
mL

1 a> 

a> 

o
CO 

|y
a

mm
^' - '■■ .y. \

■' ■ ■

ItcliRicil lt|ti*rf 1i*.l94

SACLANT ASW 

RESEARCH CENTRE

m
■'■'i

' ” W

(ita *)/« INTERPOL \nON OF SAMPLED SIGNALS 

by

IENSM.HOVKM

■Inm

(fli
) JULY 1971

ocris M
teiSETO

D

f«d fe* p«bUc 
Oi»tilbuti<» Unliia»>*»

NOt>M
AUANTIC
TKATY
ORSAKIZATIOM

VIALI SAN •ARTOtOMSO 4E0 
LAtREZIA. ITALV

■ V ^£-
.1.

■>

Th.l 40CUIMIM >> uncl«...fi«i. How.v..,l*.. m(o.i»otioo •! conMm. it Aubl)*>M4 *• *• *'
•h* iMMd o« !«•• i"tii» c«.«t; iKort A«ot«tiont ftoiii i« ••y k« in o*h« teinnfilie puklient not
.< cdii It «..•« •• *h. nu»*.o»(t) mxd .. SACLANTCEN; ..nunttt lor .rtin. i.Atoduciion, n.cnAt m nHiel.l 
NATO niAlicnitont. thouW !•• nAdmtM^ »• thn D»nc«w, SACLANTCEN.

\

NATIONAL TECHNICAL 
RMATION SER
SprtntftwML V» 22IS1

INFORMATION SERVICE ..
*- n----- ------------- «-« ^



TECHNICAL REPORT NO.196 

NORTH ATLANTIC TREAT! ORGANIZATION 

SACLANT ASW RESEARCH CENTRE 

Viale San Bartolomeo 400 

I 19026 - La Spezia, Italy 

(sin x)/X INTERPOLATION OF SAMPLED SIGNALS 

by 

Jens M. Hovem 

1 July 1971 

APPROVED FOR DISTRIBUTION 

Ir M.W. van Batenburg 
Director 



m: ■Q

■ ' ' - I- -jj-

?l'^ wmE
I"

^ ,
r?^ •

■«r’ ' &£'.vVA.;'?'

1. Tb« nelpUM MATO Oor<
lU *rnm »A«w«r» to OOOOM

Ml IIII — ta rotooaoA to o MATO Oaunmmt 
m Iko Airootloo o< tho lACLAMTCSM oi*)oot to tko 
MtoOIM cnoAMtooot

—- o«rooo to ooo
^ _________ __ _____ tkot Oto lolormottoo
hor^ AtaeloooA. obotbor or oet tt booro o ooeorltr 

u oot Ooolt irttb to oaj Boooor to) 
oootrorr to tbo lotoot o< tbo ^>»lotooo of tbo Chorlw 
at tho Coolro. or (b) proJodloUi to tho rl«hu of tho 
onor thoroof to obtola poMot. oop7rl«ht, or otbor 
Uko ototolorjr ppotoetloo thorotor.

t. If tho toclolcol taJormottoo ooo orl«looUT 
rMirr--* to tbo Cootro by o NATO Oororomoo* oobjoot 
to rootrteUooo eloorly aoorbod oo tbto AoeooMM tho 
TOstptoot MATO OoToroow- o«pooo to ooo lu bool

■

'■--a'-' V



TABLE OF CONTENTS 

ABSTRACT 

INTRODUCTION 

1. REVIEW OF THE SAMPLING THEOREM 

2. REALIZATION OF THE (sin x)/x INTERPOLATION USING THE 
FAST FOURIER TRANSFORM 8 
2.1 Types of Application 8 
2.2 Increasing the Sampling Frequency 8 
2.3 Computing the Samples of a Time-Shifted Signal 12 

3. APPLICATIONS AND EXAMPLES 14 
3.1 Signal Reconstruction Using Straight Lines 14 
3.2 Beam Steering with Linear Arrays 18 

