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1 

A DEFENSE ALLOCATION PROBLEM 
WITH DEVELOPMENT COSTS 

Prepared by: 
Kenneth D. Shere 

and | 
Edgar A. Cohen, Jr. 

ABSTRACT:    In this report,   the mathematical model for the allocation of 
resources among a general mix of percentage vulnerable and of numerically 
vulnerable weapon systems Is preset)ced and solved.   Percentage vulnerable 
systems consist of mobile weapons which are difficult to locate but 'relatively 
easy to destroy once located; numerically vulnerable systems, comprise easily 
located fixed base weapons which are difficult to destroy.    The distinguishing 
feature of this analysis is the inclusion of development costs.    The theory of 
max-min is extended as necessary to solve this problem. 

ii "Wu^HM .'.T*.'^»!,      it ^u^-^iW»1*1"*'-**11*« 
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I.        IMTKOBUCTIOW 

Stratsglc tyittm dtdtlont «re tubjtct to vtrlou« level« of review. 

Technical, fiacal» and political factora are all introduced during the review 

proceaa.    Such probleaa at individual eystem perfomanc« and nutual support and 

protection between proposed and exiating syatena are alao conaidered.   Quantitative 

analvaia of ayaten nixee to aupport and justify aalection decisions is beneficial, 

if not required.    Such analyala should include the performance of individual 

systems taken individually, the performance of system mixes, coats to the enemy 

in defeating the various nixeo, and protective interactlona among the members of 

system mixes.    In this paper a method for allocating reeources among atrategic 

weapon systems for deterrence purpoaee is presented. 

In the following eection, the mathematical model is presented.   This model 

improves upon earlier modele [1-3] by accounting for the price of admission.    The 

price of admission includes development costs end we shall sometimes use these terms 

interchangeably; however, it specifically txcJtudti reaearch funds.    In fact, before eny 

system is considered for development it is assumed that preliminary reaearch haa been 

performed. 

In Sections III and IV, respectively, e method of solution is preeented for en 

arbitrary mix of percentage vulntnablt (PV) systems end for a general mix of PV 

and nmexicjolly vuinViabJU (NTO systems.   The theory of max-mln is extended in 

Section III aa necessary to aolve thia particular problem.    The notetion ia 

summarised in the Appendix. 

ii.    MmmncAL MODEL INCLUDING DEVELOPMEOT COSTS 

. There are many ways in which system misc enelyses cen be conducted.    In all 

of them the problem of characterising the systems to be atudled is of extreme 

importance.    An intuitively appealing characterisation of ay atom alternatives 

results in a simple but highly versatile model.    In thia interpretation, due to 

Dr. Thomae E. Phipps [1], defender retaliatory eystem candidatee consist of two 

exclusive elansAS. 
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One clui comprlt«! tytttu which art difficult to locctc, but r«lctivcly 

««•y to destroy one« locctod.    An «xaaplo of such « «obllt oyttta if POLARIS. 

Thio typo of vtapon oytten io called ptnuntagt viUMiAoblt beceuee, 

for a fixed eeerch effort by the ettecker, e fixed percentage of the retaliatory 

veapona cones under attack.   The other class consists of weapona that are 

eeeily located but difficult to destroy.   KINUTEMAM is en exeaple of such a 

ayatem.   These aysteu are called nunvucAtty vulnüiablt    beceuee the ettecker'a 

effort must be dietributed among all of the weapons of the system.   We aaeume 

thet eech retaliatory weepon ayatem can be attacked by only one weapon system 

of the y-player. 

The retelietor allocs tee x.  resources, e.g. in billions of dollare, to the 

kth weepon ayatem, which coete q.   to develop end c. n.   to procure; n.   is the 

number of weepons in the eye tern and c.   ie the procurement cost per weapon. 

The number of weapons in the kth system is 

\ - (vV'V 
If w.  is the throw-weight in megatons of e weapon in the kth system» the totel 

throw-weight for the kth eyetem is 

Vk-(Vck>(vV- 
Using the theory of random search [cf. 4], it can be shown [cf. 1,2] 

thet the frection of weapons deatroyed in the ith PV eyetem is given by 

l-expf-e.Cy.-r.)]; y. ie the amount of reeources the ettecker allocates to 

blunting, on first strike, the corresponding retelietor*s system end r. ie the 

ettecker*s development cost. a. is the "vulnerability" of the ith eyetem 

meesursd, e.g. in inveree billions of dollsrs. Coneequently, the residual value 

of the ith percentege vulnerable system is 
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(2.1)      v1(x1-q1)fcxp[-«1(y1-r1) ], 

where v. 5 w./c.. 

