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ABSTRACT 

The Fast Field Program (FFP) is a technique for applying Fast Fourier Transform methods to 
Field theory. Interim results are presented for the FFP as it v ould be applied to a nr.iltilayered 
ocean. Earlier work on this subject has demonstrated the accuracy of the approach, but a reduc- 
tion in computing time was needed to attain "real time," in situ propagation estimations. A 
step in this direction has been made possible by the assumption that the water column is sub- 
divided into strata within which the velocity of sound is allowed to vary exponentially with 
depth. The kernel of the integral expression for the pressure field is then given in terms of prod- 
ucts of cylindrical functions, which can be calculated rapidly through the utilization of reci-i- 
rence relations. Comparisons of the results of the FFP and normal mode theory are provided for 
both a shallow and a deep water example at low acoustic frequencies. In the latter case, con- 
sideration is given to the influence of thesubbottom structure upon propagation predictions. The 
technique described is not the ultimate solution for real time calculations; however, it does rep- 
resent the fastest possible version of generating FFP predictions known to the author at this time. 
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FAST FIELD PROGRAM FOR MULTILAYERED MEDIA 

INTRODUCTION 

The capability to provide "real time," in situ propagation predictions is 
highly desirable in many diverse areas of underwater acoustics.  It is precisely 
this wide diversity, however, that makes it difficult to define what real time is. 
The philosophy employed here is to develop the fastest possible method of pro- 
viding estimations and let the eventual user make the decision regarding time 
for his particular application. 

12 
The previous work '   on the Fast Field Program (FFP), a technique of ap- 

plying Fast Fourier Transform (FFT) methods to Field theory, has clearly dem- 
onstrated the soundness of the concept and the accuracy of the predictions.  In 
thi3 earlier work, two schemes were investigated for generating the input data 
to be transformed.   The first involved a numerical integration of the depth de- 
pendent differential equation for an arbitrary sound velocity profile.  In the 
second approach, the variation of the sound velocity with depth was restricted 
in such a way that known solutions were available.  Intrinsic difficulties of the 
same type were found for both methods, and it was felt that the required com- 
puting time could be reduced.   The technique described in this report offers 
such a reduction. 

THE FAST FIELD PROGRAM (FFP) AND THE 
FAST FOURIER TRANSFORM (FFT) 

2 
It is well known  that the field due to a monochromatic point source can be 

represented as 

*(z ,r)=   IG(Z,ZS; 8H0
W«r){dl. (1) 

The scalar, ^ ,   is related to the pressure field and the particle velocity through 
the expressions 

1/2 
P=P'   *(z,r) 



_-■ 

lwp       ' 

where p is an abbreviation for the density.   The function G represents the 
depth dependent Green's function, which must simultaneously satisfy 

2 
^|+[k2(z)-{2]ß=-«(z-zs) (S 
dz 

and associated boundary conditions where z    is the depth of the source. 
s 

Let the Hankel function in Eq. (1) be approximated by the first term in its 
asymptotic expansion, 

-1/2      ,-1/2   IK H<» «„*(£)'    W*».*. 

and simultaneously let the variables,   £  and r,  be approximated according to 

sm    s0 

rn=rQ+nAr      (n,m)= 0,1,2, ••-,N-1, (3) 

with the added restriction that 

ArA*=-   . 

The value of N is 2 raised to some integer power.   Equation (1) is then given 
by the discrete Fourier transform 

1/2    i£«r    N-l 
,/        nV    e*0rny^      i27rmn/N 
^z,rn)=A£(T-j      "1^-2^ Eme ■ <4) 

n       m=0 

* A time variation of eIMt will  be uniformly suppressed throughout the analysis. 
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and the input to the FFT is found to be 

E    =G(z,z ; m s m  sm (5) 

Equation (4) is now in a form that is directly amenable to the FFT. ° The 
result of the application of the FFT is the value of the field at each of the dis- 
crete N ranges.  Once the input, Eq. (5), is obtained, the calculation of Eq. 
(4) proceeds very rapidly.   For the UNIVAC 1108 and N = 8192, this calculation 
consumes 2.689 sec.  The main concern of this report is with the rapid calcu- 
lation of accurate values of the input.   The basis of a scheme that allows this to 
be done is discussed in the next section. 