CONCLUSIONS 

REFERENCES 

List of Figures 

1. Fourier transform of a sampled signal. 6 

2. (sin x)/x interpolation by the frequency-domain method. 10 

3. Illustration of interpolation [Eq. 11]. 11 

4. Sampling of a pure sine wave. I4 

5. Sampling of a Gaussian pulse. I5 

6. Interpolation of a sampled Gaussian pulse. I7 

7. Example of interpolation of the signal from an 
underwater explosion. I7 

8. Beam steering with linear array. 18 

9. Beam steering with sample signal. I9 

10. Time shifting of a sampled Gaussian pulse. 20 



(sin x)/x INTERPOLATION OF SAMPLED SIGNALS 

by 

Jens M. Hovem 

ABSTRACT 

A method for (sin x)/x interpolation of sampled signals is 

described. The method works by transformation to the frequency 

domain and therefore requires a digital computer with Fast Fourier 

Transform capability. Examples of how the (sin x)/x interpolation 

can be used for signal reconstruction and in connection with beam¬ 

steering are presented. The practical implication of this method 

for (sin x)/x interpolation is that it allows the use of a sampling 

frequency that is lower and closer to the theoretical minimum than 

would otherwise be possible. The complexity and cost of the 

electronic system used for sampling and recording can thereby be 

reduced.^ 

V\ 
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INTRODUCTION 

The sampling theorem states that a low-pass, band-limited function 

of time, having no frequency components outside the frequency 

interval from -f to +f may be described uniquely and completely c c 
for all time by a set of sample values taken at time instants 

separated by 2f intervals or less. c 

The original continuous time function can be reconstructeu by a 

(sin x)/x interpolation function, also called a band-limited 

interpolation. However, the accurate reproduction of a signal that 

is described by a series of sample values presents a certain number 

of practical problems. 

In practice, the signals do not have a precisely-defined bandwidth, 

but a more or less gradual fall-off towards the high frequencies. 

Whatever sampling frequency, F is used, there will always be an 
s 

error in the representation of the signal associated with the 
Fs Fs 

frequency components remaining outside the band - to • This 

error, called aliasing error or folding error, may be kept as small 

as desired by choosing a sufficiently high value of F . Technical 
s 

and economical considerations, however, tend to limit the sampling 

frequency to a minimum value. 

When the bandwidth of the signal is artificially limited by an 

analogue low-pass filter before sampling, the ratio between the 

sampling frequency and the bandwidth of the filter (such as can be 

defined by the 3 dB or 6 dB point for instance) depends on the 

steepness of the attenuation in the stop-band zone and on the 

accuracy required. In actual fact, with a proper design of the 

filter, such a ratio may be between 2.5 and 4» depending on the 



required precision. For the digital analysis system developed at 

SACLANTCEN, for instance, the sampling frequency has been chosen as 

three times the bandwidth of the analogue filter defined at the 

6 dB point. This choice was compatible with the overall precision 

in amplitude of 1% required for the system. 

Another aspect of the problem is the practical difficulties that 

may be encountered for the interpolation. The extension of the 

(sin x)/x function is from -• to +» . For the numerical computation 

of intermediate values between the samples, this function has to be 

approximated by a time-limited filtering function. However, as the 

decreasing law of the (sin x)/x function is very slow, this 

filtering function involves a very large number of coefficients 

as soon as a rather high accuracy is required. In other words, 

a correct interpolation between two samples has to take account of 

the values of samples in the series that are far outside these two 

samples. The same problem exists when designing an analogue low-pass 

filter for the reconstruction of an analogue continuous signal from a 

series of pulses representing the sample values. Such a low-pass 

filter must have a very steep frequency fall-off, in other words, 

a very large number of poles, in order to give a correct reconstitution 

of the original signal. 

The practical difficulties of interpolation have often led the system 

designers to choose a much higher sampling frequency than would be 

required for the limitation of the aliasing errors. Increasing the 

sampling frequency above its minimum value produces some redundancy 

in the numerical representation of the signal, which makes the 

interpolation much easier (when it is still necessary). The required 

number of coefficients of the numerical filters — or the required 

number of elements of the analogue low-pass filters — decreases 

when the sampling frequency increases. 

