-stationary random excitation 

are well established.  However, the evaluation of response 

to nonstationary processes is considerably more taxing than in 

the stationary case,,  Indeed, for the simplest systems, the 

analytic expression for the second moment response may be quite 

unwieldy. 

From Section 1.3, the accelerations are assumed to repre- 

sent the output of a nonstationary random vector process. 

Furthermore, they are the inputs to a complicated structural 

system.  Therefore, the need for reliable approximation pro- 

cedures is evident. 

One such procedure, developed by Bucciarelli and Kuo, 

deals with excitations of the form 

x(t) = g(t)n(t) (1.3) 

where n(t) is a stationary random process and g(t) is a deter- 

ministic function of time.  When g(t) satisfies certain restric- 

(8) 
tions, Reimann's lemma   may be used to eliminate the high 

frequency terms in the expression for the second moment response, 

This analysis has been applied successfully to single degree 

(9) of freedom systems. 

The present work is largely concerned with the improvement 

and generalization of the approach mentioned above.  A procedure 



is developed for the approximate calculation of the second 

moment response of a payload system to excitations of the form 

presented in Section 1.3.  An analysis of the statistical 

properties of the interface accelerations is also included but 

no attempt will be made at a detailed calculation of the confi- 

dence intervals of the estimated statistical parameters. 

1.5  Summary of Contents 

In Chapter II we review the aspects of the probabilistic 

theory of structural dynamics relevant to this study.  Since 

the proposed approximation technique involves extensive use of 

the Fourier integral, a discussion of its elementary properties 

is included in Chapter III.  At the conclusion of Chapter III 

we present two related theorems which form the basis of the 

approximation procedure.  The general response formulation of 

Chapter IV leads directly to the application of the theorems 

developed in Chapter III to the approximate evaluation of the 

second moment response in Chapter V.  Finally, in Chapter VI 

we discuss the statistical analysis of the interface accelera- 

tions and outline a general procedure for the calculation of 

the variances of the member loads in an actual payload structure 



CHAPTER II 

PROBABILISTIC THEORY OF STRUCTURAL DYNAMICS 

2.1 Introduction 

Here we review certain aspects of the theory of structural 

dynamics and of the theory of random processes needed to formu- 

late the response of a structural system to random excitations. 

In Sections 2.2, 2.3 and 2.4 are presented the deterministic 

equations of response.  Sections 2.5 through 2.8 include a 

discussion of certain results in random theory.  The chapter 

concludes with the formulation of the second moment displace- 

ment response of a structure to random excitations and a con- 

sideration of two special classes of random processes. 

2.2 The Idealization of Elastic Structures 

a. The system has a finite number, N, of degrees of 

freedom.  Thus the state of the system can be specified by a 

vector, [x}, whose components are the generalized coordinates 

• 
of the system. 

b. The inertial properties can be represented by a 

symmetric matrix of constants,  [M] , called the mass matrix. 
  (NXN) 

*    For an explanation of the matrix notation see reference 
(10). 



The total kinetic energy of the system during its motion is 

-  *  [M] (*} . 
2 

c. Each component of the structure is assumed to be 

linearly elastic.  Hence, the total potential energy due to 

elastic deformations is — Lxj [Kl (X) where [K] is a symmetric 
2 

matrix of constants, called the stiffness matrix. 

d. Because only small motions are considered, the 

potential energy due to the action of externally applied forces 

(11) 
can be written as - LFj [x] .      ihe components of [F] are the 

components of the generalized forces corresponding to each 

generalized coordinate. 

e. Forces which retard the motion (damping forces) are 

assumed to be linearly related to the generalized velocities. 

Hence the column vector of damping forces equals -[c3 {x} where 

[Cj is a symmetric matrix of constants. 

Under the above assumptions, the equations of motion in 

(12) 
terms of the generalized coordinates are 

[Mj i'x] + [C] [x] + [K] [X]   = [F] (2.1) 

For a linear elastic structure, we have 

IS] = [J] [x] (2.2) 

where the elements of [s] are the components of the internal 

forces within each member of the structure. [jj is a matrix of 

constants depending on the elastic properties of the structural 

members. 



Once equations (2.1) have been written for a given 

structure, they may be greatly simplified according to the 

specific nature of the problem.  We present the following 

example which is of utmost importance to the present study. 

Example 2._1  Consider the case in which the structural system is 

not subjected to external forces but L(6 < L < N) of its 

generalized coordinates are prescribed functions of time. 

We can partition the matrices of Eq. (2.1) to obtain 

M   | M 
r r_  _ rf 

"frTV f J 

frrj S:_f 
c  !~c 

I fr I ffJ 

KrrJ  \f 
K  [~K 

L fr !  ff 

(2.3) 

where {.'. ] are those generalized displacements which are given 
R 

functions of time, and [F } are the reaction forces at the 
R 

locations  where  displacements   are  prescribed. 

In   expanded   form,    Eq.    (2.3)   can be  written 

[Mrr'   <V   +  rMrf](lf]   +   tCrr^R>   +  [Crf
]{V 

+   tKrr]<" J   +   [K   #HAJ   =   (F   } rr        R rf        f r 
(2.4) 

rMfr];'V + '"ff^f> + tcfc!UR) + [cff]Uf] 

+  [Kfr^V   *  [Kff](Af3   =   (0} (2.5) 

10 



Now,   we   define   the   relative   displacement  vector,    (u); 

Uf]   =   ~tKffr   tKfr3UR}   +   tu} (2.6) 

Substitution  of  Eq.    (2.6)   into  Eq.    (2.5)   yields 

[Mff](u]   +   [Cff]iu]   +   [Kff][u]   =   [P][AR]   +   [R]{AR] (2.7) 

where [p]   =   [MJ[K   ,]"   £K     3  -   [M_  ] (2.8) 
ff        ff fr fr 

r.Rl   =   [C     1[K     I'^K     ]   -   [C     1 (2.9) 
ff       ff fr fr 

Substitution  of  Eq.    (2.6)   into  Eq.   (2.4)   gives  expressions 

for   the   reaction   forces   in   terms  of   {u},    [L   }   and  their  deriva- 
R 

tives.  Thus, in this case, (2.7) is the matrix equation of 

motion. 

In the case for which the damping forces are small, the 

(12) 
last term on the right-hand side of Eq. (2.7) may be neglected. 

Hence, for small damping, the approximate equations of motion 

are 

[M  ]  [u) + [Cffj(u] + [Kff] {u} = [PlUR3 (2.10) 

(N-L)x(N-L) 

where [p] is again given by Eq. (2.8). 

2.3  Normal Equations of Motion 

For the moment, we shall consider Eq. (2.1) without the 

damping term and with the applied forces set equal to zero. 

[M](x] + TKllx] = (0} (2.11) 

11 



That is, we shall consider the free vibration of an undamped 

structure. 

Since (2.11) is linear with constant coefficients, we may 

try a solution of the form 

[x] = {a} exp(ixt) (2.12) 

where [a] is a constant vector. 

Substitution of (2.12) into (2.11) yields 

-[Mix {a} + [K]{a] = {0} (2.13) 

after the complex exponential factor has been divided out. 

The condition to be satisfied for (2.13) to yield a non-trivial 

solution for the components of {a} is 

|[K] - x [M]| = 0 (2.14) 

2 
This is an algebraic equation of order N in x , called 

(12) 
the characteristic equation.      Let us denote the solutions 

2 2 
by x  (i = 1,2,...,N).  To each separate root of (2.14), x , 

i i 

there corresponds a solution to (2.13) which we denote by (a }. 
i 

Now, let us define the matrix,  Ltp J , whose i   column is 
(NXN) 

composed of the elements of (a.} and make the transformation 

[x] = [cp]{?} (2.15) 

It can be shown that the application of this transformation 

to Eq. (2.13) with the term [F] produces uncoupled equations 

, , (11,12) 
of motion in terms of the components of [?j: 

rm^Kf}  + Mc^Us] = [o] 
(equation   continued) 

12 



T 
where C~"m-J   =   [<p]   [M][cp] 

T 2 (2-16) 
M<<!  =   [cp]   [K][cp]  =   [-^]r^ 

i 
{Q} = [cp]T{F] 

To extend (2.16) to the case wherein damping is present, 

we assume that [c] is proportional to either [K] or [Mj. 

Under this assumption the transformation (2.15) also diagonalizes 

[cl.  It can then be shown that the full equations of motion 

(12) 
are 

it)  + 2r-?.x.^K5]   + !^2-JU}  =  C^m-j"  {Q] 
1
T

1 x (2.17) 
where     [~"m~3   =   [cp]   [M][cp] 

[Q]   =   [<plT[F],   2C-5.U5..J   =   I^m^l~1[cp]T[C][(p] 
X X 

The x  are called the natural frequencies of the structural 
i 

system each of which is associated with a particular mode of 

(12) 
free vibration.      The ~_     are called the damping ratxos. 

"i 

Eq. (2.17) are the normal equations of motion and the §. are 

(11) 
the normal coordinates. 

We shall assume hereafter that 5 (i=l,2,...,N) « 1.0 since 

this is true for most engineering structures and particularly 

for payload structures.  When this holds, the free motion of 

the system takes the form of lightly damped oscillations. 

Finally, from (2.15), it can be seen that the member 

stresses, \ s] are related to the normal coordinates by 

[S] = [J][CPK?1 (2-18) 

13 



Example 2.2;    Derive the normal equations corresponding to 

Example 2.1. 

We write the equations of undamped, free vibration: 

[M  ]{u3 + [Kff] {u} = 0 
ff        ff 

From (2.13) and (2.14) the natural frequencies and the matrix 

[p] are obtained from 

([Kffj - x2[Mff]){a} = 0 

and  |[K  ] - w2[Mff]| = 0 

Assuming that [c  ] is proportional to [Mff] or [K  1 we 

can write 

{"}   +   2[-Z.±.^\{r.}   +  {Tw2r^{r\}   =   r^f   [cp]T[P]{A   } 
iii r 

where [u]   =  [cp]{^} (2.19) 

-1        T 
2^?.U).-J   =   r-m-J      [cp]   [C_,][cp] 

11 f f 

[P]   =   [M^llK^l^LK^]   -   [Mfr] 

Since   equations   (2.17)   and   (2.19)   will   form  the  basis   of 

much   later  work,   we   consider   their   solution   in   the   next   section. 

2.4     Response   Formulation   to   Deterministic   Forces 

Consider   the  k        normal   equation   from   (2.17); 

a (t) 
2 k 

~     +   2!   x   "      +  <x   "     =    (2.20) 
k k k"k k"k m 

k 

and suppose that Q (t) is a unit delta function; 
k 

Q (t) = 6(t-T) (2.21) 
k 

14 



We shall denote the resulting ? (t) by h (t,T).  h (t,T) 
k       k        k 

th      (12) 
is the impulse response function of the k  mode. 

Ihe solution to Eq. (2.20) is then easily obtained: 
(2) 

h  (t-T)  = 
k 

r -C    Ui  (t-T) 
—  e sin uu  (t-T)    t-T > 0 
\d\ kd 

t-T < 0 

(2.22) 

where x        = uu 
kd   k 

7i-c2 . 
k 

Now, any arbitrary Q (t) may be constructed from a series 
k 

of impulses: 

Q (t) =      Q (T)6(t-T)dT (2.23) 

assuming that Q (t) = 0 for t < 0. 
k 

Hence, when the structure starts its motion from rest at 

t = 0, the response of the k   normal displacement is 

,t 
(t)  = j   h  (t-TjQ^TjdT 

0 * 
(2.24) 

with h (t-') given by Eq. (2.22). 
k 

Since this equation holds for all the normal coordinates 

of the system, it represents a complete response formulation 

to deterministic excitations which commence at t=0. 

Example 2.3:   Obtain the response of the system considered in 

Example 2.1, assuming that [A } = 0 for t < 0. 
r 

We can write (2.24) in the matrix form: 
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0 K 

Now,    {^}   is  replaced  by   [r]   and   [Q(T)}   is   replaced  by 

-1        T 
|>m^l      [cp]   [P](A    (T)}.     Hence,   we  have 

r 

t 
{r\}   =  J     t^h   (t-T)^3[T]£Z    (T)}dT (2.25) 

where 
0 k 

[T]   =   [^m^f^Q^rM     1[K   .]"   [K_   ]   -   [M     ]) (2.26) 
fr       ft tr fr 

and  the  h   (t--r)    (k=l,2 N-L)   are  given by Eq.    (2.22). 
k 

In the next several sections we consider the response of 

a structure to random excitations. 

2.5  Brief Discussion of Stochastic Processes 

Probability theory will not be discussed here but we 

shall give a heuristic description of a random process. 

Suppose we have a family of random variables, X.(t.)_ 

(i=l,2,...,n) which are distinguished by the value of some 

parameter, t, within a range of values, (t ,t ).  That is, 
0  n 

there is a one-to-one correspondence between each random 

variable, X., and a distinct value of a parameter t, t=t .  If 
1 i 

we conduct successive experiments whose outcomes correspond 

to the vector {X ,X ,X ,...,X } and plot each of the components 
1  2  3      n 

of the vector against the corresponding values of t, we obtain 

for each experiment a function defined only at the points t=t 
i 

(i=l,...,n).  Figure 2 shows the outcomes of two such experiments. 
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 1 1 1 1 3^ 
t.      ta. tt     t+    t,     t*   t 

J_l 
t,      u     t3 <* t 

Fig. 2 

When the number, n, of random 

variables, and of correspond- 

ing values of the parameter, 

t, increases without limit 

within the t interval under 

consideration, we have a con- 

tinuously parametered stochastic 

process in the parameter t, 

(4) 
which we denote by X(t). 

For our work, the parameter t 

will henceforth be associated 

with time. 

To completely describe a random process, we must specify 

something like 

f (x (t ). x (t ), ..., x (t )) 
x  1  1    2  2        n  n 

where f (...) is the n   order joint probability density of 
x *(2) 

the random variables X,(t,),..., X (t ).      Since this is 
11       n  n 

usually impractical, we must be content with more limited infor- 

mation such as a determination of 

f (x(t)),  and f (x(t ), x(t ))  for all t, t , and t . 
x x    1      2 12 

or of other first and second order statistics. 

*   We denote a random variable by a capital letter whereas 
we denote the specific values it may assume by the small letter. 
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In the next sections, the ensemble averaging operation 

is defined, and its elementary properties are considered. 

2.6  The Ensemble Average 

The ensemble average of a function of several random 

variables is defined as the integral of the function multiplied 

by the joint probability density of the random variables taken 

over the entire state space.  For example, if G(X ,X ,...X ) 
12    n 

is a (Borel) function of the  n  random variables X , X , and 

X then its ensemble average, denoted by E[G(X,,X„,...X )] is 
n 1  2    n 

(Ref. 2, p. 23, Eq. (2-58)) 

CO 00 CD 

E[G] = ...    G(x ,x....x )F(x ,x ,...x )dx  dx 
x L» x L.  x i-   1  

2     n    1  2     n   1 
1     2     n 

(2.27) 

provided that the integral remains finite if G is replaced by 

|G|.  Here, f(x,,x_,„..,x ) is the joint probability density 

function of the random variables X , X ,...,X . 
12     n 

Using the ensemble averaging operation, we may define 

certain useful statistics of random processes.  It is to be 

noted that for a specified value of t, the stochastic process 

X(t) is a random variable and for a different value of t the 

process is, in general, a different random variable.  Thus, for 

the stochastic process, X(t), we may define the following 

statistical averages  ' ' 



a. The mean of X(t) is E{x(t)} and is usually denoted 

by u (t) 
x 

b. The mean square of X is E[X (t)j. 
2,    2 

c. The variance of X(t) is E{X(t) - u (t)) } = a 
  x 

d. For n processes, X (t) ... X (t), the average 
1        n 

K   = E[(X.(t) - a  (t))(X.(t) - u .(t))] 
ID       i       xi      3       X] 

is the second order central moment of X.(t) and X (t).  When 
1        j 

4 . (t) - yi   . (t) = 0 it is simply the second order moment of 
XX X J 

X. (t) and X.(t).  In any case, we shall most frequently use 

the latter designation. 

e. "The autocorrelation of X(t) is 

R (t_.tj = E[X(t )X(t )] 
x  1  2 12 

f. Hhe  autocovariance of X(t) is 

Cx(tl't2) " E[(X(V " Ux(tl))(X(t2) " Ux(t2))] 

= R (t.,t ) - u (t )u (t ) 
x  1  2    x  1  x  2 

g. The cross-correlation between two random processes 

X(t) and Y(t) is 

R  (t ,t ) = E{X(t )Y(t )} 
xy 1  2        12 

h.   The cross-covariance between X(t) and Y(t) is defined 

as 

C  (t.,tj = E[(X(t ) - u (t ))(Y(t ) - u (t ))] 
xy ±2 1     xl      2     y2 

= R  (t,t) - u (t )U (t ) 
xy  12     x  i  2  2 

A most important result associated with definitions a. and 

(2,4) 
c. is the Tchebycheff inequality: 

L9 



P(|x(t) - n (t)| >ka (t)} <-| (2.28) 
x        x      k^ 

where P{A] is the probability of event A.  The existence of 

this inequality makes the evaluation of the mean and variance 

of a random process of the utmost importance. 

One more important ensemble average will now be intro- 

*(13) 
duced.  If we take the Fourier transform     of each of the 

ensemble members of a stochastic process X(t), we obtain under 

suitable conditions another random process, X(x), defined in 

the frequency domain.  The generalized spectral density of 

** 
X(t) can be defined as 

as (u^.x ) = E[X(X )x*(ui )] 

- E[X(X1)]E[X*(UJ2)] (2.29) 

This quantity is related to the autocovariance function 

by the formulae 
GO 

ffi   (x   ,x   )   =        "  C     (t   ,t   )exp(-i(x  t   -x_t   ))dt  dt (2.30) 
x      1      2 °   •;      xx     12 1122 12 

—.00 

C«e(tl't2) = ~^2   IJ *x(x1,x2)exp(i(x1ti-x2t2))dxidx2  (2.31) 

Similarly, for two random processes, X(t) and Y(t), we 

have the generalized cross-spectral density: 

*    See also Chapter III for the definition. 

**   For a full discussion of this material see Ref. (2), 
section 3.8. 
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iLxy(uul'JJ2) = E[X(UU1)Y*(LU2)] - ECxdi^) ]E[ Y* (u^) ]      (2.32) 

which is related to the cross-covariance function by 

CD 

ixy(xl'tL2) = J" I Cxy(ti,t2)exp(-i(^iti-x2t2))dtidt2  (2.33) 

Cxy(tl't2) = ~^~2   U  «xy(^1^2)exp(i(xiti-x2t2))dxidx2 (2.34) 

2.7  Theorems on Linear, Time Invariant Systems 

Now we shall consider two theorems concerning linear 

time invariant systems, excited by stochastic time functions. 

Let the input process, X(t), be related to the response of the 

system, Y(t) by 

Y(t) = L[X(t)] (2.35) 

where L is an operator in t which may be algebraic, differential, 

integral, or any combination of these.  The system is linear 

when 

L[a X (t) + a2X2(t)] = a^Lx^t)] + a L[X2(t)]       (2.36) 

where X, (t) and Y_(t) are two different input processes and 

a  and a  are constants.  The system is time-invariant when 
12 

Y(t + e) = L[X(t+e)3 (2,37) 

That is, when the input is translated in time by e, the output 

is translated in the same way. 

For a system satisfying Eqs. (2.36) and (2.37) the follow- 

(4) 
ing result, within certain restrictions,    holds true: 
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E[Y(t)] = L[E[X(t)]] (2.38) 

i.e., the operators E[ ] and L[ ] commute. 

As a result of (2.38): 

Cw(t.,t.] = L  [C  (t,,t )] (2.39) 
xy 1 ^    t2 xx J- 2 

C  (t ,t ) = L  fC  (t .t )] (2.40) 
yy 1 2    t1 xy 1 2 

and so,   C  (t.,t_) - L. fC  (t ,t )] (2.41) 
yy 1 2    tx xx 1 2 

where L  and L  are the operator L expressed in terms of 
fcl     ta 

t  and t  respectively. 
12 

Thus, from (2.41) the autocovariance of the output can 

be expressed in terms of the autocovariance of the input. 

2.8  Autocovariance Response of the Normal Coordinates 

The form of Equation (2.24) shows that the structural 

system, as we have idealized it, satisfies (2.36) and (2.37) 

and is therefore a linear, time invariant system.  If O (t) 

is a stochastic process then it follows that 5 (t) is stochastic, 
k 

The response equations for r (t ) and \    (t-.) are 
k  1       j  2 

W = J^1 VW WdTi (2-42) 

^2 ;.(t ) =     h.(t -T )Q.(T )dr (2.43) 
D  2    J

0   3  2  2  D  2   2 

Taking ensemble averages of both sides of the above 

equations we obtain: 
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t, 
uv^,)   =   J        Mfc   -TJEtQ   (T,)ldT (2.44) 

k     1 ^kj^l kl 1 

u.(t   )   =   f       h.(t   -T   )E[Q.(T   )]dT (2.45) 
D      2 o        3      2     2 D      2 2 

Multiplying   "    (t   )   by   5   (t   )   and  taking  the  ensemble 
"k     1 "j     2 

average   and   using   (2.38),    (2.42)   and   (2.43): 

•tvvw1 - vw - J0 J0 vw 
•h.(t — )E[Q (' )Q.(T lldTd-      (2.46) 

j  2  2    k  1  ]  2    12 

Multiplying (j (t ) by u (t ) and employing (2.44) and 
k  1      j  2 

(2.45): 

•V: 
'kx l'"j' 2'   -0 '0  k' 1  l'~j* 2  2' 
a, (t )u.(t J = f X{   2  h (t-T, )h.(t -T ) 

• E[Q (T.)]E[Q (T )]dr dT (2.47) 

Now, if we subtract Eq. (2.47) from (2.46) and employ 

definitions g. and h. of section 2.6 we see that 

tl  t 

C   (t ,t ) =     J 2h  (t -   )h.(t-T  )C    (T.T JdTdT, 
kj  1  2    "0

J
0   kllD22Qkjl2   12 

(2.48) 

th     th 
where C, . (t ,t ) is the cross covariance of the k  and j 

normal coordinates and C   (' ," ) is the cross-covariance of 
Qki  1  2 

th     th 
the k   and j   components of the excitation. 

Furthermore from definition d. section 2.6 it is apparent 

that 

23 



1     2 

Therefore,    from  Eq.    (2.48) : 

V' vl Vt"Ti)Vt-V\j
(vT2)dTidT2     <2-50> 

Now,   from   (2.18)   and   (2.38): 

E[{s}] = CJ3[«P3E[£5)] 

and       E[{S}LSJ] = [j][^]E[ {§} |_?J ][cp]T[ j]T 

so that from definition d., section 2.6: 

[K   ] = [J][cp][tc .(t)Kcp]T[j]T (2.51) 
skj kD 

where [K   1 is the matrix of second order moments of the com- 

ponents of the stress vector.  The diagonal terms of [K   (t)] 

are the variances of the member loads.  These can be determined, 

according to Eq. (2.51), only when [K  (t)] is first known. 

Thus, in later sections we shall employ Eq. (2.50) repeatedly. 

In the final section of this chapter two important classes 

of stochastic processes which will be useful in later discussions, 

are introduced. 

2 09  Two Special Classes of Stochastic Input Processes 

Here we consider weakly stationary and shot noise processes. 

A stochastic process is said to be weakly stationary when 

its mean is a constant and its autocorrelation can be expressed 

as a function of |t -t_|, i.e., X(t) is weakly stationary when 

2-1 



U (t) = constant (2.52) 

and       R (t ,t ) = R (t -t ) (2.53) 
x  1  2    x  2  1 

where R (t -t,) is an even function, 
x  2  1 

It can be shown that if the input to a linear time invariant 

(3,4) 
system is weakly stationary, so is the response of the system. 

Furthermore, it can be shown that the generalized spectral 

(4) 
density of a stationary process is of the form 

ffi (OJ ,u ) = S (IL< )6(uu -ui )2n (2.54) 
x  1  2    x  1    2  1 

oo -IX T 
and    s   {%)   =   \     R (T)e   1     dT (2.55) 

X   1 _oo   x 

where  T = |t_-t | 

Finally, for a stationary excitation, the second order 

moment between the k   and j   normal displacements is given 

v, (3) 
by 

<    . - 7~  |  H (x)H*(x)S (:u)dx (2.56) 

where H (x) and H (x) are the Fourier transforms of h (t) and 
k        j k 

h (t) respectively and are called the complex frequency response 

c    ,      ,th     . th 
functions of the k   and j        modes. 

