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RESPONSE OF STRUCTURAL SYSTEMS
TO NONSTATIONARY RANDOM EXCITATION*

ABSTRACT

In this work, the response of lumped parameter, second order systems to
nonstationary random excitations is examined. Included is a brief intro-
duction to the probabilistic theory of structural dynamics and various
basic concepts required for subsequent work.

More specifically, the second order central moment (covariance) response
of structural systems to random excitations is studied. In the course of
the analysis, an approximate method for the calculation of system re-
sponse to a class of nonstationary excitation processes is constructed.
This class of excitations we have called "slowly varying" nonstationary
random processes. By this is meant that the nonstationary variation of
the correlation functions of the process is small compared with the time
variation of the impulse response functions of the system considered.

It is shown how this approximation technique may be applied to the
estimation of inertial loads in the structural members of a payload during
the launch phase of flight. Employing previous rocket engine test data,
the excitations to the payload are idealized as a "slowly varying” non-
stationary random excitation. An approximation procedure is then de-
veloped for the calculation of the second-order central moments of the
payload response.
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CHAPTER 1

INTRODUCTION

1.1 General Nature of the Problem

This work is concerned with the estimation of inertial
loads in a payload structure during the launch phase of flight.
It has been motivated by research on this problem with regard
to the Lincoln Experimental Satellite (LES) series for which
the Titan III launch vehicles have been used. Thus, it is
toward the LES program that this thesis is generally directed.

For LES-5, structural qualification was based on a dynamic
analysis of the payload system which consisted of the dispenser
truss and all satellites. To accomplish this analysis the
satellite contractors supplied Martin-Marietta Corporation with
the relevant characteristics of the satellites. Martin-
Marietta then determined the system response to excitations
obtained from 3 of 27 booster engine test firings. The analysis
was carried out only for the core engine cut-off phase of
flight since it is during this period (approximately 2 seconds)
that the payload is subjected to the most severe dynamic load-
ing.

It was subsequently assumed that:

A. The dynamic excitations are such that the maximum

(1)

response of the payload system occurs in the low frequency



range (less than 50 Hertz).

B. The six components of rigid body acceleration of the
booster/payload interface are virtually independent of the pay-
load impedance for payloads in a given weight category.(l) Thus,
in estimating the low frequency response of a satellite, the
acceleration time histories at the booster/payload interface
were assumed to be the basic dynamic inputs. We shall adhere
to this assumption in the following.

In this work, we shall be dealing with the low frequency
response of a payload to excitations obtained from the accelera-

tion time histories mentioned above.

1.2 1Interface Accelerations Considered as Random Processes

Typical plots of the booster/interface accelerations are
shown on page 12. The non-reproducibility of these data are
to be noted. 1Indeed, from the structural designers point of
view, these time histories can only be described as random.
The apparently random nature of the data suggest the following
approach to the estimation of structural member loads:

A. The 27 time histories of the six acceleration com-
ponents are considered to be ensemble members of a nonstationary
random process.

B. Statistical parameters of the stochastic response of
the payload are to be calculated with the interface accelera-

tions considered as the stochastic inputs.
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The most important response parameters to be obtained are
the means and mean squares of the loads on the payload structural
members. For 1f x 1s one of the stresses in some member of

2
the structure, M the expectation value of x, and Yx the expecta-

2
tion of x2 then in the customary notation( ):

1

P | 2 ko) 5 = (L)
2
k

2 2 2

= Y0 = .
i - (1.2)

where P{A} is the probability of event A, and 02 is called the
X
variance or second central moment of x. We thus see that a
knowledge of ux and Yx allows us to determine an upper bound
to the probability that the member stresses will exceed the
values for which failure occurs. Since the evaluation of the
means is relatively simple, we shall be mainly concerned with
the determination of the variance of the member loads. To
obtain these it is necessary to determine the complete set of
second-order central moments of the payload displacements.*
In summary, the approach to be presented involves the
construction of a "stochastic equivalent" to the interface
accelerations and the subsequent evaluation of the second
*  See reference (2), p- 24 or Chapter 2 for definition of

second central moments. See also Section 2.8 for a justifica-
tion of this assertion.



moment response of a satellite. 1In general, the object of
this thesis is the development of a plan of analysis whereby
the approach may be conveniently applied. The two major aspects

of the problem are discussed in more detail below.

*
1.3 Statistics of the Interface Accelerations

In the analysis, three basic assumptions have been made
concerning the general nature of the interface accelerations.

A. The interface accelerations are the response of a
lumped parameter, second order, linear system (i.e. the Titan
III launch vehicles) to a nonstationary vector shot noise
excitation.

B. The intensity functions of the components of the
vector shot noise are the same to within multiplicative con-
stants.

Cs The excitations to different normal modes of the booster
are statistically uncorrelated.

In chapter VI these assumptions are discussed. Furthermore
it is shown that under the above assumptions, the generalized
spectral density matrix of the six booster-payload interface
accelerations can be determined from the general properties of
the time histories and appropriate averages of the Fourier
transforms of these time histories.

* For definitions of statistical terms, see references (3),
(2) or (4).



1.4 Evaluation of Second Moment Response

The techniques for the calculation of the response of a
system to both stationary and non-stationary random excitation
are well established. However, the evaluation of response
to nonstationary processes is considerably more taxing than in
the stationary case. 1Indeed, for the simplest systems, the
analytic expression for the second moment response may be quite
unwieldy.(5'6)

From Section 1.3, the accelerations are assumed to repre-
sent the output of a nonstationary random vector process.
Furthermore, they are the inputs to a complicated structural
system. Therefore, the need for reliable approximation pro-
cedures is evident.

One such procedure, developed by Bucciarelli and Kuo,(7)
deals with excitations of the form

x(t) = g(t)n(t) (1.3)
where n(t) is a stationary random process and g(t) is a deter-
ministic function of time. When g(t) satisfies certain restric-

(8) may be used to eliminate the high

tions, Reimann's lemma
frequency terws in the expression for the second moment response.
This analysis has been applied successfully to single degree

(9)

of freedom systems.

The present work is largely concerned with the improvement

and generalization of the approach mentioned above. A procedure



is developed for the approximate calculation of the second
moment response of a payload system to excitations of the form
presented in Section 1.3. An analysis of the statistical
properties of the interface accelerations is also included but
no attempt will be made at a detailed calculation of the confi-

dence intervals of the estimated statistical parameters.

1.5 Summary of Contents

In Chapter II we review the aspects of the probabilistic
theory of structural dynamics relevant to this study. Since
the proposed approximation technique involves extensive use of
the Fourier integral, a discussion of its elementary properties
is included in Chapter III. At the conclusion of Chapter 11X
we present two related theorems which form the basis of the
approximation procedure. The general response formulation of
Chapter IV leads directly to the application of the theorems
developed in Chapter III to the approximate evaluation of the
second moment response in Chapter V. Finally, in Chapter VI
we discuss the statistical analysis of the interface accelera-
tions and outline a general procedure for the calculation of

the variances of the member loads in an actual payload structure.



CHAPTER II

PROBABILISTIC THEORY OF STRUCTURAL DYNAMICS

2.1 Introduction

Here we review certain aspects of the theory of structural
dynamics and of the theory of random processes needed to formu-
late the response of a structural system to random excitations.
In Sections 2.2, 2.3 and 2.4 are presented the deterministic
equations of response. Sections 2.5 through 2.8 include a
discussion of certain results in random theory. The chapter
concludes with the formulation of the second moment displace-
ment response of a structure to random excitations and a con-

sideration of two special classes of random processes.

2.2 The Idealization of Elastic Structures

a. The system has a finite number, N, of degrees of
freedom. Thus the state of the system can be specified by a
vector, {x}, whose components are the generalized coordinates

*
of the system.

o The inertial properties can be represented by a
symmetric matrix of constants, [M] , called the mass matrix.
(NxN)
* For an explanation of the matrix notation see reference
(10).



The total kinetic energy of the system during its motion is
1 e
= x [M) {x} .
2

Cr Each component of the structure is assumed to be
linearly elastic. Hence, the total potential energy due to

elastic deformations is % Lx) [K] {x} where [K] is a symmetric

matrix of constants, called the stiffness matrix.

di= Because only small motions are considered, the
potential energy due to the action of externally applied forces

(11)
can be written as - LF! {x}. The components of {F} are the

components of the generalized forces corresponding to each
generalized coordinate.

e. Forces which retard the motion (damping forces) are
assumed to be linearly related to the generalized velocities.
Hence the column vector of damping forces equals -[c] {x] where
r

"Cc] is a symmetric matrix of constants.

