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1. SUMMARY 

Because demand for air transportation is already taxing the capacity of our present 
system, and because it is projected to increase greatly in the years ahead, every consider- 
ation is being given to technical methods of maximizing the capacity of the system. Many of 
the technical developments will lead to great financial expenditures in development, manu- 
facture, installation, and maintenance. It is necessary to seek every method to optimize the 
choice of technical system as well as its mode of operation. For this purpose, the method so 
often used in engineering developments of actually instaUinj? (he system and then finding 
how well it works is not only very expensive, but is likely to give inconclusive and 
ambiguous results - unless enough precise theoretical knowledge can be brought to bear on 
the situation to clarify the nature of its interactions and the relationships of cause and 
effect. In this respect, the cituation has all the well-known features of problems which can 
be clarified by operations research. 

Of the two categories of system that are involved in an air terminal - the ATC system, 
and the actual aircraft, air-space, and runways - the latter is the object of the present 
examination. By a quantitative study of airport congestion, with its notorious tendency to 
lead to lengthening waiting lines, aircraft stacked in holding patterns, and the consequent 
delays and diverted flights, we have been able to reveal causal relations and to develop 
methods of prediction. But this has been possible only because we have been able to develop 
appropriate analytical tools. 

Already in our previous Interim Report, issued in October 1970 (Report 
No. FAA-RD-70-70), we have set forth the reasons for rejecting standard queue method- 
ology as inapplicable to the study of air terminals (its inabihty to deal with strongly 
time-dependent conditions, its ignoring of queue length Umitations, the inflexibiüty of its 
formulas). In Chapter 6 of that report we established a method for dealing with single 
queues under strongly time-dependent conditions, Umited total length and random service 
times (e.g., Poisson statistics cf landing). 

The present report analyzes the whole question of the effect of various service 
statistics, and shows by a set of computations under rather wide ranges of conditions that 
the results are decidedly insensitive to the assumptions concerning these statistics: the 
extreme of random service and the extreme of regularity lead to nearly the same numerical 
values. This is an entirely new result, that had never been suspected. It is of great usefulness, 
since it makes it unnecessary to go to great lengths and complexities of formula in the 
attempt to come as close as possible to realism. 

In the present report, the rather simple traffic model that ignores random and concerns 
itself with the mean motions only, has been compared in its quantitative results with the 
queue models taking random into account. This simpler model, while giving results rather 
close to the others in cases of gross overloading of the terminal, does not agree at all well 
with them in cases of more moderate utilization. It tends to be over-optimistic - a fact that 
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may suggest the possibility of approximating to its assumed lack of random, as a measure of 
improvement by flow control. 

Another development of a tool of analysis is a systematic method of setting up in a 
rational form the equations of evolution of a double queue, by the concept of the "cross-cut 
averaging." Once set up, such a system of equations can be reduced, by a simple method we 
develop, to two equations of single queues, where each influences the other as a perturba- 
tion of its coefficients, rather than by the details of its condition. Various methods of 
approximate solution are set forth. We have not carried out numerical computations by the 
method at the time of writing; but are prepared to do so as soon as a problem of practical 
evaluation of suggested equipment makes this appropriate. 

The success of the methods reported on herein is connected, we believe, with their 
attempting an optimum mix of mathematical reasoning and formulation, with modem 
computing equipment. The relative limitations in mathematical treatments before modem 
computers were available, and the extreme expense in time, money, and inconclusive results, 
that so often occur when computers are not subordinated to mathematical raasoning, show 
the desirability of the middle ground. 
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2. INTRODUCTION 

2.1  BACKGROUND 

In examining the performance of the air transportation system, both in the present and 
in future forecasts, and in estimating the benefits of various proposed equipment and 
operational improvements, it is convenient to think of the whole situation as being made up 
of two components: On the one hand, there is the air traffic control system (ATC), 
composed of the various sensing devices, communication networks, displays, computerized 
data processing, and including all the feedback loops and the man-and-machine teams in the 
control tower and the cockpits. On the other hand, there is the physical system composed 
of the runways, air space above them, and the aircraft arriving, landing, and taking off. The 
ATC system is being examined and forms the subject of other interim reports under the 
present contract. The present interim report is addressed to the analysis of the behavior 
under various conditions of the aircraft-air-terminal system. 

A major problem facing ova air transportation system is that of capacity - the ability 
of the system to accommodate the demands increasingly placed upon it without unaccept- 
able degradation of service, such as passengers turned away, delayed or cancelled flights, or 
decreased safety. Both parts of the system face the problem of capacity: the ATC can be 
overloaded; and even when it is able to handle its burden, the facilities for landing, takeoff, 
and air or ground holding can be exceeded. It is to this second category of capacity 
bottlenecks that this report is devoted. In principle, the subject comes under that of waiting 
lines or queues. But since practically all of the treatments of queues found in the literature 
are based on assumptions that are quite invalid in the case of air terminals, it could be 
seriously misleading to say that we are applying "queue theory" to the air transportation 
problems. Actually, we have had to create a new branch of this methodology to deal with 
these problems. The explanation and application of these new analytical tools are the 
subject of the present report.. 

2.2 THE NEED OF NEW TOOLS OF ANALYSIS 

The inapplicability of standard queue methods is due primarily to the fact that they 
are based on the assumption of fixed external conditions, whereas, as should be clear to 
anyone who has traveled by air at various timeii of day, and as will be shown by a wealth of 
airport statistics, the arrival rates at the terminal, for both landing and takeoff, are strongly 
varying functions of the time of day: very few during the early morning hours, and very 
many at the morning and afternoon rush hours. The standard mathematical treatments, with 
their fixed external conditions, are led to transitions or transition probabilities that are 
independent of the time. Then and only then will there exist a stationary state solution; and 
most of the attention is usually confined to this special and simple solution. But even when 
the standard treatments get away from the stationary solution and examine "transients," 
i.e., time dependent solutions of time independent equations, these are still not applicable to 
the study of airport congestion, except when the examination is confined to such short 
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intervals of time that the external conditions do not change appreciably during their course. 
Transients in a system with constant transition probabilities are far simpler and less realistic 
than the time-varying solutions in the case of time-dependent transition probabilities. 

As noted above, when the external conditions (and thus the transition probabilities) 
vary with the time, no stationary solutions are possible. On the other hand, when the 
conditions exhibit a diurnal periodicity of T = 24 hours, one and only one solution having 
this period will exist; all other solutions approach it exponentially as time increases. This 
fact provides a "relaxation method" for calculating the periodic solution numerically. This 
periodic solution takes the place, in the present methodology, of the stationary solutions of 
the older methods. 

A secondary reason for the limited applicability of standard queue theory to air 
terminals is the assumption usually made that the number in the queue is unlimited. Taken 
literally, this is absurd, since it not only assumes infinitely many available aircraft, but 
infinitely many spaces for air stacking or ground waiting lines. If this infinite assumption 
were able to simplify the quantitative discussion, it could be used as a convenient fiction - 
as similar assumptions are permitted in so many applications of mathematics to physics. 
Actually, the reverse is the case: the queue equations are infinite in number when the queue 
is allowed to be unlimited, and this greatly complicates the theory that is needed. With the 
assumption that will be made throughout this report, a number is set as the limit of queue 
size. Beyond its greater realism, this assumption has two obvious advantages: it simplifies 
the theory and it facilitates the numerical computation. But the assumption of queue 
limitation has the even more important advantage of making possible the quantitative study 
of the expected number of aircraft "turned away" - not allowed into the waiting line and 
either held at the port of origin or diverted. This is an important element in gauging the 
capacity of the system. 

A method increasingly used in operational problems of the present sort is "simula- 
tion," or more explicitly "computer simulation" or "Monte Carlo simulation on a 
computer." In this method, a modern electronic computer has one part of its capacity 
programmed to record any one of a set of states, intended to correspond in a one-to-one 
way with the possible states of the actual system studied (here, the air terminal). The second 
part of its capacity is made to contain a rule of transition, whereby, when at a particular 
time the computer records a particular state, the next state or states are selected. The 
selection may be deterministic, the next state being determined by the record of the time 
and state that the computer is in; or it may be random, employing a selection according to a 
given probability distribution, implemented by a table of random numbers. Since the 
present conditions are strongly time-dependent, there will be a different rule of statistical 
selection for each different time. 

Clearly, if suitably accurate knowledge of states and state transitions is inserted into 
the computer, and it is allowed to make one run corresponding to a twenty-four hour period 
of real time, it will give information no more complete than that obtained by observing the 
actual operation of the airport during one day. This would not be regarded as a sufficient 
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basis for important decisions because of its inability to separate reproducible from random 
effects: it is necessary to make a large number of runs to obtain a given level of reliability. 

There exists at Arthur D. Little an extensive experience in the use of this method of 
computer simulation. Its application to the air terminal problems in this contract has been 
given detailed consideration, but it has been discarded in favor of a conventional mathemat- 
ical treatment, with computers used for computation only - that is, "computer-assisted 
analysis." The reasons for our decision are three-fold: first, the cost-effectiveness of 
obtaining the required results with the required degree of reliability is unfavorable - by 
several orders of magnitude - with the use of simulation as compared with computer- 
assisted analysis; second, the simulation method, while avoiding no difficulty intrinsic to the 
problem, makes the exact assumptions and reasoning less visible and the relations of cause 
and effect less clear than the analytical method we have adopted; finally, simulation is 
incapable of establishing such general properties as the existence and uniqueness of the 
periodic state and the exponential approach of all other solutions to this one - it could at 
most suggest such a situation. 

