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THEORY OF OPTIMUM SHAPES IN FREE-SURFACE FLOWS

PARTI

Variational Calculus Involving Singular Integral Equations

by
T. Yao-tsu Wu and Arthur K. Whitney

California Institute of Technology
Pasadena. California

The general problem of optimum hydromechanical-shapes arising in a wide
class of free surface flows can be charactierized mathematically as equi-

valent to the extremization of a functional of the form

1
r\

[ u] =) £(u(x), v(x), x)dx
. |

where f is an arbitrary function which is, in general, nonlinear in u, v,
x, and the unknown argument functions u(x) and v(x) are related by the

singular Cauchy integral

1
1 )
-1

Application of the variational method to I{ u] yie'ds, in analogy
to the Euler differential equation in the classical theory, the following

singular integral equation of the Cauchy type

1
4 i), vi), ¢)
f ), v, %) = 1§ T

)

— a (Jx|<1)

where fu = 9f/9u and fv z 8f/dv. This equation, which is a necessary
condition for the existence of an extremal I[u], combines with the integral

definition of v(x) to give a pair of singular integral equations, which are to
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be solved for u, v under appropriate end conditions and, possibly under
additional isoperimetric constraints. Consideration of the second varia-

tion of I leads to the inequality
u,v,x) + u,v.Xx x| <

as a necessary condition for the extremum of I to be a minimum.

Analytical solutions by the method of singular integral equations
and some approximate methods by Fourier series expansions are discussed
for the linearized theory. The general features of these solutions are

demonstrated by numerical examples.

1. Introduction

In recent studies undertaken by the authors it has been observed
that {he determination of the optimum hydromechanical shape of a body in
a free surface flow invariably results in a new class of variational prob-
lems, in which the unknown functions are related, not by differential
equations as in the classical calculus of variations,but by a singular
integral equation of the Cauchy type. These recent studies include the
following problems: (i) the optimum shape of a plate planing on a water
surface; (ii) the body profile of minimum pressure drag in symmetric
cavity flows; and, (iii) the cavitating hydrofoil having a maximum lift-drag
ratio under a set of isoperimetric constraints. Indeed, the physical prob-
lems belonging to this ciass embrace a wide range of interest. Closely
related examples are numerous, such as: (iv) the optimum circulation
distribution of a lifting line in the aerodynamic wing theory; (v) the hull
shape of a thin ship which has minimum wave resistance; and, (vi) a class
of mixed-type boundary problems pertaining, butnot limited to elliptic
partial differential equations, Only a few sp.cial cases from this general
class of problems have been solved, the optimum lifting line being an out-

standing example,

There are several essential differences between the classical
theory and this new class of variational problems, First of all, the "Euler

equation'' which results from the consideration of the first variation of the
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functional in this new class is a singular integral equation of the Cauchy
type which is, in general, nonlinear, This is in sharp contrast to the

Euler differential equation in the classical theory. Another noteworthy
feature of this new class of variational problems is that while regular be-
havior of solution at the limits of the integral equation may be necessary

on physical grounds,the mathematical conditions which insure such behavior
generally involve functional equations which are difficult, and sometimes

simply impossible, to satisfy.

Because of these difficulties and the fact that only very limited
techniques are known for solving nonlinear singular integral equations, a
theory for this new type of variational problems has not been fully developed.
Attempts are made here to present some preliminary results of this study.
After the problem is stated in its general form, the variational methods
are applied in Section 3 to derive two necessary conditions of optimality of
the functional from the considerations of the first and second variations.
They correspond, respectively, to the Euler differential equation and the

legendre condition in the classical theory.

Following the general formulation, solutions of the singular integral
equations are sought for the linear case when the functional is a quadratic
form in its argument functions - - a case which seems to be the least dif-
ficult, and is expected to retain the important features of the corresponding
nonlinear problems. It is of interest to note that the linear problem can al-
ways be converted to a Fredholm integral equation of the second kind, for
which a well-developed theory is available. Moreover, when the coefficients
of the linear integral equations satisfy certain relationships, analytical
solutions have been obtained in closed form, by the method of singular
integral equations, To aid practical applications, an approximate method
(which is essentially the Rayleigh-Ritz method) employing a discretized
Fourier series representation of the desired solution is discussed, and the

results are compared with some known exact solutions,

2. Statement of the Problem

The general optimum problem considered here may be stated as

follows: To find the real,extremal function u{x) of a real variable x,
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required to be Holder continuous! in the region -1 <x <], together with
its finite Hilbert transform

1
lf\

vi) = 7§ S =g [u] (1<x<1) (1)
-1

where the integral with symbol C signifies its Cauchy principal value, so
that u and v minimize the functional
1

sul =) £ ), v, xax (2)
-1

satisfy M isoperimetric constraints

1
J'l[u] =S fl(u(x), v(x), x)dx = const, = Cl @=1,2 ... ,6 M)
-1 (3)

and satisfy the conditions near the end points x =% 1,

ak+i[3k
u(x) = u*(x)/(x-ck) y 0< <1 k=1,2) , (4)

where C1= -1, c,= 1, i-= ,/-—1, C and Bk are real constants and u,(x)
satisfies the A.{-condition'r near and at Ce - If u is required to vanish at

x =% 1, the end condition
u{-1) =0 and/or u(l) =0 (5)

is a special case of (4) when u,(£l) = 0 and u,(x) satisfies they (U > a
condition, The fundamental function f0 and the constraint functions fl

k)-

are assumed to be at least twice continuously differentiable with respect

to their arguments u and v, and continuous in x, but are otherwise

1‘A function u(x) is said to satisfy the HOlder &y (4)-condition on path
I(-1 <x<1) if, for any two points X%, of L,Iu(xz)-u(xl)ls Alxz-xllu ,

where A and J are positive real constants. A is called the Hdlder
constant and p the Holder index.




arbitrary., The notation Hx[u] for the finite Hilbert transform of u, as
defined in (1), will be used throughout, It may be remarked here that the
solutior of a maximum problem can be deduced from this minimum one by

changing the sign of the fundamental function in (2).

The Hélder condition i () on u(x), with specific index p, and
the end conditions (4), or (5), are generally required on physical grounds.
Analytically, it is known (see, e.g., Muskhelishvili 1953, §20) that if the
Holder index of u is p <1, then v(x) given by (1) is also Holder con-
tinuous for -1 <x <1, with p<1. In addition, near the end points
x=%1,

vix) = T u(F1)log(xz1) + v, (x) (a+ip =0, u(¥1)+0) , (6)
= & (cot(a+ifhriu, 1)/ (xH)* P av (x)  (atipro) (7)

where v*(x) satisfies the #/-condition near and at ¢ = -1 or 1 in the case
of (6) and also in the case of (1) if « = 0; however, for 0<a <1 in (7),
vylx) = v, (x)lx - cI , with o <a and v, «(x) satisfies the N-condumn
Thus, v(:l:l) will be bounded e1ther when u{l) =0 or when a = 2' B =0,
If both u(¢tl) and v(tl) are required to be bounded, condition (5) must be

enforced.

The original problem is equivalent to the minimization of a new

functional
R
I[u] =§ flu(x), v{x),x N\, VAL (8)
-1
with M
£, v, Xk, .., xM)=f°(u,v,x)-z Al av,x)-C ], (9)
L=1
where u(x), v(x) are related by (1), )\l, .. ")“M are undetermined

Lagrange multipliers. We define an admissible function as any function
u{x) which satisfies the Holder condition &/ (4 < 1), the isopermetric
constraints (3), as well as the prescribed end conditions (4) or (5); and we
define the optimal function as an admissible function which minimizes the

functional I[u].
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3. The Necessary Conditions of Optimality

Let u(x} dencte the required optimal function. A function éu will
be called an admissible variation if, for all sufficiently small positive
constant ¢, ul(x) = u(x) + edu(x) is an admissible function. The variation
in v which corresponds to an admissible variation 6u, such that
vx(x) = v{x) + €bv = Hx[ uI] = Hx[u + €du], is found from (1) to be the Hilbert
transform of du,

8v(x) = H [ éu] (-1<x<1) . (10)

If du is an admissible variation, then I[u+e6=; is a function of € which

has an extreme value when € = 0,

The variation of the functional I due to the variations éu and
dv is
A A .
Al :_') flutedu, viedy, x)dx -5 f(u,v,x)dx . (11)
-1 -1

For sufficiently small ¢, expansion of the above integrand in Taylor's
series yields

2 3
A1=e61+fz-621+§,-6’1+..., (12)

where the first variation 81 and the second variation 6%I are

l .
aI[u,au]=§ (£ 6u + £ Sv)dx ) (13)
-1
1
621[ u, 6u] =S [fuu(éu)z t2f, Sudv + fW(.sv)z Jax (14)
-1

in which the subindices denote partial differentiations, and 6v is given
by (10). The variations 61, 6%I, . . . depend on éu as well as u. For

I[u] to be minimum, we raust have for all admissible variations éu,

6I[u,6u}l =0 , (15a)
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and
6%1[u,6u] 20 . (15b)

Equation (15a) assures that I is extremal, and with the inequality (15b),

I is therefore a minimum.

As du and dv are related by (10), substitution of (10) in (13)
reduces (15a) to

1
61 =S (fu-Hx[ fv])au(x)dx =0 (16)
-1

after interchanging the order of integration, which is permissible (see,
e.g., Tricomi 1957, §4.3) if the functions fv(u,v,x) and 6u(x) belong to

the classes Lp and Lp , respectively (in the basic interval -1 < xg 1),

1 2
and if

-1 -l
£ 17
pl+Pz\ 1 . (17)

This condition will be tacitly assumed to be satisfied. Since du(x) is
otherwise arbitrary, the factor in the parenthesis of the integrand in (16)
must vanish identically for |x| £ 1, giving the following singular integral
equation of the Cauchy type,

Al

1 & £ (u(t), vity)
£ (ulx), v(x),x) = H [{ ] = =¢ g dt (xl<1) . (18)
-1

This integral equation is analogous to the Euler differential equation in

the classical theory of calculus of variations when the fundamental function
is of the form f = f(y(x), dy/dx, x). Equation (18) is generally non-linear

in u(x) and v(x) unless f is a polynomial of second degree in u and v,
The extremal solution is determined by solving the pair of coupled singular
integral equations, (18) and (1), under conditions (3) and (4). Satisfaction

of (18) is a necessary condition for the existence of an extremum of I[u].

We now suppose that (18), (1), (3) and (4) can be soived for an
extremal function u(x;Cl, e e ey CM), which involve the constanis of
constraint Cl, 5 o ag CM’ as parameters. Under what condition does
this extremal solution satisfy the inequality (15b), so that it actually provides



a minimum of I[u]?

In order to answer this question, we examine the second variation
5%1. Consider the case in which f (u,v,x), f (u,v,x), f (u,v,x) and
uu uv vv
du(x) are all Holder continuous on (-1,1), and they belong, respectively,

to the classes L_ , with P 8o limited that interchange of the order of

the following integrations can be justified (see (17) ). The second term on

the right-hand side of (14) can then be written as

2} £ (0,v, xpulcviax = 2| £ (u,v,x)6u00H [ su(e)]ax
-1 -1
-“l
= - 25 Hx[ fuv(u,v,t)éu(t)] du(x)dx
-1
1 ¢ £ (u), vix), x)-E,(ult), vit), )
- ;5 é-, uv Y su(t)du(x)dt dx
-1-1

The first step follows from substitution of (10), the second step is a result
of interchanging the order of integration, and the last step is the mean of
the two preceding lines, By similar operations, the third term in (14)

can be written

1 1
S‘ fvv(u,v,x)[év(x)]zdx :g fw(u,v,x)Hx[éu(t)] Hx[ du(s)] dx
%1 %1

1
- S. Hx[ fw(u, v, t)Ht[ éu(s)] ]6u(x)dx

-1
1 1
~ H[f ]1-B[f ]
:S {fw(u,v,x)éu(x) + %) X tV\: = i 6u(t)dt}6u(x)dx ,
-1 -1

where, in the last step, use has been made of the Poincarée-Bertrand

formula,
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LI b
1 dt e(t,s) B 1 i e(t,s)dt
Fé’» t-x§ = ds_-¢(x,x)+;5 ds§ (=) (a<x<Db)
a a a a (19)

(see, e.g., Muskhelishvili 1953, §23). Combining the above results, (14)

becomes
1 1 1

54 =3 g)sutPax - & | REDE) sumeuarax |
-1 -1 -1 (20a)
where
G(X) = fuu(U(X),V(X),X) + fw(u(x), V(X), x) ’ (ZOb)
hx) = £ (ulx), vix),x) + H[£,_(u(s),vis),8)] . (20¢)

Since f_ ,f and f are assumed to be Holder continuous in (-1,1),
uu’ uv v

g(x) and h(x) are also Holder continuous in this interval (with the pos-
sible exception of those end points at which fw(u,v,x) ¢ 0); i.e., for any
two points X x, in the open interval (-1,1),
lgix) - gx)] € Alx -xlul (0<p <1, A>0) (21a)
2 1 12 1 S | ’

B
- - 2
Ih(xz) h(xl)l < Azlxz xll (0<p <1, A>0) . (21Db)

Now consider a special choice of 6u(x),

su(x) = BUE) , g =(x-x e (22a)

where Ulf) is Holder continuous and
0<UE)L1 (gl <1, or Ix-xol <e) , (22b)
Ug) =0 (g]>1, or |x-x|>e¢) . (22¢)

x is any fixed.point in the open interval (-1, 1), and e is arbitrarily

small so that Ixot € | <1, B, the bound of 6u(x), is either positive or

G T SR
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negative, and is chosen so small that 6’1, 6*I, etc., can be neglected in
comparison with 621, (For instance, B = O(e a), a> 0, will be sufficient;
the explicit form of U(f) is immaterial.) With this choice of éu, (20)
can be written, by adding and subtracting a term, as

xo+e 1
6°1 = g(x )B* j U?(£)dx + R = glx )B% g UiE)dE + R, (23a)
X _-€ -1
(o]

. where

X €
o

x _+€
o :
R=3 {[g(x)-g(xo)léu(x) -1?3 h(t—):—hf‘) 6u(t)dt}6u(x)dx . (23b)
X "€ x =€
Using the inequalities (21), (22b,c), we obtain the bound for the remainder
R as
1 1 1
T4~ g 14 > o i1
IR| < AB% ‘j le] ' utg g +aBe 2 ) In-£] 2 UIE)U(n)GE dn
-1 -1 -1

2AB%y 14 2A B’ 1+
g{-‘_:“—)i 1 +(',»T(1TZ”T (ZG ) g . (230)
1 2 2

In t}.le limit as € =0, the first term on the right-hand side of (23a) dominates,
hence a necessary condition for 621> 0 is that g(xo) > 0 for every
xoé(-l,l), or

) £ o (ulx), vix),x) + £ (u(x), vix),x) > 0 (-1 <x<1) . (24)

This condition, first derived by one of the authors (AKW 1969), is
analogous to the Legendre condition in the classical theory of the variational

czlculus.