Under the above assumptions, the equations of motion in

terms of the generalized coordinates are Gh2)

(M (x} + [c] {x} + [K] {x} = {F} (2.1)
For a linear elastic structure, we have

(s} = [a] {x} (2.2)

where the elements of {S} are the components of the internal
forces within each member of the structure. [J)] is a matrix of

constants depending on the elastic properties of the structural

members.



Once equations (2.1) have been written for a given
structure, they may be greatly simplified according to the
specific nature of the problem. We present the following

example which is of utmost importance to the present study.

Example 2.1 cConsider the case in which the structural system is
not subjected to external forces but L(6 < L < N) of its
generalized coordinates are prescribed functions of time.

We can partition the matrices of Eg. (2.1) to obtain

M A c ‘e A

Y : Yo R + eE | | SEE R + Kr : Krf AR
W TR | \F. e\l TR\
fr |  ff £ fr | £l U fr | £ £
F
= (L (2.3)
0

where {’ ]} are those generalized displacements which are given
R
functions of time, and {FR} are the reaction forces at the

locations where displacements are prescribed.

In expanded form, Eq. (2.3) can be written

D 3 G0+ I JE 3+ T, M) + Lo 008 )
+ [Krr]{LR} + [Krf]{zf} = {Fr} (2.4)
err?;?R} + {Mff}{?f} + [CfrliiR} + [Cffliif}
% {Kfrjf;R} + [Kff]{sf} = (6] (2.5)

10



Now, we define the relative displacement vector, {u}

=
{Af} = —[Kff] [Kfr]{AR} + {u) (2.6)

Substitution of Eg. (2.6) into Eg. (2.5) yields

(Mg d0a) + Lo  J{a} + [k Jud = (P} } + [RI(a)) (2.7)

I 5l = [Mffltxffl‘ltxfr] - tn_) (2.8)
-1

TR] = [cff][xff] [Kfr] = [cfr] (2.9)

Substitution of Eq. (2.6) into Eg. (2.4) dgives expressions
for the reaction forces in terms of {u}, {LR} and their deriva-
tives. Thus, in this case, (2.7) is the matrix equation of
motion.

In the case for which the damping forces are small, the
last term on the right-hand side of Eg. (2.7) may be neglected.(lz)

Hence, for small damping, the approximate equations of motion

are

M 1 fu} + Tegelfa} + [k 1 (u} = [P1{s ]} (2.10)
(N-L)x (N-L)

where [P] is again given by Eq. (2.8).

2.3 Normal Equations of Motion

For the moment, we shall consider Eg. (2.l1) without the

damping term and with the applied forces set equal to zero.

(M1{x) + TKl{x} = {0} (2.11)

11



That is, we shall consider the free vibration of an undamped
structure.
Since (2.11) is linear with constant coefficients, we may

try a solution of the form

ix} = {a} exp(iwt) (2.12)
where {a} is a constant vector.

Substitution of (2.12) into (2.11l) yields

~twle’ta) + (K){a) = (0] (2.13)
after the complex exponential factor has been divided out.
The condition to be satisfied for (2.13) to yield a non-trivial
solution for the components of {a} is

(k) - wZEMII =0 (2.14)

2
This is an algebraic equation of order N in w , called

1
the characteristic eguation.( =) Let us denote the solutions
2 2
by + (1 =1,2,...,N). To each separate root of (2.14), w ,
i i

there corresponds a solution to (2.13) which we denote by {a.}.
i

th
Now, let us define the matrix, [¢] , whose 1 column =
(NxN)
composed of the elements of [ai} and make the transformation

{x} = [21{s} (2.15)
It can be shown that the application of this transformation
to Eq. (2.13) with the term {F} produces uncoupled equations

’ . (1, 12)
of motion in terms of the components of {£}:

CmJ{f) + k(g = (o)
(equation continued)

12



RIS

Cxd = (61 TKIe) = [~u=Itm]
b3

{Q} = [e1T(F)

where mel
(2.16)

To extend (2.16) to the case wherein damping is present,
we assume that [C] is proportional to either [K) or [M].
Under this assumption the transformation (2.15) also diagonalizes
[c]l. 1t can then be shown that the full equations of motion

(12)
are

. . -1

(£} + 203 0 ~d(E1 + t\wiz\l{‘;] = el o8
where [Cm-] = [@]T[M][wl

(o} = [917CF), 205w d = tened™ Tl t el

(2.17)

The 4, are called the natural frequencies of the structural
i

system each of which is associated with a particular mode of

12)
free vibration.( The I  are called the damping ratios.
i

Eq. (2.17) are the normal equations of motion and the € are

i
: (11)
the normal coordinates.

Wwe shall assume hereafter that ¢ (i=1,2,...,N) << 1.0 since
i
this is true for most engineering structures and particularly
for payload structures. Wwhen this holds, the free motion of
; : : (11)
the system takes the form of lightly damped oscillations.

Finally, from (2.15), it can be seen that the member

stresses, (S} are related to the normal coordinates by

{s} = (gllz]{g} (2.18)

13



Example 2.2: Derive the normal equations corresponding to

Example 2.1.
We write the equations of undamped, free vibration:
a e _
[Mff.nu} F [Kff] {u} 0
From (2.13) and (2.14) the natural frequencies and the matrix
.27 are obtained from

([Kff] - mZEMff]){a} =0

2
r - w =
and lhxff] w [Mffll 0
Assuming that [Cff] is proportional to [Mff] or [Kff] we

can write

3 -1 <
(¥ + 2070 ~3(7) + Cw=d(n} = Cmd [e) TRIE )
1 r

where {u} = [el{n} (2.19)
-1
2~ v 3 = a3 (o1 e, 0]
1, 4t
-1
(Bl = G ST iR b= e ]
Since equations (2.17) and (2.19) will form the basis of

much later work, we consider their solution in the next section.

2.4 Response Formulation to Deterministic Forces

Consider the kth normal equation from (2.17);

Qk(t)

- : 2
S “9FWE s4n = 2.20
2 "R kk | %k m ( )

and suppose that Qk(t) is a unit delta function;

Qk(t) = §(t-T) (2.21)

14



We shall denote the resulting ik(t) by hk(t,T). hk(t,T)

. : . th (12)
is the impulse response function of the k mode .

2)
The solution to Eg. (2.20) is then easily obtained:(

-C w (t-T)
1 =
N e KKk sin w d(t-—-r) t-1 > 0
kd"k k
h (t-T1) =
k 0 t-t < O
(2.22)
2
where = W 1-¢ 5
kd k k

Now, any arbitrary Qk(t) may be constructed from a series

of impulses:

@©
Q (t) = [ o (T)s(t-7)ar (2.23)
k 0o k
assuming that Qk(t) = 0 for t < O.
Hence, when the structure starts its motion from rest at
th : . (2)
t = 0, the response of the k normal displacement is

7 (t) &
pe = _J
k 0

h (t-7 T)drT 2.24
k( )Qk( ) ( )
with hk(t-') given by Eg. (2.22).
Since this equation holds for all the normal coordinates

of the system, it represents a complete response formulation

to deterministic excitations which commence at t=0.

Example 2.3: Obtain the response of the system considered in

Example 2.1, assuming that (A } = 0 for t < O.
r

We can write (2.24) in the matrix form:

15



t
{g} = [ Ch, (e-1)J{o(r} dr
0

Now, {5} is replaced by {n} and {Q(7)} is replaced by

f\m\ﬂ—l[w3T[P]{Zr(T)}. Hence, we have

fil = § n e, ihar (2.25)
0 k r
where
sl ST -1
(1] = Dmd "[Q] ([Mffltxffl [Kfr] - [Mfrl) (2.26)

and the hk(t—T) (k=1,2,...,N-L) are given by Eg. (2.22).
In the next several sections we consider the response of

a structure to random excitations.

2.5 Brief Discussion of Stochastic Processes

Probability theory will not be discussed here but we
shall give a heuristic description of a random process.

