
OMPUTER CORPORATION OF AMERICA

m
Semi-Annual Technical Report

September 1, 1971

The views an. conclusions contained in tMs document^ those of^

ihe authors and should not ^.^^expressed or Implied, of the
ing the official policies, either expr^ u ^ Government.
Advanced Research Projects Agency

•NF0KSIl0v? ?SV,CE

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

■ .■'

i iniKiiiiiMi i'^—IMMMI

BEST
AVAILABLE COPY

ARPA Order Number

Program Code Number

Name of Contractor

Effective Date of Contract

Contract Expiration Date

Concract Number

Principal Investigator
and Phone Number

Project Scientist and
Phone Number

Short Title of Work

Amount of Contract

1731
61101D

Computer Corporation of America

8 January 1971

7 January 1972

DAHC04-71-C-0011

Thomas Marlll, 617-491-3670

Kenneth Curewitz, 617-491-3670

Network Data Handling System

$229,955.00

Sponsored by

Advanced Research Projects Agency

ARPA Order No. 1731

Summary

The technical problem is concerned with providing data handling

within a computer communications network. Elements of this pro-

gram include a data language, a large capacity storage device

and a special hardware system. The problem,' then, for these pro-

gram elements, is to design and develop a data language which

allows network participants access to remote data; to use and

investigate a large capacity storage device as primary storage

for the system; and to investigate the use of a special hardware

system (the datacomputer) as a data utility within the network

for both remote and local users.

The method selected to solve the technical problem is first to

establish user applications, techniques for using the laser

memory system, and the specific hardware components of the system.

These efforts are followed by hardware acquisition, component

integration and design of the programming system which will sup-

port the applications on the hardware system. The next procedures

include implementing the software and testing actual user applica-

tions against the datacomputer system. Finally, results of this

testing will be evaluated to produce the information to satisfy

the stated program objectives. .

With regard to the results of this procedure, several major

milestones have been achieved. Specifically, the major hardware

components of the system have been Identified and procurement

procedures have been instituted for their timely delivery.. A

continuing dialogue has been established with prospective users

and suppliers of the network data base to allow the specifica-

tion of the basic access methods for the datacomputer. The

system architecture for the datacomputer system (which is the

basic structure of those programs which will accept the data

language as presented by the users and will then act upon the

-1-

language to provide the requested actions) has been identified

and is described in detail in the body of this report. Finally,

specific procedures have been designed which allow the basic

storage device of the datacomputer, tl M, is, the laser mass

memory system, to provide all features necessary for its effi-

cient and effective use. This design effort represents a marked

improvement over previously available techniques for storage

and retrieval of information using this particular device.

The implication of current progress on the project Is positive

and far reaching. It appears certain that the hardware selected

for the datacomputer will enable the very first such data utility

within a computer network. The system architecture and specific

techniques designed for the system guarantee the basic tools and

procedures necessary to implement the datacomputer concept.

Given the hardware components and the program structure for the

datacomputer, it is then a matter of implementing the features

of the design to begin investigation of a completely new techno-

logy in the use of computers and information systems.

While current objectives are very broadly specified, as Indi-

cated in the previous statement of the problem, there are

certain logical extensions of those efforts which should be

considered as candidates for further work. Where the current

program is concerned with a single large capacity storage de-

vice and a single datacomputer servicing network participants,

consideration should be given both to different types and

multiples of large storage devices, as well as to multiple, data-

computers within a single communications network. The latter

proposal is an especially significant one since it would seem to

allow for such features as graceful performance degradation,

backup facilities and optimal use of any existing communications

networks via proper routing and storage of information.

-ii~

These are obvious extensions to the current work objectives

based upon applying current procedures and thoughts to existing

equipments and systems. It Is expected that a completely new

set of problems and solutions will become obvious once parti-

cipants In the network begin using the datacomputer to provide

on-line Information with which to solve a new spectrum of

computer applications.

-ill-

Table of Contents

Page

Summary 1

Preface iv

Chapter 1. Overview of the Datacomputer 1

1.1 Outline of the Datacomputer 1

1. 2 Datacomputer Software Modules 1

1.3 Pile Structures 4

Chapter 2. Request Handler 6

2.1 Overview 6

Chapter 3 • The Storage Manager 8

3.1 Storage Manager Interface 8

3.2 Storage Manager Architecture 14

Chapter 4. Input/Output Manager 39

4.1 Input/Output Manager Interface 39

4.2 Input/Output Manager Architecture 43

Chapter 5. Supervisor 50

5.1 Supervisor Interface 50

5.2 Supervisor Architecture 52

Appendix . 55

Preface

The present document discusses the software architecture of the

datacomputer system. Four processors are jointly Involved In the

running 0° this software: A Hewlett-Packard HP2116B, two Word

Processors, and a PDP-10. The first three of these are physically

part of a Unlcon 690 system which Is Incorporated within the data-

computer.

This document does not discuss the following:

. The data language through which external users Interact

with the datacomputer.

. The data management services offered by the datacomputer.

. Retrieval mechanisms and associated file structures.

These topics will be covered In subsequent working papers.

(N.B.: The present document Is subject to revision without

notice.)

-Iv-

Chapter 1

Overview of the Datacomputer

1.1 Outline of the Datacomputer

The datacomputer Is a black box having two principal hardware

ports. Port 0 and Port 1. Port 0 connects to an IMP; Port 1

connects to the Illiac IV system (see Fig. 1.1). Inside the

black box are various hardware components of which the principal

three are: PDP-10, UNICON 690, and disks.

ILLIAC IV
SYSTEM

IMP

Figure 1.1 - External View of Datacomputer

Two kinds of information travel through the ports: command

information and data. The command information primarily con-

sists of requests for data management service.

1.2 Datacomputer Software Module»

The datacomputer software consists of four modules: input-

output manager, request handler, supervisor, and stcrage

manager services (see Fig. 1.2).

■1-

1. Input-Output Manager. The Input-output manager

handles communication between the datacomputer and "sequential

devices": IMP, Illlac IV, magnetic tape, reader/punch, and

printer.

On output, the job of the Input-output manager Is to accept

logical records from other modules and to convert them Into

proper units for transmission to the appropriate sequential

device. On Input, the job Is the reverse.

2. Request Handler. The request handler consists of

three main modules: command executor, compiler, and Interpreter.

The command executor executes various commands that need not

be compiled. The compiler compiles a source request, expressed

In datalanguage. Into a compiled request, expressed in terms of

datacomputer primitives. The interpreter interprets the com-

piled request. Each request is considered an independent process,

which interrupts when waiting for the execution of commands to

the I/O manager or storage manager. The scheduling of these

processes is performed by the supervisor.

3. Supervisor. The supervisor performs a number of func-

tions, the primary one being the scheduling of request processes

and other independently running processes in the I/O manager

and the storage manager. The supervisor is also responsible

for system and process initialization.

4. Storage Manager. The storage manager allocates storage

space on and causes data transfers between core buffers, disks,

and strips.

The storage manager accepts commands from the other three modules.

-2-

HI Q

-J O

* 8? £
12
tf)

in Hi !£;
-1 DC Z

- 55 u. CO UJ O

O « tu o -i Q
so. Q

S < Z < U UJ oc

CO H O OC < O HI

wm
LU -I
DQ
OZ
HI <

cc

>

UJ
o.
3
CO

15
<u
•H
>
U
0)
>
o

-p
Ü
0
-P
•H
Xi
O
u

OJ

a;

•H

i S < Z < O lil OC

a. o
2 < a.

I*
c z
til o
O Z

c

oc
UJ

cc a.

