
Mill 

-,- ■■   .: 

IS-SÜRFÄCS FLO /S 

Reproduced by 

NATIONAL TECHNICAL 
INFORAMTION SERVICE 

Sprinafieid,  Va      22551 



Unclassified 
Security Classification 

DOCUMENT CONTROL DATA -R&D 
■Srcurtty clmisiliration ol title, body of Mbstrmct and indexing onnotaiion mu^t be entered »hm f/ie owraU report is cjj$*sifitd) 

ORiGtNATiN^ ACTIVITY (Corporate author) 

California Institute of Technology 
division of Engineering and Applied Science 

ZM. REPORT  SECLRITV   CL»SS-FI,-ATroi- 

Unclassified 
2b.  CROu0 

Not applicable 
3    REPORT   TITLE 

Final Report.    Theory of Optimum Shapes in Free-Surface Flows 

4.  DESCRIPTIVE HOJE.S (Typ* ol report and inclusive dates) 

Final Technical Report 
5-  AUTHOniS) (First name, middle initial, last name) 

Whitney, Arthur K. 
Wu, T. Yao-tsu 

6    REPORT  DATE 

June 1971 
7«.   TOTAL   NO.  OF PACES 

85 
76.   NO    OF   REFS 

19 
M.   CONTRACT  OR  GRANT NO. 

Nonr-220{51) 
b.   PROJEC T NO- 

9«.   ORIGINATOR'S REPORT  NUMBER(S) 

E-132F.1 
»6.  OTHER REPORT NO(S) (Any ether numbers that may be assigned 

thi» report) 

10.   DISTRIBUTION  STATEMENT 

This document has been approved for public relase and sale; its distribution is 
unlimited. 

11     SUPPUEMEKTAHY   NOTES 12.   SPONSORING MILITARY   ACTIVITY 

Naval Ship System Command 
Naval Ship Research and Development 
Center, Office of Naval R.esearch 

13     ABSTRACT 

>ThH5 te?chnical"report consists of three parts.    Part I investigates the mathematical 

theory of variational calculus for the general problem of optimum hydromechanical 

shapes in a wide class of free surface flows.    In Part II the general theory is applied 

to determine the optimum shape of a two-dimensional planing surface that produces 

the maximum lift.   In Part III the optimum shape oi a symmetric two-dimensional 

strut is determined so that the drag of this strut in infinite cavity flow is a 

minimum. \   v,   ., 

DD FORM    I473 
1   NOV S5 I ^   I   *J 

S/N   0101-807-6801 

(PAGE    1) Unclassified 
Secuiitv Classification 



Unclassified 
Security Classification 

KEY nonot 
ROLE nr 

Variational calculus 

Singular Integral Equation 

Planing Surface 

Cavity Flow 

Cavitating Hydrofoil 

J. T 

[I 

DD .,r..t473   «BACK) 
(PAGE  2) 

Unclassified 
Security Classification 



Division of Engineering and Applied Science 

California Institute of Technology 

Pasadena, California 

'■ 

FINAL REPORT 

Theory of Optimum Shapes in Free-Surface Flows 

Contract Nonr-220(51) 

by 

| T. Yao-tsu Wu 

Arthur K.  Whitney 

This research was carried out under the Naval Ship System Command 
General Hydrodynamics Research Program 

and Hydrofoil Advanced Development Program 
Administered by the Naval Ship Research and Development Center. 

Prepared under Contract Nonr-220(51) 

This document has been approved for public 
release and sale; its distribution is unlimited. 

Report No. El32F.1 June 1971 

I 



Theory of Optimum Shapes in Free-Surface Flows 

Table of Contents 

Page 

Part I - Variationai Calculus Involving Singular Integral 
Equations - by T. Yao-tsu Wu and Arthur K. Whitney 1 

Part II - Optimum Profile of Sprayless Planing Surface - 
by T.  Yao-tsu Wu and Arthur K.  Whitney 31 

Part III - Minimum Drag Profiles in Infinite Cavity Flow - 
by Arthur K. Whitney 56 

■■h-   <^'tj;.^.:^:,;, y.,-^;.i^^r^:!:. ■.•,:'^--'w:^-*;- 



THEORY OF OPTIMUM SHAPES IN FREE-SURFACE FLOWS 

PART I 

Variational Calculus Involving Singular Integral Equations 

by 

T. Yao-tsu Wu and Arthur K.  Whitney 

California Institute of Technology 
Pasadena.  California 

The general problem of optimum hydromechanical-shapes arising in a wide 

class of free surface flows can be characterized mathematically as equi- 

valent to the extremization of a functional of the form 

1 

I[u]  = j  f(u(x), v(x), x)dx 

-1 

where   f   is an arbitrary function which is, in general, nonlinear in   u, v, 

x, and the unknown argument functions   u(x)   and   v(x)   are reJated by the 

singular Cauchy integral 
1 

^',4*^     'i*i <■' ■ 
-i 

Application of the variational method to   l[ u]       yieMs,  in analogy 

to the Euler differential equation in the classical theory, the following 

singular integral equation of the Cauchy type 

T C   f (u(t),v(t),t) 
fu{u(x). v(x),x) = ij     V    t_x  dt    (|x|< 1)    . 

-1 

where   f    = 9f/9u   and   f   = 9f/9v.    This equation, which is a necessary 

condition for the existence of an extremal  l[u],    combines with the integral 

definition of  v(x)   to give a pair of singular integral equations, which are to 



be solved for a, v under appropriate end conditions and, possibly under 

additional isoperimetric constraints. Consideration of the second varia- 

tion of  I   leads to the inequality 

fuu(u.v,x) + fvv,(u>v,x)>0       (|x|<l) 

as a necessary condition for the extremum of  I   to be a minimum. 

Analytical solutions by the method of singular integral equations 

and some approximate methods by Fourier series expansions are discussed 

for the linearized theory.    The general features of these solutions are 

demonstrated by numerical examples. 

1.    Introduction 

In recent studies undertaken by the authors it has been observed 

that the determination of the optimum bydromechanical shape of a body in 

a free surface flow invariably results in a new class of variational prob- 

lems, in which the unknown functions are related, not by differential 

equations as in the classical calculus of variations,but by a singular 

integral equation of the Cauchy type.    These recent studies include the 

following problems:   (i)    the optimum chape of a plate planing on a water 

surface;   (ii)  the body profile of minimum pressure drag in symmetric 

cavity flows; and^iii)   the cavitating hydrofoil having a maximum lift-drag 

ratio under a set of isoperimetric constraints.    Indeed, the physical prob 

lems belonging to this class embrace a wide range of interest.    Closely 

related examples are numerous,   such as:   (iv)   the optimum circulation 

distribution of a lifting line in the aerodynamic wing theory;   (v)   the hull 

shape of a thin ship which has minimum wave resistance; and, (vi)   a class 

of mixed-type boundary problems pertaining, but not limited to elliptic 

partial differential equations.   Only a few special cases from this general 

class of problems have been solved, the optimum lifting line being an out- 

standing example. 

There are several essential differences between the classical 

theory and this new class of variational problems.    First of all, the "Euler 

equation" which results from the consideration of the first variation of the 



functional in this new class is a singular integral equation of the Cauchy 

type which is, in general, nonlinear.    This is in sharp contrast to the 

Euler differential equation in the classical theory.   Another noteworthy 

feature of this new class of variational problems is that while regular be- 

havior of solution at the limits of the integral equation may be necessary 

on physical grounds,the mathematical conditions which insure such behavior 

generally involve functional equations which are difficult, and sometimes 

simply impossible, to satisfy. 

Because of these difficulties and the fact that only very limited 

techniques are known for solving nonlinear singular integral equations, a 

theory for this new type of variational problems has not been fully developed. 

Attempts are made here to present some preliminary results of this study. 

After the problem is stated in its general form, the variational methods 

are applied in Section 3 to derive two necessary conditions of optimality of 

the functional from the considerations of the first and second variations. 

They correspond,  respectively, to the Euler differential equation and the 

Legendre condition in the classical theory. 

Following the general formulation,  solutions of the singular integral 

equations are sought for the linear case when the functional is a quadratic 

form in its argument functions - - a case which seems to be the least dif- 

ficxilt, and is expected to retain the important features of the corresponding 

nonlinear problems.    It is of interest to note that the linear problem can al- 

ways be converted to a Fredholm integral equation of the second kind, for 

which a well-developed theory is available.    Moreover, when the coefficients 

of the linear integral equations satisfy certain relationships, analytical 

solutions have been obtained in closed form, by the method of singular 

integral equations.    To aid practical applications,  an approximate method 

(which is essentially the Rayleigh-Ritz method) employing a discretized 

Fourier series representation of the desired solution is discussed, and the 

results are compared with some known exact solutions. 

2.   Statement of the Problem 

The general optimum problem considered here may be stated as 

follows:    To find the reail,extremal function  u(x)   of a real variable   x. 

. ..:..,;,?.■■,„.:'-*; ..:.:• -■- ■ 



required to be Holder continuous' in the region   -I < x < I,    together with 

its finite Hilbert transform 

^1 

v(x)=^     HÄ = Hx[u] (-1<X<1)    , {D 

-1 

where the integral with symbol   C   signifies its Cauchy principal value,  so 

that  u   and   v  minimize the functional 

1 

J[u] =]   £0(u(x), v(x), x)dx    , (2) 

-1 

satisfy   M   isoperimetric constraints 

1 

Jju] =\   ^(uCx), v(x), x)dx = const.   = Cj       (i  = 1,2,   .   .   .   , M) 

-1 (3) 

and satisfy the conditions near the end points   x = ± 1, 

u(x) = u^{x)/(x-ck) K     K    .       0^ttk<l (k = l,2)     , (4) 

where c =-!, c =1, i= /-I, a, and ß, are real constants and u^x) 

satisfies the ^-condition' near and at c, , If u is required to vanish at 

x = ± 1,   the end condition 

u(-l) = 0 and/or        u(l) = 0 (5) 

is a special case of (4) when u^dbl) = 0   and  u^x)   satisfies thei^tyi > a, )- 

condition.    The fundamental function  f     and the constraint functions   f, 

are assumed to be at least twice continuously differentiable with respect 

to their arguments   u   and   v,    and continuous in  x,   but are otherwise 

^ A function  u(x)   is said to satisfy the Holder^ (^l)-condition on path 
L(-l < x < 1)  if, for any two points   x ,x     of L-Jufr )-u{x )|^ AJx -x |M , 

12 2 1 2      1 
where  A  and pi   are positive real constants,   A  is called the Holder 
constant and fi   the Holder index. 
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arbitrary.    The notation   H [u]   for the finite Hubert transform of  u,    as 

defined in (1), will be used throughout.   It may be remarked here that the 

solution of a maximum problem can be deduced from this minimum one by 

changing the sign of the fundamental function in (2). 

The Holder condition/^(pi)     on  u(x)f   with specific index  p,    and 

the end conditions (4), or (5), are generally required on physical grounds. 

Analytically, it is known (see, e.g., Muskhelishvili 1953, §20) that if the 

Holder index of  u   is   /X < 1,   then  v(x)   given by (1) is also Holder con- 

tinuous for   -1 < x < 1,    with  fl < I.   In addition, near the end points 

x =±1, 

v(x) = T u(+l)log(x±l) + v^x) (ff+iß = 0,     u(Tl) 4 0)    , 

= ± (cot(a+ißhr)uJ±l )/(xTl)ö'+iß +vAx)      (cH-iß ^ 0)    , 

(6) 

(7) 

where   vs}c(x)   satisfies the ^/-condition near and at   c = -1   or   1   in the case 

of (6) and also in the case of (7) if   a = 0;   however, for   0 < a < 1   in (7), 

v^x) = v^xjjx - c|     ,   with   a   < a   and  v^x)   satisfies the ^/-condition. 

Thus,   v(tl)  will be bounded either when  u(:fcl) = 0   or when   a = y , $  =0. 

If both  u(±l)   and   v(±l)   are required to be bounded,  condition (5) must be 

enforced. 

The original problem is equivalent to the minimization of a new 

functional 
1 

I[u] = \ f(u(x), v(x),x; \ ,\ , 
KJ 12 •   •« ^M)dx 

-1 

with 
jyi 

fKv.x;^,   .   .   ., \M) = fo(u,v,x) -^  Xi[fi(u,v,x)-Ci] 

M 

i=l 

(8) 

(9) 

where   u(x), v(x)   are related by (1),   \,  .   .   -Aw   are undetermined 

Lagrange multipliers.    We define an admissible function as any function 

u(x)   which satisfies the Holder condition ^ (^ < 1),   the isopermetric 

constraints (3), as well as the prescribed end conditions (4) or (5); and we 

define the optimal function as an admissible function which minimizes the 

functional  l[ u]. 



3.    The Necessary Coaditioas of Optimality 

Let  u(x)  denote the required optimal function.    A function  6u  will 

be called an admissible variation if, for all sufficiently small positive 

constant  € , u(x) = u(x) + cöu(x)  is an admissible function.    The variation 

in  v  which coi-responds to an admissible variation  öu,    such that 

v(x) = v(x) + cöv : 

transform of 6u, 

v(x) = v(x) + c6v = H [u] = H [u + «öu] ,    is found from (1)  to be the Hilbert 

6v(x) = Hx[6uJ (-l<x<l)    . (10) 

If  6u   is an admissible variation, then  l[u+€^u.j   is a fimction of  e   which 

has an extreme value when   e = 0. 

The variation of the functional  I  due to the variations   6u   and 

6v   is 

AX = \    f(u+€6u, v+e5v, x)dx - \ f(u, v,x)dx     . (ID 

-I -I 

For sufficiently small  € ,    expansion of the above integrand in Taylor's 

series yields 

AI = c6l + ^- 62I+ ^ Ö3I + .   .   .   , 

where the first variation   61   and the second variation  Ö2I   are 

(12) 

6l[u,6u]=J  (fu6u+fv6v)dx     ,  * (13) 

62l[u.6u] = J   [f^öuf+Zf^ußv + f^öv^Jdx    , (14) 

in which the subindices denote partial differentiations, and   6v   is given 

by (10).    The variations   61, 62I,  .   .   .    depend on   6u   as well as   u.    For 

l[u]   to be minimum, we must have for all admissible variations   6u, 

öl[u,6u] = 0    , (15a) 

„^. /. • 



and 

62l[u,6u] >0    . (15b) 

Equation (15a) assures that  I   is extremal, and with the inequality (15b), 

I  is therefore a minimum. 

As   6u   and  öv  are related by (10),  substitution of (10) in (13) 

reduces (15a) to 

1 

61 = ]  (fu -Hx[ fv] )öu(x)dx = 0 (16) 

-1 

after interchanging the order of integration, which is permissible (see, 

e.g.,  Tricomi 1957,  §4. 3) if the functions   f (u,vfx)   and  6u(x)   belong to 

the classes   1.  and   L   ,    respectively (in the basic interval   -1 $ x^ 1), 
i 2 

and if 

This condition will be tacitly assumed to be satisfied.    Since   6u(x)   is 

otherwise arbitrary, the factor in the parenthesis of the integrand in (16) 

must vanish identically for    |x| •£ 1,    giving the following singular integral 

equation of the Cauchy type, 

,   c1  f {u(t),v(t^) 
fu(u(x),v(x),x) = Hx[fv] = ig:     v     t _ x    dt    (|xUl)     .     (18) 

-1 

This integral equation is analogous to the Euler differential equation in 

the classical theory of calculus of variations when the fundamental function 

is of the form  f = f(y(x), dy/dx, x).    Equation (18) is generally non-linear 

in  u(x)   and  v(x)  unless   f   is a polynomial of second degree in  u   and   v. 

The extremal solution is determined by solving the pair of coupled singular 

integral equations,  (18) and (1), under conditions (3) and (4).    Satisfaction 

of (18) is a necessary condition for the existence of an extremum of   l[u]. 