Equation (¢4 .s a necessary condition to be satisfied by a minimiz-

ing function. A weaker form of this necessary condition is f‘m + fvv 2 0,
meaning that the second variation 621> 0 is still ensured if (fuu + fw)
vanishes at a discrete number of points of the extremal function but is

positive everywhere else.

It may also be noted, by analogy with classical variational problems,
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(see, e.g. Courant and Hilbert (1953), Chap. IV, §6), that strict inequality
in (24) is not a sufficient condition for a minimum. To find a sufficient
condition we expand I[u+edu] by Taylor's theorem with a remainder after

two terms. Thus,

2
I{uteéu] = I[u] + €6I[u,bu] + 52- 621{ u+nedu, dul (0<n<1)

If u is an extremal function, i.e., 6I[u,éu] = 0, then
2

Hutebu] - Hu] = - 62 I[ utnebu, 6u) (0<n<1)

Now suppose that inequality (15b) holds nct just for the extremal u, but
for all admissible functions u. Then we may set € = ! in the above

equation to give the condition

Hu+bu] -Ifu] = %-621[u+q6u, su] >0 (0<n<1) ,

which is sufficient to show that the extremal u actually minimizes I.

Based on the foregoing argument, a sufficient condition for a
minimum is that the quadratic form, in éu and év, in the integral
representation (14) of 621 be positive definite for all admissible u and
du (and hence all admissible v and 6év by (") and (10) ), that is

>0, and f_f -f£ >0 (-1 <x<1) (25)
uu uu vv  uv

for all admissible u and v. This simple but rough sufficient criterion

is a more restrictive inequality than (24).

4. Quadratic Functions; the Fredholm Integral Equation

The least difficult case of the extremal problems in this general
class is when I[u] is a quadratic functional, or when f in (8) is quadratic
in u and v, since the integral equation (18) is then linear in u and v.

It is instructive to investigate this case first, since the system of singular
integral equations (18) and (1) can then be reduced to a single Fredholm

integral equation of the second kind, or, in certain special cases, the
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method of singular integral equations can be employed to obtain an analyt-
ical solution in a closed form. These solutions provide a basis for
comparison with some approximate methods which may have a general
utility for more compjicated non-linear problems. Moreover, the linear
formulation can often be used as a first approximation of an originally non-

linear problem with appropriate modification of the isoperimetric constraints.

Let the functions fo and fl in (2) and (4) be given by

. _ 2
i f(u,v,x) =a u"+2b uv + (:ovz +2p u+t2q v , (26a)
- 2,9 2 _ .
fl(u,v,x)_alu +._bluv+c1v +2p1u+2q1v =1,2, . . M) ;
(26b)
the coefficients a ,b ,¢c , . . . , q are krown functions of x, as-
o o o M

L sumed to be Holder continuous (with index 0< pu <1)in (-1,1). Then the

V function f in (8) becomes

' ; flu,v,x) = au® + 2buv + cv* 4 2pu + 2qv (27)
where M

a(x) = a_(x) - Z Ay, (x) etc. (28)
1-1

The integral equation (18) now reads
a(xJu(x) + b{x)vi{x) + p(x) = Hx[ bu + cv + q] (|x| <l . (29)

The necessary condition {(24), obtained from the consideration of the

, second variation, becomes

a(x) + c(x)> 0 (x| <1) , (30)

which can be checked only when the A's in (28) are determined,

j The coupled integral equations (29) and (1), both of the Cauchy
type, can always be reduced, under certain assumptions, to a Fredholm

integral equation of the second kind, with a regular, symmetric kernel.
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The required assumptions are that the coefficients a,b, . . . ,q, as
well as the solution u,v, are Hélder continuous on {-1,1), and that c(x)

and u(x) belong to the classes Lp and Lp' respectively, in the closed
1 2
interval [-1,1], with p and p satisfying (17). In fact, substitution of

(1) in (29) yields

a(x)u(x) + b(x)H _[u] - H [bu] - H [c(t)H,[u] ] = H [q] - pix)
(31)
The second and third terms on the left side of (31) combine to give
g
b(x)Hx[u] - Hx[bu] = - i-j l’%‘l‘ﬁ- u(t)dt
-1
Under the aforementioned assumptions, the last term on the left side of

(31) can be rewritten, using the Poincaré~Bertrand formula (19), as
1 1

-H [ct)H[u] ] = clxhu(x) + "iz 5 u(t)dt§l TS%)S-()_:%
Thus, (31) reduces to
1
(abactelute) + | Ket,xhe - Blal -pt)  (Ixl <1, (2a)
where N 1
K(t.x)=-1lr—"l(%)+bf‘—)+ﬂiz§: (?C%%g_f?r . (32b)

If we assume that condition (30) is satisfied, we may define a new variable
1
Ux) = {a(x) + c(x)}?ulx) , (33)

in terms of which (32a,b) become

1
~ © ~ ~ _-1-
Too) + | Rie, xR0t = {a) + e} F{lal -p}  (Ixl <1)
‘1

(34a)

with




v
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K(t,x) = {a(t) + c(t)}'% {a(x) + c(x)} -2 K(t,x) . (34b)

This is a Fredholm integral equation of the second kind, with a regular
symmetric kernel, for which a well-developed theory is available. The
kernel and the right-hand side of (34a) will, in general, contain unknown
Lagrange multipliers. Ideally, the integral equation can be solved first
for arbitrary values of xl's, which can then be determined by the M
constraints (4). Finally, condition (30) should be checked.

5. Analytical Solutions by the Method of Singular Integral Equations

In the general case when the coefficients a, b, and c are

arbitrary functions of x, the solution of the system of singular integral

equatios (29), (1) has not been found in closed form (for a general discus-

sion, see Muskhelishvili 1953, Part IV). How -er, when the coefficients
a, b, ¢ satisfy certain conditions, the system of equatious (29) and (1)
can be reduced in succession to a single singular integral equation of the
Carleman type, which can be solved in turn by known methods, yielding
the final solution in closed form. These analytical solutions are of great
interest, since in their construction there are definite degrees of free-
dom for choosing the strength of the singularity of the solution u(x) at
the end points x =+ 1. With these possibilities, the singular behavior of
u and v near x =+ 1 can be explicitly analysed. The following are

several cases of fairly general interest,

Case 1
1
alx) + c(x)> 0, b(x)=b_z (ac)?, (|x|<1) , (35)
1
where bo is a constant, and the function (ac)? stands for a definite
(say positive) branch. The first condition of (35) is just the necessary
condition (30) for the optimality, b(x) assumes either of the two expres-
sions.

Multiplying (1) by bo and subtracting it from (29), we obtain

1 1
a’p, (x) = H [#c?¢ ] +(x) (x| <1, (36a)
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where

s
s

e x)=a’utc’v .  Yx)=H[a] -px) . (36b)

N

In (36), the upper (+) signis for b = b_+ (ac)?, and the lower (-) sign
for b = bo-(ac)", We note that the two cases in (35) are the only form of
b for which (29), with the aid of (1), can be reduced to an equation for a
single variable ¢+ or ¢ . Now, (36)is a singular integral equation of
the Carleman type, the general solution of which is known (see, e.g.,
Muskhelishvili 1953, Tricomi 1955). The solution of (36) is found to be

1 1 1
H Z (x) c 2
_ a*P(x) + 1 c2(th(t)dt |
9, (x} =25e— * Tic {F-l Z (ENt-x + m(x)} txl <1 37)

where P:n and Pr-n are polynomials in x of degree m,

n n 1
Z, (x) = (14x) 1(1-x) ?(a+c)exp (T (x)} , (38a)
1 1 1 1
L(x) = Z'Ii' H [logG(t)] G(x) = (a®+ic?)/(a%-ic?) , (38b)

and nl, n are integers to be chosen, together with integer m, accord-
ing to the following rule. The function log G(x) stands for a definite
branch (say its principal branch) and is one-valued on [ -1,1]. Since a
and c¢ are assumed to be Holder ~continuous and since a+c¢> 0 on
[-1,1], clearly G(x) # 0, . Consequently, I'(x) will be Hélder-con-
tinuous in the open interval (-1,1), but may have logarithmic singular-

ities at the end points x = -1, X, = 1, unless logG(xk) = 0. In general,

I(x) = o log|x - x, | + T _(x) k=1,2) , (39a)
Oy =My +ivy = (-1) 5= logGle,) | (39b)

where I"O(x) Temains bounded near and at %y - Hence, by (38),

+G +0

n n
Z (x) =0 (x)14x) ' t1x)® 2, (40)

where w*(x) are nonvanishing functions in {-1,1].
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Now the integers n, n are selected to satisfy either of the con-
ditions
-l<nkt p.k<0 , (41a)

0$nk*p,k<l (k=1,2) , (41b)

=

in which the upper (+) sign is for the case b = b0 + (ac)*, and the lower
(-) sign for b = b0 - (ac)?. The values of n, n so selected may be
different for the two end points ( k = 1,2). Condition (41a) is for an end
point at which Z *(x) may admit a branch-point type (but integrable)
singularity, whereas condition (41b) insures Z*(xk) = 0, as may be

required on physical grounds.

The selected nl and nz determine the '‘end-point index"
= - 42
k=-(n+n) , (42)

which dictates the degree m of the polynomial Pm(x):

(i) For k 2 0, Pm(x) can be taken an arbitrary polynomial of degree

m<k -1, if k>0 ; and Pm(x)=0 , if k=0

(43)
(ii) For ¥ <0, Pm(x) = 0, and the solution is valid if and only if the fol-

lowing orthogonality conditions are satisfied by § (x):

1
1

5t‘c2(t)[¢(t)/zt(t)]dt =0 =01 ... .-(k+1))

-1 (44)

With (p*(x) so determined, u(x) can be solved in succession by
substituting (1) in (36b), giving

1 i
a?(x) ulx)s 2 (x) H [u(t)] =9, x) (x| <1) , (45)

which is again a singular integral equation of the Carleman type. The

general solution of (45) is
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1
2

a’p, (x) ¢tz [ } o, (tat
{ é:z—(?y(m +qf ) (x| <1) (46)

ufx) = atc v atc

where Qtn(x) are polynomials in x of degree m, Z:t being the same as
given by (38). In this solution, the integers no,n in the expression for
Zt and the degree m of Qm are determined as before. Finally, sub-
stituting (37) in (46), and making use of the Poincaré-Bertrand formula

(19), we obtain the solution
1
i

_;_ 1
b, P2y it 2l *
ux)= S 4 (a+c)z{ [—Z—]‘*'Pt (x)} atc {Hx[(aﬂ:)z ] +Qm}
T
1

c%(t)b(t)dt ¢ Zi(sias 1), 5 Z, P,
Z ()t -x) Z¥( S)(a+c)( s-x s-t) X Z¥]a+c$ 2
3

(47)

1 1
in which the upper sign is for b=b_ + (ac)?, and the lower for b =b, - (ac)?.
The corresponding v(x) is determined from (1) upon substitution of u(x).
Note that this solution remains valid even when a(x) and c(x) become

zero or hegative in [-1,1] as long as a + ¢ > 0 over the entire interval.

The final, and perhaps, most crucial step is to examine the be-
havior of u and v near the end points x =% 1, and to ascertain if certain
physically required end conditions can be satisfied by the analytical solu-
tion. This task is greatly facilitated by the fact that the sclution is expres-
sed in an expiicit, closed form, as given by (47), in this case. In fact,
taking the principal branch of log G(x), 'we see that -1 < argG(x} <=
for a(x) + ¢(x)> 0 in |x| < 1. Hence, by (39), we find the bounds

-3¢ Sp <O, 0gp < 2, and by (40),

n i n %
|z, )| = [o tx)|(14x) * NS (48)

According to rules (41a,b), any one of the following three cases for the

solutions ¢ and u are possible:

. + ;
= =01 = - = = =
| (i) n 0, n, 0 Ig (nl+n2) 0). Then = 0, Q 0, and Z+(x) is

i singular at x = -1, Z (x) singular at x = 1;
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(i) n =0, n =-1 for Z,, and n = -1, n =0 for Z , both correspond-
1 2 + 1 -
ing to x = 1, thus permitting P:n and Q’r:n to be nonvanishing con-
stants, with the resulting ?y and u both singular at the two ends

x=%1;

(iii)nlz 1, n = 0 for Z+, and n = 0, n =1 for Z_, both selections
corresponding to kK - -1, so that Pir:n = Qtn = 0; a solution which is
regular at both x =% 1 is possible if and only if

1 1
1
5 cz(x)w(x)lzt(x)dx =0 , and S‘ cpt(x}/Zt(x)dx =0 . (49)
-1 -1

The last condition can, of course, be released if c{x1) = 0. If, in addition
to (49),

${+1} =4(-1) =0 , (50)

then by (37) and (46), ¢:|:(t1) =0 and u{tl) = 0. The corresponding
solution of v({x) will then be bounded at x =% 1,

Therefore, existence of solutions of type (iii), with both u(x),
v(x) Holder-continuous in (-1,1) and bounded at x =21, depends on the

satisfaction of conditions (49) and {(50) on a,c,p and q.
Case II

a(x)> G , b = const.