STRUCTURING OF THE KERNEL FOR THE RAPID 
CALCULATION OF THE INPUT 

The wave number,  k = >/(w/cj)2 + 2ia,  in Eq. (2) is assumed to be a com- 
plex with attenuation coefficient a > 0 since the Green's functions could be 
singular along the axis of integration.   The homogeneous form of Eq. (2) is then 
written as 

z. <z <z. . (6) 

The subscript j is included in anticipation of the subdivision of the velocity 
profile into strata.  In order to provide insight into the motivation for this sub- 
division, a slight digression is necessary. 

The general solution of Eq. (6) for an arbitrary sound velocity profile 
can be obtained by numerical integration.   Two linearly independent solutions 
can be obtained for a given value of £m; these solutions satisfy the relevant 
boundary conditions and thus allow the construction of the Green's function. 
These solutions change their character at the turning point.   The transition 
from an oscillatory to an exponential behavior, or vice versa, can be extremely 
sensitive to round-off errors for certain profiles.  At the same time, the solu- 
tions exhibiting a turning point as a function of £m with z fixed are the most 
important contributors to the integration in Eq. (1).  It is certainly true that the 
accuracy of the process may be improved by resorting to double precision or 
special integration techniques.   The price paid for these manipulations, how- 
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ever, is additional computer time.   Even if one were to ignore this aspect of the 
problem, the prospect still remains that the integration must be repeated for 
each of the N discrete values of Sm«   The result is that the amount of compu- 
ter time needed to generate the input is unsatisfactory when compared with the 
time required to do the FFT. 

If the variation of the profile is restricted, known solutions of Eq. (6) are 
available.   This approach was utilized2 by fixing the value of the profile at three 
arbitrary points, and the solutions were given in terms of hypergeometric func- 
tions.   This technique has essentially the same limitations as numerical inte- 
gration.  As the frequency or water depth is increased, there is a correspond- 
ing increase in the required computing time and in the difficulty with round-off 
errors.  As was mentioned earlier, when speed is not the prime concern the 
problem of round-off errors can usually be circumvented, and thus the above- 
mentioned approaches are possible candidates for the generation of the input. 

To return to the technique of this report, let the profile be restricted to 
vary exponentially with depth within each layer according to 

c.(z.) = c.  JzJe^^H     z.<z. <Z.L,     , 
j i     j-r i' j    i    j+i 

where j = 1,2, • • •, and CQ^) is the surface velocity. The z axis is taken to 
be positive in the downward direction. The solutions of Eq. (6) are then found 
to be 

W = c* UM' (7) 
J
 j   J 

that is, in terms of cylindrical functions of complex order 

v. 3(£H. -i«H.) (8) 
J J J 

and real argument 

w H. 
»      ^(zi-zjj/Hj 

The possible values of zi are either one of the interface depths or the source 
or receiver depths. 

\ 



The variation of G as a function of £ may now be obtained economically 
and rapidly through the recurrence relations for products of cylindrical func- 
tion.  This aspect of the technique will be given more detailed attention in the 
next section.   The fact that the input can now be obtained by utilization of a re- 
currence relation is most desirable» but it does not complete the requirements. 
The recurrence relation must also be linear in the variable (  since the sam- 
ples in the FFT need be equispaced.  One other profile that meets these speci- 
fications is known to the author.  Consider the equation 

dz 

vjvi-1) 

2 2 
LH   cosh 

ffl 

-ffl 
ß= 0 . 

The basis of solutions is found to be 

0i(Z)«P^[tanh(-jri)] 

vz,a<M"ir)]' (10) 

and the desired recurrence relation,   satisfied by both of the solutions in Eq. 
(10), is 

P^+2 (x) + 2(M + Dj   X fPfV) + (" - M) (» + M + 1) P? (x) = 0 . 
x TT 

The cosh profile of the associated Legendre functions, Eq. (10), is not signifi- 
cantly different from the exponential profile; thus, it was decided to use the 
cylindrical functions. 