We now suppose that (18),  (1),  (3) and (4)   can be solved for an 

extremal function  u(x;C ,   .   .   ., CM),   which involve the constants of 

constraint   C,   .   .   ,, CM,    as parameters.    Under what condition does 

this extremal solution satisfy the inequality (15b),  so that it actually provides 



a minimum of  l[ u] ? 

In order to answer this question, we examine the second variation 

6^.    Consider the case in which  f    (u.v.x), f    (u.v.x), £    (u,v,x)   and 

6u(x)   are all Holder continuous on   (-1,1),    and they belong, respectively, 

to the classes   L    ,   with   p.    so limited that interchange of the order of 

the following integrations can be justified (see (17) ).    The second term on 

the right-hand side of (14) can then be written as 

2 j   fuv(u, v. x)öu(x)6 v(x)dx = 2 ]    ^(u, v. x)6u(x)Hx[ 6u(t)] dx 

-1 

1 .-> 
= ' 2 i    Hx[ fuv(u'v't)6u(t)] 6u(x>dx 

-1 

i i* r1 f
liv(u(x).v(x).x)-f (u(t).v(t),t) 

= -J   J:   -^ t_x
UV   6u(t)6u(x)dtdx 

-1 -1 

The first step follows from substitution of (10), the second step is a result 

of interchanging the order of integration, and the last step is the mean of 

the two preceding lines.    By similar operations, the third term in (14) 

can be written 

1 1 

J    fvv(u,v,x)[6v(x)]2dx=|   f^Cu.v.x^IöumJiySuWldx 
.1 .1 

1 

= - j Hjf^u.v.tjH^s)] ]6u(x)dx 

ff 1   f1  Hx[fvv]-Ht[fw] 1 -] {wu'v'x)6uw+ ^        t!x - -   **wf 

where, in the last step, use has been made of the Poincare-Bertrand 

formula, 



a a a a (19) 

(see, e.g., Muskhelishvili 1953, §23).    Combining the above results, (14) 

becomes 
1 1    1 

6a[=J   g(x){6u(x)}2dx- lj    j    MÜ±W 6u(t)6u(x)dtdx    . 

■1 ■1   "1 (20a) 

where 

g(x)=£uu(u(x)>v(x),x)+fvv(u(x).v(x).x)    . (20b) 

h(x) = fuv(u(x).v(x),x) + Hjf^^s), v(s), s)]     . (20c) 

Since   f    ,f       and   f       are assumed to be Holder continuous in   (-1,1), 
uu' uv w 

g(x)   and  h(x)   are also Holder continuous in this interval (with the pos- 

sible exception of those end points at which   f    (u,v,x) t 0);   i.e., for any 

two points   x ,x   in the open interval   (-1,1), 

|g(x2) - g(xi)| « Ai|x2 - x |   1        (0^ fi^ 1,   A^ 0)    , (21a) 

|h(x) -h(x)| < A|x  -xf2 {0411 < I,   A> 0)    . (21b) 
2"    2 1' "22 

Now consider a special choice of  6u(x), 

6u(x) = BU(e)    , | =(x -xo)/€      , (22a) 

where   ü(|)   is Holder continuous and 

0<U(eKl (!el<l,     or   |x-xo|<£)    , (22b) 

U(e) = 0 (|el>l.     or   |x -xrt| >€)    . (22c) o" 

x     is any fixed point in the open interval   (-1,  1),    and   «   is arbitrarily 

small so that   |x   ± « | < 1.    B^ the bound of   6u(x),   is either positive or 

- .,, .,.»»..•. 
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negative, and is chosen so small that 63 I, 6*1, etc. , Cein be neglected in 

comparison with 62I. (For instance, B = 0(e ), a> 0, will be sufficient; 

the explicit form of  U{|)  is immaterial.)   With this choice of   6u,    (20) 

can be written, by adding and subtracting a term,  as 
x +e . o 1 

62I = g(xo)B2 ]        U2 (e)dx + R _- g(xo)B2€ j U2(e)de + R    , (23a^ 

where 

x  -c 
o 

X   +€ X   +« 
O       , O 

R=£    {[g(- )-g(xo)]6u(x) -1] h(t)-h(x)   6u(t)dtl6u(x)dx     ,      (23b) 

x -e x  -€ o o 

Using the inequalitits (21),  (22b, c), we obtain the bound for the remainder 

R   as 

1-41  r»        ß 1-tyl   ^ p1 fx-l 
|RUAB2e       lj   |||   »^(Ddl+AB2*      2j   j    h-e|2    U(e )U(TI )de d^ 

-1 '' -1 -1 

f2AB2\   l-f^t    /   2AB2\ liAB'-X   l^i     i   ZAB' 
^2 (2c)       2      . (23c) 

In the limit as   e "*0,   the first term on the right-hand side of (23a) dominates, 

hence a necessary condition for   62I> 0   is that   g(x )> 0   for every 

xo6(-l.l),    or 

•   fuu(u(x),v(x),x)+fvv(u(x).v(x),x)>0 (.1<X<1)     . (24) 

This condition,  first derived by one of the authors (AKW 1969),  is 

analogous to the Legendre condition in the classical theory of the variational 

calculus. 

Equation (24   „s a necessary condition to be satisfied by a minimiz- 

ing function,    A weaker form of this necessary condition is   f      + f     > 0, 

meaning that the second variation   62I > 0   is still ensured if   (f      + f    ) * uu      w 
vanishes at a discrete number of points of the extremal function but is 

positive everywhere else. 

It may also be noted, by analogy with classical variational problems. 



11 

(see, e.g. Courant and Hilbert (1953), Chap. IV, §6), that strict inequality 

in (24) is not a sufficient condition for a minimum.    To find a sufficient 

condition we expand  l[u+e6u]   by Taylor's theorem with a remainder after 

two terms.    Thus, 

2 
I[u+€6u] = l[u] + e6l[u,6u] + ^- 62l[u+n€6u,6u] (0<T1<1)     . 

If  u   is an extremal function, i.e.,   6l[u,6u] =0,   then 

2 
I[u-K6u]  - l[u] = ^- 62l[u-ki«-6u,  öu] (0 < T! < 1)     . 

Now suppose that inequality (15b) holds not just for the extremal   u,   but 

for all admissible functions   u.    Then we may set  € = !   in the above 

equation to give the condition 

l[u+6u]  - I[u] = y 6
2
I[U+TI6U, 6u] > 0 (0<TI<1)    , 

which is sufficient to show that the extremal  u   actually minimizes   I. 

Based on the foregoing argument, a sufficient condition for a 

minimum is that the quadratic form, in   6u   and   6v,    in the integral 

representation (14) of   62I  be positive definite for all admissible   u   and 

Su   (and hence all admissible   v   and  6v   by {I) and (10) ), that is 

f     > 0, and      f    f    -f2     > 0 (-1 <x< 1) uu uu vv    uv (25) 

for all admissible   u   and  v.    This simple but rough sufficient criterion 

is a more restrictive inequality than (24). 

4.   Quadratic Functions; the Fredholm Integral Equation 

The least difficult case of the extremal problems in this general 

class is when  l[u]   is a quadratic functional, or when   f   in (8)   is quadratic 

in  u   and  v,    since the integral equation (18) is then linear in  u   and  v. 

It is instructive to investigate this case first,  since the system of singular 

integral equations (18) and (1) can then be reduced to a single Fredholm 

integral equation of the second kind, or, in certain special cases, the 
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method of singular integral equations can be employed to obtain an analyt- 

ical solution in a closed form.    These solutions provide a basis for 

comparison with some approximate methods which may have a general 

utility for more complicated non-linear problems.    Moreover, the linear 

formulation can often be used as a first approximation of an originally non- 

linear problem with appropriate modification of the isoperimetric constraints. 

Let the functions   f     and   {.   in (2) and (4) be given by 

f (u, v.x) = a u2 + 2b uv + c v2 + 2p u + 2q v     . (26a) o o o o o o 

fj(^.v,x) = a.u2 + 2b. uv + c.v2  + 2p.u + 2q.v     (i=l,2,   .    .   .M)    ; 

(26b) 

the coefficients   a  ,b  ,c   ,   .   .    .   . q.,   are known functions of   x,    as- o    o    o ^M 
sumed to be Holder continuous (with index   0 < fi < 1) in (-1,1).    Then the 

function  f   in (8) becomes 

f(u,v,x) = au2+ 2buv + cv''+ 2pu + 2qv     , (27) 

where M 
t— - 

a(x) = ao(x) - >   \iai(x)    , etc. (28) 

itl 

The integral equation (18) now reads 

a(x)u(x) +b(x)v(x) + p(x) = H [bu + cv + q]        (|x|<l> (29) 

The necessary condition (24), obtained from the consideration of the 

second variation, becomes 

a(x) + c(x)>0 (|x| <1)    , (30) 

which can be checked only when the   \ 's   in (28) are determined. 

The coupled integral equations (29) and (1), both of the Cauchy 

type, cam always be reduced, under certain assumptions, to a Fredholm 

integral equation of the second kind, with a regular,   symmetric kernel. 



13 

The reqviired assumptions are that the coefficients   a.b <1, as 

well as the solution  u,v,    are Holder continuous on (-1,1), and that   c(x) 

and  u(x)  belong to the classes   L      and   L   ,    respectively, in the closed 
Pi 2 

interval   [-1,1],   with  p   and   p    satisfying (17).   In fact,  substitution of 

(1) in (29) yields 

a(x)u(x) + b(x)Hx[u]  - Hx[bu]   - Hx[c(t)Ht[u] ] = H^q]  - p(x)     . 

(31) 

The second and third terms on the left side of (31) combine to give 

bWH.tul-Hjbul^-iy   StthüÜL u,.,«    . 
-1 

Under the aforementioned assumptions, the last term on the  left side of 

(31) can be rewritten, using the Poincare-Bertrand formula (19),  as 

I 1 

-Hx[c/t)Ht[u] ] = c(x)u(x) + 4 ]   u(t)dt^   ^^.x)        ■ 
*    -1 -1 

Thus, (31) reduces to 

{a(x)+c(x)}u(x) + ^    K(t,x)u(t)dt = Hx[q]  -p(x)      (Ul < 1)    , (32a) 

where 

*      -1 

If we assume that condition (30) is satisfied, we may define a new variable 

u(x) = {a(x) + c(x)}Iu(x)    , (33) 

in terms of which (32a, b) become 

I 

u(x) + ^   K(t,xMt)dt = {a(x) + c(x)}"I{Hx[q]  - p(x)}       (|x| < 1)    , 

-1 (34a) 

with 
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K(t,x) = {a(t) + c(t)}'2 {a(x) + c(x)}"2 KCt.x)    . (34b) 

This is a Fredholm integral equation of the second kind, with a regular 

symmetric kernel, for which a well-developed theory is available.    The 

kernel and the right-hand side of (34a) will, in general,  contain unknown 

Lagrange multipliers.   Ideally, the integral equation can be solved first 

for arbitrary values of   X.'s,   which can then be determined by the   M 

constraints (4).    Finally,  condition (30) should be checked. 

5.    Analytical Solutions by the Method of Singular Integral Equations 

In the general case when the coefficients   a, b,    and   c   are 

arbitrary functions of  x,    the solution of the system of singular integral 

equations (29), (1) has not been found in closed form (for a general discus- 

sion, see Muskhelishvili 1953,  Part IV).    How    er, when the coefficients 

a, b, c   satisfy certain conditions, the system of equations (29) and (1) 

can be reduced in succession to a single singular integral equation of the 

Carleman type, which can be solved in turn by known methods, yielding 

the final solution in closed form.    These analytical solutions are of great 

interest,  since in their construction there are definite degrees of free- 

dom for choosing the strength of the singularity of the solution  u(x)   at 

the end points   x =± 1.    With these possibilities, the singular behavior of 

u   and v   near   x =± 1   can be explicitly analysed.    The following are 

several cases of fairly general interest. 

Case I 

a(x) + c(x)>0,       b(x) = bo± (ac)2.       (|x|<l)    , (35) 

i 
where   b     is a constant,  and the function   (ac)2   stands for a definite 

(say positive) branch.    The first condition of (35) is just the necessary 

condition (30) for the optimality,    b(x)   assumes either of the two expres- 

sions. 

Multiplying (I) by   b     and subtracting it from (29), we obtain 

a2
V:fc(x) = Hx[±c%:t] +4'(x) (|x|<l)     , (36a) 
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where 

^±{x) = a^u + c^v    . »|<(x) = Hjq] - p(x)    . {36b) 

i 
In (36), the upper   (+)   sign is for   b=b +(ac)2,    and the lower   {-)   sign 

for   b = b -(ac)2.    We note that the two cases in (35) are the only form of 

b   for which (29), with the aid of (1), can be reduced to an equation for a 

single variable  ^     or   ^   .    Now, (36) is a singular integral equation of 

the Carleman type, the general solution of which is known (see,  e.g. , 

Muskhelishvili 1953, Tricomi 1955).    The solution of (36) is found to be 

.Li^       MX) Jl £   c2(tW '^5  TJt) 
a,  fx\ - a ^(x)   .   Jfc^lJ 1 X-   c2(t>i»(t)dt       -fc .   . 
^(X) --i+T- * ^+C~^5    Z^(t)(t-x)   + Im(x) ► (|x| <1) (37) 

where   P      and   P      are polynomials in  x   of degree   m, 

Z:t(x) = (l+x) Ml-x) 2(a+c)2exp{±r(x)}     , {38a) 

r(x)= ^- Hx[logG(t)]     , G(x) = (a2+ic2)/(a2-ic*)    . (38b) 

and  n, n   are integers to be chosen, together with integer   m,    accord- 

ing to the following rule.    The function   log G{x)   stands for a definite 

branch (say its principal branch) and is one-valued on   [-1,1],    Since   a 

and   c   are assumed to be Holder-continuous and since   a + c > 0   on 

[-1,1],   clearly   G(x) <: 0, oo.    Consequently,    r(x)  will be Holder-con- 

tinuous in the open interval   (-1,1),   but may have logarithmic singular- 

ities at the end points   x = -1, x =1,   unless   logG(x, ) = 0.   In general, 

r(x)=(7kloglx-xk| +ro(x) {k = 1.2)    , (39a) 

^^k + H^OT10^^    ' (39b) 

where   I (x)   remains bounded near and at  x, .    Hence, by (38), 

n ±cr n ±cr 
Z (x) = Wj(x)(l+x) 1     Ml-x)2     "        , (40) 

where   w (x)   are nonvanishing functions in   [-1,1]. 
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Now the integers   n, n   are selected to satisfy either of the con- 

ditions 

-l<nk±^k<0     , {41a) 

0 4nk±(ik<l (k = 1.2)    , (41b) 

i 

in which the upper   (+)   sign is for the case   b = b    + (ac)2 ,    and the lower 

(-)   sign for   b=b    - (ac)*.    The values of   n, n    so selected may be 

different for the two end points   ( k = 1, 2).    Condition (41a) is for an end 

point at which   Z  (x)   may admit a branch-point type (but integrable) 

singularity, whereas condition (41b) insures   Z (x, ) = 0,    as may be 

required on physical grounds. 

The selected  n   and   n   determine the "end-point index" 
1 2 

K = -(n+n2)     , (42) 

which dictates the degree   m   of the polynomial   P    (x): 

(i)   For   *c ^ 0, P    (x)   can be taken an arbitrary polynomial of degree 

m4K - I     ,       if    K>0    ;       and      P    (x) = 0     ,       if   K = 0     , 

(43) 

(ii)   For   K < 0, P    (x) = 0,    and the solution is valid if and only if the fol- 

lowing orthogonality conditions are satisfied by  ^ (x): 

1 

| tic2(t)[^(t)/Z±(t)]dt = 0 (1 = 0,1.   .   .   .   .  -(K + 1) )     . 

