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I. INTRODUCTION
Strategic system decisions are subject to various levels of review.
Technical, fiscal, and political factors are all introduced during the review
process. Such problems as individual system performance and mutual support and
protection between proposed and existing systems are also considered. Quantitative
analysis of system mixes to support and justify selection decisions is beneficial,
= if not required. Such analysis should include the performance of individual
systems taken individually, the performance of system mixes, costs to the enemy
in defeating the various mixes, and protective interactions among the members of
system mixes. In this paper a method for allocating resources among strategic
veaon systems for deterrence purposes is presented.

In the following section, the mathematical model is presented. This model
improves upon earlier models [1-3] by accounting for the price of admission. The
price of admission includes development costs and we shall sometimes use these terms
interchangeably; however, it specifically excludes research funds. In fact, before any
system is considered for development it is assumed that preliminary research has been
performed.

In Sections III and IV, respectively, a method of solution is presented for an
arbitrary mix of percentage vulnerable (PV) systems and for a general mix of PV
and numendically vulnerable (NV) systems. The theory of max-min is extended in
Section III as necessary to solve this particular problem. The notation is

summarized in the Appendix.

I1. MATHEMATICAL MODEL INCLUDING DEVELOPMENT COSTS

. There are many ways in which system mix analyses can be conducted. - In all
of them the problem of characterisging the systems to be studied is of extreme
importance. An intuitively appealing characterization of system alternatives
results in a eimple but highly versatile model. In this interpretation, due to

Dr. Thomas E. Phipps (1], defender retaliatory system candidates consist of two

axclusiva classes,

X AT iy

Rl Sl T L
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One class comprises systems which are difficult to loc;uto. but relatively
aasy to destroy once located. An example of such a mobile system is POLARIS.
This type of weapon system is called percentage vulnerable because,
for a fixed search effort by the attacker, a fixed percentage of the retaliatory
weapons comes under attack. The other class consists of weapons that are .
easily located but difficult to destroy. MINUTEMAN is an example of such a
systen. These systems are called numerically vulnerable because the attacker's
effort must be distributed among all of the weapons of the system. We assume
that each retaliatory weapon system can be attacked by only one weapon system
of the y-player.

The retaliator allocates x, resources, e.g. in billions of dollars .‘\to the
kth weapon systam, which costs q, to develop and Ce to procure; n, is the
number of weapons in the system and x is the procurement c;ut per weapon.

The number of weapons in the kth system is

o, = (x,-q)/c.

If w, is the throw-weight in megatons of a weapon in the kth system, the total

k
throw-weight for the kth system is

vy = /o) (-9
Using the theory of random search [cf. 4], it can be shown [cf. 1,2]
that the fraction of weapons destroyed in the ith PV gystem is given by
l-exp[-ai(yi-ri)]: y; 1is the amount of resources the attacker allocates to
blunting, on first strike, the corresponding retaliator's system and r, is the
attacker's development cost. a, is the "vulnerability" of the ith system
measured, e.g. in inverse billions of dollars. Consequently, the residual value

of the ith perceutage vulnerable system is
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(2.1) vi(xi~q1)¢xp[-ai(yi-r1)].

where v, £ wi/ci.
For an NV system, the attacker's resources must be distributed among all the

)/(x "'qj)]

weapons of the system. Therefore, the survival probability is exp[-a 5

30477

and the residual value is
(2.2) Vj(xj-qj)expl-aj(yj-rj)/(xj-qul

Throughout this article the subscript 1 will be used for percentage
vulnerable systems and the subscript j will be used for numerically vulnerable
systems.

In deriving (2.1) and (2.2) it has been implicitly assumed that X > 9
and Y > T Combining (2.1) and (2.2) and applying physical reasoning when

k
the implicit assumptions are violated, we obtain the residual value for the

retaliator's system mix:

n m
(2.3a) F(X.Y) - 121 fi(xi.yi) + j.tzﬂ.]_ fj '\xj oyj)a -
where ’
0 P ox < 9y

(2.3b) £,(x,,y,) = {v,(x,-q)exp[-a,(y,-r )] : x,>q ,y >1,
' vy (%y-q)) PR Qe Yy sy

and

0 : x:l < qJ
(2.3¢) £,0xp,30) = { vy(xymq)expl=a,y,=ry)/(xy=q )] 2 x> qp 5y > ¢
| vy (x4=ay) PoXy >y Yy STy

The attacking y-player, having full knowledge of the retaliator's allocation,
allocates his funds to minimize the x-player's retaliatory capability, F(x,y).