-3-

-Ü-i

The Job of the storage manager Is (a) upon request, to make

data available In a core buffer as soon as possible and to so

inform the requesting process; (b) to write data from core

buffers to disk and strips in response to commands; and (c)

to allocate space on various storage devices.

Other modules may tell the storage manager of the future data

demands they anticipate. The storage manager monitors

activity in other parts of the system and uses this informa-

tion in scheduling strip mounts and data transfers. The

Hewlett-Packard software and the word processor software in

the UNICON 690 are considered part of the storage manager module.

1.3 File Structures

At different stages of processing, a file in the datacomputer is

described in terms of different file structures. These file

structures are described below.

User-Defined File Structures.

The user-defined file structure is entirely independent from

datacomputer file structure; the user designs his files to meet

his particular needs. In requests to the datacomputer, the

user defines and refers to his files in terms of his own, user-

defined file structure. The datacomputer1s request handler

requires that, whenever a file is created, the user specify a

file structure definition for that file. A file structure

definition is a definition of the logical format of records in

the file (such as varieties and properties of fields that may

occur in a record).

The user also specifies the physical and logical properties of

the data which is transmitted between the user and the data-

computer. In addition to the logical format of the transmission,

the user specifies the physical format of records transmitted

(such as the number of bits per field and the physical denota-

tion of record boundaries).

Datacomputer Pile Structures.

Users' files are stored In the datacomputer on addressable

pages. To store or retrieve a user's file or part of a file

In the datacomputer, the addresses of the pages corresponding

to the file or part of a file are determined In two steps:

1. The user's reference. In a request, to a file or part

of a file Is converted by the request handler to logical page

addresses (LPAs) of the pages to which the file or part has

been assigned. An LPA Is the concatenation of five numbers:

FILE:SECTION:SUBSECTION:AREA:PAGE

An LPA specifies a page address In the datacomputers' logical

page space. The request handler uses the file description

supplied by the user when the file was created and auxiliary

tables (such as Inverted files and Indices) to make the con-

version from a user file reference to an LPA. Pages of the

auxiliary tables are also expressed by LPAs.

2. The storage manager maps LPAs Into physical page

addresses (PPAs), which are addresses of physical locations

In the datacomputers' storage devices. The set of the loca-

tions In the storage devices Is the datacomputer's physical

page space.

-5-

■

Chapter 2

Request Handler

2.1 Overview

A user logs into the datacomputer through a special logical

network port to the control module in the supervisor. The

control module calls the process initiator, which initiates

a user process in the datacomputer for the user.

The process initiator (1) creates a process state table entry

for the user process and (2) creates a port monitor for receiv-

ing commands frOi.i the user.

Once initiated, a user process is an independent process, whose

execution is scheduled by the supervisor. The supervisor selects

which user process is to be run.

The command interface module of the request handler receives and

dispatches user commands for the user process selected by the

supervisor. Commands are received through the port created

during process initiation and are dispatched by the command inter-

face module to the command executor until a BEGIN command is

encountered. Commands following the BEGIN are sent to the com-

piler until a matching END command is encountered; then the

commands between the BEGIN and the END are compiled, and the

compiler calls the interpreter, which interprets the compiled

commands.

Execution of commands and interpretation of compiled commands

involve computation and calls to other datacomputer modules

(e.g., the storage and I/O managers). Execution of a user pro-

cess may be stopped temporarily when (1) the user process is

waiting for I/O from a port monitor; or (2) the user process is

waiting for completion of a storage manager command.

-6-

•

Further design of the request handler Is dependent on specjflca-

tlon of the datacomputer's access methods and of the language

In which requests will be expressed; both will be described In

subsequent working papers.

REQUEST HANDLER

I/O MANAGER

Figure 2.1 - Process Creation

-7-

Chapter 3

The Storage Manager

3.1 Storage Manager Interface

Functions Performed by the Storage Manager.

The functions of the storage manager fall into four broad

classes:

a. Handling Data File Requests—The storage manager

accepts commands to read and write pages from data files ex-

pressed in terms of an internal logical file structure.

b. Handling Scratch Pages—The storage manager allocates

pages in the basic page space.

c. Managing Core Buffers—The storage manager controls

the swapping of basic pages and data pages to and from core

buffers.

d. Allocating Data File Areas—Storage for internal

logical files is allocated on the datacomputer's mass memory

devices.

The storage manager commands will be presented following a

discussion of some storage manager interface concepts.

The Internal Logical File Structure (Logical Page Space).

Data requests to the storage manager are expressed in terms of

an internal logical page space. Each data file stored on the

datacomputer is expressed as a file of this structure. The

request handler is responsible for converting to the internal

logical page structure from the external logical file structure

in which the user refers to a file. Data pages are fixed

length pages of IK words.

-8-

';.■ ■

Logical page addresses (LPAs) in a data file are expressed as

a concatenation of five nuirbers:

PILE:SECTION:SUBSECTION:AREA:PAGE.

Some of the storage manager commands require that an entire

data page group (i.e., file, section, subsection, or area) be

specified. To allow for this, numbering begins at 1 instead

of 0. O's in lower level positions indicate the entire data

page group. Thus, 327:3:2:0:0 indicates a data page group

consisting of all pages in file 327, section 3, subsection 2.

The storage manager translates the internal logical page space

into a physical page space, which remains invisible to other

programs in the datacomputer.

Basic Page Space.

The storage manager maintains a set of IK pages in an abstract

page space called the basic page space. Each page has a unique

identifier called the page id (PID). PID = 0 is not used.

Occasionally these pages reside in core buffers where they may

be used by datacomputer programs.

Page Address Words (PAW).

Several of the storage manager commands involve the use of

PAWs. They are blocks of storage and are used to transmit

arguments to the storage manager and to return results from

completed storage manager commands.

A PAW consists of two fields. The first Is a page id of a

page in the basic page space. The second is the address of

the Duffer in which that page resides if it is in core.

-9-

uiäaBu««»»»«»«»

PID BUFFER
ADDRESS

Figure 3.1 - Page Address Word

The READ-CHOICE command discussed below requires a modified PAW,

called an extended PAW or XPAW. In addition to the PID and

buffer address field, the XPAW contains a field for a logical

page address.

PID BUFFER
ADDRESS

LPA

Figure 3.2 - Extended Page Address Word

The Storage Manager Commands.

In the following, the commands which may be Issued to the stor-

age manager are each followed by a description of the action

taken In Implementing the command.

ASSIGN<n, pointer to PAW>

n contiguous pages In the basic page space are assigned to the

user. The PAW Is zeroed. The page Id of the first page In the

block Is placed In the PID field of the PAW.

If It Is not possible to assign n contiguous pages, the storage

manager returns, leaving zero In the PID field.

-10-

RESTORE <polnter to PAW, new page blt>

The page with the PID specified in the PAW is brought into a

core buffer. The storage manager returns immediately to the

calling program. This command requires a corresponding WAIT

command. Upon return from the corresponding WAIT command, the

storage manager will have placed the address of the core buffer

in which the page resides in the buffer address field of the

PAW.

If the new page bit is set, then a new version of the page is

placed in the core buffer. This page is not necessarily zeroed.

SHARE <pointer to PAW>

This command indicates to the storage manager that the page

indicated in the PAW is shared by two separate processes*.

STANDBY and RESTORE commands for the same page may then be

issued independently by each process. Two RELEASE commands

will be required before the page is actually freed.

NOTEMOD <pointer to PAW>

This command is executed for in-core pages to inform the stor-

age manager that the page will be modified. This command must

precede the first modification of a page following a RESTORE

command for that page. The PAW is examined to determine the

page id and buffer location.