-1 (44) 

With  ^  (x)   so determined,    u(x)   can be solved in succession by 

substituting (1) in (36b), giving 

a2(x)u(x)± c2(x)Hx[u(t)]  =^±(x) (|x| < 1)     , (45) 

which is again a singular integral equation of the Carleman type.    The 

generell solution of (45) is 

. .^.«-iViill^-,;;, i."aiM»ft ■■':&> , ■ 
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u(x) = 
a>. (x) ±  

a+c 

i 
c2ZT(x) 

a+c 

(.   } 0{t)dt \ 
(|x|<l)     (46) 

where  Q    (x)   are polynomials in  x   of degree   m,  Z     being the same as 

given by (38).   In this solution, the integers   n ,n   in the expression for 

Z     and the degree   m  of Q      are determined as before.    Finally,  sub- ± m 
stituting (37) in (46), and making use of the Poincare-Bertrand formula 

(19), we obtain the solution 
i 

u(x) = 
a+C        (a+c)2!  XL^ 1 

/*    Z±(s)ds 

:2Z^  < 

a+c H .[^ (a+c)Z + Q3 

m 

c2(t>|<(t)dt i  
Z±(t)(t-x)   J    Z^sKa+c) l^ 1 

s-t + H ±   m 
Z^a+c) 

(47) 

>. 

i i 
in which the upper sign is for   b = b    + (ac)2 ,    and the lower for   b = b   - (ac)2 

The corresponding   v(x)  is determined from (1) upon substitution of  u(x). 

Note that this solution remains valid even when   a(x)   and   c(x)  become 

zero or Negative in   [-1,1]   as long as   a + c > 0   over the entire interval. 

The final, and perhaps, most crucial step is to examine the be- 

havior of  u   and   v near the end points   x = ± 1,    and to ascertain if certain 

physically required end conditions can be satisfied by the analytical solu- 

tion.    This task is greatly facilitated by the fact that the solution is expres- 

sed in an explicit, closed form, as given by (47), in this case.   In fact, 

taking the principal branch of   logG(x),    we see that   -n < argG(x) < ■n 

for   a(x) + c(x)> 0   in   |x| < 1.    Hence, by (39), we find the bounds 

-2'<:ft<0, 0«(i<|,    and by (40), 

n ±|i n ±y 
|Z±{x)|  = |«±(x)|(l+x) 1    Ml-x) 2    2 (48) 

According to rules (41a, b), any one of the following three cases for the 

solutions  <p   and  u   are possible: 

(i)  n = 0, n = 0 /« = -(n + n ) = 0).    Then   P*   = 0, Q*   =0,    and   Z Ax) 
iz 12 mm' + 

singular at  x = -1,  Z (x)   singular at  x = 1; 

is 

m'$Mli*he£M*tp&^':'r'!* '" 
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(ii)  n = 0, n = -1   for   Z  ,    and   n = -1, n = 0  for   Z_f   both correspond- 

ing to  K = 1,,   thus permitting   P^    amd Q^    to be nonvanishing con- 

stants, with the resulting  <p     and  u  both singular at the two ends 

x =i 1; 

{jii)n = 1, n = 0  for Z,,   and  n = 0, n = 1   for   Z  ,   both selections 
12 +                1          t2        * 

corresponding to if - -1, so that   P     = Q     = 0;   a solution which is r          6 '                     mm 
regular at both  x = ± I   is possible if and only if 

I I 
i c 

c2(xH(x)/Z:|:(x)dx = 0 ,       and    j    ^(x^Z^Cx^ = 0     .     (49) 
I .1 

The last condition can, of course, be released if   c(tl) = 0.   If, in addition 

to (49), 

4'(+l)=^{-l) = 0    , (50) 

then by (37) and (46),   ? (±1) = 0   and  u(±l) = 0.    The corresponding 

solution of  v(x)  will then be bounded at  x = ± I. 

Therefore, existence of solutions of type (iii), with both  u(x), 

v(x)  Holder-continuous in   (-1,1)   and bounded at x=±l,   depends on the 

satisfaction of conditions (49) and (50) on  a, c,p   and  q. 

Case II 

a(x)> 0    ,       b = const.     ,       c = 0    . (51) 

This is a special limit of Case I; the solution is easily deduced from (47) 

to be 

u(x) = i|/(x)/a(x) (|x|<l)    , (52) 

This result is also obvious from the original equations (29) and (I). 

Boundedness of the solutions for   u   and   v   now depends on condition (50) 

only. 

Case III 

a(x) = 0    ,       b = const.     ,       c(x) > 0    . (53) 

.^a^iiv^^^^-'-"-'-^ -■i^-' ---vrf-.^-^ .■■■>■■ - 
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This is another special limit of Case I.   In this limit,   log G{x) = iir; 
1 i 

hence, by (38), expT = (l-x)2(l+x)2 .    The corresponding solution for   u 

is 

1     ^ ^ {54a) 

where 
i 

X(x) = c"2Z =(l+x) l  "(1-x) 2 . (54b) 
n +2 n -2 

This result can be deduced from (47), or it can be obtained directly from 

(I) and (29). 

Case IV 

a, b, c = constant      , a + c > 0    . (55) 

This also belong to   Case I since it is always possible to find a 

constant  b ,    suchthat  b =b   + (ac)2   when  a,b,   and   c   are constants, o* o     ' '   ' 
Since   G,   as defined by (38b), is now a constant, we have in this case 

i n To n iff 
Z±(x) = (a+c)2(l+x) '     (1-x) 2 (56a) 

where 
7 i        i i        i 

a = ^i + iv = J~r log[ (a2+ic2 )/(a2 -ic2 )]     . (56b) 

As  a   is also a constant, further simplifications of the expression for 

the solution (46) and (47), are immediate. 

6.    The Rayieigh-Ritz Method 

In some physical problems,   u   and   v   are required to be Holder- 

continuous on the closed interval   [-1,1].    This means, in particular, 

that condition (5),   u(il) = 0,    must be satisfied.    When the analytical 

solution can be successfully obtained, e. g. , as in Section 5, the end con- 

ditions (5) can generally be examined only at the final stage.   It is quite 

possible that, on occasion, condition (5) simply cannot be satisfied, as 

will be illustrated later by examples.   It might be possible to remedy 

■■--W-^AÄjsfesi^^fii^aiSfc,,:, !,.,.-■*(. MM*^* -■--*.> Wtvivm-t'.. 
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this situation by enlarging the class of acceptable functions and by modify- 

ing the isoperimetric constraints so that a solution of some physical 

significance is reached.   Such tasks may indeed constitute the major 

difficulties in the actual solution. 

In case both  u   and   v   are required to be Holder continuous on the 

closed interval   [ -1,1],   we have seen that condition (5),    utfcl) = 0,    raust 

be imposed.    An approximating procedure for this case can be developed 

by employing the Rayleigh-Ritz method (or the closely related Galerkin 

method), which has been used with great success in other variational 

problems, especially for numerical solutions.    This method is applicable 

to those variational problems which satisfy the sufficient condition (24) 

or the more restrictive condition (25).    The central idea is the construct- 

ion of a sequence of comparison functions that forms a minimizing sequence. 

A sequence   u ,u .  .   .   .   , u , .   .   .    of admissible functions is called a 
12 n 

minimizing sequence for the functional  l[u]    if  l[u ]    converges to the 

minimum value  l[ ü] ,   where   u = lim u     as   n -♦ oo ,   with 

I[Ü]^I[Ü]>.   .   .^I[ün]^.   .   . ^I[S]     . (57) 

whether   l[ ü]    is a minimum which is actually attained for a function 

u = u   remains an open question, the answer to which depends, in particular, 

on whether the end conditions   u{tl) = 0   can eventually be satisfied. 

To construct a minimizing sequence, we start with a complete 

system of fixed "coordinate" functions  <p (x), <p (x),  .   .   .   ,   which are 

Holder continuous on   [ -1,1]    and   <p  (tl) = 0 (n = 1, 2,   .   .   . ),    so that 

all linear combinations 

un(x) = Y^ + Y2V .   *   '  +Vn     ' {58) 

where   v ,  .   .   .  , Y     are   n   constant coefficients,  are admissible 

comparison functions for the problem.    The requirement that   l[u ] =1 

be a minimum presents an ordinary minimum problem for   l[ u ]    as a 

function of the   n   parameters   y , V .  •   •   •   »"Y   •    which are determined 

by the simultaneous algebraic equations   9l[u ]/dy, = 0 (k = 1,2,   .   .   .  ,n), 

or more explicitly, when expressed in terms of (8), 
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{fu-Hx[fvJ}       9.k(x)dx = 0 (k=1.2,   .   .   ..n)     . (59) 
. u=u -1 n 

Note that the expression within the curly bracket, if set equal to zero on 

[ -1,1],   yields just the Euler equation (18).    This system of equations 

for  "Yi^'s   can always be fulfilled, at least in principle according to 

Weierstrass's theorem, provided  l[u ]   is a continuously differentiable 

function of  y.'s   (we have assumed that this is the case).   However, when 

f     and   f     are nonlinear or transcendental in  u   and  v,    determination u v 
of the   Yi.'8   from (59), by numerical methods or otherwise,  can be 

extremely difficult, particularly when  n   is not small.    Let 

Y , y ,  .   .   .   , \"    be the solution of (59), and set 

n n 

v=Ivk<x> >    vIv^J • <60> 
k=l k=l 

When the fundamental function  f   satisfies the sufficient condition (25), it 

is obvious that  ifix 1 ^ if u 1.    From this it follows, by setting   u   =u      , 1   nJ       "^   nJ '    7 6     n     n-i' 
which is always possible, that l[u ] ^ l[ir ], and hence (57) is satisfied. 

Therefore, the sequence u , ü , . . . given by (60) is indeed a minimiz- 

ing sequence. 

The complete set of coordinate functions can be chosen in various 

ways.   Particularly suitable for the present class of problems is the trigono- 

metric functions   <p  (x) = sinnö (x = cos 9, n = 1,2,   .   .   .),    since both 

u     and  v     then become simply finite Fourier series: n n r 7 

n n 

u   =/   y.sinkö     ,       v    =-/  Yk
cos k6       (0 ^ 0 = cos" x<: ir)     .(61) 

k=l k=l 

This is equivalent to expanding   u     and   v     in series of Tchebichef 

polynomials, 

n n 

u^xJMI-x^^YkU^x)    ,     vn(x)= -^ykTk(x)    (|xUl)     ,(62a) 

k=l k=l 



22 

where 

U       (cos 0) = sin n9/sinfl     ,     T (cos0) = cosne       tn=l,Z,   .   .   .) n-i n 

(62b) 

Tricomi {19**) also employed expansions in series of a Jacobi polynomial 

pi  »P'(x)  naultiplied by its weighting function   (1-x) (1+x)".    Another 

complete set of functions vanishing at  x = ±1   is the polynomials 

(p    =(l-x2)x      (n = lf2,   .   .   .);   the corresponding expression for   v  , 

however, is more lengthy. 

For quadratic functionals, the problem of determining the   y^'s 

reduces simply to a linear algebra.   In fact,  substitution of (27) and (58) 

in (59) yields 

n 

YKJJ^LJ 0 = 1,2.   .   .   .   ,n)     , (63a) 
k=l 

where, with suitable rearrangement of terms by interchanging the orders 

of integration. 

KM, = J   {^k+b(^jHx[<Pk]+pkHx[«»j]>fcHx[v>j]Hx[?>k]}(ix     , (63b) 

■1 

1 

L. = - \   {pp.-HjH [<?.]}     . (63c) 
J        »/ J       x    j 

-1 

Clearly,   K.,   =Ki{.--   In particular, when  ^, (cos 0) = sink0,    we have 

K.k = \ {asink0sinj0-bsin(k+j)0+ccosk0cosj0}sin0 d0     , (64a) 

o 
T- 

I 

L. = \ {qcosj0-psinj0}sin0 d0     . (64b) 

The solution  y,'s   of (63) contains   M   multipliers   (X.   ,  .   .   .   ,  ^w), 

which can be determined,  in principle    when   n > M, in terms of 
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«v ,Cl#,   by the   M   constraints (3). 
M 

Success of this method in any particular case will depend on the 

proper choice of coordinate functions   tp'    and on the convergence of 

u   -*-u  as   n-*-oo.    Whether the minimizing sequence itself converges to 

the solution  u   (i.e.   u = u) i« a difficult theoretical question.    In many 

cases this method may still prove useful for numerical calculations even 

though its convergence to the "exact solution is unproved.    The method will 

be illustrated by examples and compared with known analytical solutions 

in the next section. 

7.   Examples ' 

The following examples are selected to exhibit the main features 

of the optimum solution.    Several other problems of physical significance 

will be considered more fully elsewhere. 

Example 1 .    The functional 
'V 

J[u]  =J   [.u2(x) - 2Trx3u(x)v{x)]dx     . (65) 

-1 

with   u   and   v   related by (1),  is to be minimized subject to the constraint 

(66) J   [u]    =   \     U(x)dx   rz   1 

-1 

Here we have by comparison with (27), (28), 

a = I     ,     b(x) = -nx       ,       0 = 0, X     ,       q=0    .   (67) 

This set of coefficients does not coincide with any of the special cases 

discussed in Section 5.   In this   case, however, it is still possible to 

obtain a solution in closed form since the associated Fredholm integral 

equation (32) is particularly simple, 

i 
u(x) + \   K(t,x)u(t)dt = j \ 

-1 
(W<1)     , (68a) 
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where 

K(t,x) = (^-^^(t-x) = 1^+ tx +X2     , (68b) 

which is a Pincherle-Goursat kernel.   Hence    u - y X.     must necessarily 

be a quadratic function of x.   In fact, we find 

u(x)= ^|\(| - 3X2]     ,       X= 89/45    , (69) 

tHs value of  \   being given by condition (66).    The corresponding   v  is 

(70) vlx) = HJu]^.^]log^.6x}    . 
Finally, upon substituting the solution (69), (70) in (65), the minimum 

value of  J   is 

Jo = j[u] = 89/90 = 0.9888   .... (71) 

In this specific example it is noteworthy that the logarithmic 

singularities of  v   at the end points   x =± 1   arise from the fact that 

u(±l) £ 0.    We further note that the values of  u(±l)   depend on the co- 

efficients listed in (67), whereas condition (66) affects merely the uniform 

scale of  u(x). 

Although the exact solution shows that   v(x)   is logarithmically 

singular at  x = ± 1,   it is nonetheless significant to investigate how 

accurately the minimum value   J     can be predicted by approximate solu- 

tions of   u   and   v  that are Holder continuous on   [-1,1].   Since   u(x)  must 

be even in  x,   we choose the n-terms approximate solution as 

u (cos0) = 7  y1rsin{2k-l)e 

n 

k=l 

vn(cos0) = -)   vkcos(2k-l)e 

ktl 

(72) 

Condition (66) requires that  y = 2/ir  for all  n.   Let  J     be the minimum 

/alue of  J[u ]   found by minimizing the quadratic functional   J[u ]   with 

respect to  y ,Y , . Y  .    We obtain the following numerical results 

shown in Table 1.    The   y,'s   in the last row of Table 1 are the Fourier 

components of the exact solution 
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V.   = - \   u(co8 6)8in{2k-l)0 d0    . 

where   u   is given by (69).    These numerical results exhibit the increasing 

accuracy of  J     predicted by the Holder continuous solutions   u     and  v  , 7 n   r ' n n 
as   n   increases.   In fact, the error of   J    =J[ü],   by comparison with 

the exact solution of  J     of (71), is already as small as 0.1% for   n = 3. 

Although the convergence of the coefficients   y.    to the Fourier components 

of the exact solution is less obvious, particularly for   k   large, plots of 

u{cos 0)   and  u-o(co8 0),   for example,  show very little difference except 

near the endpoints   0 = 0,IT(X =± 1).    The same holds true for   v(cos 0) 

and  vio{co8 0),    although now the discrepency at the endpoints is more 

pronounced since   v   in (70) is logarithmically singular as   x -*± 1. 