For an NV system, the attacker's resources must be distributed among all the 

weapons of the system.    Therefore, the survlvel probability is expE-a.Cy.-rJ/Cx.-qJ] 

and the residual value is 

(2.2)      vj(xJ-qj)exp[-aj(yj-rJ)/(xj-qjy] 

Throughout this article the subscript 1 will be used for percentage 

vulnerable systems and the subscript J will be used for numerically vulnerable 

systems. 

In deriving (2.1) and (2.2) it has been implicitly assumed that ^ > <lk 

and yk > r^. Combining (2.1) and (2.2) and applying physical reasoning when 

the implicit assumptions are violated, we obtain the residual value for the 

retaliator's system mix: 

n m 
(2.3a)    F(x,y) -   J    ^(x^y.) +     I     f. (x ,y ), 

1-1    1    ^^    ^^        l-n+l   J    J    J 

where 

VvV 

x1lq1 

(2.3b)    f1(x1,y1) i   Jv1(xi-q1)exp[-a1(y1-r1)]     :    ^ * ^ * Vi > *± 

x1 > q1 . y1 1 ri 

and 

:    Xj < q^ 

(2.3c)    tfy^n   | vj(xj-qj)CxpI-.;)(yrrJ)/(xJ-,j)]    ,    ^ > *,  . T, > ^ 
vfy-l^ :   »jXlj  .yj Srj. 

The attacking y-player, having full knowledge of the retaliator's allocation, 

allocates his funds to minimize the x-player's retaliatory capability, F(x,y). 

Consequently, the retaliator allocates his funds in a manner which maximizes 

>^v-ttwi   i  iTMT iiiiiiiiiiiiiiiniiMiw>ii»iiiiii(im<iiMiiaiLMi 
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this Blnlaum; !•••, th« objsctlvt It to d«UmlM tht optlaal itrattgioi u for 

tho rotaliator and w for tho attackor to that 

(2.4)  V ! P(u,w) - Maxx(MtnyP(xly)] a M«xx P(x) - P(u). 

It la also dasirabla to know V. An uauaually low valua would indlcata that a 

larga iafuilon of fund« by tha defender la nacaaaary. 

Defining X and T to b« the rotaliator*■ and attacker*e total reeourcea, 

raapectlvely» 

<2.5)   S x + I     x -X 
1-1 1  J-nfl 3 

and 

(2.6)   I   y1 
1-1 *  j-n+1 J 

Of course, x. > 0, y i 0, a. > 0, v. > 0, r. > 0 and q. > 0 for each weapon system. 

The limitations of this model end the procedures for determining the parameters 

a. and v. have been discussed by Phlpps [2]. 

The mathematical model (2.3)-(2.6) with no development coats (i.e., ^ * \ " 0 

for all k) has been completely solved by Danskin [3]. The Inclusion of development 

costs is the first of several Improvements in the existing theory necessary for 

a realistic model. 

III. PV SYSTEMS 

In this section the finite allocation problem with development costs is 

resolved for an arbitrary mix of FV systems, (2.3)-(2.6) with m-n. This problem 

is summarised by: 

(3.1)  Otven: F(x,y) - J f4(x.,y.) 
1-1 1 1 ^^ 
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n n 
(3.2) CoMtfuvbizd byt     I   x. - X ;   J   y. - Y 

1-1   1 i-1   1 

x1 i 0        ; y1 i 0 

(3.3) VvtVmuitt   ut w and V vhart V - F(utw) s MaxxP(x) l Mwtx[Mln F(x,y)) 

W« hypothttiM that X > Max q.  and Y > Max r. .    Phyaleally thia maana that 

tha rataliator coaaldara only thoaa ayatama for which ha can afford to procura 

at laaat one weapon and that tha attackar can afford at laaat a limited counter 

to any retaliatory ayatam.   Mathematically, thaae aaaumptiona aaaura a poaitive 

residual value. 

Let F(u,v) - Max Min   F(x,y).    It la ahown that (u(v) ie the solution 
*    y 

of a game defined on suitable auhaeta of the x-apace and y-apace.   It ia alao 

shown that either u. - 0 or u. > q1,and a conatructive procedure for solving 

(3.1)-(3.3) ia then praaented. 

Lama 3.1.    If P(x) - F(xln(x)) > 0, then x.  > q^ end nk > r^ for some k. 