Finally, we say that a random process, S(t), is a short 

4= 4-- •       "K  (2) noise when its mean and covariance functions are given by 

u (t) = 0 (2.57) 
s 

CS8(tl't2) = KV^W (2-58) 
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where I(t) is called the intensity function of the shot noise. 

When each of the components of a vector {F) is a shot 

r i (2) noise process, we call [Fj a vector shot noise.     In this 

case: 

[C   (t ,t )] = [I. .(t )]6(t -t ) (2.59) 
s    1  2       ID  1     2  1 

This concludes the discussion of the probabilistic theory 

of structural dynamics.  It is hoped that this brief intro- 

duction will suffice in providing the foundations of our later 

work. 
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CHAPTER III 

ELEMENTARY DISCUSSION OF THE FOURIER INTEGRAL 

3.1 Introduction 

In this chapter, we define the Fourier integral and 

describe its elementary properties.  The applications of the 

Fourier integral to analysis of system response to both 

deterministic and random excitations is also developed.  The 

chapter concludes with the derivation of an approximate inver- 

sion formula which is shown to be closely related to Reimann's 

lemma. 

3.2 Definitions and Simple Theorems 

We shall define the Fourier integral, F(x), of a function 

of time, f(t), as 
00 

F(x) =  J  f(t) e"1X dt (3.1) 
— CD 

where the parameter Ui is called the frequency and is always 

a real quantity,,  Note that from (3.1), F(x) is, in general, a 

complex quantity.  F(x) is also called the Fourier transform 

of f(t).  Henceforth, we shall adhere to this designation. 

It is known that f(t) may be represented in terms of its 

Fourier transform by the following equation, known as the 

inversion formula; 

*    The material in this section is taken from Ref. (13). 
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f(t) = -A  f  F(ID) e1UJ dtu (3.2) 
2TT  lm 

The above representation is valid only at continuity points 

of f(t).  However, the inversion formula (3.2) also holds at 

discontinuity points if it is assumed that 

f(a) = i (f(a+) + f(a")) (3.3) 
2 

where t=a is a point of discontinuity.  f(a ) and f(a ) denote 

the value of the function as t approaches a from the right 

and from the left respectively. 

Sufficient conditions for the validity of (3.2) are given 

in Ref. (13), p.9.  The functions we shall deal with will be 

assumed to satisfy these conditions. 

When a function of time, f(t), and a function, F(JL), are 

related as in Eqs. (3.1) and (3.2), we shall indicate the 

relationship by 

f(t) ~ F(x) 

We shall now consider the following simple theorems: 

Theorem 1: Linearity 

It is apparent from the definitions that if 

fl(t) *~* F1U) and f2(t) *" F2(X) 

then 

(aJLfi(t) + a2f2(t))e"
1"Ltdt - a^U) + a^fuc) 
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or, a^ilt) + a.f.(t> *+   a F (x) +a F (x)     (3.4) 
11       22        11       22 

The above can be extended to finite sums 

a f (t) + ... + a f (t) •-» a.F, (x) + ... + a F (x) 
11 nn       11 nn 

but the extension to infinite sums is not always valid. 

"Thus, as we see from (3.4), the Fourier integral operator 

is linear. 

Theorem 2: Time Shifting 

Let us replace t in Eq. (3.2) by t-t  where t  is a 
0       o 

prescribed (real) constant.  Then d (t-t ) = dt and 

m ix(t-t ) co     -ixt   ±mt 

f(t-t ) = —  I F(x)e     ° dx = —  r [F(x)e    °]e   duu 
0    2r     i. 2TT  1. 

or 
-ixt 

f(t-t ) «-» F(x)e (3.5) 
0 

where F(x) is the transform of f(t). 

Theorem 3: Time Differentiation 

Differentiating both sides of Eq. (3.2) with respect to 

time, we obtain: 

df = _1     rF(x)ix]e   dx 
dt   2- ±a> 

or,       df (t)  -» ix F(x) 
dt 

Doing this n times, we have 

2l* 



dn f(t) n 

- =^i- •-• (iw)  F(UJ) (3.6) 
dtn 

Theorem 4: Symmetry 

If we rewrite (3.2) in the form 

2-   f(-t) =  J F(jG)e"1UJtdij 
— 00 

and interchange t and x we obtain a statement of the sym- 

metrical character of Eqs. (3„1) and (3.2): 

F(t) •-» 2n f(-x) (3.7) 

Thus, theorems obtained in the time domain may be easily 

extended to the frequency domain. 

We shall now state without proof, two theorems funda- 

mental to the application of the Fourier transform to the 

analysis of linear, time invariant systems. 

Theorem 5; Time Convolution 

Let g(t) and f(t) be two time functions for which the 

OD 

inversion formula is valid.  The integral  j  f(t-?)g(T)dT = 
OD -00 

f (~)g (t-T)dt is the convolution of f(t) and g(t) in the time 
— 00 

domain.     We   shall   use   the   notation 

CO 

;     f(t-~)g(<r)dT   =   f(t)*g(t) (3.8) 
— 00 

The   Fourier  transform  of   f(t)*g(t)   is  given by 

f(t)*g(t)   -»   F(x)G(x) (3.9) 
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where F(x) and G(x) are the Fourier transforms of f(t) and 

g(t) respectively. 

Theorem 6: Frequency Convolution 

From Eqs. (3.7) and (3.9) 

00 

F(t)g(t) *-» ~ J F(x-y)G(y)dy 
2TT
  _. 

or        f(t)g(t) «-» -i F(w)*G(x>) (3.10) 
2TT 

where now, the convolution is taken in the frequency domain. 

For much of our work, we shall need the delta function, 

6(t-t ).  This is not a function in the usual sense, since it 

is not defined by its values for given values of the argument, 

but by the following integral properties 

CO 

; Mt-t )cp(t)dt = cp(t ) (3.11) 
—.CD ^ u 

where cp(t) is an arbitrary function, continuous at the given 

point to.  Similarly: 

» d Mt-t ) n d\(t ) 
"   _°_ cp(t)dt = (-1)   -?- (3.12) 
"~    -.. n ,^n -CD    dt dt 

The Fourier transform of the delta function is readily 

obtained from (3.2) and (3<,11): 

°°  -ixt 
F(x) •    e     ^(t)dt = 1 

or 6 (t) •-» 1 (3.13) 
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Applying   Theorem  2  to   (3„13)   we   see  that 

-iuut 
6(t-tQ)   -•   e ° (3.14) 

From  this   result  and  Eq.    (3.7)   we have 

iu)0t 
e •-»   2^   6 (ui;-ua0) (3.15) 

Since the delta function appears often in later discussions 

we shall make frequent use of the above results. 

In the next section, the Fourier transform is applied to 

the determination of the response of a linear system to deter- 

ministic excitations. 

3.3  System Response to Deterministic Excitations 

Consider the k   normal coordinate of a structural system. 

Its response to a deterministic excitation, Q (t), is given by 

Eq. (2.24) 

„t 
(t) =  .   h  (t-T)Q  (T)dT (3.16) 

Since Q(T ) is zero for T < 0 and h, (t-T) is zero for 

- > t, the limits of integration in (3.16) can be replaced by 

-cr and oc: 

5 (t) = J hk(t-T)Qk(-)dr (3.17) 
— OD 

Taking the Fourier transform of both sides of (3.17) and 

applying Eq. (3.9) gives 
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/—i 
Z,    (w) = HjxjQ^x) (3.18) 

K 

where ~{u),   H (x) and Q (JU) are the transforms of ? , h (t) 
i      k        k k  k 
k 

and Q  respectively.  We can express (3.18) more conveniently 

in matrix notation as follows 

&  (W)   [H ] { O (u») } (3.19) 
k        k    Jc 

For the impulse response function given by (2„22) the 

(2) 
Fourier transform xs 

H (x) = j-i- -2 ^  (3-20> 
*      K  x -x +2iC x, UJ 

k      k k 

Eq. (3.18) shows that once the transform of the excitation 

is obtained, the transform of the response can be readily 

calculated and application of the inversion formula (3.2) gives 

the corresponding time function. 

3.4  Formulation of Response To Random Excitations 

Recall the definition of the generalized spectral density 

of a random process, X(t): 

»x(x1,x2) = E[X(x1)X*(x2)] - E[X(X1)]E[X*(X2)] (3.21) 

This can be immediately extended to a vector process, 

(Xi(t)}; 

:a 



[a..(uu ,w )] = E[{X. (u) )} L**(%)_) 3 
ij  1  2        i  X   w i  2 

- E[{X (ti» )]jE[t.X?(<»J ] (3.22) 

where [a.. (x fx )] is the matrix of generalized spectral densities 

of the components of the vector {X.(t)}. 

[a  (x , x )J is related to the matrix of covariance 
l j  1  2 

(2) 
functions, [C. . (t,,t )] by 

13  1  2 

CD 

[ffi..(x   ,ui   )]   =   fj   [c. . (t   ,t   )]exp(-i(uu  t   -   x  t   ))dt  dt 
13     12 _iiDl2 1122 12 

(3.23) 

[C     (t   ,t   )1   =         r[»..(x   ,x_Bexp(i(x  t   +  x  t   ))dx  dx„ 
ij     1     2 (2n)2     ii    i]     1     2 1122 12 

(3.24) 

With the above definitions and the results of section 

3.3, we can relate the spectral density of [? (t)} to the 
i 

spectral   density  of   {Q   (t)}. 
k 

Replacing  x   in  Eq.    (3.18)   by x   ,   we have 

£C(*   >1   =   l>H(iu   )^3   {Q,  (x.)} (3.25) 
1 K       1 K       X 

k 

Now,   replacing  x by  x   ,   taking  the  transpose  and  then  the 

conjugate  of  Eqt    (3.18),   we have 

2T*(X2) =    LS^   (X2
)J

   
[^Hj^(ll)2)^ (3.26) 

From   (3.19)   and    (3 ,.20),    the  quantitites 

El (A (X   ) } LV*(x   )_,    ]   and   E[ {^ (x   ) ] jE[ | ^* (x   ) .   1   are  given 
k     -1 k     ^ k1 k2 

by 
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E[{HK>H37*<»   >J    ]  =   C*H   (x   )<lE[{Q   (U)   )}   LQ*(uu   )J    3 
i>     J- \r     2 k     1 k     1 *     2 k     * k 

[^H*(x   )<] (3.27) 
k     2 

E[(S'(u)   )}]   E\.LJ?   (w   )J    ] 
k     x k     2 

=   [^H   (ui   )<lE[[Q   (x   )}]E[LQ   (X   )J ]I>H*(UJ   )-J (3.28) 
kl kl k2 k2 

Subtracting   (3.28)   from   (3.27)   and   employing   (3.22),   we 

obtain 

[Ux,,x   )]   =   !>H   (u).)-s3[»_ (U),,»,)]N*(1«   )<1 (3.29) 
.12 kl Q12 k2 

where [fl> (x ,x )j is the matrix of generalized spectral 

densities of the vector process (Q (t)}. 

It can be seen that the important result (3.29) is the 

counterpart of Eq. (2.48) in the frequency domain.  When 

[• (x ,ui )1 is known, [ffi (x ,x )* may be readily obtained and 
Q  1  2 ^12 

the correlation matrix of the response calculated by a double 

application of the inversion integral, Eq. (3.2) 

3.5  Evaluation of the Inverse Transform 

It is clear from the preceeding sections that efficient 

application of the Fourier transform methods to both deter- 

ministic and random response of a system depends upon the 

application of the inversion formula, Eq. (3.2).  Therefore, 

we shall consider the calculation of the integral 

-~ F(x)e ''   dx when F(x) is a given function of x. 
— 00 
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The integral may be conveniently calculated if we allow 

x  to assume values in the complex plane.  That is, we replace 

x by the complex number z = x + iy and consider the integral 

1 f     izt 
I = — 6 F(z)e  dz 

2TT  C 

(3.30) 

where  c  is a conveniently chosen closed curve in the complex 

plane.  In this discussion we assume that F(z) is analytic 

everywhere in the finite z plane except at certain isolated 

points a , a , ..., a where it has poles of various orders. 
12      n 

When this is true we may use the calculus of residues to 

evaluate the inversion integral.  To do this, however, we must 

introduce the following essential theorems, stated without 

proof. 

Theorem 1: 

Fig. 3(a) 

Suppose that, on a circular arc C 
R 

with radius R and center at the 

origin, F(z) -• 0 uniformly as R -» oc. 

Then: 

„   imz 
lim j  e   F(z)dz = 0   (m>0) (3.31) 
R-o*  CD 

if C  is in the first and/or second quadrants.  This result is 
R 

known as Jordan's lemma. 

See reference (14), p. 556. 
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Theorem 2: 

Now let C  extend over the third 
R 

and/or fourth quadrants.  Then 

n     -imz 
lira  J  e   F(z)dz = 0 (m>0)  (3.32) 

Fig. 3(b) 

With these theorems a procedure for evaluating the 

inversion integral can be outlined.  We shall consider separately 

the two cases t > 0 and t < 0. 

t > 0:    Let the path of integration in Eq. (3.30) be taken 

in the counterclockwise direction 

along the closed curve consisting 

of a line segment on the real axis 

and a circular arc, C , as shown. 
R 

Fig. 4 Eq. (3.30) can then be written 

ixt 1 r 
2-  1R 

F(x)e   dx + —- I  F(z) 
2TT 

J
CD 

izt dz (3.33) 

Taking the limit of I as R -• oc and applying The. 1 with m 

replaced by t, we see that 

Lim I = -i- J F(x)e 
R-m       2T loo 

ixt 
dx (3.34) 

which is the desired inversion integral.  But, by the calculus 

(14) 
of residues: 
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•^ izt 
lim I =  iL Res(F(z)e   ;a ) 
R—        k k 

(3.35) 

izt izt 
where Res(F(z)e   '"ai) ls t^ie residue of F(z)e    at the point 

K 

of singularity a  and the summation is taken over the singu- 

larities in the entire upper half z plane.  Equating the left 

hand sides of Eqs. (3.34) and (3.35) we achieve the final 

result: 

f(t)   -  —   f   F(x)e1Uitduj  =   i    £ Res(F(z)e1Zt;a   ) 
2n  lo k k 

(3.36) 

for t > 0 and for all a  such that Im(a ) > 0 
k k ~ 

t < 0;    Now let the path of integration be as shown at left 

and let t = |t|.  Then 

1  rR 

I = - -i J F(x)e 
2TT _R 

-ixt r» —izt 
dx +    F(z)e   dz 

Fig. 5 

Again, taking the limit as R -» cc, 

and applying Ihe. 2, we have 

Lim I = -      F(x)e    dti) 
2TT  

J 
R-oo _0D 

(3.37) 

Employing the same reasoning as for t > 0 we conclude that 

f(t) = -JL !'°°F(x)e1Xtdx = 
2n - 

l La  Res (F(z )e   ; a ) 
k k 

(3.38) 

for t < 0 and for all a  such that Im(a ) < 0. 
k k 

When   f(0+)^   f(0~)   the  value   of   [f(t)] is 
t=0 
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[f(t)l    = i (f(0+) + f(0 ) (3.39) 
t=0   2 

as has been stated in section 3.2. 

In our applications, F(z) will be a rational function; so 

that all its singularities will be poles.  For this case, the 

residues are most simply calculated.  If F(z) has a pole of 

(14) 
order m at z=a, then 

m-1 
, , . i-zt  v      1      d    . , m      izt, 

Res(F(z)e   ;a) -    ——f { (z-a)  F(z)e   }     (3.40) 
(m-1)!  dz

m x z=a 

izt 
since e    has no singularities in the finite z-plane. 

To illustrate the above methods, we present the following 

example. 

Example 3.1 

Consider a simple oscillator for which the displacement, 

% (t), is given by 

,    2   Oft) 
I +  2:nf + n § = ^-^^ (3.4i) 

m 

where Q(t) is a shot noise with a constant intensity function. 

Calculate the correlation function and mean square of ?(t). 

Let the constant intensity function be I; then from (2.58): 

CQ(tl't2) = Z   f,{t2_tl) (3-42) 

Thus Q is a stationary process.  With this correlation function, 

we have from Eq. (3.23) 
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«Q<V«»2>   =   J  H  Mt2-ti)exp(-i(*iti-*2t2))dtidta 

=   2H   I   6(x   -X   ) (3.43) 
12 

by  Eqs.    (3.11)   and   (3.15). 

•Therefore,   from   (3.29): 

* 
ffi   (x,,x   )   =   2TT   I   6 (x  -x   )H(x   )H   (x   ) (3.44) 

I     1      2 12 1 2 

where H(x) is the frequency response function associated with 

A 
(3.41).      Substituting  the   expression   for  ffi   (x   ,x_)   into   (3.24) 

§     1     2 

we have 
00 

C5(W   =  2^ ii  6<VU,2)H(ai)H*(a,2) 

or exp(i(x t,-x  t   ))dx dx 
112   2 !     2 

CD O 

VW = 2J J |H(X)I •itt,(tl~ 2 *» <3-45) 
— 00 

by (3.11).  Since the combination (t -t ) appears in the 
1  2 

exponent in Eq. (3.45), we see that C_ is a function of 

(t -t ) only.  Hence, the response is weakly stationary and 

we can write: 

I  ~»     ,,2  J-GT 
C?(T) = 2*  j |H(x)|  e   dx (3.46) 

— 00 

where T « t.-t 
1  2 
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We can now apply the methods of this section to the 

evaluation of the integral in (3.46). 

From (3.20), the frequency response function is 

o     2 —1 
i_(Q   -uu     +   2iCriuu)        and   so: 
m 

i     ,    xi2 1/m 
|H(X) | 

2     2  2 2   2   2 
(n -x ) + 4£ n uu 

This can be written as 

|H(.)|2 =  ^  (3.47) 
(x-a ) (x-a2) (x+a^ (x+a2) 

2 
where a  = iCH + n, , a  = iC^ - H  and 0  = Qv'l-C 

1 d    2 d     d 

Substituting (3.47) into (3.46), we obtain 

<= ixT 
. .     I   (•  e   dm  .., ._. 

5   = 2-m2  L ("-•1><«"«2>
(,B4*l)(,,,4*2) (J*4b) 

Let us first consider the case T > 0.  We first replace 

x by z = x + iy and adopt the contour of integration shown in 

Fig. 3(a).  Employing (3.36) and (3.40), in the expression 

for Cp(T), we have 

C-(T) =   e     [cos tl T +   \   -  sin n T] 5      4C«3m2       d  /T^      d 

for T > 0. 

For the case ~.   «" 0, we adopt the contour of Fig. 3(b). 

Setting T = |T| and employing (3.38) and (3.40): 
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I  e_CnT 

C   (T)   =        - • [cos   fi^T   + -;.    *• sin  QJT] ?    4cnv ,3_2     d  j-^ d 

Hence, for all 7,   the correlation function of ?(t) is 

given by 

I e'CnlTl r 
C_(T) =  —— (cos £1 T +  ^    sin £1 IT I       (3.49) 
5       4Cn3m2        d   J  1-C2     d 

Since the mean of §(t) is zero, its mean square is 

2 
*, = E[5 (t)] =  \-^r (3.50) 

3.6  Approximate Inversion of the Fourier Transform 

In most of our considerations, we shall be dealing with 

functions possessing Fourier transforms which are rational 

functions.  Hence, it would appear that the evaluation of the 

inverse Fourier transforms in our applications is perfectly 

simple.  However, when the Fourier transform to be inverted 

has many singularities in the complex plane, the resulting 

expression for the inverse transform may be quite complicated. 

In such cases, it is more desirable to obtain useful approxi- 

mate forms of the transform such that its inverse is alge- 

braically simplified.  Here, we present one such approximation, 

valid for many of the cases to be considered.  Essentially, 

the approximations involve ignoring the presence of singulari- 

ties for which the residues of the transform are small.  We 
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shall consider only transforms which are rational functions 

and which possess no singularities in the lower half z-plane. 

As can be seen from Eq. (3.38), the latter restriction implies 

that the inverse transforms are zero for negative t.  Such 

(13) 
functions are called causual functions of time;     and our 

later discussions will invariably involve them. 

With the above considerations in mind, consider the 

evaluation of the integral 

I(t) = —  j J{xf   e  dx     (t > 0)        (3.51) 
2lT  -« F(tu)G(uj) 

where F(x) and G(x) are polynomials and J(z) is analytic in 

the upper ahlf z plane and possesses no zeros in common with 

F(z) and G(z).  We shall assume the following: 

a. F(z) has zeros of order one at the distinct points 

a , a»...,a  and 
12      n 

|a. - a.1 < 6 (3.52) 

b. G(z) has zeros of order one at the distinct points 

b,, b , . . „ ,b  and 
12      m 

|b. - b.| > e (3.53) 
i    3     *• 

c. Finally: 

Y '_   |a.-b.| < Y    where  v , %  > 0 (3.54) 

With these assumptions, it can be shown  that 

See Appendix I. 
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I(t) = t 
2nG(a)      I.   F(w) 

^^- eiajtdi>]      (1+T,)(1+T  ) (3.55) 

where n-1  m 
m   61     Y     MAX[|J(bk)|] 

0{T   }   =   0   { —r—   } 
1 r,  e»"1Y? MlN[|j(a.)|3 

2       1 k 

(3.56) 

0[TJ   =   O   (   MAX   [-^teJ i]   ] 
2 g(a+A.) 

and  where 

a     =  a  + A .   ,   A .   <   6. (j   =   1, ...,n) 

(3.57) 

(3.58) 

that   is,   a   is   some  point   in  the  vicinity  of the  a.'s. 

If the   Fourier  transform  can be   factored  into  the   form 

of  the   integrand   in   (3.51)   in   such   a  way that   the  quantities 

given by  Eqs.    (3.56)   and   (3.57)   are   small,   then 

Wss   J J('x) iuut, 
e       d'D (3.59) 

-m     G(a)F((i)) 

with a relative error of (T. + T  + T T ). 

A situation for which (3.59) 

is valid occurs when the 

zeros of F(z) are clustered 

within a small region of the 

z plane (Fig. 6) far removed 

from the zeros of G(z) which 

Fig. 6 are themselves widely scat- 

tered.  As an illustration of this situation, we present the 

following example. 
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Example 3.2: 

a)   Consider the integral: 

K(t)   =  -^    J     ffi(x) 
2rr     J_ 

Beiuitdx 
2 2 (a+ix)      +  B 

(3.60) 

where a and 0 are real and positive, and where ffi(x) 

h*y 

•1H 

Fig. 7 

we may write 

•*?' 

F(x) 
are 

K(t) = —     <B(x) 
2"  -a.      (x-ai+B) (x-ai-B) 

and the n poles of   
F(X) 

confined between the real 

axis and a circular arc of 

radius r,/2 with center at the 

origin (as shown in Fig. 7). 

2    2 
Factoring the term (a+ix)  + 0 , 

ixt, 
-B e   dx 

Thus the poles of 2    2 
(a+ix)  + 0 

occur at x = ai + B.  We 

shall assume that |ai + p| » r so that we may apply Eqs. (3.55) 

through (3.57). 

In this case: 

m = 2,  6  = e  = 2B 
2 

v ^ J^W2 , Y - 7a2+ p2 + ^ 
2     2 2 
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MAX [|j(bk)|] 
Furthermore, since J(w) = 1,   =1.  The 

MIN [|j(a )|] 
k 

point z = a may be conveniently chosen as the origin, i.e., 

a = 0.  Hence, from (3.55), (3.56) and (3.57) we have 

K(t) = [T~    ~2~7.     1     ®(ju) elXtdx^ U+T )d+T )     (3.61) 2"     a   +B       -» x 2 

where _ 
n-1        _       2  

1--2 
0   {T  )   =  0   [i    (a   +  0   ) } (3.62) 

1 n     B 

/   2    75"       n   _     /~1      75 
since v' a  +  B       + —    ~     va     +  6       »     and 

~ 2 

o IT }  = o {   ^r    } (3.63) 
^       J a.     + V* 

b)   Now, let ^(t) «—» ffi(x).  Then by the convolution 

theorem and the fact that e-atSIN @t U(t) «-•  ^-z  : 
(a+ix)  + B 

t      -a(t-T) 
K(t) = J  v(t) e       SIN 0(t-T)dT 

0 
Hence, from (3.61): 

p(t-T) e"C  SIN B~ d" =  2
6 2 y(t) (1+T ) (1+T )  (3.64) 

"0 a +B 12 

Using Eqs. (3.62) through (3.64) we can estimate the order 

of magnitude of K(t).  Consider the case n=l.  We have for 

small  a; 
r~2—3" 

o IT] =ol  * a +P    } ~ l 
"1 B 
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O   {T   }   =   0   {^}   «   1 
2 B 

Hence,   if  O   {c;u}   <_ A  ,   then 

O   {   j"     cp(t-7)   e"aT   SIN  p-   dT}   <  O   {—} (3.65) 
0 P 

Now when n > 2 , the order of T  is always « 1 from 
1 

(3.75).  Hence for n > 2: 

0 { C  ^(t-T) e~aT SIN 0T dT} ~ O {A} (3.66) 
0 P 

Since B is large, we can write the general result: 

0 {    ^(t-T) e a  SIN 0r dT] = O {-) (3.67) 
0 P 

In particular, for a = 0; 

O { %t v(t-T) SIN pr dT } = O {£] (3.68) 
0 P 

3.7  Reimann's Lemma 

The result (3.68) in the example of the last section is 

a special case of a result known as Reimann's lemma„  This can 

be stated as follows: 

If cp(r) is of bounded variation in the range a to b, and 

has an upper bound of order one, then 

O { ; ;?(~) cos 0T dT]  = o {-} (3.69) 
^a 0 

,b l 
O f v(-) sin BT d-}  = O {-} (3.70) 

a 6 

•  i     (8) when B is large. 
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All functions under consideration will be assumed of 

bounded variation-  Simply stated, this means that they can 

be represented by a curve of finite length in any finite 

interval of time. 