Example 2 

The second example is to minimize 

subject to 

1 
/■» 

J[u] = \   {u2(x) + kv2(x)}dx 

-1 

1 

J [u] = \   u(x)dx = 1     , 

-1 

(73) 

(74) 

where   k  is a real constant,    k> -1,   in order that the necessary condition 

(30) is satisfied. 

In this case, we have, by comparison with (27), (28), and (36b) 

a = l     ,       b = 0    ,     c = k    ,     p = -T\     ,       q = 0     ,     ty = 7 \     . 

This belongs to case IV treated in Section 5.    Thus, by (56), 

i n Tcr n ±cr 
ZJx)= (l+k)2(l+x) '    (1-x)2 (|x|<l)     , 

(75) 

(76a) 

where 
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a = u = - tan'1 k* (k>0) {76b) 
r IT 

= iv=  J_ log{[l+(-k)^]/[l-(-kn} (-•l<k<0)    .       (76c) 
fail 

A quick check with the end conditions for   k > 0   shows that conditions 

(49), (50) cannot be satisfied, implying that the solution cannot be regular 

at both  x = ;t 1,    In fact, by direct calculation from (47), with 

P   = Q     =0.   the optimum solution is found as follows 
m      m       ' r 

i I 
Case (i) k > 0 (tanjiir = k2     ,       0 < pl< j ) 

u(x) = ^ cos^jl^j"+j^)'1[    , (77a) 

v(x) = j X cos 
s ̂ {(^f-lfell ■ '77b' 

This solution is readily verified by taking note of the identity 

which can be shown by a contour integration of   (t-l/tt+l)    (t-x)       en- 

circling the real t-axis from   t = -1   to   1   in the complex t-plane (or see 

Tricomi 1957,   p.  181).    The Lag reuige multiplier   \   is determined by 

the constraint condition (68) to give 

X. = (tanfjnr)/)iiT    , (78a) 

and the corresponding minimum value of   J   is 

Jo = 2" \ = {tanfiir)/(2^r) (0 < fi < i-)     .    (78b) 

Case (ii) -1 < k < 0      (tanh vir = (-k)z     ,        v > 0)    . 

u(x) = j X cosh VTT cos jvlog -r-jp j    , (79a) 

v(x) = «■ X cosh vir coth vir sinjvlog   -^-|  , (79b) 

with 

•'"■■--iv -'1'i-:-;;..,.,,;(;.: .:•«.■■«.^.^'■»-  "'   ■ 
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\ = (tanh VTT)/vir    , (80a) 

and 

J    = i \ = {tanhvir)/(2vir)    . (80b) 
O w 

The above solution can be deduced from Case (i) by analytic continuation 

of the parameter fjL = iv, or it can be verified by making use of the con- 

version formulae 

H x sinlv log TTr-l = " coth vir cos I v log TT--)+ csch w    , 

Hx cosjv log y^-j = coth inr sin |v log j~-j    , 

which can be shown by a contour integration of   (t-1)   (t+1)    v(t-x) 

circumventing the real axis from   t = -1   to   I   in the complex t-plane. 

A third limiting case is k = 0, or c = 0, in which case it fol- 

lows from (52) that u(x) = =- , X. = 1 and J = y . This result agrees 

with Cases (i) and (ii) in the limit as   k -*± 0. 

To compare this solution with the Rayleigh-Ritz method, we choose 

k = - 1/4,   in which case 

J    = 1/(2 log3)~0.455119     . 

The discretized Fourier method, again using the expression (72) gives 

the results shown in Table 2.    The apparent convergence of the Fourier 

series method to the exact solution is again exhibited. 

Acknowledgment 

We are deeply indebted to Professors C, R. DePrima and 

Ouen-pao Wang for stimulating discussions in the early stage of this study. 

This work was sponsored by the Naval Ship System Command General 

Hydrodynamics Research Program, administered by the Naval Ship 

Research and Development Center and the Office of Naval Research, 

under Contract Nonr-220(5I).    A. K.  Whitney also wishes to thank the 

National Science Foundation for its support of his four years of graduate 

study, during which time some of the present work was completed. 

r. 

'i^KÖwiiife'a',* " ^ 



29 

eg 

IT- CO 
M1 <?• 

o C^ a- 
•-I (V p- 

1?- o 
o CO 

l-H p- 00 
rH * m 

. ^ l-H -* (M 
1^ o 

o 
in 
o 
o 

vD 
rH 
l-H 

T»' ra in 
oo (M ri Tf 

. oo r- vO m p- 
1?- in 

o 
o 

• 
o 
o 

00 
o 
o 

l-H 
CO 
o • 

■* r- m in CO 
ao tM CO oo ■^ 

. f- (M 00 o vC m 
1?- oo 

o 
o 

o 
rH 
o 

rH 
O 

M 
rH 
o 

rH 
O 

CO m r- its c^ ■* 
»-4 t^ o vO ■* P- 

vO (M r~ ^ (M p- o 
!>• (VJ m p- oo oo (?• 

•-1 rH l-H rH r- l-H 

O O O o o o 

vO CO CO rH CO N£) 00 
CJ 1—* N ■* in O oo 

. •« oo c^ i—t (M 00 (M m 
>- 00 CO NXJ P- P- oo 00 

t-t (M N fM (M ra <M 
o o o O O o O 

• 
CO vO oo 00 N ■«r a- O 
i—i r- ^o a- m p- r-i o 

■ "* »—t m m o p- l-H ■* m 
?- l-H 00 r-H (M co -* <* •t 

CO CO ■* ^ 't ■* ■"J' ^ 
o o o O o 

• 
o 

• 
o o 

O NO m m M t- o CM rH 

00 t- vO i-f 00 -* o vO O 
.   <*! r~ o o oo sO l-H ■^ m <> 
I> r- o co ■* m v£) vD vO vO 

m vO r- P- r^- r- r~- t>- P- 
o o o o 

• 
o o o o O 

l-H o m N m vO vO o l-H r- 
•* vD in oo o rH CO m CO o 

.   N o CT^ r^ m 's*- 00 O l-H (M co 
|>- in ri vO 00 O a> O O O o 

to 
l-H 

• 
in in 

i-i 
m 
l-H 

• 
in in 

l-H l-H 

NO 
l-H rH 

■ 

NO 
l-H 

(M "* P4 o o in N rH o -t 0^ 
00 o oo ■* r-4 i-i f~ m TP co rH 

00 m l-H m CO tM l-H rH l-H l-H rH 

Ö i               N oo vD in in m m in m m in 
1-5 P- m in in in m m in m m in 

■* ^ Tf •* •* ■* ^ "* ■* •* •* 

o o a o o o o o o o o 
-- +•> 

u 
fit a 

o W a l-t N CO ■* in vD p- oo o-- l-H 

■i ..*i ^^6-.ö>v,.;.:- .to; :■*; i~-.::- • 



30 

References 

Courant, R. and Hubert, D.  1953 Methods of Mathematical Physics. 
Vol. I.    New York: Interscience Publishers. 

Muskhelishvili, N.I. 1953 Singular Integral Equations.    Groningen, 
Holland:   Noordhoff 

Tricomi, F.G. 1951 On the finite Hilbert transformation.   Quart. J. 
Math. (Oxford), 2, 199 - 211. 

Tricomi, F.G. 1955 Sulle equazioni integrali del tipo di Carleman. 
Annali di Matem.  39, 229 - 244. 

Tricomi, F.G. 1957 Integral Equation.    New York:   Interscience 
Publishers. 

Whitney, A.K. 1969 Minimum drag profiles in infinite cavity flows. 
Ph. D. Thesis, California Institute of Technology, Pasadena,  California. 



31 

THEORY OF OPTIMUM SHAPES IN FREE-SURFACE FLOWS 

PARTH. 

Optimum Profile of Sprayless Planing Surface 

by 

T. Yao-tsu Wu, Arthur K. Whitney 

California Institute of Technology 
Pasadena, California 

The purpose of this work is to evaluate the optimum profile of a two- 

dimensional plate producing the maximum hydrodynamic lift   while planing 

on a water surface, under the condition of no spray formation and no 

gravitational effect, the latter assumption serving as a good approximation 

for operations at large Froude numbers.    By employing a recently develop- 

ed theory of variational calculus involving singular integral equations, the 

lift of the sprayless planing surface is maximized under the isoperimetric 

constraints of fixed chord length and fixed wetted arc-length of the plate. 

Consideration of the extremization yields, as the Euler equation, a pair 

of coupled nonlinear singular integral equations of the Cauchy type, which 

are subsequently linearized to facilitate further analysis.    The analytical 

solution of the linearized problem has a branch-type singularity, in both 

pressure and flow angle, at the two ends of plate.    In a special limit, 

this singularity changes its type, emerging into a logarithmic one, which 

is the weakest type possible.   Guided by this analytic solution of the 

linearized theory, approximate solutions have been calculated for the 

nonlinear problem using the method of discretized Fourier expansions, 

and the numerical results compared with the linearized theory. 
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PART II 

Optimum Profile of Sprayless Planing Surface 

I.   Introduction 

The problem of planing surface has received much interest in the 

past as a device for producing hydrodynamic lift, while moving forward on 

a water surface.   Most of the early theoretical studies were based on the 

linearized theory, taking into account the effect of gravity for the range of 

moderate to large Froude numbers, and assuming that the spray sheet at 

the leading edge of the plate is thrown backward in the upstream direction. 

The hydrodynamic drag on the planing surface therefore consists essential- 

ly of two components, one due to spray formation and the other due to wave- 

making, aside from the viscous skin-frictional drag, which is generally 

small.    An exhaustive survey of the literature on the linear theory of 

planing surfaces has been given by Wehausen and Laitone (I960).   A 

crucial limitation of the linear theory, which seems to have escaped 

proper recognition, is that the plate draft (or the height of the plate 

above, or below, the undisturbed water surface) cannot be arbitrarily 

prescribed.    Loss of this degree of freedom may be attributed to the 

preassigned direction of the spray sheet.    This limitation was removed 

by Rispin (1967) and Wu (1967), who developed a nonlinear theory based on 

the singular perturbation method. 

Of all the previous investigations, an important contribution by 

Cumberbatch (1958) may be singled out as the only case in whj.ch the pos- 

sibility was explored for a planing surface to operate,  at a given Froude 

number, without spray formation - - the so-called "smooth entry" con- 

dition.    This state of operation immediately opens up the possibility of 

further drag reduction by eliminating the spray, thereby improving the 

hydromechanical efficiency of planing surface. 

This paper seeks to determine the optimum profile of a two- 

dimensional plate, moving along the free surface of an otherwise un- 

disturbed water, without forming a spray sheet at the leading edge,  such 

that for given chord length and wetted arc-length of the plate, this profile 

will maximize the lift.    For simplicity, the Froude number is assumed to 
be so large that the gravity effect may be neglected as the first approximation, or 
can be evaluated separately in a higher order theory.   The flow is further assumed 
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to be inviscid and irrotational.    Consequently, in the absence of the 

gravitational and viscous effects as well as spray formation, the planing 

surface will encounter no drag, leaving the lift as the only component of 

the hydrod^Tiamic force. 

Aside for its practical value in engineering applications, this 

problem was selected originally as one of the simplest in the general theory 

of optimum shapes involving free surface flows,   a   theory which may 

have a far-reaching significance in its mathematical context.   Generally 

speaking, in this class of variational problems, the functional subject to 

extremization contains unknown argument functions which are related to 

each other by integral equations — a consequence of the very nature of 

the mixed-type boundttry problems.   In particular, for two-dimensional 

potential flows, the integral equation is singular, of the Cauchy type. 

Thus, this situation is in sharp contrast to classical variational calculus, 

in which the unknown argument functions are related by differential equa- 

tions.    Consequently, the Euler equation which results from the considera- 

tion of extremization turns out to be, in general, a nonlinear,  singular 

integral equation.   Since the methods of solution of this equation are very 

limited, more powerful methods are very much desired.    A preliminary 

mathematical study of this new class of variational problems has been 

carried out by the authors (see Part I).    Following the same approach, 

the present problem will be investigated to provide useful solution of 

hydromechanical interest.   It is hoped that this study will stimulate 

further interest in the development of the general theory, and^in turn, aid 

the resolution of numerous fluid mechanical problems of potential useful- 

ness. 

2.    The Problem of Sprayless Planing Surface 

In order to prepare for the formulation of the optimum shape 

problem, we begin with a consideration of the entire class of two-dimen- 

sional plates, planing on a water surface, which is otherwise undisturbed, 

with the plate profiles so adjusted that the entry of water at the leading 

edge of plate is "smooth," i.e. , without forming a spray sheet,  as shown 

in Fig.  1.   It is convenient to choose the body frame of reference so that 

the free stream velocity is   U,    in the positive x-direction.    The resulting 

-■>■■-      .,:.,,,        /-.,. 
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flow is assumed to be incompressible and irrctational.    TheFroude number, 

Fr = U/(g£ )2,   based on the chord length  i    and the gravitational constant 

g,   is taken to be sufficiently large so that the effect of gravity may be 

neglected.    This class of flows is thus characterized by having no spray 

sheet and no stagnation point inside and on the flow boundary, provided 

the plate has a continuous slope. 

By a suitable choice of the origin and magnification, the complex 

potential  f = 9» + i«!*, <p   being the velocity potential and ij*   the stream 

function , is mapped onto the lower half of a parametric  ^ = ^ + ir]   plane 

by 

f = AUC     , (1) 

where  A,    a real positive constant, is chosen so that the plate is mapped 

onto  T^r 0,  - 1 < g < 1,    and the free surface onto  TJ = 0,   | £ | > 1.    The 

physical plane will be denoted by   z = x + iy,    in which the   x   and   y 

components of the flow velocity are   u   and   v,    respectively.   In terms of 

the complex velocity 

w = df/dz = u - iv = qe~ ,     q = (u2 + v2)2     ,     0 = tan"  (v/u)     , 

(2) 

or in terms of the logarithmic hodograph variable 

w = log(U/w) = T + 10     ,       T = log{U/q)    . (3) 

the Bernoulli equation reads 

P - P0 = j P(U2 - q2) - j pU2(l-e"2T)     . (4) 

p  being the pressure,    p     its free stream value, and   p   the fluid density. 

On the free surface   (^ = 0), p = p  ,    hence 

T"(e) = T(e,o") = o        (iii>i) . (5) 

On the plate, we denote the boundary value of  ü)(£)  by 

Me-io) = T'(e) + i0"(e) = m) + iß(e) (lel<i) .    (6) 
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As for the boundary condition on the plate, the simplest approach is to con- 

sider the "inverse problem" by prescribing either   r(^),    or   P(|),    as a 

known function of §,   together with certain conditions to be specified be- 

low.    When  r(|)   is prescribed, it is required to be Holder-continous   , 

non-negativt.(to insure that the pressure on the plate is nowhere less than 

p ),  and   T (^)  is required to be continuous across the two ends of the 

plate at  | = ± 1 f   that is 

T"{e)-r(|)^o 

r{i) = r(-i) = o 

(llUi)   . (7) 

(8) 

Under the present assumptions, the free stream condition is simply 

w-*0        as Ul -oo    ,     T] £ 0    .       (9) 

The solution of the Dirichlet problem prescribed by (5),  (7) and (9) is 

1 

"(U - i \   r(t)dt 
TT  J t   -  C 

-1 

(TI =Im;^ 0) (10) 

As   ^   approaches an arbitrary point  £ = | - 10   on the plate, use cf the 

Plemelj formula (cf.  e.g.  Muskhelishvili (1953) ) shows that the real 

part of (10) reduces to an identity, and its imaginary part gives 

1 

-1 

in which the symbol   C   over the integral signifies the Cauchy principal 

part of the integral, and the symbol   H^r]   denotes the finite Hubert 

transform of  T  on   [-1,1].    It is noted that if   r(|)   is Holder-continuous 

on   [-1,1]   and if the end conditions (8) are satisfied, then   ß(^),   given 

by (11), is also Holder-continuous on   [-1,1] (see Muskhelishvili (1953) 

§19,29). 

