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ABSTRACT 

Results are described for three tasks In a continuing analytical study 
of rocks and soils. 

I. Shock Conditioning - Post-shot measurements show gradual 
degradation of rock media physical properties as the range from underground 
nuclear events decreases. These changes correlate with the peak shock 
pressures to which the media has been exposed. The degraded physical 
properties affect the propagaticn of waves behind the shock/ and thereby 
Influence the decaying wave profile. A model incorporating the measured 
properties of granite at the HARD HAT site, before and after shocking to 
various levels, has been formulated and incorporated into a 1-D Lagrangian 
code. Predictions are made of free field motions at the nearby PILE DRIVER 
site. The predicted waveform in the decay and recovery phases obtained 
with the shock-conditioned model shows significantly better agreement with 
measured waveforms than are obtained with uniform field models. 

II. General Model for Rocks and Soils - A phenomenological model 
is described which incorporates dilatancy (as controlled by inelastic shear 
deformation), hysteresis (as a function of maximum density experienced in 
loading), strain rate effects on inelastic deformation, and a dependence of 
inelastic shear deformation on proximity of the stress state to the static 
failure surface. The method of determining the material parameters from 
experimental data is outlined and the model is applied with satisfactory 
agreement to quasi-static data for triaxiaily loaded granite. The differential 
equations defining this model are hyperbolic, thereby assuring uniqueness. 

III. Failure Model for Rocks - Triaxial extension and compression 
failure data for granite and limestone cannot be fit by one curve In maximum 
shear stress vs pressure plots. Thus the failure surface in these media 
cannot be described by the familiar von Mises, Prager-Drucker, or Tresca 
yield models. Extensive data for limestone failure were analyzed in this 
task. On the pi plane, these data are first fit by a general quadric. Nearly 
straight-line fits are obtained, with the slopes being a function of pressure. 
A modified Coulomb failure model, incorporating a dependence on pressure 
and a test for tensile failure, is introduced and fit to the limestone data. 
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PART 1 
SHOCK CONDITIONED BEHAVIORAL MODEL 

FOR GRANITE 
by M. H. Wagner 

I-1. INTRODUCTION 

I-1.1 BACKGROUND 
* 

A number of investigations1"® have been concerned with 
prediction of the free-field ground nrH'ors for the HARD HAT ard TILE 
DRIVER events. Tiurough those studios an improved under stand I rg of the 
problem evolved, but the remaining uncertainties and technical difficulties 
v/orc sufficient to preclude fully satisfactory predictions of these large- 
scale response data. The central pro5 lem associated with the computa¬ 
tions has been the attainment of an adequate prediction of the observed 
waveshape. The importance of a number of medium properties and of 
mechanisms operative in these events (e.g., coupling characteristics, 
radiation deposition, water content, porosity, and block motion) were 
investigated in the previous studies. From work on correlating mechanisms 
with various features of the observed free-field wave profiles”, it was 
hypothesized that the inclusion of shock conditioning or motnn.crphic 
effects in the granite medium model would provide improved predictions 
of the free-field response. The objective of the present study was to 
evaluate these effects through develo; nient of appropriate constitutive 
relations, followed by application of these in computations of the PILE 
DRIVER event. 

1-1.2 SCOPE OF EFFORT 

The program effort allocated to this study was limited to an 
evaluation of the significance of shoe5' conditioning effects to prediction 
results, i.e., to determine if such effects appear sufficiently impôt tant 
to warrant their inclusion in future freo-fleid calculations. There was 
therefore no attempt made to formulate a complete constitutive model 
which might provide a very close quantitative duplication of the FILE 
DRIVER experimental results. Such efforts are probably rot Justified, in 
any case, in view of the very limited experimental dot** a va 11* Me. The 
primary significance of the experimental results lies in the major character¬ 
istics of the waveform that arc revealed, such as its tread doc*y and the 
recovery phase, which in turn imply the presence of cot mb: mod lern 
properties or mechanisms which should accounted for i»* the* theoretical 
behavioral model. 

♦Superscripts arc reference numbers. The Reference L4n 
for Part I is on page 36, 

1 
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1-2. SHOCK CONDITlOMílvlG AlxiD FRCJÜ F3ELD RESPONSE 

1-2.1 WAVEFORM CHARACTERISTICS 

The measured free field waveform (Figure I)7 for PILE DRIVER 
may be viewed as having several distinguishable parts, denoted in the 
figure. The first part of the waveform, corresponding to the sharp rise 
In velocity, is attributable to passage of the shock wave produced by the 
impulsive load from the nuclear explosion. The transition phase, 
corresponding to the Jagged decrease in velocity, is due to unloading 
(rarefaction) waves and is dependent on complex conditioning effects in 
the medium produced by the shock as well as wave interactions within 
and near the cavity. The conditioning effects inferred to are vaporization, 
melting, softening, crushing, brecciation, fracture, etc., which in turn 
alter the material properties. The tail of the wave, corresponding to a 
smooth attenuation of velocity, is attributable to the late-stage cavity 
pressure, which forces growth of the cavity and thus material displace¬ 
ment beyond the cavity out into the free field. Upon cessation of cavity 
growth the positive-phase of the waveform ends, and the recovery phase 
is entered.* A summary of the foregoing correlations, along v/ith a list 
of the important parameters or properties which influence these mechanisms. 
Is given in Table I. 

1-2.2 PAST EFFORTS TO ANALYZE WAVEFORM 

Looking at the history of investigations to predict free-field 
ground motions, it is apparent that the earliest efforts concentrated on 
predicting the first phase of the waveform, i.e., the shock front. These 
efforts were generally successful in predicting the variation of v/ave 
arrival time, peak stress, and peak velocity with range. Subsequent 
studies have recognized the importance of the proper treatment of the 
cavity motion, with the result that predictions of peak displacement vs 
range have been notably improved. Some effort has more recently been 
made towards predicting the transition phase, and a number of mechanisms 
and effects have been suggested and evaluated. Of these, the most 
important appears to be the occurrence of dilatancy in the medium. The 
past studies paid little attention to the recovery phase of the waveform, 
and accurate predictions of the residual displacements have not yet been 
made. 

The velocity waveforms from most of the early computations 
. v/ere characterized by a sharp spike followed immediately by a long 

duration trailing wave, i.e., there was usually little or no transition 
phase evident. In addition, the recovery phase in these computations 
was too shallow, resulting in residual displacements which were only 
slightly less than the peak values. 

*A discussion of the relationship between late-etagc cavity metier, and 
free-fie Id response may be found in Reference 6. 
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1-2.3 CONDITIONING EFFECTS OF THE SHOCKWAVE 

Most of the behavioral models used in past investigations 
provided inadequate or no treatment of the modification of material 
properties due to passage of the shock wave. In some models, an attempt 
was made to predict the occurrence of fracture, but the modeling of the 
material characteristics subsequent to fracture was then inadequately 
treated. For most of the commonly used models, a yielding mechanism 
(such as a flow rule in conjunction with a failure surface) has been 
employed to simulate fracture. This yield model is typically applied to 
the entire granite field and it remains unchanged during the entire calcu¬ 
lation. A substantial amount of evidence is available, however (e.g., 
References 8, 9, and 10), which proves that there are significant changes 
to important material properties due to passage of the shock wave from a 
nuclear explosion. Of particular value is the petrographic study conducted 
by Short® of shocked granodiorite in the vicinity of the HARD HAT event. 

Various zones of characteristics or behavior may be used to 
describe the medium as the distance from the shot point increases and 
correspondingly as the intensity of the shock decreases. Thus, the 
closest-in zone may be designated as 

a. hydrodynamic, corresponding to the region of 
vaporized and melted rock, followed by a 

b. , plastic zone, 

c. crushed zone, 

d. cracked zone, and 

e. virgin rock or unaltered zone. 

There are no sharp demarcations between these zones, but rather a 
gradation of properties out to the virgin rock. 

Since assignment of the strength of the rock has been shown 
to be of critical importance in predictions of the ground motions, varia¬ 
tions in the strength due to shock processes are particularly important. 
The strength can be expected to vary with range as shown in Figure 2. 
As an example, data for the compressive strength of small specimens 
taken from the HARD HAT event, as reported by Short8, is shown in 
Figure 3. 

The rock strength is influential on at least two important 
mechanisms, viz., 

5 
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■pppi 

a. the cavity motion, due to the reduced post¬ 
shock strength of material next to the 
cavity, and 

b. recovery of the peak displacements in the far 
field, due to the weaker shock and thus higher 
strength remaining there. 

Another important property affected by the shock is the longi¬ 
tudinal wave velocity, caused by the reduction of shear strength and 
increase of compressibility in the damaged material. A plot of Short's 
data for sonic velocity vs range for HARD HAT is shown in Figure 4. The 
sharp reduction in sonic velocity near the cavity can be attis.buted to the 
increase in porosity, also measured by Short, which reduces the bulk 
modulus, and thus the sound speed. At greater ranges, the decreased 
sonic velocity is due to the reduction in shear strength. In this region 
the porosity and bulk modulus are nearly constant. 

The importance of the variation in longitudinal velocity is in the 
propagation of the rarefaction waves. In turn, these v/aves are responsible 
for the transition zone of the wave forms. Since the rarefaction waves 
travel more slowly through shock-conditioned rock, the stress attenuation 
time is greater, resulting in a broader wave profile. 

The region of shock damage and thus material property alteration 
extends to ranges of two to three times the final cavity radius, lor PILE 
DRIVER, the stations where the most significant data was gathered (at 
ranges of 688 and 1543 ft) were well beyond the aforementioned region. 
Thus the assignment of average or effective properties to the entire field 
for predictive purposes appears to be unjustified. The results of small- 
scale explosive experiments, wherein the entire region of interest is 
within the strongly shocked region, can thus be misleading, since the 
tendency has been to assign the properties of a large granite field on the 
basis of the small-scale experiment, whereas, in reality, the free-field 
of interest encompasses both strongly shocked and weakly shocked regions 
of rock. 

1-3. PROPERTIES AND MODELING OF NTS GRANITE, 

The PILE DRIVER event was fired in that portion of Area 15 of 
the Nevada Test Site where the general geological setting is that of 
Climax granitic stock. The shot point and the ground motion instrumenta¬ 
tion stations were located at a depth of approximately 1500 ft, indicating 
an overburden pressure of about 110 bars. The granite field was composed 

8 
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of a granodiorite intrusive mass around the shot point in contact with a 
quartz monzonite intrusive mass approximately 500 ft from the shot 
point along the line between the shot point and the instrumentation 
stations. The properties of both types of granitic rocks, granodiorite 
and quartz monzonite, appear to be similar in most respects important to 
ground motion studies. 

1-3.1 PRE-SHOT PROPERTIES 

The in-situ granite was assigned the following properties as 
being representative of its nominal state before the event; 

Density; Pc> =1 2.69 gm/cm® 

Dilatational Velocity; vdo = .579 cm/p-sec 

Shear Velocity vso = .330 cm/psec 

The value for the density was selected from data from core 
samples, given in References 7, 11, 12, and 13. The elastic velocities 
were estimated from test data reported in References 7, 11, 12, and 14. 
The above values imply the following other properties; 

Bulk Modulus; K0 *= .512 Mb 

Shear Modulus; G0 — .293 Mb 

Poisson's Ratio v0 * .26 

The value for Poisson's ratio is in good agreement with that 
reported in References 15 and 16. The subscript 0 indicates that these 
are pre-shot, ambient-pressure values. 

The variation of compressibility with pressure is accounted for 
in the equation of state relations. For this study, the shear modulus was 
not assumed to be a function of the instantaneous pressure (although 
variation is allowed to occur as a result of the shock passage). 

1-3.2 EQUATION OF STATE 

The equation of state used for the granite medium was similar 
to that used in a previous program, as described in Reference 6. Some 
improvements were made to this formulation, specifically, to the low- 
pressure hydrostat and in the vapor regime. 

10 
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The revised state equations are: 

REGION I (Solid Phase): 

The pressure in the solid phase is given by 

P = F (p) -<-[>+ S(p , e) ] pe 

where 
6 

F(p) = ["A - (A - K0)e > " B,fj2 e h[L 

F(p) = K0vt , 

M. > 0 

p, ^ 0 

s(p, e) 

eo ^ 
+ 1 

REGION II (Fluid Phase): ^e-|Avev<0 

The pressure in the fluid phase is given by 

p = a p (e - cs) + {CE es + s (P el p 

,,, . ßR(P,e)\ R(p, e) 
+ F (p ,e)e J e 

v^here 
2 

R(p,e) = « 
ri e^ 

The symbols in the above equations are defined as: 

e == specific internal energy. 