Consequently, the retaliator allocates his funds in a manner which maximizes

3
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this minimum; 1i.e., the objective is to determine the optimal strategies u for

the retaliator and v for the attacker so that

(2.4) VEPF(uw = H‘x‘[mmy!(x,y)] S Maxx P(x) = P(u).,

It is also desirable to know V. An unusually low value would indicate that a
large infusion of funds by the defender is necessary.

Defining X and Y to be the retaliator's and attacker's total resources,

respectively,

n Y
(2.5) 2:14- ] «x

- X
1s1 jm1 3
and
n m
(2.6) Y v, + ) yy = Y
is=] Jen+l

Of course, X 2 0, Y 2 0, a > o, vy > 0, T > 0 and q > 0 for each weapon systen.
The limitations of this model and the procedures for determining the parameters
a, and v, have been discussed by Phipps [2].

The mathematical model (2.3)-(2.6) with no development costs (i.s., "9 " 0
for all k) has been completely solved by Danskin [3]. The inclusion of development
costs is the first of several improvements in the existing theory necessary for

a realistic model.

ITI. PV SYSTEMS

In this section the finite allocation problem with development costs is
resolved for an arbitrary mix of PV systems, (2.3)-(2.6) with men. This problem
is summarized by:

n
(3.1) Gl:uen: F(K,Y) - 121 fi(xi’yi)

L
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n n
(3.2) Comstrained by: | x, =X; ] y =¥
1] 1]

xizo ;yizo

(3.3) Detemine: u, w and V where V = F(u,w) = MuxP(x) g Huxlninyl’(x.y)l

We hypothesize that X > Max 9 and Y > Max T, Physically this means that
the retaliator considers only those systems for which he can afford to procure
at least one weapon and that the attacker can afford at least a limited counter
to any retaliatory system. Mathematically, these assumptions assure a positive
residual value,

Let F(u,w) = Maxxuiny P(x,y). It is shown that (u,w) is the solution
of a game defined on suitable subsets of the x-space and y-space. It is also
shown that either u, = 0 or u, > q, and a constructive procedure for solving
(3.1)-(3.3) is then presented.

Lema 3.1, 1f P(x) = F(x,n(x)) > 0, then x > q and M > Ty for some k.

Proo§. DefineT = : x, > qi} and let us suppose that n, < r, for all 1 ¢ T.
Then P(x) = trvi(xi-qi). Select k ¢ I' and define n* by n: = 0 (1¥k) and

n; = Y., Since Y > Tys P(x) > F(x,n*) contrary to the definition of P(x).
Consequently, there exists a k € T' such that n > T

We note that V = P(u) > 0 because P(x) > 0 for x = (X,0,0,...,0).
Lema 3.2, 1f P(x) = FP(x,n(x)) > 0, x, £4q implies n, = 0.

Prood. Suppose, to the contrary, that x S q and " > 0 for some 1 = k.
Define I’ = {1 : 0 ¢ x, S qi} and 0 = § n,. From Lenma 3.1, x, > q and

®
> r, for some { = k. Define n by:

T
. 0 ¢ 1el';
ng =40y ¢t 1el , 19¢k;
ni-l-o t 1=k,

*
F(x,n ) < F(x,n) contrary to the definition of P(x) and n.
5
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The following two lemmas are modifications of Gibbs' Leuma [cf. 3, p. 10].
The first modification is trivial.

looma 3.3. Let fi(‘i) be differentiable. Let s = (31,....zn) maximise
g}i(xi) constrained by

l‘lxi-x>0;xizqizo. |
Then there exists a number ) so that )
' - 3 [
f'i (:1) Aoz > q
- 30 S z, = q,.

Lema 3.4 (Modified Gibbs' Letma). Let £ 4(x,) be continuous with right-

and left-derivatives. Let z = (zl,....zn) maximize zif 1.(xi) constrained by

tixi-x,xizo

and X > O. Then there exists a number A such that
£, %) <2 for all 1;
i1 8

i =
fi(zi)zx for all 1, z, > O.

i

Furthermore, if f i(xi) is differentiable at x, =3, > 0, for some i, A is unique.

Proo{. Suppose 3, > Oand 0 < € < 23 define

F(c) = fi(zi-e) + fj(zj-l-e) + Z fk(zk)

The altered set z still satisfies the constraints. Therefore, F(c) is maximal
at ¢ = 0 and F'(0) < 0, i.e.
) *+ ) R
fj (zj ) € £, (zi )
for all j. We now choose any A such that

Max, £,'(z

+ ] -
g £4' (2 ) $ A < Min £, (z1 ).