STANDBY <pointer to PAW>

This command releases the core buffer specified in the buffer

address field of the PAW. The PID field of the PAW should

specify the page which actually resides in the buffer. The

buffer address field in the PAW will be zeroed.

Note that a page which has been "stoodby" can be brought back

into core with a RESTORE command.

Such usage may exist, for example, between a process being
executed by the request handler and an associated port
monitor process in the I/O manager.

-11-

•mmmmmmmam •*•,■ i:t'--i,*a.,Mm*iie!S

RELEASE <polnter to PAW>

This command releases both a page In the basic page space and

the buffer In which It resides. The page Indicated In the PID

field of the PAW will become available for assignment to other

users. If the buffer address field Is non-zero, then the

buffer will also be freed as In a STANDBY. The PAW will be zeroed.

READ <polnter to PAW, LPA, PR blt>

The contents of the data page specified by the logical page

address are read Into a page In the basic page space. The

basic page will reside In a core buffer. This command requires

a corresponding WAIT command. Upon return from the WAIT

the data page will reside In a core buffer whose address will

have been placed In the buffer address field of the PAW. A

page Id In the basic page space will be assigned to the page.

If the PID field In the PAW Is non-zero, then that page Id will

be used. Otherwise a new page will be assigned and Its page Id

placed In the PID field of the PAW, By using this page id,

the page may be STANDBYd, RESTOREd, RELEASEd, and STOREd. Use

of the PR bit Is explained under the command PUTURE READ.

READ-CHOICE <polnter to XPAW, LPA1,...,LPAn, PR blt>

This command has the same effect as a READ. The storage manager

Is given the choice, however, of which data page to read. The

data page which Is chosen will be Indicated In the LPA field

of the XPAW. Use of this command will allow the storage manager

to optimize the order of retrievals In the request handler.

This command requires a corresponding WAIT as for the READ

command. Use of the PR bit is explained under the command

PUTURE READ.

PUTURE READ <LPA>

This command indicates that a READ or READ-CHOICL command will

follow for the indicated data page. In this case the correspond-

ing READ or READ-CHOICE must have the PR bit set. If the PR bit

-12-

 ■• ^—™ j',JwwMig^jii}i;'ii8iiiijij|)j^1yj)ii;ll

Is set In a READ-CHOICE command, then all of the LPAs listed

In that command must have been FUTURE READ. If the PR bit Is

not set, then none of the LPAs listed may have been future

read. Use of this command will allow the storage manager to

optimize retrieval of data pages.

STORE <pointer to PAW, LPA>

The contents of the page indicated by the PID field will be

stored in the data page designated by its LPA. The page must

reside in a buffer. Both the page and buffer will be released

and the PAW will be zeroed.

FUTURE STORE <LPA>

Thi» command serves to notify the storage manager that a STORE

command for the indicated data page is forthcoming.

WAIT

The WAIT-requiring commands are RESTORE, READ, READ-CHOICE, and

XPDA. When a WAIT command is received, the storage manager will

not return immediately but instead will wait until all WAIT-

requiring commands that have been issued since the last WAIT

have been completed. During this time the storage manager will

call the supervisor so that it may run other processes.

•ADD <üata page group, partial internal logical file

des crip 1:ion>

The partial internal logical file description specifies the

attributes of a new page group for the file. This page group

will be allocated subordinate to the specified data page

group. In the case that data page group is given as 0:0:0:0:0

a new file will be allocated. Other processes may run while

space is being allocated.

DELETE <data page group>

The data page group will be deleted. File, section, subsection,

and area numbers so deleted may be reused. Other processes may

run while the data page group is being deleted.

-13-

XPDA <n>

The mnemonic stands for extend process data area. The process

data area is that set of pages on which the process-private

data for a process is kept. The process pages provide a data

area for the datacomputer's pure procedures. Whenever a process

is being executed, its process pages are kept in contiguous

core locations. The XPDA command directs the storage manager

to expand (or contract) the size of this area by n pages (where

n is a signed integer). This command requires a corresponding

WAIT.

3.2 Storage Manager Architecture

Introduction.

The storage manager is capable of storing data on pages, on

both disk and laser memory. Each page will have a physical

page address (PPA) which directly addresses its location on a

device. The interface to the storage manager references data

pages by their LPAs. These are converted to PPAs by the stor-

age manager. The abbreviation dPPA will be used to indicate

specifically a disk page address. Disk space will be used for

both data and temporary pages. Data pages with corresponding

LPAs reside on the disk data pages. It will be possible to

distinguish between the use of a disk page as a data or non-

data page by its dPPA.

When a core buffer is assigned, it will also be assigned a disk

page to which it can be swapped when not in core. The inter-

face refers to the assigned disk page by a PID; the PID can be

trivially mapped into the dPPA of the disk page. Both disk data

and non-data pages can be referenced in PIDs.

Figure 3.3 is a general overview of the storage manager archi-

tecture. In this and following diagrams, circles represent

modules and rectangles represent tables. Solid arrows indicate

directed flow between modules; dotted arrows indicate reading

and modifying of tables.

-IM-

A discussion of the functions performed by each module follows

the descriptions of the storage manager tables. A glossary

of acronyms is included as an appendix.

Storage Manager Tables.

The Buffer Usage Table (BUT).

The BUT has one entry per buffer. Each entry has the format:

<dPPA> <CNT><being-read bit> <change bit> <UBB>

The dPPA field specifies the address of the basic page which

resides in the buffer. If it is zero, then the buffer is empty

(but not necessarily all zero). The dPPA may specify either a

disk data page or a disk non-data page.

A buffer may be shared by a number of processes; the CNT field

indicates how many. In the case of a non-data page, this CNT

should never be greater than two. In the case of a disk data

page, however, any number of processes may be using the buffer.

When the page is STANDBYd or RELEASEd, the CNT is decremented.

When the page is RESTOREd the CNT is incremented. If the CNT

is 0, then the buffer is not being used. Note that, if dPPA

field is non-zero while the CNT is 0, the buffer contains a copy

of the indicated page.

The being-read bit is set when a page has been assigned to the

buffer but the buffer does not contain an accurate copy of the

page because it is still in the process of being read.

The change bit indicates whether or not the buffer contents are

the same as the contents of the disk page specified in the dPPA

field. If the bit is 0, the contents are the same. If CNT = 0

and the change bit is not set, then the buffer can be assigned

to another page.

-15-

\

Figure 3-3 - Storage Manager Architecture

-16-

>l ■.;»:.i..

The UBB field is a usage bit block. Each bit represents a data-

computer process. If a particular process* bit is on, then that

process is using the buffer. The number of bits which are set

in the UBB should be the value of the CNT field.

The Free Page Table (PPT).

This table is a bit pattern containing one bit for each non-

data disk page. If the bit corresponding to a disk page is set,

then that page is in use and cannot be assigned.

The Shared Page Table (SPT).

This is also a bit pattern with one bit per non-data disk page.

If the bit corresponding to a page is set, then that page is in

shared mode. This table is used in conjunction with the PPT to

insure that two RELEASES are given before the page is actually

freed. Note that neither the PPT nor SPT need cover disk data

pages since these are never actually freed except through the

DELETE command.

The User's Process Page List (UPPL).

For each process, an ordered list is kept of the dPPAs ön

which its process pages reside. This list is the UPPL.

The Wait-Requiring Command Results Table (WRCRT).

Each process entry will have a number of WRCRT entries of the

format

<Addr> <XPAW Image>

Whenever a wait-requiring command is received by the storage

manager, a WRCRT entry is allocated. The address of the WRCRT

entry is appended to the command. The address of the user's

PAW or XPAW is placed in the Addr field of the WRCRT. When

results are produced in the execution of the wait requiring

command, they are placed in the XPAW Image field. Before re-

turning from the WAIT command, the results are transferred from

-17-

the XPAW Image field into the user's PAW or XPAW. This mechanism

Is necessary since the user's PAW or XPAW may be swapped out of

core while his commands are being executed.