P 

r[ 

M- 

P 

pressure, 

p/pQ relative density 

T)~ 1 compression 

density 

11 



The values of the coefficients in the above equations are: 

a = .5 

1.6 

A = .611 (Mb) 

B .7 (Mb) 

eo = 

s 

eV = 

.063 (1012 ergs/gm) 

.18 (1012 ergs/gm) 

.035 (1012 ergs/gm) 

h 

k 

1.54 

50. 

Ko= .512 (Mb) 

a = 5. 

8=5. 

M1 V~ "*2 

p s= 2.69 (gm/cm3) 

The first term of the hydrostat, F(p), was modified in the low- 
ores sure regime to effectively change the bulk modulus from a const nt, 
I to a variable which increases smoothly from K? at zero pressure up to 

which is representative of higher pressures, ^ comparison of this 
hydrostat with^experimenta! compressibility data^-19 is shown in 
Figure 5. The previously obtained6 good fit to the shock Hugoniot data 
is unaffected by this modification. , , 

îr/gÂr^fp:bÂ 
.he energy oI the no™,, .eteria. state. 

/ = V, 
3ary since m -- - . n\ 
and P » 0, was chosen to be zero (e0 0;. 

The equation of state v/as also modified from that used previously 
;o glve a higher, more realistic value for Vcv (the volume at o3n® “tmosphere 
corresponding to complete vaporization), equal to ~ *°°° Z®”' Sld 0l 
estimated from comparisons with other substances. Using the above ideal 
gas relationship, the energy corresponding to compiete vaporization 
one atmosphere (ecv) can be approximated as 1.84 x 10 ergs/gm. 

1-3.3 PROPERTIES OF SHOCKED NTS GRANITE 

As discussed in Section 2.3, the properties of the granite may 
e altered by the explosion-induced shock. For use in the computational 
odel, a convenient and physically meaningful parameter which can*, 
sed to characterize the shock v/ave is the peak shock pressure. Various 
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post-shot properties, including bulk density, porosity, sonic velocity, 
and crushing strength, of core samples taken from the HARD HAT site 
were examined by Short® and the data were correlated with the peak 
shock pressure experienced by the sample during the event. The variation 
of properties asa function of distance along a post-shot drill hole is 
shown in Figure 6, reproduced from Reference 8. 

DISTANCE FROM DRILL HOLE COLLAR (METERS) 

Figure 6. Variation of Properties with Distance Along Post-Shot Drill 
Hole (HARD HAT) (Reproduced from Reference 8) 

Using the latter distance, we can calculate the distance of a sample 
from the shot point, and then the estimated peak pressure, except for 
those samples that were found in the chimney, since the rubble in the 
chimney originated from unknown positions. Excluding then the samples 
from the chimney, the property data were correlated with the peak shock 
pressure; the results, for the bulk density and the dilatational velocity, 
are shown in Figure 7. This correlation indicates that below some 
minimum peak shock pressure, which we will term P-, and v/hich is about 
8 kb, there are no significant changes in the properties brought about by 
the shock wave; the properties in this range are assumed to remain equal 
to the pre-shot values, as listed in Section 3.1. Between P0 and P^ = 
32 kb, the dilatational velocity decreases and the density remains 
nearly unchanged. Between Pi and P^ = 43 kb, all the properties were 
affected. For peak pressures above the evidence suggests that the 
fracture was severe enough to assume that the shear strength was xero 
and thus that a hydrodynamic model could be employed. 

14 
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From the density and dilatational velocity data, the elastic 
properties of the shocked granite were derived, as functions of the peak 
shock pressure (Pp), as follows. The following piece-wise linear fits 
were assumed for the density and dilatational velocities, as indicated 
by the dashed lines in Figure 7. 

p = p 

< _ PP-P2 
^ P P2+ J~zr 

\Z= P2 

P £ P, 
P 1 

(p0-p2) Pl<Pp<P2 

P £ P, 

where 

= vdo 

< V, = V + P£.-P2 

P £ p 
P o 

d2 ' P -P„ <Vdo-Vd2> Po<Pp<P2 
o ‘2 

vd = V d2 PpiP2 

vdo != ’^79 cm/|J'sec 

d2 .29 cm/p-sec 

.008 Mb 

.032 Mb 

P2 = .043 Mb 

P0 = 2.69 gm/cm^ 

f>2 = 2.38 gm/cm^ 

The density referred to above is, of course, the residual or 
release density of the sample, not that experienced under shock 
compression. 

To determine the other elastic properties, the variation of 
another parameter, such as the shear velocity, is needed. Since no 
data were available, a linear function for the shear velocity was 
assumed, similar to the form used for the dilatational velocity, as 
follows: 

It 



á P 
o 

P < 
o 

< P 
2 

P* P2 

Choosing the shear velocity, as opposed to Poisson’s ratio or 
one of the moduli, provided the most likely and self-consistent behavior 
of the various properties in view of the available data. Functions for the 
bulk modulus, shear modulus, and Poisson's ratio were then readily 
derivable. Curves of shear velocity and the latter variables versus peak 
shock pressure are shown in Figures 8 and 9. 

The in-situ yield strength was assumed to equal Y0 for P_^Pq, 
to decrease linearly from Y0 to zero between PQ and and to equal 
zero for Pp > ?2 * This behavior is similar to that observed for the 
crushing strength of core samples, as reported by Short.8 

1-3.4 SHOCK CONDITIONING MODEL 

A model incorporating the properties and behavior of NTS 
granite, before and after shocking, as described above (Sections 3.1, 
3.2, and 3.3)', was formulated and incorporated into the one-dimensional 
SHEP code . 

At the outset of a numerical solution, each cell is assigned 
the normal, or pre-shot, properties. The appropriate shock-conditioned 
properties are then assigned to a cell following passage of the peak of 
the shock wave, depending upon the value of peak stress reached in 
each cell. 

Provisions for relaxing the properties over a characteristic 
period of time, rather than in one time step, were also coded, but it 
was subsequently found that this made little difference in the results. 

For the constitutive model used in SFIEP, the parameters 
specifically modified, due to shock effects, v/ere the shear modulus, the 
hydrostat, and the yield strength. The shock-conditioned hydrostat, 
contained in the equation of state, was modified to match the release 
density and bulk modulus of samples that had been shocked to various 
stress levels. For material elements that v/ere shocked to less than 
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8 l-b (P <P ), no change was made in the hydrostat. For zones experiencing 
greatei^peak shock pressures (Pp>P0). the hydrostat was modi led to relleci 
an unloading path having a slope and position upon pressure release in 
aernrdancè with the residual hulk modulus and density appropriate to the 
originaY^shock level. The form of the shock-conditioned hydrostat employed 

wa s: 

P = 
- P 1 s s 

- 4 Ks (H-M.s)(y<aKs ■*• Ps)]^ 

2 (P- sKs + Ps) 
M> > P's 

P = K ip, -p, s) M's 

up to pressures where it merged with the pre-shot, or stiff, hydrostat. 
The hydrostat was unchanged for pressures above the merge point. In 
the above equations (Pp) is the compression corresponding to the 
release density appropriate to the peak shock level (p.s varies between 
0 and - .115), K (PD) is the bulk modulus, upon release, varying witn 
increasing shock pressures from .512 to .2, and Ps is a constant, 
equal to .5 kb. The value of Ps, the hydrostatic pressure at p=0 on 
the unloading path, sets the point of transition (which is at a slightly 
higher pressure than Ps) between the regular and shock-conditioned 
hydrostats. 

Since no data on the actual release paths were available, the 
functional form selected was arbitrary; however, as noted above, the 
starting slope and position are based on the experimental data and the 
constant Ps was selected to give unloading paths which are thermo¬ 
dynamically consistent (e.g., higher values of Ps result in energy 
releases greater than the available energy in the initiaUy shocked stete). 
Isentropic release paths from shocked states of 30, 35, 39, and oO k , 
reflecting this change to the equation of state, are shown in Figure 10. 
The constant nv in the equation of state (the incipient vaporization 
point), must also be changed, to - .418, because of this modification. 
The value of Pv is determined by solving for the compression in the 
equation of state for e = ev, the incipient vaporization energy, and zero 

pressure. 

NUMERICAL SOLUTIONS 

PROBLEM DESCRIPTION 

1-4. 

1-4.1 

A series of code solutions of the PILE DRIVER ground motions 
Was performed to evaluate the shock-conditioning effects. All of the 
solutions were one-dimensional calculations in spherical geometry. 
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The solutions wore obtained with the SHEP code, a iinite- 
dlfCercncc ^»grnn^ian program employing a hydrodynumic-clastic-plastic 
behavioral model. Options for various yield criteria are ov«jlö^c* 
Within the chosen yield surface, the deformations Qre ^ ith 
elastic. Excursions on the yield surface are made in accordance with 
the Prandtl-Reuss flow rule. A description of the code maj be found 
Refere!nee 20. 

employed: 
For these solutions, the von Mises yield criterion was 

*ï0 

where U is the second Invariant of the dovlatorlc stress tensorand Y0 
Is Oie y?eld strength under uniaxial loading. A more complex fallwe 
surface was not employed, since an acceptable model for faUure o ^he 
ln-sltu rock has not yet been established and since the primary objective 
of the solutions was confined to an assessment, or Isolation, of the 
eíflcts of“; conditioning on the free-fleld response A valuc of 

^ kh for the Yield su-ength was selected for these solutions. This 
value i ^representa t Wo^but has no direct experimenta, b» s.s; a =- 
Xhat h'ghcr value than that previously estimated6 to give bcst-freemen 
with the final results (.25 kb) was chosen, in view of the hyP^esized 
effects of shock conditioning or the free-fleld response. Devlatoric 
stresses were permitted only in the solid Phase of the m0terio1-^ 

the solutions, no hydrostatic tension was allowed. I.e., it tno 
préss Je of a°n element as prescribed by the e^uaUon of ^fafa funcUen 
has a negative value, this value is replaced by zero 
for the stress components. If the materiel element subsequent^ adiabat K e“s «S path in the P-V plane will be along the zero pressure 

axis. 
A Dolytropic gas source model was used in the solutions, as 

was previously employed.« The pro-shot cavity radius was assumed to 
be 1.25 meters.6 

The Lagrungian grid for these solutions v/as zoned as 
follows: 

For the first 25 meters beyond the cavity well, a zone sSfe of 
so cm was used. The zone sizes were then geometrically increased by 
5% until the zone size was 200 cm, which corresponded to n range of 
59 meters. Between 59 and 500 meters a constant zone size of 200 cm 
was used. Beyond 600 meters (and the range of interest), the zone si o 



was again increased by 5%, out to a range of 2500 meters, where the grid 
was terminated. A total of 431 grid points were employed. Portions of 
the grid were rezoned from time to time during the course of the solution 
to eliminate relatively small zone widths, which develop at close-in 
ranges as the cavity expands. 

Comparative code solutions of PILE DRIVER wore run, with and 
without the shock-conditioning model; in addition, a solution v/hich 
included all aspects of the shock-conditioning model except for the 
modified equation of state (Section 3.2), which provides reduced residual 
densities of shocked granite, was run, to show v.’hat effects this bulking 
has on the free-field results. 

Field test data of the velocity and displacement time histories 
were available at ranges of 668 and 1543 ft.7 Accordingly, detailed 
output data wore obtained at these stations to permit comparison of the 
code results with the observed motions. Another important experimental 
measurement was the post-shot cavity radius, reported to be 44.5 meters. 

1-4.2 SOLUTION RESULTS 

1-4.2.1 Case Without Shock-GondiUonincr Model 

This case, which did not employ the shoclc-cor.ditioning model, 
was run to provide a basis for comparison and evaluation of the runs 
which did include the new model. The computed wave profile (velocity 
vs time) at a range of 668 ft is shown in Figure 11, along with the 
corresponding test results. The time history of the displacement 
obtained for this range is shown in Figure 12. The velocity and displace¬ 
ment time histories at a range of 1543 ft are shown in Figures 13 and 14 . 
The cavity radius at the end of the solution (.395 sec), as estimated 
from the position of the gas/solid interface in the granite , was 47 meters. 

1-4.2.2 Case With Shock-Conditioning Model 

Repeating the run with the shock-conditioning model included 
produced the waveforms for the near station shown in Figures 15 and 
16. The far station results arc shown in Figures 17 and 18. The esti¬ 
mated cavity radius at .43 see was 48 meters end decreasing slowly. 

Comparing the results for the two cases, significant improve 
ments in all the waveforms are seen to be achieved v/ith the shock 
conditioning model. E.g., at a range of G68 ft, the peak displacement 
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was increased from 38 to 61 in. , and from 8.6 to 11.6 in. at a »nge of 
1543 ft. Such a high peak displacement may also bc °f 
by lowering the strength of material; however, when this is done, there is 
little or no recovery phase. With the strength chosen here ÇY kb), 
the recovery phase is still too shallow, however. Examination of the wave - 

forms indicates that the transition phase ls only 8liahV1'.^“decav was 
through the shock-conditioning effects; if the observed slow decay was 
correctly predicted, then a larger displacement would accumulate, and 
therefore a higher strength could be assigned to achieve the desired 
recovery. It has been suggested that the occurrence of dilatancy or 
bulking in the granite would tend to broaden the bd“? 
associated reduced rarefaction wave speeds. A model combining dilai . 
and shock conditioning effects would in that case predict most of the 
major characteristics of the observed wave profiles. 