220

i
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We note that whenever fi(xi) is differentiable at z, > 0, for some i, the

i

choice of A is uniquely determined by X = fi'(xi).
The following two lemmas demonstrate that paying a porticn of development

costs without procuring any weapons i1s a waste of resources. Although these

lemmas seem physically obvious, they are not mathematically obvious.

Leema 3.5. Either v, = Oorw, >r,.

i i
Proo4. Define A' = {1 : 0 < wy < ri}. By Lemma 3.1, there exists i = k
*
o 17t ' ’
such that U > E and W > r. Select 1 = k' € A' and define w as the

n-dimensional vector:

i=k'
i+ k,k'
wi+wk, : i=k

*
o

*
It follows that F(u,w) > F{u,w ) contrary to the definition of MaxxMiny. Hence
A' is empty.
Lerma 3.6. Either u, = 0 or ug > qy
Proof. Define B = {i : u > q,} and A= {1 :w > r,}. From Lemma 3.2, A< B,

Then (3.1) Lt .comes, at x = u,
(3.&) F(“;Y) - XB fi(ui’yi)'
Application of the Modified Gibbs' Lemma to (3.4) yilelds

(3.5) aivi(ui—qi)exp[—ai(wi-ri)] SWEw >

0Ly w, = 0

For each 1 € A,

(3.6) w, = r, + (llai)ﬂog[aivi(ui—qi)/u];

i

otherwise, L e 0. Substitution of (3.6) into the y-constraint of (3.2) yields

(3.7) ZA{ri+(1/ai)£ag[aivi(ui-qi)/u]} =Y.
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For each possible A, (3.7) either has a unique solution for u or no solution.
Unfortunately there is no & prioal way of obtaining A, at this point of the

analysis, even if uwere lkmown. The residual value of the retaliator's mix is:

(3.8) V= N "/.i + 4L "1‘“1“‘1)'

Thus A is determined by finding u(A) for each possible choice of A and selecting
the choice which minimizes V. %e note that ‘1v1(“1-q1) > u for each 1 € A,
but the converse is not necessarily valid.

Assume that C < w < q for some k. We note that k ¢ B and by Lemma 3.2,

*
AS B. Select j ¢ B and define u for suitable ¢ > 0 by:

=u, +¢;

3 ]
®
u k llk - €
We can choose ¢ so small that the possible choices for A are unaffected. Again
applying the modified Gibbs' lemma, (3.6)-(3.8) hold with u, w, u and V replaced
* R
byu,w, u and V*. For each possible choice A one of the following statements

is true:
* y ®
weuoand Iy v, (u-q) < Iy ,v,(u,=q) £ A;
* ®
u<u and }:B_Avi(ui-qi) - zB-Avi(ui -qi) : ] €A

Thus V* >V, and x = u could not have been the retaliator's optimal allocation.

The lemma is established.

Lema 3.7. P(x) = uinyl?(x.y) is a continuous function of x. .
Theorem 3.8. If the choice of A is unique (for a given u) and (u,w) solves

(3.1)-(3.3), then (u,w) is also a solution of the game:
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(3.9) Gdiven: PF(x,y) = zAvi(xi'q:l)up["i(yi'ri)]
* Ly Vg%
(3.10) Constrained by: Ipx, =X, I,y =Y
x, 2q,{leB) » ¥y 2 T, (1 ¢ A)

(3.11) Detormine: V = Maxg?, (x) = Max,[Min F(x,y)]

- Mincluaxer(x.y)] EV

B,A
where
B(B) = {x : x, =0 for 1 ¢ B and (3.10) satisgded};
ald) = {y : y, = C for i ¢ A and (3.10) satisfied)

“n00f{. Since A is unique and P(x = Min{PA. (x) : A'= B} 1is continuous at
x = u, A is the minimizing set for each point x in some e-neighborhood of x = u,
E &8; that is, PA(x) = P(x). Hence PA(u) 2 PA(x) for each x ¢ E. Since A is
unchanged for each x ¢ E, y(x) ¢ a and F{x,y) is given by (3.9). From the concave-
convex behavior of F(x,y), (u,w) 1s a saddle-point. Since any saddle-point of
(3.9) satisfying (3.10) is a solution to the game (3.9)-(3.11), the theorem is
established.

0f course, (3.1)-(3.3) 18 not yet resolved because there is no a priori
scheme for determining A,B and the uniqueness of A.

The uniqueness of A does not in itself present a real problem. Because
of the political nature of this subject, none of the parameters are precisely known.
For example, it is difficult for a retaliator to estimate his own resources or
budget over a five to ten year period; his estimate of the attacker's budget is
even more tenuous. Consequently, a parameter analysis must be performed for any
practical application to strategic systems. Except for isolated poir.ts the choice
of A is generally unique. The isolated points may then be determined by continuity.