THE SINGLE EXPONENTIAL LAYER 

The case that requires the least amount of computer time is that in which 
the velocity profile can be represented by a single exponential layer, as de- 
picted in Fig. 1.   The bottom was assumed to be a homogeneous liquid, semi- 
infinite in extent, and with a velocity faster than that of the overlying water. 
The densities of the water and bottom were taken to be identical for convenience. 
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Fig. 1.   Environmental Description for a 
Single Exponential Layer 



It is faster, from a computational point of view, to allow the velocity in the 
bottom to also vary exponentially with depth.   The information could then be ob- 
tained from a recurrence relation rather than the evaluation of a square root of 
a complex number and a trigonometric function for each of the N values of £m. 
The normal mode program that was employed for comparison purposes, how- 
ever, could not accommodate such a structure. 

THE GREEN'S FUNCTION 

The constituents of the Green's function  are found to be 

s   2. s    2. 

G<VV*) = r   2. r   2v 

z, < z   < z 
l-   r-   s 

s      r-   2 

where the products of cylindrical functions are defined as 

P„ (a, b) = J„ (a) Y„ (b) - J„ (b) Y„ (a) 

Q„ (a, b) = J„ (a) Y» (b) - J' (b) Y„ (a) 

R^a.b) = JJ (a) Y„ (b) - J„ (b) YJ (a) 

S„ (a,b) = J» (a) Y' (b) - Jl (b) YJ (a) . (11) 

The primes will always denote differentiation with respect to the argument. 
The last two expressions of Eq. (11) are not needed explicitly for this example 
but will be required in the next section.   The admittance of tne bottom,   Y| ,   is 
found to be 

Y2 = 
2 

i>/("/cB)2 - 7/\ m<«/cB 



The representation for the Green's function in terms of the products of cy- 
lindrical functions, Eq. (11), is not only symbolically efficient but it also rep- 
resents a savings in computing time.   These products can be evaluated rapidly 
through the recurrence relations, ®» ' 

R„+1=-Q„ + <*/b)P„ -^P„+1 

2 
S      = P      + ("+!) [Q   ,/a+R   ,/bl-^r-P   , . (12) i/+l       J-+2     v     ' L^c+r y+1   J        ab       v+l 

Two areas of concern associated with Eq. (12) are the availability of start- 
ing values and the stability of the recurrence process.   For the examples 
examined, the WKB approximations of the functions defined in Eq.  (11) pro- 
vide accurate starting values. The question of stability is most important when 
the value of the real part of   v   lies between the arguments a and b. The dif- 
ference between these arguments increases with either increasing frequency 
or water depth. The behavior of the functions in Eq. (11) within this transition 
region takes the form of an oscillatory function modulated by a growing expon- 
ential envelope. As this separation distance increases, the envelope grows 
proportionally and thereby enhances the possibility that round-off error will 
affect the calculations of Eq. (12). A more detailed account of these aspects 
and a method of overcoming the latter is provided in Reference 8. 

SAMPLING THE INPUT 

The sampling distance in the wave number domain is determined by the 
scaling factor  H and the fact that the change in   v must be unity.   Then from 
Eq. (8) one sees that 

JL 
H ' 

a? -77» \j-of 

The magnitude of H for most applications will be on the order of 105.   The 
sampling distance, Eq. (13), may be too coarse at some frequencies; however, 



it may be altered as will be explained in the section on the two-layer model. 
The parameter a is assigned the value of the attenuation coefficient at the fre- 
quency of interest.   The sampling region should encompass that portion of the 
real  ( axis near the region in which the Green's function is singular.  If kmax 

is the wave number corresponding to the minimum velocity of the water-bottom 
combinat'^Ti. the beginning of the sampling region is found from 