Suppose we have a family of random variables, Xi(ti)*
(i=1,2,...,n) which are distinguished by the value of some
parameter, t, within a range of values, (to,tn). That 1is,
there is a one-to-one correspondence between each random
variable, xi, and a distinct value of a parameter t, t=ti. s 3
we conduct successive experiments whose outcomes correspond
to the vector fxl,xz,x3,...,xn} and plot each of the components
6f the vector against the corresponding values of t, we obtain
for each experiment a function defined only at the points t=t

1

L |
(i=1,...,n). Figure 2 shows the outcomes of two such experiments.

16



when the number, n, of random
variables, and of correspond-

ing values of the parameter,

[ t, increases without limit
l — within the t interval under
t
consideration, we have a con-

tinuously parametered stochastic

] process in the parameter t,
1

4
I which we denote by X(t).( )

t . ta tj t# tg t‘ t
For our work, the parameter t

Fig. 2 will henceforth be associated
with time.
To completely describe a random process, we must specify

something like

Fo(x_(t ), x (t Vi ccwnw X {t )) =
S LR ¢ 2 2 n( n
where f (...) is the nth order joint probability density of
* *(2)
the random variables xl(tl),..., Xn(tn). Since this 1is

usually impractical, we must be content with more limited infor-
mation such as a determination of

f (x(t)), and f (x(t ), x(t )) for all t, t , and t .

X X i 2 1 2

or of other first and second order statistics.

S We denote a random variable by a capital letter whereas
we denote the specific values it may assume by the small letter.

17



In the next sections, the ensemble averaging operation

is defined, and its elementary properties are considered.

2.6 The Ensemble Average

The ensemble average of a function of several random
variables is defined as the integral of the function multiplied
by the joint probability density of the random variables taken
over the entire state space. For example, if G(xl,xz,...xn)
is a (Borel) function of the n random variables Xl, X2, and

Xn then its ensemble average, denoted by E[G(Xl,x ,...Xn)] is

2
(Ref. 2, p. 23, Eg. (2-58))

ARl |8 24 (v D IR ;' ) [ SO >+
1 n

{‘m @
e G(x ,x
i I ( 1 2 n 1 2 n

-0 X -0 -0

1 2 n
(2.27)

provided that the integral remains finite if G is replaced by
|c]. Here, f(xl,xz,o..,xn) is the joint probability density
function of the random variables Xl, X2,...,Xn.

Using the ensemble averaging operation, we may define
certain useful statistics of random processes. It is to be
noted that for a specified value of t, the stochastic process
X(t) is a random variable and for a different value of t the
process is, 1in general, a different random variable. Thus, for
the stochastic process, X(t), we may define the following

statistical averages(2'3'4)

18



The

The
The
For

K. .
1]

is the second

Q. (E) =
X1

mean of X(t) is E{X(t)} and is usually denoted

2
mean square of X is E{X (t)}.

variance of X(t) is E{X(t) - ux(t))z} = 02

n processes, Xl(t) TR Xn(t), the average
= el (x (t) - by (8)) (X5 () - uxj(t))]

order central moment of Xi(t) and X (t). Wwhen
3,

uxj(t) = 0 it 1is simply the second order moment of

Xi(t) and Xj(t). In any case, we shall most frequently use

the latter designation.

€.

g.

The

autocorrelation of X(t) is

Rx(tl,tz) = E[X(tl)x(tz)]

The autocovariance of X(t) is
i = EL (X(t = t X(t -~ t
C ltyoty) = ELX(E)) = u (£)))(X(E,) = u (£))]
= t-ut = t t
R () 2) Mt ( 2)
The cross-correlation between two random processes

X(t) and Y(t) is

as

ny(tl'tz) = E{X(tl)Y(tz)}

The

ny(tl'tz)

cross-covariance between X(t) and Y(t) is defined

E[(x(tl) - “x(tl))(Y(tz) - uy(tz))l

R (6108 = (e )u, (t)

A most important result associated with definitions a. and

(2,4)

c. is the Tchebycheff inequality:

19



1
K2
where P{A} is the probability of event A. The existence of

P{|x(t) - b ()] 2 ko (£)] < (2.28)
this inequality makes the evaluation of the mean and variance
of a random process of the utmost importance.
One more important ensemble average will now be intro-
. *3(1.37)
duced. 1f we take the Fourier transform of each of the
ensemble members of a stochastic process X(t), we obtain under

suitable conditions another random process, X(u), defined in

the frequency domain. The generalized spectral density of

* %
X(t) can be defined as

X . = B R
o (u3,x,) = E[X(w))X (w,)]

- E(X(x) JELX* (s,) ] (2.29)
This quantity is related to the autocovariance function

by the formulae

@®

mx(xl,xz) = i 3 Cxx(tl,tz)exp(—l(u,ltl—u;ztz))dtldt2 (2.30)
G [t gB): = * ":8(- i) (i(x.t -w t_))duw_d 231
xx' 1’2" 7 (2r)2 A - Tk ks ] 1_L2 2 e R (s

Similarly, for two random processes, X(t) and Y(t), we
have the generalized cross-spectral density:
g See also Chapter 111 for the definition.

* * For a full discussion of this material see Ref. (2),
section 3.8.
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~

o ) _ A* - _ A ] ~ %
By (¥ 095) = EIX(w))¥* (w))] - EIX(w ) ]ELY™ (w,)] (2.32)
which is related to the cross-covariance function by

o
~

\ = ® P -1 ' -y
mxy(Ll,uz) J_i ny(tl,tz)exp( 1(mltl thz))dtldt2 (2.33)

= tF AT e =i T
ny(tl’tz) > dd mxy(ml,mz)exp(l(xlt m2t2))dyldL2 (2.34)

1

2.7 Theorems on Linear, Time Invariant Systems

Now we shall consider two theorems concerning linear

time invariant systems, excited by stochastic time functions.
Let the input process, X(t), be related to the response of the
system, Y(t) by

v(t) = LIx(t)] (2..35)
where L is an operator in t which may be algebraic, differential,
integral, or any combination of these. The system is linear
when

L[alxl(t) + a Xz(t)] = alL[xl(t)j + azL[Xz(t)] (2.36)

2

where Xl(t) and Yz(t) are two different input processes and
al and a2 are constants. The system is time-invariant when

Y(t + €) = LIx(t+e)] (2.:37)
That is, when the input is translated in time by €, the output
is translated in the same way.

For a system satisfying Egs. (2.36) and (2.37) the follow-

(4)

ing result, within certain restrictions, holds true:
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Ely(t)] = LIE[X(t)]] (2.38)
i.e., the operators E[ ] and Ll ] commute.

As a result of (2.38):

. . -
T ,t = L rC t ,t l 2-40
d SO, C (t o E ) = L rC R S o l 2.41
an 1 2 ( ) ( )

where L and L are the operator L expressed in terms of
Ty =
tl and t2 respectively.

Thus, from (2.41l) the autocovariance of the output can

be expressed in terms of the autocovariance of the input.

2.8 Autocovariance Response of the Normal Coordinates

The form of Equation (2.24) shows that the structural
system, as we have idealized it, satisfies (2.36) and (2.37)
and is therefore a linear, time invariant system. If Qk(t)

is a stochastic process then it follows that £ (t) is stochastic.

k
The response equations for ik(tl) and 5_(t2) are
R
<. (t = | - .4
-k( l) b hk(tl Tl)Qk(Tl)dTl (2.42)
t2
Tt ) = F ° h (-1 T _)ar 2.43
3(8g) = J T nyte om0 0 ar, (2.43)

Taking ensemble averages of both sides of the above

equations we obtain:
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! B
uk(tl) = Jo hk(tl Tl)E[Qk(Tl)]dTl (2.44)
)
= h = d 5
uj(tz) Io j(t2 TZ)E[Qj(TZ)] T (2.45)
Multiplying I

(t.) by £ (t ) and taking the ensemble
k 1 3 2

average and using (2.38), (2.42) and (2.43):

£y s
E[;k(tl);j(tz)l g TN jo JO b =,
-h - T 7 3 T .
j(t2 Z)E[Qk( l)Qj( 2)deld = (2.46)

Multiplying uk(tl) by u‘(tz) and employing (2.44) and
]

(2.45) ¢
By
uk(tl)uj(tz) = ;0 JO hk(tl—Tl)hj(tz—Tz)
-E[Qk(TI)JE(Qj(TZ)]dvldTZ (2.47)