1-4.2.3 Case Without Bulking 

To isolate the effects due to bulking, as provided by use of 
the shock-conditioned hydrostat, the previous solution (Section 4.2.3) 
was run without bulking, but including all other aspects of tbe slJ°ck 
conditioning model. The resultant waveforms, at a range of 668 ft are 
shown in Figures 19 and 20. With the bulking, the decay in the velocity 
profile is initially the same, but then broadens after further relief 
(below 40 fps). The resulting peak displacement increased from 48.5 
(without bulking) to 61.2 inches (with bulking) at a «ange of 668 ft. 
The broadening occurs late since the hydrostat is substantial^ 
different until pressure relief is nearly complete. This result shows 
that the inclusion of dilatancy, which occurs from inelastic deformation 
during loading (and thus during the initial portion of the wave profile), 
could further improve the wave characteristics. 

I_5. CONCLUSIONS AND RECOMMENDATIONS 

Metamorphism in rock media due to the passage of shock waves 
has been well-established. The associated changes in physical properties 
In turn affect the propagation of waves through the media. As evaluated 
through a numerical model, these changes result in code predictions of 
events such as PILE DRIVER which have significantly Improved wave 
shapes over that previously obtained. Use of the shock-conditioning niodel 
should also permit the adoption of a more realistic failure mod®l f<?r ^a^® ' 
in place of the extremely low strength model which up to now had been most 
successful in predictions, but had been suspect from the standpoint of 
experimental measurements of material properties. 
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A further modification to the overall model, to include dilatant 
effects, holds promise for further improvement in the predictions: The 
Investigation of a model including 

a. Shock conditioning effects 

b. Dilatancy 

c. Improved failure model (iracture surface) 

is recommended for future work. All of these have been separately 
formulated and coded, but as yet have never been combined into an over¬ 
all model and tested in numerical solutions. 

ACKNOWLEDGMENTS 

The following individuals made important contributions to the 
program: J. Reid, who performed the computer programming, N. Louie 
who assisted in the analysis, and M. Rosenblatt, who modified the granite 
equation of state in the vapor region. 



1-6. REFERE NC K S 

1. T. R. Butkovlch, J. Gcophys. Res. 70< 885 (1965). 

2. J. T. Cherry, Int. J. Rock Mcch. Min Sei. 4, 1 (1967). 

3. J. T. Cherry and E. G. RaPP, oi Free-Field Motion for 
the PILE DRIVER Event, Lawrence Radiation Laboratory, Livermore, 
U CRL-50 3 7 3 ( 19 68) 

4. Beneficial Site Model Ground Motion Calculations., SAM S Ö-TR-68-126 
(1968). 

5. M. W. McKay and C. S. Godfrey, Study of Spherically Diverging 
Shock Waves in Earth Media, DASA Report 2223 (1969). 

6. M . H. Wagner and N. A. Louie, HARD HAT/PILE DRIVER Ground 
Motion Calculations, SAMSO TR-69-47 (1969). 

7. W. R. Perret. Free Field Ground Motion in Granite, Sandia Laboratory, 
POR-4001 (1968). 

8. N. M. Short, J. Geophys. Res. 7J,, 1195 (1966). 

9. C. R. Boardman, D. D. Rabb, and R. D. McArthur, J. Geophys. 
Res. 69, .3457 (1964). 

10. B. M. French and N. M. Short, Ed., Shock Metamorp^rism of 
Natural Materials (Mono Book Corp., Baltimore, 1968). 

11. J. H. Scott, R. D. Carroll, and D. R. Cunningham, Seismic Studigs. 
in PILE DRIVER Tunnels. Area 15, Neveda Test Site^Nevacia^ U . S. 
Dept, of the Interior, Geological Survey, Denver, Colorado, Tech. 
Ltr: PILE DRIVER-1 (1965). 

12. F. N. Houser and F. G. Poole, Summary of Physical and Chemical 
Nature of Granite Rocks at the U15a Site, U. S. Dept. of the 
Interior, Geological Survey, Denver, Colorado, Tech. Ltr.: Area 
15-1 (1961). 

13. E. J. Deklotz andW. J. Heck, Strengthening of Rook Agai.nst Shock 
Effects, U. S. Army Corps of Engineers, Missouri River Div. 
Laboratory, Report No. 64/90 (1964). 

36 



14. M. M. Mehta, V. S. Gupta, andW. H. Somerton, Changea in 
Physical Properties of Rooks In the Vicinity of an Underground 
Nuclear Explosion, Inst, of Engr. Res., Univ. of Calif., Project 
UCX-2315 (1964')". 

15. W. R. Perret, Frce"Fleld Ground Motion Studies in Granite, 
Sandia Corp., POR-1803 '(1963)7"“ * " 

16. S. P. Clark, Jr., Ed., Handbook of Physical Constants, Rev. Ed. 
(The Geological Society of America , Inc., New York, 1966). 

17. D. R. Stephens, J. Geoph. Res. 69., 2967 (1964). 

18. D. R. Stephens and E . M. Lilly. Static PV Curves of Cracked and 
Consolidated Earth Materials. Lawrence Radiation Laboratory, 
Livermore, UCRL-14 711 ( 19 6 6). 

19. P. N. La Mori, Compressibility of Three Rocks: (A.) Westerly Granite 
and Solenhofen Limestone to 40 KB and 300 C, (B) Cedar City 
Tonalité to 40 KB at Room Temperature. Proceedings; Strategic 
Structures Research, Vulnerability/Hardenlnct Long Range Planning 
Meeting, Volume I, DASA Report 2288-1 (1969). 

20. N. B. Brooks and R. L. Lansdale, SHAPE-H Code, Hardening 
Technology Studies - HI, SAMSO-TR-68-69 (1968). 

21. C. R. Boardman, Results of an Exploration into the Top of the 
PILE DRIVER Chimney, Lawrence Radiation Laboratory, Livermore, 
UCRL-50385 (1967). 



BLANK PAGE



PART 11 
A SET OF CONSTITUTIVE RELATIONS FOR ROCKS AND SOILS 

by M. Rosenblatt 

IX- 1 . INTRODUCTION 

A phenomenological model for rocks and soils Jr presented. The 
model includes the following general features. 

1. The Inelastic shear deformation depends on the 
proximity of the current stress state to the static 
failure surface. 

2. Dilatancy is controlled by the amount of inelastic 
shear deformation. Thus, tire inelastic shear de¬ 
formation due to slippage and crack propagation is 
treated as the cause of dilatancy. 

3. Hysteresis is included by permitting the equation 
of state to be a function of the pe-gk density 
experienced by a material element up to the 
present time. 

4. The inelastic deformation is sensitive to the 
total deformation rate. Thus, the model is "strain 
rate sensitive". 

In Section 2, the proposed constitutive relations are presented in 
their general form. In Section 3, some of the similarities and differences 
between the proposed model and the elastic-plastic model are dlscussea. 
In Section 4, the model is specialized to the case of triaxial loads v/ith 
02 = 03; and the model is applied to quasi-static experimental data gen¬ 
erated for granite. The method of choosing the material parameters in the 
model given the experimental data is also discussed in Section 4. In 
Section 5, the model is shown to satisfy the uniqueness of solution 
requirement. Atable of symbols for Part II appears on page 79. 

II-2. CONSTITUTIVE EQUATIONS 

The proposed constitutive relations can be conveniently separated 
into deviatoric and non-deviatcric equations. (The de viator of the tensor 

T- is tJ* * l'j - t£ 5j). The deviatoric equations are of a form proposed 

by Piotr Perzyna for viscoplastJc materials. ' The non-deviatoric equa¬ 
tion is analogous to a hydrodynamic equation of state. In the proposed 
model, however, the equation of state depends on the amount of inelastic 
deformation and on the peak density which has been experienced. The 
equation of state of a material element therefore depends upon its history. 

»Superscripts are reference numbers. The Reference List for 
Part II is or page fil. 
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A material element which has experienced a fmount of ^a^tk: de¬ 
formation thus will have a different equation o£_f^rJw /r^teridl eiement 
element which has been thus far undisturbed. Similarly .a eicne 
which has been severely compressed may show,rhnyiílversiblt com- 
a change in the material equation of state resulting from irreversible com 
paction. 

The complete sot of proposed constitutive relations In terms oftte 
stress (oij), the deformotlon rate (djj = 1 (ui(j + uj(1)), the spin tenso 

. • i * __t£*~. <»->»-r-.r*->n 1 onorn 

[e?l 

1/2 (ui j -ujfl)), the density (p), and the specific internal energy 
rc given below: ' 

■°1L =, dn* - y ï (r) 
2 G iJ /T21 

= n (pi e, 1/ Pm ) = p 
3 

where 
oj* = ô}* + o¿* jaumann Stress Rate 

I * y 0 ss */\/ 1/2 (dfj - c* )(djj - ^¿_) 

2G 2G 

pm = Max {p (r)} »where T ét (t is time) 

F = F(J2‘i cí, I, e, P) 

a » where öx-03 * H( P# 0?.) 
!ï 

is the static failure surface 

(Ox a a2 * 0 3) 

= 0 for F s 0 

0 (F) for F ^ 0 

(D 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

0(F) 

y Material constant with dimensions of 

(8) 

(9) 

G Shear modulus, can depend on e, I« or P 
if dependence is known. 
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Equcillon (1) is the d«ivial:oric portion of tho constitutive relations. 
Equation (3) is the Jauincmn definition of stress rate, used to satisfy the 
principal of objectivity; This is not the only choice which satisfies the 
principal of objectivity. However, as pointed out by Prayer^, the Jaumann 
stress rate docs possess the desirable property that all the time derivatives 
of the invariants of the stress will vanish when the Jnumann stress rate 
vanishes. Prayer^ mentions three objective stress rates (the Cotter-IUvlin, 
Oldroyd , and Truesdell definitions of stress rate) which upon vanishing do 
not imply stationary behavior of the stress invariants. 

The second term on the right hand side of Pqu, (1) controls the 
inelastic and rate sensitive behavior of the material. Thus, 

e= y $ (F) (10) 
J vyy 

where 

J2* 
Ojj* oÜ* 

2 

Note that Eqn. (1) shows that the inelastic behavior is always in the 
direction to reduce o¿4*. The function 0(F) and the parameter y control 
the amount and rate or inelastic relaxation. Inelastic relaxation of stress 
will occur as long as F > 0. Thus F(J2\ C* , I, e, P) r; 0 is the equation 
which describes the maximum J2' which the material can support in a quasi- 
static state. F « 0 is the equation analogous to the "Yield Condition" in 
the theory of plasticity. Note, however, that dynamically F ard J2' can 
exceed the quasi-static limits. The amount of excess deviatoric stress, 
i.e., that above the quasi-static limit, is determined by y and 0 (F). In 
particular, Eqns. (4) and (10) show that 

= I = y«(F) (ID 

and 

F = 0"1 (Í) (12) 

where 0“1 is the inverse function of 0 . Thus the extent to which F can 
bo greater than zero is controlled by the choice of 0“ 1 and y . 

F has been made a function of the variable a . « (Eqn. (7) ) is a 
measure of the proximity of the current state of stress to the static failure 
surface, Oj - 03 « H. For unstressed states, o:t-. 0, for stress states 
on the static failure surface, ex « 1. The variable a has been included 
in the formulation because xooks and soils exhibit inelastic behavior 
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before reaching the failure surface. The use of the variable ot in the 
function F permits the amount of inelastic doviutoiic strain to be controlled 
in a very physically meaningful fashion, i.e. , the amount of inelastic strain 
will, in part, depend on how close we are to the static failure surface. 
Thus in this model, inelastic deformation is due to mechanisms suchas 
slippage and/or crock propagation which occur as the failure surface is 
approached. 

Equation (2) relates the mean stress to the density, specific internal 
energy, inelastic strain, and the maximum density experienced by the 
material element up to the present time t. The inelastic strain measure, I, 
is used in Eqn. (2) to describe dilatancy. The following sketch qualitatively 
illustrates the dependence of the function ïï on the variable I. (The effects 
of e and pm are ignored.) 