, ©=20 . (51)

This is a special limit of Case I; the solution is easily deduced from (47)
to be

u(x) = $(x)/a(x) (Ix] <1) . (52)

Thie result is also obvious from the original equations (29) and (1).
Boundedness of the solutions for u and v now depends on condition (50)

only.

Case 11

a(x)=0 , b = const, , c(x)>0 (53)
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This is another specila.l limlit of Case I. In this limit, log G(x) = im;
hence, by (38}, expI = (1 -x)7(1+x)§. The corresponding solution for u

is 1 1
P
_ Pix) 1 Y(t)dt 1 1 ds “ml
“""-*a;a'x""gg X)) S(s—; r=iE0] +Hx[c ] Qm} ;
- =L (54a)
where
a1 n +; n -3
X(x)=c 2Z ={14x) } (1-x)? (54b)

This result can be deduced from (47), or it can be obtained directly from
(1) and (29).

Case IV
a,b,c = constant , a+c>0 {55)

This also belong to Case I sirlxce it is always possible to find a
constant bo’ such that b =b0 + (ac)i when a,b, and c are constants,

Since G, as defined by (38b), is now a constant, we have in this case

nY n 0

1
Z, (x) = (a+c)*(1+x) 1 (1-x)? (56a)
where
1 1 1 1 1
O=ptivz g logl (a%?+ic?)/(a%-ic?)] . (56b)

As 0 is also a constant, further simplifications of the expression for

the solution (46) and (47), are immediate,

6. The Rayleigh-Ritz Method

In some physical problems, u and v are required to be Holder-
continuous on the closed interval [ -1,1}. This means, in particular,
that condition (5), uf{l) = 0, must be satisfied. When the analytical
solution can be successfully obtained, e.g., as in Section 5, the end con-
ditions (5) can generally be ~xamined only at the final stage. It is quite
possible that, on occasion, condition (5) simply cannot be satisfied, as

will be illustrated later by examples, It might be possible to remedy

Panegatan B, bR 5 R E el
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this situation by enlarging the class of acceptable functions and by modify-
ing the isoperimetric constraints so that a solution  of some physical
significance is reached. Such tasks may indeed constitute the major
difficulties in the actual solution.

In case both u and v are required to be Holder contiruous on the
closed interval [-1,1], we have seen that condition (5), u{l) = 9, must
be imposed. An approximating procedure for this case can be developed
by employing the Rayleigh-Ritz method (or the closely related Galerkin
method), which has been used with great success in other variational
problems, especially for numerical solutions, This method is applicable
to those variational problems which satisfy the sufficient condition (24)
or the more restrictive condition (25)., The central idea is the construct-

ion of a sequence of comparison functions that forms a minimizing sequence.

A sequence Ex ,Ez, . e e Gn’ . . . of admissible functions is called a
minimizing sequence for the functional I[u] if I[ ﬁ'n] converges to the
minimum value I[u], where u-= limﬁn as n—w, with
Mul2fu]>. . 2092, . . 2149 . (57)
whether I[u] is a minimum which is actually attained for a function

U =u remains an open question, the answer to which depends, in particular,

on whether the end conditions u{&l) = 0 can eventually be satisfied.

To construct a minimizing sequence, we start with a complete
system of fixed '"coordinate' functions ¢l(x), ¢z(x), . .« . , Which are
Hoélder continuous on [-1,1] and 9 &1)=0(m=1,2, . . .), so that

all linear combinations

u (x) = Yo tYe . o L tyen (58)
where Yoo oo s Y, are n constant coefficients, are admissible
comparison functions for the problem. The requirement that I[ un] =1

be a minimum presents an ordinary minimum problem for I[un] as a
function of the n parameters Yx' Yz’ - e Yy which are determined
by the simultaneous algebraic equations 3I[ un] /ayk= 0O(k=1,2, . . . ,n),

or more explicitly, when expressed in terms of (8),
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1
S‘{fu-Hx[fv]{l o (x)dx = 0 (k=1,2, . . .,n) . (59)

-1 =,

Note that the expression within the curly bracket, if set equal to zero on
[-1,1], yields just the Euler equation (18). This system of equations
for yk's can always be fulfilled, at least in principle according to
Weierstrass's theorem, provided I[ un] is a continuously differentiable
function of yk's (we have assumed that this is the case). However, when
fu and fv are nonlinear or transcendental in u and v, determination
of the Yk's from (59), by nunierical methods or otherwise, can be
extremely difficult, particularly when n is not small, Let

Vl, 72, e e -Y-n be the solution of (59), and set

n n
Do) Vol =) v le] (60)
k=1 k=1

When the fundamental function { satisfies the sufficient condition (25), it
is obvious that I] a'n] <1 un] . From this it follows, by setting u_ =En_l,
which is always possible, that I[{l-n] < I[En__l] , and hence (57) is satisfied.
Therefore, the sequence ﬁ'l, Ez, . . . given by (60) is indeed a minimiz-

ing sequence.

The complete set of coordinate functions can be chosen in various
ways, Particularly suitable for the present class of problems is the trigono-
metric functions ¢_(x) = sinnf (x =cos8, n=1,2, . , .), since both

n

u and v then become simply finite Fourier series:

n n
u :Z ykﬂinke . v, = -z Yy cos k6 (00 = cos 'x < w) . (61)
k=1 k=1

This is equivalent to expanding u and v in series of Tchebichef
polynomials,
L& n
un(x) = (1 _xZ)Z zYkUk'l (X) ’ Vn(x) = o Z Yka(X) (le 1) , (623.)
k=1 k=1
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where
Un_l (cos 8) = sinnf/sinb , Tn(cos 8) =cosnf (n=1,2, . . .) .

(62b)

Tricomi (197.) also employed expansions in series of a Jacobi polynomial

P®P)ix) multiplied by its weighting function (1-x)*(1+x)°. Another

complete set of functions vanishing at x =1 is the polynomials

?, = (1-% )xn-1 (n=1,2, . . .); the corresponding expression for A

4 however, is more lengthy,

For quadratic functionals, the problem of determining the yk's

reduces simply to a linear algebra. In fact, substitution of (27) and (58)
in (59) yields

n
kZlKjkYk = LJ = 192, . . . ,1) , (633)

where, with suitable rearrangement of terms by interchanging the orders

! of integration,

Kix =§ {ap oy tblo,H [0y J 1o H Lo DrcH, [0, 1H [0, ] }ax (63b)
L -1
1

L - 51. (posaH [o.]} . (63c)

Clearly, Kjk = Kkj' In particular, when :pk(cos f) = sinkf, we have

™
Kjk = S‘{a sin kf sin j6-b sin(k+j)8+c coskf cos j6}sin 6 d6 (64a)
o
! ™
Lj =5 {qcosjO-psinjB}sin6 a6 . (64b)
o

The solution 'y-k's of (63) contains M multipliers ()\1, c e e )\M),

which can be determined, in principle when n> M, in terms of




Cl, 5 o o ’CM’ by the M constra}mts (3).

Success of this method in any p.articular case will depend on the
proper choice of coordinate fI:II;C.tiOI'IS cp‘k' and on the convergence of
En =u as n—+w, Whether the rhinimizfng sequence itself converges to
the solution u (i.e. u = u) is a difficult theoretical question. In many
cases this method may still prove useful for numerical calculations even
though its convergence to the ‘exact solution is unproved. The method will
be illustrated by examples and compared with known analytical solutions
in the next section,

7. Examples

The following examples are selected to exhibit the main features
of the optimum solution. Several other problems of physical significance

will be considered more fully elsewhere.

Example 1 . The functiponal

1°
J[u] =.S‘ [-uz(x) - Z1rx3u(x)v(x)]dx . (65)
-1 )

with u and v related by (1), is to be minimized subject to the constraint

Jl[u] =§ ulx)dx =1 . (66)
-1

Here we have by comparison with (27), (28),
a=1 , bx)z=-m® , ¢=0 , p=z-=\X , q=0 ., (67)

This set of coefficients does not coincide with any of the special cases
discussed in Section 5, In this case, however, it is still possiblie to
obtain a solution in closed form since the associated Fredholm integral
equation (32) is particularly simple,
1
u(x) +3 K(t, x)u(t)dt = ;- A (xl <1) , (68a)
-1
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where

Kit,x) = (£-22)/ (t-x) = # + tx +& (68b)

which is a Pincherle-Goursat kernel, Hence u - %— A must necessarily

be a quadratic function of x, In fact, we find
u(x) = 31;% x[g- - 3x2) , N\ =89/45 (69)

tris value of \ being given by condition (66). The corresponding v is

v(x) = Hx[u] :—3!-1?{(;- - 3xz] log(}—;z—)- 6x} ] (70)

Finally, upon substituting the solution (69), (70) in (65), the minimum
value of J is
JO:J[u] =89/90=0,9888 . ., . . (71)

In this specific example it is noteworthy that the logarithmic
singularities of v at the end points x =+ 1 arise from the fact that
u(tl) # 0. We further note that the values of u(tl) depend on the co-
efficients listed in (67), whereas condition (66) affects merely the uniform

scale of u(x).

Although the exact solution shows that v(x) is logarithmically
singular at x =+ 1, it is nonetheless significant to investigate how
accurately the minimum value J o San be predicted by approximate solu-
tions of u and v that are Holder continuous on [-1,1]. Since u(x) must

be even in x, we choose the n-terms approximate solution as

n n
un(cos 9) =§ yksin(Zk-l)G , vn(cos 0) = -2 ykcos(Zk-l)G . (72)
k=1 k=1

Condition (66) requires that 71 =2/nw for all n. Let I be the minimum
value of J [un] found by minimizing the quadratic functional J[ un] with
respect to Yz’Ya' .- Y We obtain the following numerical results
shown in Table 1, The yk's in the last row of Table 1 are the Fourier

components of the exact solution
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k)
Y, = ) u(cos 6)sin(2k-1)0 a6

o

AN

where u is given by (69). These numerical results exhibit the increasing
accuracy of J predicted by the Holder continuous solutions ‘u-n and ;n’
as n increases. In fact, the error of J = J[\—fn] , by comparison with
the exact solution of Jo of (71), is already as small as 0.1% for n = 3.
Although the convergence of the coefficients Vk to the Fourier components
of the exact solution is less obvious, particularly for k large, plots of
u(cos @) and ulo(cos 0), for example, show very little difference except
near the endpoints 6 = 0,w(x =+ 1). The same holds true for v(cos6)

and Vi 0(cos 0), although now the discrepency at the endpoints is more

pronounced since v in (70) is logarithmically singular as x =% 1.

Example 2
The second example is to minimize
A
[ u] =) {v? (x) + kv? (x)}dx (73)
-1
subject to
1
Jl[u] =S u(x)dx =1 , (74)
-1

where k is a real constant, k> -1, in order that the necessary condition
(30) is satisfied.

In this case, we have, by comparison with (27), (28), and (36b)

a=1 ’ b=20 ’ c=k ’ Pp=- %' A ’ q = 0 s 4‘ = %‘ A
: (75)
i This belongs to case IV treated in Section 5. Thus, by (56),
1 nfo nxo
Z, (x) = (14k)* (14x) 1 (1-x) 2 (x| <1) , (76a)

where
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N

c=p-= % tan” K (k> 0) (76b)
Civ = g log{IH-REN/[1-(-kF]}  (-1<k<0) . (76c)

A quick check with the end conditions for k> 0 shows that conditions
(49), (50) cannot be satisfied, implying that the solution cannot be regular
at both x =t 1. In fact, by direct calculation from (47), with

sz Qm = 0, the optimum solution is found as follows

1
Case (i) k>0 (tanpm = k* 0<#<%’)
u(x) = T cosuw{(ﬁ; (1+x } , (77a)
A cosium 14x
vix) = 7 g { 1+x) ( } . (77b)

This solution is readily verified by taking note of the identity

o L
‘-Ix[(ll?:i 1=i(cotp1r)hl+—::) Fcscur |,

which can be shown by a contour integration of (t-1 )u'(t+1 )-”"(t-x)-l en-
circling the real t-axis from t = -1 to 1 in the complex t-plane (or see
Tricomi 1957, p. 181). The Lagrange multiplier \ is determined by

the constraint condition {68) to give
A = (tanpw)/pr (78a)

and the corresponding minimum value of J is

3 = 2\ = (tanpm)/(2um) (0<p< z) . (78b)
1
Case (ii) -1<k<0 (tamhvr=(-k? , v>0)
1 1-x
u(x) = 5 \ cosh ym cos (vlog T-T;:) s (79a)
vix) = 1 cosh vrr coth vr sinv log L% 79b
=7 ( ¢ T’ (79b)

with
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g A = (tanh vw)/ v, (80a)

and

A = (tanh yw)/(2vm) . (80b)

M)—‘

J =
(o]

The above solution can be deduced from Case (i) by analytic continuation

of the parameter [ =iy, or it can be verified by making use of the con-

L version formulae

Hx[sin(v log %;—:)]: - coth vwr cos(v log E%P cschwvn

1-t . 1-
Hx [cos(v log m)]: coth v sin (v log I+_:§ s

which can be shown by a contour integration of (t-1 )lv(t+1 )-lv(t-x)- !
circumventing the real axis from t= -1 to 1 in the complex t-plane,
A third limiting case is k=0, or c = 0, in which case it fol-

lows from (52) that u(x) = -12- , A =1 and Jo = %— . This result agrees
with Cases (i) and (ii) in the limit as k —+x O,

To compare this solution with the Rayleigh-Ritz method, we choose
k = - 1/4, in which case

3, = 1/(2 log 3) ~ 0.455119

The discretized Fourier method, again using the expression (72) gives
the results shown in Table 2. The apparent convergence of the Fourier

series method to the exact solution is again exhibited.