2.3 SCOPE 

The necessity of developing new methods for the study of time-dependent queues in 
the study of airport capacity was first set forth in the September 1969 to August 1970 
Interim Report submitted under this contract (Report No. FAA-RD-70-70, Chapter 6).1 

The single, time-dependent queue was examined on the basis of purely random (Poisson) 
arrival and service times (landing or takeoff), with strongly time^dependent parameters 
(expected numbers per hour). Data taken from 1968 activity statistics at J.F. Kennedy and 
LaGuardia were used as input parameter values in a number of calculations of different 
important indicators of capacity, such as expected length of waiting lines, their fluctuations, 
the delays, and expected numbers turned away at various times of day. The results were 
exhibited as graphs. The double-queue problem was given mathematical study, but this was 
only preliminary and was not carried through to numerical results. 

The present report concerns material that forms a deepening and amplification of that 
methodology presented in the Interim Report. Its first step is to examine the range of 
possible assumptions regarding the service statistics, all the way from the purely random 
(Poisson) to the purely deterministic (fixed interval of service) in the case of the single 
queue. A full model based on the latter assumption is set up, and its results compared with 
those of the former. From the practically unimportant differences, it is concluded that there 
is little sensitivity to this category of assumption. The airival assumption of pure random 
has a high degree of plausibility and observational confirmation. Nevertheless, it has often 
been replaced by an assumption of perfect regularity, usually to avoid the mathematics 
required to deal with the random features. This assumption, coupled with that of perfect 
regularity of service, makes the problem coincide mathematically with the model of the 
flow of a liquid into and out of a reservoir. This has been discussed in Chapter 3 of the 
1969-70 Interim Report.1 We make calculations based on this deterministic flow model and 
compare them with the results of the random models, using the same inputs. The flow 
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results are found to differ considerably from the tatter, so that the tegular arrival upump- 
tion cannot be regarded as a reliable basis for a treatment of airport congestion. AU this 
material on the degree of sensitivity of results to assumptions seems to be entirely new it 
forms the subject of Chapters 3 and 4, * 

The next problem is that of the double queue: a single-runway facility shared by two 
categories of aircraft - those wishing to land and those waiting to take off. More generally 
there is the problem of the multiple queue, which has to be considered when two or more 
terminals are examined together as a system complex. Before any quantitative treatment of 
this class of problem can be started, some rather deep issues have to be faced regarding the 
degree of detail in which the state of the system must be specified before any sensible taw of 
transition can be formulated. Both computer simulation and computer-assisted analysis are 
forced to act as if the state of the system, together with the time of day, determines the 
transition probabilities into the immediately succeeding states. In technical language this 
means that a Markov assumption is required. (Even when the record of a few preceding 
states is used in the selection of the succeeding state, a simple mathematical reformulation 
shows that the Markov assumption is still being used.) The justification of this assumption - 
essentially a redefinition of the relationship between the idealized model and the day-to-day 
occurrences - is the first object of Chapter 5. 

The second object of Chapter 5 is to formulate the equations of evolution of the 
multiple queue, in the light of the considerations adduced up to this point. The third object 
is to reduce the resulting equations by a method of marginal sums, to the equations of the 
separate single queues, acting upon one another by a perturbation of their individual 
transition probabilities. This method of simplification, inspired by the treatment of coupled 
systems in mathematical physics, may be made the basis of a sequential algorithm of 
successive approximations, whereby a crude first approximation is improved step by step 
Each step is taken by a straightforward computer program. 

In Chapter 6, an example of the use of these methods is given, answering the practical 
question: what are the benefits of an improvement, even slight, of handling rates? Since one 
of the possible contributions of advanced electronic systems, such as ARTS-IH, could be to 
handling rates, this example is relevant to their practical evaluation. 

As a further practical application, we compare the results for our random arrival 
queues with those of the deterministic flow model. The tatter gives decidedly more 
optimistic values of such indices of capacity as aircraft turned away, etc. While this shows 
the misleading nature of the deterministic assumption when apphed to a random situation 
it also indicates quantitatively how the diminution of the randomness of the arrivals by flow 
control could improve the capacity of the terminal. 
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Finally, by means of the methods set forth herein, precise numerical calculations can 
be made concerning the metering loss in the following sense: When the positions of aircraft 
approaching the terminal and then the runway are not known precisely (either by tower or 
pilot), safety requires an increase in spacing over what would be possible with much more 
precise knowledge. The effects of this are two-fold: a decrease in the mean rate of landing 
and a greater degree of random (diminished flow control). As indicated above, the calcula- 
tion of the impact of these effects on capacity is a simple exercise in the methods of this 
report. Work is continuing on this problem. 
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3. ASSUMPTIONS OF ARRIVAL AND SERVICE: 
THE SINGLE QUEUE 

3.1 POSSIBLE SERVICE ASSUMPTIONS 

"Service assumptions" in the present context concern such variables as, in the case of 
takeoff, the total interval of time taken by the aircraft from the moment when it is given 
the all-clear signal and order to take off to the actual moment when it takes off, leaving the 
runway safe for the next user (to take off or to land). Similarly, in the case of landing, the 
service time means the length of time between the instant when the clear-to-land signal is 
received by the aircraft in the approach pattern (the first in turn to land) and the moment 
when it has not only landed but has cleared the runway so that the latter can be used by the 
next aircraft. 

The importance of the service time assumption is seen in the case of several aircraft 
waiting to use the same facility. Suppose that, as in the highly regimented takeoff of fighter 
aircraft from a carrier on a combat mission, the use of the runway takes an exact interval of 
time (c units). Then the instants of takeoff would form the regular array, starting with the 
first time to; that is, t0, to + c, to + 2c, to + 3c, etc. The number of fighters waiting to go 
would change only at these instants. This law of service is called that of "fixed-service 
time." It is possible, even with such a regimentation, that the interval c might vary in a 
predictable way with such conditions as degree of darkness; but this would not be a random 
but a slow "secular change." 

In contrast to this regular case, there are many situations in which various causes of 
irregularity operate, as for example, individual differences of aircraft or of their pilots, 
special conditions at the airport (physical or personal) including wind and weather. These 
are but examples: it is of the essence of random that a list of its origins can never be 
conclusive. All that can be said, in general, is that the length of service time has (at a given 
time of day, etc.) a predictable expected value (mean, found by averaging), and that the 
distribution of service times about it is some more or less complicated curve - which may 
be peaked about the mean, or spread more or less widely away from it. The more it is 
peaked, the closer the situation resembles the case of perfect regularity of length c. What, 
mathematically, is the opposite extreme? 

The above question asks, in effect, for the "most random" distribution having a given 
mean t. The question, while using "random" in a rather intuitive sense, can be made precise 
enough to answer by adopting the measure of random provided by modern information 
theory. If p(t) is the probabiUty density of the length of service t (t > 0), the quantity of 
information regarding the value of t provided by this given density is the integral 

lp=/0~P(t)logp(t)dt 

PRECEDING PAGE BLANI^ 
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If the bit is the unit of information, "log- must be the logarithm to the base 2; but this is 
immaterial to the following reasoning. Our question then takes the following form: Of all 
the distributions p(t) on the positive time axis having a given mean 

C p(t)tdt=T 

which one containsaminimuminfonnation ^ (or. equivalenüy, a maximum "entropy"-!). 

A simple exercise in calculus of variations (using the convexity of the function x log x) 
gives the answer that it is the Poisson density p(t) = pel* where M . , fc^ then JJ 
taken as the extreme case of the perfectly random service time. Fortunately for our 
subsequent calculations, it is very simple. 

th-t ♦?* ^ .0f ^ t0 Which 0Ur examiMtion of the air terminal problem has led us is 
that the reality lies in an unknown position between the absolute regularity of service time c 
and the complete random of the Poisson service with the same mean (c =T=1/M) Our basic 
methodological strategy is to carry through formulation» and calculations of quantities of 
importance to the practical issues on the basis of each of these extremes: when the results, 
graphed a- functions of time, are curves lying close together, the •'reality" will be regarded 
as ItobanJ between the two curves. This is quite different, and we submit, far more realistic 
than the point of view which regards one of the two curves as the coirect one. the other as a 
more or less good approximation of the correct one. 

The striking fact to be illustrated below is that the two curves calculated on the basis 
of the two extreme assumptions he close together in the ranges of practical importance. This 
shows that either one of the curves - and. hence, the assumptions which led to it - is a 
satisfactory approximation to reality, as represented by the band between them. Strength- 
ened by this observation, the Poisson assumption of service time wül be used as the basis of 
the treatment of the multiple queue problems of Chapter 4. 