The sketch shows that if there is no inelastic behavior (J = °) ' th®¡?. 
mean stress versus compression (U = p/p0 “ curve will be specified 

by fL i= it (p, o). If inelastic deformation does occur (I > 0), then the 

mean stress versus compression curve is shifted to the left. Thus, the 
density for I > 0 is lower than for I = 0 at the same mean stress. The 
dashed line in the sketch illustrates a possible stress-density path if 
the inelastic deformation, as measured by I, increases during the stress 
loading. 
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In o similar fashion, the degree of hysteresis is controlled by the 
dependence of the function v on pm (pm is the maximum density experi¬ 
enced by a material element up to the present time) o If a material element 
has been compressed to a large density, the relationship between mean 
stress and density may change. The following sketch illustrates the 
dependence of v onprn„ The depencence of tí on e and J has been 

ignored in this sketch. 

Qualitative Sketch of rr versus p and pm 

Note that it may be possible for a material to exhibit both dilatancy 
and hysteretic effects. In any case, dilatancy and hysteretic effects are 
accounted for in the model by permitting the function w to depend on I 
and pm as well as p and e. 

II-3. SOME COMPARISONS OF THE PROPOSED MODEL AND 
THE ELASTIC-PLASTIC MODEL 

The primary differences between the proposed model and the elastic- 
plastic model are due to the nature and consequences of the ''Yield Condi¬ 
tion." In the elastic-plastic theory a yield condition is written such that 



F0_p •-= Fe_p (J2', P, I, ) é o (13) 

When F n < 0» then the equations of elasticity (in the deformation rate 
form) are annllcable. If at any instant, however, there is any tendency 
for F -p toPEecome greater than zero, then a plastic flow rule is applied 

' ‘ sfi fc whi orces F e-p 0. 

In the proposed model, the function F = FQ^'» Oí * I* e# P) 1® 
analogous to the function Fe_p . The condition Fe_p < 0 is exactly equi¬ 
valent to F < 0 in terms of the incremental material behavior. This corres¬ 
pondence results from the fact that 0 (F) = 0 if F £ 0, and 0 (F) = 0 
implies that the constitutive relations reduce to an elastic model. One 
important difference between the models is that in the rate sensitive model 
F con be greater than zero. When F is greater than zero, inelastic defo- 
mation takes place causing a tendency to relax toward F == 0 (See Eqn. (iJJ. 
The amount of inelastic relaxation is a function of the deformation rate 
and y 0 (F). Thus F > 0 is possible under dynamic loadings. Quasi-static 
îoadïngs are treated as the limiting case of dijd1) - 0. In quas -static 
loadings, F can only become infinitesimally greater than zero, l.e. , 
F £ 0+. 

The inclusion of rate sensitivity in the proposed model permits 
uniqueness of solution to be demonstrated. This is done in Section 5 by 
showing that the governing partial differential equations are hyperbolic in 
nature. The rate sensitivity is observed in experiments on rock materials • . 
However, if the rate sensitivity is considered negligible, then y 0(F) can 
be chosen asa very steep function and F will never become much greater 
than 0 due to very rapid relaxation toward the condition F = 0. It is 
important to note that the proposed model is not more complicated than the 
usual hydro-elastic-plastic models employed in large 2-D computer codes. 
The rate sensitive portion of the model has been programmed into oui Z-D 
Eulerian code called STEEP, and numerical solutions have been conducted 
using the model^. In reference 6, the model was used to describe 2024-T3 
aluminum and therefore the dilatanc 
included in the functional form of o 
specified in place of a failure surface. 

and hysteretic effects were not 
Í/3 t* ir. Also a yield surface was 

The elastic-plastic formulations have not, in general, used the 
mean stress relationship (oJ/3 =■ ff) to account for the dilatancy and 

hysteretic effects observed in rocks and soils. The proposed model incor¬ 
porates these effects directly in the mean stress versus density and energy 
relationship. Thus, the functional relationship between oj/3, p0, and e 
depend on the magnitude of the inelastic deformation (I) and/or on the peak 
density which has been experienced by a materia) element (pm). 
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II-4. FITTING THE MODEL TO EXPERIMENTAL DATA 

So far, the model has been discussed in its general form. The 
functional forms for H, F, n , and 0 have been left arbitrary. These func¬ 
tions are, in general, chosen to fit the available experimental data. 
However, since the data are invariably incomplete, the functional forms 
are rarely determined uniquely. 

These functions H, F, and ir can bo determined from quasi- static 
loading and unloading tests conducted to failure. II = - 03 describes 
the failure locus in stress space, F = 0':' describes the amount of inelastic 
deformation which occurs as the failure locus is approached, and = oj/3 
describes the amount of dilatancy and hysteresis. The variable (x has been 
introduced into the functional form for F because inelastic deformation de¬ 
pends on the proximity of the current stress state to the failure locus. 

CJ1 "* CJ Q 

a ~ —H— iS °ne lneasure 0* this proximity. Also since a r- 1 implies that 
a stress state is on the static failure surface, the relationship between 
inelastic deformation and failure can be easily specified in the function 
F « F 02'* a, I, e, P). This point will be illustrated in Section 4.i. 

The function 0 and the parameter y are determined from high defor¬ 
mation rate experimental data. A technique for fitting 0 and y to dynamic 
rate sensitive stress strain deita has been developed and applied to alu¬ 
minum in reference 6. This technique is currently being applied to rate 
sensitive data generated for granite. Equations (11) and (12) indicate, the 
general nature of the rate sensitive dependence of F. For example, if 
0 s= e - 1,-then Eqns. (11) and (12) show that 

F = cj in (1 + 1 ). (14) 

Thus, in this example, the choice of the constants and y determine the 
rate sensitivity of F and thus of 

In dynamic problems. F > 0 implies that J2' can exceed the observed 
quasi-static limits on ^ for a given amount of inelastic deformaticn. Simi¬ 

larly, a °l"g3 
H 

can exceed 1 before failure in dynamic problems. The 

conditions for failure under dynamic loads must be investigated further 
before 0 dynamic failure condition can be chosen. One possible form 
relating a and failure follows: 

t _ 
• J f (a - 1) dt « constant for failure 

0 

where f (a - 1) « 0 if n‘< 1 
f(ci - 1) it a ^ 1. 
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Thus, tí can bo greater than the quasi-static limit of 1 for a short dura¬ 
tion oí timo, depending on the above integral. The function f(oi- 1) must 
be found experimentally. 

The rate sensitive aspects of the model will not be discussed 
further at this time due to the sparseness of the available data. However, 
note that when rate sensitive data becomes available for rocks and soils, 
these data can be incorporated into the proposed model. Until then, tne 
rate sensitive parameters can be chosen in a very preliminary fashion to 
give agreement with the data which are available. 

11-4 • 1 AN EKAMPLE OF THE TECHNIQUE FOR DETERMINING THE 
MATERIAL PARAMETERS IN THE PROPOSED MODEL 

In this section, the choice of H, F, and tt are illustrated through 
the use of an example involving quasi-static tests on granite. 

The quasi-static tests involved granite loaded under triaxiax com¬ 
pression (oi 2: o2 = o3 $ 0, where o> 0 implies compression). The follow¬ 
ing sketch illustrates the loading geometry. 

« o a 

The experimental failure curve from reference 7 is shown in Figure 
1. A simple fit to these data is also shown in Figure 1. Note, 
that this failure curve includes only triaxial compression daca . Triaxia! 
extension and torsion failure data would be expected to fall below this 
curve. (For example, see reference 8.) In fact, one of the reasons for 
introducing the functions H and a into the model is to account for t 1 
non-symmetrical behavior of the failure surface in the so called Pi Plan® . 
In the present example, however, only triaxial compression data were 
obtained and therefore only a fit to the data in Figure 1 io necessary. It 
would be useful to obtain data similar to that of reference 7 for the case 
of triaxial extension (a^ « o2 > 03). 
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Figure 1. Failure Data7and Analytical rit for Cedar City Granite 
in Constant Confining Pressure and Constant Stress 
Ratio Tests. 

-.Li-H..,- 
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The fit to the failure surface is specified by the following equation 

0l - 03 = H = 17 + 20 o3l/2 (ksi) 

Thus a is found to be 

oc °i - °3 „ - 

H -17+ 20 03^2 

(15) 

(16) 

The important feature of Eqn. (16) is that « = 0 for the unstressed state, 
and a = 1 for states on the static failure surface. 

The functional form for F cannot be uniquely defined !roip 
currently available. The following form, however, seems satisfactory for 
fitting the low stress granite data. 

, H - g«.) Æ + 
2 G 2 G 
yï d (17) 

a la) is the function which controls the amount of inelastic defor- 

a“lSh fcaÄiÄ-Ä 
sketch. 

To illustrate the relationship between J/, 
static lading path i-m the unstressed ^‘^“‘^^‘‘“^^„ereased, 

alaand'l2“ will Incrêa^se^ but g\oi) will remain at its initm value of 1 for 
a portion of the loading. As long as g (ar) = 1, F "‘J1 °i i nnlies ' 
and there will be no tendency for I to increase. Thus g(«) = 1 implies 
purely elastic deformation. When J2‘ and « are increased to the point 
where g(r.) < 1, then F would be greater than zeto ii 0•. .^ Cond fcion 
F^> 0 causes inelastic deformation to occur until the condition F 0 is 
achieved. Equation (17) shows that F “ 0 implies 



1 
. (18) ■ñi' 

"zTr 
(1 - g(cf)) 

g (a) 

Thus as J?' and ck are increased, y(öi) will decrease below 1, and there 
fore inelastic deformation (I > 0) will develop such that Eqn. (18) is 
satisfied. 

The functional form for F in Eqn. (17) wap chosen because this 
form reduces to a 'simple expression for triax-al loadings. Under tri x 1 
loadings, say oj > 02 = 03 2; 0, 

0l* ^ 2/3 (oi - 03), o2* = 03* = -1/2 ^ 1 * 

and 

viir= ■Ç- 01* = i3- (°1 - °3> 

/3 m, 
"2 I = S"' C1 

(19) 

where 

in€p is the inelastic strain. 

Therefore, 

= ^{|¿-g(a, (^+lnn*)} 
(20) 

where 

01* - 0. 

Equation (20) can be further simplified by noting that Eons. (1) and (10) 
imply 

(21) 

where 

ç * is the first component of the total deviatoric strain. Thus, 
X 



where 

Oi* £ 0 

For triaxial loadings with o^* ^ 0, Eqns0 (22) and (1) are ^ Under 
fundamental relationships governing the deviatoric stress and s the 
quasi-static loadings/ F ^ 0^. Thus, the equation F = 0 under quasi¬ 
maximum deviatoric stress allowed for a given deviatoric str 
static loadings. For triaxial compression/ F *= 0 implies 

oi* = 2G g (a) *i* 
(23a) 

or 

--1-—= G g(a) (€l - €3) 
2 

The significance of Eqn. (23) is illustrated in the following sketch. 

(23b) 

.G& 

Sketch of Possible Loading Path in vs «i'Ca Spacc* 



Three linee of constant, g^) are shown on th s sketch. f J" 1 f 
pond to the linear elastic stress-strain relationship. 
loading path will reach a stress state whore g (a) < U At this 
inelastic deformation occurs until the stress and strain lie on th-line 
with slope G g (a). The details of the loading stress determine the exact 
location on the line. However, it is important to note that as long as 
F st 0, the stress-strain point will lie somewhere along the line 

°1 ~ °3 K G Q (« ) (¢1 - c --¾). This is a very useful 
2 

feature of the model because failure always oocurs in qua si-static load 
ings When « « 1. Therefore g(l) can be chosen to fit the locus of the fail 
b^e data Jf deviatorlc stress-strain space. (The proposed form for F . 
requires-that % Ubre occur along a straight line passing through th .or g 
IpÂlièss-stfain space* This seems to fit the data satisfactorily for granite* 
However, other experimentally observed relationships for the failure curve 
ih stress-strain space can be incorporated in the model by an appropriate 
choice of the functional form of F.) 

Figure 2 (from reference 7) shows stress-strain paths under various 
loadings for granite. The location of the failure points on this figure are 
approximately fit by a line with slope 1400 ksi passing through the origin. 
(The failure of specimen 11 occurred at a much higher stress level than the 
fit to the failure surface would predict. The f^lur^ ^ata í ^ cñn 
ignored in choosing the failure line on Figure 2,) Thus g(öi ) for ft « 1 can 
he determined once tha elastic shear modulus, G, is determined. From Figure 
an approximate value of G was chosen as 

G « 3500 ksi* 

Using this value of G, it follows that the slope of the failure line in 

l<y*.vs «i - €3 space is given by 

Therefore, 

■lope (ot s 1| « 0 g (st « 1) 

«d) -11¾ 

04) 

08) 

(Mote that th© (allure line 1* the locus of (allure pointe of all possible 
loading 'paths in stress-strain »pace.) 