Acknowledgment

We are deeply indebted to Professors C. R. DePrima and
Duen-pao Wang for stimulating discussions in the early stage of this study.

This work was sponsored by the Naval Ship System Command General

Hydrodynamics Research Program, administered by the Naval Ship

Research and Development Center and the Office of Naval Research,
under Contract Nonr-220(51). A. K. Whitney also wishes to thank the

é National Science Foundation for its support of his four years of graduate

study, during which time some of the present work was completed.




29

L e T L

€66LLE°18S2911°| ¥FLPICO|EPSOT0 "] $L0O610 | 385820 | 06SHH0 | 1699L0 "[L0CO09L " | 611SG¥F "0 |30exH
6%6200 | L¥PS00°] 915800 * |S89210 | L¥L810°| 902820 | 6IP¥¥0 °| 296920 °| 1€2091° | PEISSH D ol
I11%00 ‘| 229200 ° |9€0210 '| 992810 | €58L20 '| #LIHH0 "| €0$920 "|6S1091° {OP1ISG% 0 5
$82500 °[L28010 | LOHLIO | IH2L20 "| 2SLEFO | LPI9LO | 9€009T" 16156V °0 8
$82800 | SLLSTI0 | €21920 °| 8662¥%0 "| 2895L0 "|9186S1 " [ 2L14S¥% 0 L
€12210°} €16€20 | 8951%0 | SI8PL0 " |SO0P6SI [G1265%°0 9
928810 °| 9L58€0 " 990€20 | 2858S1 | 0I€SS¥ 0 g
€ITIE0 "| 920690 "|SSL9S1° |0PSSST 0 ¥
68LLGS0 "|6961IS1° | 28195% 0 3
I¥0SEl " | ¥0S8SP 0 2
2582L% 0 I
2 19Vl

1




- -

30

References

Courant, R. and Hilbert, D. 1953 Methods of Mathematical Physics.
Vol, I, New York: Interscience Publishers.

Muskhelishvili, N.I. 1953 Singular Integral Equations. Groningen,
Holland: Noordhoff.

Tricomi, F.G. 1951 On the finite Hilbert transformation. Quart, J.
Math, (Oxford), 2, 199 - 211.

Tricomi, F.G. 1955 Sulle equazioni integrali del tipo di Carleman.
Annali di Matem, 39, 229 - 244,

Tricomi, F.G. 1957 Integral Equation. New York: Interscience
Publishers,

Whitney, A.K. 1969 Minimum drag profiles in infinite cavity flows.
Ph.D. Thesis, California Institute of Technology, Pasadena, California.




31

THEORY OF OPTIMUM SHAPES IN FREE-SURFACE FLOWS
PART II.

Optimum Profile of Sprayless Planing Surface

by

T. Yao-tsu Wu, Arthur K. Whitney

California Institute of Technology
Pasadena, California

The purpose of this work is to evaluate the optimum profile of a two-
dimensional plate producing the maximum hydrodvnamic lift while planing
on a water surface, under the condition of no spray formation and no
gravitational effect, the latter assumption serving as a good approximation
for operations at large Froude numbers. By employing a recently develop-
ed theory of variational calculus involving singular integral equations, the
lift of the sprayless planing surface is maximized under the isoperimetric
constraints of fixed chord length and fixed wetted arc-length of the plate.
Consideration of the extremization yields, as the Euler equation, a pair

of coupled nonlinear singular integral equations of the Cauchy type, which
are subsequently linearized to facilitate further analysis. The analytical
solution of the linearized problem has a branch=type singularity, in both
pressure and flow angle, at the two ends of plate. In a special limit,

this singularity changes its type, emerging into a logarithmic one, which
is the weakest type possible. Guided by this analytic solution of the
linearized theory, approximate solutions have been calculated for the
nonlinear problem using the method of discretized Fourier expansions,

and the numerical results compared with the linearized theory,
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PART 11

Optimum Profile of Sprayless Planing Surface

1. Introduction

The problem of planing surface has received much interest in the
past as a device for producing hydrodynamic lift, while moving forward on
a water surface., Most of the early theoretical studies were based on the
lincarized theory, taking into account the effect of gravity for the range of
moderate to large Froude rumbers, and assuming that the spray sheet at
the leading edge of the plate is thrown backward in the upstream direction,
The hydrodynamic drag on the planing surface therefore consists essential-
ly of two components, one due to spray formation and the other due to wave-
making, aside from the viscous skin-frictional drag. which is generally
small, An exhaustive survey of the literature on the linear theory of
planing surfaces has been given by Wehausen and Laitone (1960). A
crucial limitation of the linear theory, which seems to have escaped
proper recognition, is that the plate draft (or the height of the plate
above, or below, the undisturbed water surface) cannot be arbitrarily
prescribed. Loss of this degree of freedom may be attributed to the
preassigned direction of the spray sheet. This limitation was removed
by Rispin (1967) and Wu (1967), who developed a nonlinear theory based on
the singular perturbation method.

Of all the previous investigations, an important contribution by
Cumberbatch (1958) may be singled out as the only case in which the pos-
sibility was explored for a planing surface to operate, at a given Froude
number, without spray formation - -~ the so-called ""'smooth entry'" con-
dition. This state of operation immediately opens up the possibility of
further drag reduction by eliminating the spray, thereby improving the

hydromechanical efficiency of planing surface,

This paper seeks to determine the optimum profile of a two-
dimensional plate, moving along the free surface of an otherwise un-
disturbed water, without forming a spray sheet at the leading edge, such
that for given chord length and wetted arc-length of the plate, this profile

will maximize the lift, For simplicity, the Froude number is assumed to
be solarge that the gravity effect may be neglected as the first approximation, or
canbe evaluated separatelyinahigher order theory. The flow is further assumed

amem—
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to be inviscid and irrotational. Consequently, in the absence of the
gravitational and viscous effects as well as spray formation, the planing
surface will encounter no drag, leaving the lift as the only component of

the hydrodynamic force,

Aside for its practical value in engineering applications, this
problem was selected originally as one of the simplestin the general theory
of optimum shapes involving free surface flows, a theory which may
have a far-reaching significance in its mathematical context. Generally
speaking, in this class of variational problems, the functional subject to
extremization contains unknown argument functions which are related to
each other by integrzl equations - - a consequence of the very nature of
the mixed-type boundary problems. In particular, for two-dimensional
potential flows, the integral equation is singular, of the Cauchy type.
Thus, this situation is in sharp contrast to classical variational calculus,
in which the unknown argument functions are related by differential equa-
tions, Consequently, the Euler equation which results from the considera-
tion of extremization turns out to be, in general, a nonlinear, singular
integral equatiun. Since the methods of solution of this equation are very
limited, more powerful methods are very much desired. A preliminary
mathematical study of this new class of variational prcblems has been
carried out by the authors (see PartI). Following the same approach,
the present problem will be investigated to provide useful solution of
hydromechanical interest. It is hoped that this study will stimulate
further interest in the development of the general theory, and,in turn, aid
the resolution of numerous fluid mechanical problems of potential useful-

ness,

2. The Problem of Sprayless Planing Surface

In order to prepare for the formulation of the optimum shape
problem, we begin with a consideration of the entire class of two-dimen-
sional plates, planing on a water surface, which is otherwise undisturbed,
with the plate profiles so adjusted that the entry of water at the leading
edge of plate is ''smooth,' i,e,, without forming a spray sheet, as shown
in Fig. 1. It is convenient to choose the body frame of reference so that

the free stream velocity is U, in the positive x~direction. The resulting
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flow is assulmed to be incompressible and irrctational. The Froude number,
Fr = U/(gt)*, based on the chord length £ and the gravitational constant
g, is taken to be sufficiently large so that the effect of gravity may be
neglected. This class of flows is thus characterized by having no spray
sheet and no stagnation point inside and on the flow boundary, provided

the plate has a continuous slope.

By a suitable choice of the origin and magnification, the complex
potential f =¢ + iy, ¢ being the velocity potential and ¢ the stream
function , is mapped onto the lower half of a parametric { = § + in plane
by

f=AUL , (1)

where A, a real positive constant, ischosen so that the plate is mapped
onto =0, -1<§ <1, and the free surface onto n = 0, |g| >1. The
physical plane will be denoted by z = x + iy, in which the x and y
comporents of the flow velocity are u and v, respectively. In terms of
the complex velocity

0 0 = tannl (v/iu) ,

(2)

1
w:df/dz:u-iv:qe- , q:(uz+vz)2

or in terms of the logarithmic hodograph variable

w =log(U/w) =T +i6 = log(U/q) , (3)
the Bernoulli equation reads

T

1 1 -2
P-p, =3 plUP-q") = > pU%(l-e™ ) , (4)
p being ihe pressure, P, its free stream value, and p the fluid density,

On the free surface (} = 0), p = P, hence
T(€)=T7(,07)=0 (el>n . (5)

On the plate, we denote the Boundary vaiue of w({) by

~

w (E-i0) = T (&) +i07(£) = T{E) + iB (£) (el <1y . (6)
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As for the boundary condition on the plate, the simplest approach is to con-
sider the "inverse problem' by prescribing either I'(§), or B(§), as a
known function of £, together with certain conditions to be specified be-
low. When I'(§) is prescribed, it is required to be Halder-continous*,
non-negativ<(to insure that the pressure on the plate is nowhere less than

po), and 7 (£) is required to be continuous across the two ends of the

plate at § =+ 1, thatis
TE)=T(E)> 0 (el <y, (7)
r(l)=r(-1) =0 . (8)
Under the present assumptions, the free stream condition is simply

w0 as [t] 0 , ngo . (9)
The solution of the Dirichlet problem prescribed by {5), (7) and (9) is
1

o) = > | St (n=ImL<0) (10)
0

As U approaches an arbitrary point { =§ - i0 on the plate, use of the
Plemelj formula (cf. e.g. Muskhelishvili (1953) ) shows that the real

part of (10) reduces to an identity, and its imaginary part gives

T(t)dt

1
pE) = +§ T =n (rey def<n . an
-1

in which the symbol C over the integral signifies the Cauchy principal
part of the integral, and the symbol Hg[l"] denotes the finite Hilbert
transform of I" on [-1,1]. It is noted that if I'(§) is Holder-continuous
on [-1,1] and if the end conditions (8) are satisfied, then B(§), given
by (11),is also HOlder-continuous on [ -1,1] (see Muskhelishvili (1953)
§19,29).

If, on the other hand, 6 (£) =B (), instead of 7 (£), is prescribed

* ’
['(§) is said to be HSlder-continuous on [ -1,1] if for any two points
§,6, on [-1,1], Ir(gl)-r(gz)l < Blgl-gzl“, with the Hélder constant B > 0,
1

and the HOlder index p satisfying 0<p <1,




oo TR

36

for |§| <1, one may either solve this Riemann-Hilbert problem directly,
or regard (11) as an integral equation for (). The solution for I'(§)
satisfying conditions (8) and (9) is found to be

1
re)-- ;a9 § —BUE (gl <y
-1 (1-€)%(t-£)

, (12)

provided B(f) further satisfies the orthogonality condition
nl 1
; 2L
) BENI-£) " =0 . (13)
-1

In the above and henceforth, the function (gz -l)% is defined to be one-
valued in the entire con}plex { -plane, cut from { = -1 to 1 along the real
Q-axisl, so that (%2 -l)7 —-+{ as Igl —+x for all argl. Thus,

(Qz -l)—i -+ i(l -g‘)i as §{ *£ 10, |§| <1. It may be remarked here
that the system (8) and (11) is equivalent to the system (12) and (13), since
B(E) given by (11) with I'(§) subject to condition (8) satisfies (12) and
(13), and conversely, I'(§) given by (12) with B(£) subject to (13) satis-
fies (11) and (8). Furthermore, by virtue of condition (5), w({) can be

continued analyticaliy into the upper half { -plane by

wf) = - ALY . (14)

The physical plane is obtained by integration of w = df/dz,
A5
z(L) = AU ‘) dt/w(t) = A ) ew(g)dé , (15)
-1 -1

z(-1) being chosen to be the origin. The chord of the plate, £, and its
angle of incidence to the free stream a(positive in the clockwise sense)

are given by

1
1 =A5 er(g)cos[5(§)+a]d§ , (16)
-1
1
y e Blgin[ B (Eyra]dt = 0 . (17)
-1
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Equation (16) determines the factor A in the transformation (1), and

(17) states that the angle of attack a is referred to the chord of the plate.
Finally, the total arc-length S of the plate is

1
s=a) eF g (18)
-1

The total force F =D +iL,, D being the drag and L the lift act-
ing on the plate, can be determined from

B 1
F=i) (p-pMz= 3 ip ) (U?-wiw) 5 gé- dt
A -1
:'\l ~
= 17 ipﬁzAj [e“’(g )_e~lC) ]dg = % ipUzAg) (6 ’dc,, (19)
-1

where the contour of the last integral encircles the plate counter-clcckwise
in the § -plane upon using the analytic continuation (14). By expanding

w(l), given by (10), for large Iz;I , Wwe obtain, by the theorem of residues,

1

)
L=pU'A} T(ME , D=0 . (20)
-1

Thus, the drag D = 0, as should be expected since there is no mechanism

for producing drag, wavemaking or otherwise, in this idealized case.