L»k        - NA* . (14) 
0      max 

The integrand decays to zero for values of £  greater than kmax .   The selec- 
tion of N then determines the length of the axis sampled.   The question of how 
large N must be is the analog of how many modes one includes in normal mode 
theory.  It is worth emphasizing that the FFP is not an eigenvalue problem.   It 
is not necessary to know the exact location of the singularities in the complex £ 
plane, but rather only the bounds of the region where they are distributed. 
Certain crude but useful techniques are available to answer questions regarding 
A£   and N.   The value of A£   can be doubled and N reduced to one-half of its 
previous value.  In this way the length of the region sampled,   NA£,   is un- 
changed and the effect of a smaller sampling distance can be determined.   A 
doubling of N with A£   unchanged will show the significance of effectively 
adding more modes. 

COMPARISON OF THE FFP AND NORMAL MODE THEORY 

One method to demonstrate the relationship between the FFP and normal 
mode theory is to examine the magnitude of the input as a function of the wave 
number.   This information is presented in Fig. 2 for the problem under con- 
sideration.   The series of peaks is the result of nearby singularities of the 
Green's function, which would give rise to the normal modes.   The numbers 
associated with these peaks are the mode numbers derived by Bartberger and 
Ackler by using their three-layer, normal mode program.    In all, they calcu- 
lated 37 modes with their last eigenvalue having a real part of 1.217.   Excellent 
agreement was found between the location of the peaks and the real part of their 
eigenvalues.  As can be seen, the region sampled by the FFP includes more of 
the high-order modes but omits the first four low-order modes. 

Propagation loss versus range is displayed in Fig. 3.   The upper graph 
represents the normal mode predictions and the lower graph represents that of 
the FFP.   The range resolution for the FFP was four times as small as that 
used in the normal mode program, and this fact accounts for the greater detail 
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Fig. 3.   Comparison of FFP and Normal Mode Predictions: Single Layer 

in that pattern.  At those points where the ranges of both solutions coincide, the 
difference between the solutions is no greater than 1 dB.  This is the reason for 
plotting the two results in a displaced manner.   The FFP provides results out to 
about 200 kyd in increments of 26 yd with the input values given in Fig. 2.   The 
total FFP results are shown in Fig. 4, where the effect of aliasing in the FFT 
calculations is evident at the longest ranges. 

The total execution time for this example was 31 sec on the UNIVAC 1108. 
The ratio of time needed to generate the input to the time required to actually do 
the FFT is thus about nine to one.  Of all the techniques considered for the gen- 
eration of the input, ;he single exponential layer requires the least amount of 
computing time and is considered to be optimum at this stage in the develop- 
ment. 

Unfortunately, a single exponential layer is not a representative environ- 
mental model. The possibility of using multilayers does exist, however, and 
the ramifications of this approach are discussed in the next section. 

11 
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THE TWO-LAYER MODEL 

A typical warm-weather profile for the Tyrrhenian Sea is given in Fig. 5. 
The velocity of sound versus depth can be represented by the two exponential 
layers, 

Z2 
Cl(zi> = C0(Z1> e'(Zi"Zl)/Hl    Zl<z.< 

o2(z.) = cl(z2)e<Zi-Z2>/H2      z2<z.<z3. 

The velocity at the surface,  c0(Zj),  was taken to be 5040 ft/sec.   The layer 
depths Z2 and Z3 are 200 and 9000 ft, respectively, and the scaling factors for 
each layer are 

H  = 12 x io3 

H  = 36 * io4 . 

Consideration was given to the subbottom structure, since the frequencies 
of interest were in the seismic range.   The two-layered, liquid bottom finally 
adopted (Fig. 5) was arrived at by trying to match experimental bottom loss 
measurements for this area.10   The results of those measurements are de- 
picted in Fig. 6.   The bottom loss in the 75- to 150-Hz band provided by the 
two-layered bottom is given in Fig. 7.  It can be seen that the theoretical curve 
contains all the important features present in the measurements. 