Now, if we subtract Eqg. (2.47) from (2.46) and employ

definitions g. and h. of section 2.6 we see that

tl t2
€ (& & )=1F § “h {t -7 )h (t - _Yc_ {=. ,7_)ar dr
d 1 v 1" 972 2 il 2
J 2 o o k 1 J 5 271
(2.48)
. . th th
where ck'(t +t_) is the cross covariance of the k and j
j 1 2
normal coordinates and C ('1,' ) is the cross-covariance of
i 2
J

th th . ;
the k and j components of the excitation.
Furthermore from definition d. section 2.6 it is apparent

that
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[ckj(tl.t?_)]t e ij(t) (2.49)
1772
Therefore, from Eg. (2.48):
tr.t
kK . (t) = T h (t=T_ )h (t-T_)C (v.,7_)dr.dar (2.50)
k3 ‘0’0 k 3 277 1T 2 2

Now, from (2.18) and (2.38):

E[{s}] = [J)lelE({E]}]

T T
and E[{s}Ls}] = [0)lelEC{E]LE) Je] (]
so that from definition d., section 2.6:
T T
(1= 03lellK, , (£) o) Ca) (2.51)
skj J

where [K _] is the matrix of second order moments of the com-

J
ponents of the stress vector. The diagonal terms of [KS (t)]

kj

are the variances of the member loads. These can be determined,
according to Eq. (2.51), only when [Kkj(t)] is first known.
Thus, in later sections we shall employ Eg. (2.50) repeatedly.

In the final section of this chapter two important classes
of stochastic processes which will be useful in later discussions,

are introduced.

2.9 Two Special Classes of Stochastic Input Processes

Here we consider weakly stationary and shot noise processes.

A stochastic process is said to be weakly stationary when

1ts mean is a constant and its autocorrelation can be expressed

(2)

as a function of ltl—t2|, i.e., X(t) is weakly stationary when
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ux(t) = constant (2.52)

and R (t.,t ) =R (t -t 2::153
x 1 2 x( 2 l) ( )

where Rx(tz—tl) is an even function.

It can be shown that if the input to a linear time invariant
: : . (3,4)
system is weakly stationary, so is the response of the system.

Furthermore, it can be shown that the generalized spectral

(4)

density of a stationary process is of the form

mx(wl,wz) - Sx(wl)é(mz—wl)Zn (2.54)
o —iwlT
and S (w,)) = j R (T1)e ar (2.55)
x 1 ‘e X
where 7T = |t2—tl|

Finally, for a stationary excitation, the second order

th .th . . .
moment between the k and j normal displacements 1is given

by(3)

il A *
K - — e e S 4 d" 2-56
X3 2= Hk(L)Hj(L) X(L) W ( )

where Hk(l) and H (1) are the Fourier transforms of hk(t) and
J

h (t) respectively and are called the complex frequency response
]

functions of the kth and jth modes.

Finally, we say that a random process, S(t), is a short
. : : . : 2)
noise when its mean and covariance functions are given by

us(t) =0 (2.57)

c_(t

- - 2.58
LalEgnt,) I(tl)é(t2 t)) ( )
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where I(t) is called the intensity function of the shot noise.
when each of the components of a vector {F} is a shot

2
noise process, we call {F} a vector shot noise.( ) In this

case:

C t,t )] = (1. .(t ))s(t -t 259
fe, (e e )] = [T (k) ]o(e -t ) (2.59)
1]
This concludes the discussion of the probabilistic theory
of structural dynamics. It is hoped that this brief intro-

duction will suffice in providing the foundations of our later

work.
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CHAPTER III

ELEMENTARY DISCUSSION OF THE FOURIER INTEGRAL

3.1 Introduction

In this chapter, we define the Fourier integral and
describe its elementary properties. The applications of the
Fourier integral to analysis of system response to both
deterministic and random excitations is also developed. The
chapter concludes with the derivation of an approximate inver-
sion formula which is shown to be closely related to Reimann's

lemma.

*
3.2 Definitions and Simple Theorems

We shall define the Fourier integral, F(:), of a function

of time, f(t), as

R 32

F(uv)

where the parameter w is called the frequency and is always
a real quantity. Note that from (3.1), F(i) is, in general, a
complex quantity. F(1) is also called the Fourier transform
of f(t). Henceforth, we shall adhere to this designation.

It is known that f(t) may be represented in terms of its
Fourier transform by the following equation, known as the

inversioa formula:

£ The material in this section is taken from Ref. (13).
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£(8) = =L [ F(w) ¢*Fauw (3.2)
2T I

The above representation is valid only at continuity points
of f(t). However, the inversion formula (3.2) also holds at
discontinuity points if it is assumed that

1 + =
f(a) = = (f(a’) + f(a)) (3.3)
2 + -
where t=a is a point of discontinuity. £f(a ) and f(a ) denote
the value of the function as t approaches a from the right
and from the left respectively.

Sufficient conditions for the validity of (3.2) are given
in Ref. (13), p.9. The functions we shall deal with will be
assumed to satisfy these conditions.

When a function of time, f(t), and a function, F(w), are
related as in Egs. (3.1l) and (3.2), we shall indicate the
relationship by

f(t) «=* F(uw)

We shall now consider the following simple theorems:

Theorem l: Linearity
It is apparent from the definitions that if
f (t) «— F_( d f — W
l( ) 1 (&) an , (%) F, ()
then

(a £ (t) + azfz(t))e'thdt = a F (x) + a,F, (w)

1
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" £ (L) = f (t) ¢ ) + 0w .
o)a ay l( ) a2 2( ) alFl(m) aze(L) (3.4)

The above can be extended to finite sums
af (t) + ... +a f (t) «~* a.F.(x) + ... + a F (w
LE, (8 JE(0) 1Fq () B (W)
but the extension to infinite sums is not always valid.

Thus, as we see from (3.4), the Fourier integral operator

is linear.

Theorem 2: Time Shifting
Let us replace t in Eq. (3.2) by t—t0 where t 1is a
0
prescribed (real) constant. Then d(t—to) = dt and

= iw(t-t ) © -ixt ot
f(t—to) = 5— { F(v)e dy = 1 r (F(w)e 0]e dw
ry “

- LA

-iuwt

£(e-t ) = Flu)e g (3.5)

where F(1) is the transform of f(t).

Theorem 3: Time Differentiation
Differentiating both sides of Eq. (3.2) with respect to

time, we obtain:

w©

A iwt
af - 1 CF(vr)ivle duw
dt 2 im
or:; M «— iy F(u)
dt

Doing this n times, we have
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a® f£(t)

at”

- (iw)" F(w) (3.6)

Theorem 4: Symmetry
If we rewrite (3.2) in the form
27 f(-t) = fmF(w)e_iwtdm
—
and interchange t and 1 we obtain a statement of the sym-
metrical character of Egs. (3.1l) and (3.2):
F(t) «* 2n f(-w) (3.7)
Thus, theorems obtained in the time domain may be easily
extended to the frequency domain.
We shall now state without proof, two theorems funda-
mental to the application of the Fourier transform to the

analysis of linear, time invariant systems.

Theorem 5: Time Convolution

Let g{t) and f(t) be two time functions for which the

inversion formula is valid. The integral j f(t-7)g(7)dr =

- D

£(-)g(t-7)dt is the convolution of f£(t) and g(t) in the time

@©

-

domain. We shall use the notation

f(t-")g(~)dr = £(t)*g(t) (3.8)

The Fourier transform of f(t)*g(t) is given by

f(t)*g(t) «= F(u)G(w) (2.9}
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where F(r) and G(x) are the Fourier transforms of f(t) and

g(t) respectively.

Theorem 6: Frequency Convolution

From Egs. (3.7) and (3.9)

@

F(t)g(t) « - [ Fla-y)6(y)dy

-_—

1

or f(t)g(t) e —=
27

F(w)*G(w) (3.10)
where now, the convolution is taken in the frequency domain.