3. The Optimum Shape Problem

We now consider the optimum shape problem: In the class of
functions I'(£) which are Holder-continuous on [-1,1], satisfy the in-
equality condition (7), and the homogeneous end conditions (8), find the
extremal arcs ro(g) and its conjugate f °(§ ), mutually related by (11),

which maximize the lift L. under the isoperimetric constraints of fixed
chord £ and total arc-length S,

In what follows we shall assume that the extremal arc has the

property a = 0 (zero incidence of the chord) and the symmetry
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n-¢)=0E) , p(-E)=-p(¢) . (1)

The fact that the solution, if unique, must have this property may be seen

by observing that the extremal arc will remain extremal when the flow
direction is reversed., (This statement can actually be proved mathematical-
ly by using a reverse flow argument and requiring that both I' and B be
bounded at the two ends of the plate.) Under this condition, (17) is then

automatically satisfied.

The problem of maximizing the lift L = pUz L* (see (20) ) under
the isoperimetric constraints of fixed chord £ (see (16), now with « = 0)
and given arc-length S (see (18) ) 1s equivalent to that of finding the pair
of extremal arcs I(§), B(§), which, while satisfying (7), (8) and (11),

will also minimize the new functional

1

I[T,B;A] = ML+XS-L =A 51 S(OE)BE: A ,\ E (22a)

-

with the fundamental function given by
arpa n )= el Cleosperen et ®lrey  (lgl<n . @)

Here, Xl, )‘z are undetermined multipliers, and we have assigned a nega-
&
tive sign to L so that minimization of I[T,B;A] corresponds to
NS * . . . . .
maximization of L . Itis necessary to include the coefficient A in the

arguments of I, since for fixed £ and S, A is a functional of T and

B.

The general variational problem of this kind has been discussed
recently by the authors (see Part I). For the problem at hand, the method
of solution will follow the same approach, though some modifications are
required, Let the set [['(£),B(£);A] denote the optimal solution and let
[rl(g),gl(g);Al] be an arbitrary neighboring admissible set, which,by
definition, satisfies (11), conditions (7) and (8), and the Ht':;lder-continuity
condition. The differences 6I = 1"1(5) -T'(g), 6B = |31(§) -B(E),
6A = Al-A form a set of arbitrarily small variations. Suppose 8L(€) is

taken to be a small, arbitrary function of £; then, since both [I,f] and
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[I‘l, [31] satisfy (11), 6B(£) is given by the Hilbert transform of 6T,

6p() = H[6T] (el <1 . (23

The variation A, however, is arbitrary.

The variation of the functional I due to the variations
[6T,6p,06A] is

1
Al = (A+6A) \ {(I'+6T,p +6pB )dE - AS (T, p )A€
-1 -1

Expansion of the above expression for sufficiently small |61"| , |6[3 | , |6A|
yields

AI:61+%—621+3-1|-63I+. C e,

where the first variation 6I and the second variation 6% are

o1 = (6A)Sf(I‘,B )E + AS (Ep8T + £58p )¢

i
6ZI=26A§f 8T +£, 6B)dE +A \ [£. (6T F +2f . 6T 6P +£, . (68 F1dE
(0A) ) (LT +64 8B)dE +A ) [ £ (ST F +261.5 8T8 +5 o (68 FldE
in which the subindices denote partial differentiations, and all integrals
are from € = -1 to 1. For I[T,B;A] to be minimum, we must have
61 =0 and 6°I> 0 for arbitrary I’ and 6A. From &I = 0 it then fol-
lows that the two integrals in the expression for 81 must vanish separately.

The first integral vanishes if, by (22a),

LY=xt+r5 (24a)
1 2
or explicitly,
1 1
) rexe =) TN cosperenle , (2em)
-1 -1

which provides one condition for the constant multipliers \ , Xz. (Note
1
that the positive coefficient A drops out in (24b).) For the second integral,

we substitute (23) for 6B, then interchange the order of integration, which
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is permissible under certain conditions (see, e.g., Tricomi 1957, §4.3),

giving
. 1

6T [ = - f r =0 . 2
) psr+siopiat = | e - Hl£ 19T (E)E (25)
-1 -1

Since 6I'(§) is arbitrary, we obtain the following nonlinear singular

integral equation of the Cauchy type:

1
£ (), B(1)
0686 ) =K lf] = 0§ E——ar (gl<n
-1

(26a)

where, by (22b)

g{..zer(g)[)\lcosﬁ(g)+)\z]-l , g%:—)\ler(g)sinﬁ(g)

(26b)
For the extremal solution, (26) is to be solved together with (11), as a
pair of singular integral equations for I'(§) and B(f), subject to the
homogeneous end conditions (8) and the inequality condition (7). The
extremal solution, r(g;xl,xz) and B (g;xl,xz), when deterrnined in this
manner, will involve the two constant multipliers )\l and )‘z’ which can
be determ:ined, most conveniently, by applying condition (24), and by
giving a specified ratio of the arc-length S to the chord L, say

S/t =1 +g (k >0) , (27a)

or by using (16), (18),

1 1
§ eF €)ge =u+x)§ e Cleospigras (27b)
-1 -1

Since the coefficient A does not appear in either of the isoperimetric
conditions {Z4) and (27), the problem of determining the unknown A is
curtailed altogether, Finally, the optimum lift coefficient, upon using

(24a) and (27a), can be expressed as

Cy, = L’/(-l,- pUZL) = 2L% /1 - 2N+ 2\ (14) . (28)
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This optimum lift coefficient will be a maximum if the second
variation of I satisfies the inequality condition &°I> 0, which is reduced
to

1
"\1 [f. 6T P+ 26 6T 6 + fpp(ap)z]dg >0

upon incorporating (25) and noting that A > 0, A necessary condition for

the above inequality to hold has been found by Whitney (1969) to be

- HTE)BEH fpﬁ(r(g),ﬁ(é) )>0 (-1<E<1) . (29)

The procedure for obtaining this result is to first substitute (23) for the 6f's
in the integrand, interchange the order of integration by the Poincaré-
Bertrand formula, and, finally, to consider a special choice of 8I'(§)
which vanishes everywhere except on an infinitesimal stretch in (-1<§<1),

For the present problem, with f given by (22b), (29) gives

ot fog = xzer(§)> 0 , orsimply >0 , (30)
since the optimum solution I" is real., It may be remarked here that CL
in (28) will be a minimum when RZ< 0. Condition (30) also shows the
importance of including the arc-length S as a constraint; otherwise, the
necessary condition (29) cannot be satisfied, and the consideration of
optimality must necessarily proceed to higher order variations of the

functional I, to say the least.

The exact solution of this problem is exceedingly difficult for
several reasons, First of all, (11) and (26) are a system of nonlinear
singular integral equations, with a Cauchy kernel, which have no known
general method of solution, Second, it appears to be very difficult to
incorporate automatically the inequality condition (7), T'(§)2 0 for
lgl <1, into the analysis, the only alternative being to verify its validity
if and when all possible solutions for I have been obtained. Furthermore,
there is no assurance that the homogeneous end conditions (8),

I'(l1) =T(-1) = 0, can always be satisfied. Finally, even when the solution
of T satisfying all these conditions can be obtained, the determination of

the multipliers )\1, kz from (24), (27) will involve equations which are
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highly transcendental. The foregoing observations should indicate that any
plausible method of solution by numerical iterations would most likely

meet great resistance.

However, important information about the <olution can be obtained
from the corresponding linearized theory, which we proceed to consider

in the following.

4. The Linearized Theory (for (S-£)/f « 1)

The linearized theory is expected to provide a v
solution to I(§) and B(§) when the arc length S is or
than the chord £, or

! first order

- slightly greater

S/t =1+x |, 0<K «1 . (31)

In this limit, I{§) and PB(§) are anticipated to be almost everywhere
small on (-1 <§ <1), except possibly near the end points § =%1. Thus,
upon expanding fI‘ and f‘3 for small II"I and IB | , and keeping only the

linear terms, Eq. (26) reduces to

al(€) = cH[B(t)] +(1-a) (lg] <1y (32a)

where

a=N+\N , c=-A . (32b)
1 2 1

The linear system of singular integral equations (32) and (11) belorgs to
the class investigated previously by the authors (see Part I, Sect. 5), a
class which can be uncoupled to yield a set of singular integral equations
of the Carleman type and then solved by known methods, Without going
through the detailed analysis, we give below the firal soiution, which can
be readily verified. The solution has two branches according as the co-
efficient

=cla= -xl/(xl+ xz)> 0 or <0 ., (33)

Case (i) o> 0, The ranges of }\l and kz in this case are either
A >-A>0 or X <-\A<0 ; (34)
2 1 2 1

the first, according to the necessary condition (30), corresponds to the
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maximum lift, whereas the second, to the minimum lift. In terms of the
new parameters, vy and H, defined by

1
Yy = (1-a)/a and tanpmw =0 (o<p<1p2) ,

(35)

the solution is given by

B K7
ey = YI cospumw [(lr.é'-) +(q}—.§- j , (36a)
AT A
BlE) = %- cospm cotuv[ %) - ﬁ% ] . (36b)

This solution is readily verified by making use of the formula

. _g\EH
| [k T delen

which can be derived directly by contour integration of (t-1 )u(t+l )-“(t-g)-l

E
V]::t cospm + (cotpm)

in the complex t-plane (or see Tricomi (1957), p. 181). We note that the
above solution satisfies the inequality condition (7), i.e. I(§)> 0 (|§i <1),
but is singular, with a branch-type singularity, at the end points § =1,
and thus fails to satisfy the homogeneous end condition (8). This singular
feature of the solution is perhaps reasonable, since linearization general-
ly introduces singularities at those points where the assumptions of
linearization are violated. Whether these singularities can be removed

by including the nonlinear terms remains to be seen,

We now determine the Lagrange multipliers )\1, )\2 from (24) and
(27). To be consistent within the framework of the linearized theory, all
the nonlinear functions inthe integrands of (24b) and (27b) will be expanded
for small IFI and Iﬂ | up to the quadratic terms, becausec the linear
integral equation (32) actually follows from (26) by expanding the funda-
mental function f(I,B) up to the terms with I'?, I'g, and ﬂz . Thus,

(24b) « 'd (27b) reduce, after some rearrangement, respectively to

1 1 1
2 'Yg r(g)dg + %—g T*(g)dE + %— Gg BAE)E =0 (37)
-1 -1 -1
1 1 1
, 1
2 Tgl r(g)dE + z‘g‘lrz(g)dg - lé"{.c_ Slpz(g)dg =0 ,
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where o and y are defined by (33) and (35). The difference between the
above two equations gives
> N -rl
_1 1 14k 2
) r(&)dg-z-(;— % ,c)) BAENE (38)
-1 -1

which can be . sed with (37) as two isoperimetric conditions. The integrals

involved in (37), {38) are easily found from the solution (36) as

1
1
g C(E)E = 2yumg 2,
-1
) res = vipne T 4 ia)")
-1

1
L -
§ p2ea = vio lumoF (i)™
-1

Substitution of these integrals in (37) and (38) yields

-

Yiun = 202, (39)
A r 2
- 1_1 k), . o

These two equations determine xl and xz in terms of &; however,it is
it is more convenient to express xl and N in terms of the parameter

2
o. From (33), (35), and (39), we have

N = o/(14y)

Xz = (1+0)/(1+y) ,

where
1

1 13
y =x[20® /tan™! (0?)]

and the + sign is for maximum lift, the - sign for minimum lift,
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Substituting these expressions for )‘1’ xz, and y, into (28), and (40), the
optimal lift coefficient CL as a function of x is given parametrically by

& 12
CL= +2[ 8tan~ (o2 )/02]2/1 (o) (41a)
2
X e (41b)
a 1 1 1 1 (e
(140)tan  (0*) 0o%tan” (0?)

where the common denominator is

8 tan” ()] 1
z(o)=3iﬂ_1_i_)_ +'T__l"_1" -5 - (41c)
a? o2tan”" 02)

The maximum lift coefficient (+ sign in (41)) as a function of Kk is shown in
Fig. 2. The following limiting cases are of special interest.
(ia) x >0+ (0= + )

By reducing Kk to zero, the plate is constrained to be nearly

stretched straight, implying that I' and B= O(I') are both small. Setting

G=¢ °»1, we deduce from (39), and (41b, c), that
1 Y
p:z--%+o(e3) s y=¢2(en)2[l+%+o(ez)] (42)
and

1 1 1
¢ = (3x)2[1¢ 3 (Brkf +olk?)]

Finally, the optimal lift coefficient, by (41la), is

1

C, =+ 2 (321 1L 3rPkf +ouc
L-:tg-(ﬂKL +Z(“K +O(K)]

This optimum solution shows that as soon as Kk increases from zero, the
plate starts to bend more near the two ends and carries most of the lift
there, since, by (36) and (42), both I' and B have square-root singularities
at £ =2 1. As the arc-length S further increases for fixed chord !, k
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and € become greater, p smaller, so that the singularities at the ends

then become weaker, The rate of increase of the optimum lift with respect

to increasing K, dCI!dx, behaves like x"""4 as XK= 0.