The Future Read Table (FRT).

This Is a hash table which Is kept on disk. Each entry Is of

the form

<LPA> <dPPA>

The entries are hashed on the LPA field. An PRT entry Is made

when a page Is placed on the disk as the result of a FUTURE READ

command. When a READ command for a FUTURE READ page Is received,

the FRT Is examined to see where the page Is stored on disk.

FRT entries are removed upon receipt of the READ command.

The Logical-Physical Map (LPM).

This Is the table which contains the mapping from Internal

logical page space to physical page space. Its format Is as

yet undetermined and will depend upon the nature of file struc-

tures and space allocation algorithms. It will reside on

disk pages and will enable the translation of any LPA Into the

proper PPA.

The In-Core Map (ICM).

This Is a mlnl-verslon of the LPM, which Is maintained In core.

It should operate analogously to a cache memory. That Is, recently

accessed portions of file maps will be kept In the ICM so that

disk transfers are not needed to bring the LPM Into core for each

page mapping.

The Read Queue (RQ).

Since execution of READs which had corresponding FUTURE READs

will require disk accesses to obtain FRT pages, the READ com-

mands are held In the RQ until the needed FRT page Is available

In core.

-18-

■»&

The Mapper Queue (MQ).

This is used In a manner similar to the RQ to hold commands

until the needed LFM page can be brought into core.

The User's Deferred Command Table (UDCT).

Each user has a UDCT. In addition, those system processes

which issue commands to the storage manager have UDCTs. Wait-

requiring commands must always be deferred. Also STOREs to an

unmounted strip must be deferred. FUTURE READs and FUTURE

STOREs are placed on UDCTs. Commands on a UDCT are removed when

they have been completed. Associated with each UDCT are three

bits. The first two are the "wait issued" bit and the "wait"

bit. The wait issued bit indicates that a WAIT command has been

received from the user, but that there are still outstanding

wait-requir3ng commands in the MO, or RQ. The wait bit indicates

that the WAIT has been received and that only the UDCT contains

wait-requiring commands. When all wait-requiring commands in

the UDCT have been completed, the user process can be restarted.

The third bit is the "system" bit. This bit is set for most

system process UDCTs. If the system bit is set, then whenever

any wait-requiring command in the UDCT is completed, the process

can be restarted with an indication of which command was completed,

The Disk Queue (DQ).

This is a list of reads and stores to the disk. These are the

UDCT commands to which buffers and disk pages have been assigned.

The user id is also attached to the command so that, when the

command has been completed, the appropriate UDCT can be modified.

The Laser Memory Queue (LMQ).

This queue is analogous to the DQ.

-19-

Storage Manager Modules.

The Storage Manager Conunand Interface (SMCI).

WA'1" ASSIGN

RH, IOM
RESTORE

f \1 READ-FR
FAM LPAM

Figure 3.^ - Storage Manager Command Interface

This module accepts commands from the request handler and I/O

manager and dispatches them to the appropriate module. For

wait-requiring commands, the SMCI also establishes a WRCRT

entry and append? its address to the command. Note that the

READ-CHOICE is handled as if it were several separate READs.

Only one of the READs will actually be performed.

The WAIT Module.

CD
s+\ WAIT fc^ DOR

WRCRT'S

SMCI

Figure 3.5 - WAIT Module

-20-

i

WAITs are dispatched to the WAIT module by the SMCI. If the

RQ, MQ and UDCT are free of the user's commands, then restart

conditions for the user are established. If only the RQ and

MQ are free of the user's commands, the wait bit Is set In the

user's UDCT. Otherwise, the wait Issued bit is set.

The supervisor Is then called to switch processes. When the

user process Is returned to. It Is restarted at the WAIT module.

Before returning to the SMCI, the Information In the WRCRTs is

transferred to the user's PAWs.

The ASSIGN Module

SMCI ^-jf ASSIGN Jm- »j FPT |

Figure 3.6 - ASSIGN Module

ASSIGN commands are sent through the SM command Interface to

the ASSIGN module. The ASSIGN module finds n contiguous free

disk pages by consulting the FPT. It sets the corresponding

bits in the FPT to 1's. The module then places the PPA of the

first page in the block into the PID field of the user's PAW.

If it is not possible to assign n contiguous pages, the module

sets the PID field in the user's PAW to zero.

The ASSIGN module returns to the SM command interface.

-21-

- ■"■•- •■■-;., .-

The RELEASE Module.

COMPLETION
ROUTINE „ ppT

ii
SMCI ... i KKi.^Ast. im— ~ — -ma sPT m ^T RELEASE y» —

Figure 3-7 - RELEASE Module

RELEASE commands are sent through the SM command Interface to

the RELEASE module. The BUT entry corresponding to the buffer

address in the user's PAW is examined, the CNT field is decre-

mented and the process' UBB bit is cleared. If the dPPA field

indicates a non-data page, then the SPT bit for that page is

examined. If it is 1, then it is set to 0. If it is 0, then

the corresponding bit in the FPT is set to 0 and the BUT entry

is cleared. If the dPPA field indicates a data page and the

change bit is off, then the BUT entry is not modified. (This

allows other users to access the page from core if it still is

available at the time their BEAD commands are executed.) If

the dPPA indicates a data page and the change bit is on (note

that the CNT must be zero), then the BUT entry is cleared to

prevent other users from accessing a changed page.

The RELEASE module returns to the SM command interface.

The NOTEMOD Module.

SMCI^JT^ NOTEMOD J ♦! BUT

Figure 3-8 - NOTEMOD Module

•22-

NOTEMOD commands are passed to this module by the storage manager

command Interface. The module sets the change bit In the BUT

entry corresponding to the buffer address field of the user's PAW

and returns.

The SHARE Module.

SMCI^^f SHARE J ♦! SPT

Figure 3.9 - SHARE Module

SHARE commands are passed by the SMCI to this module. The

SPT bit corresponding to the PID field of the user's PAW is set.

The RESTORE Module.

SMCI^^T RESTORE \j~^DCP

Figure 3.10 - RESTORE Module

RESTORE commands are sent to the RESTORE module, by which they

are passed on to the deferred command poster, where they are

placed in the user's UDCT. Upon return from the deferred command

poster, the RESTORE module returns to the SM command interface.

-23-

The STANDBY Module.

SMCI ^J STANDBY J -M BUT j

STORE-SNM

Figure 3.1' - STANDBY Module

STANDBY commands are sent through the SM command interface to the

STANDBY module. The BUT entry corresponding to the buffer add-

ress In the user's PAW is found, the CNT field is decremented,

and the process' UBB bit is cleared.

The STANDBY module returns to the SM command interface.

The XPDA Module.

SMCI ^5^ XPDA J^~^DCP

Figure 3.12 - XPDA Module

XPDA commands from the SMCI are passed on to the DCP to be

placed in the UDCT.

-2H-

.i. „■■,„■ __-_^

The READ-PR Module.

H &
Figure 3.13 - READ-FR Module

READ commands with the PR bit set are dispatched to the READ-FR

module by the storage manager command Interface. First the module

attempts to locate the unexecuted corresponding FUTURE READ

command. It first checks the MQ. If it finds the FUTURE READ

there, it Is replaced by the READ command. If the FUTURE READ

is not in the MQ, the user's UDCT is examined. If it is found

there, the FUTURE READ Is replaced by the READ command (note

that address mapping will have already been performed*).