9
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Under these circumstances the attacke:r's choice is basnd partially on internal
politics.

For the remainder of this section, A is assumed unique for some optimal
allocation x = u, Under this hypothesis it is shown below that A = B and an
algorithm for determining B is presented.

Application of Gibbs' Lemma 3.3 to the game (3.9)-(3.11), which has an

interior solution, yields for 1 ¢ B:

(3.12a) viexp[-ai(wi-ri)] - 1€ A;

(3.12b) v, $ A 1 ¢ A.

Upon substitution of (3.12) into the y-constraint of (3.10), we determine

A from

(3.13) 2A[ti+(1/ai).£ogvilxnl - Y.

The residual value of (3.9)-(3.11) is

(3.14) vB,A - An(x—tAqi-XB_Aqi).

Lomma 3.9. Let C be any set such that B 2C 2 A and let V, , be the value of the

U’A
game determined by (3.9)-~(3.11) with B replaced by C. Then there is a number

Ac > xn such that

(3.15) VC,A - Ac[X-thil.

Proof. By applying Lemma 3.3 to (3.9)-(3.11) with B replaced by C, one finds for

the optimal x,y and for {1 ¢ C:

(3.16a) v, " AC 2X,> 9, Y, =0;
(3.16b) viup[-‘i(yi-ri)] =Ag i X, >q Y >0
(3.16¢) vySAs X =q Y =05

(3.16d) viup[-‘i(yi-ti)] Sho X =q» 7y 0.
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Hence

(3.17) tA[ri-l-(l/ai)log(vi/AC)] $I,y =Y.

A comparigon of (3.17) to (3.13) shows that A, > ) From (3.16) the value is

c B

: Ve,a = Zooa Va(xymay) + I, v, (x,=q ) expl-a, (y,-r,))

i Ac[x- TC qilo

Theonem 3.1, A = B

Proof. Suppose to the contrary that A<= B. Set C = A in Lemma 3.9 and compare

(3.15) to ... . It is seen that V >V = V. Select x' ¢ B(A) such that
A,A B,A

PA(x') =V

A By Lemma 3.2,

vA,A > V.

P(x') = PA(x'). -
This contradicts the definition of V as Max P(x). Hence B = A,
This theorem shows that the retaliator should not invest in a new sysiem

unless it is of sufficient value for the attacker to pay the penalty for at

least a limited counter. 1

{r=(1,2,...,0}: (3.13) has a s0fution with A = r}.

Conollary 3.11. Let B

Then V = MaxgV, T ' f

*
Proof. By Theorems 3.8 and 3.10, V=V . for some A ¢ B. Suppose that
A LA

VA,A = MaxB VI',I' > V.

Select x, € 8(A) such that PA(xA) - VA,A. From Lemma 3.2, P(xA) - PA(xA) > V.
This contradicts the definition of V.
Theorem 3.10 shows thut A = C = B in Lemma 3.9. It may be shown for any

set D that

Vp,p = *p [¥3 a4l

11
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vhere (3.16) holds with "C" replaced by "D." Consequently xn 2 AD*’ where

'Y
AD is the solution of

(3.13)'

£ lr,+(1/a)20g v, /A"] = Y,

IfD-B.%-X%.

A procedure for solving (3.1)~(3.3) can be specified.
Algonithm 3.12

1.
2.

3.
4.
5.
6.
7.

8.
Example.

1

=1, v

Select Dg (1,2,...,n}.
Solve (3.13)' for AD* and evaluate
ve e
p = Ap (X-Ip qp)
Go to step #1 until all possible choices of D are exhausted.

*
Determine B from VB,B = Max VD = Max VD .

Solve for wi(i ¢ B) from (3.12a) and set v, " 0 (1¢0B).
Datermine u from (3.8), 1i.e., u = v/tn(llai).
Determine “1(1 ¢ B) from (3.5).

Set u, = 0 (1 £ B).

i
As an exanple we set n = 2, r, = T, = 1/10, q = 1/10, q " 2/10,

2" 2/3, 8 - 1, a, = 1/2 and X = Y= 1, There are fhru possible choices

for D, {1}, {2} and {1,2)}. Considering these choices in turn (steps 1-3), we

obtain Table 3.1

D A I A
1 0.40657 0.36591
2 0.425085 0.34007
1,2 0.58380 0.40866

Table 3.1. Determination of Residual Value

12
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Continuing to follow Algorithm 3.12 one finds:
B= (1,2}
v = (0.637,0.363)
ueV/3e (13622
u = (1/3,2/3)
No procedure for obtaining the solution in closed form appears to be

available. A few qualitative results, as
Y > Llr/a,)log(y/vy, )]

where vmn

cases that must be ccnsidered.