3.2 THE ARRIVAL ASSUMPTION 

Even under the most extreme degree of military regimentation, fighters returning to 

whT/ TT?. ^arriVC at irregU,ar interva,S; 8nd this *W*rity in the times at 
which aircraft, destined for a particular terminal, become candidates for admission to its 
landing pattern - or holding stacks - is a matter of general observation. Put precisely, the 
probabihty that a new arrival - or application for admission - occurs between an epoch 
time of day) t and an immediately subsequent epoch t + M (At small: e.g.. a minute or 

two) is a quantity having the following two properties: first, to quantities of higher order in 
At. it is proportional to At, and may thus be written as \At; second, it is the same, for a 
^"JT ^ft aheadof "'^^^««"d of the exact timesat which these had 
entered the queue. Of course, the coefficient \ will vary with the time of day, but if its 
amount of change is negligible during the period from t to t + At, then the usual elementary 
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3J THE EQUATIONS OF EVOLUTION: POISSON LAW OF SERVICE 

^^Z^T* rUe Wh'Ch''" ,he PreK", •«*"*>". -»«y be the airoaft in SUMS and in the landing patterns awaiting clearance to land or else the ih. „f J   « 
w^ng ™ the ground for t^eoff. tte crucial „uantity i, ^^o^.0^ 

■■T!. .. ', 0m "l""ber «""« be bandied hy the method» of pr^baWUrWe 

U» q«ue. Ctoly. n must b. zero or a positive integer. Furthennore, since, as expUtaed n 

we must have n-0,U "n.Forany other values of the subscript, P,(t)-0. 

JZ n^^ir*edePend n0, 0,,ly 00 ^ ^ 0f ^ '• bU' 0" 'be - of the 

X^XCD-R,,«).   M = M(t) = Ln(t) 

The R quantities are "transition probabüities" of a motion to the right in the array of values 
of n. the L quantities corresponding to a leftward jump; they may be LlVd^t IJ j 
the left-transition probability coefficients. * " "^and 

P^D-VtCt)   IWt)- [R.co + LJt)! Pn(t) + Ln+1(t)Pn+1(t) 

which is true for n= 1,2 m - 1; whereas for n = 0. we have 

Pi(Oa-Ro(t)Po(t) + LI(t)PI(t). 

and for n = m, the maximum number allowed in the queue, 

Pi;(t) = Rm_1(t)Pin_1(t)-Lm(t)Pin(t). 

(3.1) 

(3.2) 

(3.3) 
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Equations (3.1), (3.2), and (3.3) form a system of m + 1 ordinary, linear, homogeneous 
differential equations of the first order, of a type studied in mathematical physics for 
centuries and the general properties of which are thoroughly known. In particular, given any 
initial values Pn(o), there will be one and only one solution. If the initial values are 
probabilities (non-negative and adding up to unity), the same will be true of the corre- 
sponding solution. Finally, if the coefficients are periodic in t, i.e., if 

Vt + T) = Rn(t), L,, (t+T) = Mt), (3.4) 

and if all the transition probabilities go through an interval of positiveness, there will be one 
and only one set of probabilities Pn(t) satisfying the equations and having this period 
T: PB(t + T)=Pn(t). This unique solution is approached exponentially, with increase in 
time, by every other system of probability solutions. It plays, therefore, the role of the 
steady-state solution, which exists only when all the transition probabilities R^t) and LJt) 
are independent of time. 

It remains to obtain the solution numerically for various actual or representative values 
of the transition probabilities which, in general, (particularly X) have to be given in tabular 
form. This requires computer routines of a standard type for solving differential equations 
of the present sort. Actually, the quantities of practical significance are the expected value 
n(t) of the number in the queue at the times t, its standard deviation, the cumulative 
number of aircraft "turned away" (not admitted because the stack is full: they may be 
diverted or held on the ground at their port of origin), and, finally, the expected waiting 
time of an aircraft which joins the queue at the epoch t. All these come out of the 
computer program and are discussed in Section 4 below.* 

3.4 THE EQUATIONS OF EVOLUTION:FIXED SERVICE TIME 

The treatment of this case is vastly simplified if we "atomize" the time axis, as follows: 
Starting with an arbitrarily fixed initial time t = 0, let us consider the moments or epochs 
ti " c, ta ■ 2c,..., t, = sc, etc. Suppose that an aircraft, at the head of the queue, ir serviced 
(and hence, removed) at t = 0. As long as there are others awaiting their turns, aircraft will 
be removed at the regularly spaced epochs t|, tj ,etc. Next, consider arrivals. To confine 
changes in queue size to the exact moments defined above, we shall assume that, if during 
the interval of values oft (tf < t <t,+!), k aircraft "apply for admission," they will be held 
off until any aircraft scheduled to be serviced at t|4. |, admitting them at this precise epoch. 
Any aircraft of these k for which no spaces exist at tl+1 are definitively turned away - i.e., 
their presence will have no influence on the numbers of applications for admission during 
the subsequent period t$+1 <t <t,+ 2 • 

It follows from these assumptions that the changes in queue length can occur only at 
the discrete, equally spaced epochs tt defined above. We submit that these conventions for 

'For details, tee Referen« 1. 
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admission cannot make any material difference, nor will our subsequent assumption that c 
goes exactly into the T = 24-hour day. 

We shall denote by p» the probability that at the epoch t, = sc (equivalently, the 
epoch s) there be precisely n aircraft in the queue; that is, we set p» = Pn(sc) as defined 
earlier. Evidently p» will be zero, except for the m + 1 values of the subscript 
n = 0,1,..., m. 

Since the Poisson assumption of arrival is being made, the probability of exactly k 
applications for admission occur during ts < t < tl+! is given by the formula 

aje-a, a = Xc. 
k! 

Since X is time-dependent, a must bear an index referring to the time of day it is considered, 
e.g., a = a, = cXft,). For complete generality, we should, of course, also affix it with a 
second index, indicating the number in the queue at the time considered, and write 
a = cRnCt,) = a, n. However, this will not be done, for the following reason: the principal 
objective in this part of the study is the comparison of the results of the Poisson service 
assumption with those of the fixed service time assumption. While this comparison should 
be made under reasonably broad conditions, it need not be under the widest conceivable 
ones, such as arrival rates depending on number in queue, which do not apply to simple, 
single queues, and enter only in the study of complexes. Accordingly, we are confining this 
section to the study of arrival rates independent of queue length. 

On the basis of these assumptions the equations of evolution of the system during 
successive epochs s take the form of m +1 recurrence equations, coming under the calculus 
of finite differences. They determine pfi*1 in terms of the m +1 values of pj»*1. They are 
obtained by the usual probability reasoning, as follows: 

Consider first the case of p»+ i. The event of no aircraft in the queue at s + 1 can occur 
in just two possible (and mutually exclusive) ways: by having none at s and none applying 
for admission between s and s -*-1; or else by having one at s (which will be removed at 
s + 1), and none applying, as before. Compound and total probability show that 

PS*1 - P^o e_' + Pi «- 

Next let n be any positive integer less than m. The event of probability p,+ > can occur in 
the following n + 2 different ways: no aircraft at s and n applications between s and s + 1; 
one aircraft at s and n applications; and, so on; finally, n + 1 aircraft at s and no application 
between s and s+ 1. From this we obtain the first m equations of the system of m+ 1 
equations (3.5). The last equation is obtained by similar reasoning, but is modified by the 
"spill-over" possibility: to fill a queue at s + 1 when at s there were k members, any number 
of arrivals equal to, or greater than, m - k + 1 will work; the probability of this is the 
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"m-k+i defined by summing the corresponding Poisson probabilities, as follows (with 
m - k + 1 replaced by r) 

oo a1 e i«-« 

"'-.?.- 
«-1 aie"" 

= 1 -2   =-^— 
i-o    »' 

These sums can be expressed «s incomplete gamma functions.3 

Thus we obtain the recurrence or "difference equations" 

CMP'+ppe- 

P*l= (P' + Ppae-tp^e- 

P»*» = (P* + PJ) ^ e* + p« ae-+ p3« e"' 

Pf^CpJ + PpH 
a" a"-1 

^-e-€+P2
t(5-r)!

e'*+ 
(3.5) 

♦PlUie- 

pm1= (po+p?>u-. +P,,U-. . +   -+Pf u, m 0       l     m        2   m-l m    1 

We emphasized that the quantities a and u, will, in general, depend on the epoch s, and for 
explicitness should be written as a, and u,,. 

Equations (3.5) form a system of recursive or "difference" equations, m + 1 in number, 
for obtaining p1*1 in terms of p^, and thus successively in terms of any given initial 
Pn (n = 0.1,..., m). Four facts stand out at once: first, if the given initial values are 
non-negative, then so are all those obtained by recunence because the coefficients are 
non-negative second, if the initial values add up to unity, so do all subsequent sets of values; 
to see this we have but to add all the equations (3.5), obtaining in virtue of (3.4) the 
relation 

pri+^i+-+plr
iBPs+rt+•+PÄ.. 

Third, all values are uniquely determined - and numerically computable by multiplications 
and additions - in terms of the given initial values: if these are probabilities (non-negative, 
and adding up to unity), the same will be true of the computed values. 
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The /our/A fact implied by (3.5) results from the vanishing of the determinant of the 
(m + 1) by (m + 1) matrix M of coefficients of the m + 1 quantities pj on the right in 
(3.5) - this determinant having its first two columns equal. By the elementary theorems of 
linear dependence, equations (3.5) wUl be inconsistent, unless the rank of the "augmented 
matrix" Up» , M II in (3.5) is the same as that of M; the augmented matrix is formed by 
adjoining the column of quantities on the left to M. Appendix B shows that the rank of M is 
m, and that the augmented matrix will have the same rank if and only if the quantities p»+1 

satisfy the following equation (in addition to having a unit sum): n 

Dm P^1 Dm-lPr1+D
m-2P2+1-   • + (-l)m-1DlP^i1+(-l)'ne-=0 

(3.6) 

D   =_* m 
m-1 

(m-1)! 
 a m-2 

(m - 2)! + ... + (-l)ma + (-ir-i, etc. 