PHaoi*    Define r £ & : x   > q.) and let us suppose that r\. 1 r. for all i e F. 
a a 

Then P(x) ■ ^^^i"^!^ •    Sftl«ct k e F and define n   by T^ ■ 0 (i^k) and 

n.  • Y.    Since Y > r. , F(x) > F(x,n ) contrary to the definition of P(x). 

Consequent^, there exists a   k e r auch that r\.> r^. 

We note that V - P(u) > 0 becauae P(x) > 0 for x ■ (X,0,0 0). 

Lerwitt 3.2.    If P(x) - F(x,n(x)) > 0, x1 $ q^^ implies n1 - 0. 

P/U)0^.    Suppose, to the contrary, that Xt, ^ ^v and \ > ^ £or 80Oe ^ * 1c* 

Define F s {i : 0 1 x. 1 q.) and o =  1^ n1.    From Lemma 3.1, x1 > q1 and 
a 

r\j > r. for some i ■ k.   Define r\   by: 

* 0 tier; 
n4        :    i e T  , i ^ k; 
TiJ+a    :    i - k. 

F(x,n ) < F(x,n) contrary to the definition of P(x) and n- 
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TIM following two loanu aro nodiflcationi of Glbbs* Lmmm [cf. 3, p. 10]. 

Th« first ■odiflcatlon if trivial. 

Lwm 3.5.    Ut f1(x1) b« difforratiablo.    Lot i - (•^•••»O «uximiia 

^f.Cx.) constrainad by 

^ x1 - X > 0 ; x1 > q1 > 0, 

Than thara axiats a nunbar X to that 

V^ " X : *i * qi; 

1 X  !  I, »l- 

Lewa 5.4  (Moctc^cerf Glbbi' Lvma.).   Let i±(\)  ba continuous with right- 

and laft-darivativas. Lot s - («,,...,2 ) maximize E.f.Cx.) constrained by 

^x1 - X , x1 > 0 

and X > 0. Than there exists a number X such that 

£i,(fi+) 1 X  £or ^ 1; 

^'(s^) i X  for all i, z1 > 0. 

Furthermore, if tA*j) 1» differentiable at x.-s. > 0, for some i, X is unique. 

P40o£.    Suppose B. > 0 and 0 i e < z.; define 

P(e) 2 f.(s.-e) + f.(z,+e) 4     I    f.iz.) 
i    i J   J ^^ x   x 

The altered set z atill satisfies the constraints. Therefore, F(e) is maximal 

at e - 0 and F'(0) < 0, i.e. 

fJ,(zJ+) S ^'^P 
for all J. We now choose any X such that 

Max. V(s4
+) 1 X iMin f/(« "). 

J J  J       z^0 1  1 

i..'Aj^:tjt.-M*K4i imyijjtAaja 
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We note that whenever fi(xi) is differentiable at zi > 0, for some i, the 

choice of A is uniquely determined by A~ fi'(xi). 

The following two lemmas demonstrate that paying a porticn of development 

costs without procuring any weapons is a waste of resources. Although these 

lemmas seem physically obvious, they are not mathematically obvious. 

Le~a 3.5. Either wi • 0 or wi > ri. 

P~oo6. Define A' = {i : 0 < wi ~ ri}. By Lemma 3.1, there exists i • k 

* such that uk > qk and wk > r k . Select i = k' E A' and define w as the 

n-dimensional vector : 

i - k' 
i .; k,k' 

i = k 

* It follows that F(u,w) > F (u,w ) contrary to the definition of Max Min • Hence 
X y 

A' is empty. 

Lerrma 3.6. Either u .. 
i 

P~oon . Define B = {i ui > qi} and A - {i wi > ri}. From Lemma 3.2, A~ B. 

Then (3.1) L .comes, at x .. u, 

(3. 4) 

Application of the Modified Gibbs ' Lemma to (3.4) yields 

(3 .5) 

(3. 6) 

aivi(ui-qi)exp[-ai(wi-ri)] ~ : 

0 s. ~ 

For each i E A, 

otherwise, wi • 0. Substitution of (3.6) into the y-constraint of (3 .2) yields 

(3. 7) 

7 
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For each pottlblt A,  (3.7) either hmt a unique eolution for y or no solution. 

Unfortunately there le no   a pfuofU   way of obtaining A, at thie point of the 

enalyeia, even if uvea koown.  The reeidual value of the retaliatory mix is: 

(3.B)      V- lk»Ut+  ^v^^). 