(ib) 0<o «1,

Another interesting limit is as ¢ =0+, in which case we find

g = .11?0%[1 - é- 04+0(o* )] . Y =tﬁ[l + %— o+0\oz)] (43a)
K = ,lr 53 3ﬁ)[1 - :}'% 4 12 +O!oz)] : (42b)

Here, the upper (or lower) sign is for the maximum (or minimum) lift co-

efficient, which is obtained from (4la.c) as

6 = o -
CL==k7(5\/?+6)[1-17;(5+3ﬁ)+0(02)] . (44)
In the limit as 0 - 0+, the maximum lift coefficient

Clornay = 0-918(1-0.0760)  at = 0.1082(1-0.77¢d} (45)

appears to be very respectable, particularly for such a small K. On
the other hand, it seems rather questionable whether th2 miiniraum lift co-

efficient
CLmin=-ll.20(1-0.924o) at K =1,520(1-1.€6240) (46)

can even be close to any physically realizable situation because the low
pressure underneath the plate would most likely cause air ro ventilate the

entire lower surface of the plate,

The corresponding solution of I' and B can be immediately deduced
from (36) as

NE) =+ 2 (1 + ;[;i

2
log %-}55) ; §]+ o(#) . (47)
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B(E) =+ ‘/_E 1og(}fé 1 +%{iz

g

log 1-6F. 1]+0(a‘) i (48)

Thus, in this limit, the flow angle B(f) has a logarithmic singularity at
the end points £ =% 1, which are of the weakest type singularity in this
linearized theory. This particular profile of the plate results in a constant
pressure distribution over the plate except for a higher order logarithmic
singularity at the two edges. The over-all features of the solution in the
present limiting case therefore indicate that this is the most favorable
optimum state arrived at when the variation of parameter x 1is considered

in this final stage.

Case (ii) -1 <g < 0. The ranges of )\l and )\z now become either

(A >0, XA >0) or (<0, \x<0O0) , (49)
1 2 1 2

corresponding, respectively, to the maximum and minimum lift. In terms

of the parameter v defined by

TN S

tach yr = (-o)% tv>0) , (50)

the solution of {11) and (32) for this case is found as

IE) = y cosh vr cos(v log E—é— , (51)
B(E) = Y cosh yr coth yr sin (v log i—;g—) R (52)

where the coefficient y is given by (35). This solution can be immediately

verified by making use of the formulae

' Hg[sin (v log %—;—i” = cschvm - coth yw cos (v log 1}-_%%—) ) (53)

(le] <1y . (54)

1-t . 1-
H‘c', [cos (v log TTE)]= coth yr sin |y log ﬁ-g-

The above inversion formulae can be derived by a coatour integration of

(t-1)""(t41)*¥(t-§) encircling the real axis from t = -1 to 1 in the
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complex t-plane,

Although both of the above I' and f remain bounded in
-1 <§ <1, they nevertheless oscillate infinitely fast as the end points
§ =+ 1 zre approached, and hence do not satisfy the inequality condition
(7), which is imposed on physical grounds. For this reason the above
solution is regarZed as void of any physical significance, and hence will
not be further pursued here, although it also tends to the limiting solution
(47), (48) as -— 0. However, mentioning of this case may serve a use-
ful purpose to point out that when a numerical iteration method is employ~
ed, particularly for small values of ¢, the iterated solutions may oscil-
late between the two cases (ib) and (ii) and the success of such procedure

may be hindered by the lack of convergence.

5. Discretized Fourier Series Expansions

We next consider a method for obtaining approximate solutions to
the optimum shape problem by expanding I(§) and B(§) in finite Fourier
series with the coefficients chosen so that the lift is maximized under the
previously mentioned isoperimetric constraints of fixed chord and fixed
wetted arc-length, This Rayleigh-Ritz method of solution has been dis-

cussed previously in Part I,
Let the expansion for I(§) be given by

N
() =Z ansin(Zn-l o (55)
n=1
where £ = cos6(0< 6 < w) and the an's are arbitrary real constants,
This choice for I' automatically satisfies the end conditions (8). From
(11), B(t) is given by
N
B(E) = -z a cos(2n-1)6 (56)

n=1

where we have changed variables (§ = cos8 , t = cos ¢) and made use of

the identity

sinmg sing .
g cosy - cos b dp = -1 cosmf

(o]
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Note that even order Fourier components have been omitted from the

above expansions to satisfy the symmetry properties (21).

The problem of maximizing the lift for fixed arc-length and chord
is equivalent to minimizing the function I in (22), which, by {55) and (56),
may now be considered to be an ordinary function of the coefficients
{an} and the factor A. To minimize I we set the partial derivatives of
I with respect to A and each of the an's to zero, giving (since A does

not vanish)

v T

a 1 _, F T
A " A "‘x) ercosﬁ sin 6 d6 +sz el'sin6ab - ;alz 0 (57)
(o] (o]
A
IK -a-aa— = )\l) ersin[ﬁ +(2n-1)0) sin 6 46
n (o]
41[
‘ T . T
| _ +x23 ¢'sin(2n-1)0sin0d6 - 36  =¢ n=1,2, ...,N
(o]

(58(n) )

The (N+1)-equations above, in which I and § are given by (55) and (56),
together with (27) in which K is given, determine the N Fourier co-
efficients {a_} and the two Lagrange multipliers A » \,. Finally, the
lift coefficient is given by (28). Since (57) and (58) are transcendental in

the unknown Fourier coefficients the solutions must be found numerically,

In order to illustrate this method we consider the case N = 2,

! Equations (58) read as follows :

ul iy
¢
xj elsin(B +6)sin 6 d6 + %, ) el sin?6 a6 - z (58(1} )
o] o]
I
A Sr el sin(B +36)sin6 a6 + ng elsin30sinf dd =0 . (58(2) )
o] o]

These equations are to be solved together with (27) and (57) for a, az , )\l,
and )\z. The Lagrange multipliers may be eliminated from (57), (58(1)),
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and (58(2) ) to give a relation between al and az; namely,

T
fla,a) = a‘{j el sin(p +8)sin 6 dOf el 8in 30 sin® d6

o] 1 (o] ,F
- Y el sin(p +36)sin 6 d63 el sin?6 dO]
o o
x T
- ) el5in30 sin0 d03 ercosﬁ sin 6 46
(o] (o]
'Il' T
+) el sin(B +36)sin 6 deg elsin9d0 =0 . (59)
(o] (o]

A second relation between a and az is given by (27b) in whicl x is
given a specific value; however, it is somewhat easier to do the inverse
problem in which k is determined once al is known, Thus, if al is
given, az is determined by (59), and x is then fixed by (27b). Finally,

CL may be found from (28), (20), and (16) (with a =0),

The curve of a versus 1 satisfying (59) is shown in Fig. 3 and
the lift coefficient for the two-term Fourier expansion is plotted in Fig. 2,
As a =0, it can be shown by expansion of (27b), (28), and (59) for
!all , razl «1, that

_ 1 2
az- 7 al+0(al ) ,

and

w /1785

Crmax = 7y 370 £ +00%) as k-0

Thus, the maximum lift coefficient increases more slowly (with increas-
ing k) for the two-term Fourier expansion than for the linearized theory
of the previous section (see (42a) ). This is thought to be due to the pre-
viously mentioned end point singularities which are present in the linear-

ized theory.

Actual plate shapes for the case N =2 are shown in Fig. 4 for

various values of K (note change of vertical scale). These are found by
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numerically evaluating (15) for real {. The factor A in (15) drops out
after normalization of the chord to unity. Note that the maximum height
of the plate occurs at two symmetrically located points (at the X's in
Fig. 4) for smaller values of k (S 0.030).

The cases N =3,4, . . . , etc., could, in theory, be solved as
outlined above and should result in higher and higher lift coefficients for
a given ratio of arc-length to chord; however, the calculational difficulties
involved in the solution of the system of equations (57) and (58) would
surely increase. Fortunately, the numerical experiments in Part I
indicate that just a few terms in the ¥Fourier expansions are needed to
give resuits which are within one per cent of exact solutions in those

specific examples,
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f(o,,0,)= 0

—- ol

Fig. 3 The plot of f(al, az) = 0 in the two-term Fourier

series expansion,
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THEGRY OF OPTIMUM SHAPES IN FREE-SURFACE FLOWS

PART 11

Minimum Drag Profiles in Infinite Cavity Flow

by
Arthur K., Whitney

California I .itute of Technology
Pasadena, California

The problem considered here js that of determining the shape of a sym-
metric two-dimensional plate so that the drag of this plate in infinite
cavity flow is a minimum. The flow is assumed to be steady and irrota-
tional; effects due to gravity are ignored, With the aid of a recently
developed theory of variational calculus involving singular integral equa-
tions, the drag of the plate is minimized under the constrainis that the
width and wetted arc length of the plate are fixed. The extremization
process yields, in anology with the classical Euler differential equation,
a pair of coupled nonlinear singular integral equations. Although analytical
and numerical attempts to solve these equations prove to be unsuccessful,
analysis of the equations shows that the optimal plate shapes must have
blunt noses. Finally, optimal shapes are obtained by Fourier series

expansions for various ratios of arc length to plate width.

1. Intr oductiorl

We consider the two-dimensional cavity flow of an incompressible
fluid past a plate of arbitrary shape. The flow far upstream is uniform
with velocity U, pressure Py and density p. The pressure P, inside
the cavity is assumed to be a constant, so that by Bernoulli's law the fluid

velocity at the cavity wall is a constant V, where
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As the cavitation number decreases, the length and width of the cavity
grow indefinitely and the flow approaches the ""Helmholtz flow", in which
the cavity is infinitely long and the cavity pressure equals the free stream

pressure (0 = 0) so that the cavity is maintained far downstream.

The specific problem considered here is to find the shape of a

57
1 V2 + _ 2y
i > P P.=3¢ Py -
The cavity flow ma2y be characterized by the ncn-dimensional cavitation
symmetric plate (see Fig. 1) of given wetted arc length S0 and given

Mty

width Yo 89 that the drag of this nlate in infinite cavity flow (¢ = 0)

is a minimum. A precise definition of the class of plates under consider-
ation will be given in the next section, The solution of this problem has
obvious applications in the design of struts or other two-dimensional non-
lifting surface which may operate in the super-~-cavitating range, For
large Reynold's number flows, the viscous effects may be ignored as a
first approximation; however, corrections due to viscous drag can be
calculated once the potential flow is kno ..:, Finally, although optimal
shapes are sought for the case 0 = 0, these shapes should be approximate-
ly the same as those which would be found for o > 0. This can be seen by
considering the approximate rule, CD(O') = CD(O)(1+O), which relates the
drag coefficient CD at 0 = 0 to the drag coefficient for 0> 0. (Here,

0<1, see, e.g. Gilbarg 1960), Thus, to minimize CD at a givan

P

0 > 0, we could just as well minimize CD(O). It should be noted that
this rule appears to be a good approximation only for blunt bodies, so the
above argument may be limited to the case when the arc length is not

much larger than the width of th: plate,

Lavrentieff (1938) gave the solution to a related minimum
drag problem {see, e.g. Gilbarg (1960) ), that of finding the shape of a
symmetric plate of minimum drag, although, in Lavrentieff's problem,

g the plate is confined to lie within a rectangle which circumscribes the

nose and ends of the plate. If the nose of the plate is at {0,0) and the
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ends of the plate are at (xo, £ 3 yo/Z), the solution for the optimal profile
(see Fig. 2) is found to consist of a straight section, from (0, -h/2) to
(0,h/2), and the free streamlines which leave the ends of this sectior. and
go on to pass through (xo, + yo/Z). The length of the flat nose section,
h, is uniquely determined by the given xo/yo. The pressure difference
across the flat portion of the plate is the only contribution to the drag
since the fluid pressure equals the cavity pressure {p = pc) on the free
streamnlined sections of the plate. This solution was obtained by the use
of several comparison and monotonicity theorems which follow from the

maximum principle for harmonic functions,

1he present work was originally conceived as a cornfirmation of
Lavrentieff's solution, but it was hoped that this could be done by using
the variational calculus method introduced earlier in Parts I and II; how-
ever, no satisfactory method was found for imposing the condition that
the plate be confined to lie within the rectaungle. On the other hLand, if
this constraint is dropped, one can easily cornstruct a sequence of plate
shapes which, in the limit, have zero drag, neglecting viscous efiects,
of course, Such a sequence is illustrated in Fig, 3. A typical plate
consists of an inverted cap of width h1 and length hz plus the free stream-
lines which issue from the ends of the cap and go on to pass through the
corners of the rectangle. All other plate shapes in this sequence are
found by decreasirg h1 and increasing hZ in such a way that the free
streamlines still pass through (xo, * yo/Z). As hl->0, the flow inside
the cap becomes a dead water region with stagnation pressure
P& ;— pUZ+ P,y So thatthe drag of the plate is just %- pUzhl, whicn can
be made very small by choosing h1 sufficiently small, Note that the
pressure difference across the back face of the cap is the only contrib*-

tion to the drag of the plate.

This observation led the author to consider the problem described
earlier, It was thought that by fixing the arc length of the plate, shapes
such as those described above would be eliminated, The constraint on

the length of the plate was dropped for simplification,
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2. The Problem of the Symmetric Cavitating Plate

The class of flows under consideration is limited to infinite cavity

flows past plates P with the following properties (see Fig. 1):
(a) The width of P is Yo
(b) The arclengthof P is 8,

(c) P has a continuous slope except at the nose wh _re the vertex

angle is 2o, with 0 ag m,

(d) Let S and S' be points on the intervals OA and OA',
respectively. The pressure p on S'OS satisfies p)pc,
while on SA and S'A', p = P that is, SA and S'A' are

free streamlines.

(e) P is coincident with the free streamlines which issue from
S and S'.