Note that the quantities a and Dm in these equations are functions of the epoch s or t as 
explained before. s 

The last result means that every set of probabiUties p*+1 that evolves from initially 
given probabiUties by the process expressed in (3.5) must satisfy (3.6), and that if the initial 
probabilities p» had not satisfied this relation, they could not have evolved from any 
previous ones through such a process. This is important in the case of periodic arrival rates 
Mt) = X(t + T), and when we wish to fmd a periodic solution starting from selected initial 
values: a necessary (but not sufficient) condition for periodicity is that the initial values 
satisfy (3.6). 

Both in numerical computation and in application of the general theory, it is better to 
replace (3.5) by a slightly modified system having m rather than m + 1 unknowns and a 
non-singular matrix of coefficients. For this purpose we add the first equation in (3.3) to 
the second and then introduce the symbol 

Pi" =P5+Pil (s = 0,1.2,...). (3.7) 

whereupon we obtain m recurrence equations in the m unknowns (p*  pi n*) Suppose 
that these m quantities are written as a single-column matrix p», and we let the square 
matrix of coefficients be 

15 

X" ^ 

m^^mmima  -----^--^  --  ---■■i ■•-  mm 



„Jll, *,.. Jf.lHiHUJiilUJJJ ." -..    .,>JIJflp*4,J( ■^?.!M.rm.mm . . ji .1. ii mv.im*mmm*» iiiuwiwiiiPMpiWMPiipiiippninni*^ *  '      ■'     "   HILIIIWWI 

A = 

(l+a^-«       e"« 

a2e-' 
2! 

ae -» 

0 0...0 

e"«     0...0 

a1"-1   _.     a'"'2 
.-• 

(m-l)! (m-2)! 

4m-l 

.-« 

.u. 

»A(a) = A(at)»Af 

(3.8) 

Then our recurrence equations may be written in matrix form as p,+ * = A p». The solution 
by recurrence is then 

P, = Vi V^-V0 (3.9) 

The fact that A is non-singular and, indeed, that its determinant is given by the formula 

det A = det A(a) = _  a m-l-(in-l)a 

(m-l)! (3.10) 

is proved in Appendix B. Therefore, the initial values, the elements of p0, may be chosen 
without restriction, other than non-negativeness and unit sum. Consequently, there is a 
fundamental system of m independent solutions of (3.9), in terms of which all other 
solutions may be expressed as linear combinations. Such a fundamental system can be 
obtained by writing down the unit m-by-m matrix I (units in the principal diagonal; all other 
elements zero) and regarding each column in I as a set of initial probabilities p0 - the k'th 
column corresponding to an initial queue length of just k aircraft. The resulting m 
independent solutions form the m columns in the matrix product 

*>,~ Aj-i As_2 ...A0 (3.11) 

16 

.„>..-:.,..:iA-.w   ■;.....,^: tM.„,.mnla.-      ■■«--...-.■..-■..■^aMafciaaaUia^^^^^ 
-■       -■ -       — 



1 i,,,,,vn^<«^"iRnppilP<apmm . •■iiuui.    ■IJIIIU.IIIH p t^imimiimi i ■■■«HJI«! IWIjpy ^MIJ ^JJ*»MWlflHl .S^Pf»»««^' !»J !■'!■ III,' ^•■" 

^trix I ^W *H ^W^™0! a9> t0 ^ of the «^n« P0 ofWtial values in matnx I. Since the deternunant of P« is the product of those of the A matrices, which are 

SlfS.^lSSe iS.trUeJ>f that 0f ^^ Thercfore' tt rePresente m «dependent solutions 

and ^W^^0''l* ?2' etC-> ^ 0btained' We find PS and P'l f«>m equations(3.6) »d (3 7). It is usually sufficient to ignore p^ and find ^» in term of af uLg (3 6) and 
the first equation in (3.5). Then Pj*» = Pf*» - p«+1. ^ 

We conclude by stating the theorem, the proof of which can be found in Appendix A. 

THEOREM. If the arrival rate X(t) is periodic in t: X(t + T) = Xm one and nnh, ««- 
solution p. wül be periodic and it will have^ its period P'+Ii p' S^C-ÄEZ 
other »lution will app^ch this one exponentially with an increase in t (u'ofT 

Note that we have assumed that the service time c goes exactly into T (24 hours) but 
this represents no material limitation of the result. 

3.5 REGULARIZATION OF ARRIVALS: DETERMINISTIC FLOW3 

As explained in 3.2. the assumption of random arrivals obeying the Poisson Law 
corresponds to what would be expected and to what is observed in the binary riZo^a" 

sur«r      «^ ^ ^^ 8Cheme 0f ^^^thcm * "^ con^l" ^ * such regulanzatoon ,s done without changing the mean arrival rate X(t) - ie   vShou 
rescheduhng     t must take the form of maldngtheaircmftarriveatregiiiin^rasto 
^possible, which must therefore be of lengths 1 A(t). Evidently suc?^ Sis Jffl 

T LTXT T ^ 0f r**' ^ to***™the «P^P^f seivicfalmp^ wm 
te^T-'.rr ^ f^ ^ re,n0Ved fTOm ^ Waitin« ^ du^ «ch fcZalof 
womn ". /M' ^ rema,n8 the qUe8tion of just how much impiovemenTin service, if any would such a regularization. if possible, produce. y' 

the InJIHr" ^ T*0"' f1 ^ neCeS8ary t0 eXamine ** ^ntitative consequences of 
the assumptions of perfect regularity of input and output. Except for its «gianularity '^ch 
™*^m*w™™^™<^*toV***ty «"«»ecaseoTaUq^dliowiS 
^^TLT^^^T^^'^^^^^^^'^^^flowthro^^ 
opening . the bottom at the rate M. The fmitene« of the air queue, with poMibfe tZZ 
away of aircmft exceeding its capacity, has its counterpart in the openness^e «S 
wi^spillmg out of excessive liquid. Accidingly. we shaU call JThe äeiernZi^Z 

«.h^APartKfro,n ^r ^ ^ StUdy 0f P088*16 benefi^ of flow control, this model has in 
***ance. been used because of its far greater simplicity than the moiels admitting 
Piesence of random. An implicit application is made to scheduling by con«de^ 
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arrival, landing, takeoff rates, and balancing them so as to obtain consistent schedules: to 
reason in this way is, in fact, to apply the mathematics of the deterministic flow model. In 
justifying such applications to the actual cases that do, in fact, contain random, it is 
necessary to compare the results with those of the two models we have studied earlier in this 
chapter. This will be done in the next chapter and it will be seen that, as stated in 2.3, its 
results differ considerably - and optimistically - from those of the random models. 

The mathematical treatment of the deterministic flow model requires the total input 
function 

V(t) = /t
0X(t)dt 

which represents the total volume of liquid that has flowed into the reservoir from an initial 
time 0 to the arbitrary time t. This can be computed numerically from the table of values of 
X(t), given, for example, by airport statistics. With our regular rate of outflow n-l/c, we do 
not need integration to find the amount of liquid leaving the reservoir through the lower 
opening, this being simply the product of ft by the time during which there is liquid in the 
reservoir. 

The computation is based on the following law governing the rate of change, dn(t)/dt, 
of the volume n(t) in the reservoir at time t (corresponding to the number of aircraft in the 
queue). 

dn(t) 
dt 

0 if    n(t) = m 

= 0 if     n(t) = 0 

X(t)-M   if 

and     X(t)>M 

and     X(t)<M 

0< n(t)<m 

To show how this works, suppose that at an arbitrarily chosen initial time t0 the number 
n(t0) is positive but less than m, so that the third line applies. On integrating we obtain 

n(t) = n(t0) + V(t) - V(t0) - Mt - to). 

This formula applies between t0 and the first time ti that n(t) equals zero or m. Then the 
appropriate rate of change formula is applied and n(t) is computed from t| until a first time 
t2 of the next change of formula, etc. Numerical details are illustrated in Chapter 4. An easy 
use of the function V(t) gives the amount of water spilled over the top (aircraft turned 
away), once the succession of times ti,t2, etc., has been found by the above process. 
Numerical examples are given in Chapter 4. 
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4. NUMERICAL COMPARISON AND SENSITIVITY 

4.1 ASSUMPTIONS BASED ON ACTIVITY STATISTICS 

The object of this chapter is to exhibit by means of graphs the numerical results of 
applying the three queue models of Chapters to realistic situations. As in the 1969-1970 
Interim Report (Chapter 6),3 the starting point will be the statistics of activity (i.e., arrivals 
and departures) taken during one month of 1968 for J.F. Kennedy and LaGuardia.4 These 
were supplied to us in a private communication from the FAA, as contained in an 
unpublished "FAA Staff Study of Airport Congestion in Major Metropolitan Areas." These 
data were in the form of graphs traced as follows: for each interval between consecutive 
hours (e.g., 10 and 11), the average number of events was found and plotted as the ordinate 
of a point, the abscissa of which was the corresponding midpoint of the interval 
(e.g., 10:30). The resulting 24 points were then joined by straight-line segments. 