13 
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Fig. 7.   Theoretical Bottom Loss for the Tyrrhenian Sea 
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THE GREEN'S FUNCTION 

If the same abbreviations introduced in the previous section are utilized, 
the Green's function,   G(zs,z ;£),   for the case of the source in the first layer, 
is found to be 

H 

 P„   (71,71) 

[T^V^V^*] 

'"M^^ 
z, < z   <z 

1_  r-   s 

-7rHn _        1    S    "71 
__1P,    (7-.7J- 
2 1 

f   1 v2 r    2X r    2.1 
TY2P    <7,7>-Q    (7^)1 

L7. 1 1 J 

H z  < z   < z„ 
s-   r -   2 
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h^9BQ)<\^-\^ 
p    ,-H      " z

2<z <z« 

M-^v*3^%4^.*] 
2 

(15) 

The admittance at each of the layer interfaces is 

2 vVr     o ;   P3^ ;—— z = z2 (16) 

K
l ^K2 " kltanh (ikz d)^ 3 **  ~i 

Y3=   [K   -K9tanh(ik   d)]      Z = Z3 ' (17) 

where 

Jk. - r + 2ia 
K.   =XJ_ 1_1=12 

vVki-*2+2i«B    * 

d is the thickness of the first bottom layer, and subscripts w and B refer to 
water and bottom, respectively. 

17 



MULTILAYERS AND SAMPLING 

The addition of multilayers and, thus, different scaling factors provides a 
choice for the fundamental value of A£ ,   the sampling distance.   The facts that 
the FFT requires equispaced inputs and that the value of A£   is different for 
each layer would seem to be in conflict.   This situation can be resolved by set- 
ting A£   equal to the reciprocal of the largest scaling factor and then taking the 
other scaling factors to be integer multiples of this value.  In this instance, one 
has 

1        H2 

V     Hl 

As before, the beginning cf the sampling region is found from Eq. (14).   The 
discrete values of the order fov each layer are then found to be 

<"2)m-«0H2-toH2,+m (18) 

since 

Hl 
("1)m = «„Hj - iaiy + m — , (19) 

2 

£    = f   +— 

where  m = 0,1,2, ••• ,N~1. 

The recurrence relations (Eq. (12)) yield the value of the required func- 
tions at successive values of the order which differ by unity.   Those values 
would coincide exactly with the discrete values of Eq. (18) but not those of Eq. 
(19).   The remedy for the latter case is to have  H2/H1 starting values for the 
first layer.   The relationship between the variable of integration, the order for 
each layer, and the path through these values when utilizing Eq. (12) is illus- 
trated graphically in Fig. 8.   The implication of this process on computer stor- 
age is provided in Table 1. 
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Table 1 

VARIABLES AND REQUIRED LOCATIONS 

Variable Required Locations (Complex) 

P 
V 

1 
2 

Q 
V 

1 
1 

R 
V 

1 
1 

s 
V 

1 
1 

p 
V 

2 
60 

Q 
V 

2 
30 

R 
V 

2 
30 

s 
V 

2 
30 

G{z  .z  ;£   ) 
s    r sm 

N 

It is possible to set A£   equal to the reciprocal of the smallest scaling fac- 
tor, calculate Eq. (12) for  i^  as before, but only retain every thirtieth value. 
This procedure results in a larger fundamental sampling distance.   However, 
this result is also available with the first scheme.   Suppose the smallest funda- 
mental sampling distance is decided upon.   If it is desirable to double this value, 
one would merely have to do twice as many calculations and retain every other 

20 



one.  On the other hand, the sampling distance can be halved by repeating the 
procedure outlined in Table 1 twice with N = N/2.   The second time the start- 
ing point would be  £0 = £0 + A£/2. 