If,    on the other hand,    9 (|) = ß (1),     instead of  T (|),    is prescribed 

r(5)  is said to be Holder-continuous on   [-1,1]   if for any two points 

i ,i    on   [-1,1],   |r(^ )-r(^ )| < B|| -^ I*1,   with the Holder constant   B > 0, 
!     2 ' 1 '2 " 'I   "2 

and the Holder index  pi   satisfying   0 < >i ^ 1 
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for   III < 1,    one may either solve this Riemann-Hilbert problem directly, 

or regard (II) as an integral equation for   r(|).    The solution for   r(^) 

satisfying conditions (8) and (9) is found to be 

1 

r{t)=~ I {!-&*§      &ip (lel<i)   . (12) 
-i (i-t^)2(t-e) 

provided   ß(^)  further satisfies the orthogonality condition 

I 

j PdHi-e2) 2de =o . (13) 

-i 

In the above and henceforth, the function   (t,2 -I)2   is defined to be one- 

valued in the entire complex ^-plane, cut from   ^ = -1   to   I   along the real 

C-axis,  so that   (lz-I)2 -*£   as   \l,\ —so for all   argC.    Thus, 

(^2 -I )2 -± i(I -I2)2   as   ; -1 ± 10,    U | < I.   It may be remarked here 

that the system (8) and (II) is equivalent to the system (12) and (13), since 

P(l)   given by (II) with   T{%)   subject to condition (8) satisfies (12) and 

(13),  Euid conversely,    r(^)   given by (12) with   ß(§)   subject to (13) satis- 

fies (II) and (8).    Furthermore, by virtue of condition (5),    w(^)   can be 

continued analytically into the upper half £ -plane by 

«(D = - z&r . (i4) 

The physical plane is obtained by integration of  w = df/dz, 

z(C) = AU J     dUw(U = A\   e^'dt,     . 
-I -I 

(15) 

z(-I) being chosen to be the origin. The chord of the plate, i , and its 

angle of incidence to the free stream ^(positive in the clockwise sense) 

are given by 
1 

i  =AJ er{i)cos[ß(i)+a]dt     , 

-1 

i 

J    er^,sin[p(e)+a]de = 0 

(16) 

(17) 

-1 
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Equation (16) determines the factor   A  in the transformation (1), and 

(17) states that the angle of attack  a   is referred to the chord of the plate. 

Finally, the total arc - length   S   of the plate is 

^1 

S = AJ    er^)dl     - (18) 
-1 

The total force   F = D + iL,    D  being the drag and   L  the lift act- 

ing on the plate, can be determined from 

„B 1 
F = iJ     (p-po)dz = | ip 3    (U2-ww) 1 f d; 

A -1 

= \ ipü2A/[e^^-e"^ d^ = \ ipU^ e^)d^ <I9> 

where the contour of the last integral encircles the plate counter-clockwise 

in the ^-plane upon using the analytic continuation (14).   By expanding 
w(£).   given by (10), for large   |£| ,   we obtain, by the theorem of residues, 

I 

L = pU2A \    r(g)d|     . D= 0    . (20) 

-i 

Thus, the drag   D = 0,    as should be expected since there is no mechanism 

for producing drag, wavemaking    or otherwise, in this idealized case. 

3.    The Optimum Shape Problem 

We now consider the optimum shape problem:   In the class of 

functions   r(§)  which are Holder-continuous on   [-1,1],    satisfy the in- 

equality condition (7),  and the homogeneous end conditions (8), find the 

extremal arcs   ry^)   and its conjugate   ß0(|),    mutually related by (11), 

which maximize the lift   L  under the isoperimetric constraints of fixed 

chord i   and total arc-length  S. 

In what follows we shall assume that the extremal arc has the 

property   a = 0   (zero incidence of the chord) and the symmetry 

- -  - ■•     , ■ 



38 

rK) = r{e)   ,     p(-|) = -ß(l)   .    (21) 

The fact that the solution, if unique, must have this property may be seen 

by observing that the extremal arc will remain extremal when the flow 

direction is reversed,    (This statement can actually be proved mathematical- 

ly by using a reverse flow argument and requiring that both  T  and   ß   be 

bounded at the two ends of the plate. )  Under this condition, (17) is then 

automatically satisfied. 

The problem of maximizing the lift   L = pU2 iT   (see (20) ) under 

the isoperimetric constraints of fixed chord I   (see (16), now with  a- = 0) 

and given arc-length  S   (see (18) ) is equivalent to that of finding the pair 

of extremal arcs   r(^), p(^),   which, while satisfying (7), (8) and (11), 

will also minimize the new functional 

l[r,ß;A] =\i +X.S - L* = A \ f(rT(e).ß(e): x ,\ )de 
12 KJ 12 

(22a) 
_■» 

with the fundamental function given by 

f(r,ß;X.\) = \er(e)cosß(e) + \er(e)-r(e)       (Ul <1) (22b) 

Here,   X ,\    are undetermined multipliers, and we have assigned a nega- 
1      2    JJJ 

tive sign to   L     so that minimization of  l[r, P;A]    corresponds to 

maximization of   L .   It is necessary to include the coefficient   A   in the 

arguments of  I,    since for fixed  i    and   S, A   is a functional of   F  and 

ß. 

The general variational problem of this kind has been discussed 

recently by the authors (see Part I).   For the problem at hand, the method 

of solution will follow the same approach, though some modifications are 

required.    Let the set   [r(^), p (^);A]   denote the optimal solution and let 

[r(^), ß (^);A]   be an arbitrary   neighboring admissible  set, which,by 

definition,  satisfies (11), conditions (7) and (8), and the Holder-continuity 

condition.    The differences      617= r(^) - r(^), 6p  = ß (£) - ß(£), 

SA = A-A  form a set of arbitrarily small variations.    Suppose   6r(|)   is 

taken to be a small, arbitrary function of  £;   then,  since both   [F, ß]    and 
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[r,p]    satisfy (11),    6p(^)   is given by the Hilbert transform of   OF, 
i   i 

6ß(|) = Hj«r] (|||<1)    .     (23) 
s 

The variation   6A,   however, is arbitrary. 

The variation of the functional  I   due to the variations 

[6r,6p,6A]   is 

^1 1 

AI = (A+6 A) \   f(r+6r. ß +6ß )c£ - A \    f(r, p )d4     . 
-1 -1 

Expansion of the above expression for sufficiently small   |ör| ,   |6ß |, |6A| 

yields 

AI = 61 + ^ 62I + ^- 63I + .   .   .     , 

where the first variation   61   and the second variation     Ö2I   are 

61 = (6A) j f(r,ß )d| + A | (fr6r + fp 6ß )de     , 

62I = 2(6A)^(fr6r+fp6p)d|+Aj[frr^6r)2+2frß6r£p+fßp{6ß)2]d|     , 

in which the subindices denote partial differentiations, and all integrals 

are from  ^ = -1   to   1.    For   l[ r, p ;A]   to be minimum, we must have 

61 = 0   and   62I > 0   for arbitrary   OF  and   6A.    From   61 = 0   it then fol- 

lows that the two integrals in the expression for   61   must vanish separately. 

The first integral vanishes if, by (22a), 

L* = \  i + X   S    , (24a) 
12 

or explicitly, 
1 1 

]    r(e)de=j    er(§)[\iCosß(e) + \2]dC     , (24b) 
-1 -1 

which provides one condition for the constant multipliers   \ ,\ .    (Note 

that the positive coefficient   A   drops out in (24b).)  For the second integral, 

we substitute (23) for   6p ,    then interchange the order of integration, which 

' ^ ~.:-.r,^v.w-«>^. ^ ,;-■..-.»•    <-" 
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is permissible under certain conditions (see, e.g. ,  Tricomi 1957,  §4.3), 

giving 

]    (fr6r + fp6ß)d| =^    (fr-Hg[fpl)6r(|)d| =0    . (25) 

-1 -1 

Since   ör(4)  is arbitrary, we obtain the following nonlinear singular 

integral equation of the Cauchy type: 

i i:1 Mnt).^))       , , fr(m).ß(i)) = H|[fß3 = ig  p t_|—dt   (|ii<i) . 
-i 

(26a) 

where, by (22b) 

^, = er^)[Xcosp(e) + X2]-l     .     |i = -\er(^sinß(e)     . 

(26b) 

For the extremal solution, (26) is to be solved together with (11), as a 

pair of singular integral equations for   r(^)   and   ß(4)i    subject to the 

homogeneous end conditions (8) and the inequality condition {7).    The 

extremal solution,   r(4;X ,\ )   and   ß(|;X ,X ),   when determined in this 
12 12 

manner, will involve the two constant multipliers   X    and   X ,   which can 
12 

be determined, most conveniently, by applying condition (24), and by 

giving a specified ratio of the arc-length   S   to the chord  i ,    say 

S/l  =1 +K (K >0)     , (27a) 

or,by using (16), (18), 

1 1 

^   er(e)de =(1+«)^   er^)cosß(e)de     . (27b) 

-1 -1 

Since the coefficient  A  does not appear in either of the isoperimetric 

conditions {24) and (27), the problem of determining the unknown   A   is 

curtailed altogether.    Finally, the optimum lift coefficient, upon using 

(24a) and (27a), can be expressed as 

CT  = L/(J- pU2i) = 2L*/i = 2X   + 2\ (1-HC )    .  (28) 
/   - 

.-^.■^■■■■■i'-'■■■■■=■'■''■'■'■■ ■'■',-'j:,*-'■    -::-n„..S-i.r... ■■;^.'..i'.V'iK,;.-.,:, '-^.i ^^j^, i.^., ;,,;,::.;■   ,:,ü:'.    ■.>■'■■■■ ■ 
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This optimum lift coefficient will be a maximum if the second 

variation of  I   satisfies the inequality condition    6ZI > 0,   which is reduced 

to 
1 

j   [frrJ(6r)E+2frp6r6ß +fp(3(dß)2]de>o 
-I 

upon incorporating (25) and noting that  A > 0.    A necessary condition for 

the above inequality to hold has been found by Whitney (1969) to be 

friJ(r(e)fß(im£ßß(imp(i))>o      (-i<i<i) .     (29) 

The procedure for obtaining this result is to first substitute (23) for the   6ß 's 

in the integrand, interchange the order of integration by the Poincare- 

Bertrand formula,  and, finally, to consider a special choice of  6r(|) 

which vanishes everywhere except on an infinitesimal stretch in   (-1 <^ < 1). 

For the present problem, with   f  given by (22b), (29) gives 

frr + f3ß =^er^>0    .       or simply        X.  > 0    , (30) 

since the optimum solution  J~  is real.   It may be remarked here that   CT 

in (28) will be a minimum when   \  < 0.    Condition (30) also shows the 

importance of including the arc-length  S   as a constraint; otherwise, the 

necessary condition (29) cannot be satisfied, and the consideration of 

optimality must necessarily proceed to higher order variations of the 

functional   I, to say the least. 

The exact solution of this problem is exceedingly difficult for 

several reasons.   First of all, (11) and (26) are a system of nonlinear 

singular integral equations, with a Cauchy kernel, which have no known 

general method of solution.    Second, it appears to be very difficult to 

incorporate automatically the inequality condition (7),   r(^)^ 0   for 

l^j < 1,   into the analysis, the only alternative being to verify its validity 

if and when all possible solutions for   F have been obtained.    Furthermore, 

there is no assurance that the homogeneous end conditions (8), 

r(I) = r(-I) = 0,    can always be satisfied.    Finally,  even when the solution 

of  F  satisfying all these conditions can be obtained, the determination of 

the multipliers   \ , \    from (24), (27) will involve equations which are 
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highly transcendental.    The foregoing observations should indicate that any 

plausible method of solution by numerical iterations would most likely 

meet great resistance. 

However, important information about the «olution can be obtained 

from the corresponding linearized theory, which we proceed to consider 

in the following. 

4.    The Linearized Theory (for   (S-i )/i «I) 

The linearized theory is expected to provide a v^fcd first order 

solution to   rß)   and   ß{§)  when the arc length   S   is oiJy slightly greater 

than the chord i ,    or 

S/i  = 1 +*      . 0< K « 1     . (31) 

In this limit,   r(^)   and   p{|)   are anticipated to be almost everywhere 

small on   (-1 < £ < 1),    except possibly near the end points   | = ±1.    Thus, 

upon expanding   f—  and   ffl   for small   | r|    and   | ß |,    and keeping only the 

linear terms, Eq. (26) reduces to 

ar(e) = cHe[ß(t)] +(l-a) (UI<1)    . (32a) 

where 

X   + \     ,     c = -X       . (32b) 

The linear system of singular integral equations (32) and (11) belongs to 

the class investigated previously by the authors (see Part I, Sect. 5), a 

class which can be uncoupled to yield a set of singular integral equations 

of the Carleman type and then solved by known methods.    Without going 

through the detailed analysis, we give below the final solution, which can 

be readily verified.    The solution has two branches according as the co- 

efficient 

a  = c/a = -X/(X   + X )> 0      or      <0     .        (33) 

Case (i)    CT > 0.    The ranges of   X    and   X    in this case are either 
  1 2 

X   >-X> 0       or       X   < - X   < 0     ; (34) 
2 1 2 1 

the first, according to the necessary condition (30), corresponds to the 
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% 

maximum lift, whereas the second, to the minimum lift.   In terms of the 

new parameters,   v   and  fl,    defined by 

Y = (l-a)/a and        tanfl-ir = ^ 

the solution is given by 

I^^cos^^+j^l     . 

i-if Ml"" Pdl^cosMircotMirp^j   -^j 

(0<fi<l/Z)     . 

(35) 

(36a) 

(36b) 

This solution is readily verified by making use of the formula 

-im ± cosfi-rr + (cotfiir) M1±M 
(III <1) 

which can be derived directly by contour integration of   (t-l)r{t+l)    {t-|) 

in the complex t-plane (or see Tricomi (1957), p. 181).    We note that the 

above solution satisfies the inequality condition (7), i.e.    r(|) > 0 {|^| < 1), 

but is singular, with a branch-type singularity,  at the end points   £ = ±1, 

and thus fails to satisfy the homogeneous end condition (8).    This singular 

feature of the solution is perhaps reasonable,  since linearization general- 

ly introduces singularities at those points where the assumptions of 

linearization are violated.    Whether these singularities can be removed 

by including the nonlinear terms remains to be seen. 

We now determine the Lagrange multipliers   \ , \    from (24) and 

(27).    To be consistent within the framework of the linearized theory, all 

the nonlinear functions in the integrands of (24b) and (27b) will be expanded 

for small   |r|    and   |p j    up to the quadratic terms, because the linear 

integral equation (32) actually follows from (26) by expanding the funda- 

mental function   f(r, ß)   up to the terms with   T2, Tß,    and   ß2.    Thus, 

(24b) J.  d (27b) reduce, after some rearrangement, respectively to 

i 1 1 

2-7^ r(i)di + \§ r2(e)de + iaj ß2(e)de = o , 
^-1 -1 -1 

r1 r1 1 

2+j r(e)de + ^r2(e)de-i+^y ß^ 

(37) 

5(e)de = o 
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where  a   and  y   are defined by (33) and (35).    The difference between the 

above two equations gives 

-1 l y -1 

which can be t sed with (37) as two isoperimetric conditions.    The integrals 

involved in (37), (38) are easily found from the solution (36) as 

1 

J   r(|)d€ =2^™''    . 
-1 
^1 

j     r2(g)dg =Y2[^or"* +(l4ar1]      . 
-1 

1 

y  ß2(e)de ^V^ira'Ml-KT)"1] 
-1 

Substitution of these integrals in (37) and (38) yields 

YV = 2a*     , (39) 

4k = Y£i + x lila      0 

r    2 Mi."(n5F1^ 
(40) 

These two equations determine   X    and  X    in terms of /c;   however,it is 

it is more convenient to express   X    and   X    in terms of the parameter 

a.   From (33),  (35),  and (39), we have 

X^ ^/(I+Y) 

where 

X2=(I+(T)/(1+Y)    , 

Y =±[2a2/tan'1(a2)]2 

and the   +   sign is for maximum lift, the   -   sign for minimum lift. 