These activity data represent the most detailed and accurate ones bearing on arrivals 
and departures available to us. While rates of arrivals only are presumably about half as great 
as the total activity rates (on the average and at any particular time), the activity rates give a 
realistic idea of proportional degrees of variability during the course of the 24-hoiir day of 
the actual arrival rates. Therefore, in setting up the assumptions for our two "typical 
airports" we have taken as arrival rates X(t) for Airport A, the J.F. Kennedy activity rates, 
and for Airport B those of LaGuardia. Their graphs are shown in Figure 4.1. 

The maximum number allowed in the queue is assumed in each case to be m = 25. It is 
obviously somewhat unrealistic to combine the large arrival rates introduced in the last 
paragraph with this rather limited landing facility. For example, a simple count shows some 
60 spaces for stacking available to J.F. Kennedy. Nevertheless, the assumption is useful in 
bringing out most vividly the effects of congestion and the improvements obtainable by 
even moderate increases in service rates, as well as in flow control. 

Three constant service rates are assumed at each terminal: A« = 45, 55, and 70 aircraft 
per hour. These figures, as well as those of the preceding paragraphs, coincide with those 
used in the 1969-70 Interim Report. We are not, however, examining the fourth case 
considered there in which the service rate shows a sharp temporary dip: JU = 55 from early 
morning to 1500; M = 25 between 1500 and 1700; /u = 55 from then on. As set forth in the 
Interim Report cited above, the object was to show how such a temporary sharp degrada- 
tion of service, produced for example by a sudden fog or similar deterioration of weather, 
could have all its effects on capacity, delays, etc., of the service of the terminal calculated 
quantitatively. The emphasis of the present report is rather on the comparison of effects of 
the various assumptions underlying our different models; this does not seem to require the 
examination of the case of the service dip. 
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4.2 THE GRAPHICAL EXAMPLES 

Figures 4-1 through 4-13 are graphs of the most important functions, computed for 
each of the three models (random service, regular service, and deterministic flow) as applied 
to the data discussed above. In the case of Terminal A, the initial values (zero queue length 
at 4:00) was not exactly repeated 24 hours later: the solution is not yet periodic, but is 
getting close to it. In the case of Terminal B, the solution is, in fact, periodic: it was 
obtained by a very easy application of the relaxation method. 

Figure 4-1 shows the two inputs: the arrival functions X(t). Figures 4-2 through 4-7 
concern Terminal A and show for each of the three values of M, the expected queue length, 
its standard deviation, and the probabilities of an empty and a full queue, at all times of 
day. Figures 4-8 through 4-13 give the corresponding results for Terminal B and the same 
three values of M- 

In all cases, the expected time from joining the queue at epoch t to the epoch of 
completion of service is the expected number in the queue at t, multiplied by 1/M- 

Therefore, the graph of this expected waiting time as a function of t is obtained from the 
graphs for the expected queue length. It is to be observed, however, that an improvement in 
service time (i.e., an increase in M) affects the waiting time in two ways: by decreasing the 
expected queue length, as well as in decreasing the factor 1/JU. However, the former effect 
far outweighs the latter in the important case when the conditions are varying rapidly, e.g., 
just before and after the rush hours. Moreover, this effect is highly complex - certainly 
non-linear - and it is a frequent fallacy to try to measure the diminution of delay by 
applying the same percentage improvement in waiting time as the percentage improvement 
in service time. This situation is examined in Chapter 6. 

With regard to the expected number of aircraft turned away, this quantity was graphed 
on a cumulative basis in the 1969-70 Interim Report (Figures 6-4 and 6-9 of Chapter 6). In 
our present, purely comparative study, only the expected total number turned away during 
the 24-hour period is given, calculated as explained in Appendix C. It represents one "index 
of overloading" of the terminal to handle the traffic loads imposed. 
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5. MULTIPLE QUEUES 

5.1. SIMULTANEOUS LANDING AND TAKEOFF USE OF RUNWAY 

The situation to be studied is the very realistic one in which a single system composed 
of one runway or adjacent runways is serving for both takeoff and landing. In most air 
terminals at the present time the arrivals and departures are sufficiently infrequent so that 
there is no capacity bottleneck that cannot be easily removed by a little planning. In the 
highly important minority of "hub" terminals, on the other hand, very serious constraints 
on capacity - or, equivalently, serious delays - can be caused by the saturation of the 
runway system. The situation would be alleviated by having one runway system dedicated 
to landing and a different one to takeoff, the two being sufficiently separated and 
controlled to ensure no interference between any stage (air or ground) of these two 
operations. But this would imply either essentially distinct terminals, or a degree of control 
going well beyond what exists at the present time. It is necessary, therefore, to examine 
quantitatively the effects of having the air and ground queues complete in the use of the 
same runway system. 

The practical value of such a quantitative examination is, of course, that the magnitude 
of the problem can be established under the various conditions of practice, and that the 
probable effects of improved procedures and equipment can be calculated in advance. 

As in the case of the single waiting lines examined above, the time-dependent statistical 
law of arrivals has to be known. It will be assumed, as before, that the aircraft arrive for 
landing at the (Poisson) rate X = X(t), and also that the aircraft arrive at the departure 
waiting line in the same way, but at the rate X' = X'(t). The removals of aircraft from each of 
the air and ground queues by servicing (landing or takeoff) are, as discussed before, 
intermediate in their statistics between a fixed time and a random (Poisson) one. Fortu- 
nately, as we have shown in the preceding sections, the quantitative results are insensitive to 
the assumptions; accordingly, we shall choose the one that proves to be simpler - the 
random one. More precisely, we shall assume that the opportunities for runway use (clear 
for landing, or takeoff) occur at random rather than with perfect regularity, and that when 
such an opportunity opens up, and if an aircraft in the air is permitted to use it, it takes a 
random (Poisson) time to complete this operation, and similarly, when the permission is 
given for takeoff. The Poisson rates of service under the two assumptions will be denoted, 
respectively, by p (landing) and M' (takeoff)- 

Up to this point, the discussion shows a situation altogether similar to that of the single 
queue problem, solved completely above. There is, however, a new factor: the necessity of 
stating the "queue discipline," or rules for deciding which of the two classes of aircraft is to 
use the runway facility each time it becomes available, and which is to be delayed. It is a 
fact that the decision, which has to take account of a large number of conditions, is not 
amenable to embodiment in an absolutely precise set of rules, and reserves a large part to 
judgment. It is also a fact that, unless some reasonably realistic general assumption is 
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actually made, the behavior of the terminal cannot be calculated quantitatively by any 
mathematical technique, simulation, etc. This is a simple fact of logical indeterminacy. 

To bring out the point concretely, suppose that an air terminal at some given time has 
13 aircraft in the air stack and 17 in the ground waiting line, and that a space opens up on 
the landing strip. Will permission to use this space be given to a landing or to a departing 
aircraft? Clearly this can depend on other factors than the mere numbers (13 and 17) of 
aircraft in the two waiting lines. For example, if the policy is to take care of a group of 
planes together in one line first, and then to switch to the other, and if this is being done for 
the landing ones, the next few spaces may be given to the latter category; later a group of 
departing ones will have its turn; similarly for other factors affecting the situation. As a 
general matter, the mere numbers m and n in the air and ground queues do not in 
themselves determine the "state of the system" completely enough to allow the prediction 
of the next state into which it goes - or even its transition probabiüties. 

There is, however, another way of looking at the situation. Suppose that an air 
terminal is considered, not just on one occasion, but on a very large number of different 
occasions under similar conditions of weather, time of day, etc. Suppose that from this 
ensemble of samples a subensemble is drawn, for example, those cases in which the numbers 
in the two queues are m = 13 and n = 17. In this subensemble, a certain fraction would have 
the next open space assigned to the landing aircraft, while in the complementary fraction, to 
a departing one. In other words, this cross-sampling in the subensemble will give perfectly 
definite probabihties of evolution; and these are thus determined as functions of the 
numbers m and n (at the stated time t). 

Such an idealized system with transition probabilities defined in this manner will be 
called a "cross-cut" model. It will not tell us very reliably what the probabilities of 
evolution of the two queues are on some particular day, in which a host of special items of 
information are at hand - information which can supplement what we know and alter the 
probabilities obtained by merely picking at random from our ensemble. But it can be highly 
useful as an indicator of the effects of various proposals for improving capacity and delay - 
on the average and in the long run. 

From the point of view of the cross-cut model, the state of the air queues at time t is 
fully described by the numbers m and n in the air stack and ground waiting line, in the sense 
that the transition probabiüties are all determined. We write for the probabilities of decrease 
of m to m - 1 during the time interval (t, t + At) Lm „At. Similarly, the probabihty of 
decrease of n to n - 1 is denoted by L^ „At. As explained earlier, the probabUities of 
increase of m or of n (arrivals to the landing or takeoff lines) are Rm At and R' At (given in 
terms of the arrival functions of the time X(t) and X'(t), as we shall see) - all this, to terms 
of higher order in At. 
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(m, n-1) 

In all, we have the diagram of 
right-transitions R (increases) and 
left-transitions L (decreases). These 
are the only transitions during t, 
t + At having probabilities of the or- 
der of At. All others would be multi- 
ple events and have transition proba- 
bilities of orders At2 or higher. All 
these transition probabilities are func- 
tions of the time t, m, and n and 
vary strongly. 