COMPARISON OF THE FFP AND NORMAL MODE THEORY 

The normal mode calculations were performed by Bartberger and Ackler at 
NADC using their three-layer program.  A modification of the program was re- 
quired to accommodate a multilayered bottom.   This was accomplished*! by 
retaining only the magnitude of the reflection coefficient at the water bottom. 
The magnitude of the reflection coefficient was that produced by the two-layered 
bottom used in the FFP calculations.   All normal mode predictions associated 
with this example were obtained with the above-described reflection coefficient. 
FFP calculations were performed with the two-layered bottom and with a semi- 
infinite bottom having the velocity of the second bottom layer.   By utilizing both 
types of bottoms and increasing the frequency while other parameters were held 
constant, it was hoped that the significance of the subbottom structure could be 
determined. 

A qualitative indication of the influence of the bottom can be obtained from 
an examination of the Green's function. Consider Eq. (15) for the case when the 
receiver is in the second layer.   The smallest argument of the product functions 
for the second layer is Trj»   since the velocity gradient is positive in this layer. 
The function YJ/2(T2) will eventually dominate these product functions when 
|j>2i>7§ .   At some point in the sampling process one has the approximate values 

\<i-i> sj,2<$ Y;2<^ 
and, similarly, 

*.«£»$«,<#*.*!> 
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Substitution of these expressions into the Green's function produces 

,-H v P> {\'yl} J» <*l) 
G<W*J = (-T) TJ -~r- »        (20) 

Wt'L    ,1    2,    /Hl\   2 "    , 1    »I J    <Y*) [V^H^V^V2' 
where the admittance of the second layer reduces to 

2   J'  (To) . i   \   v     2 
y2^|  r2 \    2 

!   \-HJ 2 "V«. <$ 
2 

This expression is now independent of Y« ,   and thus the bottom has no in- 
fluence at these values of  J^«* When the receiver is in the first layer, a simi- 
lar reduction of the Green's function is possible.   As one might expect, the 
values of the order for which this occurs are related to the rays that would have 
a bottom vertex within the water column. 

A comparison of normal mode and FFP predictions is provided in Figs. 9 
through 14 for various frequencies.  It is worthwhile to repeat that all the 
normal mode calculations were made with the two-layered bottom and that the 
FFP results are either for the same two-layered bottom or for the semi- 
infinite bottom.   An indication of the influence of the subbottom is most evident 
in Fig. 9 at 25 Hz, the lowest frequency for which comparisons were attempted. 
In this figure, the semi-infinite bottom was used in the FFP.   The agreement 
between the two models is good to about 40 kyd.   The peak vaiues of the normal 
mode solution beyond this point show a loss of about 5 dB less than their FFP 
counterparts.  In addition, it can be seen that the two beat interference patterns 
are dissimilar.  Some of the energy entering the two-layered bottom would be 
returned to the receiver after reflecting from the second bottom interface, 
whereas it is never returned with the semi-infinite bottom.   This hypothesis 
was tested by including the two-layered bottom in the FFP calculations.   The 
results of that calculation are displayed in Fig. 10.   The pattern for the FFP 
at close ranges has the same broad features as those in the previous figure. 

• Evidence of this fact is provided in Fig. 15 and will be discussed at c later point in this 
section. 
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However, a more detailed structure is present and suggests the presence of 
stronger bottom arrivals.  This perturbation diminishes with increasing range, 
a fact that could be accounted for by the decibel loss per bounce analog in ray 
theory.  A further comparison of the two figures reveals that the peak values of 
both results are in better agreement. 

Similar comparative runs were made at 35, 50, and 100 Hz to determine 
the impact of the subbottom with increasing frequency.  As might be expected, 
the subbottom becomes less significant as the wavelength decreases.  A com- 
parison of the FFP and normal mode theory is provided in Figs. 11 and 12, at 
35 and 50 Hz, respectively, for the two-layered bottom.   The results at 100 Hz, 
with the different bottom types, are given in Figs. 13 and 14. 

A comparis ">n of these two figures reveals that at close ranges the pattern 
for the two-layered bottom (Fig. 13) contains a finer structure than that for the 
single-layered bottom.   This effect is the same as that observed at 25 Hz. 
Since no systematic difference in level exists, however, it appears that at 100 
Hz most of the energy is trapped in the water column. 