If tli- FUTURE READ is not found in the MQ or UDCT, the FUTURE

READ must have been executed and a FRT entry established. A

RESTORE request for the proper FRT page is placed on the READ-

PRs UDCT. The system bit is set for this UDCT, so the READ-FR

module is restarted whenever any of its requests are satisfied.

While waiting for FRT pages to be read in, a READ command is

held on the RQ.

This is a tricky operation and requires careful planning,
for example, to injure successful results if the FUTURE
READ has been partially executed.

-25-

The Logical-Physical Address Mapper Module (LPAM).

SMCI

FAM

Figure 3» I1* - LPAM Module

Conunands that require LPA to PPA mapping are sent to the LPAM

by the SM command interface. These include STORE, FUTURE STORE,

FUTURE READ and those READ commands with the FR bit set to zero.

Core space is reserved to hold selected portions of the LPM in

core. The entire LPM is stored on disk pages. If the LPA of a

command is not included in the in-core part of the LPM, the LPA

cannot immediately be mapped into a PPA; the command is placed

on the mapper queue; the LPAM calls the file directory handler,

which places a request for the LPM page which includes the LPA;

and, after the file directory request is placed, the LPAM either

returns to the SM command interface or proceeds to map the next

command on the MQ.

If the LPA of a command is included in the in-core part of the

-26-

LPM and therefore can Immediately be mapped Into a PPA, the LPAM

adds the PPA to the command and sends the mapped command to the

mapped command dispatcher.

If the wait Jssued flag Is set for a user's process and the LPAM

has cleared the MQ of the user process commands, the LPAM

checks the read queue to see If It Is also clear of commands for

the user process. If so, the wait Issued flag is cleared and

the wait flag for the procass Is set.

When tVie file directory handler has added the needed information

to the in-core map. It will call the LPAM. The LPAM at this

time maps commands from the MQ and sends the mapped commands to

the mapped command dispatcher. Upon return from the mapped com-

mand dispatcher, the LPAM returns to the file directory handler.

The Pile Allocation Module (PAM).

FILE
SMCI^ -j ALLOCATION

MODULE

LPAM

Figure 3.15 - FAM

-27-

 -^^nimiagmfmin^ymirt

ADD and DELETE commands are processed by this module. The PDH

is called to bring needed pages of the LPM into core where they

are updated by the PAM. File allocation strategies and the

structure of the LPM will be the subjects of future working

papers.

The Mapped Command Dispatcher Module (MCD).

MAPPED
LPAMT""*! COMMAND tT-^STGRE-SNM

DISPATCHER

Figure 3.16 - MCD Module

The mapped command dispatcher module dispatches a mapped com-

mand to an appropriate queue or the DCP, which will place the

command in the UDCT.

STORE Commands.

A STORE-to-disk command is added to the disk operations queue

(DQ). A STORE-to-LM-for-strip-mounted command is added to the

laser memory operations queue (LMQ). A STORE-to-LM-for-strip-

not-mounted command is sent to the STORE-SNM module.

READ, FUTURE READ and FUTURE STORE Commands.

These commands are sent to the DCP to be placed in the UDCT.

After placing a command on the LMQ or DQ or after return from

the DCP, the mapper command dispatcher returns to the LPAM

module.

-28-

The STORE-SNM Module

MCO

STANDBY

DCP

Figure 3.17 - STORE-SNM Module

The STORE-SNM receives from the mapped command dispatcher a

command to STORE a page onto a laser memory strip which is not

mounted. The STORE-SNM module calls the STANDBY module to put

the page on STANDBY. On return from the STANDBY module, the

STORE-SNM module replaces the STORE in the command operation

field with RESTORE-and-STORE. The modified command is then sent

to the DCP to be placed in the UDCT.

The Deferred Command Poster (DCP).

COMPLETION
ROUTINE

—[UDCT'S

Figure 3.18 - DCP Module

-29-

The DCP is the module through which most other modules inter-

rogate and modify the UDCTs, thus isolating the physical struc-

ture of the UDCT from these modules. The DCP can then

cooperate with the SMCM in the ordering of commands on the UDCTs.

The Disk and Laser Memory Queuer Modules (DQR and LMQR).

--•ILMQ

Figure 3.19 - DQR and LMQR

These modules place commands on the DQ and LMQ respectively.

They can be designed to order the commands on the queues in

an optimal sequence for the particular device.

-30-

'

The Deferred Command Executor (DCX).

P.
SMCM

Figure 3.20 - DCX Module

This module Is called by the SM control module to execute

selected commands In some particular user's UDCT. The commands

and user are designated by the SM control module, which has

insured that disk pages and buffers are available for allocation

to the commands. The functions performed for various commands

are discussed below. Whenever a command is executed, a "being

executed" flag is set for th^t command. This flag is cleared

by the completion routine when the cciiuna^d has been completed.

RESTORE—The BUT is examined to see if the dPPA already resides

in a core buffer. If so, the CNT field is incremented, the

process* UBB bit is set, and the completion routine called to

remove the command from the UDCT and to fill in the WRCRT entry.

If the dPPA does not reside in a core buffer, then a free buffer

is chosen and the dPPA entry is filled, the CNT set to 1, the

process' UBB is set, and the being read bit set. If the new page

bit in the RESTORE command is set, then the change bit in the

BUT is also set, and the completion routine called as above. If

the new page bit is not set, then the RESTORE is transferred

to the DQ so that the disk page may be read.

-31-

 "^"WidMaimniiiJi

/.

LM-READ—These must be laser memory reads for a currently

mounted strip. If a PID had not been specified In the command,

then a disk page Is assigned and Its PPT bit set. A buffer Is

selected, the dPPA field set, the CNT Is set to 1, the process'

UBB bit Is set, and both the being read and the change bits

are set. The command Is then placed In the LMQ.

D-READ—If the PID had not been specified, then the dPPA of the

data page is chosen as the basic page. The D-READ Is then pro-

cessed as if it were a RESTORE command.

If the PID had been specified, then that dPPA is placed in

the BUTs dPPA field. The CNT field is set to 1, the process'

UBB bit is set, and the being read bit is set. The D-READ

is placed on the DQ to effect reading of the data page into core,

STORE-SNM—This is a laser memory store to a strip which had

not been mounted. When the DCX is called to execute such a

command, the strip-not-mounted condition should no longer be

true. This command is executed in two parts. First the RESTORE

operation is performed on the page. When the page is in core,

the completion routine will call the DCX to perform the second

part. This Involves placing a STORE command on the LMQ.

FUTURE-READ—This applies only to laser memory pages on the

currently mounted strip. Like STORE-SNMs they also are pro-

cessed in two parts. First a LM-READ sequence is executed.

When the completion routine calls the DCX Indicating that the

LM-READ has been completed, the DCX establishes a FRT entry

and then STANDBYs the page.

SWAPIN—This command is placed in the UDCT after a user's pro-

cess pages have been swapped out. When executed, the process

pages are brought back into core. The UPPL Indicates the number

and order of process pages to be swapped into contiguous core

-32-

■

buffers. The SWAPIN module determines from the BUT whether

enough free, contiguous buffers are available to accommodate

the process pages. If there are enough free, contlQuous

buffers available, the process pages are read Into the core

buffers In the order specified In the UPPL. If there are not

enough free, contiguous buffers available, then scratch pages

In some buffers must be moved to free buffers so that a con-

tiguous block of core buffers may be created. The DCX

reorganizes the buffers and BUT when necessary.

XPDA—If process pages are to be freed (I.e., negative n) these

pages and buffers are freed as In a RELEASE command.