The recent development of Fast Fourier Transform (FFT), however, 

may greatly simplify the interpolation problem when a digital 

computer (or a hardware FFT machine) is included in the processing 

system. An excellent approximation of the (sin x)/x interpolation 

3 



function can then be obtained in a way that is easy to program and 

fast to execute. It should therefore no longer be necessary to 

increase the sampling rate of a processing equipment above the 

minimum value required for the correct representation of the signals 

This method of interpolation, by using the FFT, has been used at 

SACLANTCEN for several years but the method has not, however, been 

treated in current literature except for a brief paragraph in a 

recent book [Ref. 1, page 199]. It is however believed that the 

method is so important for practical applications that the more 

detailed discussion given in this paper is justified. 

4 
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1. REVIEW OF THE SAMPLING THEOREM 

Consider a time signal f(t) with Fourier transform F(f). Let 

f(t) be sampled at time intervals T =1/F to give a sequence 
s s 

of samples fn = f(t=nTs). Defining the Fourier transform of the 

sampled signal as 

F(f) = T 7j f exp(-2TTj f.n.T ) 
s n=-o» n s 

[Eq. 1] 

results in 

00 

F(f) = Ti F(f + m .Fs) . [Eq. 2] 
m=— • 

Equation 2 expresses the well-known fact that the Fourier transform 

of a sampled signal is an aliased version of the true Fourier 

transform. 

If the signal f(t)is band-limited such that F(f) = 0 for 

lfl>fc and the sampling frequency Fs *2fc, then the samples 

completely describe the signal and Eq. 2 becomes: 

F(f) = F(f) for |f I <| . Fg . [Eq. 3] 

When the conditions above are fulfilled, the signal can be 

reconstructed without errors by applying a (sin x)/x interpolation 

to the samples [Ref. 2] 

- sin 2tt f 2 . (t - nT ) 
f(t) = £ f . -!-Si 

n=-ci n 
2TTf2 (t - nT ) 

S 

[Eq. 4] 

5 



The frequency fa is arbitrary but must be such that 

f < f2 £ F 
c s [Eq. 5] 

In practice, the signal f(t) will not have a precisely defined 

bandwidth but will more likely have a gradual fall-off [Fig. 1]. 

FIG. 1 FOURIER TRANSFORM OF A SAMPLED SIGNAL 

There will therefore always be some errors because of frequency 

folding, but they can normally be kept as small as desired. If 

f0 [Fig. 1] is the highest frequency of interest, the maximum 

relative error in the interesting frequency band is given by Eq. 2 

(neglecting higher-order terms). 

|F(fo) - F(fo) I F(fo-Fs) 

eF = -fTTÕI- F(ío) " 

In the time domain, when the signal is reconstructed by (sin x)/x 

interpolation, there will also be errors. An upper bound on this 

error is given in Ref. 2 where other types of sampling errors are 

also considered. 

Hie errors resulting from sampling a signal that is not ideally 

band-limited depend, however, only on the signal spectrum outside 

the frequency band of interest. These errors can therefore be made 

as small as desired by proper analogue filtering of the signal 

[Eq. 6] 

6 



before sampling. As an example of what can be achieved in practice, 

one can take the digital recording system described in Ref. 3* 

This uses a sampling frequency of three times the bandwidth defined 

by the -6 dB frequency. Specially designed filters [Ref. 4] with 

excellent time response suppress the higher frequencies such that 

the error [Eq. 6] is less than 1% when a broadband signal is 

recorded. 

7 



BLANK PAGE



2* REALIZATION OF THE (sin x)/x INTERPOLATION USING THE FAST 
FOURIER TRANSFORM - 

2.1 Types of Application 

The preceding discussion indicates that in practice a sampling 

frequency only moderately higher than that given by the sampling theory 

is sufficient. The signal values can then be computed for any time 

instant, with negligible errors, using the (sin x)/x interpolation. 

In practice, interpolation is used for two types of application. 

In the first type of application, the requirement is to increase 

the sampling frequency by computing intermediate values at regular 

intervals between the original samples. This occurs, for example, 

when the signal has to be represented on a display; the density of 

points has to be such that it gives the appearance of continuity in 

the representation. 

In the second class of application, the problem is to compute the 

value of the signal at some precise instants of time that do not 

coincide with the instants of sampling. Beam-steering, for instance, 

requires that the samples of a time-shifted signal be computed 

without increasing its original sampling frequency. 