Thus A is determined by finding y(A) for eech possible choice of A end eelecting 

the choice which minimises V. We note that *JV4(U4~0 > V for eÄCh i ^ A, 

but the converse le not necesserlly valid. 

Assume thet C < u. < q. for eome k. We note that k ^ B end by Leone 3.2, 

AS B. Select j e B end define u for suitable c > 0 by: 

* u1 - ^ : 1 ^ J.k; 

u*k " "k " e- 

We cen chooee e so small that the possible choices for A are unaffected. Again 

applying the modified Gibbs' lenme, (3.6)-(3.8) hold with u, w, y end V replaced 

by u , v , y end V • For eech poeeible choice A one of the following statements 

Is true: 

y - y* end IBViCVV' < EBnAVi(tti*"<,i)  : ^ Aj 

* e 
y < y    end ^B^i^l^i^ " ZB-Avl^ui ^1^  s ^ e A• 

Thus V   > V, end x - u could not heve been the retelistor's optlmel ellocetlon. 

The lemma le established. 

Lerra 3.7.    P(x) = Mln F(x,y) is e continuous function of x. 
y 

Tkwfim 3,i,    If the choice of A is unique (for e given u) and (u,w) solves 

(3.1M3.3), then (u,w) is eleo e eolution of the gene: 

8 
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(3.9) Otven:    F(x,y) - ^(x^^expt^Cy^)] 

(3.10) CoHA&uUAed by.   iB x   - x , E^. - Y 

xi t q1(l c B)   , y   fc ^ (1 e A) 

(3.11) VttVmlM,!    V - M«XgPA(x) - MaXg[MlnaF(xfy)] 

-Mlna[MaxßF(x.y)J  = VBtA 

wiiere 

8(B) s {x : x   - 0 i$o/L 1 ^ B ami {3./0) Aata^ed); 

oCA) 5 {y : y - C ^ l ^ A and {3,10) tatUiltd) 

?/i00jJ. Since A is unique and P(x' - Mln{PA, (x) : A' fi B} la contlnuoua at 

x ■ u, A is the minimizing set for each point x in some e-neighborhood of x - u. 

ES6; that is, ?i(x) - P(x). Hence PA(u) i. ?*(«) for each x e E. Since A is 

unchanged for each x e E, y(x) e ot and F(x,y) is given by (3.9). From the concave- 

convex behavior of F(x,y), (u,w) is a saddle-point. Since any saddle-point of 

(3.9) satisfying (3.10) is a solution to the game (3.9)-(3.11), the theorem is 

established. 

Of course, (3.1)-(3.3) is not yet resolved because there is no a pKlotu 

scheme for determining A,B and the uniqueness of A. 

The uniqueness of A does not in itself present a real problem. Because 

of the political nature of this subject, none of the parameters are precisely known* 

For example, it is difficult for a retaliator to estimate his own resources or 

budget over a five to ten year period; his estimate of the attacker's budget is 

even more tenuous. Consequently, a parameter analysis must be performed for any 

practical application to strategic systems. Except for isolated points the choice 

of A is generally unique. The isolated points may then be determined by continuity. 

9 
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Undtr th«tt clrcumiUncM eh« attAckar't cholc« it batod partially on Intarnal 

politics. 

For tha ranalndar of thla •action, A If aatumad ualqua for aona optimal 

allocation a • u. Undar this hypothesis it It ihoim balow that A - B and an 

algorithm for datarmlnlng B is prosantad* 

Application of Glbbi' Lamma 3.3 to tha gama (3.9)-(3.11), which haa an 

Interior solution, yields for 1 c B: 

(3.12a) v1exp[-a1(w1-r1)l - XB : 1 e A; 

(3.12b) v1 i XB : 1 ^ A. 

Upon substitution of (3.12) into the y-conatraint of (3.10), we determine 

X from 

(3.13)    rA[r1+(l/a1)e03v1/XB] - Y. 

The reaidual value of (3.9M3.11) is 

(3-14>   VA-V^AVS-AV' 

Lema 3.9. Let C be any eat auch that B SC 3A and let V^ . be the value of the 

game determined by (3.9)^(3.11) with B replaced by C. Then there la a number 

XC " XB 8uch thaC 

(3-15)    VC,AmXC[X'lch]' 

Pfioo^.    By applying Lenme 3.3 to (3.9)-(3.11) with B replaced by C, one finde for 

the optimal x,y and for 1 e C: 

(3.16a) vi " XC s xi *" ql » ^i " 0; 

(3.16b) v1exp[-a1(y1-r1)] - Xc : x1 > q1 , y1 > 0; 

(3.16c) v1 i Xc : x
±
m <l± • 7±

m 0J 

(3.16d) v1exp[.ai(y1-r1)] < Xc ! x1 - q1 , y1 > 0. 