45 

Substituting these expressions for   X , X ,    and  y,   into (28), and (40), the 

optimal lift coefficient   C.    as a function of  K   is given parametric ally by 

(41a) 

i 
L    2 

CL=±2[8tan    (a2)/a2]   /i((T) 

K - 

.(l4^)tan    (o2) CT2tan' 

1 
+ - 

(a2) 
/(o)    . (41b) 

where the common denominator is 

i(<r) = 3± .8 tan'^Q8) 1^ 
a 

a2 tan' a2) 

(41c) 

The maximum lift coefficient (+ sign in (41)) as a function of  K   is shown in 

Fig. 2.    The following limiting cases are of special interest. 

(ia) /c -0+    (CT- + «)) 

By reducing   K   to zero,  the plate is constrained to be nearly 

stretched straight,  implying that   T  and   ß = O(r)   are both small.    Setting 

a = €     » 1,   we deduce from (39),  and (41b, c), that 

rt^■7+0(£3,  '    ^ =±2(^)"*[i + 7+c*2)] (42) 

and 

= (3/C)^[l±  \(^ZKY +0(/C2)]     . 

Finally, the optimal lift coefficient, by (41a), is 

CL=± \ (3uEfC)*;ri   l\ [l^Kf  +0(/C2)] 

This optimum solution shows that as soon as   K   increases from zero,  the 

plate starts to bend more near the two ends and carries most of the lift 

there,  since, by (36) and (42), both   r  and   ß   have square-root singularities 

at  | = ± 1.    As the arc-length   S   further increases for fixed chord  i, K 
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and  c   become greater,   fi   smaller,  so that the singularities at the ends 

then become weaker.    The rate of increase of the optimum lift with respect 

-3/4 
to increasing   K, dCL/djc,   behaves like   K       as   K -► 0 

( ib)    0 < a « 1. 

Another interesting limit is as  a ~*0+,    in which case we find 

'X = ^'^ ' T CT + 0(o2)]     '       Y =±^[l + ^-a+Ca2)] 

K = y (5 + 3,/2)[l - ^(4;y2)+Ofa^]    . 

(43a) 

{43b) 

Here, the upper (or lower) sign is for the maximum (or minimum) lift co- 

efficient, which is obtained from (41a,. c) as 

CL=± ^(5y/2 + 6)[l - ^ (B + a/Tj+CXo2)] 

In the limit as   <J -* 0+,    the maximum lift coefficient 

CT =0.918(l-0.076a)      at      /c = 0. 1082(1-0.77ca) 

(44) 

(45) 

appears to be very respectable, particularly for such a small  K.   On 

the other hand, it seems rather questionable whether the minimum lift co- 

efficient 

CLniin=-l 1.20(1-0.924(7)      at      K = 1. 320(1-1. 624a) (46) 

can even be close to any physically realizable situation because the low 

pressure underneath the plate would most likely cause air to ventilate the 

entire lower surface of the plate. 

The corresponding solution of   r  and   ß    can be immediately deduced 

from (36) as 

m)=±yF{i + ^(iog^|2.q+o x«/) (47) 



Ml) =* 4 log^jj. + "F[-L [,„g ^jT-.] + o(^) 
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(48) 

Thus, in this limit, the flow angle   ß (|)   has a logarithmic singularity at 

the end points   | = ± 1,    which are of the weakest type singularity in this 

linearized theory.    This particular profile of the plate results in a constant 

pressure distribution over the plate except for a higher order logarithmic 

singularity at the two edges.    The over-all features of the solution in the 

present limiting case therefore indicate that this is the most favorable 

optimum state arrived at when the variation of parameter   K   is considered 

in this final stage. 

Case (ii)    -1 <a < 0.    The ranges of \    and   X.    now become either 
  1 2 

(X  > 0,     \  > 0)      or (X.  < 0,     X.  < 0)     , (49) 
12 1 2 

corresponding, respectively, to the maximum and minimum lift.    In terms 

of the parameter   v  defined by 

tarJivtr = (-a)2        (v > 0)    , (50) 

the solution of (II) and (32) for this case is found as 

r(§) = Y cosh vn cos I v log J^T I 

ß (£) = -y cosh vir coth VIT sin  v log -r—|- 1-1 

(51) 

(52) 

where the coefficient  y   is given by (35).    This solution can be immediately 

verified by making use of the formulae 

H^sin jvlog {^j   = 

Hg I cos lv log k| 

csch VTT - coth vir cos i       1< vlog ^ 

coth VTT sin [v log •=—|- (III <1) 

(53) 

(54) 

The above inversion formulae can be derived by a contour integration of 

(t-1)" (t+1)    v(t-|)   encircling the real axis from   t = -1   to   1   in the 
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complex t-plane. 

Although both of the above   F  and   ß    remain bounded in 

-1 4 £ £ 1,    they nevertheless oscillate infinitely fast as the end points 

| =± I   ?re approached, and hence do not satisfy the inequality condition 

(7), which is imposed on physical grounds.    For this reason the above 

solution is regarded as void of any physical significance,  and hence will 

not be further pursued here, although it also tends to the limiting solution 

(47), (48)   as     •-♦0.   However, mentioning of this case may serve a use- 

ful purpose to point out that when a numerical iteration method is employ- 

ed, particularly for small values of a ,   the iterated solutions may oscil- 

late between the two cases (ib) and (ii) and the success of such procedure 

may be hindered by the lack of convergence. 

5.    Discretized Fourier Series Expansions 

We next consider a method for obtaining approximate solutions to 

the optimum shape problem by expanding   r(|)  and   p(£)  in finite Fourier 

series with the coefficients chosen so that the lift is maximized under the 

previously mentioned isoperimetric constraints of fixed chord and fixed 

wetted arc-lengfi.    This Rayleigh-Ritz method of solution has been dis- 

cussed previously in Part I. 

Let the expansion for   T(t,)  be given by 

N 

r(e)=^ ansin(2n-I)e    , (55) 
n=l 

where   £ = cos 9(0 ^ 0 ^ TT)   and the   a 's   are arbitrary real constants. 

This choice for   F  automatically satisfies the end conditions (8).    From 

(11),    ß(|)   is given by 

N 
P(l)= "^  ancos(2n-l)0     , (56) 

n=l 

where we have changed variables   (| = cos 0 , t = cos <p)   and made use of 

the identity 

jr    sinmcp sina>      , a <V    — I-7r d«p = -ir cos mö 
J       COB(p  - cos o     ^ 
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Note that even order Fourier components have been omitted from the 

above expansions to satisfy the symmetry properties (21). 

The problem of maximizing the lift for fixed arc-length and chord 

is equivalent to minimizing the function  I   in (22), which, by (55) and (56), 

may now be considered to be an ordinary function of the coefficients 

{a }   and the factor   A.    To minimize   I  we set the partial derivatives of 
n 

I  with respect to  A  and each of the   a 's   to zero, giving (since   A  does 

not vanish) 

81       I 
FS = Ä = \ \ e cos ß sinÖdö + \ \    e   sin» d0 T a = 0 

2    i 
(57) 

ÄFa"=Xi   e1^ ß+(2n-1 )0] s"10 de 

n o 

IT 

+ X.   \    ersin(2n-l)0sin0 d0 " j 6
nl = 0        n = 1,2,   .... N    . 

o 
(58(n) ) 

The   (N+l)-equations above, in which   F  and  j3   are given by (55) and (56), 

together with (27) in which  K   is given, determine the   N   Fourier co- 

efficients   {a }   and the two Lagrange multipliers   X   , X.   .    Finally, the 

lift coefficient is given by (28).    Since (57) and (58) are transcendental in 

the unknown Fourier coefficients the solutions must be found numerically. 

In order to illustrate this method we consider the case   N = 2. 

Equations (58) read as follows   : 
JIT jr 

X   \  ersin(ß+0)sin9 do + X    \   ersin20 d0 = J (58(1)) 

J X    \   e  sin(p+30)sin0d0 

o 
-i e  sin 30 sin0 do = 0 (58(2) ) 

These equations are to be solved together with (27) and (57) for   a ,a , X , 

and   X .    The Lagrange multipliers may be eliminated from (57),   (58(1) ), 
2 
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and (58(2) ) to give a   reladon between   a   and   a;   namely, 

U* r f r f(a,a) = aj\   e 8in(p+Ö)8ine d0 \   e 8in30sinede 

^o o 

- \   ersin(ß+3Ö)8in0 dG \   e^in2© dd 

o 

IT 

\    e sin 30 sin0 d0 \   e cos p sin0 d0 

o o 

+ \   e  8in(p+30)8in0 d9 \   e  sin9 d0 = 0     . (59) 

A second relation between   a    and   a   is given by (27b) in whic>   K   is 

given a specific value; however, it is somewhat easier to do the inverse 

problem in which  K   is determined once   a   is known.    Thus,    if   a   is 
i i 

given,    a   is determined by (59), and  K   is then fixed by (27b).   Finally, 
2 

C.   may be found from (28), (20), and (16) (with   a =0). 

The curve of a     versus   a    satisfying (59) is sliown in Fig.  3 and 

the lift coefficient for the two-term Fourier expansion is plotted in Fig. 2. 

As   a -* 0,    it can be shown by expansion of (27b),  (28), and (59) for 

c 

a = .r4- a + 0(as) 

a   ,   a    « 1,   that 
12 

» = TV a + 0(a2 
2     17     i        s i 

and 

ir   11785'    ,/i 
C^a^T./^^+OOc**)      a.      K-0 

Thus, the maximum lift coefficient increases more slowly (with increas- 

ing K) for the two-term Fourier expansion than for the linearized theory 

of the previous section (see (42a) ). This is thought to be due to the pre- 

viously mentioned end point singularities which are present in the linear- 

ized theory. 

Actual plate shapes for the case   N = 2   are shown in Fig. 4 for 

various values of  K   (note change of vertical scale).    These are found by 
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numerically evaluating (15) for real   £.    The factor   A   in (15) drops out 

after normalization of the chord to unity.    Note that the maximum height 

of the plate occurs at two symmetrically located points (at the   X's   in 

Fig. 4) for smaller values of  K (< 0.030). 

The cases   N = 3,4,  .   .   .   , etc., could, in theory, be solved as 

outlined above and should result in higher and higher lift coefficients for 

a given ratio of arc-length to chord; however, the calculational difficulties 

involved in the solution of the system of equations (57) and (58) would 

surely increase.    Fortunately, the numerical experiments in Part I 

indicate that just a few terms in the Fourier expansions are needed to 

give results which are within one per cent of exact solutions in those 

specific examples. 
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0« 

f(a„at) « 0 

•-  a, 

Fig.  3   The plot of  f(a , a ) = 0   in the two-term Fourier 

series expansion. 
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THEORY OF OPTIMUM SHAPES IN FREE-SURFACE FIX)WS 

PART III 

Minimum Drag Profiles in Infinite Cavity Flow 

by 

Arthur K.  Whitney 

California Ii     itute of Technology 
Pasadena, California 

The problem considered here is that of determining the shape of a sym- 

metric two-dimensional plate so that the drag of this plate in infinite 

cavity flow is a minimum.    The flow is assumed to be steady and irrota- 

tional; effects due to gravity are ignored.    With the aid of a recently 

developed theory of variational calculus involving singular integral equa- 

tions, the drag of the plate is minimized under the constraints that the 

width and wetted arc length of the plate are fixed.    The extremization 

process yields, in anology with the classical Euler differential equation, 

a pair of coupled nonlinear singular integral equations.    Although analytical 

and numerical attempts to solve these equations prove to be unsuccessful, 

analysis of the equations shows that the optimal plate shapes must have 

blunt noses.    Finally, optimal shapes are obtained by Fourier series 

expansions for various ratios of arc length to plate width. 

1,   Introduction 

We consider the two-dimensional cavity flow of an incompressible 

fluid past     a plate of arbitrary shape.    The flow far upstream is uniform 

with velocity   U,   pressure   p ,    and density   p.    The pressure   p     inside 
* oo c 

the cavity is assumed to be a constant, so that by Bernoulli's law the fluid 

velocity at the cavity wall is a constant   V,   where 



57 

2- pV2 + Pc =  2   P J  + POG     • 

The cavity flow m2.y be characterized by the non-dimensional cavitation 

number 
I    - j 
I a = (P,,- Pc)/ r PU       . 

\ 

As the cavitation number decreases,  the length and width of the cavitr 

grow indefinitely and the flow approaches the "Helmholtz flow",  in which 

the cavity is infinitely long and the cavity pressure equals the free stream 

j pressure   (CT = 0)   so that the cavity is maintained far downstream. 
I 

The specific problem considered here is to find the shape of a 

symmetric plate (see Fig.  1) of given wetted arc length   S     and given 

width   y  ,    s>o that the drag of this plate in infinite cavity flow   (a = 0) 

I is a minimum.    A precise definition of the cla.ss of plates under consider- 
I 

ation will be given in the next section.    The solution of this problem has 

obvious applications in the design of struts or other two-dimensional non- 

lifting surface which may operate in the super-cavitating range.    For 

large Reynold's number flows,  the viscous effects may be ignored as a 

first approximation; however,  corrections due to viscous drag can be 

calculated once the potential flow is kno .*:.    Finally,  although optimal 

shapes are sought for the case  a = 0,    these shapes should be approximate- 

ly the same as those which would be found for   <T > 0.    This can be seen by 

considering the approximate rule,    C   (a) = Cn{0)(l+a),    which relates the 

drag coefficient   Cn   at  a = 0   to the drag coefficient for   cr > 0.    (Here, 

a < I,      see,  e.g.  Gilbarg I960).    Thus,  to minimize   C-n   at a giv^n 

a > 0,   we could just as well minimize   Cn(0).   It should be noted that 

this rule appears to be a good approximation only for blunt bodies,  so the 

above argument may be limited to the case when the arc length is not 

much larger than the width of th^ plate. 

Lavrentieff (1938) gave  the  solution to a related minimum 

drag problem (see,  e.g. Gilbarg (I960) ), that of finding the shape of a 

symmetric plate of minimum drag,  although,  in Lavrentieff's problem, 

the plate is confined to lie within a rectangle which circumscribes the 

nose and ends of the plate.   If the nose of the plate is at   (0, 0)   and the 
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ends of the plate are at   (x  , ± y  12),    the solution for the optimal profile 

(see Fig.  2) is found to consist of a straight section, from   (0, -h/2)   to 

(0,h/2),    and the free streamlines which leave the ends of this section and 

go on to pass through   (x  , ± y  /2).    The length of the flat nose section, 

h,    is uniquely determined by the given x  /y  .   The pressure difference 

across the flat portion of the plate is the only contribution to the drag 

since the fluid pressure equals the cavity pressure   (p = p  )   on the free 

streamlined sections of the plate.    This solution was obtained by the use 

of several comparison and monotonicity theorems which follow from the 

maximum principle for harmonic functions. 

The present work was originally conceived as a confirmation of 

Lavrentieff's solution, but it was hoped that this could be done by using 

the variational calculus method introduced earlier in Parts I and II; how- 

ever, no satisfactory method was found for imposing the condition that 

the plate be confined to lie within the rectangle.    On the other hand,  if 

this constraint is dropped,  one can easily construct a sequence of plate 

shapes which,  in the limit, have zero drag,   neglecting viscous effects, 

of course.   Such a sequence is illustrated in Fig.  3.   A typical plate 

consists of an inverted cap of width   h    and length   h   plus the free stream- 

lines which issue from the ends of the cap and go on to pass through the 

corners of the rectangle.    All other plate shapes in this sequence are 

found by decreasing   h    and increasing   h    in such a way that the free 

streamlines still pass through   (x  , ± y  /2).    As   h -•• 0,    the flow inside 

the cap becomes a dead water region with stagnation pressure 

p - ^- pU2 + p  ,    so that the drag of the plate is just  y pU2h ,    whicn can 

be made very small by choosing   h    sufficiently small.    Note that the 

pressure difference across the back face of the cap is the only contrib1: 

tion to the drag of the plate. 