If new process pages must be added to the contiguous buffer

area. It may be necessary to reorganize the buffers as In the

SWAPIN command. This operation will normally Involve relocat-

ing buffer references In the process pages of those processes

using a relocated page. Otherwise this process Is similar to

ASSIGN execution.

The Buffer Freer Module (BP).

SMCM

DOR

Figure 3.21 - BF Module

This module Is called by the SMCM to Initiate a disk write for

a page In a buffer which has standby status (I.e., CNT = 0,

change bit =0). The BUT entry should have the change bit set

Indicating that It Is necessary to update this disk page. A

disk store command Is placed In the DQ.

-33-

^Hii^^aag^i&^

The Strip Switcher Module (SS).

:M
5=^SWITCHERJ ♦ LMQR

Figure 3.22 - SS Module

Called by the SMCM, this module places a strip switching command

on the LMQ.

In a more sophisticated design, the SS could be required to clear

the LMQ of all commands for the strip to be dismounted. This

would involve freeing assigned buffers and disk pages and return-

ing commands to the '7DCTs.

The SWAP Module.

SMCM SWAP jT^
^,J9\ BUT |

UPPLI

OOP ^ DOR

Figure 3.23 - SWAP Module

When called by the SMCM, the SWAP module will effect the freeing

of all of the buffers being used by a particular user. By

examining the BUT, the SWAP module can determine which buffers

are assigned to the user (including those containing process

-34-

M^^äMi

pages), the CNT field Is decremented and the user's UBB bit

turned off. For those buffers with the change bit set, a

write command to the disk page Indicated In the BUTs dPPA

field Is placed in the DQ by the DQR. A RESTORE command for

each non-process page Is placed In the UDCT by the DCP. A

SWAPIN command Is also placed In the UDCT. The SMCM can restore

the status existing before the SWAP by calling the DCX to

execute these RESTORE and SWAPIN commands In the UDCT.

The Storage Manager Control Module (SMCM).

OTHER
SYSTEM
TABLES

Figure 3-24 - SMCM

This module Incorporates all of the decision making facilities

of the storage manager. It Is responsible for monitoring

activity both In the UDCTs and In other parts of the system and

Initiating buffer allocation, swapping, and strip switching

activity.

The SMCM may be looked upon as a "black box subroutine" cap-

able of being Implemented to the degree of sophistication

deemed necessary. Several schemes have been considered for

the SMCM. We will only discuss here the ways in which different

kinds of information can be utilized by the control module.

-35-

By monitoring the UDCTs, the SMCM dictates the activities of

the DCX in executing buffer requiring commands. Free buffers

are always available since the SMCM controls the BF module. The

SMCM is capable of recognizing a deadlock situation in buffer

allocation and swapping one or more users out of core if necessary,

Users requiring unmounted strips need not occupy core space and

can be swapped in coordination with strip switching activity.

The SMCM may keep a number of internal tables (for example, a

strip roquest table) which are referenced in making allocation

decisions. For this reason, the DCP has been created so that

it will be capable of updating these internal tables. The

UDCTs themselves may be considered to be internal tables of the

SMCM. This structure has not been more clearly defined as it

will depend upon the particular strategies employed by the SMCM.

An efficient SMCM must monitor more than Just the tables in the

storage manager. Activity on the I/O queues, for example, may

Influence strip switching strategies since 10 seconds* worth

of network output can be generated in a much smaller amount of

time. Attention, too, should be paid to the process priorities

kept by the supervisor. By means of these priorities, the

supervisor is indirectly able to control storage manager

scheduling of resources.

The SMCM will frequently be called by the supervisor to initiate

storage manager activities.

This is the approximate strip switching time for the laser

memory.

-36-

•

The Disk and Laser Memory Operation Executors (DOX and LMOX).

Figure 3.25 - DOX and LMOX Modules

These modules remove commands from the DQ and LMQ and perform

the particular actions required. Upon completion of a command,

they will set restart conditions for the completion routine. A

portion of each of these modules will be Interrupt driven.

The LMOX will be Implemented principally In the laser memory

processors.

The Completion Routine (CR).

E3 ED
Figure 3.26 - CR Module

-37-

The completion routine performs clearing operations for com-

pleted commands from the DQ and LMQ.

Completed commands from the UDCTs are removed from the UDCTs.

If the wait bit for the UDCT had been set and the last wait

requiring command Is removed from the UDCT, then the wait bit

Is cleared and the restart condition for the user Is established,

Other operations are performed depending upon the particular

command:

. disk stores to non-data pages: the change bit In the

corresponding BUT entry Is set to 0.

. stores to data pages on disk or laser memory: the disk

page and buffer are RELEASEd.

. reads: the being read bit Is set to 0.

-38-

;> -

Chapter 4

Input/Output Manager

^.1 Input/Output Manager Interface

Overview.

The I/O manager manages data transmission Into and out of the

datacomputer. The I/O manager consists of:

(1) device processes

(2) port monitors

O^ record conversion routines

(^) I/O subroutines

(5) port monitor creation routine.

Device Processes.

The device processes transmit physical records between the

datacomputer and external sequential devices (e.g., the data-

computer's IMP, the Illlac, and standard magnetic tape). Input

device processes transmit physical records from devices to

physical record queues. Output device processes transmit

physical records from physical record queues to devices. The

device processes are Independent processes, which are Interrupt-

drlven.

Port Monitors.

A port monitor Is created for each external sequential device

used by a user process; the port monitor monitors data trans-

mission between the user process and the external sequential

device.

Each port monitor Is an Independent process. A port monitor

buffers I/O between a user process and a device on record queues,

which are maintained on pages In the basic page space, which are

obtained by the port monitor from the storage manager.

-39-

An Input port monitor Issues conunands to a device process to

obtain physical records from a device, converts the records to

logical records, and places the records on a queue, which is

emptied by calls for input from the user process.

An output port monitor receives logical records from a user

process, converts the records to physical records, places the

records on a queue, and issues commands t^a device process,

which empties the queue, sending the recdBfc to a device.

A port monitor receives record conversiort Bftrameters from the

user process.

I/O Subroutines.

I/O subroutines transmit data between user processes and port

monitors. Calls to I/O subroutines are made by a user process

in order to obtain input from a port monitor or in order to

send output to a port monitor.

Record Conversion Routines.

Record conversion routines are called by the port monitors to

convert logical records to physical records and vice versa.

Port Monitor Creation Routine.

A user process may call the port monitor creation routine in

order to establish a connection between the user process and

a device. (When an IMP input port monitor is created, the

creation routine issues an ALLOCATE command to the IMP device

process (Network Control Program).)

Interface Between Port Monitors and Storage Manager.

In order to manipulate scratch pages needed for its queues, a

port monitor may issue ASSIGN, RELEASE, RESTORE, STANDBY, and

WAIT commands to the storage manager (see Section 3.1)« Each

port monitor has a deferred command table, into which its

RESTORE commands are placed by the storage manager.

-40-

Interface Between Port Monitors and Device Processes.

A port monitor may issue commands to a device process; commands

are added to the device process' command queue.

A port monitor command to a device process has one of the

following forms:

input port monitor: READ <number records> <poj.'t> <pointer

to list of in-core pages>*

output port monitor: WRITE <number records> <port>

When executed, a command causes the indicated number of physical

records to be transmitted through the port.

When a device process completes a port monitor command, the

device process sets the port monitor's done-flag. If on input

the records requested will overflow the pages provided or if

on output the physical record queue does not contain the number

of records specified, then the device process sets the port

monitor's full/empty-flag.

Interface Between the Request Handler and Port Monitors.