Isolated ranges exist at all frequencies where the FFP and normal mode 
predictions are in wide disagreement.   This was not the case in the single-layer 
comparisons of Fig. 3.  It is felt that these isolated discrepancies are partially 
due to the omission of the phase information of the reflection coefficient in the 
normal mode calculations.  A second difference in the two results occurs at the 
very close ranges where the FFP results for the two-layered bottom show sub- 
stantially less loss than the normal mode results for all the frequencies presented. 
Explanations in terms of such things as (1) the phase of the reflection coefficient, 
(2) branch cut contributions, and (3) the fact that the profile varies exponentially 
with depth for the FFP and linearly in the normal mode program, exist but have 
not been substantiated. 

Additional evidence of the contribution from the layered bottom is provided 
in Fig. 15, where the magnitude of the input at 35 Hz is plotted versus the var- 
iable of integration.  The results for the semi-infinite and two-layered bottom, 
respectively, are plotted on alternate levels for comparative purposes.   The 
magnitude is larger for the two-layered bottom over the entire region sampled 
except at the very end.   The larger peaks correspond to modes associated with 
the bottom.   The fact that the two results are almost identical for wave num- 
bers greater than . 043 is explained by means of Eq. (20); that is, in this region, 
I «^'-"^i anc^ *^e Green's function is independent of tue bottom admittance. 
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An 8192 complex point FFT was U3ed in all the above cases.   The sampling 
distance, A£ ,   was taken as the reciprocal of % at 25 and 35 Hz.  At 50 and 
100 Hz it was set equal to twice this value in order to provide a larger sam- 
pling region.  At the lower frequencies, the FFP yields propagation loss esti- 
mations out to about 740 kyd in intervals of 92 yd.  It is difficult to establish the 
range at which the effects of aliasing in the FFT are significant.  A conserva- 
tive estimate would be the midpoint, which for these examples is 180 nautical 
miles.   For this reason, only one-half of the results have been presented in the 
figures in this section.   The execution time for the UNIVAC 1108 was roughly 
98 sec.   Of this total time, 2.689 sec is required to do the FFT.   Thus, the 
ratio of input generation time to FFT time is about 30 to 1 for this two-layer 
problem. 

DISCUSSION 

Interim results on the development of the Fast Field Program (FFP) have 
been reported.   It is felt that the technique discussed offers a major reduction 
in execution time over previously investigated approaches.   This has beet, made 
possible by describing the sound velocity profile in terms of an exponential var- 
iation with depth, which permits the rapid calculation of the input to the FFT 
through the use of recurrence relations for products of cylindrical functions. 

The required execution time in utilizing this technique for a single expon- 
ential layer is the fastest possible of the various methods of input generation 
investigated.  A more complicated environment may be accommodated via the 
combination of exponential layers of different gradients.   The execution time 
increases with each additional layer, but the technique is still superior to the 
approaches used in the earlier development of the FFP.   Along these lines it 
should be noted that although the ratio of generation to execution times was 
thirty to one for the two-layer case, the increase in time over the single-layer 
example was not entirely covered by the addition of a second layer.   The single- 
layer example pertained to shallow water, whereas the two-layer model was 
for deep water.   The water depth has a significant bearing on the total execution 
time, since an increase in water depth will result in a larger transition region, 
as discussed in the section on the Green's function, and thus will require great- 
er computational accuracy in evaluating the kernel.   This point is discussed in 
detail in Reference 8. 

Comparisons of propagation loss predictions for the FFP and normal mode 
theory show that not only will the FFP provide the results quickly but also ac- 
curately.  A similar comparison of execution times between these two methods 
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of prediction could not be made directly because the results were obtained on 
different computers. 

In addition to demonstrating the FFP for a multilayered medium, the two- 
layer model also serves to illustrate the need for accurate bottom loss informa- 
tion at low frequencies.  Inasmuch as the low-frequency end of the spectrum is 
attracting more attention, it would be desirable to have additional bottom loss 
information available. 
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