NUSC Report No. 4103

Fast Field Program for Multilayered Media

FrEperick R. DiNaroL1
Computer Laboratory

26 August 1971

NAVAL UNDERWATER SYSTEMS CENTER

Newport, Rhode Island 02840

Approved for public release, distrib. /-
Reproduced by

NATIONAL TECHNICAL
iINFORMATION SERVICE

Springfield, Va. 22151

. unlimited.

-

Al i B



—

ABSTRACT

The Fast Field Program (FFP) is a technique for applying Fast Fourier Transform methods to
Field theory, Interim results are presented for the FFP as it would be applied 1o a multilayered
ocean, Farlier work on this subject has demonstrated the accuracy of the approach, but a reduc-
tion in computing time was needed to attain “"real time, " in situ propagation estimations, A
step in this direction has been made possible by the assurnption that the water colnmn is sub-
divided into strata within which the velocity of sound is allowed to vary exporentially with
depth, The kernel of the integral expression for the pressure field is then given in tesms of prod-
ucts of cylindrical functions, which can be calculated rapidiy through the utilizaticn of recvr-
rence relations, Comparisons of the results of the FFP and normal mode theory are provided for
both a shallow and a deep water example at low acoustic frequencies, In the latter case, con-
sideration is given to the influence of the subbottom structure upon propagation predictions. The
technique described is not the ultimate solution for real time calculations; however, it does rep-
resent the fastest possible version of generating FFP predictions known to the author at this time,
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FAST FIELD PROGRAM FOR MULTILAYERED MEDIA

INTRODUCTION

The capability to provide "real time," in situ propagation predictions is
highly desirable in many diverse areas of underwater acoustics. It is precisely
this wide diversity, however, that makes it difficult to define what real time is.
The philosophy employed here is to develop the fastest possible method of pro-
viding estimations and let the eventual user make the decision regarding time
for his particular application.

The previous workl’2 on the Fast Field Program (FFP), a technique of ap-
plying Fast Fourier Transform (FFT) methods to Field theory, has clearly dem-
onstrated the soundness of the concept and the accuracy of the predictions. In
this earlier work, two schemes were investigated for generating the input data
to be transformed. The first involved a numerical integration of the depth de-
pendent differential equation for an arbitrary sound velocity profile. In the
second approach, the variation of the sound velocity with depth was restricted

. in such a way that known solutions were available. Intrinsic difficulties of the
same type were found for both methods, and it was felt that the required com-
puting time could be reduced. The technique described in this report offers
such a reduction.

THE FAST FIELD PROGRAM (FFP) AND THE
FAST FOURIER TRANSFORM (FFT)

It is well known2

represented as

that the field due to a monochromatic point source can be

Wea,r) = Ic(z,zs;z) HY @t at (1

The scalar, ¥ , is related to the pressure field and the particle velocity through
the expressions

P= Pl/z y(z,r)




/= —VP *
iwp

where p is an abbreviation for the density. The function G represents the
depth dependent Green's function, which must simultaneously satisfy

2
L+ [P - £ 8= - stas) @)
dz

and associated boundary conditions where 2 is the depth of the source.

Let the Hankel function in Eq. (1) be approximated by the first term in its
asymptotic expansion,

1/2 )
) gn(2) @ e HE

and simultaneously let the variables, ¢ and r, be approximated according to
Em = 0 + mA¢

rn = ro + nAr m,m)=0,1,2,+++,N=1, 3)

with the added restriction that

2r
The value of N is 2 raised to some integer power. Equation (1) is then given
by the discrete Fourier transform

1/2 IEO n 121rnm/N
Wz, r "AE<m> 1/2 Z m © @

m=0

* A time variation of i@t wil| be uniformly suppressed throughout the analysis.
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and the input to the FFT is found to be

Em = G(z,zs; Em) Elln/z eimroAE . (5)

Equation (4) is now in a form that is directly amenable to the FFT. 9 The
result of the application of the FFT is the value of the field at each of the dis-
crete N ranges. Once the input, Eq. (5), is obtained, the calculation of Eq.
(4) proceeds very rapidly. For the UNIVAC 1108 and N = 8192, this calculation
consumes 2,689 sec. The main concern of this report is with the rapid calcu-
lation of accurate values of the input. The basis of a scheme that allows this to
be done is discussed in the next section.