The condition p 2 P, in (d) is an obvious staternent of the fact
that the vapor pressure (assumed +o equal pc) is the minimum pressure
in the flow, Sections SA and S':a' are included since free streamlines
have already been shown to mak~ up pari of Lavrentieff's profiles and
similar results are expected for the present problem. It is more con-
venient to account for this expectation from the beginning than not. Note,
also, that (d} imooses no undue restrictions on the problem, since the
actual locations of S and S' are not known, a priori, but must be found

as parti of the optimization process.

Condition (e) guarantees that the shape ci an optimal profile will
be unique, since the plate surfaces SA and S'A' could obviously be
moved inward toward the x~axis without changing the overall forces on
the plate. This condition simply provides a one-to-one relationship be-
tween plate shapes and the resultant flow patterns. Note that there are
many ways of doing this; the plate surface could, for example, be required

to run along the straight lines joining S,A and S' A',

By proper choice of origin and magnification, the complex potential
plane f =¢ + i}y is mapped to the upper half { = £ + in plane (see Fig,
4) by
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£- 3 AWE 1)

where ¢ is the velocity potential, ¢ is the stream function, and A is a
real, positive constant which is chosen so that S'OS maps to Igl £ 1.
The sections SA and S'A' map to 1< lgl < ¢, where c 21 (equality

only if S = A, S' = A'); the remaining sections of the free streamlines
lieon c< lgl < o0,

We next introduce the complex velocity

W:df/dz:u-iv=qe-i6 (2)
and the logarithmic hodograph variable
w(f) = log(U/w) = log(U/q) + i6
= 7(€,n) +i6(E,n) , (3)

where u and v arethe x and y components of the fluid velocity,
q= (uz+ vz)i is the speed, and 0 is the direction of the flow with respect

to the positive x-axis. With these definitions, Bernoulli's law may be
written as

1 1 2 =2
P-P. =7 pU-a®) = 5 oU (L -e™ ) (4)

’

where p is the pressure at any point in the flow. On the free streamlines

SI and S'I', p= P.; therefore, by (4),

T(£,04) =0 lgl>1 . (5)

If the boundary value of w on S'OS is denoted by

W(E+0) = T(E, 0+)+i0(E, 0+) = T(E)+iB (E) , lel<1 (6)

where I" and B are real, then, since P, is the minimum pressure in
the flow, the inequality

r(€)>0 , lel<1 (7)
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follows by (4), aad, hecause the pressure is continuous at S and S’,

'l)=0 . (8)

The hodograph variable may be split into two parts,
w() = wo(g) + wl(g ), where w_ accounts for the singular behavior of w
at the stagnation point, { = 0, and wl(EI‘1+i(31, for || < 1) is analytic in
the entire upper half plane including the real axis, It can be shown, in

fact, that

1
ot) = 22 tog {[L?-17 +i]A} +ot) (9)

where ({° -1)% is taken to be cut along the real axis lgl £1 andis
positive for { = § > 1; the logarithm function is defined to be that branch
which is real for a real, positive argument, with a cut along the nega-
tive real axis of the argument, Letting { —§ + i0, £} <1, in (9) and

comparing this -vith (6) we have

1
T() = 22 1og{[14(1-6%71/ &} + T (&) (10a)
B(E) = asgnt + B () , (10b)

so that the proper logarithmic singularity of I' = Rew = log(U/q) and the
proper jump in flow angle, P (0+) - $(0-) = 2a, are exhibited at § = 0,
Since the real part of the first term of (9) vanishes for { real, Igl >1,

we have, by (5),

T(E) = Re{w(E+0)} =0 lel >1 . (11)

Furthermore, the flow approaches that of the free stream (q = U, 6 = 0)
at large distances from the plate; therefore, w >0 as IQI ~+w, by (3),
and

o @)>o , as |t e, (12)

by (9). Finally, ]f‘1 in (10a) must be chesen so that inequality (7) is
satisfied and (8) and (10a) imply

L@l)=0 . (13)
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The function w may be determined for a given plate shape, how-

ever, because the solution involves complicated nonlinear functional
equations, it is easier to deal with the so-called "inverse problem'", in
which the plate shape is determined by giving either rl(g) or B (£).
This information, together with (11) and (12), determines wl uniquely

We now suppose that I' = Rew is given whkich satisfies (13) and is Holder

continuousT on |§| < 1. The Dirichlet problem for the determination of
w

1

rE¢) for [gl<1
Re{wl (£+10)} =

(14)
0 for el >1
together with (12), has the solution
. I‘(t)dt
o) =- 2| L— (15)
-1

which may be verified by letting £ = § + 10(|§| 1) in (15) and using

Plemelj's formula (e.g., see Muskhelishvili (1953), §17).
part of w on S'OS is found to be

1
; I (t)dt

B&)=- ¢ L lel<t1 (16)
-1

The imaginary

where § denotes the Cauchy principal value., Ho6lder continuity of B

follows from the assumptions which have been made on I', (Note that if

1
I; does not satisfy (13), but approaches a nonzero value at an endpoint

then Bl, as given by (16), will have a logarithmic singularity at that

endpoint.) If, instead of Il‘, pl

is given, the solution for w involves a

Riemann-Hilbert problem; however, this solution will be omitted since it
will not be needed.

By (2) and (3), the physical plane is obtained by integrating

dz = & e“af = Ay at

cl—

(17)

1'I‘ (§) is said to be Hélder continuous on [ -1,1] if, for any two pomts

£ gze[ -1,1], ITE)-0E )l < Blg -£[F, with B>0 and 0<pg
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Thus, the plate shape is given parametricaliy by

) =x@) +iy€) =4 ) e Fla  Jgise
o

and, since the plate is symmetric, the width is given by

C
yo=tma) Cla (18)

=C

It is convenient for subsequent analysis to convert this expression
for the width to an integral from -1 to +l, To do this, we first continue
w(f) into the lower half plane by w(f) = -w(§), so that
w(E2i0) =T (E)+iB(E) for |£] <1 and, by (5), w(E+i0) = w(£-i0) for
|§| >1. Next, we consider the function ge“’(g) which appears in the

integrand in (18). This function is uniquely determined by the jump in its

value (due to the discontinuity of w) across the cut |§| < 1 and by its
exansion for large |§| (see Muskhelishvili (1953), §78). In fact, it can

be shown that
1 .., 1
AL B (t) . i
[adiic: bCL I 1_5 Tt +4 (19)
o m
-1 -1

o). 1

in which the first integral exhibits the correctdiscontinuity across the cut
: I & l < 1 andthelasttwoterms are required by the expansion of the left side of
(19)for IQ l » 1 (see Whitney (1969)). Inthis expansion, we use the integral

representationfor w, . nl (s
o) =- & | SR (20)
-1
which is found by exactly the same procedure as that used in determining
wl(g) (see (14) and (15) ). By substituting (19) into (18), and noting that
B(-£) = - B(E), we obtain
1 1
A g
Y, = F[‘S t sinhI"(t)sin B (t)dt +5 tsinh I (t)cos B (t)log{(c-t)/(c+t)}dt
i -1 -1
1

+ 2c§ I‘(t)dt] . (21)
-1
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An element of plate arc length ds is found from (17), (5), and
(6), to be

act®elae  for el <1
ds = |dz| =

Alglde for |&]>1

Thus, the total arc length of the plate is given by

c 1
5, = S. ds = A[(cz -1) +5 er(t)ltldt] . (22)
e -1

The complex force acting on an element of the plate dz is given
by
dF = (p - p)-idz) ,

or, by (4),(5), (6), and (17),

- zi pUZ A(l e e Pe g, el <1
dF =
0, el >1

By integrating this expression, we obtain the drag D and lift L acting
on the plate as

-zl‘)el“+1[3 dt

1
. -1 2
D+iL =5 pU AS‘ t(l -e
-1

so that, again noting the asymmetry of B(£),

1
D= pUzAS t sinhT (t)sinp (t)dt |, (23)
-1
and the lift vanishes, as we should expect for a symmetric shape at zero
angle of incidence, An alternate expression for the integral which ap-
pears in (23), and also in the expression for the width (21), may be ob-
tained by substituting (20) in the left side of (19) and expanding this equa-

tion for large IL . By matching coefficients which multiply like power
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of L in this expansion, we obtain the identity
1 1 ”
3 tsinh T (t)sin B (t)dt = z—ln'U I‘(t)dt) (24)

from the terms multiplying l_.—

Since p and U are kept constant in the minimization of the drag,

it is convenient to give the drag the dimensions of length by setting

D* = D/ %— pUZ. By (23) ard (24) we have

1 2
A
D =;(S‘ I‘(t)dt, . (25)
-1

3. Statement of the Minimum Drag Problem

In the previous section we have shown that the problem of minimiz-
ing the drag of a symmetric profile of given width and arc length reduces
to fmd_mg functions I‘ (§) and ﬁ (§) and constants A, ¢, and «a, so
that D in (25) is a minimum subJect to the constraints (21) and (22), in
which Yo and s, are given fixed quantities. The functions I'(§) and
B(§) in (21), (22), and (25), are related to rl(g), ﬂl(g), and the half
vertex angle of the plate o by equations (10); furthermore, pl(g) is
related to I;(g) by (16) in which I‘l satisfies the end conditions (13) and
is chosen so that I' in (10a) is positive. Equivalently, we may state
this problem in terms of I'(§),B(§), A, and c, and omit further refer-
ence to rl(g), ﬁl(i_’;), and o; however, the discontinuous behavior of I’
and B, as exhibited in (10), should still be remembered. By letting
t +£ +i0 (|&] € 1) in (20), we obtain the identity

1
BE)=- +§ SHE = -m[re) (26)

-l

which may also be verified by (10) and (16). In the above, the symbol

HE, denotes the finite Hilbert transform. Finally, in (21), (22), and (25),
the factor A is a real, positive constant and the parameter c, which
determines the location of the endpoints of the plate in the {-plane,

satisfies 1 < c <o,
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This problem is equivalent to that of finding a pair of extremal
arcs, I'(§) and B(§), which satisfy (26) and minimize the functional

HT(E),B(E) Al =D -\ S -y,
1

- A‘Sl €I (), B (8,6 \ ) ,c)dt

1 2
+ % (1-xz/zn)(5 I‘(t)dt) (27a)
|

where, by (21), (22), (24) and (25),

AT(E),BIE)E A c) = & [ (e -1) + T E)jg ]

A
- -ﬂ—‘ [€ sinh(£)cos B (E)log{c-E)/(c+E)} +2cT(E)] . (27b)

In the above, the integral identity (24) has been used in the expression (21)

for Yo and Xl, xz are Lagrange multipliers.

The geneial variational problem of this type has been investigated
earlier in Parts I and II. For the present problem the method of solution
will follow the same approach with a few modifications. Let the set
{r'(£),B{£),A,c} denote the optimal solution and let {I'(£),B(£), A, T} be
an arbitrary neighboring set which also satisfy (21), (22), and (26). The
differences 6I'(E) = T- I, 6B(g) = [3~ -B, 60A = A- A, 6c = c - c, form

a set of small variations, where by (26),
6B (E) = -H§[5F(t)] : (28)

The variation of the functional I, about the optimal value, due
to the variations {6T,6p,6A,6c} is given by

Al = I[T+ST, B+6p; A+6A, ct+éc] -I[T,B;A,c]

Expansion of the above expression for small |61"| , |6‘3 | , |6A| , and

|6c| , Yields
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A1=61+zl,-621+-;-,-6’1+. L,

where, by (27), the first variation 61 and second variation 6%1 are

given by
\
- : 1. 2
o1 = BA{Sf(I‘,ﬁ,t, xl,xz,c)dt + = (1 xz/zn)J f

a}

+ A6c3 £(0,B,6 A\ c)dt

+A '\{[fr(r,ﬁ,t; A )+ 2 (I-XZ/Zﬂ)J]BF(t)

+ fﬁ (T,B,t; )‘1’ xz, c)op (t)}dt (29)

21 - 268 \J[e.+ 2 (1-
81 = 25A 3{[fr+ 20 xz/zn):r]ar+ fﬁéﬁ}dt
("o
+26A6c Sfcdt + A(6cy ) f_.dt

+ A") {fl_.r(él")z + zfrpar 6B + fﬁﬁ(éﬁ ¥ }at

- 2
+ 2—:-‘ (1-)\2/211')(:) 6.0 dt) (30)

In the above, all integrals are from -1 to +1, subindices denote partial
differentiation, and J is given by
1
”
7 = J[T(t)] ;3 C(t)dt . (31)
-1

For I to be a minimum, we must have 6I = 0 and 6%1> 0 for
arbitrary 6I'(§), 68(), 6A, and 6c. 61 vanishes if the terms multiply- :
ing 6A and 6c vanish separately. The first line in (29) is zero if
1
S‘ f(T'(t),Brt), t; hl,hz,c)dt + ;lr (l-)tz/21r)Jz =0 , (32a)
-1
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or, by (27a) and (31),

*
- 32b
D =Xs +\y, > (32b)

* .
in which the functional forms of D , 8 and y, are given by (25), (22),
and (21), respectively. The second line of (29) is zero if, by {27Db),

(e mm.pm, e x, cur

1

2\ :
S 2N - 2 S{f sinhI' (t)cos B (t) +T(t)hdt =0 . (33)
L T " ct-¢

Finally, for the last integral of (29), we substitute (28) for &8 and then
change the order of integration, giving

1

S‘ {[fr+ 2 (1-x2/z1r);r] 8T (t) + £,68 (t} at
-1
=5 {fr+ % (I-XZ/ZW)J + Hg[fﬁ]}ér(t)dt =0 . (34)
-1 ;

Now, since 6I'(§) is arbitrary, we obtain the nonlinear singular integral

equation
(T, B, 65 Mok o) + (£ (T8, 65 8,4 )]