An estimate of the variation of cp(t) is given    by 

C?(t ) - 9(^)1 < Mjt -t I 

1   °° 
M = — J" |v||«(w)|d« 

-i —ao 

(3.71) 

where M  is called the first moment of the transform, ffi(uu). 

From (3.83) we see that cp(t) is of bounded variation when 

B(z) has no singularities at infinity.  Ibis is a necessary 

condition for the validity of (3.80), so that Reimann's lemma 

is seen to be closely related to the results of section (3.6). 

To conclude, we now have, both in the time and frequency 

domains, techniques for the approximate analysis of system 

response to random excitation.  In the following chapters, 

we examine the second moment response of various systems and 

apply the techniques of this chapter to their approximate 

evaluation. 
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CHAPTER IV 

FORMULATION OF SECOND MOMENT RESPONSE 

4.1 Introduction 

In this chapter we consider the response of structural 

systems to random excitations as measured by the matrix of 

second order moments of the normal displacements.  In section 

4.2 the Fourier transform of the second moments is derived while 

in later sections the set of variances is given a special 

treatment.  The chapter concludes with a consideration of 

response to shot noise excitations. 

4.2  Second Moment Response 

The responses of the j   and k   normal coordinates of 

a structure for which the equation of motion is (2.17) are 

given by 
t 

? (t) = ;  h (t-r )Q (- )dr (4.D 
k        °0  k     i  k   i    i 

t 
5  (t) -     h  (t-T  )Q  (T  )dT (4.2) 
D      ^0     J 2  j  2   2 

where we assume that 'Q] is a random vector process the com- 

ponents of which are zero for negative time. 

From definition d. of section 2.6, the matrix of second 

order central moments of the normal coordinates is given by: 
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[K      (t)]   =   E[{§      -  U     }   L§      -  a    j] 
iD k *k 3 5j 

= E[{?  )   L?J]  -  (ue  }   Lup J (4.3) 

From   (4.3)   and   Eq.    (2.50)   we have 

[Kkj] = jV M«k(t-i)^c^(T1.Ta)3^j(t-Ta)>3dTidTa 

(4.4) 

where [C   (T , T„)] is the correlation matrix of the excitation, 
kj 1 

[Q(t)3, and the impulse response functions are given by 

Eq. (2.22). 

Now, we consider only the component K  (t) of the matrix 

of second moments and take the Fourier transform of it.  Denot- 

ing the transform of K  (t) by K . (ui), we have from (4.4): 
kj       kj 

t t 
r* r -iitt 

k3      i-  "o 0 k    13    2  Qkj  i  2   1  2 

(4.5) 

C   (T ,- ) is zero for T  or *•„ < 0.  Also, h (t-7, ) and 
Qkj  1  2 1     2 k    1 

h (t-- ) are zero for ~     >  t and T  > t respectively.  Hence 
j    2 12 

the limits of integration in the double integral within braces 

in (4.5) may be replaced by -cc and + or, so that 

*V ' iV:'>K(t-i,hi,t-2
,\j

,-i--2
)d-id-2le"ixtdt 

Assuming the order of integration may be reversed, we have 

Kkj(.) = ;J { ;"hk(t-T1)bJ(t-T2).-
i«tdt)^CTiiTa)drldTa 

(4.6) 
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Thus, we need only take the transform of the product h, (t-T ) 
k   l 

h (t-T ) .  From (3<,5) : 
j    2 

h, (t-T ) *-» H (x)e    X , h.(t-~ ) ~ H.(x)e '  2 
k    1     k I    2      1 

and from the frequency convolution theorem: 

-iyT, -i'2(x-y) 
e dy hk(t-"i)h. (t-"2) «-> ±-     J ^(yje    2 H (x-y) 

(4.7) 

Substitution of Eq. (4.7) into (4.6) yields 

°° -i(i y-T (y-x)) 

\i(U,) = ^ ^ [ J Hk^H.^-yJe    X dy] 
*J ^ '   -CD       -CO J 

• cQk:J
(7i'"2)dTidT2        

14-8) 

Again reversing the order of integration, we have 

-i(-   y-T    (y-ju) ) 
K 

kD 
U)   =  it    ^V^V^    [$i\{Jl'T2)e 'dr^T^dy 

(4.9) 

But, from (2„33), the term in braces is nothing but the 

th     th 
generalized cross-spectral density of the k   and j   excita- 

tion components, (6   , expressed in terms of y and y-x.  That 
°kD 

is 

-i(~   y-T    (y-x)) 

;; c
Q (vVe d"id"2 

= *o (y,y-x)    (4-10) 

Hence: 

* 1 CD 

<    . d)   =  —      *     H   (y)H   (x-y)   ffl        (y.y-x)dy (4.11) kJ 2"     i„    k j Qkj 
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or  in matrix  notation 

[K     (x)] = -i    j     ISH  (y)OU   (y.y-u))l^H. (x-yKldy (4.12) kJ 2TT     loo k Q 3 

With [& (w ,x )] given, we can calculate [K . (x)] and 
Q  1  2 kj 

apply the approximation procedure of section 3.6 to obtain a 

simplified representation of [K  (t)].  However, in the next 
k} 

section, we derive a special result for the variances (i.e. 

the diagonal components of [K  (t)]) for which approximations 
kj 

may be obtained directly, without an integration of the type 

considered in (4.12). 

4.3  Special Treatment of the Variances 

The equation of motion for the k   normal coordinate is, 

from Eq. (2.17) : 

2     ! 
K + 2^%K + * K = ^r  Q, (4.i3) k    kkk   ^ k   m^  fc 

where * (0) • ? (0) = 0. 
k      k 

Taking ensemble averages of both sides of (4.13) gives 

u     +   2CwJL    + tti  u,    =  —    E[0] (4.14) 
k kkk kkm, He 

Subtracting (4.14) from (4.13) and letting (§ ~u ) = y 
k     k 

and   (Q     -  E[&1)   =  x,   we have 

<L_Z +  2Q  u    &. + x2y    --Ax 
dt k  dt k m 

This equation may also be written in the form 
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dYl        dy2    or 2     x   = y  ,    = -2C x y  - x y  + — x (4.15) 
dt     2   dt      kk2    k 1   n^ 

dy 
where y  = y and y  = —*-  . 

1 2   dt 

If the equations of (4.15) are multiplied by y and y 
1      2 

in turn, we obtain: 

2 
1 d*l 

= y,y. 
2 dt    r2 

, 2 

1 Y2 2    2 1 — —- = -2£ x y - x y y +   xy 
2 dt       k k 2    kl2    m    2 

k 

d*l    2 
y    = y 
2 dt     2 

dY2 2 2    1 
y —- = -2C x y y -xy + — xy 
*1 dt      \  kV2    k 1   mk   1 

Adding the last two equations and taking ensemble averages 

of the resulting equations: 

1 dSll 
-  - = S (4.16) 
2 dt     12 

1 dS22 2        T 
- 2' x S__ - x  s,  + -=• E[x y ]      (4.17) 

2  dt k k 22   k  12   m^ 

dS12 2       l 
2C x S   - n S   + -=• E[x y ]   (4.18) = S 

where: 

dt     22    k k 12      11   n^    J
1 

Sll = E[^ 

S  = E[y y ] 
12     *1*2 
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2 
s  = E[Y ] 
22      2 

Substitution of S   as given by (4.16) into (4.17) and 
12 

(4.18)   gives 

2 
dS 0) dS... 

- —— -^CwS,--*- —=± + -i    E[x y  ] (4.19) 
2     dt k k  22       2 dt \ 2 

2 

—1" 2 
=   S^„   -  C   U) X     S        +   E[x  y   J 1  d   SU        „ . dSH 2 -2- =  S       -  C  01, Ju     S       + — E[x y  1 (4.20) 

2     dt 22 k k       dt k     11       % 1 

From (4.19) and (4.20) we may solve for S  and substitute 

this into the remaining equation to obtain a single equation 

in S  .  Recognizing that S  = K  (t) we may write this as: 
11  , 11   kk 

3 2 
1    kk    3 ,       kk   . «   _ * '.    kk   _.  J„ 
-  ^— + - C x    —- + (x  + 2C U) )   + 2C ID K 
4   dt

3    2 k k   dt2     k    k k   dt      k k kk 

= ST £ E[xy ] + 2C «i E[xy ] + E[xy ] ]   (4.21) 
-i_2     J-      K K    1 1 

which can be factored as follows 

2 2 
(£- + 2U) (i- S_, + C UJ. -^ + uu ) K 
dt    k k  4 dfc2   k K dt   k  

kk 

= -I   (i- -1 +  2C   x   )   E[xy]   + r1 E[xy] (4.22) 
\     2dt k k \ 

Now,    from   (2.24)   we  have 

t 
y  =   (5   -Uj   =   i     h   (t--)x(-)d-   =   f h   (t--)x(-)d- (4.23) 

k     k 0     k -• k 

and 
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t » 
y -   J [— h  (t.-T)]X(T)dT = J [-Ih  (t-T)]X(T)dT (4.24) 

0 at k -- St k 

Multiplying Eqs. (4.23) and (4.24) by x(t), taking 

ensemble averages; and noting that E[x(t)x(T)] is Cn  (t,T): 
S:k 

CO 

E[xy] = J h (t-T)C0  (t.-)dT (4.25) 
-• k     Tck 

E[xy] = J h  (t-T)C_  (t.T)dT (4.26) 
— k      Tck 

Hence, Eq. (4.22) becomes 

dt k k     4  dt2 k k  dt K       kk 

*4« + aW ;>(t-T)CQw(t'")dT +^   J\<*-T>V(t'T)dT 
(4.27) 

\-2dt "k k     1. K'        •   Ukk-   •    • «^     i„k'        '   <\k 

We   shall   now  take   the   Fourier   Transform  of both   sides  of 

Eq.    (4.27). 

From   (3.6),   we have 

(4.28) 

2 2 
(-£• +  2C   x   ) (i- ^ +  C. U!     — +  xj   K      (t) 
dt k  k     4  dt2 k k   dt k       *k 

~   (ix + 2:k,k)(- i. x2 + i.:kxkx + x') \k(x) 

-iTUC 
Since  h    (t-T )   •-•   R(x)e 

Erxy]   ^   _1        "{   „   (y)    j"   ;ViTVit(x-y)C0      (t.")dtdT]   dy 
2"        loo K loo    -co U

kk 

or 
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E"xyl w ^ J ^(y) flQ  (y.y-x)dy (4.29) 

by (4.25) and the frequency convolution theorem, 

Employing (3.6), we have: 

[xy] *-» _L iuj J^H^y) »    (y.y-x)dy (4.30) 
2n     ". K "   Qkk 

and 

E[xy] »-» -i. J  iy H, (y) ffi.   (y.y-x)dy (4.31) 
2n  _.     K     Ukk 

Therefore, from (4.28) through (4.31) the Fourier trans- 

form of K  (t) is 

1    °° 
2^ sL(t -2CkuJki+y)Hk(y)»o,, (y.y-x)dy 

^(x) =  = — =&  (4.32) 

rn (x-2C x i) (- — + iC x,U) + uu 
k    k k     4     k k    k 

4.4  Summary of the Response Formulation 

In general, the second moment response to random excita- 

tions is given by Eq. (4.12) 

[V(x)' = ^   ; [ ^(y) ][ffiQ(y.y-x)][ H. (x-y) ]dy  (4.12) 

and an alternative form for the diagonal elements of [K . ] 

(i.e. the variances of the normal coordinates) is given by 

Eq. (4.32) 
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_JL 
>0°(* - 2C uu i+y)H. (y) »0 (y,y-uu)dy 

2-T !„ 2    k k    k    Qkk 

K  (x) =  2 -       (4.32) 

V" " 2CkV){- 'f-+ i:kV  + \> 

These two equations summarize the response formulation of 

our work and will provide the basis of all subsequent considera- 

tions. 

A cautionary note should be given on the evaluation of 

the integrals appearing in (4.12) and (4«32).  Let us denote 

either of :he integrands by J(x,y) and the integrals themselves 

by l(x).  Then we may write 

I(x) = [-1 f  J(x,y)e:Lytdy]t=o 

which, by (3.3) becomes 

1      ,• lyt 
I(x)   =  - [   Lim  [— j   J(it,y)e  '    dyj [       XJj.ui     L ->_ 

2      ,. .n+ 2rT loD 

+ Lim [-i  ' J(x/y)e
1Ytdy]] (4.33) 

t-0"  2n  -- 

From the discussions of section 3.5 it is clear that the first 

integral within the brackets is to be evaluated from the 

residues of the integrand in the upper half z-plane.  Similarly, 

the second integral is to be evaluated from the residues in 

the lower half plane.  Hence, I(x) is one half the sum of the 

results obtained when the integral is evaluated from the 

residues in the upper and the lower halves of the z plane.  This 

we represent symbolically by 
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I(uu) = 1(1  + I ) 
2  u    i 

A consideration of Eq. (4.12) for the case j=k shows that 

it does not reduce to the corresponding result in Eq. (4.32) 

in any obvious way.  Consequently, in Appendix II, we present 

a demonstration that the two expressions for the variances 

are, in fact, equivalent. 

In the next sections, we consider the cases for which 

the excitation {O } is (i) a stationary vector process and 

(ii) a vector shot  noise. 

4.5  The Stationary Case 

Analogous to Eq. (2.52) and (2.53) written for the case 

of a single random variable, we define a stationary vector 

process, {x.(t)} as one for which 
I 

(4.34) 

where (t -t ) -   ~ .     The matrix of generalized spectral 

densities is given by 

[•   (* ,x_)] = 2*r 6(x -a )[S   (U) )] (4.35) 
xkj  X  2 1     2       ^j  1 

where 
-l'JU, T 

TS   (a )] = f [C   (')le  X dr (4.36) 

If (.Q (t)} is such a process we conclude that, quite 

apart from any considerations involving Eqs. (4.12) and (4.32) 



00 

[c„    (T)3 = —   J N(*M[sa    (UJ)][^H*(U!)V3 
^kj 2n    —     * akj j 

1UJT 
e       dx        (4.37) 

from  Eq.    (3.29)   and   an  application  of   (3.15).     Hence: 

[K      ]   =   ([cr      (7)]) =  -^   iOT[^Hk(x)\][Sn      (X)]NH*(JJ)\]C3UU k3 >kj T=0       2n   1.       k Qkj j 

(4.38) 

Now, let   us   examine  Eq.    (4.12).      From   (4.35) 

[as        (y.y-uu)]  =   2T   6(X)[S        (y)3 (4.39) 
°kj Tcj 

Substituting this into (4.12) gives 

[K. • (x)3 = J [ H. (y) J[S0  3 6(x)[ H.(x-y) ]dy 
KJ       -a.  K      ^kj        3 

so that 

[K ,3 = — f   {  ;"[^H (y)<i[S   (y)][^H .(ai-y)S J     2rr  _O=   _O>   
k        Wkj -1 

ixt   , 
• 6 (x) e   dx j dy 

Applying (3.15) and noting that H (-y) = H (y), we have 
j       j 

[K  3 = — ;  N (y)^][S0  (y)ll>H*(y)^dy k3     2    :-     k °kj j 

which is in complete agreement with (4.38) 

Substituting (4.35) into (4.32): 

6«~<! -2W +y>Vy)sQkk(y)dy 
K  (x) - 2 2 

m (x-2' x. i) (- «— + iC x, iu + tu 
k    k k     4      k k     k 

Taking the inverse transform and employing (3.15), this 

becomes 
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1        °° 2Ck\i_y 

2^   i.   2C M ±      k      Qkk 
(t)   =     J      -^-*     Hv(y)S0      (y)dy (4.40) 

If both numerator and denominator of the integrand is 

2    2 
multiplied by (uu  - y - 2iC x y) and using Eq. (3.20) for 

k k k 

H  (y) 
k 

(4 + ^-r) (\- y2- 2iCkV
) 

uo 2£   iii k K  K 
1     p k k k 

•» - 5T   i. "     V(y>dy 
2222 222 KK 

m   ((x   -y   )      +  4£   x   y   ) 
k       k k k 

2222 222 2 
Noting that m ((x -y )  + 4C x y ) is |H (y)|  and expanding 

k  k ~k k        k 

the numerator of the integrand, we have 

,  ~            2iC y    . 3 2 
K  « -i. J [1 + -^ * iX_] |„ (y)| S0  (y)dy 
kk   2n i„     2C x    xv     2C x

3   k     Qkk 
k k     k      ^x k 

(4.41) 

!2 

Finally, since Sn  (y)|H (y)|  is an even function of y, 
ukk    k 

the terms involving y and y  in (4o41) vanish. 

Hence, from (4.41): 

"**-^  C l\<y)la^(y)*r 

which agrees with the results corresponding to the diagonal 

terms of both sides of Eq. (4.38). 

In later sections, we shall repeatedly use the result 

(4.38) to check results obtained for non-stationary excita- 

tions via (4„12) or (4.32). 
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4.6  Shot Noise Excitations 

If [0 (t)] is a vector shot noise, then according to 

(2.59): 

Qkj      jk  1      2  1 

So that, from (3.23): 

on 

fa  (x ,-x  )1 = JJll  (t )]6(t -t )exp(-i(u) t -UB t ))dt dt 
y^j  i ^    .a. jk J-    * 1       •»• ± 2 ^   ->- <z 

oo -it (x -x ) 
-  J  tl.k(t)] e     

1  2 dt (4.42) 
_oo    J 

Or 

t*n.  (y.Y-Jj)] = [I-V(UJ)T (4.43) 

where I., (x) is the Fourier transform of the intensity function, 

I..(t). 

Substitution of this into (4.32) gives 

[tCkj(x)] = ^r r   NHk(y)<3[ljk(it)]ISH.(x-y)Sldy      (4.44) 

Without further information about the intensity functions 

we cannot carry out the integration of (4.44).  Thus, (4.44) 

represents the most general result that can be obtained via 

(4.12). 

However, we can carry the determination of the variances 

of the response further than (4.44) by employing (4.32). 

Substitution of (4.43) into (4.32) gives 
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^W'x)irJf-2CkV+y)Vy)dy 

ickk(x) =  (4.45) 

\(x-2Ck\i)(- 4" + iCkV+V 

The integral on the left hand side is easily evaluated 

when we realize that 

p 
J 
— CD 

l  r"     +iyt H (y)dy = 2TT (3- !  H (y)e   dy) 
k ^n !» * t=0 

from the definitions of section 3.2.  Employing (2.22), (3.20) 

and the above formulae, we have 

H (y)dy « 2n  —±  e       Sin JJ  t       =0   (4.46) 
k ukdmk ~kd   t^0+ — CO 

" 1 "'V^V  "^VUlJVt 

^ YH. (y)dy = -2iri { - [ —S-JL e  K K Sin uu  t 
"„ k 2 u, m kd 

kd k 

1 ~Q^Kt 

+ — e  k K cos UL ,t]   + } m
k kd  t_0 

ira 
k 

(4.47) 

where we have noted that t=0 is a discontinuity point of the 

derivative of the impulse response function.  Finally, sub- 

stitution of (4.46) and (4.47) into (4.45) yields 
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m (x-2>_ x x) (£_ -lC x, x-x ) 
k    k k   4    ~k k  ^ 

W~ can now take the inverse Fourier transforms of 

both sides of (4.48) to obtain the variance of the k   normal 

coordinate in terms of a convolution integral between I  (t) 

and the inverse of  = 2 0   •  Hence the 
2m (x-2C x i) (— — ±C UU x-x ) 
k    k k   4     ~k k  k 

integral 
lXt 

1   (•    J- e  dx   

-«  2m (x-2£ x. l) {±—  - iC x x-x ) 
k    k k  v4     k k  k 

must be evaluated.  Upon replacing x by z = x-"-iy and employing 

Eqsc (3«36) and (3.40), the result is found to be 

-2CkV 
f  (1 - cos 2x  t)U(t) «-» — i—2  
2m2 x2 kd 2m, (UJ-2C x. i) (^ 2C x> x-x2) 
k kd k    k k   4    k k   ^ 

(4.49) 

2 
where U(t) is the unit step function and x   = x Jl-Z 

kd   k   k 

Thus, using the time convolution theorem and assuming 

that I  (t) is zero for negative time, we have the result 
kk 

1     ,t -2' x ~ 
\k(t) =   2 2   „  ^v^-") e        d-cos 2'JU  T)dT 

2m x    0 Kk kd 

k kd (4.50) 

which is the general expression for the variances of the 

response to shot noise excitations.  We conclude this chapter 

with an illustration of the application of Eq. (4.50). 
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Example 4.1; 

Consider the variance of the response of a one dimensional 

oscillator to a shot noise excitation, for which the intensity 

function is a unit step.   If its equation of motion in terms 

of the displacement, ?, is 

5 + 2QQt   + n I   = i Q 
m 

then the mean of %,   is zero, and from (4.50): 

K(t) = E[! (t)] = -—• J I(T)e (1-cos 2w (t-T))dx 
2ni n   0 

d 

2 
where Q     = 0 J  1-C  •  Since 

d 

(I    T > 0 

0    T < 0 

where I is some constant, we have 

<(t) = —±—r    e  -   r  e tV (1- cos 2n (t-T))dT 
2rn 0 0 d 

d 

which, after a direct integration by elementary methods, 

becomes: 

2 

*(t) = —\  [1 - e"2 Wt(l+ &  Sin 2Qdt + 2(^) Sin 0 tj] 
4m £Q d d 

This result is in complete agreement with that obtained 

in Ref. (6).  When t tends to infinity, K(t) tends to the 

value obtained in the Example of section 3.5: 
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Lim  K(t) = —\ 3 
t-»        4m C^ 

so that for large t, K(t) approaches its stationary value. 
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CHAPTER V 

APPROXIMATE FORMULATION OF RESPONSE 

5.1 Introduction 

In this chapter, we use the results of sections 3.6 and 

3.7 to obtain approximations to the second moment response of 

a structural system to random excitations.  This is accomplished 

by a consideration of Eqs. (4.12) and (4.32) for a particular 

class of input processes, described in the next section.  A 

special treatment of the variances is given in section 5.3 

since Eq. (4.12) is amenable to direct approximation.  In the 

remaining sections we treat cases involving both shot noise, 

and filtered shot noise excitations. 

5.2 Slowly Varying Excitation Processes 

Recall the expression for the generalized spectral density 

matrix of {Q} in terms of the correlation matrix, [Cn  ]. 
ij 

Replacing  tu     by y  and   uj     by y-uu: 

C*0      (y.y-x)l  =  J7[CQ      (t   ,t   )]exp(-i(t  y-(y-x)t   ))dt  dt 
wij -a.       ij     l     « x 2 12 

(5.1) 

Now,   consider  the   transformation 

T   =   t   -t and   t*  =   t (5.2) 
12 2 v 
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Since  the   Jacobian  of  the  transformation  is  one,   Eq. 