STRUCTURING OF THE KERNEL FOR THE RAPID
CALCULATION OF THE INPUT

The wave number, k= \/(w/cj)§ + 2ia, in Eq. (2) is assumed to be a com-
plex with attenuation coefficient a > 0 since the Green's functions could be
singular along the axis of integration. The homogeneous form of Eq. (2) is then
written as

w

J

% 2 4
+ - ¢°-2i)| B.=0 z.<z<z, . (6)
dz? [cj (@) ] J ) i

The subscript j is included in anticipation of the subdivision of the velocity
profile into strata. In order to provide insight into the motivation for this sub-
division, a slight digression is necessary.

The general solution of Eq. (6) for an arbitrary sound velocity profile
can be obtained by numerical integration. Two linearly independent solutions
can be obtained for a given value of £,,; these solutions satisfy the relevant
boundary conditions and thus allow the construction of the Green's function.
These solutions change their character at the turning point. The transition
from an oscillatory to an exponential behavior, or vice versa, can be extremely
sensitive to round-off errors for certain profiles. At the same time, the solu-
tions exhibiting a turning point as a function of &y with z fixed are the most
important contributors to the integration in Eq. (1). It is certainly true that the
accuracy of the process may be improved hy resorting to double precision or
special integration techniques. The price paid for these manipulations, how-




ever, is additional computer time. Even if one were to ignore this aspect of the
problem, the prospect still remans that the integration must be repeated for
each of the N discrete values of {m. ‘The result is that the amount of compu-
ter time needed to generate the input is unsatisfactory when compared with the
time required to do the FFT.

1f the variation of the profile is restricted, known solutions of Eq. (6) are
available. This approach was utilized2 by fixing the value of the profile at three
arbitrary points, and the solutions were given in terms ¢f hypergeometric func-
tions. This technique has essentially the same limitations as numerical inte-
gration. As the frequency or water depth is increased, there is a correspond-
ing increase in the required computing time and in the difficulty with round-off
errors. As was mentioned earlier, when speed is not the prime concern the
problem of round-off errors can usually be circumvented, and thus the above-
mentioned approaches are possible candidates for the generation of the input.

To return to the technique of this report, let the profile be restricted to
vary exponentially with depth within each layer according to

_I(Zi"Zj)/H'

cj(zi) = cj_l(zl)e
where j=1,2,..., and co(zl) is the surface velocity. The z axis is taken to
be positive in the downward direction. The solutions of Eq. (6) are then found
to be

Aylap=C, [, @) - ()

that is, in terms of cylindrical functions of complex order

Vj S(EHj - iaHj) 8)

and real argument

ij I /
B _(Zl-ZJ) HJ

i ——
Y, (Zi) = cj-l(zj) 9)

. are either one of the interface depths or the source

The possible values of Zi

or receiver depths.
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The variation of G as a function of ¢ may now be obtained economically
and rapidly through the recurrence relations for products of cylindrical func-
tic..>. This aspect of the technique will be given more detailed attention in the
next section. The fact that the input can now be obtained by utilization of a re-
currence relation is most desirable, but it does not complete the requirements.
The recurrence relation must also be linear in the variable £ since the sam-
ples in the FFT need be equispaced. One other profile that meets these speci~
fications is known to the author. Consider the equation

Q%E.l- V!V'I'l) -(-‘:)2 —0
dz 2 z-Zl = i
H cosh ( H )

The basis of solutions is found to be

8,0 = 7" [ram(—2)]

Z-'Z1

By (2) = Qf,‘ [tanh<—H—)] ; (10)

and the desired recurrence relation,4 satisfied by both of the solutions in Eq.
(10), is

P‘:+2 @) +2(u + 1)-—"—P’V‘+1(x) +-n) p+r+1) Ph@=0.
l1-x

The cosh profile of the associated Legendre functions, Eq. (10), is not signifi-
cantly different from the exponential profile; thus, it was decided to use the
cylindrical functions.