2 }H.nnvi, can be easily deduced and may help limit the number of

IV. GENERAL MIX OF PV AND NV SYSTEMS

In this section we first demonstrate that additional rasources should be
invested in at most one NV system. A method of sblution for a general mix of
PV and NV systems is then presented.

Lemmas 3.1-3.6 also apply to NV systems, as can be demonstrated with only
trivial modifications in their proofs. As an equivalent to Theores 3.8,
Theorem 4.1. 1If the choice of A is unique and (u,w) solves (2.3)-(2.6) with
n =0, then (u,w) also is a solution of:

(4.1) Given: F(x,y) = I, v, (x,~q )exp[-a,(y,-r,)/(x,q,)]
+ Iy V%)
(4.2) Constrained by: X "X, Ly =Y
2 ik IRCR £ R

(4.3) Detomine: V= HuBPA(x) - Haxslﬂ.nar(x,y).

13
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The proof {s similar to the proof of Theorem 3.7. It is seen that
PA(x) = P(x) in some neighborhood of x = u and since PA(x) is a convex function,
P,(u) 1s the maximum of P,(x) in a. We further note that PA(x) is a convex
function on a convex set; hence, its maximum must occur at an extreme, or
corner, point. We have, therefore, established a basic result.
Theonrem 4.2. At most one numerically vulnerable system should be developed.

Applying a trivial modification of Gibbs' lemma to (4.1)-(4.3) yields
(4.5) njvjexp[-nj(yj-rj)/(xj-qj)] -y Yy > rj » JebB

We note that B has precisely one element, j. Applying (4.2) we determine

u from

T

"'[(x-qj)/a Jeog a,v,/u = Y.

] h 31

By trying all possible combinations, B is selected so that P(x) is maximized.
Finally we consider the general mix of PV and NV gystems given by (2.3)-(2.6).
As in the numerically vulnerable case it is determined [cf. 3, Theorem II, p. 64)
that investment in NV systems should be limited to at most one weapon system. The
amount of this investment is considered a parsineter and we, thereby, reduce the
problem to the PV problem considered in Section IV. Unfortunately, we have not
yet determined an elegant way of finding the best value of the parameter; however,

a value can be obtained by a computer search.

V. CONCLUSIONS

The problem of allocating resources to a general mix of percentage vulnerable
and numerically vulnerable systems has been resolved. The price of admission has
been included in the mathematical model. It has been shown that at most one

numerically vulnerable system should receive additional resources. It has also

14
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been shown that a system should not be developed and procured by the retaliator
unless it is of sufficient value to force the attacker to invest resources to
develop and procure a counter.

The model is limited by the assumption of a one-to-one correspondence
between attacking systems and retaliating systems. This means, for example,
that none of the attacker’'s systems cau attack two of the retaliator's systems.
Another limitation occurs in the classification itself. It would be desirable
to investigate the effects of including a system which is intermediate between
PV and NV. The extension of this model to include operating costs and time
rhazing of purchases is of major importance. Also of major importance is the
extension of this model to include the value of committed resources. Ia {5],

committed resources are included, but development costs are excluded.
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APPENDIX

Notation

vulnerability of kth system

{1: v, > ri}

1> 9}

{r = {1,2,...,n} : (3.13) has a solution with A replaced by I'}

{1 :u

residual value of retaliator's kth system (2.3)
residual value of retaliator's system mix

refers to PV system

refers to NV system

total number o: retaliator's (or attacker's) systems
number of PV s3ystems

security function, Miny F(x,y)

Mina(A) F(x,y)

retaliator's price of admission for kth system
attacker's price of admission for kth system
retaliator's optimal allocation

value (of the retaliator's kth system)

MinB vy

residual value of retaliator's system mix, Max_ P(x)
value of game (3.9)-(3.11)

"D* (X-Ipya,)

actacker's optimal allocation
retaliator's allocation
retaliator's total resources

attacker's allocation

attacker's total resources




Mam o

Notatlon (Continued)
{y ty,=0 gon 1 ¢r and (3.10) s satisfied with s}
{x:x =0 fond ¢l and (3.10) 48 satisgied with Bar}
optimal attacker's allocation for a given retaliator's allocation

constant of Gibbs' Lemma (a Lagrange multiplier)
solution of equation (3.13)' .

constant of Gibbs' Lemma (a Lagrange multiplier)

A-2

— o et