(5.1)   becomes 
00 * 

[*       (y,y-u>)l = JJ [cQ     (r,t*)]  e~xyrm~X[>it dt*dr     (5.3) 
ij -oo ij 

We  can  also write   this  as 

[*n      (y.y-x)]  =     j      [r      (T.UI)!   e   xy'dx (5.4) 
ij 

where 
ij 

[r, . (T.X)]   =   f   [CQ      (T,t*)]   e   iu,t*dt* (5.5) 
ID -co ij 

From  Eq.    (3.83),   we   see  that  an  estimate  of  the  variation 

of  C        (T,t   )   with  respect  to  t     is   given by 
Qij 

|cn      (T,t*)   -   c_      (T,t*)|    : M,.    It*  -  t*1 

(5.6) 

-Q      *-«-2#        ~Q. .*"V'   - "ij    '-2        V 
xj * ij *•        *• 

M
i;j 

= J7  J   1*1 |r   <T.a>)|dtti 

Hence, the variation of the correlation functions with 

respect to t  depends on the behavior of the generalized 

spectral densities with respect to uu. 

We designate as slowly varying those non-stationary 

processes, [Q (t)}, whose correlation functions vary slowly 
i 

(in a sense to be specified later) with respect to t  when 

the transformation (5.2) is effected.  This restriction implies 

that the M  (i,j = 1,N) of (5.6) are small for all  T.  It can 
ij 

be seen that the M  are small when most of the singularities 
ij 

of T  ("/z) are near the origin of the complex plane.  For 
ij 
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convenience in later discussions it will be assumed that all 

the singularities of T.  .(T,Z) lie within some small distance 

to the origin. 

When the damping coefficients of the system are small, 

_2 
(Q. = 0(10  )) then the methods of sections 3.6 and 3.7 may be 

used to approximate the second moments of the response.  In 

general, this can be done through the use of Eq. (4.12) only 

when the integration in  y  is first performed.  However, 

approximations to the variances can be obtained directly from 

Eq. (4.32) and in a general form„  "Thus, we give the set of 

variances a special treatment in the next sections. 

5.3  Approximate Evaluation of the Variances 

In the following discussion we assume that 

a. The damping coefficients of the structure, C (k=l,N) 

_2 
are small (of the order of 10  ) 

b. The natural frequencies, u> , are large (> 10 ) . 
k 

c. The excitation, {O (t)}, are slowly varying as 

described in the last section in the sense that all the 

singularities of I*  (".*) lie with- 
kk 

in the shaded region shown in 

Fig. 8. 

d.   The functions I", , (T,Z) 
kk 

Fi9- 8 (k=l,...,N) can be expressed in 
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the form 
Jk(T,Z> 

rwc(T"> " \(T.Z) 

where J  is analytic in the finite z plane and — has p poles 
k Fk 

at a , ..., a  in the upper half z plane. 
1       P 

Having made these assumptions, we now consider Eq. (4.32) 

Recognizing the term (— - 2C x i + y) in the numerator is 
/. K K. 

— (x - 2C x i) + (y - a ID i), (4.32) becomes 
2      k k k k 

l    °°     $vk(y'y_uu) 
« (*) = x~- L j a (y) — dy + l  (y-cvui. i) 
kk     2irm   ^ "k      2D _»   k k K 1 

*lck(y'y"U)) 
H (y) —  dy ] (5.7) 
k        D 

where D,   =   (-  7— +  i£n x. X  +  x   )   ,   D    =   (x  -   2G, W. i)D, 
1 4 kk ^ 2 kkl 

And,   employing   (5.4)   and   (5.5),   we  have 

1 " -iwr r..  (T,m) 

-ivT rkk(T,LL) 

+  [f   (y-:   x     i)H   (y)e     y   dy]   *       }   dT        (5.8) 
I.        k k k D   (x) 

2 

= ^T J      '   L-r- J   H, (y)e dy]    
•\   1- 2TT

   1.* 2D   (x) 

T, V(T,X) 

+  [-±   :'   (iy   +   '   x. )R  (y)e     y  dy]     ]   d-      (5.9) 
2n    °m K   k      K i    i)   (.«! 

2 
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since H (y) is the transform of a causual function. 

We shall now estimate the relative order of magnitude of 

the two terms in (5.9). 

First, notice that the integral — [ H (y)e-lyTdy  (T < 0) 
2TT   -» k 

is h   (-T),   so  that by Eq.    (3.6),   —   ftt  (y)iy e~lyTdy  is 
k 2TT    loo 

-  —   (h   (-T)).     Hence,    from   (2.22)   and   assumptions  a.   and  b.: 
dr       k 

O   {— J"   (iy -  Q   «, )H   (y)e"iyTdy  } 
2rr   !„ k k     k 

" \ °  *2n  rH
k(y)e_1YTdy 5 (5-10) 

— CO 

And since h (-T) and - — (h (-T)) are both exponentially 
k dT   k 

decaying sinusoids with the same frequency and exponential 

factor: 

° [k  J"° ^^  " Ck\)Hk(y)rkk(T'y)e_iyTdydT} *~    '        — CD  —CO 

• ,JJv ° ^T  I I  H, (y)^,(T,y)e_iyTdydT} (5.11) k   2TT ^m  j,. k   kk 

Taking the inverse Fourier transform of (5.9), we see 

that K  (t) involves the two integrals 

i   ,- rkk(T'x)  iB* .  i   r rkk(T<UJ)  i»t 
—     e   dx and  — I    e   dm 
2- lm  2D (UJ) 2n ^    D2 

Using (3.36) and (3.40) and noting assumptions c. and d. 

we have 

n   ,1  ,- rkk(T'M)  i«t,  ,     r  n fi  f.»
rkk(T'U))  i«t. , 

° ^ ^ 2Di(UJ)   
S   *» >  "  <k ° [^ ^  ——— e   d,} 

(5.12) 
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Hence, combining Eqs„ (5.11) and (5.12), we conclude 

that the first term in (5.9) gives a time function that is of 

the order of C /'£  multiplied by the order of the time function 
k k 

resulting from the second term. 

With this result, from (5.9), we have 

i   °°   i   .0  OD •   T  (T/(JU) 

*kk(t) = 7- J  [T~ J  I (Y-iC. ». )H (y)e 1Y' -^  dy dT ] kk      2n I.  2Trm  I« ±m k k  k D (x) 
k 2 

iiut 
e   djj (1+T ) 

1  i»f.  .-   .„ , . -XVT fl  r>  kk      ixt,  , , 
=     (y-iC, U) )H, (y)e 2      {— .    e  dx j dy dT 
2^ ii    k *     * 2TT i.  D (x) 

(1 + T3) (5.13) 

where  O {T,} = 0(— ) 
3      »k 

r.    •„«.„• *      i i   r" rkk(T,U))   it-t. Consider the integral — <       e   dx.    This can 
2TT
 
1O

°   D2(UJ) 

be written 

-1 -r /   \ iiut, •.co       -4 J, (T,x)e   dx 
1 = It    -?   2 2—      (5'14) 

-» Fk(T,x) (uu-2Ckxki) (x -4iCkUJkU)-4x ) 

from assumption d. and (5.7). 
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iy 

(2-5Ku)Ki) 

; 

P POLfS 

of   >/F„lH) 

Fig. 9 

The positions of the poles 

of the integrand are shown 

in Fig. 9.  Since, by assump- 

tion a., the poles of the term 

—_ i  are far 
22 

(x -4iC U) x-4x ) 
k k   x 

distant from all the other 

poles, the treatment given in 

section 3.6 is certainly 

applicable.  Referring to section 3.6, we can set 

2 2 
(x -4iC x x - 4x ) = G(x) 

Fk(T,x)(x - 2Ck*ki) - F(uu) 

n = 1 + p 

m = 2 

bl  = 4Ck\ 

e  = 4u), 
2     kD 

Y  ~ 2x   *» y„ 
1     kD    2 

a = 0 

b  = 2C x, i + 2UL ^ , b  = 2C x, i - 2x, 
1     k k     T<D    2     k k      kD 

From (3.69) to (3.71), it can be seen that 

, ,  co r  (",x)e ' dx 
T .. r 1   1  •   kk     

L 2 7T   " 
x c     -» (x-2C x i) 
k k k 

J (1+T ) (1+T ) (5.15) 

where 
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2(4C.u). ) (2x  ) MAX [|j.(b )|] 
o [T } = o [ *-* ^—— ii-3  } 

1       (1+p) (4(«kD) (2^kD)
P  MIN[|jk(a.)|] 

2P C?  MAX [|jv(b.)|] 
* O {  *-  k  3    } (5.16) 

(1+p)  MIN [|J (a.)|] 
*  3 

O {T ) < o { | ( i  - -1— )G(a) I } 
2 G(a-6 /2)   G(a) 

~  O (G } (5.17) 
k 

Finally a substitution of (5.15) into (5.13) results in 

the approximate Fourier integral 

Kkk(x) * ~^   J    ^—   *kk(y.y-<«)dy (s.ia) 
2r:m, uu,  -» OJ - 2C UJ i 

k k v v k k 

which, upon inversion gives K  (t) correct to within 

0{T  +T  +T} (neglecting higher order terms in the expansion 

of (1+T ) (1 + T ) (1+T )), where 

2PYP  MAX [|j (b.)|] 
O {T ) = O [  *. 2  } (5.19) 

1 1+P   MIN [|J (a )|] 
k j 

0 [T } < O [C2] (5.20) 
2 k 

Ck 
O [T } < 0 {—} (5.21) 

3 U) J       k 

It should be noted that for shot noise excitations, the 

first term of (5.7) is 
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1   »        Ivv(ul)        Ivv(uj) 
-J  H (y)  -**  dy = &  J Hv (y) dy 
k -on  K     2Di (a;)      4nm, D, (x) -• 

and vanishes identically.  Hence the error to which this term 

gives rise, T » is zero. 

When the singularities of T  (T,X) lie within a distance 

e  from the origin such that e, > 2C ID , it is obvious from 

the preceding arguments that if e  « 2x  then formulae (5.18) 
k     k 

ek to (5.21) are still valid provided C  is replaced by —— . 
* 2x 

Thus, it is now possible to clarify the sense in which 

the excitations considered here are "slowly varying".  The 

excitations are slowly varying when the function ?  (T,X) (of 

Eq. 5.5) takes significant values only for | x | < e where 

e « 2x, . 
kD 

To illustrate the application of the above ideas we shall 

consider the following example. 

Example 5.1 

Let us consider once more the situation of Example 4.1« 

For this case, the spectral density is 

*(y,y-x) = I(x) - I (5.22) 

where   I(x)   is   the   Fourier  transform  of  the  unit   step   function, 

U(t).     Since  U(t)   •-•   -6(x)   + — ,    (5.22)   becomes 
ix 

$(y,y-x)   =   I(-6(x)   + -i) (5.23) 
ix 
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Substituting  the   first   term  of   (5.23)   into   (5.18)   gives 

1_   ,-        1 ,-   (y-iCk\)Hk(y) 

2T 
J       2   J         I  T6 (x)   dy  e        dx 

^w - »"2W 

2   o_„o2 
2-mn     [2QQ)     -- 

J   (iy + £Q)H(y)dy 

2   2 8m^n  c 
(5.24) 

by (3.11) and (4.47).  It can be seen that the exact expression, 

Eq. (4.48) yields the same result.  Ihus, for the first term 

of (5.23), (5.24) involves no approximation. 

Similarly, in general the expression (5.18) becomes 

K(x) =   \ Mx) (5.25) 
2m n i  0)-2CCii 

Substituting the second term of (5.23) for I(x) above and 

taking the inverse Fourier transform, we have 

.-  i eixtdx m  J^_  [JL__ _ e-2C^t 

2-(2m2'2)  -» ix(x-2Cni)  2m2"2   4CQi   2Cni 
] 

2  3 
[1 - 2e"2Cnt] (5.26) 

K (t) is just the sum of expressions (5.24) and (5.26) with 

suitable correction terms: 

<(t) =   -1 „ (| + £ - e"2Cnt)(l+T +T )) 
4m2cn3 2   2 X 2 
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and from (5.19) and (5.20): 

0(T ) = O U) 

0(T2) = O tC
2l 

since J(x) = 1, and P=l. 

Thus: 

K(t) =  i  [1 + 1 _ e"
2CQt(l+T)] (5.27) 

4m2C03      2 

where T is of order C,.  This result can be directly verified 

by comparing it with the exact solution, (4.51).  In Fig. 10, 

the two expressions are shown graphically.  Here,the quantity 

2 3 
(t)m u       £s plotted as a function of Qt.  Now, when the unit 
1 -iwt,^ 

0 step commences at t=t , by Eq. (3.5), I (t-t ) «-» e     I('i)). 

And from (5.25) we see that K(t) is merely shifted in time by 

t .  Hence, for a white noise excitation modulated by a step 

function beginning at tn: 

M
1
 - (1 - e-2^n(t-t

0))(l+T) , t > t 
4m^cn 

(5.28) 
0 ,  t < t 

0 "-{ 
2 

where O [T] = O U + C 3 • 

Example 5.1 shows the validity of Eq. (5.18), when 

C   (T,t*) has points of discontinuity but is otherwise slowly 
Qij 
varying in t*.  For suppose that C   (r,t*) has a finite jump 

Qij 
of magnitude C at t* = t*.  Then we may write 

0 
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(c) 
Cn  (T,t*) - C        (T,t*) + CU(t*-t ) (5.29) 
Qij Qij o 

(c) 
where C0   (~,t*) is continuous in t*.  The generalized 

ij 
spectral density of C_   is 

ij 

* (c) i  — iiut 
*n (y.y-x) = *_  (y,y-u>) + C(TT6(UI)+^e * 0    (5.30) 
Qij        Qij W 

(c) (c) 
where $    corresponds to C_   in (5.29). 

Q. • Qij 

But the second term of (5.30) is the spectral density 

of Example 5.1 with I = C.  Then from (5.18) and (5.28): 

Kkk(t) =     —? J   J   §w (y^-^^y e    du) 

2rr\\   ~°° -0D    M _2Ck'\i 

+ I U( 0) (1 _ exp(.2C.« (t-t )))(1+T) (5.31) 

5.4  Approximate Variance Formulation in the Time Domain 

In some cases, it may be advantageous to work with the 

slowly varying case in the time domain; that is to express the 

inverse transform of Eq. (5.18) in a general form.  We can 

write (5.18) in the form 

kk 2 mkxk(x-2Ck^x)1 

00 A. 

• (x)    = — 0 
(iy+;

k\
)H

k
(y) $

kk
(y'y-x)dy 
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From the frequency convolution theorem and the definition of 

the generalized power spectral density: 

J ££.Ui.h1(t-T) + ~  h, (t-T)]c   (t,r)dT  -. A(uo)     (5.33) 
0 K K        at K     ukk 

Substituting (5.33) into (5.32) and employing the time con- 

volution theorem, we have 

m  ID       
u  0 

k k 

+  <L-    h(t   -t_)]   Cn      (t   ,t   )dt   dt (5.34) 
dt 1      2 Q^     12        12 

-2C <\t                        ] 
where   the   fact  that  U(t)   e •-»   =  was  used. 

(u)-2CkU).i)i 
From   Eq.    (2.22) : 

-C,x   (t   -t   ) 
= ~^T ££.«,•       k 2 sin ^JtrS) XkD^       k k kD     1      2 

-C^ekk12   Sin  u)      (t   -t   ) 
k k kD     1     2 

-C   x   (t   -t   ) 
+ x        e     k k     -1     2   cos  ID      (t   -t   )] 

kD kD     1     2 

•k   e CC"J 

= _L    0    k k    1    2'cos (t _t  . 

Substitution   of  this   result   into  Eq.    (5.34)   gives 

\k(t) = -FT jjn 
e e cos WW 

Vk   ° ° 

"   \k(tl*t2,dtl'dt2 (5-35) 
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Fig. 11 

"Hie region of integration is 

shown as the cross-hatched 

area in Fig. 11.  But from 

the definition of Cn  (t , t ) 
Qkk  1  2 

it follows that it is sym- 

metric in t  and t .  Hence, 
1      2 

the entire integrand in Eq. 

(5.35) is symmetric with respect to t  and t .  Thus the 

integral of (5.35) is one half the integral taken over the 

entire shaded region of Fig. 11.  That is: 

\k(t) 
e-^kV^  t t  C \(t +t ) 
 2~2  J J  e cos w,_(t,-tJCn  (t_,tj 
2 2mk\ 

0 0 kD  1  2  Q 

dt dt 
1  2 

kk  1  2 

(5.36) 

where from (5.19) to (5.21), this is correct to within terms 

of order Q   .  This is the general approximation to the variances 

of the response, and proves to be more convenient than (5.18 ) 

when the generalized spectral densities cannot be easily cal- 

culated.  The following example illustrates this advantage. 

Example 5.2 

Suppose that the simple oscillator of Example 4.1 is 

excited by a random force, Q(t), for which the correlation 

function is an exponential cosine in T enveloped by a slowly 
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varying deterministic function, g(t).  That is: 

-a|T| 
CQ(tl't2)   =   C0  G C°S  n0T   9<V9(V (5.37) 

where a is small and T = t -t .  And, the equation of motion 

is 

m 

It can be seen that the generalized spectral density of 

l   +  2QQi   +  n § = 2^) (3.41) 

Q corresponding to (5.37) is quite complicated.  Therefore, 

we use (5.36) in calculating the variance of the response.  We 

shall consider only the case for which fl  is in the vicinity 
0 

of n. 

Substitution of (5.37) into (5.36) yields 

-2Cfit     t  t     CO(t  +t   ) 
K      (t)   =   Cn    f   r     e X cos  fl   (t  -t   ) 
kk °   2m  n2       0  0 D    X     2 

-a  T 
•   e cos   n  T   g(t   )g(t   )   dt  dt 

0     yv   l'^v   2'        1     2 

-2C0T 

£o_f   pt.t     C0(t1+t  )   -a|t  -t   | 
= 2   2        J   J     e e g(t   )g(t   ) 

2m  n 0   0 -1 

• | [cos (nD+nQ)(t2-
t

1) + cos(nD-n0)(t2-t )3dt1dt2 

But,   by  Reimann's  lemma,   when   I ^n
_^n I   «   (^n+^n)   ~   ^n 

'vn
0i 

then  to  order    , 
20 
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C0 e      t t  GO(t +t )  -a|t -t | 

kk       4m V   0 0 D  0   2  ! 

. g(t )g(t )dt dt (5.38) 
1    2   12 

Or, if we let 

u H T^   '   G H C §- .  T    =  eO^t, . T0 H en^t 

Q 

enn      
s 0    1    D i '  2    D 2 

0 0 

D 

then Eq. (3.42) becomes 

C   e n   T|  (T +T  )  -UX|T2-T. I 

W*> • 7TXFT   l   !• e 9CT )g(T ) 
4mnne00 x * 

D 

.   cos   B(T   -T   )dT  dT (5.39) 
2     112 

to order  .  This is in complete agreement with the 

result obtained in reference (7). 

This concludes our special treatment of the variances.  In 

the remaining sections of this chapter, we show how, for two 

important cases, methods analogous to those in preceeding 

pages may be applied to the approximations of the entire matrix 

of second moments. 

5.5  Applications for Shot Noise Excitations 

Suppose that a structural system governed by Eqs. (2.17) 

is driven by a vector shot noise excitation.  Then according 

82 



to (4.43) of section (4.6) the matrix of generalized spectral 

densities of the excitation is given by 

[*rt (y»y-w)] = [I.^(ID)] 
<kj jk 

(4.43) 

where I  (x) is the Fourier transform of the intensity function, 
3* 

At 

I  (t).  Hence the components of the matrix [K . (x)] are given 
jk k] 

by (4.12) in the form 

kj 
(u;) = —J  J H (y) H.(x-y)dy 

2rr 
(5.40) 

By Eq. (3.20) we can write (5.40) in the form 

Kki(a) =      J K->      2rr 

dy 

nyn   -« (y-a )(y-a2)(x-y-a^)(x-y-a4) 

where     ax « i^ + x^  .  a., = iC^-x^ 

a0 = iC-x. + x.^  «  a  = i£.x.-x. 
3     3D    3D      4     3 3  3D 

r (5-41) 

>i 

iy 

-iu). 

Ul-ftj 
2^j, »— 

toJ-O, 

Fig. 12 

When y is replaced by z the 

integrand has simple poles 

at the points shown in Fig. 12, 

Integrating over the upper 

and lower half planes along 

the contours of Figs. 3(a) 

and 3(b) we have 
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(*,.,)  " 

ilv. • (w) 
[ 

kD "   2mkmD'\D   
(U,~i6kj-lAkj)(U,-i6kj-Vkj) 

1 

(X-i5kj
+\j

)('J)-i5kj^kj> 

1 (5.42) 

(Vi 
il . (w) 
_kj  t 

2m m u) 
k 3 jD 

(^i6kj- Ukj)(X-i5kj+ \j) 

(w-i6 .- V .) (u)-i6 .+ u .) 
kD  k}     kj  k] 

(5.43) 

where 6. . =   C iu, + C .t»). ^ 
kD   k k   33 

1    =  (l)    + 0)   ) 
kj     kD    3D 

t>  . -  (x    - IB .  ) 
kj     kD    jD  / 

(5.44) 

and from (4.34), K    . = ±-( (K . )  + (K .) ). 
k3   2  k3 u    k] I 

Now, we assume that the intensity functions, I  (t), are 

slowly varying in the sense that the singularities of I  (ID) 

lie within a distance, e, from the origin where € ~ 6 ., « IB 
jk    kD 

or x  .  We also assume that I ., (x) can be expressed in the 
jD Jk 

form 
J. . (IB) 

i (.) - Ja— 
3K F  (w) 

kj 

(5.44) 

where J  (z) is analytic in the finite z plane and F, . (z) has 
K J K J 

p poles at a , ,a  in the upper half z plane. 
P 
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We shall first treat of the case for which V   = 
kj 

(uu  - ui  ) is of order  e.  Consider the first term within the 
kD   jD 

brackets of Eq. (5.42); its inverse transform is 

nti-jij 

. , iwt 
I, . (u))e   dw 
*3 

(U)-i6kj-^kj)(u,-i6
kj- v 

(5.45) 

Referring to section 3.6, we can set 

(uj-i6 .- u .) = G(uu) 
kj   kj 

a = i6  + v 
kj  kj 

so that  G(a) 

Also:       m 

n = 

6  = 

€_ = 

-2u> 

1 

p+1 

G 

1 

k}    2    J 

(5.46) 

(5.47) 

And substitution of (5.46) and (5.47) into Eqs. (3.69) to 

(3.70) gives 

Kt) - - -i -M Ja  
^D        kj  k3 

(1+T +T ) (5.48) 
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, e     P   |j(i6ki+ v     )| 

1 P+1     ^kj        MIN   [|j(a   )|} 
k 

(5.49) 

o [T_]    : o (-M 
2 ^ci 

We  can get  similar results for  the  other  terms  of the  inverse 

*. *• 

transform  of   (K      (x))     and (K. . (x))    .     The  results   are 
ij          u 13 X 

-i/2rr c.     i(Bt 

] (ic.  . (t))        =     J     e I..(UB) 
KJ u 4m m x     x 

k   j  kD jD 

• [ -  +  1 ]   dx   (1+T  +T   ) 
X-i5kj-   \j        *-±6kj+  \j *     2 

(K      (t))        = -V2TT     J-  ,i«t   J      (M) 
3 4m m tl)     uu -» x^ 

k   j   kD  jD 

• [    -     +   i  ]   dx   (1+T +T   ) 
. 12 x-i6,  .+  v    . x-16,  .-v 

kj       kj kj       kD 

Hence,   the   approximate   Fourier  transform  of  K. .(t)   is 

-ii    (x) 
K      (x)   =   2h  [    1     +  1   ]        (5.50) 

4m m  x     x x-i6    .+   v x-i&,   .-   v,   . 
k   j   kD  jD kH        k3 k3        kD 

'Ihis gives, upon inversion, the second moments correct to with- 

|j(i6,.+ vv>l 
in terms of order {-£-  (-^-)   ^ u  + -£- } - 

P+l   ^kj   MIN{|j(ak)|}    ^kj 

We shall now express (5.50) as a convolution integral. 

Since 
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2 e kj COS V   t 
kj 

- i [- 
u)-i6  + v    ii)-i6  - v 

kj  kj      kj  kj 

by the time convolution theorem, we have 

1 -t 
kj 2mm. ID,    ID.        