THE SINGLE EXPONENTIAL LAYER

The case that requires the least amount of computer time is that in which
the velocity profile can be represented by a single exponential layer, as de-
picted in Fig, 1. The bottom was assumed to be a homogeneous liquid, semi-
infinite in extent, and with a velocity faster than that of the overlying water.

The densities of the water and bottom were taken to be identical for convenience.

[9)]
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It is faster, from a computational point of view, to allow the velocity in the
bottom to also vary exponentially with depth. The information could then be ob-
tained from a recurrence relation rather than the evaluation of a square root of
a complex number and a trigonometric function for each of the N values of £,.
The normal mode program that was employed for comparison purposes, how-
ever, could not accommodate such a structure.

THE GREEN'S FUNCTION

5

The constituents of the Green's function® are found to be

s 2 2 s 2

(WH)P 1. r
) ' (Y ) 2.<z <2
A S | 1 2 2 1 2 L= irs s
[Q, (v}, - Y, B (v, 7))]
Gz ,z_i§) =
r-s
r 2 2 r 2
(ﬁ)P . [Q, 0 - Y, B 0] .
A 1R 2 1 2 i
[Q, (7)) - Y, B, (v,7))]
where the products of cylindrical functions are defined as
P, (a,b)=J,() Y, () -J,®) Y, ()
Q,@,b)=J,() Y, () -0 Y, @)
R,@b)=4d,(@) Y, (b) - I () Y} ()
S,@,b)=4,(@) Y, () -J(®) Y, (@) . (11)

The primes will always denote differentiation with respect to the argument.
The last two expressions of Eq. (11) are not needed explicitly for this example
but will be required in the next section. The admittance of the bottom, Y5, is

found to be
. 2 2/ 2
\ l\l(w/cB) - /Yl |£|<w/cB
Y2=
NE - wle )P ] >ule
B 1 B’




The representation for the Green's function in terms of the products of cy-
lindrical functions, Eq. (11), is not only symbolically efficient but it also rep-
resents a savings in computing time. These products can be evaluated rapidly
through the recurrence relations, 6,7

=-Ry+(v/a)PV --(—y+—1)P

Q b v+l

v+l

=-Q, +(v/b) P, - —(”:1) P

Rv+1 v+l

P =P -2 (vl [QV +1/a +R +1/b]

vi2
(v+1\2
S,41= Fap ¥ 1) [Qv+1/a *R /P ] - b Tvar (12)

Two areas of concern associated with Eq. (12) are the availability of start-
ing values and the stability of the recurrence process. For the examples

-examined, the WKB approximations of the functions defined in Eq. (11) pro-

vide accurate starting values. The question of stability is most important when
the value of the real part of » lies between the arguments a and b. The dif-
ference between these arguments increases with either increasing frequency
or water depth., The behavior of the functions in Eq. (11) within this transition
region takes the form of an oscillatory function modulated by a growing expon-
ential envelope. As this separation distance increases, the envelope grows
proportionally and thereby enhances the possibility that round-off error will
affect the calculations of Eq. (12). A more detailed account of these aspects
and a method of overcoming the latter is provided in Reference 8,

SAMPLING THE INPUT

The sampling distance in the wave number domain is determined by the
scaling factor H and the fact that the change in v must be unity. Then from
Eq. (8) one sees that

1 .
AE =F- {iuj

The magnitude of H for most applications will be on the order of 109, The
sampling distance, Eq. (13), may be too coarse at some freguencies; however,




it may be altered as will be explained in the section on the two-layer model.
The parameter a is assigned the value of the attenuation coefficient at the fre-
quency of interest. The sampling region should encompass that portion of the
real ¢ axis near the region in which the Green's function is singular. If Ky
is the wave number corresponding to the minimum velocity of the water-bottom
combination, the beginning i the sampling region is found from