Maure 2 also indicates that the material remained essentially - 
elastic until a attained a value of approximately *4, Æi® j!. RMraUv°d 
that gtoü) - liera« .4. This means that the material behaves elastically 
until the stress state Is such that a - .4. The rest of g W was chosen as 
a quadratic form which passes through g(.4) t, 1 and gO> * .4. The 
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B - Specimen Mo. 22» Ono-dirnensional strain, 
c2 = ca = 0 

C - Specimen No. 10, Unconfined compression 

D *• Specimen No. 8, Constant pressure P * 5 KSI 

E - Specimen No. 7, Constant pressure P = 10 KSI 

F - Specimen No. 6, Constant pressure P = 20 KSI 

G *• Specimen No. 5, Constant pressure P = 30 KSI 

H - Specimen No. 11, Constant pressure P = 67 KSI 

I - Specimen No. 12, Constant stress-ratio, o3/oi = 

J - Specimen No. 13, Constant stress-ratio, a3/ai = 

0.132 

0.186 

0.254 

0.282 
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quadratic fonri was chosen because it was the simplest form which would 
permit dg/dty to be continuous at 0! " .4. The functional form of for 
values of ct between .4 and 1. will determine how the transition in stress- 
strain space is made from the elastic line to the failure line. 

The final form chosen for g(o?) is indicated below. 

g(w) =-- 1 

g(a) = 1 - 

/ oí ^ . 4 

# .4 á aá 1 
(26) 

g(a) 

The expressions defining the failure surface (Eqn. (16)), the func¬ 
tion F (Eqn. (22)), and the function g (Eqn. (26)) are sufficient for pre¬ 
dicting the deviatoric stress-strain behavior of the modeled granite. 
Figures 3 and 4 show the experimental data of Figure 2 versus the model 
predictions for the constant confining pressure tests (03 = P = constant) 
and for the constant stress ratio tests (03/°! = constant). Considering 
the variation between the various rock specimens, the model fit appears 
good. Also, note that a large effort was not spent on getting a "best fit". 
The primary purpose of the current fit was to demonstrate that the model 
can reasonably predict the observed experimental data. 

Figure 5 shows the dilatancy effect in granite as measured in 
reference 6. In the model, dilatancy is a function of the inelastic defor¬ 
mation parameter I. For low stresses, and for non-hysteretic materials, 
dilatancy is controlled by an expression of the following form. 
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Figure 3. Shear Stress-Strain Curves for Six-inch Core Cedar City 
Granite, Triaxial Stress- 
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A. Specimen No. 12, 03/01 .« 
B. " " 13, 
C. " " 15, 
D. " " 17, 

0. J32 
0. 1C6 
0.254 
0.282 

- Experimented 

"• Mode] Fit 

Shear Strain (ej - Ç3), In/in. 

Figure 4. Shear Stress-Strain Curves for Six-Inch Core Cedar City 
Granite, Constant Stress Ratio Tests. 
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where cj has been used as the measure of volume change in place of the 

density, p. To first order cj =, - 1. A very simple exemple of Eqn0 (2 7) 

i 
3 =i K (€j + (28) 

BBxrT“-s.4 ated in the triaxial compression tests from 1 

I » Ç. lncf -^(C c* a - gfa) , 

or 

where 

I *= ^ («) - «3) (1 - gfa)) 
w 

ï = («1 - C3) (1 - 9(<v)) = 

(29) 

I is the inelastic strain component in ÎIlfiL versus ci - ¢3 snac^ 

Eqru *28)Cca ¡^¿©'rewritten «s ^ OÍ the tarder!. ' 

rJ 
“ X (fj + ß Î) (30) 

where 

^/S 

Jhis form (Eqn. (30)) was used to fit the experimental data of Fiqure S 
was chosen to be .3. 

rsfifawn- e 
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Figure 6. Comparison of Dilatation Stress-Strain Curves for Six-inch 
Core Cedar City Granite. 
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Figure 7. Dilatation Stress-Strain Cuives for Six-inc h Core 
Cedar City Granite, Constant Stress Ratio Tests. 
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Note that the forms used to fit the experimental data of reference 7 
must be modified before being applied to problems involving high stresses. 
For example« specific internal energy effects must be included in if. 

H-4.1.1 Hvs tere tic Effects. 

In Section 4.1« most of the important features of the model were 
Illustrated using experimental data on granite. However, granite exhibits 
only a small amount of hysteresis at low pressures, and therefore the 
hysteretic effect was not Included in the granite example. A method of 
Including the hysteretic effect into the constitutive relations will now be 
discussed. 

Loosely speaking, the approach permits the mean stress equation 
of state, e|/3 versus p and e, to vary as a function of the maximum density 
experienced up to the present time. This concept is illustrated in the 
following sketch. In the sketch, the compression (jj = p/p0 - 1) is used 
In place of the density, and the effects of internal energy and I are Ignored. 

"m" 

xpm« Max lp(r)}r*t 

vs p for indicated pm 

0 
P-P/Pl- 1 

°h « ff (p, pm), Hysteretic Effect as a Function of Maximum 

Compression (pm) on Material Element. 
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In the sketch, the loading curve is shown. This curve describes 
behavior of the material if only loading is permitted to occur, i.e., 

|1 i 0. However, once the material element has been loaded, the relation¬ 
ship between aj/3 and p may change for p < |im, where * Max {^(r)}r ^t 

where t is the present time. An example of the change in the mean stress 
versus compression relationship is illustrated in the above sketch. The 
material element was loaded to a maximum compression value of (point 
"m" on the sketch). As long as this compression value is not exceeded, 
the dashed curve describes the stress-compression relationship,, The new 
relationship illustrates the irreversible compaction which occurs in hyster- 
etic materials. For example, point "c" on the sketch shows the compaction 
(as measured byn) when the mean stress is entirely relaxed. Point "b" on 
the sketch illustrates the fact that part of the loading curve (between points 
"m" and "b") may be retraced for the unloading and reloading paths. For 
small values of pm the points "m" and "b" may be nearly coincident. How¬ 
ever, for very large values of nm, the points "m" and "b" may be far apart. 
Alarge separation of "m" and "b" will occur, in general, after the hysteretic 
material has essentially reached a completely compacted state. 

The approach Just outlined appears sufficiently general to fit most 
of the observed hysteretic characteristics in rocks and soils. The function 
IT &i, yxm) is chosen to fit the experimental data. A convenient approach for 
fitting ir um) to the data will now be described. 

1. From the experimental data, determine the relation¬ 
ship between Um* Hb* and ^c* l^b and l^c the 
compression values at points "b" and "c" in the 
above sketch. |¿b and ^c are 1:50111 function of nm, 
and the dependence is qualitatively Illustrated 
below. 
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an asymptotic value, pç is, of course# less than 
Ub» Mr« is also expected to have an asymptotic 
value corresponding to the maximum irreversible 
compaction upon release to oj « 0. 

2. Find a form# oj /3 « ir (p# Pm) which properly 

describes the smooth transition between the 
points "b'' and "c". This form must also describe 
the pure loading curve which corresponds to the 
condition p « Pm* 

A possible form for w (p# Pm) is 

(31) ir (p, pm) * ff¿(p) T + irt (p - pc) C1 " T1 

is illustrated in the following sketch. 

p » P /P0 - 1 

Qualitative Illustrations of tr(p,pm) *» T + (p“Pc)[l-T] 
and the Function T. 
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Note that the transitional function must satisfy 

T « 0 for n s: nc 

T ** 1 fbr ^ 15 Hb 

for |J =Hc and m « IÍ5 

(32) 

« 0 
ò ^ 

Also note that T is only a function of n and nm since and |ih are known 
functions of Mm* Detailed investigations of experimental data have not yet 
feeen performed to determine T. An example of an expression for T which 
satisfies the conditions of Eqn. (32) is 

T « 0 

T « 1 

for |i « uic 

for jjt ä m, 

T " 811,2 tone*** 
(33) 

The function T - is a mathematical convenience permitting the 
experimentally observed relationship between lu, uu and to be fit 
analytically. The form of Eqn. (33) will fit nc - nc£im) ait^b » »bUm) 
exactly. Whether or not Eqn, (33) gives satisfactory results for the 
unloading curve between p « uc and p « pb will have to be determined. 
However, if Eqn. (33) is not satisfactory, another form for T can be chosen 
on the basis of the experimental data. 

To clarlfy the approach, two examples will now be described. In 
•a® first example, the data of reference 9 (on Solenhofen limestone at 
24.5°C) is used to roughly set the physical scale. In reference 9, a 
hydrostatic loading and unloading stress-compression path was performed 
for a peak pressure of 37.4 kb. The corresponding peak compression 
(point "m") was pm ** #117. Upon unloading it was observed that the 
residual compression at P0 was approximately 1^. m .013 for pm » . 117. 
Also, pb was observed to be very close to pm. m 

. « *!or Puposos of illustration, it was assumed that the loading curve 
satisfied 

T « n W « 180 p 1210 p2 (kb) (34) 

and that pc and pjj are given by 
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Mc km) “ .05 (1-e-4 Mm) (35) 

Mb km) " Mm Mm - 

1+ .1 Mm? >1 
(36) 

hS«ar? ïï?„aS oi Mm «re illustrated in Figure 8a. Note that ue 
TheB^n^1^mpt0tlC of /05 and |ib has an asymptotic value of .2.° These values were arbitrarily chosen. 

Using these forms for aj/3t pc, and |jb , the mean stress versus 
compression behavior is determined from Eqns. (31) and (33). Fioure 9 
shows several loading and unloading paths for this example. The Lime- 
* tone data from reference 9 is also included on this graph. But note that 
no effort was made to accurately simulate the behavior of the Limestone.' 

Figure 9 shows only a small amount of hysteresis. This is typical 
TV»n’.ÏLVr*ÍI1® 0ther4jand# ®olis,exhibit a large amount of hysteresis. 
To illustrate this, consider a hypothetical soil material whose loading 
curve is given by y 

vt(p) « + 10 pz 

Also assume that Pq and pb are given by 

(kb) 

Mo - .4 (1 - .*2*<Wm)) 

1* b - Mm Mm S . 3 

* . 3 + .2 (1 - e~® km -1) ) 

(37) 

(38) 

Figure 8b shows pc and Ufc as functions of pm. 

The same form for ír¿. pc and are used in the example as 
w®s u®ed in iirsf example. However Figure 10 shows the large his tor- 
etic effect which results in the second example. The reason for the pro¬ 
nounced historetic effect Is that the asymptotic value of ^ has been set 
at .4 andü^JLMS- has been kept small thereby keeping the recoverable 

compression relatively small. 
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Figure 8 . Two Examples of the Dependence of 
i*b and itc on U . 



Figure 9. Example 1 of the Hysteretic Effect in a 
"Rock Like" Material 
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Figure 10. Example 2 of the Hysteretic Effect in a 
"Soil Like" Material. 
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Figure 1J. Hypothetical Materia! with Rapidly Varying Hysterctio Properties. 



H-5. UNIQUENESS OF SOLUTIONS 

In this section, we will demonstrate that the differential equa¬ 
tions defining the rock and soil model are hyperbolic. The hyperbolic form 
of the governing differential equations guarantees uniqueness of solution 
for well-posed boundary value problems. First, a very brief discussion 
of the method of characteristics will serve to define terminology. (A 
detailed discussion of the method of chaxacteristics and of systems of 
hyperbolic differential equations is given in Reference 10.) 

A general system of k first order differential equations in k 
dependent variables uj with n independent variables X« may be written in 
the form 

a?( ^.UJ . + bi E i,, (Uj) = 0 
u ax« J 

(39) 
dxa 

i,j « 1, k and a » 1, n 

or in matrix notation 

Aa + B s L(U) « 0 (40) 

where A® are k x k matrices (a%) and the quasi-linear operator Land B 
are vectors. Also, X will denote the vector xa. L(U) is Considered quasi- 
linear since the coefficients A® and B may depend on U. 

Consider a (n-1) dimensional surface specified by the equation 

On this surface we define the 

characteristic matrix 

Ai j e A » A® 

and the characteristic determinant or characteristic form 

(41) 

<&(01* 02# • • • 0n) * I 1 ^ 11 #n> - 11 * 11 (42) 

where 11 A| | is the determinant of A. 

If Q (0a) = 0 on the surface 0* 0, then 0 «0 is a characteristic 
surface. Also, there exist characteristic linear combinations of the Li 

¿L(U) - ¿lLi (uj) s A (u) = 0 (43A) 
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such that derivativos of tho dependent variables U need be token only in 
the characteristic surface 0» 0. Thus A (U) » 0 ostabliohes a relationship 
between the initial data, and these data cannot be chosen arbitrarily. (« 
Q 0, then 0 t> 0 is callod a free surface and U can be chosen arbitrarily 
on 0 « 0.) 

The vector l in Eqn. (43) is a "loft null vector" defined by 

IA « « 0 (when | |A|j 11 « Q « 0) (43B) 

Using this terminology# the conditions for Eqns. (3Ö) io b® 
hyperbolic con now be defined. Equations (39) ore hyperbolic if 'j* 
arbritarily prescribed values of 0}* 02' * * * ^n-1 (a8ßum*nV 0n ' 

a) there exists k real roots for 0n in tho determinant 
Q « 0# and 

b) there exist k linearly independent left null 
vectors ¿1 # ¿2 # • • « ^jc 

which satisfy Eqn. (43). 

