A MONTE CARLO STUDY OF THE SAMPLING DISTRIBUTION OF THE LIKELIHOOD RATIO FOR MIXTURES OF MULTINORMAL DISTRIBUTIONS

John H. Wolfe

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
A MONTE CARLO STUDY OF THE SAMPLING DISTRIBUTION OF THE LIKELIHOOD RATIO FOR MIXTURES OF MULTINORMAL DISTRIBUTIONS

John H. Wolfe

September 1971

Samples from spherical normal distributions were generated and fitted to hypothesized mixtures of normal distributions using the 360 NORMIX computer program for maximum likelihood estimation of the parameters of a mixture of multinormal distributions with a common covariance matrix. The results suggest that the logarithm of the likelihood ratio, when multiplied by the coefficient \(\frac{1}{2(n-1-n^2)} \), is distributed approximately as chi-square with degrees of freedom twice the number of variables times the difference in the numbers of hypothesized clusters.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Analysis</td>
</tr>
<tr>
<td>NORMIX</td>
</tr>
<tr>
<td>Mixtures of Distributions</td>
</tr>
<tr>
<td>Hypothesis Testing</td>
</tr>
<tr>
<td>Multivariate Statistics</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
</tr>
</tbody>
</table>
A MONTE CARLO STUDY OF THE SAMPLING DISTRIBUTION OF THE LIKELIHOOD RATIO FOR MIXTURES OF MULTINORMAL DISTRIBUTIONS

by

John H. Wolfe

September 1971

Technical Bulletin STB 72-2

Submitted by

Richard C. Sorenson, Ph.D., Director
Statistical Analysis and Computer Applications Department

Approved by

Earl I. Jones, Ph.D., Technical Director
Karl E. Kuehner, Commander, USN
Commanding Officer

This document has been approved for public release and sale; its distribution is unlimited

Naval Personnel and Training Research Laboratory
San Diego, California 92152

A LABORATORY OF THE BUREAU OF NAVAL PERSONNEL
SUMMARY

A. Problem

To estimate the numbers of clusters of individuals necessary to account for their distribution of test profiles.

B. Background and Requirements

Classification and predictions of performance of enlisted men in A-School training requires appropriate statistical description of the joint distribution of their test scores and performance criteria. The usual assumptions of multivariate normality may not be appropriate. In such cases prediction may be improved by clustering the men into several groups, each of which has a normal distribution of scores. The problem solved by this research is how many such clusters to use.

C. Approach

Several hundred random samples from spherical normal distributions were generated by a computer pseudo-random number generator. The samples were fitted to one, two, or three clusters by the NORMIX procedure, and the likelihood ratios computed for alternative hypotheses concerning the numbers of clusters.

D. Findings

The results suggest that the logarithm of the likelihood ratio, when multiplied by the coefficient $-\frac{2}{N} (N-1-m) \frac{r^2}{2}$ is distributed approximately as chi-square with degrees of freedom twice the number of variables times the difference in the numbers of hypothesized clusters. This formula has been incorporated in the significance estimates of the NORMIX 360 computer program.

E. Conclusion

Likelihood ratios for mixture problems are not distributed as chi-square with degrees of freedom equal to the number of variables; instead doubling the degrees of freedom seems to give a better fit to the sampling distribution.

F. Recommendations

The formula given in this paper should be used with caution as a guideline in estimating the number of clusters in a sample. (p. 4)
REPORT USE AND EVALUATION

Feedback from consumers is a vital element in improving products so that they better respond to specific needs. To assist the Chief of Naval Personnel in future planning, it is requested that the use and evaluation form on the reverse of this page be completed and returned. The page is preaddressed and franked; fold in thirds, seal with tape, and mail.

Department of the Navy

Official Business

Commanding Officer
Naval Personnel and Training Research Laboratory
San Diego, California 92152

<table>
<thead>
<tr>
<th>FACTORS</th>
<th>RATING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW</td>
<td>AVE</td>
</tr>
<tr>
<td>Usefulness of Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timeliness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completeness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity of Recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soundness of Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation and Style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Use of Report. Please fill in answers as appropriate.

 a. What are your main uses for the material contained in the report?

 b. What changes would you recommend in report format to make it more useful?

 c. What types of research would be most useful to you for the Chief of Naval Personnel to conduct?

 d. Do you wish to remain on our distribution list?

 e. Please make any general comments you feel would be helpful to us in planning our research program.