£,=k . - NAE. (14)

The integrand decays to zero for values of ¢ greater than kpyax. The selec-
tion of N then determines the length of the axis sampled. The question of how
large N must be is the analog of how many modes one includes in normal mode
theory. It is worth emphasizing that the FFP is not an eigenvalue problem. It
is not necessary to know the exact location of the singularities in the complex £
plane, but rather only the bounds of the region where they are distributed.
Certain crude but useful techniques are available to answer questions regarding
At and N, The value of A¢ can be doubled and N reduced to one-half of its
previous value. In this way the length of the region sampled, NA{, is un-
changed and the effect of a smaller sampling distance can be determined. A
doubling of N with A¢{ unchanged will show the significance of effectively
adding more modes.

COMPARISON OF THE FFP AND NORMAL MODE THEORY

One method to demonstrate the relationship between the FFP and normal
mode theory is to examine the magnitude of the input as a function of the wave
number. This information is presented in Fig. 2 for the problem under con-
sideration. The series of peaks is the result of nearby singularities of the
Green's function, which would give rise to the normal modes. The numbers
associated with these peaks are the mode numbers derived by Bartberger and
Ackler by using their three-layer, normal mode program. 9 In all, they calcu-
lated 37 modes with their last eigenvaluc having a real part of 1.217. Excellent
agreement was found between the location of the peaks and the real part of their
eigenvalues. As can be seen, the region sampled by the TFP includes more of
the high-order modes but omits the first four low-order modes.

Propagation loss versus range is displayed in Fig. 3. The upper graph
represents the normal mode predictions and the lower graph represents that of
the FFP. The range resolution for the FFP was four times as small as that
used in the normal mode program, and this fact accounts for the greator detail

9
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in that pattern. At those points where the ranges of both solutions coincide, the
difference between the solutions is no greater than 1 dB. This is the reason for
plotting the two results in a displaced manner. The FFP provides results out to
about 200 kyd in increments of 26 yd with the input values given in Fig. 2. The
total FFP results are shown in Fig. 4, where the effect of aliasing in the FFT
calculations is evident at the longest ranges.

The total execution time for this example was 31 sec on the UNIVAC 1108,
The ratio of time needed to generate the input to the time required to actually do
the FFT is thus about nine to one. Of all the techniques considered for the gen-
eration of the input, “he single exponential layer requires the least amount of
computing time and is considered to be optimum at this stage in the develop-
ment.

Unfortunately, a single exponential layer is not a representative environ-

mental model. The possibility of using multilayers does exist, however, and
the ramifications of this approach are discussed in the next section.
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THE TWG-LAYER MODEL

A typical warm-weather profile for the Tyrrhenian Sea is given in Fig. 5.
The velocity of sound versus depth can be represented by the two exponential
layers,

. ~(2i~z1)/H;
cl(zi) co(zl) e zlg zi £ z,

il (2i~22)/Hy
cz(zi) cl(zz) e z, < zig z3 3

The velocity at the surface, cg(z;), was taken to be 5040 ft/sec. The layer
depths zg and zg are 200 and 9000 ft, respectively, and the scaling factors for
each layer are

3
Hl— 12 x10

4
H2—36 x10 .,

Consideration was given to the suobottom structure, since the frequencies
of interest were in the seismic range. The two-layered, liquid bottom finally
adopted (Fig. 5) was arrived at by trying to match experimental bottom loss
measurements for this area.10 The results of those measurements are de-
picted in Fig. 6. The bottom loss in the 75~ to 150-Hz band provided by the
two-layered bottom is given in Fig. 7. It can be seen that the theoretical curve
contains all the important features present in the measurements.
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VELOCITY=5425,5250 ft/sec
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Fig. 7. Theoretical Bottom Loss for the Tyrrhenian Sea