J
      

xjk J k   3   kD  jD       0 

-6..T 

J"      I •v(t~")   e cos   Vi,-;T   dT^ kj 

(1+T  +T   ) 
1     2 

where 
p   |j(i6      +  v     )| 

O  [T )  = O  [  -L-  (-^_)P  *2 *2_ } 
l p+i   n. . kj      MIN [|j(au )|3 

O   [T,}   =   O   {-M 
2 ^kj J 

(5.51) 

(5.52) 

and for small v, . . 
kj 

Now suppose that 0(v, .) ~ 0(w, ) or 0(uu  ) and hence that 
kj      kD       jD 

0(v  ) » e.  Consider the first term of the inverse transform 
kj 

of Eq. (5.42); given by Eq. (5.45) 

.  .    Iv.(tU)e
iu,tdtt) 

I(t) .-ij ^_ 
•• ^VHkj)(8"V V 

(5.45) 

In this case, we can set 

G(x) = (x - i5kj^k.)(x-i6kj- vkj) 

a = 0 

so that 

G(a) = (i6 . + a .)(i6 .+ v  ) 
k]   kD    kj   k] 

(5.53) 



Also  as  in  the  previous  case: 

ra =   2 

n = 

6     = 

|n    .-   v      I   =   2uu.     >   2  MIN(x,    .uu.    ) 1   kj        kj JD ~ kD     3D 
> (5.54) 

7       ~       y 

b   ,b 
1     2 

kj 

Ukj 

i6kj+^kj'   b3'b4=   16kj+  \j 

And   substitution  of   (5.53)   and   (5.54)   into  Eqs.    (3.69)   through 

(3.70)   gives 

i .o°    "• i rut- 
(5.55) 

iwt 
I(t)   = JL _i_    J     I      (tt!)eiU,ud-j)   (1+T+T) 

t)     la,     k] 12 2TT   G(a] 

p-1     2 
0   {T  }   <     0   [_ ^k 

1 P  M^WjD*   ^ 

O   [T  ]   <     O   {-^} 
2 v.  . 

j_MAX[|j(bk)n i 

7)   vP 
3D       kj MIN   [|j(b   )|] 

K 

'- 

56) 

Performing  the   same   analysis   for  the   other   terms,   we have: 

2   1.,  (t)   6, 
lC..(t) Jk   I  71   (1+T+T +T.) kj £2. 1     2     3 

m m     (j        v * 
k   j     kj     kj 

(5.57) 

where   the   orders   of  magnitude   of   T     and   T     are   given  by   (5.56) 
12 

and 

O   (T   }   =   O   {(-^-)    } 
3 ^j 

(5.58) 



T arises from the approximations made of —=— for the terms 
3 G(a) 

in (5.42) and (5.43). 

Equations (5«51) and (5.57) form the complete approximate 

response formulation to vector shot noise excitations.  We 

consider one application in the following example. 

Example 5.3 

Suppose that we have obtained the second moments of the 

response of a system by experimental measurements, and that 

we know the excitation is a vector shot noise but the specific 

intensity functions are unknown.  Eqs. (5.51) and (5.57) make 

it possible in certain cases to estimate quite easily these 

intensity functions from a knowledge of K  (t). 
kj 

Let  us   first  consider  the  case  v,  .   K  ofe],   so that we 
kj 

employ  Eq.    (5.51): 

t "6vT 

Kki(t)   ~     J     I-k(t-T)   e       D     cos   v     T   dr 
kD 2WkDXjD       0     Jk *=> 

I      (T)   e        J dT (5.59) 
2mkmj,JJkDXjD     "0      J* 

to  order        . 

Assuming that I  (t=0 ) = 0 and by repeatedly integrating 
Jk 

(5.59) by parts, we obtain the series 

**•<*>  ~  On, m     Z „•   *       [l,k(t>  " f [^k(t)  " e"6tI    (0)]+...] kD      ^j^W    3k      6   Dk Dk 
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Now, that I, . (t) is slowly varying implies that its 

£11c derivative is small.  With a = O {——} where a is small, we 

have 

I,(t)~ (2m.rn.-jj  uu  6. K .ft)) (5.60) 
3k * 3 kD jD 3k 3k 

correct to order a. 

A consideration of (5.57) shows that for the case v   » e, 
kj 

we have 2   2 
m, m u, . v . 

i. (t) ~ JLJ-H-JO.* (tJ (5.61) 
3k 2 6       3* 

kj 

Thus, with K  (t) = 0 at t=0, the intensities may be 
kj 

estimated from a direct examination of the second moments. 

5.6  Applications for Filtered Shot Noise Excitations 

Here we treat a case of the greatest importance to the 

estimation of Titan III-C flight loads. 

Suppose that a shot noise with intensity function I(t) 

is the excitation, Q(t), to the system of (3.41): 

5 + 2£0f + Q   I   =  2itl (3.41) 
m 

The displacement, i,   is called a filtered shot noise.  Now 

let each normal coordinate of an N degree of freedom system 

he driven by the displacement of (3.41).  That is: 

5, + 2C .a.! + lA  = ^-^-    (k=l,N) (5.62) 
k     k k k    k k    rn 
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We shall apply Eq. (4.12) and the methods of the previous 

sections to the approximate calculation of the second moments 

of the § . 

From (3.29), the generalized spectral density of ? is 

*ff(m1#u)_) = H(x ) *e(u)lfiu )H*(u> ) 
•sJ.^       x   o  x  2     2 

and  by   (4.43)   the  spectral  density of  the   shot  noise, 

§    (x,,x   )   is  given by 
s     1     2 

Thus: 

or 

$   (w, ,X   )   =   Kx.-uu   ) 
s      1      2 12 

$_(x   ,x   )   =  H(x,)I(UI,-W   )H   l*J 
-,     1     2 1 1     2 2 

*-(y»y-'x)  • H(y)i(jj)H*(y-tu) 

(5.63) 

(5.64) 

(5.65) 

where 

12 2 -1 
H(x)   =  -   {u     -   x     +   2i£ax) 

m 

„a= . -ixt 
I(x)   =  j      I(t)   e dt 

_a> 

Thus,    for  this   case   (4.12)   becomes 

(5.66) 

V(x)   =  Iff I(X)«   \(y)H(y)H(x-y)H.(u»-y) 
-* — OD J 

dy (5.67) 

since   H   (y-x)   =  H(x-y). 

From   Eq.    (3.20)   this   can be  written   as 

K     (x) = :(x)i(x) 

r(x) = 
2"   1.  k 

H   (y)H(y)H(x-y)H.(x-y)dy 

(5.68) 

(5.69) 
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In what follows, we shall attempt to evaluate approxi- 

mately the inverse transform of T(x) (denoted by Y(t)) so 

that 

t 
K   (t) = ;  l(t-T)Y(T)dT (5.70) 

J       0 

As in the last chapter, we assume that C» C ,   and C 
j 

are small (of the order of 10  ) and that I(t) is a slowly 

varying function. 

From (3.20), F(x) may be expressed as 

r(x) m  1_    ~       l/mk 1 

2" 

1/m. 

(y-a1)(y-a2) (x-y-a3)(x-y-a4) 

1/m dy/m 

(y-a5) (y~a
6) (x-y-a   )(x-y-a   ) 

5 6 

(5.71) 

where 

a     = iL x     + x, 
1 k  k kD 

a _  = i' . x .   + x . 
3 ~3   3 JD 

a     = i'.O  + n 
5 D 

a.   - 

iC  ID     - x 
~k  k kD 

iC.x.   - x . 
~3   3 DD 

a^ = icn - n 

(5.72) 

We   first   assume  that     x,    -x.    I,     x.    -.1   ,      x.   -w     «  x,    . 1 kD  jD1  ' kD  '   ' 3D  '     kD 

x. , or Q c      Upon replacing y by z and employing the calculus 

of residues the integral of (5.71) can be evaluated.  Subsequently, 

the inverse transform of T(x) can be calculated approximately, 

* 
according to the methods of preceding sections.  The result is 

*    See Appendix III, 
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i(a +a  )t 

1                 ,                    H(ai)e 

Y(t)   * -^ ^  [Re( ± ) 
m m m .   8jon ju . JLI a     -  a^ 

k   j        kD  jD  D 4 6 

i(a  +a   )t i(a1+a6)t 
H(a   )e H(a   )e 

+  Re( —)-   Re( ± ) 
a     -  a a     -  a^ 

2 6 • /      u.      »«.      4 6 
i(a  +a   )t 

H(a_)e       3     6 

-   Re( )   ] 
a2   "   % 

i(a  +a   )t i(a  +a   )t 

1                      W*       4     5                        "k(a5)e       5     6 

+ —^-y [   Re(Ji—2 )   -  Re   (-5—5 ,] 
8U,jDQD a4   "   % a4   "   a6 

i(a  +a   )t                                  i (a   +a   )t 
H.(a,)e       2     5                      H.(a   )e 

+       1 [   Re (-1—2 )   -   Re (-J—2 )    ] 

TcD D 2 6 2 6 

(5.73) 

correct  to  terms  which  we  denote by  T +T   .     According  to 

Eq.    (m.15): 

0   {l^}   < 
(_)     p+1                   /,\       /\      2                     i+\ 

2[MAX(|a'      II        [MAX(|a^   >-a\   '|j   MAX[|j(a,1   ')|] 
0 J; * is 3 K  } 

(p+2) [MIN(la ( + )-a ( + ) ) ][MIN ( | a < + ) -a ["> | ) ]P+ZMIN[ | J(a<"> ) | ] 
k     j K     J K 

2 MAX (|a1i"
,|) 

o [T ] < {  *  } (m.15) 
2       MIN (|a^+)|) 

where these are the orders of magnitude relative to y (t) .  This 

can be approximated still further when we note that 
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"<V = [(Q2- \ + 2Ct\ - 2CncA> - 2iVcn -W1"1 

-   [(QD -   \D  +   i\   +   ;2'--2   -   2Cn'*V   -   2inD(Cn-C
k\

)fl 

»f.,n2-«2
D) - 2%,ca - c^lf1 

2 
to  order   £    .     Now we   expand   this   in  a   Taylor   series   in   terms 

of  the  quantity   (Qft  -   CviD, ): 

1                   i               2iQD(Cn-Cka)v) 

H(a.)   -  TV 
+ T^ t—| ^3   +   ••• 

1 V-kD       V\D        ^-"W 

Since the Q's   are small, this series converges rapidly and we 

can say that 

H(a ) s  -T-i 7- (5-75> 

D   kD 

to order less than MAX(C.', ) since the magnitude of the term 
C 

2iQ (Q- **- x ) 
D   C   k  .   -   ,  =  is of order one. 

D    kD 

Also if we expand 

a -a    k(C .x .-  Cn) + (R - x  ) 
4  6      3   J D   jD 

in terms of the quantity Q   x     - . Q , we obtain 
j j 

i(C .x .-:n) 
L 3  3 ' 1 + 

(a -a )   Ci -x    0 -x    0 -x 
4  6     D  jD    D  jD    D  jD 
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MC.M.-co) 
Since the magnitude of  ^—3  is of order MAX(C,C.): 

D  }D 

a -a    n„-*•„ 
4  6     D  3D 

to order MAX (C/C . ). 

Combining (5.75) and (5.76) we have 

a -a    .~2  2. 
4  6   <VV «°D-«jD) 

to order less than MAX(£,C , G ). 
j k 

By a similar procedure, we can obtain 

H(a3) 

a _a  ~ (n2-uu2 ) (n -UJ ) 
2  6     v D  jD1 V D  kD; 

W 

W  s        1 

all to order less than MAX (G,G >Q   )• 
j  k 

(5.76) 

(5.77) 

(5.78) 

a -a   ~  (UJ
2
 -Cl'i)(0  -UJ . ) (5.79) 

4  6        kD  D   D  DD 

(5.80) 

Finally, by virtue of Eqs. (5.72), Eq. (5.73) and Eqs. 

(5.77)-(5.80), we have: 
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Vj(t) -<ckV
cjtVt ;

  A[ B,   e 3        cos(w     -ID.   )t 
1 kD     JD 

-Be K COS(UJ,    -0   )t 
2 kD     D 

-B3e 
(C .iu.+CCl)t 

cos(x     -n   )t   +  B     e 
jD     D 4 

-2;nt 

A = 2     2 2     2 

kD  JD  D     D     jD       D    kD 

B     =   2C1     +   M        +  u) 
1 D kD jD 

B-, = ;r— (fi^ + ID,   ) + (n   +iu.) 2       fl D kD D DD' 

U). 
kD 

B3 '     nn     "D'   ~jD ("„+ »,J + (nD + \D) 

B   = J£ (tt   + n ) + _££ 
4      n      kD    D        n 

D 
(ID   + n ) 

D ^D D 

r  (5.8i) 

which yields a result correct to (T +T +T ) where O [T ) and 
12  3 1 

O {T } are given by (III.15) and T  arises from the approxi- 

mations of the frequency response functions so that 0 {T } < 

0 {MAX(C,£. .C.)} • 
k  D 

It is instructive to note the results for the following 

special cases. 

A.   j^k: 

From (5.81): 
-2C   ID t 

kk 

^kD 

8xn nn(Q -ID, ) 
kD D  D  kD 

2-T-2 t"2(V\D
)e  ^k  " 2(— + X) U

D 

(equation continued) 
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-(C.wv+CQ)t 
(nD + .kD)e        cos(VD-nD)t 

+ AD (U)   + n , e"2^] (5.82) 
f)     kD    D 
D 

B.  x. = n, c. = C 
-3  —}  

Letting x  = ft„-A, where  A  is small, Eq. (5.81) 
jD   D 

becomes 
-(c u. +cn)t 

Yv . (t)  ~   5-i ,     -       L (30  +x)e       * K 

kD 8x   n2(2nn)A(a2-l/n)        D   kD 

kD  D        D D     KD' 

-(C x +C0)t 
• coS(xkD-nD+A)t - onD + «.kD) e        * 

x — 2Cflt 
•   cos(x     -0   )t  -   (-^ 20 + 0+11),    )   e~ cos  At 

kD     D QD       D       D       kD 

+   (— 20  + 0  + xv   1   e"2Cnt   3   +  T(A) 
n D        D       kD 

D 

where   T(A)-»0asA-»0.     Hence: 

3Q  + xn w      -(c, w +;n)t 

A-o     D i6x   cr(n2-x^ ) 
kD D     D    kD 

LIM   {-   (cos(x, ^-On+A)t   -   cosfx^-OJt)} 
A-0 

A kD     D " ' kD     D' 

3xvn+nD -2CClt ri 
+  KD_E!  e LIM   [^(1-cos  At)) 

16x,    w3(a2-x2   ) A-0     A 
kD  D     D     kD 

-(C.«« -+C0)t 
(3fiD+U)kD)   6 

-*°  tsin(nD -   xkD)t        (5.83) 
16\DV

nD  "   *kD> 
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by L'Hospital's rule. 

Hence, when the central frequency of the filter coincides 

with the damped natural frequency of the j   mode: 

-(U+Cfl)t 
(30  -Hu     )   e       K k 

v   . (t) ~  fLJlE  t sinp -UL   )t (5.84) 
kJ IK  2 «£ - »   ) D 

kD D       D kD 

c.     a;. = n. e • = c / uu,  = n . c.  = C _j    _.,     -k     _^  

From   Eq.    (5.83);   with   uu        =  H_-A 
kD D 

, x i -2cnt    . . , 
v      (t)   =  —=-=  t   e Sin   At   +  T(A) 
k3 8 n4 A 

0D 

where LIM  T(A) = 0 „ Hence, 
A~0 

t e"
2Cnt 

LIM  Y. . (t) =  •  LIM (^iMJt) 
c -c     kD s n4 A-*0  A 

k 

t2 e"2COt 

sn4 

OD 

Thus, for the case uu. = fl, Q . = ', tu  - fi* C, = C : 
3 3 k       k 

2  2Cnt 
Y  (t)  ~ T- (5.85) 

OD 
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CHAPTER VI 

ESTIMATION OF PAYLOAD STRUCTURE 

FLIGHT LOADS 

6.1  Introduction 

In Chapter V the basic method of approximate calculation 

of the second moment response was presented.  A variety of 

simple problems were considered in order to illustrate the 

basic application of the approximation technique.  In this 

chapter the more realistic problem of the estimation of flight 

loads in a payload is treated.  In particular, we return to 

a consideration of the problem that was introduced in Chapter I 

We take note of the following basic facts: 

1. The dynamic inputs to the payload system are assumed 

to be the booster/payload interface accelerations of the six 

rigid body degrees of freedom. 

2. These interface accelerations were obtained by a 

numerical calculation of the response of an analytical model 

(consisting of assemblage of discrete elements) of the booster 

structure.  These booster models were driven by loads derived 

from chamber pressure measurements of the rocket engines during 

27 test firings. 

Thus the subensemble of excitations to the payload system 

consists of the 27 sets of six acceleration time histories. 
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We assume that each set is a sample of a random vector process 

whose vector components are the six rigid acceleration time 

histories at the interface. 

In Section 6.2 we present the basic deterministic equations 

for the calculation of loads in the payload structure.  In 6.3 

and 6.4 we discuss the assumptions made about the interface 

accelerations and express these assumptions in analytical form. 

In sections 6.5 and 6.6 we show how the statistical parameters 

of the acceleration process can be estimated under the assump- 

tions made.  Finally in section 6.7 is given the approximate 

formulation of the second moment response of a payload to the 

booster/payload interface accelerations.  This chapter concludes 

with the application of the approximate formulation to a simple 

two degree of freedom payload structure.  This example exhibits 

all the main characteristics of the calculation of response of 

a real payload structure. 

6.2  General Formulation:  Equations of Motion 

We assume that the modal frequencies and corresponding 

mode shapes of the payload structure are known.  Then the problem 

may be formulated entirely in terms of the normal coordinates 

of the payload.  According to assumption B, section 1.1, the 

rigid body displacements are prescribed at the booster/payload 

interface.  This case is exactly that considered in Example 2.2, 
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section 2.3.  'Thus, from Eq. (2.19) the equations of motion 

of the payload system are 

2 
111] + 2t^C.*.->3 M + ^-2 W   • tc] {a}      (6.1) 

ii i 

where 

[r\]   B   normal coordinates of the payload 

T 
= [cp] [m]{u], where (u) is the payload relative 

displacement vector and [m] is the mass matrix. 

ID    the modal frequencies 
i 

C   =   the modal damping coefficients 
i 

[a] = the booster/payload interface accelerations 

= [x, y. z, 6.9,9} 
x      y  z 

[Cj   is a matrix of constants 

The member stresses, [s], are related to the normal coordinates 

by 

IS} = [G][TI] (6.2) 

where r
G] is some matrix of constants. 

In what follows, we shall assume that the modal damping 

-2 
coefficients are of order 10 

Now, the interface accelerations are idealized as a 

random vector process.  We wish to find the matrix of the 

second order central moments of the response, {TI}, from a 

knowledge of the second-order statistics of the interface 

accelerations.  Once this is accomplished, the second order 
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moments of the member stresses are given by 

[s. .] = [G][K  HG]T (6.3) 
13 kX 

where 

[s. .] = the second order central moments of the member 
ID 

stresses 

[K  j - the second order central moments of the response 
k£ 

[Til 

Thus, the major problem is the determination of the 

statistics of the normal coordinate response.  The first step 

in this task is the description of the interface accelerations 

considered as a random process.  In this regard, we establish 

certain basic assumptions in the following section. 

6.3  Idealization of the Booster/Payload Interface Accelerations 

The basic assumptions about the nature of the booster/ 

payload interface accelerations were presented in section 1.3. 

We restate them here in the following form. 

A. (i)  The interface accelerations are the response of 

a lumped parameter, second order, linear system 

to random excitation.  We assume Lhau i.his linear 

system is the structure of thr Looster itself, 

(ii) The second time derivatives of the random excita- 

tion to the booster can be idealized as a non- 

stationary vector shot noise process. 
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B. The intensity functions of the components of the 

vector shot noise are the same to within multi- 

plicative constants. 

C. The excitations to different normal modes of the 

booster structure are uncorrelated. 

These assumptions must be expressed in mathematical form. 

Consider assumption A(i), and suppose that the booster structure 

has N degrees of freedom.  According to this assumption, the 

response of the booster to the initial random excitation may 

be expressed by an equation of the form of Eq. (3.29).  That 

is, 

[** (x.,x H = C^R. (UU.K1 [*„(<«.. i»,) 3 C^H* (w,Kl      (6.4) 
^.12        bk  1     Q  1  2     bk  2 

(NXN) (NXN)      (NXN)        (NXN) 

where 

[$_ (x ,X )] = The matrix of generalized spectral densities 
sb  1  2 

of the normal coordinate response of the booster structure. 

H  (x) =: The frequency response function of the k   booster 

normal coordinate, in the form given by Eq. (3.20). 

[§n (x,,x_)] = The matrix of generalized spectral densities 

of the initial random excitation, assumed to have p non-zero 

normal coordinate components. 

Employing the time differentiation theorem for Fourier 

integrals, we see that the generalized spectral density matrix 
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of the acceleration response of the booster, [$  (uu ,w )] is 
1  2 

given by 

2 2 

ab  1  2       \1     1 2  Q 1  2    X2 

(NX) (NXN)        (NX) (NX) 

(6.5) 

2 2 
where [x uu  § (x,iX )1 is the generalized spectral density 

1 2 Q 1  2 

matrix of the second time derivatives of the random excitation 

components.  Now the interface accelerations are related to 

the booster normal coordinate accelerations by a matrix trans- 

formation.  Denoting the interface accelerations by [a ], and 

the booster accelerations by [a }, we have 
b 

[a } = [c] Ub3 
(6x1)  (6XN) (Nxl) 

(6.6) 

where [cl is a constant matrix, and the acceleration components 

are designated as follows: 

tat)- 

[*1 ql 

y q2 

z 
> =  , ^ 

6 
X q4 

9 
y 

q5 

6 
V    z; lq6, 

Then from Eq. (6.6) and (6.5) and the definition of the 

generalized spectral density, we have 
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(6x6)      (6XN)  (NxN)        (NxN)       (NXN)   (Nx6) 

(6.7) 

where [$  (x #x )J is the generalized spectral density matrix 

of the interface accelerations=  Eq. (6.7) now embodies 

assumption A(i). 

According to the definition of a general vector shot 

noise, Eq. (2.59); assumption A(ii) states that the covariance 

matrix of the second derivatives of the random excitation has 

the form [i  (t)]6(t -t ) where the I  (t) are the general 
jk       2  1 jk 

shot noise intensity functions.  Hence, according to Eq. 

(4.43) of section 4.6: 

[x UJ2 iQ(x1,u;2)] = [I   ('J^-J^)] (6.8) 

where I., (x) is the Fourier transform of I., (t). 

Eqso (6.7) and (6.8) now yield the analytical statement 

of assumptions A: 

[I  (x .X )3 = r.clI^R (x )-3[i .k(x -x JlI^H* (x )^[c]T 

I2 k1     J   1  2     Dk2 

(6XN)  (NXN)       (NXN)       (NXN)    (Nx6) 

(6.9) 

Now, assumption B states that 

[I.MXT-XJI   =   I(x-x   )[K     ] (6.10) 
jk     i-     2 1     2        3K 

where I(x -x ) is the transform of the common intensity 
1  2 
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function and LK--. 3 is a matrix of constants.  Thus, if assump- 

tions A and B are valid, we have 

[5a    (W.,U)   )]   =   [C^H,     (x)<l[K    ^H*   (x-   )<l[c3T-l(uo   -UJ_) aI     1     2 °k     ! DkT\2 12 

(6.11) 

from  Eqs.    (6.9)   and   (6.10). 

Finally, according to assumption C. the cross-covariances 

between different normal coordinate components of the initial 

random excitation are all zero.  Thus, from Eq. (6.8) and the 

definition of the cross-spectral density, 

[i.vK-<Ol = \>i    (UJ.-UU M 
3k  1  2       kk  1  2 

or, [K  ] = [^K..^! (6.12) 
JK       J J 

Substitution  of this  result   into Eq.    (6.11)   results  in 

rJ      (x1(x_)l   =   [CIC^R     (x   K^K     ^H*   (aJo)-3[c]T.I(aj  -UJ_) aj     1     2 Dk     1 33 ^     2 12 

But   since   f^K. .^   equals   [^ v'K• • ^3C^ VK . . -J  we have 

T 
[C]     I('X  -u^) (6.13) 

Similarly, we can factor out the quantities    in the H, (w) 

(see Eq. (3.20)).  In summary, Eq. (6.13) may be written in 

the form 
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ai     X     2 ^k     1 \     2 1(0) 
(6x6) (6xN)       (NXN) (NXN)       (6xN) 

where 

[M]   =  VI(0)[CK-VK.O   [   — ] (6.15) 
1 mk 

2 2 -1   * 
H.     (x)   -  [ft     -  UB  +  2iCQknkiu3 (6.16) 

„    -it(u) -u)  ) 
I(iu  -m   )   =  J     e 2   I(t)   dt (6.17) 

and where ft  and Q     are the natural frequency and damping ratio 

of the k  booster normal mode. 