For much of our work, we shall need the delta function,

8(t—t0). This is not a function in the usual sense, since it
is not defined by its values for given values of the argument,

but by the following integral properties

sE-t )o(t)dat = o(c ) (8.11)

-0

where 3 (t) is an arbitrary function, continuous at the given
point to. Similarly:

® dns(t-t ) - dnw(to)
) o(t)dt = (-1) ——— (3.12)

te at” at”
The Fourier transform of the delta function is readily
obtained from (3.2) and (3.1l1):

=  -igt
F(w) = e 5(t)dt = 1

or 5(t) & 1 (3.13)
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Applying Theorem 2 to (3.13) we see that

—iwto
B(t-t ) e (9.04)

From this result and Egq. (3.7) we have
iwgt
e — 2r 6(m—w0) (3.15)
Since the delta function appears often in later discussions
we shall make frequent use of the above results.
In the next section, the Fourier transform is applied to
the determination of the response of a lincar system to deter-

ministic excitations.

3.3 System Response to Deterministic Excitations

. Eh ;
Consider the k normal coordinate of a structural system.
Its response to a deterministic excitation, Qk(t), is given by

Eq. (2.24)

(A1)

(t) -
=
k 0

hk(t—T)Qk(T)dT (3.16)
Since Qk(T) is zero for v~ < 0 and hk(t—T) is zero for

-~ > t, the limits of integration in (3.16) can be replaced by

=X and cc:

g (E)y = jm h_(t-7)Q (7)ar (3.07)

Taking the Fourier transform of both sides of (3.17) and

applying Eg. (3.9) gives
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;k(w) = Hk(w)Qk(w) (3.18)

where'EZ(m), H (wx) and Qk(m) are the transforms of £ , hk(t)
k
and Qk respectively. We can express (3.18) more conveniently

in matrix notation as follows

S -
A7 (W) [Hk] {Qk(w)} (3.19)

For the impulse response function given by (2.22) the

(2)

Fourier transform is

1 1
{ = == 3.20
Hk(L) ( )

- -2+2'g w
uk w i X kY

Eq. (3.18) shows that once the transform of the excitation
is obtained, the transform of the response can be readily
calculated and application of the inversion formula (3.2) gives

the corresponding time function.

3.4 Formulation of Response To Random Excitations

Recall the definition of the generalized spectral density
of a random process, X(t):

B, (8035) = E[R(w)X* (5,)] - E[X(3;) JELK" (w)] (3.21)

This can be immediately extended to a vector process,

{Xi(t)}:
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[mij(wl.wz)] = E[{xi(wl)} in(wZ)J]

A AKX
- EL{X. (w_ )}IE( (X, (w 3.22
Cix, (w )PIElLX, (w g ] ( )
where [m i3 ml,L )] is the matrix of generalized spectral densities

of the components of the vector {Xi(t)].

3. (a ,wz)] is related to the matrix of covariance
1]

14
functions, [c..(t_,t_ )] b (2
T O e
D (v .uw = M {c (t .t xp(-i(w t - w t_))dt dt
[ij(1 2)3 ;;’,[ij(l 2)'_\e p(l(mll v, ,)) o8,
(3.23)
1

te & .2 )= [m (v ,x ﬂexp(l(L t + w0t ))du dw

(3.24)
wWith the above definitions and the results of section
3.3, we can relate the spectral density of {%i(t)} to the
spectral density of {Qk(t)}.

Replacing 4 in Eg. (3.18) by wl, we have

{;i(“l)} = F\Hk(wl)\l {Qk(wl)} (3.25)

Now, replacing & by mz, taking the transpose and then the
conjugate of Egq. (3.18), we have
) = D () S (e ) (3.26)
2 Qk 2 Hk 2
From (3.19) and (3.20), the guantitites

Bl (= ()] M("”z)d } and EC{, (u ) VIEL 1 () 0 ) are given
k B 4 k2

by
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D Fend ':4* = |™~ 0 oF
L[fbi(ml)}[hdk(wz)l l1=°¢ Hk(wl)\JE[{Qk(wl)} LQ, (w ) i)

-t\H;(w2)~J (3.27)

*
et b
E["i(ml)}] E[thk(wz)J )

= I~ " | a s A*,.
5 Hk(hl)\uE[{Ok(Ll)}]E[LQk(LZ)J]t‘H;(wz)\J (3.28)

Subtracting (3.28) from (3.27) and employing (3.22), we

obtain

CHUNTRIERN WERACRTPR S PR (3.29)

where [Bo(ul,xz)] is the matrix of generalized spectral
densities of the vector process {Ok(t)}.

It can be seen that the important result (3.29) is the
counterpart of Eq. (2.48) in the frequency domain. When
[8Q(x ,Lz)] is known, [Bg(ul,wz)] may be readily obtained and

the correlation matrix of the response calculated by a double

application of the inversion integral, Eg. (3.2)

3.5 Evaluation of the Inverse Transform

It 1s clear from the preceeding sections that efficient
application of the Fourier transform methods to both deter-
ministic and random response of a system depends upon the
application of the inversion formula, Eg. (3.2). Therefore,

we shall consider the calculation of the integral
5%. : F(L)elmtdm when F(y) is a given function of w.

-0
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The integral may be conveniently calculated if we allow
1 to assume values in the complex plane. That is, we replace

¢ by the complex number z = x + iy and consider the integral

1 izt
I = — § F(z)e dz (3.30)
2n Yo

where ¢ 1s a conveniently chosen closed curve in the complex
plane. In this discussion we assume that F(z) is analytic
everywhere in the finite z plane except at certain isolated
points a_, az,..., an where it has poles of various orders.
When this is true we may use the calculus of residues to
evaluate the inversion integral. To do this, however, we must
introduce the following essential theorems, stated without

*

proof.

Theorem 1:

A!y Suppose that, on a circular arc CR
[
yost 0 with radius R and center at the
origin, F(z) + O uniformly as R =+ cC.
= Then:
Tm P e Caiiz = 0 w0 (E.31)
. i z = m e
Fig. 3(a) im JC = .
R R

if CR is in the first and/or second quadrants. This result is
known as Jordan's lemma.

* See refercnce (14), p. 556.
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Theorem 2:

AY Now let Cx extend over the third
A =
& and/or fourth quadrants. ‘Then
ICR . ~imz
lim [ €7 "F(z)dz = 0 (m>0) (3.32)
R—> CR
Fig. 3(b)

With these theorems a procedure for evaluating the
inversion integral can be outlined. We shall consider separately

the two cases t > 0 and t < 0.

t > 0: Let the path of integration in Eg. (3.30) be taken
)hy in the counterclockwise direction
~Cr o
along the closed curve consisting
j/% of a line segment on the real axis
“x
and a circular arc, CR, as shown.
Fig. 4 Eq. (3.30) can then be written
.R 15¢t ~ .
1= - £ F(x)e dx + L J F(z)ethdz (3.33)
2T -R 2 CR

Taking the limit of I as R =+ & and applying The. 1 with m

replaced by t, we see that

Lim T = L [“P(x)e’* ax (3.34)
R~ 27 o

which is the desired inversion integral. But, by the calculus

. (14)
of residues:
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i ) = @ ;& Res (F(z)e 25:a. ) (3.35)

R k
izt ) ) izt .
where Res(F(z)e ;ak) is the residue of F(z)e at the point
of singularity dk and the summation is taken over the singu-
larities in the entire upper half z plane. Equating the left
hand sides of Egs. (3.34) and (3.35) we achieve the final

result:

f(t) = = N Fls)e “faw = i ?}_3 Res(F(z)eiZt:ak) (3.36)

N -

for £t > 0 and for all ak such that Im(ak) >0

t < O: Now let the path of integration be as shown at left
124 ~
* and let ¥ = |t|. Then
7 X ~ ~
R ~-ixt -izt
> I=--=F(x)e Tax + [ F(z)e "taz
2m IR o
ke, R

Again, taking the limit as R = cC,

Fig. 5
and applying The. 2, we have
- -,‘~
Lim I = - =3 j F(uw)e l&tdw (3.37)
R—o 2 Y

Employing the same reasoning as for t > 0 we conclude that

Ee) = -2 Pty tag = + i 2 Res(ilz)e -Cr 4 ) (3.38)
2 ¢ X k

for t < 0 and for all ak such that Im(ak) < 0.

when f(0+)# f(07) the value of {f(t)}t_o is
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(e(e)) == (g(0%) + £(07) (3.39)
t=0 2

as has been stated in section 3.2.

In our applications, F(z) will be a rational function; so
that all its singularities will be poles. For this case, the
residues are most simply calculated. 1If F(z) has a pole of

14
order m at z=a, then( )

m-1
izt 1 d m izt
Res (F(z)e ;a) = - ] {(z-a) F(z2)e 1 (3.40)
(m-1): dz z=a
izt . .
since e has no singularities in the finite z-plane.