The problems of these two types of application will be briefly 

considered below. 

2.2 Increasing the Sampling Frequency 

The interpolation can be done in the time domain by the convolution 

described by Eq. 4* In general, however, this method requires a 

8 



relatively long computation time. Another possibility is by 

transformation to the frequency domain. When this transformation is 

done by using the Fast Fourier Transform, the computation time may 

be substantially reduced with respect to the convolution method. 

This method becomes particularly attractive when transformation 

to the frequency domain has to be done anyway because of the rest 

of the processing. 

The principle of this method can easily be understood by noticing 

that the Fourier transform of the sampled signal F(f) is a 

periodic function of frequency f, with period equal to the 

sampling frequency F . Therefore, if F(f) is known for one 

period, the sampling frequency can be increased by simply increasing 

the period of F(f). 

Using the FFT, the method becomes as follows: Let the original 

sequence of samples be fn with n = 0, 1.N-l. Applying the 

FFT gives 

[Eq. 7] 

r = 0,1.N-l 

The sequence F^ represents the sample values of f(f) [Eq. 1] 

such that 

F 
r f<f =f-Fs> 

r = 0, 1 . ..N/2 

[Eq. 8] 

r = 1, 2 ...N/2-1 

Increasing the period of F(f) is now equivalent to defining a 

new sequence Gr r = 0, 1...M-1 (M>N) suchthat 

G 
r 

F 
r r = 0,1 . . . N/2-1 

G r = 1,2... n/2-1 

[Eq. 9] 

G 

G r = N/2+1 9 * 0 * M - N/2-1 

9 



This is indicated in Fig. 2 

\ X 

FIG. 2 (sin x)/x INTERPOLATION BY THE FREQUENCY-DOMAIN METHOD 

Computing the inverse transform of Gr gives the new sequence 

of signal samples gm 

g m 

, M-l 

” 2 G • exp (+ 2nj 
r=0 

r »m-. 
M ’ 

m = 0,1 . . . M-l 

[Eq. 10] 

Using Eq. 9 and Eq. 7 one can, after an easy but somewhat tedious 

calculation, express the new samples gm by the original samples fn : 

g m 

N-l 

E 
n=0 

sin TT m-n) 

N-tan £ (^m-n) 

[Eq. 11] 

Equation 11 represents the discrete version of the (sin x)/x 

interpolation, the difference being the tangent-function in the 

denominator, such that the kernel is 

K = -IHLUP , 
P KH- " N*tan ^,p 

which is a periodic function with period N. 

[Eq. 12] 

10 
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K w 
m - n) KERNEL FOR INTERPOLATION 

PERIOD = N 

FIG. 3 ILLUSTRATION OF INTERPOLATION (Eq. 1¾ 

Figure 3 illustrates Eq, 11 by showing the calculation of an 

interpolated value for the time instant mj| . The original samples, 

which are close to the main lobe, will yield the highest 

contribution to the interpolated value. However, those samples 

that are in the vicinity cf Lhe next main lobe will also give a 

significant contribution. This contribution, which represents an 

aliasing error in the time domain, is typical for many applications 

where the discrete Fourier transform is used [Refs. 1 and 5] and 

can normally be reduced by redefining the input sequence. In this 

case, the original sequence should be defined so that a certain 

number N of zeroes are included in the end, the number depending 

on the desired accuracy of the reconstitution. If one wants to 

limit the aliasing contribution of a single sample to less than a 

fraction € of the maximum, one can see from Eq. 12 that the 

number of zeroes required will be 

N 2 — . [E<1- z rre 

11 



If one also ensures that N is large enough, Eq. 11 becomes a good 

approximation of the desired (sin x)/x interpolation. After the 

interpolation an original sampling frequency of F becomes 

—.F^. When M/N is an integer, the original samples will remain 

unchanged by the interpolation. Since most FFT routines require 

both M and N to be powers of 2, this method increases the 

sampling rate by factors of 2, 4 . etc. 