THE GREEN'S FUNCTION

If the same abbreviations introduced in the previous section are utilized,
the Green's function, G(zs,zr;z), for the case of the source in the first layer,
is found to be

rH >
1 s 2 s 2
o—— { s
S22, 05,7 -Q, 0570
-WHI 1l r -71 1 . }
P -
o v 1(11,‘71) - e H1 y o 2,82 <2
i (71’71)’(7>Y2 P, p7y)
L 1 2% 1 =
1
_H -
1.2 r 2 r 2
9 Y2 i (71, ‘Yl) -y Qy (71, 71)
-y 1 1 2]
-rH 1 s 1
LB, (v,7) n 2 <7 <2,
2 1 @ ohd (D2 ol
y Y T2 e N Ty
L 1 ‘Yl 1
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H -H,
1 3 3
=P, (7)) YP('r,'r) -Q, (5.7
2" v, 3/ 3 v 22
71 2 Z <7Z <Z
H -H 2= = B«
1 23Pw/ 2 ¥ 3
[Q o, (;)YZP & ,71)][‘,“’ —3) Y., (1) -Q, (1 ,72>]
Y B\ 7, 2 ‘2
(15)
The admittance at each of the layer interfaces is
- -H -
o |8, o2+ (—2)Y3R @)
3 )37y 272
25 L 2 PB\ v 2 .
] 2 2
Y. = z=2_ (16)
2 \Hy/r oy (Ha\ 3 2 3] £
Q ('Y Y ) (—3-> Y3 P,, (‘72,72)
B\ vy 2 i
2
K, [K2 -k, tanh gk d)]
Y3= L Z2=2z 17
3~ [K, -K, tanh (k)] 3

1

where

’k? - £2 +2iaB
K =X j=1,2

. = i=
J (ij)

2 2 .
_Jkl = E +21aB ’

d is the thickness of the first bottom layer, and subscripts w and B refer to
water and bottom, respectively.
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MULTILAYERS AND SAMPLING

The addition of multilayers and, thus, different scaling factors provides a
choice for the fundamental value of Af , the sampling distance. The facts that
the FFT requires equispaced inputs and that the value of Af is different for
each layer would seem to be in conflict. This situation can be resolved by set-
ting Af equal to the reciprocal of the largest scaling factor and then taking the
other scaling factors to be integer multiples of this value. In this instance, one
has

H
o ==, £=30.
2 1

As before, the beginning cf the sampling region is found from Eq. (14). The
discrete values of the ordexr for each layer are then found to be

(vg)py = (§gHy = laH, ) +m (18)
|
(vl)m = (£ H, -iaH ) +m ﬁz- ’ (19)
since
£y EO +§; ,

where m=0,1,2,++- ,N-1,

The recurrence relations (Eq. (12)) yield the value of the required func-
tions at successive values of the order which differ by unity. Those values
would coincide exactly with the discrete values of Eq. (18) but not those of Eq.
(19). The remedy for the latter case is to have Hz/Hl starting values for the
first layer. The relationship between the variable of integration, the order for
each layer, and the path through these valucs when utilizing Eq. (12) is illus-
trated graphically in Fig. 8. The implication of this process on computer stor-
age is provided in Table 1. '
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Table 1

VARIABLES AND REQUIRED LOCATIONS

Variable Required Locations (Complex)
PV 2
1
Q, 1
1
R 1
14
1
S 1
14
1
P 60
14
2
Q, 30
2
R 30
14
2
S 30
14
2
N

It is possible to set A¢ equal to the reciprocal of the smallest scaling fac-
tor, calculate Eq. (12) for vo as before, but only retain every thirtieth value.
This procedurc rcsults in a larger fundamental sampling distance.
this result is also available with the first scheme. Suppose the smallest funda-
mental sampling distance is decided upon. If it is desirable to double this value,
onc would mercly have to do twice as many calculations and retain every other

20
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one. On the other hand, the sampling distance can be haived by repeating the
procedure outlined in Table 1 twice with N = N/2. The second time the start-
ing point would be £,= £, + At/2.