5.2 EQUATIONS OF EVOLUTION OF THE DOUBLE QUEUE 

Inasmuch as all that can be told in general concerning the double-queue system is in 
terms of probabilities and averages, we introduce Pm „(t), the probability that at the time t 
there be m and n aircraft in the air and the ground queues. The differential equations 
determining the evolution of the system are obtained by the usual simple probability 
reasoning. For general values of m and n, we express the probability ?„, „(t + At) in terms 
of those at time t: Neglecting quantities of higher order in At, we can say that if the system 
is in state (m, n) at t + At, this could only have occurred in the foUowing five distinct ways: 

1. It was in state (m, n) at t and no transition occurred during the period 
At. Probability: 

2. It was in (m-l,n) at t and gained a member to the air queue. 
Probability: 

Pm-i.n(t)Rm-iAt 

3. It was in (m, n-1) at t and gained a member to the ground queue. 
Probability: 

Pm.n-l(t)R;-1At 

4. It was in (m + 1 ,n) at t and lost a member of the air queue. Probability : 

Pm + l.n(t)Lin + 1 „At 

5. It was in (m, n +l)at t and lost a member of the ground queue. 
Probability: 

Pm.ii+iWL^ n+1At. 
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On putting these facts together, an equation, correct to terms of order At, is obtained 
which, on slight rearrangement of terms, division by At, and then taking limits as At —♦ 0, 
gives rise to the exact differential equation 

dPm „(t)/dt = - (R   + Rl + Lm    + L'  „) Pm n(t) 

+ R m -1    m -l.n(t) 

+  R;-lPm.n-l(t) (5.1) 

+  Lin + l.n Pm + l.n^ 

+ Lm.n+1 Pin.n+1^ 

Finally, we impose, as usual, the restriction to the numbers of aircraft in each queue, 
and write 

0<m<M, 0<n<N (5.2) 

In the differential equation (S.l) we must evidently set 

RM=0 and RJ, =0 

Rm = X(t) (m < M)     and R; = \'(t) (n < N) 

Lo.n=0 

P
m  n(t) = 0 

and L'  n = 0 (5.3) 

(5.4) 

whenever one or both m, n are negative, or exceed M, N (respectively). 

5.3 REDUCTION BY MARGINAL SUMMATION 

Equations (S.l) already represent a departure from - or rather, a condensation of - 
reality, inasmuch as the average evolution of the air terminal has replaced its detailed 
probabilities of evolution. As stated above, what this "cross-cut" model loses in detailed 
information it gains in general relevance. Although it represents a simplification, it is still 
too complicated for numerical computation, except when M and N are both small (for 
example, under 10). This is because the total number of unknown functions Pmin(t) is 
(M + 1)(N+ 1). In cases such as those considered in Chapter 3, with even moderately 
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modest values such as M = N = 25, we should have 676 unknowns with almost five times as 
many coefficients in the equations, given as tabulated functions of the time.* 

The form of the equations (5.1) is that of (m + 1) (n + 1) linear differential equations 
of the first order, homogeneous, and with coefficients given functions of the independent 
variable. Furthermore, they are stochastic equations: non-diagonal coefficients non-negative 
with each column [i.e., for each (m,n)] adding up to zero. Therefore they possess a unique 
solution for each set of initial values; if the latter are probabilities (non-negative and adding 
up to unity), the same will be true of the former. Furthermore, if the coefficients are 
periodic functions of the time of a 24.hour period, the same will be true of just one of the 
solutions, all others approaching it with increase in time. These facts are all proved along the 
lines of the same ones in the cases of Chapter 3. 

We now reduce equations (5.1) by the method of "marginal sums." On setting 
N 

Pm(t)=    2   PmB(t) 
ii-O m,»' (5.5) 

it is reahzed that Pm (t) represents the probabiüty that at time t there be exactly m aircraft 
in the air stack - nothing stated with regard to how many may be in the ground queue If 
we had summed over m instead of n, we would have obtained the corresponding probability 
for n aircraft in the ground queue at t; and of course the methods which we shall illustrate 
in the case of the air stack will be applicable to the ground queue. 

Thinking of equations (5.5) written for a fixed m but for all n = 0, 1,.., N and then 
added, we find, after using (5.3) and (5.4) and making certain rather evident formal 
manipulations the following equations for P  (t): 

dpm(t) 
dt = R

m-i 
p

m-i («-(Rm +Lm)Pm(t)+Lm+1 p^a) (5.6) 

where the new quantity L   is defined as follows 

N' 

Lm=„Z.oLm.nlP'"."(t)/P'"(t)1- (5.7) 

Any attempt to take the model, the postulated behavior of which is represented by (B.I), and to use it as 
the basis of a Monte Carlo simulation should be preceded by a costnjffectiveness comparison of such a use 
of machines with their use in solving (5.1) directly - at an acceptable level of reliability of the answers- 
i.e.. a level suitable for decisions involving large expenditures for improving the air transportation system   ' 
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In this reduction, use is made of the fact that the pair of sums 

cancel, shice, in view of (5.3) and (5.4), the last term in the former and the first term in the 
latter are zero; the others are equal and opposite in sign. A similar cancellation takes place 
for the sums 

N 
-2 

n = 0 
L       P ^m ,n * m ,n (t), 

N 
2 
n=0 Lm,n+1 Pm.n+lC*). 

It is now necessary to interpret the expression Lm given by (5.7).pbarly the ratio 
pm .nW/Pm (0 is a conditional probability: the probability that, at time t, türe be n aircraft 
in the ground queue, given that the number in the air is m. Therefore Lm is a "weighted 
mean": strictly, the conditional expected value of landing rate, given that the number in the 
stack is m. 

In formulas (to terms of order At), 

Lm At = probabiüty of a landing during (t, t + At), given that number awaiting 
landing is m but that nothing is given concerning the number waiting 
on the ground. 

Evidently Lm depends not only on the time t, but on the whole solution P,,, n(t) (for 
all m, n, t), and therefore, strictly speaking, (5.2) cannot be solved without fully solving the 
original equation (4.1). However, while Lm may have this degree of complication, it is not 
necessary to find it exactly, as will now be explained. 

5.4 PERTURBATIONS AND SUCCESSIVE APPROXIMATIONS 

As things have been left, the reduced equations (5.6) reflect the influence of the 
condition of the takeoff queue only through the quantity Lm : to use the language applied 
to loosely coupled physical systems, the latter queue perturbs the queue we are studying by 
causing L,,, to vary. Simple reasoning indicates its order of values: during dull periods, there 
is little interference between the two uses of the landing strips: then Lm = /u. During busy 
periods, when both X and X' are large, turns have to be taken and, on the average, the same 
number will take off as will land. Since the mean times taken for these operations are l/jx' 
and I/n, in every interval 1//.' + 1//LI there will be one landing on the average at the rate Ln m 
Therefore Lm is the harmonic mean: 1/L,,, = l//x+ 1/ju'. What this means is that if the 
operating procedure aims at avoiding a greater average accumulation of aircraft in one queue 
than in the other, the same number, on the average, will have to be serviced per hour: the 
expected rates will be the same as if they were serviced in strict alternation, giving the above 
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harmonic mean for both L,,, and for L^. This assumes that at each time of day, t, the 
arrival rates \(t) and \'(t) are approximately equal. In the contrary case, an easy argument 
shows that we must take the weighted harmonic mean, and use the formula 

Mt) Mt) X'(t) .X'(t) 
T!" 

(5.8) 

To implement a calculation based on these ideas, it is necessary to have a rule for 
deciding on the "dull periods" and the "busy" ones. One obvious method of doing this 
starts from the use of the notions in the deterministic flow model discussed in Chapter 3.5. 
Thus we can regard as a dull period that time during which the inflow X(t) (rate of arrival 
into the air queue) is less than the maximum possible outflow L,,,, as determined by (5.8); 
i.e., when the available landing rate exceeds the arrival rate, even when the runway is being 

Then we may use Lm =ß. When, on the other hand, the arrival rate into the air 
queue equals or exceeds that of the available landing rate, Lm must be computed from 
(5.8). One can see at once from that equation that there will be a dull period or a busy one, 
depending on whether its middle member, X//i + X'//*', is or is not less than unity. 

The scheme of computation just described represents an approximation that may be 
considered quite crude to the actual solution of the exact equations (5.1). But, as is usual 
with such perturbation methods, it may be made the starting point of a process of successive 
approximations. 

In the present case, we shall indicate merely the next step: Using the approximations 
to the quantities Lm and 1^ obtained above, solve the single-queue equations (5.6) for 
Pni(t) and the corresponding ones for the ground-queue marginal sum probabilities P'(t). 
Next, from the approximation Pm „(t) = Pm (t) P'n(t). recalculate Lm from (5.7), which now 
simplifies, since the ratio of probabilities reduces to P'n(t). The last step is to solve (5.6) 
again, now using this improved L,,,. Higher levels of approximation may be unable to accept 
the above product expression for Pm „(t). In view of the rather crude nature of the input 
data it is questionable whether such further search for numerical accuracy is relevant to the 
practical problems. 