So far it has been tacitly assumed that the interpolation could be 

done for the whole signal in one operation. For practical reasons, 

this will very often not be the case and one is forced to do the 

interpolation piecewise. This can be done by exactly the saune 

methods that are normally used for doing a convolution by using 

the FFT [Ref. 6]. One should then regard the effective length 

of the convolution kernel as being equal to 2N , where N is 
z z 

determined by the desired accuracy [Eq. 13]* 

2.3 Computing the Samples of a Time-Shifted Signal 

In some applications it is not necessary to increase the sampling 

frequency but only to compute the samples of the signal when it is 

shifted in time. 

For the continuous case, it is well known that multiplication 

in the frequency domain with exp(-2TTjfT) is equivalent to delaying 

the signal by a time T. This is true also in the discrete case, 

and when T is not a multiple of the sampling interval T the 
s 

new samples will be related to the original samples by a (sin x)/x 

interpolation. 

In the discrete case, a delay of T = sT can be accomplished 
s 

by multiplying Fr of Eq. 7 by exp(-2nj^s). (The relationship 

expressed by Eq. 8 has to be taken into account). After 

transforming back to the time domain the new sequence of samples 

will be 

sin TT (m - n - s) 
- . [Eq. 14] 

N«tan ^ (m - n - s) 
m 

N-l 
= z 
n=0 

12 



If the delay T is a multiple of the sampling interval, then s is 

an integer and Eq. 14 becomes 

P — f _ „ m-s 

m * N+m-s 

m = s, s+1 . . . N-l 

m 0,1 ••• s—1 • 

[Eq. 15] 

When the delay is not a multiple of the sampling interval, Eq. 14 

applies, and when a sufficient number of zeroes are included at 

the end of the original sequence then, by the same arguments as in 

the preceding ch pter, Eq. 14 becomes a close approximation to the 

(sin x)/x interpolation. 

13 



3 APPLICATIONS AND EXAMPLES 

Having described methods for accomplishing the (sin x)/x interpolation, 

some applications of the methods will be indicated and the results 

demonstrated by some simple examples. 

3•1 Signal Reconstruction Using Straight Lines 

3.1.1 Applications 

Consider the situation where a computer-driven display is used to 

present a signal specified by its sample values. In most cases, the 

display will do this by drawing straight lines between the sample 

points thereby obtaining a curve that may look quite different from 

the analogue signal it should represent. To find the errors in the 

display, one has to consider specific examples and for this consider 

first the very simple example of a pure sine wave. 

FIG. 4 SAMPLING OF A PURE SINE WAVE 



With a sine wave of frequency f0 and a sampling frequency of Fa, 

the maximum error in amplitude can easily be found from 

Fig. 4 as 

6.=1- cos TT tt A F 
sin [Eq. 16] 

For small errors the necessary sampling frequency becomes 

TT 1 

rr 
[Eq. 17] 

If, for example, 6a<o.05 (assuming that the recording equipment 

has this precision) is wanted, then the sampling frequency must 

be ten times the frequency of the signal. 

Another and more realistic example is when the signal is a Gaussian 

pulse [Fig. 5] 

f(t) = exp[--| (t/T)s] [Eq. 18] 

that has a Fourier transform 

F (f ) = const •exp[-4(^TTf'r)2]. [Eq. 19] 

FIG. 5 SAMPLING OF A GAUSSIAN PULSE 

15 



The bandwidth of this pulse can be defined by the frequency f0 

where the amplitude spectrum is down 6 dB, giving 

<> 1 
to 5T- • [Eq. 20] 

The maximum error in amplitude resulting from drawing straight 

lines between the sample points now becomes 

eA = l-exp[-4 1 [Eq. 21] 
s 

which, when the error eA is sinallj gives the required sampling 

frequency 

Vfo 5 
[Eq. 22] 

With an error of 5%, Eq. 22 specifies a sampling frequency of 7.5 

times the 6 dB frequency. 

3.1.2 Example 

Figure 6 shows an example where the (sin x)/x interpolation has been 

applied to samples from a Gaussian pulse. Curve A shows the analogue 

signal and Curve B the original result of sampling at a frequency 

of four times the 6 dB frequency. Curves C to E show the effect 

of the interpolation, with the sampling frequency being doubled 

for each step. 