COMPARISON OF THE FFP AND NORMAL MODE THEORY

The normal mode calculations were performed by Bartberger and Ackler at
NADC using their three-layer program. A modification of the program was re-~
quired to accommodate a multilayered bottom. This was accomplished1l by
retaining only the magnitude of the reflection coefficient at the water bottom.
The magnitude of the reflection coefficient was that produced by the two-layered
bottom used in the FFP calculations. All normal mode predictions associated
with this example were obtained with the above~-described reflection coefficient.
FFP calculations were performed with the two-layered bottom and with a semi-
infinite bottom having the velocity of the second bottom layer. By utilizing both
types of bottoms and increasing the frecuency while other parameters were held
constant, it was hoped that the significance of the subbottom structure could be
determined.

A qualitative indication of the influence of the bottom can be obtained from
an examination of the Green's function. Consider Eq. (15) for the case when the
receiver is in the second layer. The smallest argument of the product functions
for the second layer is ‘Yg , since the velocity gradient is positive in this layer.
The function Y,5(v3) will eventually dominate these product functions when
W 2|>‘y§ . At some point in the sampling process one has the approximate values

(73

2 3 2
P, (M) =d, (7)Y, (7))
v 22 T e, T 2

2 3 2 3
Q, (T =T () Y (7))
2 2 2
and, similarly,

r 3 r 3
P (Y,v)=J (v Y (1))
v22 2 v22 V22

r 3  y PR
Qy2(72,72) =Jy2(72) sz('rz) .
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Substitution of these =xpressions into the Green's function produces
1l s 2
G(zs,zr;em)’;( 2) (20)

H r '
TR, b -G r, b 2
1 ‘Yl 1

where the admittance of the second layer reduces to

72 J'v (‘Yz)
)
2 \-Hy/ 54 (72) .
v2 2

This expression is now independent of Yg » and thus the bottom kag no in-
fluence at these values of vg .* When the receiver is in the first layer, a simi-
lar reduction of the Green's function is possible. As one might expect, the
values of the order for which this occurs are related to the rays that would have
a bottom vertex within the water column,

A comparison of normal mode and FFP predictions is provided in Figs. 9
through 14 for various frequencies. It is worthwhile to repeat that al! the
normal mode calculations were made with the two-layered bottom and that the
FFP results are either for the same two-layered bottom or for the semi-
infinite bottom. An indication of the influence of the subbottom is most evident
in Fig. 9 at 25 Hz, the lowest frequency for which comparisons were attempted.
In this figure, the semi-infinite bottom was used in the FFP., The agreement
between the two models is good to about 40 kyd. The peak vaiues of the normal
mode solution beyond this point show a loss of about 5 dB less than their FFP
counterparts. In addition, it can be seen that the two beat interference patterns
are dissimilar. Some of the energy entering the two-layered bottom would be
returned to the receiver after reflecting from the second bottom interface,
whereas it is never returned with the semi-infinite bottom. This hypothesis
was tested by including the two-layered bottom in the FFP calculations. The
results of that calculation are displayed in Fig. 10, The pattern for the FFP
at close ranges has the same broad features as those in the previous figure,

* Evidence of this fact is provided in Fig. 15 and will be discussed at = later poini in this
section.
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However, a more detailed structure is present and suggests the presence of
strorger bottom arrivals. This perturbation diminishes with increasing range,
a fact that could be accounted for by the decibel loss per bounce analog in ray
theory. A further comparison of the two figures reveals that the peak values of
both results are in better agreement.

Similar comparative runs were made at 35, 50, and 100 Hz to determine
the impact of the subbottom with increasing frequency. As might be expected,
the subbottom becomes less significant as the wavelength decreases. A com-
parison of the FFP and normal mode theory is provided in Figs. 11 and 12, at
35 and 50 Hz, respectively, for the two-layered bottom. The results at 100 Hz,
with the different bottom types, are given in Figs. 13 and 14.