5.5 MULTI-TERMINAL SYSTEMS 

Up to this point, our attention has been confined to congestion at a single air terminal, 
and the analytical techniques concerned with single or double and interacting queues at this 
terminal. All other air terminals had their effect on our terminal through the arrival rate 
X(t). However, in view of the fact that air terminals in a given region (e.g., the Northeast 
Region, the Golden Triangle, etc.) exert a more direct effect upon one another than merely 
as a source or withdrawal point of a stream of aircraft, it is necessary to take such effects 
into account in any more realistic study of the total capacity of the air transportation 
system. 
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One method, suggested by the results of the present chapter, would be to express the 
situation in terms of queues at the different terminals that are weakly interacting with one 
another. In this context, "weakly interacting" means that, whereas the detailed queue state 
at one terminal has no effect on the other, the degree of its burden (as expressed, i.e., by the 
expected value of its length, etc.) will have a decided effect on the queue under study. The 
mechanism of this effect is, of course, the "feedback" of the air traffic control, which will 
delay on the ground or divert aircraft destined for the terminal in question. 

Flow models, refined by the stochastic ones of the sort examined in this report, can be 
used for the study of such phenomena. It is noted that, whereas in using the perturbation 
methods of the last section the service rate Lm was regarded as exhibiting the effect of the 
competing queue, in the multi-terminal studies, on the other hand, it is the arrival rate X(t), 
as manipulated by the distant terminal in response to growing saturation at the one under 
study, that mediates their interaction. 

Because of the finite time of travel, there may be a delay of the effect (as in the case of 
"retarded" potentials in electromagnetism). Since such delays may be deleterious to the 
even flow of traffic between terminals, any method for predicting growing queues will, if 
used in the feedback loop, regularize the flow and hence improve capacity. 
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6. PRACTICAL APPLICATIONS 

6.1  BASIC PRELIMINARIES 

In concluding this report on analytical tools for the study of airport congestion, it is 
appropriate to illustrate their practical use by means of examples. To this end, we take two 
factors in the development of the congestion, capable of being improved by technical 
advances in air traffic control systems, such as ARTS-III in its present or later forms. These 
factors are the rate of delivering service M (e.g., landing) and the regularizing possibilities of 
flow control, mentioned earlier. 

In applying any analytical tool to the study of a system, there is always the question of 
what quantities should be examined to determine the worth of technical improvements: 
what are the valid criteria of desirable performance, and by what indicators can they be 
measured? These usually take the form of precise numbers or curves that not only can be 
computed by the analytical tools, but "tell a story." In the present case, the expected queue 
lengths at various times have practical meaning chiefly in indicating the probable lengths of 
time spent in the queue before landing. Another indicator of significance is the total number 
of fUghts during the 24-hour day that have to be refused admission to the terminal because 
its facilities are saturated. It is not necessary to suppose that they actually come within the 
physical limits of the terminal before being turned away: the refusal may take the form of 
cancelled or diverted flights or long waits at the ports of origin. Nevertheless, the 
"models" - the somewhat rigid and simplified fictitious situations - examined in Chap- 
ters 3 and 4 supply very useful indicators of quaUty of service before and after the technical 
improvements under consideration. 

There is a rather precise "complementarity ": On the one hand, the systems engineering 
which, by considering the technical features of the ATC system, gives as output such 
parameters as the rates M and the degree of regularity of arrivals. On the other hand, the 
operations research takes the outputs of the former as its own inputs, and by a quantitative 
study of the operation, delivers as output the answer in terms of the indicators of 
performance. 

6.2 INCREASE OF SERVICE RATES 

Suppose that, by a tighter degree of control of the aircraft arriving at a terminal, or by 
other means, the rate of landing n is increased by some percentage, e.g., 10%; that is, M is 
replaced by h/u, where h is somewhat greater than unity (in the case suggested, h = 1.1). 
What effect will this improvement have on the expected time in the landing queue (as 
measured by its expected length), and what will its effect be on the total expected number 
of flights diverted? 
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.ff   wT f i;8.in.t0 the mathematical details, three facts can be stated regarding the 
enect ot the technical improvement in question: 

First, if the situation is well in hand before the improvement (short queues 
virtually no refusals, etc.), there will be no practical benefit resulting from it' 
The situation assumed is one of underuse of the terminal facilities. 

Second, if the situation at the terminal is badly saturated, a moderate 
improvement in service rate cannot effect any noticeable improvement of 
the conditions at the terminal. This is a case of overuse. Both this and the 
case of underuse are best relieved by adapting the schedules. 

Third, there is the intermediate case in which the facilities can, under 
reasonably favorable conditions, just barely handle the air traffic, but in 
which if the conditions - in the course of the normal fluctuation of things - 
become less favorable, the load cannot be handled without delays and 
cancellations. Under these intermediate conditions the improvement pro- 
duced by the greater service rate is great; but it is not a linear function of the 
latter, but of a far more complicated sort. 

A simple exercise in algebra should dispel the too commonly held notion that 
improvements m capacity are proportional to - or even of the same order as - the 
improvement in such parameters as landing rate/x. To illustrate the point we shall over- 
simplify the situation by assuming that a single queue satisfying equations (3.1), (3.2). and 
(3.3) is considered during such a short time that coefficients can be regarded as constants: 

♦ ♦ ♦ u " ? " f yet that the time * long enou8h for an approximately stationary 
state to have developed. We emphasize that under actual conditions such a situation will 
involve a contradiction, and thatit is merely a device for making a point. 

We have thus reduced our equations to a well known type that can be solved 
algebraically (the time derivatives all vanishing) and the solutions of which are expressed 

i!^? irmeanS ^ iormulas {or 8eometric ^es. Let us take m = 25 as maximum queue 
length as before and denote by n its expected length. If the landing rate ß has a maiked 
advantage over the arrival rate X. as when X/M = 2/3. the formulas show that there^ 
prac^ally no queue, f the reverse is true and „A = 2/3. they show that the mean queue H 
is within a couple of units of its maximumm. These are the cases in which a slight 
percentage increase in „ produces little change. The important case is the critical one in 
which, on setting /x/X = 1 + v, the quantity v is very small. Computations of queue lengths 
are in terms of v. If the increase in ß makes /i/X go from 19/20 to 21/20 (i e a 10% 
increase, v goes from - 1/20 to + 1/20), the expected queue length changes by 45 percent 
as compared with its median m/2 = 12.5. With the same change in „/X, the number diverted 
during any given time will fall by a factor of 7.9. 
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Returning to the more realistic model of time dependence, we have only to examine 
the graphs of Chapter 4 to see how the increases in service rates, // = 45 to 55 (22%), and 
from 55 to 70 (27%), change the relevant conditions. In particular, the expected length of 
time in the queue for an aircraft joining it at any given time of day is the queue length n 
divided by ß (the hour being the unit of time in the calculation). The expected total numbers 
turned away in a 24-hour day corresponding to the above three values of n are 

Terminal A 
Terminal B 

300,170,40 
100,   25,   0 

(Poisson service) 
(Poisson service) 

Clearly, the quantitative conditions assumed with Terminal A are, as we have noted all 
along, highly unrealistic. Those of Terminal B are much closer to reality, but represent 
conditions on the side of overloading. In any real appücation, the calculations would have to 
be repeated for the actual parametric values observed. 

6.3 FLOW CONTROL 

In each of the fiist two models examined in this report, the law of arrival was assumed 
to be purely random (Poisson); the only non-random part of it was the mean arrival rate, 
X(t). This assumption represents the actual situation at most air terminals at the present 
time. However, there have been suggestions that the service delivered by the terminal might 
be improved by a regulation of the arrivals, generally referred to as "flow control." Two 
things could be done: first, the actual mean rate X(t) could, by a change of scheduling or 
similar means, be changed to a function that varies less with the time, particularly with a 
flattening out of peaks. Second, without changing the function X(t), measures could be 
taken to diminish the random feature of the arrival law so that it approaches as much as 
possible the situation assumed in the third model examined in this report - the deter- 
ministic flow model. While the value of each of these two changes can easily be examined by 
the methods set forth in this report, it is to the latter, most properly called flow control, 
that we shall give our attention. 

To show the greatest benefit that can be expected from such flow control, we shall 
compare the results calculated by the three models and presented graphically in Chapter 4. 
The two indicators are: (1) expected length of queue from which, as stated before, the 
expected waiting time is at once derived; and (2) the total number of aircraft in a day that 
are refused admission to the queue. 

The first of these criteria is illustrated by the graphs of Chapter 4, which can be 
compared in the purely random and the perfectly regular cases. The second criterion 
calculated by the methods of Appendix C, leads to the results of which the following are an 
illustrative sample: 
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Number of aircraft refused. Terminal B. 

*iss45 M = 5S 

Random Arrivals and Service 100 
Deterministic Case (flow control) 76 

55 
6 

0 
0 

As noted at the end of Section 2.3, the methods set forth here allow the calculation of 
the effects of metering loss - and therefore the calculation of the results of its diminution - 
to be made in all precision. The effects of greater control of the distance between successive 
aircraft in a landing pattern are not merely to approach the state of affairs of the deter- 
ministic flow model, with the advantages explained in the last paragraph: more importantly, 
it is in the increase in the mean service rate M, since a closer spacing, and therefore a more 
rapid feed-through, becomes an acceptably safe device with stricter metering. 
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APPENDIX A 

PERIODIC PROPERTIES 

tiu. F0J ^.^L^ a Single qUeUe With the random (Poisson) service statistics, governed by 
the system of differential equations (3.1), (3.2). (3.3). the proof of the follo^gtWrn 
was outlined in the 1969-1970 Interim Report FAA-RD-TO-TO, Chapter 6 (Ref "f 

If all the coefficients Rjt) and Ln(t) are periodic in t with the period T (24 
hours), and if none of these coefficients vanishes identically over a time 
interval of length!, then one and only one probability solution will be 
periodic of period!, while every other probability solution will approach 
the former exponentially as t increases. 