10 
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H«ne« 

(3.17) rA[r1+(l/*1)^(v1/Xc)] i EA Ti - Y. 

A comparison of (3.17) to (3.13) shows that *c > Xg. From (3.16) the value Is 

VC,A " EC.A Vi(xl-<»1) + rA vi(*i-*±)<*Pi-*i(yt-ti)] 

-Ac[x.rcqi]. 

Tkzofim 3.1 C.    A - B 

P-tOOtf. Suppose to the contrary that A«= B. Set C * A In Lemma 3.9 and compare 

(3.15) to ... . It is seen that V. . > V.  - V. Select xf e 0(A) such that 
A,A B,A 

PA(x,) • VA A.    By Lemma 3.2, 

P(x,) - P.te1) - VA A > V. 
A A,A 

This contradicts the definition of V as Maxx P(x).   Hence B - A. 

This theorem shows that the retaliator should not invest in a new system 

unless it is of sufficient value for the attacker to pay the penalty for at 

least a limited counter. 

CoullaAy 3.1U   Let 8 s (r s (1,2 n>:  13J3] ha* a MJbitlon vMXk k * T). 

Then V - MaxgV,, r 

it 
Vfvooi*    By Theorems 3.8 and 3.10, V - V ^   A for some A    e B.    Suppose that 

A ,A 

vA.A2MaxBvr,r>v- 

Select x. e 0(A) such that PA(xA) « V. A  From Lemma 3.2, P(x.) - PA(xA) > V. A A A    A,A. A    A A 

This contradicts the definition of V. 

Theorem 3.10 shows that A - C • B in Lemma 3.9. It may be shown for any 

set D that 

VD.D " \ ^-\ »iJ 

11 
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wher« (3.16) holds with "C" replactd by "D." Contsqumtly ^ * ^» vh«'« 

XD it tht toluelon of 

(3.13)•   i^itfiUiJlog VS)*1 " T• 

If D - B, Xp « X*D. 

A procodurt for aolvlag (3.1)-(3.3) can b« tpodflod. 

AlgotUXhr. 3J2 

1. Soloct Dfi (l,2t...vn}. 

2. Solvt (3.13)* for XD and evaluat« 

VD " XD*(X-rD ^ 

3. Go to stop #1 until all poaaibla choices of D ara axhaustad. 

4. Dataralna B from V. . - Max VD - Max VD . 

5. Solve for w^l c B) from (3.12a) and aat ^ - 0 (i O). 

6. Dataxmina y from (3.8), i.e., v - V/£B(l/a.). 

7. Determine u.d c B) from (3.5). 

8. Sat t^ - 0 (i 4 B). 

Example. Aa an example va aat n • 2, r« • r, ■ 1/10, q^ • 1/10, q2 - 2/10, 

v. • 1, v. • 2/3, a- • 1, a2 - 1/2 and X - T - 1. There are three poaaibla choicaa 

for D, (1), {2) and {1,2}. Conaidering these choicaa in tun (steps 1-3), va 

obtain Table 3.1 

1 

2 

1.2 

0.40657 

0.425085 

0.58380 

0.36591 

0.34007 

0.40866 

Tebla 3.1. Determination of Residual Value 

12 
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Continuing to follow Algorithm 3.12 on« finds: 

B - {1.2} 

v - (0.637,0.363) 

V - V/3 - 0.13622 

u - (1/3,2/3) 

No procodurt for obtaining th« solution In dosod form «pponrt to bo 

avallnblo.   A fow qualitativ« result«, as 

^ 

Y > hW'tWl^w*" 
wher« v^ s Mln-V., can b« ««ally deduced end My h«lp Halt th« mober of 

cases thst must be considered. 

IV.  GEMEBAL MIX OP PV AND MV SYSTBMS 

In this section we f lr«t demonstrate that additional resources should be 

Invested In «t most on« NV system. A method of sblutlon for a general mix of 

PV and NV systems Is then pr«««nt«d. 

Lenmaa 3.1-3.6 also apply to NV systems, ss can be d«monstr«ted with only 

trivial modifications In their proof«. As an «qulv«l«nt to Th«or«m 3.8, 

Theorem 4.1.    If the choice of A Is unique end (u,w) solves (2.3)-(2.6) with 

n - 0, then (u,w) also la a solution of: 

(4.1) Otvcn» P(x,y) - EA v^-q^expt-o^y^r^/U^)] 

(4.2) CoifU&uUMd by:    1^ x1 - X ,  \7±
m^ 

x1 > q1 , y1 fc t± 

(4.3) VvtVmiMt   V-M«ePA(x) - MMcßMln0P(x,y). 