A comparisn of these two figures reveals that at close ranges the pattern
for the two-layered bottom (Fig. 13) contains a finer structure than that for the
single-layered bottom. This effect is the same as that observed at 25 Hz.
Since no systematic difference in level exists, however, it appears that at 100
Hz most of the energy is trapped in the water column.

Isolated ranges exist at all frequencies where the FFP and normal mode
predictions are in wide disagrcement. This was not the case in the single-layer
comparisons of Fig., 3. It is felt that these isolated discrepancies are partially
due to the omission of the phase information of the reflection coefficient in the
normal mode calculations. A second difference in the two results occurs at the
very close ranges where the FFP results for the two-layered bottom show sub-
stantially less loss than the normal mode results for all the frequencies presented.
Explanations in terms of such things as (1) the phase of the reflection coefficient,
(2) branch cut contributions, and (3) the fact that the profile varies exporentially
with depth for the FFP and linearly in the normal mode program, exist but have
not been substantiated.

Additional evidence of the contribution from the layered bottom is provided
in Fig. 15, where the magnitude of the input at 35 Hz is plotted versus the var-
iable of integration. The results for the semi-infinite and two-layered bottom,
respectively, are plotted on alternate levels for comparative purposes. The
magnitude is larger for the two-layered bottom: over the entire region sampled
except at the very end. The larger peaks correspond to modes associated with
the bottom. The fact that the two results are almost identical for wave num-
bers greater than . 043 is explained by means of Eq. (20); that is, in this region,
| val>Y; and the Green's function is independent of tne bottom admittance.
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An 8192 complex point FFT was used in all the above cases. The sampling
distance, Af , was taken as the reciprocal of Hg at 25 and 35 Hz. At 50 and "
100 Hz it was set equal to twice this value in order to provide a larger sam-
pling region. At the lower frequencies, the FFP yields propagation loss esti-
mations out to about 740 kyd in intervals of 92 yd. It is difficult to establish the
range at which the effects of aliasing in the FFT are significant. A conserva-
tive estimate would be the midpoint, which for these examples is 180 nautical
miles. For this reason, only one-half of the results have been presented in the
figures in this section. The execution time for the UNIVAC 1108 was roughly
98 sec. Of this total time, 2.689 sec is required to do the FFT. Thus, the
ratio of input generation time to FFT time is about 30 to 1 for this two-layer
problem,

DISCUSSION

Interim results on the development of the Fast Field Program (FFP) have
been reported. It is felt that the technique discussed offers a major reduction
in execution time over previously investigated approaches. This has beei. made
possible by describing the sound velocity profile in terms of an exponential var-
iation with depth, which permits the rapid calculation of the input to the FFT
through the use of recurrence relations for products of cylindrical functions. -

The required execution time in utilizing this technique for a single expon-
ential layer is the fastest possible of the various methods of input generation
investigated. A more complicated environment may be accommodated via the
combination of exponential layers of different gradients. The execution time
increases with each additional layer, but the technique is still superior to the
approaches used in the earlier development of the FFP. Along these lines it
should be noted that although the ratio of generation to execution times was
thirty to one for the two-layer case, the increase in time over the single-layer
example was not entirely covered by the addition of a second layer. The single-
layer example pertained to shallow water, whereas the two-layer model was
for deep water. The water depth has a significant bearing on the total execution
time, since an increase in water depth will result in a larger transition region,
as discussed in the section on the Green's function, and thus will require great-
er computational accuracy in evaluating the kernel. This point is discussed in
detail in Reference 8. ’

Comparisons of propagation loss predictions for the FFP and normal mode

theory show that not only will the FFP provide the resulis quickly but also ac-
curately. A similar comparison of execution times between these two methods

34




of prediction could not be made directly because the results were obtained on
different computers.

In addition to demonstrating the FFP for a multilayered medium, the two-
layer model also serves to illustrate the need for accurate bottom loss informa-
. tion at low frequencies. Inasmuch as the low-frequency end of the spectrum is
3 : attracting more attention, 1c would be desirable to have additional bottom loss
i information available.
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