Equations (6.14) through (6.17) completely specify our 

general assumptions concerning the nature of the booster inter- 

face accelerations.  In the following section we present some 

of the data relevant to the interface accelerations and discuss 

the validity of assumptions A through C. 

6.4  Comparison of the Idealization With Relevant Data 

At our disposal we have two sets of data concerning the 

interface accelerations. 

The first of these sets is composed of the acceleration 

time histories themselves.  As stated in section 6.1 these 

*    This differs from the form of Eq. (3.20) in that the 
reciprocal of the k   component of the modal mass matrix has 
been factored out. 
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time histories were obtained from the calculated responses 

of analytical models of the booster structures to excitations 

derived from booster engine chamber pressure measurements. 

These measurements were obtained for 27 rocket engine test 

firings during the booster engine cut-off.  Thus we have 27 

sets of acceleration data, each set consisting of the 6 rigid 

body acceleration components at the booster payload interface. 

The coordinates for these components are as illustrated in 

Fig. 1 of section 1.2. 

In Figures 13 through 18 we present these acceleration 

time histories.  In each figure is shown a superposition of 

each of 27 cases of one acceleration component.  It can be 

seen that the mean of the x components clearly indicates the 

thrust decay of the booster engines„  The remaining components 

have approximately zero mean values.  In the sections that 

follow, we shall be mainly interested in these zero mean 

acceleration components.  This will imply no loss of generality 

in the remaining discussions since the mean of the x component 

may be easily calculated and subtracted from the original time 

histories to yield a set of time histories with a zero mean 

value. 

The second kind of data obtained consists of the power 

spectral density estimates of the acceleration components. 

We define the power spectral density of the j   and k 

108 



T I TA 

i   * '   .11.' »MK'fi"/t:|<lia 

» '"*    . •   ' > ,." ,   |     ,.v  < ! 

msms 11 
I O 0 

T IMECSECONDS] 

FIG.   13 

109 



TITAN    IIIC   27   Y   ACCELERATIONS 

en 

CD 

Z 
o 

< 
or 

< 

b    UOXIO""' 

^           t                   t C           I- t-           i-             u 
1.            ^U-    -                 I      *-r- 2       _K    den. ..L    Ltt-P »- 4 
H          Bli    Unfl     A      /An y          111     11 • lit &  irtlll   * 1       l; r 

-      fffllf hlBBMBflH   •UflTH HAVriilWE , j/:,. o  tmatMiin^immm   uiimiiii 
57*"                                                    '                   , 1              '           i i                li             i 

••••••••••DBUkBHbu >     nM                                              . 1,    1 

'       M        1        »H1 •'          •    , '       •Hli '     nfllll         1        '    f 
•••••••••••••••••••••••••••••I i I.BBBBI HI !•••• jauaaaBi i 

IflBBBflBBBiillBBBBiHIIIBBBBa.'IBBBail 
[ L         -                         —ii 
T 

~j"                         II 
• 

II                                    II                                  ^         ^ +    ; . . 
TIMECSEC0NDS3 

Fl G.   IH- 

110 



in 

UJ 

UJ 
u 
u 
< 

TITAN I IIC   27 Z   ACCELERAT   ONS 
!   I   1 

^^h 

" 
i -   ii +fl      ti 

fy      +4^ frt 4^4i nl4.   -1r! , i 1   P M 1 »       i • fll    - 1  . 
r jT r [ IJ 

•••rmiiiiifi ii'iin i, in miFH i r i Jill  1 JlililJ 
TJPfll   liUJlli IBBBlllll   DIHB* 'Vi'i  II I'liirn 

1   I HI   ll      1   '  1 
I i nil r i 
j i               < 
MI            'i 
'it            I 

*'i|'   HI,"'rir 
] ruin II   . III    Mli    HMIH 

-          ih     t , .itM^WM f          •   ii 'Mill 
t  -E M n\nnni i i     ft  Pi i! 
1/H A I •I'II \ i M  •    i   ;• 

•••WTi^^:"1"'   "• '••"•- 
• ,          '/1 \         ii 

i        i     •  i' 
i 

i          i 
II     .      i 

i        'i'i| 

i     i rr 
wB T li »-|              Mi         1       '              l 

n r .it.  .                    :   .                i1    i 
i     i 

t••• t c- ""fflti 1    i 

*- TW •(• i     II     .II 
ll.i         illV 
,,' i i.: i ,•   iii 

i.ii i, IIIII ,i    M 
iHUM mi i' Min 
"inn MI Jin .mm 

mi mu, minimi 

II i    i i i I 
i Hill   Ml I'll i .i   MII ii' 

LillL   IH    Ii. 'II, 1 1'.IV ,i,l   1 1    'Iii' 
• •Hill   i % .11    1 IIMIiii i II :ii 

urn iii.i .iiuii 
'iniir'i'i.riiii 
"•I'll luU.'|i 

ii i r n i III   f ' FII in r   1,11 I  11 [ r -   44        Mil F  It-IIP t n-1 
4-         J ti 1r     4' ::J:   ±t? - - .. T t _ r     zt t ± r 
T_      _r 

i 4-       4^T J t 
I  l_|_i 

...  4-.    1   .   .   . 
i—             —l— _++! LLi. .+tu  M . 

TIMECSECONDS1 

FIG. IS 

in 



ID 

< 
Q: 

LLI 
u 
< 

TITAN IMC   27   THETA   X   ACCELERATIONS 
1 i 1                     i 

1   1  1  1 

! 1 
4 T 

111 " , ~* 
 zz_i:      : 1    i  J t 

-I    -•    •*-! l            a 4  -   1-i »                               A         ', i    + J -i i U  1M   1       M 1 i    11 »   LEJI MilLLlaiL 
••••••mannai'mi' inn • IIHII run nil 

I Ml 1 
III'in   inn ii. iin ml 

1 1 i           nU lA i • r II lit1' 'inMII >iiii 
•••(•••irrii i 'ir i i .llll       1     ,l'|. I'll   '||' 
••ruann n i MI I H 1   II 1         • 1 .    ,i         i    II 1 

!I 1. OllilHINil 'I'            ,11          ' . 1 1 
1       T ••/ i«    l   1    "     'i 1   I' 

Will , 1  '             ' 
l»M   |i    ,       i i          i 

,   1  '•   '       i  ' ' i Zt 1  1 ilf/i 1                '1                     II 
\ IfIff 1            1                               i 

1   • •                 1       • 
fr.Wi '.ijiii    • 1 

BPB^r;-,- 
, 1                        i 

'    '                    1 
wii'< .' f. .   i» i             1 

.1      i 

1.   I..l'.            I.I         '                                 1 

p 

.    ... r / lini i            < 

IT '   1 M 1 •i                            , 

I llll                        ' 

" 
' VIIII W1M3 I           ,   1      ,               1. 

Ulllftli   lil                  1 1     1   '     1          i    1 ll 
••.'IBM mi    inn .1      'In     ll ..1 •!. 1 " 
••••IIIJI i   II 1         II                ll            II     1      1          '     III!        I 
••••aiiBiniiiii   i 1        It             II           III                 1    H  

i   Hun 1 in nun in II iiii ii. i 
IQD l UUM , UL  UJU'UiU Wl H-IB- 11 • JBU wtllL. . iijtt 111 E.fpp 

- -   J4-XC _ 1    tf |jpL 
; if ill        " 

i iJ   JJJI    U    H-LL+ i t   i ! 'l   ' It              L i 

!i!     i :i_:    ' Mil   T ' l    1 * * * i   i   i i i T 
• i   i   i 
i T    I i I '     * 

l    ! 

MEfSECHNOS 

FIG. 16 

112 



If) 

< 
a. 
-i 
UJ 
LJ 
(_) 
< 

•>    gOMIO"! TITAN I I IC 27 THETA   Y   ACCELERATIONS 

-A 
•  uo»iu-"i f. -< 

L   t- r 

1    OOM10-0* "It                       ,      ,   I 
'•'-             ll-'- - It. i                     T 
•--      j   1 xix    :   XI    14 
,f      -rllP- IIJU      HI-   X4      -4 1   ill      t\   \ 1 J 1 I7fl f|f     In    J   II         I 

.      .-.•....-''' ••iniiiiiiifiii.iinii.il i • ll i II ll, "ini .illiilliai 
1 " .1 II  VI il llll llllllffllllil •amIIn,ii nri'i    < 

II III kl HI IT    ^EJ HIMll ra UHIHI jnil      ilii III   1     i 
11 IIIMIIIIIH • ' ,i i   "I,I   mil' 'ini niiMM 

A •IT 1,   1           'II   1 ll'1'   'in III iniillilil 
1     UOXIO"01 .  FBI            •AH i'V''    i ' i • ii. v •• if Hir... 

MM  I        l        i .   >    i i             r' - i*:ir       ll    1 . A HI' .'',             1                                                    1- •   10 i.l 
l'lvrtlF'l,VHB'i»lir MM                                                  I          i        "   I1,] 

•                ta 
'7 

Ml 
ri.ia^ ur'ij.'.ii'   .i                               i          i   '   i        .'! v 

M * l 1 II           1                i        i                    i .'     *    1.          !! 
II    1         l 1            M       'i     >       '  I SHI U i,'l II iJ 
i  ,ii     .ii.i            i,ni    in .'IIIIIInil   'ill 

1    OOXIO-0* 

\ 

•JIII i i ,i.n.   iin ,i i in. .mil iiPiiiifiaiir 
t   uoxio-o* is iin i r J iinv 1 III IBVil"H    ' H 'i i^"  'V'          1 ill   if r  IT 

III  f      111         f'l       ' 
ll    i 

••    OOIII)'01 LLL   it   21     X-      -1 i _:E:;;   :: t-   X      L            .      _J 
x   CJ3   .. x t x x i   .. 

4    .      .,            • X  X t    - 
" XXL 

•>  umiu *' ! 1 
T IME(SFCONDS) 

FIG. 17 

113 



r, 

o 

< 
UJ 

LJ 
< 

,«.,r..              TITAN I IIC   27   THETA   Z   ACCELERATIONS 
1 

4    00110*01 ----                              ~   I 
[     -  t. 

j   00110"°* K -   -4- Iffl       1 1 "I 11       1 ~\t Z i m J.JL It 
n inii \ J..IL   ,_   ,. IE 

<    OOHiO"OJ till    Mill* il i    il 1   1 JILL 
1 ill   II   ' II IS'III III1 111 III 

i   II   II II nil < i in II 
iii1 IP i    i IIIMIIII 

M     '          I'IMI     1   Ho 1 lill 

1 lllildl 
mill 

A                    \   L,       JHflJ mill n   1          Hi IIHiH HI I'll 
1                            •:..             ^ •••iiiiiiBiirnni IN   i . • ••   • H-" 

*              II   i 
' II 

•n*i"(iatiiiiifn ' Mi i' i if 
numi HI in i! » 
.'IT'»I';VI*M<IM                                                  i 

• . i \ •                                                        i 
i' 

i, • 

•••»-* " •••»*... 
; 5 'ma \m i d MI    II i 

i 
ij i    i 

i                      n II   i 

, 
• Jin •.'111,1   •     ii i i 

1    OQXIQ-0* ••minimi tin i        i i   . 

••UMIIHIIBL illl       1 .   I i jkiin1 

M W IBIB i     i   ,ii          i>   II i 
IJ    in   ii   II in II II ii. 
in i II HI   i .'.iIMI HI HI 

IIIIII v           V MB Ml mini 
V Illl Mill 

.    OOXIO'0* imti 'i 11 i  II ui  i IIIII nil 
i i  i IIII naiia in IIIII linn • •Illl 

17  r IIHHIIUK     i L   ,-J-ttL 1 
J Ml    ,.   h -   -   t r E tt ....   L -----1 

•    OOXIO'°* : ::l:;::: t h   L -f +   y r 

- t-h 
JU4- 

4  ooxio°* 

*+     -   * 
'!! ± 

S    OOXIO" u* j ± J: 
Q JO       0 40       0 so       0 to       0 10       0 10       u 90 

TIMECSECHNDS) 

FIG. 18 

114 



acceleration components, $ ., (x) as 

* ., (OJ) = E[A. (UJ)A*(UJ)] (6.18) 
JK        3 k 

th 
where A.(x) is the Fourier transform of the j   acceleration 

component.  From elementary probability theory, an estimate 

of the quantity is 

27       * 
-i £ A. (uu) A (uu) - 4 ..(u>) (6.19) 
27 k=l  D   k      "H 

where I . (uu) is the estimated value of the quantity defined 
~kj 

by equation (6.18).  The Fourier transforms of all of the 6x27 

acceleration time histories were obtained for frequencies in 

the 0 to 50 Hz. range and the six power spectral densities 

$,,(x) (k=l,..o,6) were estimated according to Eq. (6.19). 

These functions are presented in Figures 19 through 24.  It 

can be seen that the non-zero mean value of the x component 

is reflected in the large peak at x=0 on the spectral density 

plot.  However, the x component power spectral density still 

provides useful spectral information at frequencies higher 

than ~ 10 Hertz. 

There is a simple relationship between the power spectral 

densities and the generalized spectral densities.  For the 

acceleration components with zero mean; the diagonal components 

of [5  (x , x )j evaluated at x =x =x are just the power 

spectral densities defined by Eq. (6.18) .  Hence the estimates 
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of the power spectral densities are estimates of the diagonal 

elements of [$  (uu , uu )]       .  These estimates are only aI  1  2  uu =UJ =uu 

first order statistics since we have provided no calculation 

of their confidence intervals.  A detailed calculation of the 

higher order statistics of the spectral density measurements 

is beyond the scope of this work.  So, for the present dis- 

cussions we shall assume that the estimated power spectral 

densities are valid representations of the exact power spectra 

as defined by Eq. (6.18). 

Having presented the data discussed above, we shall now 

discuss the validity of the assumptions stated in the last 

section.  We shall examine these assumptions one by one in the 

light of the observed characteristics of the time histories 

and of the power spectral density measurements. 

Assumption A(i); 

The acceleration time histories clearly exhibit a random 

nature.  Hence if these accelerations are to be regarded as 

the response of a linear system to some initial excitations, 

we must conclude that the excitations initially applied to 

the linear system are themselves random. 

Examining the acceleration time histories more closely 

we see that, for the components with zero mean, the number 

of zero crossings is roughly equal to the number of peaks. 

This observation corresponds well to a description of a 
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(2) 
superposition of narrow band processes.      Such processes 

are typical of the response of lightly damped mechanical 

systems to broad-band random excitation. 

Hence the characteristics of the time histories themselves 

suggest the validity of assumption A(i).  This assumption is 

further strengthened by the fact mentioned in section 6.1; 

that the individual accelerations were obtained by calculating 

the responses of an analytical model of the booster structure 

to some initially applied excitation.  We can then conclude 

that the linear system mentioned above is the booster structure 

itself.  Of course, in the 27 cases, different booster models 

were used.  We hypothesize a booster structure which has, in 

some sense, the "average" properties of all the booster 

structures used in the calculation of the interface accelera- 

tions.  In the following discussions we shall use the term 

"booster structure" to denote this hypothesized booster 

structure. 

From the foregoing observations we conclude that the 

interface accelerations are components of response of the 

booster structure (in the sense described above) to an 

initially applied random excitation.  Thus, equation (6.7) 

is indeed appropriate. 
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Assumption A(ii); 

Equation (6.7) predicts the following form for the power 

spectral densities of the interface accelerations: 

[i.k(u»)3 - [C]1>H.  (UJ)^O • (iM.uujlC^H. (UJ)^[C]T    (6.20) 

Or, expanding the matrix product: 

N  N 4 A t 

$  (uu) = E E C. H.  (uu) (uo  $n  (U0,uj))H,  (uu)C, 
D*     m=ln=l  3ml>        "        *>    *n m        mn       n 

N 

x=l Di  £ it ki 

(6.21) 
N 4 

+ E   E C. H. (uu) (uu  $0  (uu,w))H* (uu)c 
m-1  nj*m  J   m        mn       n 

where $   (uu ,uu ) is the generalized cross-spectral density 
mn 

of the mth and n   components of [Q].  In particular for j=k, 

we have the spectral densities shown in Figs. 19 through 24: 

N  2 24- 
§  (x) = E C   H. (uu)   (uu §   (UU,UJ)) 
kk     i=1 k£  -b^ Qlt 

E E C, C.  Re(H  (uu)H  (UU) ) (UU *   (uu,uu)) + E  E  C C  Re (H  (uu)H  (uu) ) (uu I 
«i j- n—x m    n        n 

n^m (6.22) 

Now,   suppose  that  the  tt     (uu)   is  the   force  input,   displacement 
I 

output   frequency response   function  of the   I       booster  normal 

mode.     That  is,   assume H,    (uu)   in the   form 

2 2 "I 
H.     (<u)   =   [0     -  uu     +  2i   CO  uu] (6.23) 

D. k Ok k 
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i      .2 

as in Eq. (6.16).  With C  « 1» IH.     (x) I  peaks sharply 
Ok       b£ 

near x = Cl     and drops off to negligible values for | UJ—fl | 
X K 

equal to several multiples of the bandwidth, 2 C  ^ •  Thus, 
Ok k 

when looking at the power spectral density measurements for 

frequencies in the vicinity of the I       modal frequency of the 

booster, we should see a peak of the form 

*kk<»> Z  S*lHb <")|2("4 *Q,,(*,UJ)) 

N
 4 *• 
5  Ck£

c
kn 

Re(Hb (jj)Hb (x))(uj  §Q  tu-'.u'))   (6.24) 

n^m 

where we have assumed that the k  modal frequency is several 

bandwidths distant from any other modal frequency. 

Turning to the data we note that the power spectral 

density estimates exhibit sharp, distinct peaks, each of which 

2 
closely resembles a function of the form of |H  (JJ) |  or of 

the form Re (H,  (UJ)H* (x))«  From (6.24) and this observation, 
£     n 

4 
we conclude that the quantities (x  $   (x,x)) must be nearly 

mn 
constant near modal frequencies of the booster.  For mathe- 

4 C 
matical simplicity we assume that the (x  $n  (x,u)) (m,n = 

umn 

1,.„.,N) are constants for all x.  Hence for uu ^  x : 

(X, xl   *_  (x.x )) = K   F(x - x_)/F(0) (6.25) 
1  2  Qmn 1     2 mn    X        2 

(m, n = 1, ..., N) 
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where the K  are constants and F(ua) is some function con- 
mn 

tinuous at uo = 0.  But, it is obvious that the right hand 

side of Eq. (6.25) is just the cross-spectral density of two 

components of a general vector shot noise process. 

Thus, we conclude that with the H,  (uo) given by (6.23) 
L 

the properties of the spectral density measurements require 

that the random excitation to the idealized structure is a 

broad band nonstationary process.  For convenience, we can 

assume, to a good degree of approximation, that the random 

excitation is a vector shot noise process. 

Assumption B 

It must be noted that the magnitudes of the acceleration 

time histories exhibit a general time trend which is slowly 

varying compared to the rapid periodic fluctuations.  The 

accelerations with zero mean rise to maximum values in less 

than one second and rapidly decay to zero after one second 

(not shown in Figs. 13 through 18).  This general time trend 

we associate with the variation of the intensity functions of 

the shot noise process which excites the booster structure. 

Moreover, as the plots of the time histories show, the 

general time trends, as measured by functions which envelope 

the acceleration maxima, are of the same general form and 

duration.  It can then be concluded that the intensity functions 
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of the initial random excitation to the booster are approxi- 

mately the same except for multiplicative constants.  Thus 

Eq. (6.11) is approximately valid. 

Assumption C 

According to assumption B the general time trends of the 

interface accelerations are the result of the time variation 

of a nonstationary shot noise intensity function.  If this is 

true it can be inferred from the time histories that this 

intensity function begins at zero at the time origin, increases 

to its maximum value after approximately one second and then 

drops back to zero a few seconds later.  Thus it is apparent 

that the magnitude of the Fourier transform of the intensity 

function assumes a maximum value near a frequency of the order 

of one Hertz.  This frequency is much less than the center 

frequencies of any of the peaks observed in the power spectra 

measurements presented above.  Assuming the magnitude of the 

transform of the intensity function drops off rapidly enough 

from its maximum value, we conclude that the generalized 

spectral densities of the interface accelerations, as given 

by Eq. (6.11), take on significant values only when |uu —uu | 

is small. 

In the light of this assertion, examine Eq. (6.11). 

Expanding the matrix product we have 
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N 
(x   ,m   )   = S     C     C     K     H      (U)   )H*   (it   ) 

a
z    .      1      2 £ssl      jJl   **   **  bjT   1;   bi      2 

+ ZJ      ZJ     C     C     K    H      (UJ   )H      (x   ) I(x   -uu   ) 
m=l  n/m     jro ^n m" •     l     bn     2 1     2 

(6.26) 

Now, from the spectral density measurements we see that, 

in almost all cases, the center frequencies of the peaks are 

separated by several band-widths.  Thus the value of |H  (UJ )| 

is quite small at the center frequency of a different booster 

normal mode.  Therefore, with |x -uu   small the quantities 
1  2 * 

H  (x )H  (X ) (n/m) are much smaller than the quantities 
bm  1  bn  2 

H  (x )H  (x ).  Now, the quantities C  C  are certainly 
hi     1  b£  2 jl ki 

comparable in magnitude to the quantities C C  (m^n).  We 
jm kn 

conclude that if the K  (mj^n) are less than or at most cora- 
mn 

parable to the K   then the second term within the braces in 

Eq. (6.26) is negligible compared to the first term. 

Now suppose that we calculate the second order central 

moment response of a payload structure using Eq. (4.12), with 

T$  (x ,x )] as the excitation.  The second moments can be 
al 1  2 

expressed as the sum of two terms.  One of the terms arises 

from the first term of Eq. (6.26) and the other term arises 

from the second term of Eq. (6.26).  From preceding discussions 

it can be concluded that the second group of terms in the 

second moment responses can be neglected in comparison with 
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the first group of terms.  That is, the second moments of the 

response of a payload to excitations given by Eq. (6.26) can 

be approximated by the response to excitations characterized 

by 

(UP #U) ) ~ £ CC    K..H  (UJ )H  (ID ) (6.27) 

Thus if the diagonal elements of [Kmn3 are not much less than 

the off diagonal terms.  Then approximately correct results 

may be obtained with the use of the approximate spectral 

densities given by Eq. (6.27). 

Writing Eq. (6.27) in the matrix form 

[^aI(a,lX2)1 ~ ^c3^Hbk(
JJ
1^^

Kx^1>Hbk
(uJ2)^:!,:C:iT ^VV 

(6.28) 

we see that the off diagonal elements of [K. 3 are effectively 

zero.  This assertion is equivalent to the statement of assump- 

tion C.  We have thus demonstrated in some measure the applica- 

bility of this assumption. 

Having established our basic assumptions about the nature 

of the interface accelerations we devote the next two sections 

to a more detailed estimation of the statistical parameters. 

As Eq. (6.14) shows, we have yet to determine 

(a)  the constants ft  and Q        describing each booster 

normal mode 
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(b) the elements of the constant matrix [M], and 

(c) the intensity function, l(t). 

In section 6.5 we discuss the determination of the power 

spectral density parameters, (a) and (b), and in section 6.6 

we estimate the intensity function, (c). 

6.5  Estimation of the Spectral Density Parameters 

According to Eq. (6.14) the power spectra presented in 

Figs. 19 through 24 have the form 

N   2 2 
*vk(s«) = E M   H  (Utt)| (6.29) 

2=1  kA  bjt 

2    2   ...   _  ,-1 
'OK where    ^v^ = ^n  " *  + 2i^n \^ (6.30) 

From Eq. (6.29) and (6.30) we can show that from the shapes 

of the peaks in the power spectra the quantities ft. and Q 

(k=l,.o.,N) can be determined, and from the magnitudes of the 

peaks the absolute values of the elements of [M] can be found. 

But first we must identify and label the booster structure 

normal modes. 

In Figure 25 is shown a plot of the number of the more 

significant spectral density peaks centered at any given 

frequency.  We see that the positions of the peaks cluster at 

certain locations.  We assume that the positions of the peaks 

within each grouping of peaks correspond to an estimate of 

one modal frequency of the booster structure.  These groupings, 
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6 in number, are thus associated with particular booster 

normal modes.  We have indicated this correspondence by 

numbering each grouping as shown.  The peaks within the grouping 

labeled "mode 5", for example are, assumed to represent the 

response of the 5   normal mode of the booster to the initial 

shot noise excitation. 

With the booster mode identified as indicated above, we 

see that each significant peak in the estimated spectral 

densities corresponds to one of the frequency response functions 

of a booster normal coordinate.  For a peak corresponding to 

th th 
the k  booster normal mode in the j   acceleration component 

spectral density the spectral density is given approximately 

by 2 
2  2 M. 