Note that if the k real roots mentioned above ore distinct# then 
the system of differential equations are called "totally hyperbolic" because 
the existence of k linearly Independent left null vectors Is guaranteed 
(i.e.# one null vector for each of the distinct roots of Q ■* 0). However# 
if there are multiple roots, a more detailed examination of the existence 
of independent null vectors is necessary. In particular# consider 

Q(01< 0n) * <Qa) Qb • 0 (44) 

where Qa i® a form containing 0n# and Ob * 0 contains k-s real and dis¬ 
tinct roots for 0n. Then# the system of partial differential equations will 
be hyperbolic if s linearly independent left null vectors can be found for 
the condition Qjy *• 0. 

For the rock and soil model# the determinant Q0n) wa* 
explicitly calculated for the two dimensional planar case. CThis cose is 
sufficiently general to illustrate the important features of the model). 
Q « 0 does have the multiple solution form of Eqn. (44) and therefore the 
left null vectors corresponding to Qa were explicitly determined. A summary 
of the calculations will now be presented. 

The constitutive relations (Eqns. (1) and (2) in Section 2) con be 
combined os follows: 
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(45) 
J* 

A0l* « 2G cl!1 t (w -|Gd^)6iJ -y 

If we put iiLI the terms containing derivatives oí the dependent variables 
on the left, then Kqn„ (45) becomes 

-I 

-2G dj - (PpP + ve6 - I Gdi ) 6i *" y "l7 ^ 

(46) 

where the dot denotes the material time derivative and 

Õ1T 
"p 13 "Ip” # “Te" ' and ffI “ dI 

The fact that í4» y 0 has been used to eliminate the time derivative in 
the term £ I ¿I. Also, note that irPm pm - 0 due to either 

Am ** 0 , for p <pm 

or 
irÄ * 0 , for p« pm (see Eqns. (31)) 

Note that the loft hand side oi the constitutive relations (Eqn. (46) 
are in a for" “mSTar to that of linear elasticity. The expression + ireê 
is somewhat analogous to Kdg where K is the bulk modulus in elasticity 

theory. The inelastic behavior rf the model is ^h‘" tette° 
nr* rwitain anv derivatives and therefore do not affect the characteristic 
fevm O ts 0 Also, it is important to note that Eqns. (46) are Jd in both 
£the eSstic and i^lasUc regime. In classical 
different constitutive equations are used for the elastic and inelastic 
regimes. 

The complete set of partial differential equations is oWained once 
the conservation of momentum, mass, and energy are added totheconsti- 
tutive Ears. (46). The complete set is recorded in Table 1. In these equ 
lions6, ^he engineering convention of o > 0 implying compression has been 
used. 
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TABLE I. COMPLETE SET OF GOVERNING DIFFERENT1 AI. EQUATIONS FOR 
THE ROCK AND SOIL MODEL IN 2-D PLANAR GEOMETRY. 

^ òqni u don , y50!! 

3) 

4) 

5) 

6) 

n 

du dv 4 du 
_ . OJ2—— +010 T-4 =- G - 

Ôt dx dy dy A4 dx dx 

+ulf -¾.]. bl dy 

2) ÔOf22 a. ,,0CT22 . ^022 . dv . 4 „ dv 
dx dy ^ dy 12 dx 3 dy dt 

'3Glx ' "pllf+ u lsf + v lfJ-ffeítf + Ufe+ V ãV) = b2 

ifi? + u Í£ü + V a°12 + ( °11 ~ °22) 5.1-(^111^)^+0- + 0- » b, 
dt ’ ~ ax * ay ' 2 ' ay * 2 1 7 ax ^ ^ay^^ax *" 3 

d 011 d 012 du du du 
-. '■ 4- -— 4- O - 4- O U-4> D V - *=0 

dx 
+ p - 4- PU-4- pV - *= 

dy dt dx dy 

d 051 d 022 dv dv dv -V4- 4- —J 44 + P __ + pu — 4- pv - « O 
dx dy dt dx dy 

!£ + „!£+. »e+piH+p.*!?« o 
dt dx dy dx dy 

plf+pUH+',V#+0ll $>t * °12^+ °12 If + ¾2 Ty- 
«= O 

8) dL + u di + v K b 
dt dx dy 0 
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TABLE 2. CHARACTERISTIC MATRIX Aáj = A^j FOR ROCK 

AND SOIL MODEL. 

Aij = 

0 

01 0 

0 4/3G 0X -2/3G 0/ 

0 0 -2/3G0! 

0 0 (G+r) 09 

0O P 0 

02 0X 0 

P 0i 

°11 01 

4/3G 02 

(G-T) 01 

0 

P0 

P0O 

°22 #2 

0 

0 

« 

-IT 

-ire 0 

0 

0 

P 0 

0 

0 

0 

0 

0 

0 

0 

0 
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■^TTiyij-f pifpi ipjifw^jfTTf 

The dependent variables form the 8 component vector 

:\ 

u 

°22 

°12 

u 

V 
K U, 

\: 
The independent variables are ordered 

xa = (t# X, y) , « = 0, J, 2 

and the following notation is used 
, • 

0O = If- ' *1 “ !£ ' *2“ 

0 m 0Q + 0jU + 02V 

and 
(47) 

Then, the 8x8 matrix A « Aa 0a is given in Table 2. In this table we have 
assumed, without any loss in generality, that the coordinate system is 
oriented so that o12 « 0 at the typical point (t, x, y) under investigation. 

The determinant of A is the characteristic form, Q. Q is given 

Q « P3(Qa)4 Qb 

by 

v/here 

Qfr ** 4 

Oß « (02 “ [ (^Di) $1 + (cD2^ ^2 ^ ^2" ^CS1^2^1 + ÍCS2)2^2 ] ^ 

C }DC 
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where 

il 

(Cdi) 2 = n + + 4/3 G/p 
'P 

(CD2)2 - irp+ + 4/3 G/P 

(Ogl) (o> 0 -* compression) 

(Cg2) 
) 

(48) 

The form for Q = 0 shows e multiplicity of 4 in Q^, and the 
existence of 4 real and distinct roots in Qg = 0. (We assume 0^1# Cd2' 
Cgl/ Qr*d Cg2 Qre real.) Therefore to complète the proof, we 
must show that when Qa” 0/ there exists four independent left null 
vectors such that 

0. (49) 

Four independent vectors satisfying Eqn. (49) when Qa — 0 (¢-0) are 

¿1 = (0, 0, 0, 1/ 0, 0) 

¿2 « (0, 0, -2G, 0, 2oij+ 022* ^a22+ cll' 

¿3 = (0, 0, 0, -§G0j (G-t)-|G02 (G + t)* 0( 

2 2 
-p(G-r) +P(G+t)02 * 2Gp0i02* 0) 

(0, 0, 0, 0, 0, 0, 0, 1) (50) 
• 

These left null vectors are applicable along a material stream¬ 
line, i.e., # *-- 0. The explicit calculation of Q and the , I2 , ¿3* and 
¿4 complete the demonstration of the hyperbolic nature of the model. 
Before concluding however, a few remarks should be made concerning the 
expression for Qg. 

À 



The expression « 0 supplies 4 real and distinct solution 
for 0O given 0i and 02» Therefore* Qg •-= 0 furnishes 4 linearly indepen¬ 
dent left null vectors* ¿ . Two solutions are obtained from each of the 
bracketed expressions in Qß. The bracketed expressions are analogous 
to the dilatcitional and shear wave characteristic forms obtained in linear 
elasticity. However* the wave velocities are now directionally dependent 
if On ^ °22» Explicitly* [ = 0 implies the following "propagation 
velocity" relationship. 

The expression { }g implies. 

(52) 
(CSl)2 (CS2)2 

Equations (SI) and (S2) are Illustrated in the following sketch. 

Cr-w (or Coo) 

CDl ^or CSiJ 

JYopagation Velocity Diagram Assuming On O22 ancî °12 “ 0. 

The sketch illustrates that the diiatational wave velocity relative to the 
moving material is given by 

where 6 is the angle between the propagation direction and the x axis* and 
Coi anci Cp2 ore given in Eqn, (48). 
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The directional dependence of the wave velocity in the dilata- 
tional weve is due to the energy dependence included in ir, and the 
directional dependence in the shear wave is due to the objective stress 
rate included in the constitutive relationship. The variation of the propa¬ 
gation velocities (if 03^ ¢552) direction is expected to be present 
in most# if not all# models which account for internal energy effects and 
the principal of objectivity. However# this variation with direction will 
be small for the physical problems of interest. 
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Il-6. TAÍHX..OF_SYMJOL^FOR JiARXH 

dij 

G 

F 

g 

G 

H 

I 

deformation rato tensor 

specific internal energy 

material function describing the^elationship between 
current Jjj and maximum static )2 

a material function which controls the amount 
inelastic deformation which the material experience^ 
stc tho Static failure surface Is approached 

shear modulus 

material function describing the static failure surface 
Oi - 03 ^ H (P, o2) t 

generalised inelastic strain measure (I - JfCrJdr ) 

i 
Í 

lndij 

J*2 

K 

P 

t 

T 

a 

a 

y 

generalized inelastic deformation rate measure 

V3'I 

inelastic portion of the deformation rate 

second invariant oí the deviatoric stress tensor 

bulk modulus 

mean stress 

time 

transitional function for describing hysteretic materials 

a measure of the proximity of the current state of stress 
to the static failure surface 

dilatency material constant 

material constant related to the rate 
properties (dimensions of 1 

sensitive material 



NNW ^ If r11.' !|,N' ‘'ll '"IIIHI \m 'I Tfl mmi*PiTi T|'il|TiTnTprnrriJ’i'[rF!rq il rrni*7nriT|TFrn |m 

1 

I 

Cjj infinitesimal stmin tensor 

cl< *?• e3 principal strain components 

ji compression (p/p0-l) 

17 material function which is anolagous to a hydrodynamic 
equation of state/ P=:ir(P/ e, ï, pm) 

p density 

Pm maximum element density experienced up to the present 
time 

Ojj stress tensor 

Ojz 02/ 03 principal stress components (0^ a 02 s 03) 

Ojj Jaumann definition of objective stress rate 

T dummy time variable/ r -5 t 

ip material function controlling the rate of inelastic 
deformation when F > 0 

tOjj spin tensor 

l 
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PART 2)1 
FRACTURE MODEL FOR UOC.K« 

by M. Rosenblatt and 8. Tinu.rtos 

HI -). INTRODUCTION 

Experimental rock failure data cannot generally be fit by the models 
which are commonly used for metals. The difficulty 1» Illustrated by the 
observation that triaxial extension* failure data for rocks fall on a different 
curve than triaxial compression * failure data in maximum shear »tress vs 
pressure plots. The familiar von Mises, Prager-Drucker, and Tresca models, 
on the other hand, require that both sets of such data fall on a single curve. 

If the percentage difference between the compression and exten¬ 
sion data Is small, as may be the case at high pressures, then a simple form 
relating maximum shear stress, ^ , to pressure can bo satisfactory. 
However, at low pressures the percentage difference can bo quite significant, 
and in theme cases the distinction between failure under compression vs 
extension loading should bo explicitly accounted for. 

• • 

The separation between triaxial compression and extension data 
for rocks is typified by the plot in Figure 1. The limestone data shown cannot 
adequately be fit by cne curve. The two curves which are plotted on Figure 1 
were obtained through the use of a modified Coulomb model developed in this 
study and discussed in Section 3.2 

Some investigators have chosen to fit the experimental data using 
Invariants. In the current study, we chose instead to characterize the frac¬ 
ture surface in terms of the principal stresses. Moxe precisely, we use a 
rotation of the principal axes to obtain a rotated stress space In whloh the 
mean stress (pressure) is proportional to one coordinate and the maximum 
shear stress (£L.^ £3) is proportional to another coordinate. The third co¬ 
ordinate is therefore determined. This rotated stress space is convenient 
for the comparison of data v/ith physical models. For example, the von Mises 
yield condition in the rotated stress states will bs a circle and the Tresca 
condition will be a hexagon. 

In Section 2, the rotated stress space is mathematically defined. 
In Section 3, limestone failure data, which include biaxial compression, 
triaxial extension, and torsion loading are fit in the rotated stress space. 
In the current study, only limestone data were fit because insufficient data 
exist for other materials in the intermediate region between triaxial com¬ 
pression and biaxial extension. However, the results of the present study 
Indicate « way to extrapolate to other teaks using only biaxial compression 
and triaxial extension data. 