To illustrate the above methods, we present the following

example.

Example 3.1

Consider a simple oscillator for which the displacement,
(t), is given by
£+ 200! + 0% = U8 (3.41)
where Q(t) is a shot noise with a constant intensity function.
Calculate the correlation function and mean square of Z(t).
Let the constant intensity function be I:; then from (2.58):
CQ(tl'tz) =1 8(t2—tl) (3.42)
Thus Q is a stationary process. With this correlation function,

we have from Egq. (3.23)
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re ;
I I 6(t -t J)exp(-i(w t -2 t dt 4t
[J ottt dexp(-iu £ -3 t)))de at,

-0

mQ(wl,mz)

2 I b(wl—mz) (3.43)

by Egs. (3.11) and (3.15).
Therefore, from (3.29):

A *
m?(wl,wz) = 2m I b(wl—mz)H(wl)H (w2) (3.44)

-

where H(w) is the freguency response function associated with

(3.41). sSubstituting the expression for &_(wl,mz) into (3.24)

g
we have
G Gt it ) = - ] 7T (L -w_)H(w )H*(w )
ST 2w o 1 2 1 2
or exp(i(mltl—xztz))dwldw2
C.(t.,t) = = r |8 (w |2 i\w(tl-tZ)m 3.45)
g(t10ty) = 0 (€)] e L (3.

by (3.11]). Since the combination (tl—tz) appears in the
exponent in Eg. (3.45), we see that C§ is a function of
(tl—tz) only. Hence, the response is weakly stationary and

we can write:

I m; 2 i’J.}'T
C.(7) = > |lH(w)] e aw (3.46)
> b s
where T =2 t_-t
1l 2
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We can now apply the methods of this section to the
evaluation of the integral in (3.46).
From (3.20), the frequency response function is

2 =
li(QZ_m - PRty ad ses
m

1/m2

3 2 3
(=i ) % 40w

2
lH@) | = 3

This can be written as

2 2
[H(e)| = i )(}/m = ' (3.47)
&—al m—az)(m+al)(u+a2)

. . 2
h = i¢qa + Q_ , = i - Q aq. = /1- 2
where al 1¢ 4 a2 (e , an " V1=

Substituting (3.47) into (3.416), we obtain

T = eindw
CelRdl = = I semms——mae ,
5 2™m ‘e (& al)(~L az)(x+al)(m+a2)

(3.48)

Let us first consider the case 7 > 0. We first replace
L by z = x + iy and adopt the contour of integration shown in
Fig. 3(a). Employing (3.36) and (3.40), in the expression

for C_(1), we have

g

-CQrT
Cg(T) =Le. _ {cos QdT PR 1 OdT]

4¢03m? J 1-¢2
for = > 0.

For the case - < 0, we adopt the contour of Fig. 3(b).

Setting ¥ = |7| and employing (3.38) and (3.40):
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=
= ———— [cos Qd? PR I T
1-¢2 g

Hence, for all 7, the correlation function of E(t) 1is
given by

=Cqj|
c (7)) = Le (cos Q.1 +

5 acan® S T

Since the mean of E(t) is zero, its mean square is

sin lewl (3.49)

2
K_ = E[E (t)] = — 1 (3.50)

e

2 4QQ3m2

3.6 Approximate Inversion of the Fourier Transform

In most of our considerations, we shall be dealing with
functions possessing Fourier transforms which are rational
functions. Hence, it would appear that the evaluation of the
inverse Fourier transforms in our applications is perfectly
simple. However, when the Fourier transform to be inverted
has many singularities in the complex plane, the resulting
expression for the inverse transform may be quite complicated.
In such cases, it is more desirable to obtain useful approxi-
mate forms of the transform such that its inverse is alge-
braically simplified. Here, we present one such approximation,
valid for many of the cases to be considered. Essentially,
the approximations involve ignoring the presence of singulari-

ties for which the residues of the transform are small. We

42



shall consider only transforms which are rational functions
and which possess no singularities in the lower half z-plane.
As can be seen from Eq. (3.38), the latter restriction implies
that the inverse transforms are zero for negative t. Such
) . . ) (13
functions are called causual functions of time; and our
later discussions will invariably involve them.
With the above considerations in mind, consider the
evaluation of the integral
1 @ iwt
ey == § 2ale g, (t > 0) (3.51)
27 Le F(w)G(w)
where F(x) and G(1) are polynomials and J(z) is analytic in
the upper ahlf z plane and possesses no zeros in common with
F(z) and G(z). We shall assume the following:

a. F(z) has zeros of order one at the distinct points

a , a_r--e,a and

1 2 n
la, - a.| <8 (3.52)
i )
b. G(z) has zeros of order one at the distinct points

b, b I--c'b and

i 2 m
) U 3.53)
b, - bl 2 e (
G Finally:
T lai—bjl <Y, where fige T = 0 (3.54)

*
With these assumptions, it can be shown that

g See Appendix 1.
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1 “m b .
—_— M elwtdm]

I(t) = {2WG(a) s (1+Tl)(l+T2) (3.55)
where 00 (S
m& Y, MAX( |3 (b, ) |]
o{Tl} = (3.56)
€ MIN[IJ(ak)IJ
o{T}=o{MAx[—Giil——1]} (3.57)
2 g(a+h.)
J
and where
a =a+d , A < (3 = Ay e enem) (3.58)
j 3 J 1
that is,

a is some point in the vicinity of the a 's.
3

I1f the Fourier transform can be factored into the form

of the integrand in (3.51) in such a way that the quantities

given by Egs.

1

I(t) = 2n

-

with a relative error of (Tl + T

B

)

nb. 'b
/ ////’1'
A~ w
1. t
.b.'
Y &

Oy (K=1,2,...,0)

(3.56) and (3.57) are small, then

—I(w) elwtdw

G(a)F(w)

(3.59)

+ -
2 TlTZ)
A situation for which (3.59)
is valid occurs when the
zeros of F(z) are clustered

within a small region of the

z plane (Fig. 6) far removed

Fig. 6
tered.

following example.

As an illustration of this situation,

X from the zeros of G(z) which
are themselves widely scat-

we present the

44



Example 3.2:

a) Consider the integral:
iwt
E B et%q
K(e) = 5= [ a(w) : = (3.60)
T = (o+iw)” + 8
where a and B are real and positive, and where &(w) = 4
F(w)
and the n poles of are

iy F(w)

confined between the real

:/"",6 :L*,d
F—%*l # axis and a circular arc of
| radius 7/2 with center at the
Fig. 7 origin (as shown in Fig. 7).

2 2
Factoring the term {(a+iw) + B ,

we may write

© i'J.)t
l ~ - d'
K(t) = = [ @) —=
27 le (w—-ai+B) (w~ai-B)
Thus the poles of L 5 occur at w = ai + Bg. We

(c+in)? + ¢
shall assume that lai + BI >> + so that we may apply Egs. (3.55)
through (3.57).

In this case:
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MAX [IJ(bk)I]
= 1. The

Furthermore, since J(w) = 1, =
MIN [IJ(ak)l]

point z = a may be conveniently chosen as the origin, i.e.,
a = 0. Hence, from (3.55), (3.56) and (3.57) we have

@

= o Bl 8 r ] it
K(t) = b a2+82 5 @(w) e duw} (l+Tl)(l+T2) (3.61)
where o 1-%
2 2
of{r}=o {% N (3.62)

; / 2 /2 2
since n a2+ B i.? = a + B g and

(3.63)

270
O ID ) =0 [ e }
2 /a2 = 52

b) Now, let 3(t) ¢« ®(+t). Then by the convolution

-at 8

theorem and the fact that e SIN Rt U(t) e > 2:
(a+iw)” + B
t -a(t-7)
K(t) = [ «(t) e SIN B(t-T)drT
0
Hence, from (3.61):
t -aT B
D plt-T) e SIN g~ @t = —5— 9(t) (14T ) (1+T ) (3.64)

Using Egs. (3.62) through (3.64) we can estimate the order
of magnitude of K(t). Consider the case n=1l. We have for

small a;



o {T} o) {gﬂ} = I
2 B

Hence, if O {gu} < A , then

o f{ ] %(t-1) ¢ " sIN 87 d7} <0 {ié- (3.65)

Now when n > 2 , the order of Tl is always << 1 from
(3.75). Hence for n > 2:

.t -
of{ | (-7) e T s 8T d7} = o {%} (3.66)
0

Since 3 is large, we can write the general result:

'it —
o { ] w(t-7) e® sin g7 ar} = o (&} (3.67)
0 B8
In particular, for a = O;
..t
0 { " v(t-7) SIN BT dr } = 0O {?} (3.68)
0

3.7 Reimann's Lemma

The result (3.68) in the example of the last section is
a special case of a result known as Reimann's lemma. This can
be stated as follows:

If () is of bounded variation in the range a to b, and

has an upper bound of order one, then

b 1

o { . () cos 8T a7} = o {=] (3.69)
a B
».b l

of{ , () sin 87 dr} = o0 {= (3.70)
a B

(8)

when ¢ is large.
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All functions under consideration will be assumed of
bounded variation. Simply stated, this means that they can
be represented by a curve of finite length in any finite

interval of time.