- - % (I-)\ZIZw)S‘I‘(t)dt , (352)
where, by (27b)

()| . N2
fr= -\ e CUg] - 22 [€ coshT(§)cos p (€ )log{(c-E)/ (c+6)} + 2c]

\ , (35b)
fg = - &sinhT(E)sinp (§)log{(c-E)/ (c4E)}

This integral equation, which contains XI,XZ, and c, as parameters,
is to be solved together with the linear integral equation (26) for the
extremal arcs I'(§) and B(§). The Lagrange multipliers )\1,)\2 are

T T e
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determined by equations (32) and (33). The final parameter ¢ is most
conveniently determined by the nondimensional ratio so/ Yoo which, of
course, is a known constant. Finally, the optimal drag coefficient (based

on plate width) is given by

1 2 *
Cp=D/ 3 pU%y =Dy . (36)
This optimal drag coefficient is a minimum if the second variation

621 > 0, which recuces to

8°1 = A(GC)szccdt + AS{fl,r(&r)2 +2£r.g67 8B +£54(6P ¥ }dt

2
+ 31;5 (l-lezw)(Sﬁr dt’ >0 37)

by (30), (32a), (33), and (34). Now, the last term in (37) is due to the
second variation of
1 2

la)
1

. ‘% (1-x2/2n)(‘) 1“(t)dt) ,

which, by (24), equals the second variation of
1
2A(1-xz/2n) S tsinh I'(t)sin B (t)dt
-1

so that (37) may also be written as
2
| A(sc) S‘fccdt + A‘S grpl6TF + zgrﬁar 6B + gw(aﬁ Flat> o0 , (38)

where g=f+ ZA(I-)\zIZn)g sinh (£ )sinB (). Since A > 0, this inequality

holds if both integrals are positive, The first term is positive when, by

(27),
- l ae ¢ £sinh T (¢ d
Sf at=-2n +—= | = (tlcosB(t)dt 5 o (39)
. cc 1 T . (cz_tz)z

In Part I, it was shown that a necessary condition for the second integral
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in (38) to pe positive is that

gI‘F+gpp =-Xler(§)|§| >0 , for |§|<l ,

or simply,

7\1<0 . (40)

since T is real, Once an optimal solution has been found, conditions (39)

and (40) must be checked to determine if the solution is an actual minimum,
The singular integral equation (35) may be reduced to an integral

equation with a regular kernel by using the identity

£ coshIT'(£)cosB(E) = Hg[tsinhl"(t)sinﬁ(t)] +& (41)

which follows hy averaging the equations which, in turn, are a result of
letting { +£+i0(|£] € 1) in (19) and noting the limits w(£+i0) = T (£ )+ip (£).
The substitution of § coshI'cosf, as given by (41), into (35) yields

1
A} tsinhT(t)sing (0K (s, Eicdar - x T C) ¢
-1
A o
= 2 @e+glog{lc-£)/(c#)} - £ (1-n f2m) | T ,  (42a)
-1
where
K(t,§ic) = — log{(c-t)(c+)/(cHtic-E)}/ (1) . (42b)

T

It is now possible to show that if an optimal plate shape exists, it
must have a blunt nose; i.e., a = w/2. To show this, we first note that,
by (42), er(g) |§| possesses a regular series expansion about £ = 0 of
the form

el (6) ¢ | R T (43)

where the explicit forms of Co?Sp - + - » etc., are easily found but will
be omitted here. On the other hand, from (10a), in which 1"l(§) is con-

tinuous,
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as |&] = 0. This expansion agrees with (43) only if « = w/2.

Since there are no known analytical methods for solving the system
of integral equations, (26), (42), our only recourse is in solution by numerical
methods, These attempts have also failed; however, in order to iilustrate
some of the many difficulties which beset such procedures, we briefly men-
tion one of the schemes that has been tried. First, the integrals in (26),
(32), (33), and (42), are approximated by numerical quadratures which in-
volvc the values of I'(§) and 8(§) at N points {gi} from -1 to +1., An
initial guess of {r(gi)} is made and the set {8 (gi)} is then given by (26).
Next, the Lagrange multipliers, )\1,)\2, are found from (32) and (33), in
which the current vzlues of I' and B are used. Finally, new values of
{r(gl)} are calculated by solving for I'(§) in (42) and the process is
repeated, hopefully, until the iteration converge. These calculations are
done for arbitrary values of ¢ 2 1, with different c's corresponding to

different ratios s [y .
o’o

As mentioned above, this method and many others like it do not
work, Among the more disagreeable features that are encountered are the
following: (i) the iterations do not always converge; (ii) the values of
r(gi), as given by the solution of (42) for I'(§), are not always positive,
so that (7) is violated; and, {(iii) the value of I" at £ =+ 1 is not zero;
so that B 1in (26) becomes large as § % 1 and integration of terms in-
volving sing and cosf by numerical quadrature fails. Corrective steps
were taken, such as enforcing I'(#1) = 0 at each iteration step, and in-

creasing N; however, these measures did not help.

Note that B(§) in (26) has a logarithmic singularity at § =4 1 if
T'(xl) = const $+ 0, and B has a higher order (branch type) singularity
if I’ itself is singular at the endpoints (e.g., see Muskhelishvili (1953),
§29). By studying the linear case, in which the functionals are quadratic

in T’ and B (see Parts I and II), it was deduced that the endpoint
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conlition (7) cannot, in general, be satisfied. If this ccnclusion is also
true for the present nonlinear case, it is likely that a solution tc {26) and
(42) will have no direct physical relevance since I' and B will be singular
at £ =% 1; nevertheless, such a solution (if one exists) would provide an
absolute lower bound for the drag which could then be used in judging the
"degree of optimality" of results obtained by other (approximate) methods,

such as that to be presented in the next section,

5. Solution by Expansions in Finite Fourier Series

We now investigate a method for obtaining approximate optimal solu-
tions by the expansion of I‘l () and pl(g) in Fourier series in which the
constant coefficients are chosen so that the drzg is minimized, subject to
the isoperimetric constraints mentioned previously. Let the expansion for
I‘l be given by

N

I') = - Zansin(Zn-l)B , (44)
n=1

where £ =cos0 (0 6K . This@ is not to be confused with the flow angle).
From the identity

A

é-’ sinmg sin¢ d¢

= -wcos mb
cosg - cos b !

o
we see that (16) is satisfied, term by term, if

N
pl(g) = -2 ancos(Zn-l)B . (45)

n:l

Note that I‘l in (44) and ﬁl in (45) have the correct symmetry properties
and that (13) is automatically satisfied. By setting o = w/2 in (9) (this is

dictated by the results of the previous section) we obtain
1
w(t) = log{[ (£*-1)*+i] /L} + (L)

Therefore, by (17), the width of the plate is given by

~——
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S w(t) 1
y, = -2A Imj el [(L¥-1)2+ilay . (46)
o
This integral is most easily evaluated by the change of variables
L=+ 2 (47)

which maps the upper half { -plane into the half circle, l vI <ll , Imv 20
(see Figs. 4 and5). The inverse transform vy = -§ +(§z -1)E is chosen so
that the point at infinity in the { -plane maps to v = 0; the endpoints of the

plate, { =+ c, mapsto v = T ks where

ce-(@-1) (48)

It is readily verified that w as a function of v is given by

N
w(v) = iz av " Einn) (49)
n=1
since on S'QOS, v = ne-le, where 0< 60 < w; thus, the real and imaginary
parts of (49) agree with (44) and (45), respectively. From (47), (48), and

(49), the expression for the width becomes

K
y_ = ‘%.hnj elg(v)(v+2i-2v-l 2iv 7 H
[o]

i

which is evaluated by taking the path of integration L, in Fig. 5 In the
' limit € = 0, it can be shown (see Whitney (1969) ) that

K
{H sinQ(t) 2t - {2-Q'(t)}* /t]dt

o

Yo ©

K
cost) 2 + Q(t)/2t] dt + % (z-al)‘ (50)

+
0y MP

+[2/k - Q') 2k] cos k) - (I/ZKz)sinQ(K)] ,
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where £'(t) = d@/dt, "'(t) = d*Q/d¥. By (10a), (44), and (48), the expression
for the arc length (22) becomes

1 a2
SO:AI(K“'K ) -1
N

T
-'r) exp{- Z ansin(Zn-l)G}(l+sin 0)sin 0 de] . (51)

o] n=1

Finally, from (10a), (25), and (44), the drag is found to depend only on the
first of the Fourier coefficients,

D= &7 (2-a) (52)

due to the orthogonality of the set {sin(2n-1)0} on [0,n].

The optimization problem reduces to minimizing D* in (52), sub-
ject to the constraints (50) and (51), over the (N+2) - dimensional space
(A,K,al, a, . .. aN). For general values of N> 1, this problem must
be done numerically; however, if N = 1 the integrals in (50) and (51) may
be evaluated in terms of special functions. Note that by (10b) and (45),
B(E) = ;— sgn§ - acos 0, for the case N =1, so the plate section S'OS
is convex or concave when viewed from the approaching flow as a is
positive or negative. This section is a flat plate, corresponding to the

Lavrentieff profile (see Section 1), if a = 0,

With N=1 in (49), £t)=at, @(t) =a, and ©'(t) =0, so that

(50) becomes

A
Yo = %—[%- S sin(alt){Zt - (Z-al)z /t}dt
: K o
+ ZS. cos(alt)dt + 1zr_ (2 - al)z
o

+(2/k - al/ZK)cos(alK) - (1/2K')sin(alic):|
A -2 N
=T [(Zal + 4::1l -K )sm(alK)

-1 -1 -1
+ (4« -alK -Zlca1 )cos(allc)

+ (Z-al)z{'rr/Z = Si(all()} , (53)
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where Si is the sine integral,
X
Si (x) =S su;t dt
o
From (51), the arc length is given by
1 -1 2 gl ‘aSine
so = A[Z‘ (k+x ) -1 + S e ! (1+sin6)sin 6-d6
o
- A [P 6+ an(lea” ML(a) - 1(a)} (54)
7 1 11 11 )

- 4n{L (a) -1 (a)}] ,

where Li and Ii are the modified Struve and Bessel functions, respective-

ly (e.g., see Abramowitz and Stegun (1964) ).

The problem of finding the optimal plate shape from the class of
plates with N =1 in (44), (45) is equivalent to extremizing

*
I(A, K, al) =D (4, al) - )\lso(A,x, al)
- xzyo(A,x,al) .

*
where, as before, )‘1 and )\z are unknown Lagrange multipliers and D ,
8 and y, are given by (52), (54), and (53), respectively, If I is

extremal; the three partial derivatives I,, I and I_, must vanish,
A’ g’ a

1
This gives three relations among the quantities A, k, a, )\l, and )\z. By

eliminating )\1 and )\z from these three equations we have

AzA(a K)= D [

oa OK oKYoail

(55)

where the partial derivatives may be found from (52), (5%), and (54). Since
A> 0, we must have A(al,x) = 0. Let the solution of this equation be given
by a = f(k). For Kk ~1l(c ~1) it can be shown, by rather lorg and tedious
expansions of (52), (53), (54), and (55), that
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a = flx) = {8/(3n+16)H1 -« ) - {24n/(3u+16F N1k} + O(1 -k} . (56)

The general solution, plotted in Fig. 6, is found by fixing x at various
values between 0 and 1 and numerically solving for al from A(al,x) =0
in (55). A3 k=0 (c *w), a is found to be the root of the transcendental

equation

(Z+al)al{Lo(a.l) - Io(al)} - (alz -}‘Za1 +4){L1(al) - Il(al)}

- .11; (3-2a)a?/(2-2)

This root is given by a ~£.1020, which provides an upper bound for a ,

so that the optimal shapes are only slightly curved over S'OS.

This one relation, al = f(k), is all that is needed to complete the
solution since the factor A drops out of the expressions for the drag co-

efficient and the ratio of arc lengthto chord. Thus, by (36),
Cp=Cpla,k) =D 1y, , (57)
and, denoting the ratio of arc length to chord by k,
k:k(al,K)=So/Yo o (58)

*
The evaluation of (57) and (58) (in which D , Vo and s, are given by (52),
{53), and (54) ) for al = £(k) gives a parametric representation of CD
versus k. This is plotted in Fig, 7, where CD = 2n/(mr+4) is the drag
(o}
coefficient of a flat plate in infinity cavity flow (e.g., see Lamb(1932) ).

At k + o, it can be shown from (57) and (58) that CD“(4+11')/(1r+8k).

Minimum drag profiles for various values of k are shown in Fig. 8.
These profiles are fcund by numerically integrating dz in (17) and are

quite similar to Lavrentieff's profiles discussed earlier in Section 1; how-

ever, by expanding Yo in (53) and So in (54) for small al, it can be
shown that for (k-1)«1,
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Cp = g {1 - ¥(k-1F + OQk-1)}

where
1
vy = 4{2(n+4)} ® ~1.0584
for the Lavrentieff profiles (al = 0), and

y = 4{(9m+64)/4( 1r+4)(3-n+l6)}% ~1.1641

for the profiles in Fig. 7. Thus, for k close to unity, the drag coefficicnts

of the profiles in Fig. 7 are slightly lessthanthose for Lavrentieff's profiles.

The cases N =2,3, .

along similar lines and should result in improved drag coefficients for a

., could, in principles, be carried out

given k = So/yo. The numerical examples of Part I, in which the exact
solutions to the variational problem are known, indicate that expansion in
Fourier series is a very effective method, at least for the case of quadratic
functionals, Whether the same holds true for the present problem, in which

the functional is of a different type, remains to be seen.
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Fig. 5 The path of integration in the v-plane
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