A user process may issue to a port monitor the command

READ <n> RECORDS PROM <port>

or

WRITE <n> RECORDS TO <port>,

which cause logical records to be transmitted between the user

process and the port monitor. For a READ, if the port monitor

IMP input port monitors may issue the command "ALLOCATE
<number messages> <port>", which allocates message blocks
for messages to be received by the user process. The IMP
input port monitor cannot issue a READ command because
the data to be READ is not available from the IMP (and
Network) on command from the datacomputer.

-41-

has at least <n> records, pointers to the <n> records are

returned to the user process, and the records are removed

from the port monitor's queue. Otherwise, <n> Is posted

In the port monitor's records-needed word and the supervisor

Is called. For a WRITE, <n> records are added to the port

monitor's queue If the port monitor has space for <n> addi-

tional records. Otherwise, <n> Is posted In the port

monitor's records-needed word and the supervisor Is called.

A user process may specify data descriptions and record con-

version parameters to a port monitor.

A user process may create a port monitor. In order to connect

the user process to a device, with a call to the port monitor

creation routine:

CREATE PORT MONITOR <user process ld> <devlco> {INPUT/OUTPUT}.

Interface Between the Supervisor and the I/O Manager.

Device processes run on an Interrupt barls determined by the

supervisor. The supervisor schedules and runs the port

monitors.

A PM may run when

Its records-needed word Is not ze^o

Its done-flag Is set

Its full/empty flag Is set

a storage manager WAIT has completed.

A PM returns tc the supervisor when

(1) Its done-flag Is not set

and (2) Its full/ompty-flag Is not set

(1)
or (2)

or (3)
or (4)

-42-

* i

and (3) Its records-needed word is zero

and (h) no records can be moved between LRQ and PRQ (the

source queue Is empty or the destination quaue

is full).

Tbe I/O subroutines return to the supervisor and block a user

process when the I/O subroutine needs additional records.

4.2 Input/Output Manager Architecture

Port and Port Monitor (PM).

A port is a connection between a user process and a device.

The device may be the IMP, the Illiac, or standard magnetic

tape. Each port has a port monitor.

A port monitor monitors data transmission for a port. Each

PM Is an independent process. Each PM has two queues: a

physical record queue and a logical record queue.

Physical Record Queue (PRQ).

A PRQ is a list of indirect pointers to physical records. The

Indirect pointers to records are specified by record-address-

bloeks (RABs)*.

Record Address Block (RAB).

A RAB is a block of addresses. The entries in a RAB have the

format:

<type-bit> <address>

The last entry in a RAB has its type-bit set; in other entries

the type-bit is cleared. The <address> is composed of two parts;

page address and address-on-page (AOP).

* Not in the case of a PRQ for an IMP input port

-43-

ar aaHMMMHMi

The AOP Is an address relative to the beginning address of the

core buffer Into which the page specified by the page address

has been RESTOREd. If the page address Is given as zero, the

AOP Is relative to the beginning address of the core buffer in

which the RAB Is.

The first entry In a RAB Is the address of the beginning of the

record. The last entry of a RAB Is the address of the end of

the record. Other entries In a RAB are addresses of continua-

tion pages of the record. Necessarily, the last two entries In

a RAB have the same page address. The AOP of the last entry In

the RAB must be greater than the AOP of the next-to-last entry.

Logical Record Queue (LRQ).

An LRQ Is a list of pointers to logical records. An entry In

the LRQ has one of the following forms:

00 <RAB-polnter>

01 <PPA>

10 <PPA>

The format-bits are 00 If the LRQ-envry Is a RAB-polnter to a

record; the format bits are 01 If the LRQ-entry points to a

page that contains exactly one logical record of size IK. The

format-bits are 10 If the scratch page Identified by <PPA>

contains logical records In header format.

In header format, a page that contains logical records has a

heiader. The header Is a list of RABs, which Identify the logical

records on that page*. The header Is written from the top of

the page; logical records are added from the bottom of the page

(see diagram).

* In some cases, a RAB may specify addresses not on the
scratch page.

-44-

;■ '

NUMBER OF RECORDS* PAGE FULL OR NOT

POINTER TO END OF HEADER

RAB OF FIRST* LOGICAL RECORD

RAB OF LAST# LOGICAL RECORD

FREE

LAST LOGICAL RECORD

FIRST LOGICAL RECORD

HEADER

LOGICAL
RECORDS

Figure 4.1 - Page Containing Logical Records

* on this page.

-45.

Port Monitor Actions.

A PM may:

1. Issue ASSIGN, RELEASE, RESTORE, STANDBY, and WAIT

commands to the storage manager for pages for its queues (each

PM has a deferred command table in the storage manager).

2. Issue commands to a device process to maintain iv,s

PRQ.

3. Transfer records from PRQ to LRQ (if input port) or

from LRQ to PRQ (If output port).

4. Post information about queues.

5. Return to the supervisor.

Port Monitor Commands to the Storage Manager.

Comriiands to the storage manager from a PM are effected as they

are for user processes (see Section 3.2).

Port Monitor Commands to Device Processes.

A command to a device process from a PM may have one of the

following forms:

READ <number records> <port> <pointer to list of

in-core scratch pages>

WRITE <number records> <port>

ALLOCATE <number messages> <IMP input port>*

RELEASE <pointer to message block>*

Such commands when effected cause physical records to be added

to or removed from the port's PRQ.

* For IMP input device process (Network Control Program) only,

■46-

': M

Transfer of Records Between PRQ and LRQ.

The PM may call logical-record-to-physical-record or physical-

record-to-logical-record conversion routines, which convert

and transfer records between the PRQ and LRQ.

Pert Queue Information.

A PM maintains for each of its queues:

the number of records in the queue,

a pointer to first record in the queue,

a pointer to last record in the queue,

the rate of filling the queue,

the rate of emptying the queue.

Device Processes.

Device processes read physical records from or write records

to a device. Each device process has a command queue, into

which port monitors put their commands.

Each PM has a done-flag and a full-empty-flag, which may be

set by the device process. The done-flag is set when the

device process completes the PM's command. The full/empty-

flag is set when a READ command has been issued by a PM and

the scratch pages for physical records become full or when

a WRITE command has been issued by a PM and its PRQ becomes

empty.

I/O Subroutines.

I/O subroutines transmit logical records between a user pro-

cess and the LRQs of ports connecting the user to devices.

Records may be transmitted between a user process and LRQs

in two forms: copy-form and no-copy-form. In both forms, the

-47-

"■-'»'^^aimtu.immfi^^ ^a«S^';fi^|l^i^^j|^|g|g|

receiver of the data receives a pointer (a RAB) to the record.

In copy-form, the pointer points to a copy of the record; in

no-copy-form, the pointer points to the original record. (The

no-copy-form requires that both the user process and PM pro-

cess share a scratch page.)

I/O Subroutines for Input.

An I/O subroutine for input is invoked by the request handler

when a "READ <n> RECORDS PROM <port>" is encountered in the

user process. If the LRQ contains at least <n> records, the

subroutine returns pointers for <n> records from the LRQ of

the port <port> and removes those records from the LRQ.

Otherwise, the subroutine posts the number <n> in the PMs

records-needed word and gives a WAIT command to the supervisor.

The user process is blocked until the LRQ contains <n> records

in core.

I/O Subroutines for Output.

An I/O subroutine for output is invoked by the request handler

when a "WRITE <n> RECORDS TO <port>" is encountered in the user

process. The subroutine adds <n> records to the LRQ if the

LRQ can hold <n> more records. Otherwise, the subroutine posts

the number <n> in the PMs records-needed word and gives a WAIT

to the supervisor. The user process is blocked until the LRQ

can hold <n> more records.

Special Considaration^ for the Illiac Port.