This observation led the author to consider the problem described 

earlier.    It was thought that by fixing the arc length of the plate,  shapes 

such as those described above would be eliminated.    The constraint on 

the length of the plate was dropped for simplification. 
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2.    The Problem of the Symmetric Cavitating Plate 

The class of flows under consideration is limited to infinite cavity 

flows  past      plates   P   with the following properties (see Fig.  1): 

(a) The width of   P   is   y  . 

(b) The arc length of   P   is   s   . 

(c) P  has a continuous slope except at the nose wb ,re the vertex 

angle is   Za,   with   0-^ a^ TT. 

(d) Let   S   and   S'   be points on the intervals   OA   and   OA', 

respectively.    The pressure   p   on   S'OS   satisfies   p^p  , 

while on  SA  and   S'A', p = p ;   that is,    SA   and   S'A'   are 

free streamlines. 

(e) P   is coincident with the free streamlines which issue from I 
I S   and  S1 

The condition   p ^ p     in (d) is an obvious statement of the fact 

that the vapor pressure (assumed ^o equal   p  ) is the minimum pressure 

in the flow.    Sections   SA   and   S'-*.'   are included since free streamlines 

have already been shown to mak'j up part of Lavrentieff's profiles and 

similar results are expected for the present problem.    It is more con- 

venient to account for this expectation from the beginning than not.    Note, 

also, that (d) imposes no undue restrictions on the problem,  smce the 

actual locations of  S   and   S'   are not known, a priori,  but must be found 

as part of the optimization process. 

Condition (e) guarantees that the shape of an optimal profile will 

be unique,   since the plate surfaces   SA   and   S'A'   could obviously be 

moved inward toward the x-axis without changing the overall forces on 

the plate.    This condition simply provides a one-to-one relationship be- 

tween plate shapes and the resultant flow patterns.    Note that there are 

many ways of doing this; the plate surface could,  for example,  be required 

to run along the straight lines joining   S, A   and   S1, A'. 

By proper choice of origin and magnification, the complex potential 

plane   f = <p + ity   is mapped to the upper half  t, = £ + ir|   plane (see Fig. 

4) by 
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f=7AU;2      . (1) I .      1    ..-2 

where  <p   is the velocity potential,   41   is the stream function, and  A   is a 

real, positive constant which is chosen so that  S'OS   maps to   ||| ■$ 1. 

The sections   SA  and  S'A1   map   to   l<|||<c,   where   c^l   (equality 

only if  S = A, S' = A'); the remaining sections of the free streamlines 

lie on   c ^ 111 < oo. 

We next introduce the complex velocity 

w = df/dz = u - iv = qe (2) 

and the logarithmic hodograph variable 

"(U = log(U/w) = log(U/q) + 10 

HT{|,T1) + i0(e.ri)     , (3) 

where   u   and  v   are the   x   and  y   components of the fluid velocity, 

q = (u2+ v2)2   is the speed, and   0   is the direction of the flow with respect 

to the positive x-axis.    With these definitions,  Bernoulli's law may be 

written as 

P - Pc = ? p{U2 -q2) = \ pU2 (1 - e-27)     , (4) 

where   p  is the pressure at any point in the flow.    On the free streamlines 

SI   and  ST, p ^ p ;   therefore, by (4), 

T(e,0+)=0       , |e|^l     . (5) 

If the boundary value of  u   on  S'OS   is denoted by 

W{e+iO) = T(e.o+)+i0(i>o+) = r(e)+iß(i) ,     I1U1  . (6) 

where   F  and   ß    are real, then,  since   p     is the minimum pressure in 

the flow, the inequality 
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follows by (4),  and, because the pressure is continuous at   S   and   S', 

r(±l) = 0 (8) 

The hodograph variable may b^ split into two parts, 

w(4) = u> (£)+"(£),    where   w     accounts for the singular behavior of  u 

at the stagnation point,    £ = 0,    and   G)(=r +iß ,    for    |g| < 1) is analytic in 

the entire upper half plane including the real axis.    It can be shown,  in 

fact,  that 

"(;)= ^ iog{[a2-ip+i]/U+onn   , (9) 

where   {42 -I)2   is taken to be cut along the real axis    ||| ^ 1   and is 

positive for   £ = £ > 1;   the logarithm function is defined to be that branch 

which is     real for a real,  positive argument, with a cut along the nega- 

tive real axis of the argument.    Letting   £ -"I + i0,   ||| ^ 1,    in (9) and 

comparing this -vith (6) we have 

m) 2a 
IT 

iog{[i+(i-|2)2]/le|} +r(|) (10a) 

p(e) = asgne+ ßi(e) . (10b) 

so that the proper logarithmic singularity of   F = Re to = log(U/q) and the 

proper jump in flow angle,    ß(0+) - P(O-) = 2a,    are exhibited at £ = 0. 

Since the real part of the first term of (9) vanishes for   t,   real, |£| > 1, 

we have, by (5), 

Tß) = Reiche+i0)} =0     , |e|>.l     . (11) 

Furthermore, the flow approaches that of the free stream   (q = U, 0 = 0) 

at large distances from the plate; therefore,   w -♦ 0   as    J£,| -»oo, by (3), 

and 

w (£)-0       , as |U -co    . (12) 

by (9).    Finally,    F   in (löa) must be chosen so that inequality (7) is 

satisfied and (8) and (10a) imply 

r(±i) = o (13) 
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The function  u   may be determined for a given plate shape, how- 

ever, because the solution involves complicated nonlinear functional 

equations,  it is easier to deal with the so-called "inverse problem", in 

which the plate shape is determined by giving either   F {|)   or   ß (|). 

This information, together with (11) and (12),  determines   w   uniquely. 

We now suppose that  F = Rew   is given which satisfies (13) and is Holder 

continuous^ on   | ^ | •$ 1.    The Dirichlet problem for the determination of 

u , 

Re{ü) (|+i0)} 
frß) for 

for 

leUi 

Ul>i 
(14) 

together with (12), has the solution 

CO 

.     -.    F(t)dt 

-1 

(15) 

which may be verified by letting   !,-*£, + i0(|| | ^ 1) in (15) and using 

Plemelj's formula (e, g. ,  see Muskhelishvili (1953),  §17).    The imaginary 

part of  w    on   S'OS   is found to be 
i 

1 JP1   r.(t: F(t)dt 
\i\4l (16) 

^ 
where <L denotes the Cauchy principal value.    Holder continuity of   (3 

follows from the assumptions which have been made on   F .    (Note that if 

F    does not satisfy (13), but approaches a nonzero value at an endpoint, 

then  ß ,    as given by (16), will have a logarithmic singularity at that 

endpoint.)   If, instead of   F, ß     is given, the solution for   co   involves a 

Riemann-Hilbert problem; however, this solution will be omitted since it 

will not be needed. 

By (2) and (3), the physical plane is obtained by integrating 

dz =   1 eWdf = Aeu(^ dt,     . (17) 

f F (4)   is said to be Holder continuous on   [-1,1] if, for any two points 

£,.£€[-1,1],   |F(e)-r(e)UB|e  -e/,    with   B>0   and   0<JX^1, 



Thus, the plate shape is given parametric ally by 

Z(e)::x(e) + iy(e) = AJ euH ^  .     iiU 

and,  since the plate is symmetric, the width is given by 

63 

yo.ImAJ ewH d^ (18) 

It is convenient for subsequent analysis to convert this expression 

for the width to an integral from   - I   to   +1.    To do this, we first continue 

w(^)   into the lower half plane by   a)(5") = -w(£) ,    so that 

w(|±iO) =±r(e)+iß^)   for    leU'l   and, by (5),    u(£+iO) = u(£-iO)   for 

1^1   >1.    Next, we consider the function   t,e  ^       which appears in the 

integrand in (18).    This function is uniquely determined by the jump in its 

value (due to the discontinuity of  w) across the cut   ||j ^ 1   and by its 

expansion for large   )^|    (see Muskhelishvili (1953),  §78).   In fact, it can 

be shown that 
1 

1 
•m   J 

telß(t)sinhr(t)dt 
T - + 

1 

r(t)dt + i (19) 

-1 -1 

in which the first integral exhibits the correct discontinuity across the cut 

j^| <: 1   and the last two terms are required by the expansion of the left side of 

(19)for   l?,!^1   (see Whitney (1969)).   In this expansion, we use the integral 

representation for «, ^1 
"(U L   \    £11 

TT    J        t   - 
-1 

r(t)dt (20) 

which is found by exactly the same procedure as that used in   determining 

« {I,)   (see (14) and (15) ).    By substituting (19) into (18), and noting that 

P(-^) = -ß(|),   we obtain 
1 ^ 

y    =  — \    t sinhr(t)sinß(t)dt + \    t sinhr(t)cos ß (t)log{(c-t)/(c+t)}dt 

-1 -1 

+ 2c \    r(t)dt    . (21) 
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An element of plate arc length   ds   is found from (17),  (5), and 

(6), tobe 

fAer(l>U|de for UUl 

ds = |dz| =« 

Ujeidi for |||>1 

Th\i8, the total arc length of the plate is given by 

= \    ds = A (c2 -1) + j s er<t>|tidt ] ■ (22) 

-c - -1 

The complex force acting on an element of the plate   dz   is given 

by 

dF = (p - pc)(-idz)     . 

or, by(4),(5), (6), and (17). 

dF =« 

-|pu2A(i.e-2r)er+iP|de .   ieui 

lel>i 

By integrating this expression, we obtain the drag   D  and lift   L   acting 

on the plate as 

1 

D + iL ='2- pU2A J    t(l-e"2r)er+i,3dt    , 

-1 

so that, again noting the asymmetry of  ß (^), 

1 

D=pU2Al    t sinhr(t)sinß(t)dt     , (23) 

■I 

and the lift vanishes, as we should expect for a symmetric shape at zero 

angle of incidence.   An alternate expression for the integral which ap- 

pears in (23), and also in the expression for the width (21), may be ob- 

tained by substituting (20) in the left side of (19) and expanding this equa- 

tion for large   | £ I.    By matching coefficients which multiply like power 
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of  ^   in this expansion, we obtain the identity 

1 ,   1 

\    tsinhr(t)sinß(t)dt = -L    \    r(t)dt 

-1 
-i 

(24) 

from the terms multiplying   I, 

Since   p   and   U   are kept constant in the minimization of the drag, 

it is convenient to give the drag the dimensions of length by setting 

D* = D/ j pU2. By (23) and (24) we have 

»Mtf ntMt, (25) 

3.   Statement of the Minimum Drag Problem 

In the previous section we have shown that the problem of minimiz- 

ing the drag of a symmetric profile of given width and arc length reduces 

to finding functions   r(^)   and   ß (|)   and constants   A,  c    and   a,    so 

that   D     in (25) is a minimum subject to the constraints (21) and (22),  in 

which   y     and   s      are given fixed quantities.    The functions   r(|)   and 

ß(^)   in (21),  (22), and (25), are related to   r(^), ß(|),    and the half 

vertex angle of the plate   a  by equations (10); furthermore,    ß(^)   is 

related to   r(^)   by (16) in which   T   satisfies the end conditions (13) and 

is chosen so that  r in (10a) is positive.    Equivalently, we may state 

this problem in terms of  r(^), ß(^), A,    and   c,    and omit further refer- 

ence to   F^), ß(^),    and   a;   however, the discontinuous behavior of   F 

and   ß,    as exhibited in (10),  should still be remembered.    By letting 

{;-••£ +iO(|£|^I)   in (20), we obtain the identity 

1 

ß(|) = .i^  ^f =-He[r(t)] (26) 

-1 

which may also be verified by (10) and (16).    In the above, the symbol 

tL   denotes the finite Hilbert trsmsform.    Finally, in (21),  (22),  and (25), 

the factor   A  is a real, positive constant and the parameter   c,   which 

determines the location of the endpoints of the plate in the C-plane, 

satisfies   I -^ c < oo. 

WW. .v*,-~^-.v 
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This problem is equivalent to that of finding a pair of extremal 

arcs,   r{§)   and   p{^),    which satisfy (26) «md minimize the functionaJ 

i[r(e),p{e); A,C] = D* - \iSo - \2yo 

I 

A\    f(r(t),P(t)ft; X .X .c)dt 
\J 1      z 
-1 

+ ^ (1-X /ZirMj    r(t)dt| (27a) 

-1 

where, by (21), (22), (24) and (25), 

f(r(|)tß(g),|;Xi,X2fc)= -Xi[^(c2-I) + er(e)|||] 
X 
-2 [i sinhr(e)cosp(e)iog{c-e)/(c+e)} + 2c ne)]   .        (27b) 

In the above, the integral identity (24) has been used in the expression (21) 

for   y       and   X , X    are Lagrange multipliers. 

The geneial variational problem of this type has been investigated 

earlier in Parts I and II.    For the present problem the method of solution 

will follow the same approach with a few modifications.    Let the set 

{r(§)fP(l).A, c}   denote the optimal solution and let   (r^),^), A.'c}   be 

an arbitrary neighboring set which also satisfy (21), (22), and (26).    The 

differences   6r(£) = ? - T, öß (£) = fT - ß , 6A = A-A, 6c = cT - c,   form 

a set of small variations, where by (26), 

«P(l)= -H^fiHt)]     . (28) 

The variation of the functional   I,    about the optimal value, due 

to the variations   {6r,6ß ,6A,6c}   is given by 

Al=l[r+ör, ß+6ß; A+6A, c+6c]  -l[r,p;A,c] 

Expansion of the above expression for small   | ör|, | öß |, j 6A| ,    and 

|6c| ,    yields 



67 

AI = 61 + ij- 62I + yj- 63I + . 

where, by (27), the first variation   61   and second variation  62I   are 

given by 

1 
> 

61 = 6A< \ f(r, p , t; \ , X , c)dt + •A- (1 -X /2ir)Jz } 
"'12 IT 2 I 

+ A6c \ f (r,ß,t; X ,X ,c)dt 
v/     *- 12 

+ A\l\fJir.ß,t: X .X,,c)+ I (l-X/21r)jl6r(t) 

+ fp(r,ß,t; Xi,X2,c)6p{t)|»dt (29) 

6ZI = 26A 6r + fp6p 

+ 26AÖC \ £cdt + A(6c)2   \  fccdt 

+ AJ {frr(6r)2+2frp6röß +fßß(6p)2}dt 

+ 2A (l-X /ZTT) 
ir 2 jardt 

(30) 

In the above, all integrals are from   -1   to   +1,    subindices denote partial 

differentiation, and   J   is given by 

1 

j = j[r(t)] =]   r(t)dt   . (3i) 

-i 

For   I   to be a minimum, we must have   61 = 0   and  6EI > 0   for 

arbitrary   6r(^), 6p(^), 6A,    and   6c.    61   vanishes if the terms multiply- 

ing   6A  and   6c   vanish separately.    The first line in (29) is zero if 

.1 
r2      n (32a) 

-1 

1 
f(r(t),p(t),t; X ,X ,c)dt + -- (1-X /2Tr)J2  = 0    , 

dwfen&g|«x.ÄdKC      - - i^- ■ 



68 

or, by (27a) and (31), 

D*  =\ s   + X v       , (32b) i o       /o 

in which the functional forms of   D ,   s  ,    and   y     are given by (25),  (22), 

and (21), respectively.    The second line of (29) is aero if, by (27b), 

jfc(r(t).p(t),t;X.i,X2.c)dt 

= 2Xc-^i.  y/^Sinhr(t)cosp(t)    +r(t)ldt = o     . (33) 

Finally, for the last integral of (29), we substitute (28) for   öß    and then 

change the order of integration, giving 

1 

J |[fr+ I (l-\/2ir)j]6r(t) + fp6ß(tidt 

= Ufr+ | (I-X^TT)! + H^[fß3>6r(t)ät= 0     . (34) 

Now,  since   6r(|)   is arbitrary, we obtain the nonlinear singular integral 

equation 

fj^ß.l; \i,\2,c) + .T^[fp(r,p,t; \.\,c)] 

= - i (1-X /Z-n) \ r(t)dt    , (35a) 
IT 2 J 

where, by (27b) 

fr= -\ie
r(e)iei - ^ [eco8hr(e)cosp(e)iog{(c-i)/(c+e)} + 2c] 

x (35b) 

f = -± e8inhr(e)8inp(e)iog{(c-e)/(c+e)}  . 