NAME: ___________________________ CODE: ___________________________
ORGANIZATION: ___________________________
ADDRESS: __
TABLE OF CONTENTS

Page

Summary. ... iii
Report Use and Evaluation (Authorized Tear-Out Form) v
I. INTRODUCTION .. 1
II. METHOD .. 2
III. RESULTS .. 3
IV. CONCLUSION ... 3
References .. 6
Distribution .. 7

LIST OF TABLES

1. Adjusted Likelihood Ratios for Random Normal Data. 4
2. Percentage Frequencies of Chi-Square Probabilities for Random Normal Ratio. 5
A MONTE CARLO STUDY OF THE SAMPLING DISTRIBUTION OF THE LIKELIHOOD RATIO FOR MIXTURES OF MULTINORMAL DISTRIBUTIONS

I. INTRODUCTION

A previous paper (Wolfe, 1970) presented a maximum-likelihood estimation procedure for mixtures of distributions. The method tries to fit the data to a distribution which is composed of a mixture of a hypothesized number of component distributions. The obtained likelihood is a measure of the degree of fit. The (null) hypothesis of \(r \) clusters can be compared with the hypothesis of \(r' > r \) clusters by computing the likelihood ratio \(\lambda = \frac{L_r}{L_{r'}} \). This ratio should provide all the information necessary to test the hypothesis of \(r \) clusters against the alternative \(r' \) clusters, provided we know the sampling distribution of the likelihood ratio under the null hypothesis.

Wilks (1938) showed under certain regularity conditions that \(-2 \log \lambda\) is asymptotically distributed as chi-square with degrees of freedom equal to the difference in the number of parameters between the restricted and unrestricted hypotheses. Hogg (1956) proved under certain conditions where the range of the parent distribution is a function of the parameters that \(-2 \log \lambda\) is distributed exactly as chi-square with degrees of freedom equal to twice the difference in the number of parameters. Bartlett (1947) investigated the problem of testing for equality of \(r \) means in multivariate analysis of variance. He improved Wilks' result for small samples by using

\[
\chi^2 = -2 \ C \log \lambda, \\
\]

where

\[
C = \frac{1}{N} \left(N-1 - \frac{m+r'}{2} \right) \\
\]

degrees of freedom \(= m(r'-1) \),

\(m = \) number of variables, and \(N = \) sample size.

In a previous paper (Wolfe, 1970) Wilks' formula performed poorly in testing the number of components in the Fisher-Iris problem and in the "Artificial Clusters" problem. In each case the Wilks' test rejected the null hypothesis when it was true.
A little reflection indicates several points where the conditions are not satisfied for Wilks' theorem to hold. Wilks assumes that the null hypothesis defines a parameter subspace \(\mathcal{Q} \subset \mathbb{R}^r \) consisting of points of the form \(\theta_1, \ldots, \theta_r, \theta_{r+1}, \ldots, \theta_{r+o} \) where \(\theta_{r+1}, \ldots, \theta_{r+o} \) have fixed values and lie in the interior of some open set where the likelihood function has a unique maximum. In the mixture problem, however, the null hypothesis is that the mixing proportions \(\pi_{r+1}, \pi_{r+2}, \ldots, \pi_r \) are equal to zero, which is at the boundary of a closed set \([0,1]\). When the mixing proportions are zero the corresponding means cannot be estimated since the likelihood function is completely flat, i.e. unchanged for different values of those means. The probability density function of \(r' \) types involves \(r'(m+1) \) parameters. For each of the \(r' \) types there is one parameter for the mixing proportion and \(m \) parameters for the means of that type. Nevertheless the comparison of \(r' \) against \(r' - 1 \) types can be accomplished by imposing only one restriction that \(\pi_r = 0 \). Alternatively, \(m \) constraints can be imposed on the means so that two types have the same means. In this case, it is impossible to estimate the relative proportions of the two types since the likelihood function will be flat for \(\pi_{r' \cdot } \pi_{r' - 1} = \) constant.

II. METHOD

The present paper is concerned with a Monte-Carlo investigation of the sample distribution of \(-2C \log \lambda\) for mixtures of normal distributions when the null hypothesis is true that the "mixture" contains only one component.

The pseudo-random normal deviate generator used in this study consisted of the Lewis, Goodman, and Miller (1969) subroutine for uniform random variables followed by the IBM (1968) subroutine NDTRI for producing the inverse of the normal distribution function.

Using this normal deviate generator, samples from spherical normal univariate, bivariate, and 22-variate distributions were produced. The sample sizes were 100, 100, and 113, respectively. One hundred univariate, one hundred bivariate, and one hundred 22-variate samples were generated. These samples were run through the 360 NORMIX computer program (Wolfe, 1971) to obtain likelihoods for hypotheses of one type, two types, and three types, assuming the types share a common covariance matrix.
On several samples the likelihoods failed to increase when the number of types increased, apparently because the computer converged on a sub-optimal relative maximum in the likelihood function. When these samples were re-run with different initial estimates many of them converged in solutions with greater likelihoods. The remaining samples which did not increase in likelihood after three tries were omitted from the analysis except in the calculation of the median likelihood ratios.

III. RESULTS

The results of the Monte Carlo study are presented in Table 1. The function tabulated is the same as Bartletts' formula except that the number of variables is doubled in computing the coefficient C.