The Illiac Port Monitors issue special ASSIGN and RESTORE com-

mands which cause scratch pages on the fast disk to be ASSIGNed

and which RESTORE those scratch pages in special datacomputer/

Illiac shared core.

In Illiac dump mode, the Illiac port monitors maintain only

an abbreviated PRQ and no LRQ. The abbreviated PRQ contains

the disk address of the first page of the dump and the number

of pages dumped.

-US-

Special Considerations for IMP Input Ports.

The Network Control Program (NCP) is the datacomputer's device

process for the IMP. For buffering input from the network,

the NCP has a Message Queue (MSQ). The MSQ is a set of pages

divided into blocks of about 8000 bits. Associated with the

MSQ is a bit map of the MSQ blocks. The NCP also has an

allocation table (AT), that indicates how many blocks a user

has been allocated and how many blocks a user has in use.

A PM for IMP input is unlike other input PMs. An IMP input PM

has a special PRQ and does not manage scratch pages for its

physical records. The PRQ for an IMP input PM is not a list of

RABs but rather a list of pointers to blocks (messages) in the

MSQ. As a message for a port 11 received, the NCP adds to the

port's PRQ a pointer to the block containing the message; the

block's use-bit is set in the MQ bit-map.

An IMP input PM may issue two commands to the NCP (IMP device

process): allocate blocks and release blocks.

The "allocate" command is used to enter in the AT the number of

blocks allocated to a port. The allocation of blocks to a port

may require that the NCP call the MSO page allocate^ module to

obtain additional core space or to release unneeded core space

for the MSQ. ,,Block allocation is similar to ASSIGN-RESTORE for

non-IMP-ports.

The "release block" command is used to clear in the MSQ-map

the use-bit, of a block which has been processed by a physical-

to-logical conversion routine. Block-release is similar to

RELEASE for non-IMP-ports.

-49-

*,[.^-.V

/

MM—pini i mtmtm^mt^mm

■ .w-^;./^'^-^^'

--«MM«!««!

Chapter 5

Supervisor

5.1 Supervisor Interface

In the datacomputer the supervisor, storage manager, and I/O

manager together replace the generalized time sharing operating

system. Thf supervisor has modules for the following Jobs:

. management of clock, priority Interrupt system and

protection and relocation hardware

. operator communication

. program loading

. performance monitoring and accounting

. process scheduling.

Scheduled processes run when granted CPU time by the supervisor.

User processes, the sequential I/O port monitor processes, and

the laser memory strip scheduling process are examples of

scheduled processes.

Interrupt processes run when started by the interrupt hardware.

They control I/O devices and handle unusual conditions. An

Interrupt process normally has the CPU for a very short time,

performs some real-time function, may post some information

for scheduled processes, and then restarts the process it

Interrupted or passes control to the supervisor.

In the following, the five commands that can be issued to the

supervisor are each followed oy a description of the super-

visor action taken for the command.

-50-

mmmm

>

1. WAIT <restart condltlons>

The supervisor may start up another process if desirable; the

currently running process must wait until the specified restart

conditions are satisfied. The supervisor grants tne CPU to

another process If any can be run and If process switching has

not been disabled.

Allowable restart conditions are:

a. any of a set of flags must be on

b. all of a set of flags must be on.

2. POST <polnter to flag>

The supervisor sets the Indicated flag and starts up another

process If It Is desirable. This command Is commonly Issued

by routines surrendering a scarce resource or signaling the

completion of an Important event.

3. INTERRUPT <machlne state Information, process Id,

entry polnt>

The supervisor saves the state of the most recently running

scheduled process and starts up the process named at the entry

point specified, after all waiting Interrupts have been served.

After an Interrupt process has seized the CPU, It may Issue an

INTERRUPT command to start a process.

4. INITIATE <process state table entry>

The supervisor creates a process with the Initial state specified

In ti^e entry. The supervisor adds the entry to the process

state table and puts the process on the process schedule. If the

process' restart conditions are satisfied, it can be started

immediately.

5. TERMINATE <process ld>

The supervisor deletes the indicated process from the process

state table and releases all of its resources.

-51-

/

:-1Stfeft-;:;?'

5.2 Supervisor Architecture

Hardware Management.

Clock management routines provide time of day and Interval

timing services for scheduling, accounting, and performance

monitoring routines.

The priority Interrupt system management routines control the

priority channels and their service locations and thus control

the I/O device processes.

Operator Communication.

The computer operator must have the ability to control the

datacomputer while it is running production and to perform a

wide variety of functions while the datacomputer is being

modified or running diagnostics.

There is a simple language for the operator to use and a module

to process it. Commands and queries are processed at a time

convenient for the supervisor, probably immediately before

process selection. Diagnostics and status information are also

output by this module.

Program Loading.

The supervisor has two special requirements for program load-

ing: loading Itself and reloading the datacomputer programs

carefully in case of catastrophe. For loading Itself, the

supervisor can use the standard methods employed by other

PDP-10 monitors. Recovering in case of catastrophe requires

special techniques to salvage as much of the file maintenance

activity as possible and to maintain connection to the cur-

rent users.

-52-

Program loading is done by a special supervisor module because

the storage manager (which normally does disk I/O) and the

sequential I/O manager arp among the programs to be loaded.

Fetching of less frequently used program modules from disk

during datacomputer operation is handled by the storage manager,

since the programs are in a standard disk file.

Performance Monitoring and Accounting.

This module gathers necessary data for analysis of the design,

tuning of algorithms, system evaluation, and file reorganization

and disposition.

Process Scheduling.

The supervisor establishes the schedule by which processes

are to be run. The process schedule may be modified on any

call to the supervisor. After a call to the supervisor (i.e.,

after a WAIT was issued to the storage manager, an I/O sub-

routine needed records, or a quantum of time elapsed), the

process to be run next is determined by the process schedule.

The process scheduling module establishes the schedule by

consulting the process' state tables and static and dynamic

priority information.

A process state table indicates, among other things, whether

a process may be run and upon what other processes the pro-

cess is waiting.

Static priority information reflects unchanging priority

factors such as:

-53-

1. Whether a user process corresponds to a local or

remote user.
2. Whether a user process has special priority inherently

(as for Illiac fast dump) or imposed.

Dynamic priority information reflects changing priority factors

and the relationships among processes. For example, the high
priority of a user process, which is waiting for input from a

port monitor may influence the priority of the port monitor.

-54-

Appendix

Glossary of Acronyms

AOP address on page

AT allocation table

BP buffer freer module

BUT buffer usage table

CNT count

CPU central processing unit

CR completion routine

dPPA physical page address (on disk)

DCP deferred command poster

DCX deferred command executor

DOX disk operation executor

DQ disk queue

DQR disk queuer module

PAM file allocation module

FDH file directory handler

PPT free page table

PR future read

PRT future read table

ICM in-core map

IMP interface message processor

IOM imput/output manager

LMOX laser memory operation executor

LMQ laser memory queue

LMQR laser memory queuer module

LPA logical page address

LPAM logical-physical address mapper

LPM logical-physical map

LRQ logical record queue

MOD mapped command dispatcher

MSQ message queue

MQ mapper queue

-55-

NCP network control program

PAW page address word

FID page identifier

PM port monitor

PPA physical page address

PRQ physical record queue

RAB record address block

RH request handler

RQ read queue

S supervisor

SM storage manager

3MCI storage manager control interface

SMCM storage manager control module

SNM strip-not-mounr,ed

SS strip switcher module

SPT shared page table

UBB usage bit block

UDCT user's deferred command table

UPPL user's process page list

WRCRT wait-requiring command results table

XPAW extended page address word

XPDA extend process data area

-16-