♦Triaxial compression will be defined herein as oj >02 « 03, triaxial exten¬ 
sion as 01 « 02 > 03. oi, c-j, and 03 are the principal stresses and o > 0 
implies compte s¡’on. 
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Figure 1. Triaxial Compression and Extension Failure Data For 
Solenhofon Limestone (from Ref. 1)*. 

♦Reference l ist for Fart III is on page 102 > 
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111-2. MATjnJMAT.TCÃL PESC RT PTJOM OF THE ROTATED 
EÕNdlPAL fiTRESTsPACEj - 

w * ^ is fî£îSurnod that failure conditions for rocks can be characterised 
° iuV1 »Cf. Pr^ncti>aî stress space. Figure 2 shows an example of. a 

possible íallure surface which is a surface of revolution about the (1,1,1) line 
in (oj, 0^, 03) principal stress space. This line, of course, corresponds to 
<fl * 02 » 03, and points on the line eire in pure hydrostatic pressure. In 
general, pur© hydrostatic pressure will not cause failure or yielding and thus 
the lino defining hydrostatic pressure is expected to be within the failure 
surfíüo© « # 

/1 i**!*^/* ö?' a3) principal stress space, any plane which is normal 
to trie (1,1,11 line defines conditions causing constant pressure or mean stress 
ii-«- . P ~ °1 + *• °3 \ m, 
' *1 ’ 3-f • *he intersection of such a plane of constant pressure 

with a representative failure surface illustrated in Figure 2 is a circle. The 
distance in a constant pressure plane from the pure pressure line (1,1,1), or 
cri « 02 ** 03* to the failure surface is proportional to the second invariant of 
the deviatoric stress. 

Because of the physical importance of the o j * 03 = 0¾ line, it is 
convenient to rotate principal stress space so that this line becomes one of 
tho new coordinate axes. To define the other axes, we use 0 rotational trans¬ 
formation by which one new stress coordinate is established as being propor¬ 
tional to the maximum shear stress. 

y « (01 - 03)//2 

Making this specification, the other stress coordinate for the rotated system 
becomes 

X « (aj - 202 + 03)//¾- 

The coordinate along the oj » 03 ** 03 line is 

* a/3 p0 (0! + ©2 + 03)//3 

(lb) 

(lc) 

The X, y, and z coordinate lines are shown relative to the 01, 09, and 0¾ 
axes in Figure 2b. Their direction cosines are given by: 

-A 
(1, “2, 1) 

y * 0/ o, -i) 

z = --- (1,1,1) 
/y 
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Figure 3a shows the rotated stress system. The failure surface 
previously illustrated in the principal stress coordinate la 
is centered about the z, or pressure axis in the rotated system in Figure 3a. 
The intersections between planes of constant pressure and any failure sur¬ 
face can be projected onto the x, y plane, and that piano is then refeued to 
as the "plane. Figure 3b shows the tt plane, with the failure surface now 
superimposed in terms of isobar curves. For the surface chosen in thro 
example, the Isobar curves are simply concentric circles. 

There are six permutations of the algebraic order of oi , 02» <-'3. 
Hence the failure surface in the tt plane consists of ®s^-l 
A failure surface defined in one sector can thus be obtained in the other sCo 
tors by series of mirror image transformations about tne sector boundaries. 
The sector boundaries correspond to the conditions a2 = 03 an<^ GlJ* 2' , 
are the triaxial compression and triaxial extension conditions oefinec by the 
footnote on page 81. Inserting the triaxial compression conditionn e^ •- 03 
into Eqn. (1)/ the sector boundary for this condition is y = '^x* 
the triaxial extension condition yields the sector boundary y = *v3 x* J*1''60 
boundaries, y « are actually planes, since they are valid for aj] 
pressures (values of z). 

For the remainder of this discussion, we will consider only the 
sector in which 01 * 02 ^ 03. This sector of the ir plane i s shown in Fig tire 4. 
The left boundary corresponds to triaxial extension and the rig t boundary 
triaxial compression. All data from experiments under these conditions w111 
thus fall on these boundaries. Where a torsional loading component is prese / 
the data will fall botv/een the triaxial compression and extension boundaries. 

The von Mises, Tresca, and Coulomb surfaces are conveniently 
plotted in the ir plane as shown in Figure 4. The von Mises surface is defined 
as 

2 J2' E ci** oj1* B 2/3 Ym* (2) 

and the Tresca surface as 

01 - 03 S Yy 
(3) 

where at** is the deviatoric stress and Y represents the yield in uniaxial 
stress.J These surfaces can be transformed to the rotated stress system by 
use of the following equation, which Is derived from Eqn. (1). 

X2 + y2 « R2 = i- [ (01 - 03)2 + (01 - 03)2 + (U2 “ ö3^2 3 --- oi* °}1 (4) 

Thus in the ir plane the von Mises condition is represented by a circle where 

R » =Jñi=(s) 
The Tresca condition in the ir plane is a hexagon, or in the segment shown 
in Figure 4, simply the straight line y -- Yx//2* Where Y varies wuh pleasure, 
the von Mises and Tresca conditions are series of concentric circles and 
hexagons, respectively. 
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y = (c^ ~ 03)/72 

Figure 3. Rotation of Stress Space to (x,y#z) Coordinate System 
Showiny ¿xaniple of a Typical Axisymmetric Failure Surface, 



X = (öj - 2c¡2 + o$)/*f 6 

Figuro 4. aj. ¡s 02 ^ a3 Sector of ïr Plane Showing Form of von Mises 
Tresca, and Coulomb Criteria for One pressure. 
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From the data in Figure 1, we see that the value of t 

and hence of y in Figure 4, is different for failure in triaxial compression vs 
triaxial extension. Hence neither the Tresca nor von Mises condition will 
satisfy the experimental data« To fit the data, the fracture line for a given 
pressure in the it plane must intersect the compression boundary at a higher 
value than the extension boundary. The Coulomb condition produces a frac¬ 
ture line of this type, as is seen in Figure 4. However, in the Coulomb 
model, all the straight lines between the compression and extension bound¬ 
aries (corresponding to different pressure levels) have the same slope. As 
will be seen in the.sections which follow, the experimental data do not 
conform to such a model. 

m-3. DET£RMÏNATION OF THE STATIC FAILURE SURFACE FOR 
SOLENHOFEN LIMESTONE 

Triaxial compression and triaxial extension data are available for 
many geological materiais. However, data under torsion loading or biaxial 
loading are needed to determine the characteristics of the fracture surface 
between the triaxial compression and triaxial extension lines on a typical 
plane of constant pressure. .Such torsion or biaxial data are unfortunately 
not common. In this study, Solenhofen limestone was chosen as the material 
to be investigated because pure torsion and torsion plus triaxial compression 
data are available in addition to the more common triaxial compression and 
tension data. Reference 1* contains the data used in this study; they are 
summarized in Table I for convenience. The three principal stresses, as well 
as the corresponding coordinates in the rotated stress space are given in this 
table. However, in place of the z coordinate, the pressure (P=sz//^) or 
mean stress is indicated. Table I is broken down into the triaxial compression, 
triaxial extension, and torsion data. The torsion data were either pure torsion 
with a super-imposed pressure or torsion plus triaxial compression. Thus the 
torsion data fall into the right half of the stress sector in the tr plane shown 
in Figure 4. 

The approach taken to fit the experimental data in Table I was to 
first use a least square fit program with a general quadric function to obtain 
the overall characteristics of the limestone fracture surface. Once these 
characteristics were identified, a physical model was formulated, and this 
model in turn was used to fit the experimental data. 

111-3.1 THE LEAST SQUARE FIT TO THE LIMESTONE FRACTURE DATA 

A general least square fit program was used which can accept an 
arbitrary function with any number of independent variables and any number 
of free parameters. The function used has the form, 

y•- F(x, P, ai, a2 . . . . aj^) (6) 

where the rotated stress y is the dependent variable related to x, P, and the 
free parameter a*. The assumed functional relationship between the depen- 

*Superscripts are reference numbers. The Reference List 
for Part III is on page 102. 



TABLE ! - l'/JT.URIJ DMA >‘Oit 
SOLENHOFEN LJ MES TONE (from Hoi. 1) 

(Units ore kilobars, posiiJve stresses ore compressive) 

TRIAXIAL COMPRESSION (Oj > o2 ,.- 03) 

°1 

4.03 
5.13 
5.93 
6.63 
4.65 
5.09 
5.63 
3.47 
5.51 
5.88 
5.66 
6.30 
6.60 
5.65 
7.76 

12.64 
3.98 
4.09 
3.98 
4.93 
5.33 
5.45 
5.94 
6.35 
2.75 
3.83 
4.90 
7.94 
8.92 

11.86 
2.72 
4.06 
4.62 
5.31 
5.97 

a2 - °3 

.35 

.69 
1.03 
1.38 
.35 
.69 

1.03 
0 

.76 
1.03 
1.03 
1.27 
1.53 
1.00 
3.00 
5.00 
0 
0 

. 0 
0.20 

.40 

.60 

.80 
1.00 
0 

.30 

.98 
1.96 
2.94 
3.92 
0 

.35 

.69 
1.04 
1.38 

X t- f-Ll?0?:1’ c3 £] “ 53 ax 4- 0'2 + 03 
*... ' V ~ ~ p r: -- 0 

4/6 J2 

1.50 
1.81 
2.00 
2.14 
1.76 
1.80 
1.88 
1.42 
1.94 
1.98 
1.89 
2.05 
2.07 
1.90 
1.94 
3.12 
1.62 
1.67 
1.62 
1.93 
2.01 
1.98 
2.10 
2.18 
1.12 
1.44 
1.60 
2.44 
2.44 
3.24 
1.11 
1.51 
1.60 
1.74 
1.87 

2. 60 
3. ]4 
3.47 
3.71 
3.04 
3.11 
3.25 
2.45 
3.36 
3.43 
3.27 
3.56 
3.59 
3.29 
3.37 
5.40 
2.81 
2.89 
2.81 
3.35 
3.49 
3.43 
3.64 
3.78 
1.94 
2.50 
2.77 
4.23 
4.23 
5.62 
1.92 
2.62 
2.78 
3.02 
3.25 

1.58 
2.17 
2.66 
3.13 
1.78 
2.16 
2.56 
1.16 
2.34 
2.65 
2.57 
2.95 
2.55 
2.55 
4.58 
7.55 
3.33 
1.36 
1.33 
1.78 
2.04 
2.22 
2.51 
2.78 

.92 
1.48 
2.29 
3.95 
4.93 
6.57 
.91 

1.59 
2.00 
2.46 
2.91 

É 
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TABU: I. (Cont'd) FAILUkK DATA FOR SOLEN HOFEN LIMESTONE 
(From Rof. 1) 

B. 

O J se 02 

(Units are kilobars, positive stresses are compressive) 

TRIAXIAL EXTENSION (ox « ö2 > 03) 

03 
oj - 202 + 03 

7¾ 
y « 

Ql - °3 P » 
01 + 02 + 03 ss 
p  T—  SS — 

3 7$ 

4.06 
5.08 
7.10 
7.62 
1.00 
1.00 
2.00 
2.00 
3.00 
3.00 

.04 

.42 
1.26 
1.32 

- .11 
- .15 
- .12 
- .11 
- .05 
- .14 

-1.64 
-1.90 
—2.38 
-2.57 
- .45 
- .47 
- .87 
- .86 
-1.25 
-1.28 

2.84 
3.30 
4.13 
4.46 

.79 

.81 
1.50 
1.49 
2.16 
2.22 

2.72 
3.53 
5.15 
5.52 

.63 

.62 
1.29 
1.30 
1.98 
1.95 

C. TORSION (HOLLOW CYLINDER) 

03 
a\ - 20¾ + 03 

Xsï 
y « gir.gl 

7% 
p 

OI+ 02 +03 
3 

z 

yr 

.147 
2.059 
3.346 
3.952 
5.552 
5.851 
7.045 
7.338 
1.057 
3.527 
5.198 
4.592 
6.877 
7.193 
7.173 
8.025 
6.517 

.7.535 
6.542 

0 - .147 
1.00 - .059 
2.00 .654 
2.00 .048 
3.00 .448 
3.00 .149 
4.00 .955 
4.00 .662 
0 - .177 
1.00 .103 
2.00 .202 
2.00 1.038 
3.00 .754 
3.00 .437 
3.00 .457 
4.00 1.605 
2.00 .054 
3.00 1.035 
3.00 2.198 

0 .208 0 
0 1.498 1.00 
0 1.904 2.00 
0 2.761 2.00 
0 3.609 3.00 
0 4.032 3.00 
0 4.306 4.00 
0 4.721 4.00 

.359 .848 .29 

.665 2.319 1.54 

.572 3.366 2.47 

.665 2.404 2.54 

.665 4.115 3.54 

.665 4.533 3.54 

.665 4.497 3.54 

.665 4.313 4.54 
1.049 4.355 2.86 
1.049 4.412 3.86 
1.119 2.970 3.91 

92 



' 

dent and independent variables is specified by a function F which involver; 
the M free parameters ai which are to be fit to the experimental data. Those 
data are in the form (yJ/ xi# p^) from Table X. For a given choice of the free 
parameters 01 the function F can be evaluated for a given data point, fhen 
the error between the function F and the experimental point is formed by 

El = y* - FJ, J « 1, N (7) 

j ranges over the N data points* The cumulative squared error is define 

^ ~iJ 

where yJ is from the experimental data, and F^ « F(xJ, pJ, aj, a2* . • ««m)* 
*« m.m • . * _ à... a „ . . 1 4. 4« #• áhVr'i'Mr 4 Ci fiI»f 1 inOQ öV 

Xi (eJ)j 
J«1 

(8a) 

and the cumulative percent squared error is 

2 
p2 E {-¾) 

j= i. yJ 
(8 b) 

9 9 
Notice that for a given set of experimental data E and E^ depend only on 
the form of the function F and the free parameters aj. The least square fit 
program will solve for the free parameters a^ once F is chosen. The coeffi ¬ 
cients will be found such that either or E^ is minimized. 