This integral equation, which contains   X ,X ,    and   c,    as parameters, 

is to be solved together with the linear integral equation (26) for the 

extremal arcs   r(|)   and   P(|).    The Lagrange multipliers   X  ,X    are 

- ..=■■,■ Sj&A, ,:tS3i& .,-. -ärf 



69 

determined by equations (32) and (33),    The final parameter   c   is most 

conveniently determined by the nondimensional ratio   s   /y  ,    which,  of 

course,  is a known constant.    Finally, the optimal drag coefficient (based 

on plate width) is given by 

CD = D/  ? pU2yo = D*/yo     • (36) 

This optimal drag coefficient is a minimum if the second variation 

62I > 0,   which reduces to 

6zI=A{6cfyccdt + A§{irIJi6rf +2frß6-6ß +fpp(6pf}dt 

•4 + ^ {l-\j2-n){\ ÖFdt] > 0     , 137) 

by (30),  (32a),  (33),  and (34).    Now,  the last term in (37) is due to the 

second variation of 

1 2 

%(i.xjiM r(t)dt)     , 
-1 

which, by (24), equals the second variation of 

I 

2A(1-X /2Tr)  \    tsinhr(t)sinß(t)dt     , 

-1 

so that (37) may also be written as 

A(6c)2 Ifccdt + Ai {grr(6r)Z+2grp6r6p + gpp^H* > 0   . (38) 

where   g S f + 2A{l-\ /Zir)^ sinhr(|)sinp (|).   Since   A > 0,    this inequality- 

holds if both integrals are positive.    The first term is positive when, by 

(27). 

1 2V 1 
f   f    dt = -2X   + -ü  f    ^sinhr(t)coSp(t)dt > 0 

^   cc i      u       ^ (c^t2)2 

In Part I, it was shown that a necessary condition for the second integral 
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in (38) to oe positive is that 

ßrr+gpp =-\er(l)|ll >0     .     for       |||<1     , 

or simply, 

X.^ 0     , (40) 

since   F  is real.    Once an optimal solution has been found,  conditions (39) 

and (40) must be checked to determine if the solution is an actual minimum. 

The singular integral equation (35) may be reduced to an integral 

equation with a regular kernel by using the identity 

| coshr(e)cosp(e) =Ht[tsinhr(t)sinß(t)] +e     . (41) 

which follows hy averaging the equations which, in turn,  are a result of 

letting  ^ -^± i0(|| | < I) in (19) and noting the limits   w(^tiO) = ±r(| )+ip (|). 

The substitution of  § coshFcosp,    as given by (41), into (35) yields 

1 

\   \   t sinhr(t)sinp(t)K(t,^;c)dt - \ e^^UI 

= _£  (2c + |log{{c-e)/(c+e)} - I (l-WZir)]    r(t)dt     , (42a) 
-1 

where 

K(t,|;c) = — log{(c-t)(c+e)/(c+t)(c-e)}/(t-e)    . (42b) 

It is now possible to show that if an optimal plate shape exists, it 

must have a blunt nose; i, e., a = ir/2. To show this, we first note that, 

by (42),    e |||   possesses a regular series expansion about   ^ = 0   of 

the form 

er(l) |g| =c    +ce2 +.   .   .        , (43) 
^       i 

where the explicit forms of   c  ,c,   .   .   .   , etc., are easily found but will 

be omitted here.    On the other hand, from (10a), in which   r(|)   is con- 

tinuous. 

i 
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e^Mll =[{l+(l-l¥}/|el]Wir|e|ei;(e) 

as    || I -• 0.    This expzmsion agrees with (43) only if   a = ir/Z. 

Since there are no known analytical methods for solving the system 

of integral equations,  (26),  (42),  our only recourse is in solution by numerical 

methods.    These attempts have also failed; however,  in order to illustrate 

some of tie many difficulties which beset such procedures, we briefly men- 

tion one of the schemes that has been tried.    First,  the integrals in (26), 

(32),  (33),  and (42), are approximated by numerical quadratures which in- 

volve, the values of   r(|)   and   ß(^)   at   N  points   {^.}   from   -1   to   +1.    An 

initial guess of   {r(^.)}   is made and the set   {ß (£.)} is then given by (26). 

Next, the Lagrange multipliers,    \ ,\ ,    are found from (32) and (33),  in 

which the current values of   T  and   ß    are used.    Finally, new values of 

{r(| )}   are calculated by solving for   r(^)   in (42) and the process is 

repeated, hopefully, until the iteration converge.    These calculations are 

done for arbitrary values of   c ^ 1,    with different   c's   corresponding to 

different ratios   s  /y  , o    o 

As mentioned above,  this method and many others like it do not 

work.   Among the more disagreeable features that are encountered are the 

following:   (i)   the iterations do not always converge;   (ii)   the values of 

r(|.),    as given by the solution of (42) for   r(^),    are not always positive, 

so that   (7)   is violated; and,    (iii)   the value of   F  at   | = ± 1   is not zero; 

so that   ß    in (26) becomes large as   | -*± 1   and integration of terms in- 

volving   sinß    and   cos ß   by numerical quadrature fails.    Corrective steps 

were taken,  such as enforcing   r(±l) = 0   at each iteration step,  and in- 

creasing   N;   however, these measures did not help. 

Note that   ß(^)   in (26) has a logarithmic singularity at   | = ± 1   if 

F(±l) =   const ^ 0,    and   ß   has a higher order (branch type) singularity 

if   F  itself is singular at the endpoints (e.g. ,  see Muskhelishvili (1953), 

§29).   By studying the linear case, in which the functionals are quadratic 

in   F  and   ß  (see Parts I and II), it was deduced that the endpoint 
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condition (7) cannot, in general, be satisfied.   If this conclusion is also 

true for the present nonlinear case, it is likely that a solution to {2o) and 

(42) will have no direct physical relevance since   F  and   ß    will be singular 

at  £ =± 1;   nevertheless,  such a solution (if one exists) would provide an 

absolute lower bound for the drag which could then be used in judging the 

"degree of optimality" of results obtained by other (approximate) methods, 

such as that to be presented in the next section. 

5.   Solution by Expansions in Finite Fourier Series 

We now investigate a method for obtaining approximate optimal solu- 

tions by the expansion of  F (£)   and   ß (|)   in Fourier series in which the 

constant coefficients are chosen so that the drag is minimized,  subject to 

the isoperimetric constraints mentioned previously.    Let the expansion for 

F   be given by 
1 N 

rß)s -2,an8in:2n-l)0    ' (44) 

n=I 

where   | = cos 9 (0< 0^ IT .  This 0   is not to be confused with the flow angle). 

From the identity 

JL    smmp sin«) ätp fl 
j cos<p - COS Ö 
O 

we see that (16) is satisfied, term by term, if 

N 

ßi(£)= -^ ancos(2n-l)0     . (45) 

n=l 

Note that F in (44) and ß in (45) have the correct symmetry properties 

and that (13) is automatically satisfied. By setting a = •ir/2 in (9) (this is 

dictated by the results of the previous section) we obtain 

i 
wa) = iog{[(;2-i)2+i]/;}+uJ(;) 

Therefore, by (17), the width of the plate is given by 
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"(C) p     wit;    ,     i 
yo=-2AImj      e1     [ (;2-1)2+i] d^ (46) 

This integral is most easily evaluated by the change of variables 

£ =(v+v'l)/2   , (47) 

which maps the upper half £-plane into the half circle,    | v| < 1, Im v > 0 

(see Figs.   4 and5 ).    The inverse transform   v = - 4 +{£2 -I)2   is chosen so 

that the point at infinity in the £-plane maps to   v = 0;    the endpointt; of the 

plate,   £ = ± c,   maps to   v = -^K,   where 

K = c - (c2- I)2 (48) 

It is readily verified that  w   as a function of   v   is given by 

N 

u(v) = i ) a^v n"  = üi(v)    , 
i Z-/   n 

n=l 

(49) 

-i6 
since on S'OS, v = ~e , where 0^ 9< ir; thus, the real and imaginary 

parts of (49) agree with (44) and (45), respectively. From (47), (48), and 

(49), the expression for the width becomes 

i Y    =   7 fr" \   e (v+2i-2v     -2iv    +v     )dv 

which is evaluated by taking the path of integration   L     in Fig. 5     In the 

limit  e -* 0,    it can be shown (see Whitney (1969) ) that 

r     ^ 
y0 = jl 2-^   sinn(t)[2t - {2-n'(t)}2/t]dt 

+ \    cosn(t)[2 +n"(t)/2t]dt + j (2-a)2 

+ [2/K - ß,(K)/2/c]cosß(/c) - (l/2K2)sinß(K) 

(50) 
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where  «'(t) = dß/dt, «"(t) = dztt/di*.    By (10a), (44), and (48), the expression 

for the arc length (22) becomes 

[1 -12 
fiK+K     )   -1 

i-\    exp*-")   ansin(2n-I)0>(l+8in0)sin0 d0       . (51) 

Finally, from (10a), (25), and (44), the drag is found to depend only on the 

first of the Fourier coefficients, 

(52) *    Air    /0      iE D = —r-  (2-a^r T 

due to the orthogonality of the set   {sin(2n-l)0}   on   [ 0,IT] . 

The optimization problem reduces to minimizing   D     in (52),  sub- 

ject to the constraints (50) and (51), over the   (N+2) - dimensional space 

(A.Ä.a^a^, , a..).    For general values of   N > 1,   this problem must 

be done numerically; however, if   N = 1   the integrals in (50) and (51) may 

be evaluated in terms of special functions.    Note that by (10b) and (45), 

ß(4) = -• sgn§ - acos0,   for the case   N = 1,    so the plate section  S'OS 

is convex or concave when viewed from the approaching flow as   a   is 

positive or negative.    This section is a flat plate,  corresponding to the 

Lavrentieff profile (see Section 1), if   a = 0. 

With   N = 1   in (49),   n(t) = at, «'(t) = a. and   r<!"(t) = 0,    so that 

(50) becomes 

A 
^0= r 

K   O 

sin(at){2t - [Z-af /t}dt 

+ 2 \     cos(at)dt + J (2 - a)2 

+ (2/K - a/2fc)cos(aK) - (l/2>cI)sin(afc) 

Ar -2 -1 

| [(2^    +4^ K     )sin(aK) 

+ (4K"   -a/c"   -2/ca'   )cos(aK) 
i i i 

+ (2-a)2{Tr/2 - Si(aK)}     , (53) 
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where   Si   is the sine integral, 

Si{x) 

x 
Jsint dt 

From (51), the arc length is given by 

=4 
IT •asin0 

s   = AJ^. (K+K'
1
)

2
-1 + \     e    1        (l+sin0)sined0 

^ [K
2
+K"

2
+ 6 + Ml+a"1 ){L(a) - I.(a)} 

ii       ii 
(54) 

- 4^(1^) -y^)}]   , 

where   L.   and  I.   are the modified Struve and Bessei functions, respective- 

ly (e.g.,  see Abramowitz and Stegun (1964) ). 

The problem of finding the optimal plate shape from the class of 

plates with   N = 1   in (44), (45) is equivalent to extremizing 

I(A,fc,a) = D (A, a) - X so(A,K,a) 

^/0(A,K,a)    . 

where, as before,    \    and   \    are unknown Lag range multipliers and   D  , 

s ,    and  y     are given by (5Z), (54),  and (53), respectively.    If  I   is 

extremal; the three partial derivatives   I., I  ,    and  I   ,    must vanish. 
A    K a 

i 
This gives three relations among the quantities   A,/c,a,\ ,    and   \ .    By 

eliminating   \    and  \    from these three equations we have 

AEA(a,/c) = DA[s      y     -s    y    1 v i'   '        AL   oa 7oK    o/roaJ 

i i 

'Dllsoj?oK-SoKVoA] =0    ' (55) 

where the partial derivatives may be found from (52),  (5*), and (54).   Since 

A > 0,   we must have   A(a,/c) = 0.    Let the solution of this equation be given 

by   a = f(/c).   For   /( ~ l(c ~ 1) it can be shown, by rather long and tedious 

expansions of (52), (53), (54),  and (55), that 

■■-"!■. .A'■;<--;■■:.:■.    ■.^■.s 
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a =£(«) = {8/(3ir+l6)}{l-<f - {24ir/(3Tr+l6)2}(l-Kf + 0{l-Ky*      . (56) 

The general solution, plotted in Fig. 6, is found by fixing   K   at various 

values between   0   and   1   and numerically solving for   a     from  A(a,x) = 0 

in (55).   As   /c "* 0 (c -► oo), a     is found to be the root of the transcendental 

equation 

(2+a)a{Lo(a) - Io(a)} - (a2+2a +4){L(a) - 1(a)} 

= - (3-Za)a2/(2-a)    . 
TT 11 1 

This root is given by   a "" 0.1020,    which provides an upper bound for   a  , 
i i 

so that the optimal shapes are only slightly curved over   S'OS. 

This one relation,    a = i(K),   is all that is needed to complete the 

solution since the factor   A  drops out of the expressions for the drag co- 

efficient and the ratio of arc length to  chord.    Thus, by (36), 

CD = Cj^./c) = D*/yo    , (57) 

and, denoting the ratio of arc length to chord by   k, 

k.k(ai,K) = so/yo     . (58) 

The evaluation of (57) and (58) (in which   D , y  ,    and   s     are given by (52), 

(53), and (54) ) for   a = f(/c)   gives a parametric representation of   C-. 

versus   k.    This is plotted in Fig. 7,   where   Cn = 2ir/(iT+4)   is the drag 
o 

coefficient of a flat plate in infinity cavity flow (e.g.,  see Lamb(1932) ). 

Aß k ■*«.   it can be shown from (57) and (58) that   C   '^4+Ti)/(Tr+8k). 

Minimum drag profiles for various values of   k   are shown in Fig. 8. 

These profiles are found by numerically integrating   dz   in (IT) and are 

quite similar to Lavrentieff's profiles discussed earlier in Section 1; how- 

ever, by expanding   y     in (53) and   s     in (54) for small   a,    it can be 

shown that for   (k-1) « I, 
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cD = ttr{1 -Y(k-1)2 +0(k-1»  ' 

where 
\_ 

y =4{2(ir+4)}"2 -1,0584 

for the Lavrentieff profiles   (a = 0),    and 

Y = 4{(9Tr+64)/4(Tr+4)(3Ti+16)P -1.1641 

for the profiles in Fig. 7.    Thus, for   k   close to unity, the drag coefficients 

of the profiles in Fig. 7 are slightly less than those for Lavrentieff s profiles. 

The cases   N = 2>3J  .   .   .,    could, in principles, be carried out 

along similar lines and should result in improved drag coefficients for a 

given k = s  /y  .    The numerical examples of Part I, in which the exact 

solutions to the variational problem are known, indicate that expansion in 

Fourier series is a very effective method, at least for the case of quadratic 

functionals.    Whether the same holds true for the present problem,  in which 

the functional is of a different type,  remains to be seen. 
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v - plane 
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Fig. 5   The path of integration in the v-plane 
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Fig. 8   Optimum plate profiles for the Case   N = 1. 