+ 
k "ok k 

$..(*)- |H..(x)|  M  =—3 =-yl£ = -^ (6.31) 

This is valid as long as the peak in question is not within 

a few band widths of another peak.  Assuming that '   is small 
Ok 

-2v 
(of order 10  ) we may write 

ID    = a (6.32) 
MAX   kD 

C =    (half height  width   of   i      (x)) (6.33) 
Ok 2  u JD 

MAX 

|M.,   |   ~   2   Qn,    JO
2

        *. . (ui) (6.34) 
]k Ok     MAX     j]        MAX 

2 
to order C  , where §      (uo)     is the maximum value of 

Ok        3D   MAX 
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I  («) and nkD= ^ 7i-c2  , 
Ok 

$  (ID)    = $ . . (uu   ) 
jj   MAX    J3  MAX 

The quantities given by Eqs. (6.32) to (6.34) were cal- 

culated for each peak in each of the spectral density estimates, 

The resulting numerical values are presented in Table I.  The 

calculations for the x  or q  component spectral density were 

also included since the large peak at x = 0 has little effect 

on the size and shape of the 20 Hertz peak.  However a cal- 

culation of the M  associated with the x component is not 

included in Table I.  As an example of the details of the cal- 

culation consider the deter- 

l\ |JJ(W) Up,* = 20.33 HeRT* 

2. *J3  « 

mination of the parameters 

associated with the peak near 

20 Hertz on the power spectral 

density of the z acceleration 

component.  The position and 

magnitude of the maximum and 

Fig. 26 of the half power points are 

indicated by Fig. 26.  With the values of these as given, we 

proceed as follows: 

A  \ f 

(a)  n   = uu    = 20.33 Hz V '   kD    MAX 

127.76 
radians 

sec. 

from Eq. (6.32) . 
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TABLE   I 
SPECTRAL  DENSIT/   PARAMETERS 

ACCELERATION 

COMPONENT 

BOOSTER 
HOPE (£<*. (6.3I>) (E« (6.32)) (E«.(6.33)) 

j K (RADIANS /sse.) 

1 

2 

5 

1 

129.648 

4b.167 

.o43 

. 105 IM„ |   = 10.79 

H 2 80.634 .070 |K„|    =     5.11 

t» 3 93.201 .049 |HU|     -    7.35 

It 5 124.617 .o3tt |M„|    =   10.58 

II 6 153-938 .055 |MM|    =  44.23 

3 2 79.583 .076 |M„|    =   35-62 

n 5 127.7 56 .u43 |M„|    =  87.71 

4 3 96.340 . 104 I :•'.«!   = ^.394 

it 5 126.711 .046 |K,9|   = 0.512 

5 2 81.682 • Oo9 | M Sl \     -   0.190 

ii 
H 1^3-673 .061 |M*|    =  0.377 

•i 5 129.052 .039 |M3S|    =   0.201 

D 1 4b.171 . 105 |M„ I    =  0.066 

II 2 30.634 .071 I MM|    =   0.074 

II 5 130.b99 .046 I KM I    =   u. 271 

II 6 151.844 .050 | Mw |     =   ^.616 
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(b) The half power points are located at 19.34 and 21.10 

Hertz.  Hence the half height width is (21.10- 

19.34) Hertz = 1.76 Hertz.  Therefore, from Eq. 

(6.33): 

1.76     _ _., 
C   =   = 0.043 

0k        2(20.33) 

(c) Finally from Eq. (6.34) 

2 I -2 
|M35| ~ 2(0.043) (127.76)  ./0.387x10 '   = 87.71 

In a similar way, all the other values listed in Table I 

were obtained. 

As would be expected, the center frequencies and damping 

coefficients of any one booster mode fluctuate randomly from 

one acceleration component spectral to another.  In Table II, 

the average values of these center frequencies and the maximum 

values of the damping ratios are presented.  Table III presents 

the matrix [IM , I] with the booster modes designated as 
3k 

explained above.  We shall use the contents of Tables II and 

III for the example at the end of the chapter. 

It should be noted that we have obtained only the absolute 

values of the components of [M].  The signs of the components 

can be determined once the off diagonal terms of [$  (x)] have 

been estimated.  However, this involves the calculation of 15 

quantities similar to those given by (6.18).  In some cases, 

this great mass of calculation can be avoided.  In the example, 
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TABLE   I 

BOOSTER   NORMAL MODES 

B OOSTER 

MODE 

K 

AVERAGE   MODAL 

FREQUENCIES 

(RADIANS/SECOND) 

M/\XI MUM 
DAMPING 

CoEFFlClE NTS 

1 46.169 .105 

2 80.633 .076 

3 94.770 .104 

4 103.673 .061 

5 128.380 .046 

6 152.891 .055 
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[M = 

TABLE nr 
ELEMENTS   OF THE 

MATRIX   [IMJ] 

MODE NO. 

1 2 3 4 5 6 

5, 

54 10.79 5.11 7-35 0.00 10.5s 44.23 

*3 
0.00 35.65 0.00 0.00 87.71 0.00 

^ 0.00 0.00 0.39 0.00 U.51 0.00 

% 0.00 0.19 0.00 0.38 0.20 0.00 

5. 0.68 0.07 0.00 0.00 0.27 0.62 
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we show how the signs of the components of [M! can be obtained 

through physical considerations alone. 

In the next section we consider the estimation of the 

intensity function, I(t). 

6.6  Estimation of the Intensity Function 

We here assume that the intensity function, I(t), is 

slowly varying in the sense described in section 5.6.  Now, 

we have idealized the interface accelerations themselves as 

the response of an elastic structure to uncorrelated compon- 

ents of a vector shot noise.  It follows that the response of 

the booster to one uncorrelated excitation component is un- 

correlated with the response to another excitation component. 

Thus if K    is the variance of the j   acceleration due to 
aj 

the i  modal component of the vector shot noise, then the 

total variance is just the sum 

N   (i) 
K    . (t) =  E  KV '(t) 
aD      i=l  aj 

However, if the shot noise is slowly varying then 

(i) 
Example 6 of section 5.5 shows that K   (t) is approximately 

a] 

proportional to the intensity function of the shot noise com- 

ponent.  Since we have assumed these intensity functions to 

be the same within multiplicative constants the total variance 

of any one acceleration component will be proportional to the 
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intensity  function,   I(t).     That  is 

*    .(t)     oe   I(t) (6.35) 
aj 

Now, for the acceleration components with a zero mean 

value, the Tchebychev inequality states that curves along 

which V'K . (t) is constant are those for which the probability 
ell 

of reaching the magnitude of acceleration given by the curve 

is a constant.  Hence, if we construct a function which closely 

envelopes all the ensemble members of each acceleration com- 

ponent, we can conclude that */*        (for all j) is proportional 
aj 

to the function represented by the curve.   A suitable function 

for this purpose is 

C(t) = 
A(l-cos et)    0 < t < — 

" £        (6.36) 
0 o > t > — e 

e  was evaluated by noting the time position of the maxima 

attained by each time history, averaging these values and 

dividing 2- by the resulting average.  The approximate value 

obtained in this way is 

€ = 4.833   radians (6>37) 

sec. 

With this value for  e, the curve given by (6.36) was found 

to be a good estimate of the enveloping function. 

Since ./*   « C(t) (all j), relation (6.35) gives 
aj 
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I(t) cc C
2(t) 

2 
[  c (1-cos et)   0 < t < — 

I(t) =  \ " «     (6.38) 
o o > t > ^H- 

where C is an undetermined constant. 

We shall need the transform of I(t) for the response for- 

mulation.  A straightforward evaluation of the Fourier integral 

by elementary methods yields 

-iw2JL 

I(UJ) = C 

e        4 
i(e   e -1) 6 e 

2  2.. 2 . 2, 
ID (uu -e ) (u) -4e ) 

and since 
2n/G 2      ,w 

1(0) = J    C(l- cos et)  dt = — C 
0 e 

we have 
. 2rr 

;, ,   i(e     -1) =• e 
I(^  =       n /6 39)  22 2 2" l°-jyJ 
1(0)   UJ(UJ - e ) (oT- 4e ) 

From (6.39), it is apparent that I(t) is indeed slowly 

varying since the major components of its Fourier spectrum 

are centered at ~ 0.77 Hertz while the booster frequency 

response functions are centered in the region 7 to 35 Hertz. 

Having obtained a crude but serviceable model of the inter- 

face accelerations, we now turn to the problem of calculating 

the response of a payload to these excitations. 
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6.7  Response Formulation 

The two fundamental relations are 

2 
{TI}   +  20C.U».^3£TI3   +  I>ID.-J{TI}   -   [C]        la} (6.1) 

(Mxl) (MXM) (MXM) (MX6)       (6x1) 

and 

* T      I(«\-W   ) 
t§a(UUl'UJ2)-1   =   ^M^^Hbi(Ju

1)^^H
b(

aJ2)1[M  ]  ~*   (6'14) 
3 1(a) 

According to Eq. (4.12), the Fourier transforms of the second 

order central moments of [r\]   are given by 

CD ^ 

L(ui) = ~ I     «^<y)*0  (y»y^)H. (u)-y)dy (6.40) k3      2TT ->_m    lc    «kj        3 

In this case: 

[i_     (y,y-w)] = [c]    [Ml     [>H. .(y)H*   (y-wKl[M]T [c]T ^L 

Qkj toi       bi I(0) 

(MX6)(6XN) (NXN) (Nx6)(6xM) 

so  that 
N     6 6 

*      (y. 
Jkj 1(0) 

(6.41) 

vy,y-x)  = 1{>wi-     E   £       £    C    M    M    c     (H     (y)H     (y-w)) 
0.-^ 1(0)     i=l  m=l  n=l     m3  mi  ni kn    t:L bi 

Substitution of (6.41) into (6.40) yields 

N 6 6 
K    . (x)   =    £ £ £     C   .M   .M       C, 

kD i-1     m=l     n=l     m3  mi   ni   ^n 

* f(5j" i^  J"\ (y)Hbi (y)Hbi (y_x)Hj (*_y)dy 
— 00 -* 

(6.42) 

1        2 2 -1 
where     H   (OJ)   =      ('i>     -  U)     +   2iC uu, uu) 

k ITL        k k k 
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The integral on the right in Equation (6.42) is nothing 

but the integral of Eq. (5.69) of section 5.6.  Hence the 

inversion of the Fourier integral gives 

kj 

N    6    6 t (i) 
K  (t) = S  S  S c M M c  [j LLlzL)  y      (T)dT } 

i=l  m=l  n=l mi   mi nl kn   0 1(0)    kJ 
(6.43) 

(i) 
The quantity Y   (t) i-s given by Eq. (5.81) with Q  and Q 

kj 

replaced by Q. and Q        respectively: 

(i) 

kj 
(t) ~ A[B, e 

-(C-w.+C .w.)t k k  3 3 
cos (x, -x . ) t v kD  3D 

"«kVcoi0i>t   ,   n .„ -Be cos(x  -A  )t 
2 kD  jD 

-(C.us.+C A)t 
-Be   j 1  0i i  cos.   _Q )t + B e 

3 jD  D      4 

2   2    2   2   _i 
A = [8 x  x  0. (Q  -x  )(Q  -x  )] 

kD jD iD  iD  jo   iD  kD 

B  = 20..      + X,   + x . 
1     iD   kD    3D 

-2: . n t 
01 i - 

B  = (ti. + x._) + (0. + x. ) 
2   fi._   iD   kD'     iD   3D 

ID 

X. 
B  = 

kD 
(n. + x. ) + (n. + X ) 

3   n   viD   3D      iD   kD 
iD 

x. x 
B   = -^ (x   + n.  ) + -M (x. + n_) 

4     n.„     kD     iD       n._     3D     D' iD ID 

>  (6.44) 

J 

where 4. = u.vi-C . 
iD   1   Oi 
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/  2 
kD   k   k 

/  2 
JU  =ID Vl-C 
JD    j    j 

(6.44) yields a result for the convolution integral, 

r  I (t-T) ^    (T) <3T) which is correct except for the term 
J0 i(0) kJ 

„t   rlM   _* (i) 
(T  +T  +T   )           ' £        j Y    .    (T)   d")   where,    from   (III.15)   and 
123       0     1(0) kJ 

section  5.6: 

O (T)  < 

2[MAX(|a^~)|)jP+1[MAX(|a]J + )-a(")|)] MAX[ | J (a^+) ) |] 
Q  f '   1 

(p+2)[MIN(|a1i + )-a! + )|)KMIN(|aJ + )-a(")|)]P+2)MIN[|j(a(-))n K 3 k    3 k 

2MAX(|a1J"
)|) 

0 [T } < 0 { JL_ } 
^       MIN(|al+J|) 

O (Tl < 0 { MAX (C ., C-. C.)3 (6.45) 
3 0i  k   J 

It is understood that the locations of the poles of 

frequency response functions are denoted by a .  In formulae 

(+) 
(6.45), a   denotes all combinations of two a  which involve 

k j 
(-) sums of two of the frequencies x, , x.  and Q.  while a 

kD   DD      ID       k 

denotes all such combinations involving differences between 

two of these frequencies. 
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Equations (6.43), (6.44) and (6.45) summarize the 

approximate formulation of the second moment response of a 

payload structure to the interface accelerations as idealized 

by Eq„ (6.14). 

Once the approximate second moments have been determined, 

the member stresses can be found from a simple matrix trans- 

formation (e.g. Eq» (6.3)). 

To illustrate the application of Eqs. (6.43) through 

(6.45) we present the following example. 

Example 6.1 

A two degree of freedom structure is driven by a combina- 

tion of the z and Gy components of the booster/payload inter- 

face accelerations.  Suppose that the normal equations of 

motion are 

X 
1 ' + 2; 

x       0 
1 

0     x L          2 - 

* 

r „  > 
X 

1 

X 
^   2 

>   + 
X 
1 

0   x 

0" 
r 

X 

2 < 1 

X 

•   = 

2- L    2. 

2 2 
C x Co) 
11 2 1 

2 2 
C x C X 
12 2 2 

r "  '\ z 
\  (6.46) 

where 

x ,x 
1  2 

= payload normal coordinates 

0„025 

16.5 Hz. 

20.5 Hz. 

1.0 

217.4 

> 

(6.47) 
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C and c were chosen so that the magnitude of the peaks 
12 r 

centered near 16.5 Hertz on the 6  spectral density equals 

the magnitude of the peak centered near 20 Hertz on the z 

spectral density.  A comparison of Eq. (6.46) with (6.1) shows 

that 

2 2 
0   0   C x    OCX    0 

11        2 1 

[c] = 2 2 
0  0  c, w   0  cm,  0 

12       2 2 

And, from Table III: 

[C][M] 
2       2 

0  M  C X +M__C X 
32 1 1  52 2 1 

0  M32CLX'+M52C2X^ 

2 2                   2- 
0     C  X   M C  X,M_C+C  x   M,__      0 

2   1   54 1   1   35     2   1   55 

2 22 
0     C'jjMC/| C,iu  M__+C x  M          0 

2   2   54 1   2   35     2   2   55 

(6.48) 

Let 

|^H.>3 = r1^   C^H. , (y)H*. (y-x)^l 
=> 1(0) ^        1>1 

Then  Eq.    (6.13)   becomes 

[i   (y,y-x)l = [MJ [>H.-0 CM] 

so that 

Or, 
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[$  (y,y-'i))] 
2 2 2 

,oC,+M_Cj + H4<
C
2
M
54) 

+ H5(C1
M
35
+C2M55) ] 

32  1     52  2J 

4 
uu 

2   2 
X   uu 
. 1   2 

2   2 
uu  uu 

1   2 

UU 

(6.49) 

To proceed   further,   we  must  ascertain  the   signs  of  the 

M's  in  Eq»    (6.49).     Let  us   focus  our  attention  on  the  rela- 

2 
tive signs of M  and M   since the term H (C M35 + C M  ) 

will most affect the results. 

First, we notice, after a consideration of Eq. (6.14) 

that the Fourier components of z and B in the vicinity of 

booster mode 5 are proportional to M  and M  respectively. 

It can be seen from Fig. 27 

that the accelerations along 

6r -»»- 

I i 
i 

-Qy 

Fig.   27 

the  z  and   G     directions  in 
y 

the normal mode centered at 

~ 20 Hz. can be considered a 

mode of vibration of a beam 

in the x-z plane.  If we 

assume this to be the case, 

then it can be concluded that 

o 
z and 6  at 20 Hz. are 180 

y 

out of phase.  Hence their 

Fourier components are opposite in sign; i.e., M   and M,r 
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have opposite signs. 

Assuming the above argument to be correct and referring 

to Table III, we can set 

M  -  + 35.65 
32 

M52 = ±  0.19 

Mc„ = +  0.38 54   — 

M   = + 87.71 

M _ + 
55 0.20 

Then, with C  and C  given by (6.47): 

(M  C +M  C )  = 5922.84 

(CM)    = 6824.41 
2 54 

2 
(M  C +M  C )  = 1956.29 

35 1  55 2 

(6.50) 

Finally, the result corresponding to Eq. (6.43) is 

2   2 (2) 
K      (t)   ~   uu.x.   [5922.84 I(t-T)   y    .    (T)dT 
kj k   j kj 

,fc (4) 
6824.41 I(t--)   Y (T)dT 

0 kj 
(6.51) 

t (5) -, 
+   1956.29 I(t-")   Y,   .    (T)dT]   7~ 

kj 1(0) 

Kt) 
1(0) 3" 

(1   -  cos   e  t) 

e  =   4.833 
(6.52) 
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where the y    are given by Eqs. (6.44). 

With the numerical values given by Table II and Eq. (6.47), 

Eq. (6.51) may be integrated numerically to give the desired 

second order moments of the system response. 

The integrals of (6.51) were evaluated by the trapazoi- 

dal rule.  Fig. 28 shows the resulting time histories of K-# 

K   and K  .  In Figs. 29(a) and (b) 3V*i;, and 3V*22 (i.e., 

3a and 3a ) were plotted along with a superposition of the 

system responses to each of the 27 sets of acceleration.  These 

were obtained by a numerical integration of the deterministic 

equations of motion.  It can be seen that 3-JK       and 3V*__ 
11       ^~ 

bound most of the deterministic solutions to the response. 

This is to be expected since by the Tchebycheff inequality, 

Eq. (2.28), there is a probability of approximately 0.89 that 

at any particular time, the responses are less than three 

times the corresponding standard deviations. 

It is instructive to calculate the relative errors induced 

by the use of Eq. (6.51).  That is we wish to calculate the 

orders of magnitude of the error terms associated with each 

of the three terms of (6.51) by Eq. (6.45).  As an example, 

we shall calculate the error terms of K,,(t). 

Since the first mode of the system is tuned to the center 

frequency of the 4th booster mode the second term in Eq. 

(6.51) gives the largest contribution to K  (t) .  Hence, the 
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T / 
relative errors associated with the quantity f   }        ' 

0  1(0) 
(4) 

Y        (~)d~  will  be   calculated.     The  positions  of the  poles 

of  H   (ill)   and  H^-t^)   are 

a     =  i  Cw,   + w 
1 l        ID 

a     =   i   C'JJ,   -  i»> 
2 1 ID 

a     =  i  C     n     + n 
3 04   4 4D 

a   = i c   n   - n, 
4 04  4 4D 

And, we  tf ten have 

(+) 
a 

1 
=  ai+a3 

(+) 
a 

2 
=   20, 

4D 

( + ) 
a 

4 
= -2n 

4D 

=  a,+a^  =  i(Cui ,+C     VA)   +   (-JU,   +C1     ) 
1     04  4 ID     4D 

( + ) 

(-) 

a   +a     =   i(Cx  +C     r<   )-(x     +?•„) 
2     4 1      04   4' ID     4D' 

and     ax       =   MC^   •   r^)   +   (x^-  Q4D) 

*2       =   i('Xl   +   '04V   +   (n4D"   *1D> 

> (6.53) 

Hence: 

MAX(|a£',|>   ~   C'VC04n4 ~   MINd\+>-  ^ I > 

MAX(|a][
+)-aj:"

,|) ~ MIN(|a][
+)-a]-)|) ~ 20 

(-) 

4D 

MAX (W '!> « c»x + c04n 
(equation continued) 
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MIN(|ak     |)  ~   2Q4D (6.54) 

Now,   consider  the   Fourier  transform of —'—*- 
1(0) 

.   2rr 
K-x)   =   i(e S   -1) 

2   _5 

(w2-e2) (uj2-4e2) 1(0) » 

Since the first factor has no singularities in the complex ID 

plane, we set 

J(x)   - 
i,.-1^ -1) 

uu 
(6.55) 

the  remaining   factor has  4  poles   so  that 

p =  4 

And   from   (6.53)   and   (6.55),   we have 

(6.56) 

MAX  U-Jt^     ) |] 
-i(a(+)2H 

i(e      (a\      e   -1) rrn  

MIN   [| J(a.       ) |] k 

e^>1^04n4>iT 

«»1   +  ^04n4> 

a(-)2n 
i(e     1        e   -1) 

T^T 

(C«,+C^nj 2~ 
1^04w4;"e" 

«VC04<V 
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Hence, 

MAX [|j(a,[+))|]   „ 
 *-r   ~  1 (6.57) 
MIN [|j(ajj ;)|] 

Collecting the results (6.54), (6.56) and (6.57) and substi- 

tuting them into (6.45) we obtain 

0 {T }  < 0 {   I     * ~04 4   } 
3  [M.J* 4D" 

3 "04 

2(Cu»1+C_ .0.) 
0 [Tj < O {  1  04 4  } « O {2 C  ] 

4D 

o {T3} < o [ MAX(C,G04)3 = o {C04} 

Or, the order of magnitude of the total error is 

0 [T + T + T } < O (3C  } 
1^3        04 

a  0 {0.183} (6.58) 

Hence, with K   as given by (6.51) the exact variance of the 

first mode is K  (1+T) where 0{T} < O {0.183}.  The upper 

bound to the variance is then 

S.U.P.[K  ] ~ K1JL(1.2) 

In a similar way the errors due to the approximate 

formulation can be calculated for the other moments and upper 
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bound estimates can be made.  "This will not be done in full 

since the calculations already made are sufficient to illustrate 

the application of the approximate techniques of Chapter V. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Here we summarize the basic results of this work.  We 

have presented an approximate evaluation of the second central 

moment response of a lumped parameter, second order, linear 

system to a class of random excitations.  This class of ran- 

dom processes we have called "slowly varying" nonstationary 

processes, since the nonstationary variation of the correla- 

tion functions of these processes is small compared to the 

variation of the impulse response functions of the dynamic 

system under consideration.  When the excitation falls under 

the above description we have demonstrated that the resulting 

response of a structural system may be conveniently approxi- 

mated by relatively simple analytical expressions. 

These analytical simplications make possible the esti- 

mation of response statistics from various statistics of the 

excitations.  We have illustrated the possibility by a con- 

sideration of the problem of the estimation of flight loads 

in a payload during booster engine cutoff. 

The scheme of analysis outlined in Chapter VI seems to 

offer the following advantages: 
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1. Integration of the equations of motion of a pay- 

load system for 27 forcing functions to obtain the design 

loads is avoided.  Ihe scheme proposed in Chapter VI, in com- 

parison, involves only marginal computation time. 

2. Under most of the present schemes the analysis is 

highly dependent on a prescribed engineering policy, i.e., the 

designer must first decide which of the 27 test data are to 

be used for the structural qualification of a proposed design. 

This practice can produce unreasonably conservative demands 

on the structural design.  Under the proposed scheme, however, 

design policies can be formulated from the analysis itself. 

157 



APPENDIX I 

Here we show how Eqs. (3.55) through (3.57) were obtained, 

From the theory of the inversion of Fourier integrals 

l(t) is the sum of the residues of the integrand in the upper 

half plane multiplied by 2ni.  From Eq. (3.40) and assumptions 

a. and b. of section 3.6 it follows that 

n     1     J(av}  iakt 
I(t) = i[ E Res(-;a )  — e 

k-1    F k  G(a } 

k 

m J(b )  ib t 
+ E Res(- ;b )  5S_ e k  ] (1.1) 
k=l    G  k  F(b ) 

k 

Now, since a  and b  are in the upper half plane, their 
k     k 

imaginary parts are positive and 

ia t ib t 
le  k I < 1  , le k I < 1 

for all k. 