Another and more realistic example of interpolation is shown in 

^■*-6» 7, which presents the signal from an underwater explosion. The 

signal has been recorded by the digital recording system described 

in Ref. 3»using a sampling frequency of 48 kHz after it had been 

filtered by a 16 kHz linear phase filter of the type described in 

Ref. 4. When the signal is displayed by drawing straight lines 

between the samples the result is relatively poor, as can be seen 

in Fig. 7a. After interpolating so that the sampling frequency is 

increased four times, the representation is highly improved, as 

seen in Fig. 7b. The small ripple observed just before the shock 

16 



E: INTERPOLATED to 8 F, 

,. 4 Fs 

« 2 Fc 

B: ORIGINAL SAMPLES at FQ 

A: ANALOGUE SIGNAL 

FIG. 6 INTERPOLATION OF A SAMPLED GAUSSIAN PULSE exp [-H(t/r )2] 
Original sampling fraquancy F#»0.8/T 

(4 times the 6 dB cut-off frequency) 

FIG. 7 EXAMPLE OF INTERPOLATION OF THE SIGNAL FROM AN UNDERWATER EXPLOSION 



wave in Fig. 7b is probably due to frequency folding, because the 

analogue filter used before sampling does not have infinite 

attenuation above 24 kHz. 

3.2 Beam Steering with Linear Arrays 

Consider a linear array of hydrophones which, for simplicity, will 

be assumed to be equidistant. Steering the array through an 

angle 0 requires a delay AT [Fig. 8] given by 

FIG. 3 BEAM STEERING WITH LINEAR ARRAY 

If the steering is done in the time domain by adding delayed 

samples, only a delay, AT, that is a multiple of the sampling 

frequency can be obtained exactly. If one wants to steer in any 

other direction, this can only be done approximately, as indicated 

in Fig. 9. There will then be an error in the delays of up to half 

the sampling interval Tg. This error in the time delays will 

result in an error in the phase of the different frequency 

components of the signal. The maximum phase error for a frequency 

component at f0 will be 

fo 

18 



FIG. 9 BEAM STEERING WITH SAMPLE SIGNAL 

The effect of the errors is that the different frequency components 

will not add exactly in phase, which may reduce the performances 

of the array, particularly with regards to its side lobes. Without 

studying in detail the consequences of this, one can at least 

state that the errors can be made as small as desired by increasing 

the sampling frequency, for example by the method described in 

Sect. 2.2. 

Another and frequently more attractive possibility is to do the 

beam steering in the frequency domain by miltiplying the Fourier 

transform of each hydrophone signal by exp£-2TTjf g AT] . As 

explained in Sect. 2.3 there will then be no restriction on AT 

being a multiple of the sampling interval. 

Figure 10 shows an example of a signal being delayed a fraction 

of the sampling period. The signal is again a Gaussian pulse, 

sampled at four times the 6 dB frequency [Eq. 21], The delays 

between successive curves are 1/5 of the sampling interval such that 

after five steps the total delay is one interval. One notices the 

rather great differences in the shapes of the signals due to the 

fact that the positions of the sampling instants are different. 

The last signal is, however, identical to the first, only delayed 

by one sampling interval. 

19 



: DELAYED % Ts 

4/S Ts 

3/5ts 

3i 

B: ORIGINAL SAMPLES 

A: ANALOGUE SIGNAL 

FIG. 10 TIME SHIFTING OF A SAMPLED GAUSSIAN PULSE «xp [-h(t/r )2] 
Sampling frequency F#=0.8/T 

(4 time* the 6 dB cut-eff frequency) 
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CONCLUSIONS 

In the processing of sampled signals it is often required to 

compute the values of the signal at intermediate time instants. 

As known from the sampling theorem, this should be done by applying 

the (sin x)/x interpolation (or band-limited interpolation). 

This report has presented practical methods by which this 

interpolation can be accomplished. The methods require the 

computation of Fourier transforms and can therefore only be used 

efficiently when the processing is done on a digital computer 

where the Fast Fourier Transform can be applied. As is often 

the case when the Fast Fourier Transform is used, one has to 

exercise some care in order to avoid aliasing errors, but it has 

been shown that these errors can be reduced to an acceptable 

level. 

The practical implication of the (sin x)/x interpolation is that 

it allows the complexity of a recording system to be reduced by 

permitting the sampling frequencies to be kept to a minimum. 
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