(13)

An estimate of the variation of ¢ (t) is given by
p(t - (t < M_|t -t
lote ) - ol < mle ¢ |
(3.71)
Moo= == [ lellow)|dw
1 2 e

where Ml is called the first moment of the transform, ®o(w).

From (3.83) we see that ¢(t) is of bounded variation when

®(z) has no singularities at infinity. This is a necessary

condition for the validity of (3.80), so that Reimann's lemma

is seen to be closely related to the results of section (3.6).
To conclude, we now have, both in the time and frequency

domains, techniques for the approximate analysis of system

response to random excitation. In the following chapters,

we examine the second moment response of various systems and

apply the techniques of this chapter to their approximate

evaluation.
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CHAPTER IV

FORMULATION OF SECOND MOMENT RESPONSE

4.1 Introduction

In this chapter we consider the response of structural
systems to random excitations as measured by the matrix of
second order moments of the normal displacements. In section
4.2 the Fourier transform of the second moments is derived while
in latcr sections the set of variances is given a special
treatment. The chapter concludes with a consideration of

response to shot noise excitations.

4.2 Second Moment Response

The responses of the jth and kth normal coordinates of

a structure for which the equation of motion is (2.17) are

given by
t
e () = 7 h (e~ +_)d 4.1
'k( ) Y k( Tl)Qk( l) iy ( )
at
g () = [ h (t-7_)o, (7 )dr (4.2)
3 g 1 2 3 2 2

where we assume that {Q} is a random vector process the com-
ponents of which are zero for negative time.
From definition d. of section 2.6, the matrix of second

order central moments of the normal coordinates is given by:
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- u,_J]

[x, ()] = EL{5, - u. } LE.
143 k Sk J 3
= E[{?k} L:j_l] - {ugk} Lung (4.3)
From (4.3) and Eg. (2.50) we have
R .
(hesd = Ll r.\hk(t—wl)\][cgkj(rl.vz)J[\hj(t-vz)\ld.ldvz
(4.4)

,72)] is the correlation matrix of the excitation,

where [C (-
ij 1
{0(t)}, and the impulse response functions are given by

Egq. (2.22).
.(t) of the matrix

Now, we consider only the component Kk
J

of second moments and take the Fourier transform of it.
we have from (4.4):

Denot-~

ing the transform of K (t) by k . (u),
kj kj
-iwt
(r ,7 )dr dv le
. 2 1l 2

k3 1
(4.5)

= Bk
Ko (w) = 1 " h (t-7 )h (t-T )C dt
k3 te Y50 i ¢ 1) j 2”@

(e (tr ,~ ) is zero for = or ~_ < 0. Also, h (t-7.) and
Oy 17 2 1 2 k 1
h_(t-'z) are zero for 'l Hence

3
the limits of integration in the double integral within braces

> t respectively.

~

> t and -~
2

in (4.5) may be replaced by =< and + <&, so that
) oo e
~ ~ S Y _lw
K, . (w) = { h (t--_)h (t-7 )C (t.,7 )dr_d~ le dt
k3 g o e ' gL .}
oL B A S 2 s 2 2
we have

Assuming the order of integration may be reversed,

= (- ,7 )d-_dar
k3 1l 2 1 2

i 7 -iwt
{ — .
cg U Myt -l)hj(t rgle dt}c,
(4.6)

Kkj(x)

50



Thus, we need only take the transform of the product hk(t—Tl)

h (t-1_ ). From (3.5):
5 2.
-inl —iw-
h, (t- — w (-~ w 2
x (E-7) B (v)e : hJ(t 2) - Hj(x)e <
and from the frequency convolution theorem:
1 ® —inl —iTz(m—y)
h (t-7_)h (t-- — = 7 H ol a
k( l) j( 2) == ﬂmHk(Y)e j(JL i) € 4
(4.7)
Substitution of Eg. (4.7) into (4.6) yields
4 i ® ~i(r y-7(y-w))
K o) = == """ H (y)H, (w-y)e - dy}
kj & 3
SNE (v..,7 )ar_dar (4.8)
ij 1 - A
Again reversing the order of integration, we have
. i {nf —i('ly—'z(y—x))1
K. (1) = — Hk(y)H (e-y) (|, C (r ,7 e dr _ds _ldy
k =_ : Je .
J n ‘s j - ij 1= 2 1 2
(4.9)

But, from (2.33), the term in braces is nothing but the

th
generalized cross-spectral density of the kth and j excita-

~

tion components, & ., expressed in terms of y and y-w. That
J
is
) -i('ly—fz(y—m)) =
3! (®, w5 e ar . d~_ =a_ (y,y-u) (4.10)
Hence:
~ l P ~
K. () = —=  H (y)H (s-y) &, (v,y-s)dy (4.11)
k] 260 ey L 3 %5
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or in matrix notation
o

= l -
Tk w =
- kj(m)] 2n Y

-

[\Hk(y)\mo(y.y-w)]t\nj(m-y)\ldy (4.12)

with [® (w_ ,w_)] given, we can calculate [k  (w)] and
Q 1 2 kj
apply the approximation procedure of section 3.6 to obtain a
simplified representation of [Kkj(t)]. However, in the next
section, we derive a special result for the variances (i.e.
the diagonal components of [Kk'(t)]) for which approximations
J

may be obtained directly, without an integration of the type

considered in (4.12).

4.3 Special Treatment of the Variances

th

The equation of motion for the k normal coordinate is,

from Eq. (2.17):

0 . 1
§k it ngw E +uw mk Qk (4.13)

k °k
where 3 (0) = € (0) = O.
k k

Taking ensemble averages of both sides of (4.13) gives
2 1

i + 2§kwkuk + mk“k = ;;- E[Qk] (4.14)

Subtracting (4.14) from (4.13) and letting (Ek—uk) =y

and (Qk - E[Qk]) = x, we have

2
d Yo, 2C. w gl + u;zy = —l X

k

This equation may also be written in the form
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d
Yy S¥s 2 1
—_— = y 5 — = —ZC w y - W y + — X (4.15)
dt 2 dt kK x 2 x 1 m
d
where y =y and y = 4 5
1 2 dt

If the equations of (4.15) are multiplied by y and y
1 2

in turn, we obtain:

5 2
1
2 gt 172
2

1 Y, 2 2 1
==L WY = LYY *—= 3
2 dt k k k12 m 2
, 2

2 dt 2
y, —= = -2 w -w e ===l

1 &% k kylyz kyl M yl

Adding the last two equations and taking ensemble averages

of the resulting equations:

as
P (4.16)
2 4agt 12
das
1 22 2 1
- = = 27 g S8 - &% S + — Elx 4.17
2 at R 2E T Tt Vb Doy 1 S
4
512 )
= g = % S S + == Elix 4.18
at 22 7 25%5, 11 C ylj ( )
where:
2
= E
511 [yl]
s =E
12 ly,v,]
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2
s =kgly]
29 2

Substitution of 312 as given by (4.16) into (4.17) and

(4.18) gives

2

ds W ds
1 22 k Il 1
= = — 2C @ 8 £ $ == E[x 4.19
2 dat %522 75 Ta m [x y,] ( )

d s ds

i 2

1 % =5 -(Cuw - g + -2 Elx y. ) (4.20)
3 e 22 kK k gt k 11 m i

From (4.19) and (4.20) we may solve for 822 and substitute

this into the remaining equation to obtain a single equation

in § . Recognizing that S = K t) we may write this as:
S g 2 11 kk( ) o
2
K K
2 d e 3. LT 2 2 9% 3
) + > w + (w +2C w ) 2C w K
4 e 2 kk 4¢ k k k k k kk