The function F first chosen to fit the experimental data was 

y » F » aj + d2 X + 03 P 4 V^4 4- 85 x 4- ag P 4- ay P 4- a8 x2 4- aa P2 

(9) 

This general quadric form was chosen because most of the commonly used 
forms for fracture surfaces and yield surfaces are contained as special cases, 
For example, from Eqn. (4) and (5), the von Mises yield condition can be put 
in the following form 

y * F « -*/4/3 Ym2 - X2 (*<>) 

where 

2/3 YM2 « a4 + a6 P + ag P2 (H) 

Also, note that the yield in uniaxial stress YM can vary with the press me 
to form a conical surface in stress space. Similarly, a modified Tresca 
condition can be simulated with the quadric Eqn. (9) in the following form 

/---- 
Y « F « a j 4 as P »- /a4 * a g P «• cg P (12) 
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The above examples all have the property that they are symmetrica 
rotated stress space about the line x « 0. However, note that lhe general 
form of Kqn. (9) has the capability of being non-symmetrical. Thus, the 
non-symmetrical aspect of the triaxial compression and triaxial extension 
data can be accommodated. 

Using the form of Eqn. (9), the least square fit program was 
executed in the least square percent sense, i.e. the coefficient^ ai through 
og were found such that the cumulative squared percent error, , was 
minimized. Figure 5 shows the resulting failure surface fit on the v plj*ne, 
and also gives the values of the coefficient for the quadri° f“* 
are projections of the failure surface intercepts on constant Prf 
at 0 1 2 3 4, and 5 kilobars. The failure surface is seen to expand with 
increasing*pressure. Note particularly that the quadric fit of the experimental 
data produces n failure surface consisting of nearly straight line Isobar pro¬ 
jections on the rr plane. The slope of the isobar linos decreases as the 
pressure increases, indicating that the difference between the y-intercept 

( °1 ~ °2) tn triaxial compression and in triaxial extension decreases as the 
/2 

pressure rises. 

The qualitative features of the general quadric fit FiqJ¡^e ® H 
suggest the physical model for rock failure which is presented in the section 
which follows. 

III-3.2 A PHYSICAL MODEL FOR THE LIMESTONE FAILURE SURFACE 

As pointed out previously, neither the von Mises, Prager-Drucker, 
nor Tresco models will occommodate the differences J" 
and extension failure data which are observçd in experiments on rocks. Tire 
CoulomS íracture criterion however, can show this failure 
iiRPd that criterion as the basis for a physical model for describing the failure 
surface of limestone. Specifically, the Coulomb fracture criterion was modi¬ 
fied to include a less restrictive dependence on pressure and also to include 
a test for tensile failure. 

The Coulomb fracture criterion assumes that the sh®^ stress 
tending to cause failure across a plane is resisted by the cohesion of the 
material and by a constant times the normal stress across the plane. Thus, 
shear failure is assumed to occur in a plane if 

I r I S0 + tan 0 an (13) 

where Ir I is the magnitude of the shear on the plane, an is ®^ess 
on the plane. So is a constant which represents an inherent shear strength 
of the material, and tan 0 is a constant analogous to the coefficien o 
sliding friction. 

Tn Ref 2 it is shown that fracture according to the Coulomb criterion 
will occur on a plane which contains the o2 axis and which is oriented at an 
angle Of from the cj axis v/here Of Is given by 
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Gf « ± (45° - ¢/2) (14) 

It is also shown in Rof. 2 that the following relationship holds at fracture. 

03 ©I + ö3* 4 , 
--- -.= S0 cos 0 4 (— g-) sin 0 (15) 

Ean. (15) is an equivalent form of the statement of the Coulomb fracture cri¬ 
terion given by Eqn. (13), and takes into account the angle of the plane on 
which shear failure will occur. 

Eqn. (15) can be put in terms of the rotated stress coordinates by 
using the relationships 

n 

Cl + 03„ x 4- z„^_!L- + p (16) 

2 y? /3” yr 

Putting these relationships into Eqn. (15) we find 

[S0 cos 0 »• (— + P) sin 0 ] (17) 

ye 

Equation (17) thus represents the Coulomb shear fracture criterion in terms of 
the rotated stress space coordinates (where P has been used in pl^ce of z//3). 
It shows that on every plane of constant P the fracture surface will be repre¬ 
sented by a straight line with constant slope sin 0//3. 

The Coulomb criterion has the property that the fracture surface 
exoands with increasing pressure. However, the expansion is constrainted 
to be linear with the pressure. Ths fit to the limestone data ^ ^'Jfsed* 
demonstrates that the Coulomb criterion must be generalized if it is to be used 
to fit the experimental data. The generalization must permit the slopes 
dy ) , of the isobar projections on the v plane to vary with pressure end it 
ÒX 
must also permit a non-linear expansion of the fracture sSrfaÄce.wlth Pressure. 
Both these generalizations can be achieved by assuming S0 and 0 are functions 
of pressure. We then have the following relationships for the slope and for 
the lntercopt o£ tho failure surface or. the lino x f 0 for any given pressure! 

òjy v sin 0 (P) 
' ys 

y(x = 0) = /2" [S0 (P) cos 0 (P) + V sin 0 ] (18) 

In Eon. (18), c*(P) determines the slope of the isobar lines, and S0 (P) deter¬ 
mines the expansion of the failure surface as measured by the y intercept on 

the v pla ne . 
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Equation (17), with ß0 and 0 being functions of pressure# represents 
the modified Coulomb criterion used to represent shear fracture. In addition 
to shear fracture# however# tensile fracture occurs in certain stress regimes. 
The modified Coulomb criterion is not applicable under these conditions. For 
tensile fracture wc will therefore make the additional assumption that 

-- T0 

where the critical tensile stress# T0# is assumed to be constant. 
Eqn. (19) into the rotated stress space# 

(19) 

Transforming 

y = ,/¾- (T0 +~^r + P) (Tensile fracture) 
V ® 

(20) 

Note that Eqns. (20) and (17) are of the same fonn if we identify S0 cos 0with 
To &nd sin ¢ is set to 1. 

The pressure dependence of S0 cos ¢ and sin 0 in Eqn. (17) were 
chosen os follows. First# the term S© cos 0 was assumed to obey a quadratic 
relationship of the form 

S0 cos 0 « aj Pz + 02 P + 03 (21) 

Since sin 0 is proportional to the slope of the isobar curves on Figure 5# we 
assumed it to be satisfied by 

sin 0 » 04 e 
~asp 

(22) 

This relationship causes the slopes of the isobar lines in the tr plane to 
decrease with increasing pressure and to asymptotically go to zero as the 
pressure goes to infinity. 

Finally# by letting tho ciitlcal tensile stress T0 be represented by 
the free coefficient ag# we obtained the following form for the limestone 
failure surface 

where 

y * Min {yg, yT} 

Tg 88 <s/2f[S0 cos 0 + F) sin 0 ] 

yT.y2 [T0+ F ] (23) 

S7 



sin <t> ö^e 
-a5p 

•= a, 

Using the least square fit program, we found the following coeffi¬ 
cients for the least square percent error fit. 

-1 
txx » .0071 (kb) 

02 — ■ 374 

a3 « .216 (kb) 

a4 = .808 

-1 

(24) 

a .331 (kb) 

To t= a6 = •144 

Figure 6 shows this modified Coulomb failure surface for limestone 
in the ir plane. The p--= 0 failure curve consists entirely of tensile fracture. 
The p = 1 kb curve consists partially of tensile fracture (indicated by a dashed 
line in Figure 6) and partially of shear failure. Above P = 2 kb, the failure 
surface is due entirely to shear failure. 

The least percent error square fit to the limestone failure data has 
a percent standard deviation of 11.3%. The maximum percent error was 35.6%. 

The modified Coulomb model fit is also superimposed on the experi¬ 
mental triaxial compression and triaxial extension data shown in Figure 1. 
The region where tensile fracture occurs is indicated by a dashed line. 

The two parameters, sin 0 and Sq cos 0 which determine the details 
of the modified Coulomb fracture model are illustrated in Figure 7. These 
curves can bo used to graphically obtain the characteristics of the limestone- 
fracture surface. Note that this surface is a fit to the data up to pressures 
of about 5 or 6 kb. There are not sufficient data to Justify extension to higher 
pressures. 

Ill-3.3 COMPAPJSON WITH RECENT BIAXIAL STRESS DATA 

At the time when the modified Coulomb fit described in the jjrior 
section was made, no published data for limestone failure under loading states 
in the left side of the v plane sector shown in Figure 4 were available to us 
(1*6» foi states between x — 0 end the left, tiicixieJ extension boundcuy• ) Hid 

-.—-.. .--—-.. 
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X (kb) = (oj - io? + Ü3) /v^ 

Figure 6. Modified Coulomb Model Fit of Solenhofen Limestone Failure 
Surface in the ir Plane, Obtained by Least Square Fit of Data 
from Ref. 1. 
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Figure 7. S0 cos 0 and sin 0 in Modified Coulomb Model as Function 
of Pressure For Solo:abofen Limestone, 



straight line fit. across that sector of the v plane was r,*olfi 
is therefore of considerable Interest to compare recently ^no 
obtained under biaxial loading states which fall in the left sic e of the J p ar 
sector with the modified Coulomb model fit. In Table JJ , the low strain rate 
(<lo"4sec-l) data from Ref. 3 are tabulotod in terms of principal stresses 
and also the rotated stress coordinates, x, y, and P. (^,so ^ * 
Ref 3 ore the results of two triaxial compression tests.) ihc value^. oí y 
obtained from the modified Coulomb fit at the spooified conditions of x and 
parc also shown, along with the percentage errors. Ihc percentage carets 
are seen to be relatively small (< 10%). 

TADLE II - COMPARISON OF M0,:e tIhD COULOJ.J- IlJ. 
FOR SOLENHOFF.K' I.ÏMCSTONt, WUH 
INDEPENDENT EXPERIMENTAL DATA. 

(Units are kilobars, positive stresses ore compressive) 

Loading 

Biaxial 

Biaxial 

Triaxial 

Triaxial 

öl 

3.92 

4.00 

2.75 

4.4 

Experimental (Ref. 3) 

02 03 

3.50 

2.04 

0 

.5 

0 

0 

0 

2.77 

2.01 

.92 

.5 1.8 

III- 4. SUMM ARY AN_ELn^PMMK^^-I-Q^- 

Triaxial compression, triaxial extension, torsion, and biaxial, 
i* Hat« ÍP < 7 kb) for Soienhofen Limestone have been fit using the 

modified Coulomb fracture models described in Section 3.2. Both shear an 
temiUe faUwl are treated. Shear failure for a toed <£“e) 
is represented by e stralghUine In the ^ fosee tor 

tcreasTwiâ er^noria^ In pressure. Thus the dfHcrence. between trie*,el 

SrfUsThe8 ddataXwTthlan ifirslanlarTSlon S frna^um percent 

error of 35.6%. 

* The generality of the model to other geological materials is not 
known Many rocks show the carne qualitativ'1 behavior as limestone *n 
ulaXl compre sal on and triaxial extension fallt« tests, in ^neral h'^ver, 
ttere is not suffldlont failure date In lhe . 

Sher hind? If we assume that the forme used for limestone aro applicable to 



other çjooloyicctl materialí:, then the data from triaxial compression and tri¬ 
axial extension tests can bo used to specify the entire failure surface. 

We recommend :hnt the validity of the modified Coulomb model be 
experimentally tested for granite and other rocks of interest. Also# since 
the percent differences in triaxial compression failure as compared to triaxial 
extension failure at low pressures (P < 2 kb) arc relatively largo in limestone 
and many other rocks# wo recommend that sensitivity analyses be performed 
to determine the importance of this failure characteristic on ground motion 
and cratering calculations, 
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