In the case of the fixed sendee time c. the corresponding theorem, applying to the 
system of equations (3.5). runs as foUows: PPiymg to me 

If the fixed service time c goes into ! exactly N > m times (! = Nc) and if 
the quantities a »a, =cX(t.) are periodic with this same period (a.+lsI =a ) 
and if, finally, not every a. = 0, then there exists one and only one proba- 
bihty solution p« of period N, all other probability solutions approaching it 
exponentially as s increases. 

m,J! A eVid!ntly SUff,Cient- " ^ 0f (3-6) and (3-7>'t0 establi* the conclusion for the modified equations in p» = (p!, nS        „s * 0f matriv A    i„ , •       e 
matrix   k  nf n^rtH M • ^1/P2'"•'V ofmatnx As- In ^ of our assumptions,  this 
TZ^Jl ?     t Ju   ' " ^^ s' A'*N = A,. !he same wiU then be true of products 

pN*z wheTB-r 'A 
e m*T fr r1=A»pi ofour ^^ ^ ** ♦• r fu' ~n N"•« N-2 "Ao-If p8 has N as a period, the initial values p0 will 

satisfy the equation p0 = BpO. The converse is true, since this impües for every s 

p ~ As-1+N Ai_2+N -AJ+JJ AN AN_, 

= A»-! \-2 -.AoBpO 

AQP0 

= A»-i As_2 ...Aop0=ps. 

!hus the question of periodicity reduces to that of the matrix equation q' = Bq where q is a 

eTeZ H m Pr0babiIitieS: SinCe N > m' - »^ion of (3.8) shows that all the zero 
elements become progressively filled up in the course of the multiplication by elements 
which (m view of our assumptions of positiveness of as) are themselves positive. !herefore 
all the elements in B are positive. FinaUy. it is a stochastic matrix, the columns adding up to 
unity Consequently, the standard theorems5 apply to the matrix equation q' = Bq from 
which our conclusion follows: a q' = q exists for which q = Bq M       q.  rom 
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In the deterministic flow model the corresponding theorem is true when there is a 
periodic inflow; but it hardly merits detailed discussion. 

The "relaxation method" is simply the procedure for approximating the periodic 
solution by starting with any initial values and calculating the corresponding solution as 
time increases, until it seems to reproduce itself. The numerical effort is greatly reduced by 
a reasonable choice of the initial values. 
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APPENDIX B 

MATRIX PROPERTIES USED IN CHAPTER 3 

In order to establish equations (3.6) and (3 JO), we first examine the m determinants 

(n = 1,2,..., m) 

D„(a) = 

1 

2! 

0 

1 

0 

0 

0 

0 

0 

0 

an - 1 an _ 2 

(n-1)!     (n-2)! 

1 1 

a 1 

1 1 

; D^a) = 1. 

The first step in its evaluation is to differentiate Dn(a) when n> 1 with respect to a, 
using the rule of differentiation by rows. The derivative of the last row is a row of zeros. 
The derivative of the next to the last row gives a row equal to the one above it; and this will 
continue to be true for all rows except the first. Therefore, the only non-vanishing 
determinant is the one in which the first row is differentiated; and this is evidently Dn_ ^a). 
Therefore, for n>l. D;(a) = Dn_1(a), whereas D'1(a) = 0. Consequently, for the k'th 

derivative 

D{ik)(a) = Dn_k(a) , (k^n-1) ; D|[")(a) = 0. (B.l) 

The second step in the evaluation is based on the obvious fact that Dn(a) is a 
polynomial in a; let it be expanded about a = 0 by the Taylor formula: 

Dn(a) = Dn(0) + D'JOa + EVICO) IJ-+ ... + D("-^^(nrnT + • • 

Applying (B.l), together with the obvious fact that Dn(0) = (-1)"- L we obtain, for n ^1, 

Dn(a) = 
an-l an-2 

(n-1)!     (n-2)! 
+ i.. + (-I)na + (-l)I,-1 (B.2) 

It is now easy to estabUsh formula (3.10). Upon the determinant of the matrix A(a) of 
(3 8) we operate as follows: First, add the first m - 1 rows to the last row, which thereby 
becomes a row of units. Second, take out from each of the first m - 1 rows the factor e-, 
calling the resulting determinant, which contains no exponential factor, Am(a); so we have 

detA(a) = e-<m-1>» Am(a). 
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Third, expand Ain (a) in terms of the elements of its first row. obtaining 

Am(a) = Dm(a) + Dm_1(a). 

On combining these two formulas with (B.2). equation (3.10) foUows. 

We turn now to the proof of (3.6). The augmented matrix lp«+i. Ml as found from 
(3.5) is the foUowing matrix of m + 1 rows and m + 2 columns 

_. 0 ... 0 i+i e-« e-1 

P5+ 

Pf1 

e-« 

ae -• .-a 

»m -1 »m -1 »m -2 

psrii 

PSm+1 

^HPni6"    (m^e -■ 

"in Urn 

OFPT)!6- 
.-a 

»1 

For consistency of the equations (3.5) it is necesairy and sufficient that thep;+1 Quantity 
be sS that the rank of this matrix be the same as the rank of the square matrix M obtained 
from the above by removing the first column* 

To apply this criterion, it is sufficient to apply it to the equivalent m^^ 
obtained from the above one by the elementary transformation consisting of adding aU*e 
tot m rows to the last, which thereby becomes a row of umts. The m+ 1 rowed 
d" J Jnron the right, ^uivalent to M, vanishes, having its first two ~ ^L ^ 
theThw hand, the lowest m rowed determinant on the right is not zero and in fact can be 
Ü "taking out the (m - 1) factors e • from the rows, and then noting that 
t^t isDm(a). The value is thereforee-<m-i>Dm(a).Thus^ 

In order that the augmented matrix also have the rank m. it is necessary and sufficient 
to show hTt every m + 1 rowed determinant in the augmented matrix (or its equivalent) 
Ltrthe non-^nishing m rowed determinant considered above as a minor vam^ 
Sly this is equivlknt to the equation obtained by erasing the second column of the 
Ärau^nted matrix, and setting the resulting m + 1 rowed det^minan equal to 
z'o On exuding this determinant in terms of the elements of the first column, the 
desired linear relation (3.6) is obtained. 

W. tove al^dy obtained the coefficient of ,*•'. To find the ^™f« of f VlJ 
must take (- IV tin« the determinant having the last m columns of the (mod'fied) 
Zlnti matrix but with the ringle row numbered by n removed. Consider the first n 
„nl hner'd^lt. All but one of the „ rowed determinants in these rows .s 
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APPENDIX C 

CALCULATION OF EXPECTED REFUSALS 

There are three cases to consider, corresponding with the three single queue models of 
Chapter3: random arrivals and service; random arrivals and regular service; and regular 
arrivals and service - the deterministic flow. 

The first case is reasonably simple. Consider a small time interval (t, t + At); neglecting 
higher order terms in At, the expected number of refusals during this interval is the 
probability of a full queue at t times the probability of an arrival during the short interval. 
This elementary expected value is therefore Pm (t) X(t) A(t). The total expected number of 
refusals during any time interval I is the time integral of Pm (t) X(t) over I; for the 24-hour 
day, over T 

In the second case the formulas are more complicated. Starting with the interval of 
length c between s and s + 1, we must first find the expected number of refusals at s + 1, 
due to arrivals between s and s + 1. Since the event of any such refusal implies a full queue 
at s + 1, the desired expected number is the product of p£l times the conditional expected 
number of disappointed candidates presenting themselves during (s, s+ 1). This number is 
evidently less than the total expected number of arrivals during this interval, i.e., a, since 
some of these can be accommodated; hence our answer is less than p^+1 as, which, since 
as = cX, corresponds with the expression of the last paragraph in which At = c. 

A more accurate appraisal of the above expected value is necessarily based on the exact 
formula derived as follows: 

If the queue is empty at s, the probability of k rejections at s + 1 is the probability of 
m + k arrivals, i.e., am+k e-a/(m + I)!. Hence the conditional expected number rejected is 
the sum over all positive k of k times this expression. Replacing k by (m + k) - m and 
separating terms, etc., we obtain, with the earlier formula for ur,the expression 
aum - mum + 1. Similarly, the conditional expected number rejected if there are n in the 
queue at s is aum_n+1 -(m - n +l)um_n+2. Therefore, the unconditional expected 
number rejected is the sum, for n = 0, 1,..., m, of the products of p» times the corre- 
sponding conditional expected values just derived. 

The computer program for calculating the quantities p* can be made to calculate these 
expected numbers rejected. 

In the case of the deterministic flow model, the expected number in the queue at time 
t coincides with the actual number. Aircraft will be rejected only during those periods 
between the time t'that the graph of the queue length cuts the horizontal line of height m 
on its way up, and the time t" when it next cuts the latter on the way down. The expected 
number rejected between t' and t" is the integral of X(t) between these limits, minus the 
number serviced, /Li(t" -  t'). 
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When the statistical data of arrival rates are given for each hour (as at the angular 
points of Figure 4.1), a simple manual computation quickly gives the number of rejects 
without going through the integration. This method, which was developed under the present 
contract, may be useful to apply as an approximate estimate in certain practical cases 
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