LT
=i s I
m -5 E[xyl] + 2CkwkE[xyl] + E[xyl] ] (4.21)

which can be factored as follows

d 1d . d 2
— + 2C_ w -, +  w —+uw K
1 1 d 1
= = (= — + 2¢ w ) Elxy] + — E[xy] (4.22)
m . 2 at Xk m_
Now, from (2.24) we have
r-t nm
= -1 = h (t-- -)d = | h (t-~)x(~)d~ 4.23
y = (5 - ) i L (E=TIX () J B T ( )

and
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t -]
g fo[g%-hk(t-T)]x(T)dT = [g%.hk(t—T)]x(T)dT (4.24)

-
Multiplying Egs. (4.23) and (4.24) by x(t), taking

ensemble averages; and noting that E[x(t)x(7)] is C (t,7):

%ex
Elxyl = [ h (t-71)Cy (t,7)drT (4.25)
—o Kk e
Elxyl = [ h (t-1)c, (t,7)ar (4.26)
—o K e
Hence, Eg. (4.22) becomes
2
2
T | -y e - P W
dt k k' 4 dtz k k gt k kk
(4.27)
= ——1-(5'—i + 20w ) "”hk(t-~)c (t,=)ar + =+ "h (t-7)c (t,7)ar
m o2 gt L3 S 9%k M le K xk

We shall now take the Fourier Transform of both sides of
Eq. (4.27).

From (3.6), we have

2
d 14 d 2
(— + 2C 0w ) (= — + . 0w — + w ) K _(t)
2 k
at k k' 4 4 k dat k' kk )
&% G i 28 ) ( L F A )+ “2) X (w)
(1w ‘kwk Z % ,kx W Lk Kk w
] _ I
since hk(t-,) — Hk(m)e .
. o WP —iry it (-
Efxy] e+ -1 LR () | e Yo-itie y)cQ (t,-)dtdr]) dy
27 e —o - Kk

or
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T "
Byl &3 = | (y) & (y,y-w)dy (4.29)
21 . Hk Qkk

by (4.25) and the freguency convolution theorem.

Employing (3.6), we have:

" G N )
E[xy) 5 du J_ B (¥) kak (y,y-w)dy (4.30)
and
. T - _
Elxy] & = Im iy H (y) kak (y,y-w)dy (4.31)

Therefore, from (4.28) through (4.31) the Fourier trans-
" ;
form of kk(t) is

1. & . :
77 (5 -2C w i+y)H (Y)Bg | (y,y-w)dy
2 Kk By Qxx (4.32)

2 2
G i) (- E- +iC ww +w
4 k k

w-22
m (=28, 0w k

4.4 Summary of the Response Formulation

In general, the second moment response to random excita-

tions is given by Eq. (4.12)
e = 52 TR ) I8 (yey-e) 10 By eoy) Ty (4.12)

and an alternative form for the diagonal elements of [Rkj]
(i.e. the variances of the normal coordinates) is given by

Eq. (4.32)
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1 "W _ 2r w i+y)H (y) ® (y,y-w)d
2.~rim(2 A kay Qkkyy %
K " =

kk(JJ) ~ (4.32)

2
w - 20, w i) (- 22 + il wow +
mk(m “kwkl)( B 1‘klku wk)

These two equations summarize the response formulation of
our work and will provide the basis of all subsequent considera-
tions.

A cautionary note should be given on the evaluation of
the integrals appearing in (4.12) and (4.32). Let us denote
either of ~he integrands by J(x,y) and the integrals themselves

by I{(x). Then we may write

A iyt
I(e) = 11— + J(w,y)e d
() = == [ atyre Tay) o

-0

which, by (3.3) becomes

@

1 : HE iyt
I(s) = 5[ Lim (57 ) Jw,y)e " dy)
t-ot 7 -e
A iyt
¢ Lim (22 7 g(w,y)e™¥ dy]) (4.33)
t-0" 7 e

From the discussions of section 3.5 it 1s clear that the first
integral within the brackets is to be evaluated from the
residues of the integrand in the upper half z-plane. Similarly,
the second integral is to be evaluated from the residues in

the lower half plane. Hence, I(x) 1s one half the sum of the
results obtained when the integral is evaluated from the
residues in the upper and the lower halves of the z plane. This

we represent symbolically by
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t = l
I(w) 2(I + I )

u 2

A consideration of Eq. (4.12) for the case j=k shows that
it does not reduce to the corresponding result in Eq. (4.32)
in any obvious way. Consequently, in Appendix II, we present
a demonstration that the two expressions for the variances
are, in fact, equivalent.

In the next sections, we consider the cases for which
the excitation {Qk] is (i) a stationary vector process and

(ii) a vector shot noise.

4.5 The Stationary Case

Analogous to Eg. (2.52) and (2.53) written for the case
of a single random variable, we define a stationary vector

process, {Xi(t)} as one for which

e, 4z e )l seliz=p FlE-u Ji=[e (=) (4.34)

g L @ T M X5 %3
where (tz—tl) = 7. The matrix of generalized spectral
densities is given by

o (s ,w,)) =27 6(u,=w )(s_ (w )] (4.35)
where

% —iwlT
s, ()] = Jole, ()le ar (4.36)
3 ~e j

I1f iQk(t)} is such a process we conclude that, quite

apart from any considerations involving Egs. (4.12) and (4.32)
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= X
[CE -(T)]—ZTT

[ tu s, W) I (@) ¥Taw  (4.37)
“k3J -® k3] )

J

from Eq. (3.29) and an application of (3.15). Hence:

_ 3 R S N " P
(%5 ([Cikj(')])7=o = imt\nk(m)\qtsokj(m)]txnj(m)\adw
(4.38)
Now, let us examine Eg. (4.12). From (4.35):
@ (y.y-w)] = 27 8(w)ls, (y)] (4.39)
%3 ;3

Substituting this into (4.12) gives

[Kkj(w)] - i&[ H (y) itsckj] 6 (w)( Hj(w—y) Jay

so that

(g = 70 oe s, I8, e~

2T —c =0 ij
iwt
- 5(x) e dw } ady

Applying (3.15) and noting that H (-y) = Hf(y), we have
J J

@

filg, .4 =

*
=352k g 1~
K3 = E\Hk(Y)\”[st.(Y)][ Hj(y)\de

J

-0

which is in complete agreement with (4.38)

Substituting (4.35) into (4.32):

. E(1) o (F -20m i + IR (Y)S, (v)dy
Kkk(m) = 2z

. 2
m (1-27 2, i)(- ¥ + iC w w + w
k k k 4 k'k k

Taking the inverse transform and employing (3.15), this

becomes



o 20, W l_y
—— [Tk n(y)s, (v)dy (4.40)
B == ngwki kk

Kkk(t) -

If both numerator and denominator of the integrand is

2 2
multiplied by (wk -y - Zigkwky) and using Eq. (3.20) for

H (y):
L
i i 2
(5 + Yoy 2o y°- 2iC u_ y)
RN 2¢ w x k k
e = 3 4 k k S, (y)ay
2 Ok
2 2 2 222
m ((w -y ) +4C wy)
k k k

2
k
) 2 2 22 222 2
Noting that m ((w -y ) + 4C w y ) is IH (y)| and expanding
k k k k k

the numerator of the integrand, we have

& . 2iC y 3 2
1 s ;
K == "1+ 2L - LS L
kk 27 Lo 2¢ w 2¢ w3 Kk

k k k k k

(y)dy
kk

Q

(4.41)
2 .
Finally, since So (y)|H (y)| is an even function of vy,
kk k
the terms involving y and y in (4.41) vanish.
Hence, from (4.41):

Ry = —= 7 o (y)IZS (y)dy
Kk = 24 ¢ X Oyexe

-

which agrees with the results corresponding to the diagonal
terms of both sides of Egq. (4.38).

In later sections, we shall repeatedly use the result
(4.38) to check results obtained for non-stationary excita-

tions via (4.12) or (4.32).
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4.6 Shot Noise Excitations

If {Qk(t)} is a vector shot noise, then according to
(2.59):

[Cij] = [Ijk(tl)] b(tz—tl)
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