13 
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Th« proof !■ almlUr to th« proof of Thooroa 3.7. Zt If ■••o that 

P^Cx) ■ P(x) In loffl« nolghborhood of x ■ u «ad line« PA(X) if A convox function» 

PA(u) it the oMximua of PA(x) in a. Wt furthtr not« thnt P.(x) it t eonvtx 

function on t convex tot; hence» itt maximum mutt occur at an extreme, or 

corner» point. We have, therefore, ettabliahed a baaic retult. 

ThzoKm 4,2,   At mott one numerically vulnerable eye tern thould be developed. 

Applying a trivial modification of Gibbt' lemma to (4.1)-(4.3) yieldt 

(4.5)  ajVjexp[-aj(yJ-rJ)/(x -q )] - y : y. > r. , j e B 

We note thet B haa precitely one element, j. Applying (4.2) we determine 

y from 

^•»•[(«-qJ/ajUog tjVj/y - Y. 

By trying ell poaaible combinations, B ia selected to thet P(x) ia maximised. 

Finally we consider the generel mix of PV end NV systems given by (2.3)-(2.6). 

As in the numericelly vulnerable caae it ia determined [cf. 3, Theorem II, p. 64] 

thet investment in NV systems should be limited to at most one weapon system. The 

amount of this investment is considered e parameter and we, thereby, reduce the 

problem to the PV problem considered in Section IV. Unfortunately, we have not 

yet determined an elegant way of finding the beat value of the parameter; however, 

e velue can be obteined by a computer search. 

V.   CONCLUSIONS 

The problem of allocating resources to e general mix of percentage vulnerable 

and numericelly vulnerable systems ha« been reeolved. The price of admission has 

been included in the mathematical model. It has been shown that at most one 

numericelly vulnerable system should receive additional resources. It has also 

14 
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been thown that a eyetem should not be developed end procured by the retelietor 

unless It Is of sufficient velue to force the etteclcer to invest resources to 

develop end procure s counter. 

The model is limited by the assumption of a one-to-one correspondence 

between attacking Systeme end retaliating systems. This means, for example, 

that none of the attacker's systems can etteck two of the retelietor's systems. 

Another limitation occurs in the classification itself. It would be desirable 

to investigate the effecte of including a system which is intermediate between 

FV and NV. The extension of this model to include operating costs and time 

fhasing of purchases is of major importance. Also of major importance is the 

extension of this model to include the value of committed resources. In [5], 

committed resources are included, but development costs are excluded. 
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APPENDIX 

Notation 

<V 
A 

B 

B 

1 

j 

m 

n 

P(x) 

PA(x) 

\ 

u-Cu,) 

v-(vk) 

Mln 

V 

V 

V 

B,A 
* 

D 

X 

y-(yk) 

Y 

vulnerability of kth eystom 

{i : w1 > r1} 

{i : ^ > q1} 

(r m {1,2,...,n> : (3.13) has a solution with A raplaced by D 

residual value of retallator's kth system (2.3) 

residual velue of retaliator's system mix 

refers to PV system 

refers to NV system 

total number oi retaliator's (or attacker's) systems 

number of PV systems 

security function, Mln F(x,y) 

Mln a (A) F(x,y) 

retaliator's price of admission for kth system 

attacker's price of admission for kth system 

retaliator's optimal allocation 

value (of the retaliator's kth system) 

MlnBv1 

residual value of retaliator's system mix, Max   P(x) 

value of game (3.9)-(3.11) 

XD*(X-W 
attacker's optimal allocation 

retaliator's allocation 

retaliator's total resources 

attacker's allocation 

attacker's total resources 

A-l 



■ 

«CD 

$(r) 

n(x) 

x,x B 

u,wB 

Nocttlon (Continued) 

(y : y1 ■ 0 ^ i ^ r and {$,10) JU AcutUiied uUh A-D 

(x : x1 - 0 {o* 1 < r and {3,10) li AutUiltd wiWi w} 

optimal tttnekor's tllocatlon for a glvan ratallator'i allocation 

constant of Glbba* Lanma (a Lagranga nultlpllar) 

aolutlon of aquation (3.13)* 

constant of Glbba' Lama (a Lagranga multiplier) 

A-2 