Therefore : 

i J(V  iV!    «,     i       J(V 
| E Res(- ;b )  *- e  K | < E |Res(- ;b. ) 
k=l    G  k  F(b ) k=l     G  k  F(b ) 

k k 

MAX[|j(b )|] 
: m • MAX[|Res(T ;b )|]   (1.2) 

MIN[|F(b,)|] G   k 

But, from (3.53) and (3„54) we see that 
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MAX [|Res(- ,b   )|]     <  —^- (1.3) 
G       k m-1 G       k e 

2 

MIN   [|F(b   )|]   >  Y (1.4) 
K 1 

Hence, 
m , J(b   )     ibt 

|   E Res(-   ;b   )  *- e     k   (   <     m•L        MAX   [|j(b   )|]      (1.5) 
k=l G       k F(bk) €2     Y;L 

k 

The  expression  on the  right   is  an  estimate  of  the  upper 

bound  of  that  part  of the   integral  derived   from  the  residues 

of i - 
G 

Similarly: 

n . J(a, )     ia t n . J(a   ) 
|  S Res(^  ;a, )    %- e     k   |   <    £   |Res(-  ;a   )    £-  | 
k=l F       k     G(a   ) k=l F       k     G(a   ) 

k k 

MIN[|j(ak)|] 
n   •   MIN  [|Res(- ,a)|]    

F       k MAX[|G(a   )|] 
k 

(1.6) 

From   (3.52)   and   (3.54): 

MIN  [|Res(-  ;a   )|]  >  -^3- 
F       k 6""* (1.7) 

1 

m 
MAX   [|G(a, )|]   <   Y„ (1-8) 

k 2 

Therefore: 
n                           J(aT,)      ±a-lr

t- 
0   (|  E Res(-   -a. ) *- e     k   |}   =   0   [—A- MIN[|j(a   )|]} 

'  k=l F     ^   G(a   ) vn_1Nm k 
k 12 (I9) 
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With (1.5) and (1.9), we can rewrite (1.1) as 

n     |       J(0  iayt 

I(t) = [i £ Res(- ;a )  ^—  e    ] (1+T ) (1.10) 
k=l    F  k  G(a ) X 

k 

where T  is a collection of terms such that 
1 

n-1     m 
m   6          y     MAX[|j(b   )|] 

0   [|T   |}   <   {    ^T-1 3S  } (I.H) 
1       n e•"1 Y" MIN[|j(a )|] 

2    1        k 

Furthermore, suppose that a. = a+A., where z = a is some 

point in the vicinity of the a (k=l,...,n).  Then, we may 

write : 

i  =  i _ r _L_ _  i   1 
G(a.)   G(a)    G(a)   G(a+A ) 

where we note that \k .     < 6 .  Hence: 1 D1    1 

—i  = —^- (1 + T ) (1.12) 
G(a.)   G(a)       2 

D 

0 [T ] < 0 {MAX [-^ 1] } (1.13) 
2 G(a+A.) 

and, 
n          J(a )  ia t .    n                ^avt 

i( Z  Res(i ;a ) — e  k ) = —^- ( E Res(±- ;a )J(a )e  K ) 
k=l    F  k G(ak) g(a) k+1    F  k 

- (1+T ) (1.14) 

Substituting the right hand side of Eq. (1.14) into 

that of (I.10) we have 
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la. t 11 -^ •Lavt- 

I(t)   =-i-[iSRes(-;aJJ(a)e     *}    (1+T  ) (1+T  ) 
G(a)       k=l F      k k 12 

But  the  term  in braces  is  nothing but   the   integral 

1      ,.»  J(uu)      i*t . ,   , 
—    J       e       dm.     Hence  we may write   I(t)   as 
2rr     -<=°  F(UJ) 

I(t)   =   {~±  f M eiU)t  dm   }    (1+T  ) (1+T  ) (1.15) 
2nG(a)   -»  F(w) 1 2 

where n-1     m 
m  6 y     MAX[|j(b   )|] 

0   (T  }   =   0   (    * I -  (1.16) 
n  e2       y     MlN[|j(a   )|] 

0{T  }   <   O   {MAX  [   G(a) 1]   } (1.17) 
2 G(a+A.) 

3 

which  was  to be   shown. 
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APPENDIX II 

In section 4.4 we have presented two alternative expres- 

sions for the variances of response: 

"kk(a) = 2^ -f \(y) V ty^y-wJ^Ctw-y) (n.i) 

£ L(f -2:kxki+y)Hk(y)iQkk(y,y-x)dy 
kk  '    2 2        (II-2) 

m (x-2C x i) (- f +iC u> ti) + x ) 
k    k k    4   k k    k 

Here, we show that these two results are equivalent. 

First, consider (II.1), and make the transformation 

T - t±  - t2  , t* « t2 (II.3) 

Then, by (3.23); and since the Jacobian is one: 

* 
1   .co ,„ *  -i (TV+t x)     * 

\k(x) : t" . Vy)Hv(u)-y)jJ co  <*•* )e d~dt dy 2
~ -- K    k    -«  vkk _CD "" _CO 

1  •%",*" -iTV  , *  -it*i)  * 
= —   C . H (y)H (x-y)e   dy) C_  (r.t )e 1T1 xdt d~ 

2- :;,  i. k     k Qkk 

= ^T    "^"tjV (y)H (x-y)e"iTtdy]C0  (T,t*)e~it*UidT 

f\ CD & 

+ ' [ ' R (y)H (x-y)e"1Tydy]c0  (r,t )e
-lt xdT] dt 

-- 1- K k wkk 
(II.4) 

where we have reversed the order of integration and have 

expanded the integral over  T.  In the second integral in T 

* 
we let T  = -" so that 
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s*<»> - £ £ ir; y^e.*.). •it   UJ 
dr 

+ j"     I     CL     (T*,t*)e_:Lt  ^ dr*   }dt* (II.5) 

where 

and 

I    =  j"" H   (y)H   (ui-y)e  1Tydy 
1       _»    k k 

f,05 IT   y 1    =  S    «,.(y)H, (x-y)e dy 
2       _m    k        k 

Now, the coefficients of the exponentials in both of the above 

integrals can be written 

^(y)Hk(au-y) = 
(y-a   ) (y-a  ) (x-y-a   ) (x-y-a2) 

(II-6) 

with a,   =   ix. £,    + ill, ^   i   a„   =   i'JJ, C,    -  X, 1 k  k kD 2 k k kD 

so  that  I,   and   I     are  to be  calculated  by  the  methods  of 
12 

section   3.5.     According  to  Ihe.'s  1  and   2  of  that   section, 

I     and   I     are   integrated   over   the  upper   and   the   lower  half 
12 

z  planes  respectively.      Performing  the   contour   integration, 

we have 

"iAkD     r   e-
iT(x-al> 

I       =       L      1    'V2 x-2a 

-iv(x-a9) 
S   1 

x-2a 

• / i-*a, 
Wj/*kD  re 

X 

[• 
2       x—a,-a x-2a, 

1     2 1 

iT*a. 

x-2a 

(II.7) 
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Substitution of (II.7) into (II.5) yields 

-iT (x-a   ) -iT (ju-a   ) 

W-> =TZS   U   ,„   Z\   , ; [e 
2rr  _„       0  \D^-a

1~a
2) x-23i x-2a2 

-it*uu 
C        (T,t*)e dx 

ukk 

iT*a. iT*a_ 
oo X 2 

("      Hi  [e  _   e ] 
0  'VrJ11-3!-3-^        U)-2a, x>-2a„ kD 1     2 1 2 

CQ      (T*,t*)e"lt*'i)dT*   }   dt* (II.8) 
Tck 

But,   by   (1.3): 

•     -iT (uj-a-, ) 

JJ  e cQ      (T.t^.^-dT   dt* 
-oo kk 

oo     ia   (t  -t   )     -i(t  -t   )JO     -it  JJ 

oo     ia   (t  -t   )     it,!!) 
=   [T e     X     X     2     e     1     R   (t   ,t   )dt dt 

H xV   1     2'     1     2 

If we now let (t -t ) = T as before but set t =t , 

C„  (t ,t ) is the same as before since, by its definition, 
gkk  x  2 

C„  (t ,t ) is symmetrical in t  and t .  Hence: 
°kk  1  2 12 

» -iT(«-a ) _. » 
i e e      c   (7,t*)dTdt* 

vkk 

"  iaiT  -itt,t* 
= JJ e    e     CQ  (T,t*)d-dt* 

_ oo kk 

(equation continued) 
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-     -ir (x-a   )     _it* 
If  e e C       (T,t*)dTdt* 

- ne    e laj1' co (-.t*)dTdt* 
-oo ukk 

(II.9) 

Employing  relations   (1.9)   and   setting  T     =  -:  in  Eq. 

(1.8)   we have 

1 
K     (*)  = r- j 

2  _o=  !l)-a,-a_     x-2a,        x-2a„ -fc^ 

la   T ia.T 

1   CQ 
'        l/\D{e     1 

12 1 

-ixt* 
e dTdt* (11.10) 

Now we   consider  Eq.    (1.2)   which  can be  written  in  the 

form 

K      (x)   =   ?^  
kk (x-a  -a   ) (x-2a   ) (x-2a   ) 

1     2 1 2 
i (ii-ii) 

CD 

A<x)       » J- J     *(- ? + a   +a  -y)H   (y)   »        (y.y-x)dy 
2"   _. 2 12k ^ J 

where   a     and   a     are   given  by   (II.6).     We   can  express   A(x)   as 

•"•(*)   -  Z~ d    4(-  # +  a+a   -y)H   (y)*_      (y.y-x)dy 2r   !„ 2 1      2 kw      Q. kk 

-lTy 
2" 

[j"  4(-  | +  a1+a2-y)H]c(y)e   "  ydy   } 
— CO _CO 

C        (7,t*)e   1Xt*d'dt* 
°kk 

-   '     {['  i'   r       (7,t*)dT   +   |°°  i'   c„     (-*,t*)dT*  } 
2n   i.   *-Q    1     Qkk 0     2     °kk 

-it*x 
e dt* (11.12) 
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where   "•   and   t*  are  as   in   (II.3),   T*  =   -T   and 

Tl   =   j"     4("~   2   +  ai+a2~Y)H
k
(y)   e   1TY dY (11.13) 

— 00 

i'   =   '"  4(-  ^ +  a  +a  -y)H   (y)   e1"   y dy (11.14) 
2       la, 212Jk 

I  is zero since it must be integrated over the lower half z 

plane and H (y) has no singularities there, 
k 

• 

We can write I  as 
2 

iT*y ^ 
j' = ;  4(2! _ a _a +y) _e *X  
2     loo     2       12        (y.a^y.^) 

and a contour integration over the upper half z plane yields: 

ia T* ia_T* 
i' = — t(x-2a ) e      - (x-2a ) e      ]        (11.15) 
2   XkD      Z L 

Finally, a substitution of (11.15) into (11.11) results 

in ia T ia T 

?  (x)_l 1 " e-it*.^ tw-2a2,e ^C-^). 
2] 

kkU) " 2 *7 -J G 

(x-a -a ) (x-2a ) (x-2a ) 

Cn   (T,t*)dTdt* 
vkk 

• /      is T    ia T 

lAkD re  
X    e  2  -    ,    , -ixt* 

[- =-r— JC_  (T,t*)e    d-dt* 
2 ii x-aj^-32  x-2a    x-2a2   °k> 

(11.16) 

which is identical to (I.10). 

Honcc the expressions (II.1) and (II.2) are equivalent 

formulations of the variances of the response. 
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APPENDIX III 

In the following, the transform T(x) (defined by (5.69)) 

is evaluated.  The inverse transform is subsequently obtained 

in an approximate form by the methods of section 3.6.  Accord- 

ing to Eqs. (5.71) and (5.72), F(x) can be expressed as 

(*) = 7^ 

1/mk 
1/m. 

2" la, (y-a )(y-a )   (w-y-a.^ (x-y-a4) 
(IH.l) 

1/m dy/m 

(y-a5) (y~a
6)     (u»-y-a5) (a-y-a6) 

1     K k kD 

a = i Q . x . +x . 

a = i cn + n 
4 D 

a„ = 

Fig. 30 

a. = 

IC m -ID 
k k  kD 

1C ,U) .-UP . ^ 
D 3  DD 

= icn - n, 

(III.2) 

According to the remarks made 

in section 4.4, F(x) is 

| (ru(») +r£(u,)) 

r (x) is the integral obtained 

by a contour integration taken 

over the contour of Fig. 30(a) 

in the limit as R -» cc. 
1 

Similarly, T. (x) is obtained 

by an integration in the lower 

half plane along the contour 
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of Fig. 30(b) in the limit as R -» oc. Thus, replacing y in 

(III.l) by the complex number z and employing Eqs. (3.36), 

(3.38) and (3.40) we obtain: 

*   r   -1 1 ' 
IF. (x)   =   il   [^—-   ,,.. _,   w,.,_a   _,   x   H(aJ u 2

\D   (*-a1-
a3)(lU~ara4) 1     (uu-a  -a   ) (u)-a1-a6) 

1 X H(aJ 1 
2\D     (uJ-a2-a3)(x~a

2-
a4) 2      (*-a2-a5)(*-a2-a6) 

1 X H   (aj 1 
2fiD       (x-a5-a3) (x-a5-a4)     k     5     (u,-2a   ) (oj-a -a   ) 

— "VV 2QD        (X_a6-a3)(x-a6-a4)     *     6      (x-2a   ) (x-a  -a   ) 

(III.3) 

ir£(x) = iiCo^"" ± H(a,)  A  
jD   (x-a-j-a^ (x-a3-a2) J      (x_a  -a   ) (x-a   -a&) 

-1 I  H(a   )  1  
2XjD     (x-a4-ai)(x-a4-a2) 4 (x-a^) (m-a^) 

-i 1  H    (a.)  £  
2QD     (^-a5-

a
1)(^-a

5-
a

2)     j (x-2a5)(x-a6-a5) 

X- X H.(a   ) 1 
2nD     (x-a6_ai)(x_a6_a2)     j     6     (x-2a6)(x-ag-a5) 

(III.4) 

A 1 r — n Now,   we   examine   the   transform   l(x)   —1~    (x)   + T    (x)J 
2  u       * 

= < ..  Since l(t) is, by assumption, a slowly varying function, 
k j 

we may approximate the transform of K .(t) by the methods of 

section 3.6 so that upon inversion an approximately correct 

form of K. . (t) is obtained.  As was stated in section 5.6, 
kj 

_2 
Q,   C./ and £  are assumed to be small (of order 10  ).  We 

j      * 
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assume that the singularities of I(x) are no further than 

approximately MAX [Ix  -i»   , I x, -w I ,    -fl,J } from the 
kD  jD     kD  D'   'JD  D 

origin of the complex plane and that Ix  -x . I, I x, -ft I, 3 r    * ' kD  jD   ' kD  D1' 

|x  ~n   are much smaller than the corresponding quantities 1 jD  D1 

Ix  +x  I, I x, +Q I, Ix  +C) I .  In other words, the damped 1 kD  jD1    kD  D1    jD  D' 

natural frequencies of both the k  and j   normal coordinates 

arc in the vicinity of the centre frequency of the narrow 

band filter. 

Consider the inverse Fourier transform of the first term 

of i(x)T (x) given by (III.3): 

1 •c° " . , _ , . ixt 2^ d  I (x) T (x)e  dx = 

iH(a )  oo 

•^D 
2" 

I(x)- 
i,i)tJ e   dx 

(x-a -a )(x-a1-a4)(x-a^a^(x-a^a^ 

(III.5) 

where from Eqs. (II.2): 

a   +  a     =   i{'   x     +  C, X, )   +   (Ui,    + ti).   ) 
1        3 j   j k  k kD        jD 

Va4=   i(=jXj   +   Vk)   +   (\D"   V 
ai+ a5 = i(Ck\ + :n) + {WV 

ai+  "e   =   i(:kXk   +   ^   +   (\D"   °D> 

(III.6) 

Using the notation of section 3.6, we can set 

.S i(CjXj + 'kxk) * (xkD- X.D) 
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A 

G(a) 

F(x) 

(a-a   -a0) (a-a,-ac)        2  x      (fi   +tu     )        4  x     Q 
1      3 J-     5 jD     D     jD jD  D 

Kx) 
(x-a   -a   ) (x-a  -a   ) 

14 16 

2 '    ]D        D1 

6,     <  MAX  £ I JD,    -U).    I , IUJ,    -  n_|} 
1 l|   kD     JD1"   kD        D|J ^    (III.7) 

Yl > MIN [2u,jD,2nD.|u).D±nD|.|2««kD±(uJjD-nD)|.2u)kD) 

Y2  <  MAX  C2«jD.2nD.|«jbiPD|f|2««kbt(»jD-QD)|.2«kD) 

n  =  p+2 

m  =   2 

where   l(x)   is   assumed   to have   p   singularities   and  where  we 

have  neglected   terms   involving  the   C's.     Hence: 

J 

G(a) 
Gta+Aj) 

-   1 
(a+A j-aj^-33) (a+A ^-3.^35) 

(3-3    -33)  (3-31-35) 

(3-31~33)  (3-31-35) 

(a-a  -a   )(a-a  -a   ) 
13 15 

(:j-2xjD)(/_j-xjD-nD) - 2xjD(xjD+nD) 

2x    (x   +n ) 
jD      :D     D 

2x    (x. + n ) 
JD     JD        D 

' . (3x.^+a„) 3 3D     D 

2^D(^D+P-D> 

2L . 

x   +n 
jD     D 
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since  iu.     ~  fi     as   stated  earlier.     Therefore, 
3D D 

MAX G(a)  _   1 
G(a+A   ) 

j 

2A . 
Z  MAX 

^jD^Dl 

26. 

,iJjD+nD 

2   MAX   [l^D-^pLKp-npn 
<    -  

ID   +n 
3D     D 

Hence,   equations   (3.69)   to   (3.71)   give 

(III.8) 

—-   I      I ('ju)i (ID)   e       duu 
2TT   J 

_1 
2TT   «1 

-1 Kuu) 

where 

-«>  8x     ID     Q      (x-a1-a4) (•ju-a1-a6) 
kD  jD  D 

*   (1+T  ) d+T2) 

2   6        y2  MAX  Clj(bk)|] 

0   {T )   •  0  {    ^2  
1 <P+2>lxjD-n

DlYjL        MINC|j(ak) |3 

2 MAX nxkD-xjDi,ii)kD-nDn 
0 [T }  < o {  3 

z ID   + n 
jd        D 

ixt 
e       duu 

r    (HI-9) 

/ 

where b  are the poles of 
k 

  and a  are the poles of   
G(ID>      fc F(x) 

T*he result (III.9) can be generalized to include all the other 

terms of (III.3) and (III.4).  Let us denote the combinations 

of two a  (see III.2) which involve sums of two of the 
j (+) 

frequencies   ID,    ,   ID .      and   n     by  a, and   those   combinations 
kD        3D D k 

172 



involving differences by a. 
(-) 

It is seen that each term of 

(III.3) and (III.4) involves two of the a    and two of the 

(-) 
a    in the denominator.  Hence, in each term, we can let the 
k 

quantity involving the quantities a   be —=—  and the 

<+>     ! 
k     eM 

quantity involving the a   be   . 
k G(ID) 

For  the  terms  of   (II.3)   z=a   is  as  given  in   (III.7)   and 

G(a) 4UJ    ft 
jD  D 

(III.10) 

and for the terms of (III.4); 

a = i (C.u». + Ckwk) + (*.D- %D) 

G<a>   4\DnD 

(III.11) 

And for both (III.3) and (III.4), we may set: 

and 

e  > MIN {|a(+)- a(+)|} 
2 k    j 

61 < MAX (la^.  |} 

Y > MIN [|a(+)- a("}|} 
1 k    j 

Y < MAX tk( + )- a(_)n 

n = p+2 

m = 2 

G(a) 
G(a+a . ) 

- 1 
MAX [a   } 

MIN fa(+)] 
k 

> (111-12) 

J 
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Hence, the approximate expressions for T   (x) and ".(x) 
u * 

are 
-H(a   )                                            H(a   ) 

T   (x)   =   1  [ 1  +  ?  ] 
u 8x     x     n        (x-a  -a   )(x-a  -a   )        (x-a  -a   ) (x-a  -a   ) 

kD   ]D  D 14 16 2.      3 Z      b 

+      *     [ Ji_J + L_i ] 
8Q n (x-a  -a   ) (x-a  -a   ) (x-a  -a   ) (x-a   -a   ) 

DJD 45 56 36 56 

-H(a   ) H(a   ) 
r (x) = 1 [ 1 + * ] 

8x,    x.   r<        (x-a   -a   ) (x-a  -a   ) (x-a   -a   ) (JU--I  -a   ) 
kD  ]D D 23 36 14 45 

-H  (a  ) HiK> 
+ -*      [ 1—*  +  2_J  ] 

8:, n (x-a  -a   ) (x-a  -a   )        (x-a  -a   ) (x-a  -a   ) 
D kD 25 56 16 56 

(III.13)&(III.14) 

which upon multiplication by I(x) and inversion gives the 

second moment response correct to within the terms T *•._• (t) 
1 KJ 

+ T K, . (t) where 
2 *D 

0 {T } < 

/ \   P+l       (+)  i-\        2        /.\ 
2[MAX(|a); '|)1   [MAXda/  -a

1 ' | ) ] MAX[|j(a^ ;)|] 
Q r J — } 

(p + 2)rMIN(|a( + )-a( + )|)][MIN(|a( + )-a^>|)]P+2MINL|j(a(_))|] 
k    3 k    3 k 

2MAX(|a1J"
)|) 

0 (T } < O [  } (III.15) 

MINda^  I) 
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We shall now obtain the inverse transform of T (jo) 

given by (III.13) and (III.14).  By the methods of section 

3.5 this can easily be accomplished.  For example/ the inverse 

transform of the first term of (III.13) becomes 

.     .     ioit, 
.      a, . -H(a   )   e       dtu 
1   p l 1 

H(a   ) i(ai+a4H ^W* 
[-  + -   ] (III.16) 

8JI    in    Q a  -a a  -a 
kD  jD  D 4     6 6     4 

Doing this for all the other terms of (III.13) and (III.14) 

and noting the relations 

H(a2) - H*^) , Hk(a6) = H*(a5> » H(a4) = H*(a3> ' 

(III.17) 
H.(a ) = H*(a ) 
36     3  5 

and 

(a3- a5) = -(a4- a&)* , (a^a^ = -(a2
_a
6
)*  ] (III.18) 

we obtain, after much algebra 

1 .»  ,    ixt 
Yu(t) =^LFu(X) 6   d" 

i (a +a )t             i(a +a )t 
H(a.)e   X  4         H(a;L)e   

X  6 

[2Re( ) - 2Re( ) ] 
8x x. n a - a a - a 
kD 3D D 4   6 4   6 

(equation continued) 
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i(a   +a   )t i(a   +a   )t 
H(a_)e       *     5 Ma5>e 

+ —,-i  [2   Re( 5 ) -   2Re(-^   )   ] 
80    m a-a a-a 

D     jD 4        6 4        6 

1    p ^t 
•   (t)   =  ^ J     r^(x)   e       dx 

i(a +a  )t i(a  +a   )t 
H(a   )e                                           H(a   )e       3     6 

[2   Re(   )   -   2Re( )   3 
8x     x     Q a-a a-a 

kD  jD  D 2        6 2        6 

i(a   +a   )t i(a   +a   )t 
. H.(a   )e       2     5 H.(a   )e       5     6 

+ —ji     [2   ReH ~ ) "   2Re(-J )   ] 
8n~A r, a-a a   -  a 

D kD 2        6 2        6 

And   since  T(x)   =  -(F   + F.);   y(t)   =  ^-(7 + Y.)   so  that   from  the 
2      U £ 2      u x. 

above  we  have 
i(a1+a4)t 

H(a,)e 
v(t)   =   [ i—2  Ue( i ) 

8x     x     wmmm a  —  a 
kD  jD  D       k   j 4        6 

i(a   +a   )t i(a   +a   )t 
H(a   )e       *     J H(a   )e 

+  Re( )   -   Re( - ) 
a-a a-a 

2       6 4       6 

i(a   +a   )t 
H(a-)e       3     6 

-  Re( )   ] 
a-a 

2       6 

i(a  +a   )t i(a   +a   )t 

+ -i-5- [Re<-*—5 )   -  Re(-*—§ )   ] 
8r a   —   a a   —   a 

jD   D 4 b * 6 

(equation continued) 
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i(a +a )t i(a +a )t 
H.(as)e   

2  5        H (a )e 
+ —L-7  [Re (-3—2 ) - Re(-J—5 ) ] } 

8'D ft a - a a - a 
kDD 2   6 2   6 

* [1 + T + T 1 (III.19) 

where the orders of magnitude of T and T are given by 

Eqs. (III.15) 
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