It is evident that if \(-2 C \log \lambda\) is to be fitted to a chi-square distribution, the degrees of freedom will have to be approximately twice the number of variables, \(m\).

Table 2 gives the percentage frequencies of the corresponding chi-square probabilities of \(-2 C \log \lambda\) with degrees of freedom \(2m\). The distribution is approximately uniform, indicating that this chi-square approximation gives a good fit to the sampling distribution of the likelihood ratios.

IV. CONCLUSION

The data from this Monte Carlo study are more than sufficient to reject the Wilks' test for application to mixture problems. They are not sufficient to establish the actual sampling distribution of the likelihood ratio; indeed no empirical method can do this. However, we can conjecture that

\[-2 \frac{1}{N} (N-1-m-\frac{r^2}{2}) \log \frac{L_x}{L_{-x}}\]

is distributed asymptotically as chi-square with degrees of freedom \(= 2m(r^2-r)\). This conjecture seems to provide the best available guideline for testing the number of types in a mixture.
TABLE 1

Adjusted Likelihood Ratios for Random Normal Data

<table>
<thead>
<tr>
<th>Number of Variables</th>
<th>1</th>
<th>2</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>100</td>
<td>100</td>
<td>113</td>
</tr>
<tr>
<td>Number of Samples</td>
<td>100</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Number of Samples Retained for Analysis*</td>
<td>81</td>
<td>97</td>
<td>25</td>
</tr>
</tbody>
</table>

-2 $C \log L_1/L_2^{**}$

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>1.22</th>
<th>3.57</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.37</td>
<td>3.99</td>
<td>43.02</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>2.54</td>
<td>2.44</td>
<td>6.79</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>.00</td>
<td>.44</td>
<td>31.23</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>9.78</td>
<td>12.51</td>
<td>58.42</td>
<td></td>
</tr>
</tbody>
</table>

-2 $C \log L_2/L_3^{**}$

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>1.21</th>
<th>4.03</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.23</td>
<td>4.53</td>
<td>45.17</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>2.26</td>
<td>3.33</td>
<td>10.14</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>.00</td>
<td>.04</td>
<td>19.20</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>9.88</td>
<td>17.06</td>
<td>60.89</td>
<td></td>
</tr>
</tbody>
</table>

* Only those cases where $L_{T+2} > L_{T+1} > L_T$ were retained for analysis, the others being considered suboptimal solutions.

** $C = \frac{1}{N} (N-1-\frac{2m+r'}{2})$, where m = number of variables

r' = number of types in the unrestricted hypothesis

N = sample size

4
<table>
<thead>
<tr>
<th>Class Interval</th>
<th>(P(L_2/L_1))</th>
<th>(P(L_3/L_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Variable</td>
<td>2 Variables</td>
</tr>
<tr>
<td>.00-.10</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>.10-.20</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>.20-.30</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>.30-.40</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>.40-.50</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>.50-.60</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>.60-.70</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>.70-.80</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>.80-.90</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>.90-1.00</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>
REFERENCES

Wolfe, John H. NORMIX 360 Computer Program. (Research Memorandum 72-4), September 1971. Naval Personnel and Training Research Laboratory, San Diego, California 92152. (Available by sending a blank magnetic tape to author, specifying 9 or 7 track, EBCDIC or BCD).
DISTRIBUTION

Chief of Naval Personnel (Pers-1lb)
(Pers-A3)
(Pers-A32)
(Pers-N23)

Chief of Naval Research (Code 432), Arlington, Virginia
Director, Personnel Research & Development Laboratory
Chief, Research Division, Office of Research & Development
Smithsonian Institution
Commanding Officer & Director, Naval Ship Research & Development Center
Personnel Management Development Office, OPO, Department of the Army
U. S. Civil Service Commission Library
U. S. Employment Service, U. S. Department of Labor
Human Factors Operations Research Laboratory, Air Force Systems Command
Center for Naval Analyses, Arlington, Virginia
Chief of Naval Operations (OP-01)(2)
(OP-98TL)

Commander Naval Air Test Center, Service Test Division (Code 35A)
Commanding Officer, Naval Examining Center, Great Lakes
Naval Research Laboratory, Operations Research Branch
Superintendent, Naval Postgraduate School, Monterey
Office of the Assistant Secretary of Defense (Manpower)
Commander, Personnel Research Laboratory, Aerospace Medical Division,
Air Force Systems Command, Lackland
Director of Research, United States Military Academy, West Point, New York
Director, Human Resources Research Office, Alexandria, Virginia
Library of Congress, Science & Technical Division
Office of the Assistant Chief of Staff (G-1) Headquarters, U.S. Marine Corps
Commander, Naval Electronics Laboratory Center
Chief of Naval Research (Code 458) (2)
U.S. Army Behavior & Systems Research Laboratory, Arlington, Virginia
Director, Defense Documentation Center, Alexandria, Virginia (12)
Chief of Naval Air Training (Code 017), Naval Air Station, Pensacola, Florida