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1.   Introduction 

Suppose a random sample of points P., 1=1, 2, ... , N , is given 

on the surface of a sphere with center 0 and radius 1 . The vectors 

OP. may denote directions. In.some.geophysical problems vectorial data 
~~x 

of this type occur, in. which-:the. vectors 0P„ are more or less coplanar, 

that is, clustered close to a plane.through the center 0 .  Such a plane 

intersects the sphere in a: great..circle, which may be regarded as the 

equator of the sphere; the. probability distribution over the spherical 

surface which is then appropriate to describe the distribution of points 

P  (or equivalently of unit .vectorsOP) must have high density near the 

equator and low density at:the North, and South Poles.  Such a distribution 

is. called an equatorial, distribution»..:. Suppose spherical polar coordinates 

, (6, cf).) are used for P. ., and let 0 = 0 be the North Pole; here 

0 <_ <f> <_ 27T. and ,0 .<_ .6 <_ 7T. . The-density 

(1)       . •.  f(8,. *)..=.. c3.(K)..sin...6 expC-K, cos
2 9) , 

with K >  0 and C„(K)a normalizing,constant, was introduced as a 

suitable: equatorial-distribution:;by Watson: (1965).  If K < 0 , the den- 

sity may be used to.describe_a-bimodal.population, with modes in the 

density at the poles and low density.on the equator 8 = TT/2 „  Clearly, 

suitable orthogonal transformations will place: the polar axis along any 

vector A.»  When...<...=..0 ,.the.density: reduces to the uniform density 

over the sphere. 

 A common problem, given.-sample-data, .is'first to test for uniformity, 

that is, to test the null.;hypothesis  Hn: tc = 0 against the alterna- 

tive  HA:  < > 0  or H-i .. < < .0.— For the equatorial alternative, 

H. .., Watson (1965) showed that .the likelihood ratio test of Hfi , 



—1 v—— N    2 when the antimodal axis A is known, is based on S = N  > ... - cos a. , z_— 1=i      x 

where a.  is the angle between -A and OP., i=l. 2, ... , N .  The 

vector A may point to either, antimode. When S is significant in the 

lower tail, H« is rejected-in/.favor of U.   .:. S may also be used to 

test for uniformity, against..the bimodal-density given by (1) with K < 0 ; 

then H~ is rejected, in favor of H_. if S is significant in the upper 

tail. Percentage points of S. .(there called T) are given in Stephens 

(1966). 

In this paper we give significance points for the test statistic to 

be used for testing EL. against -H. and for testing HQ against H 

in the more realistic case ^hen the antimodal and modal vectors A , 

respectively, are not known. We also give some indications of the power 

of the test. The problems posed-in .finding the distributions of the test 

statistics have interesting-connections with principal component analysis 

and with an engineering.application; they have not been solved exactly 

except in one special case,..but-significance points are given, based on a 

combination of asymptotic-results and Monte Carlo studies.  We conclude 

the paper with an.explanation of. the-corresponding problem in two dimen- 

sions, because there.the distribution theory may be solved exactly. 

2.  Tests for Randomness Against-Equatorial-or Bimodal Alternatives 

2.1.  The procedures.  We now discuss the test of H» when the-vector 

A »pointing to an antimode for., the equatorial alternative and to a mode for 

the bimodal alternative, is .not. known. The likelihood ratio test statistic 

is found as follows (Watson, 1965)« Suppose for a given vector A' , 

S' = N  ^  . . cos a. , where a.  is the angle between OP. and A' . z— i=l     i '   ....   i ° —^I 



As A'  is allowed to vary-over the surface of the sphere,  S'  will take 

values between a-minimum,  S „ :", and a maximum,  S      S .  will be 
mm max    mm 

the likelihood ratio test statistic for the test of H„ against HA 0  °       A 

(equatorial alternative) and S    will be used against H_  (bimodal 
max B 

alternative).  S ,  and  S    may easily be calculated from the latent mm      max 

roots (eigenvalues, characteristic roots) of a matrix Q to be given 

below.  The tests may therefore-be-set-out as follows: 

(a)  Suppose £„, m.,.n. ..are the direction cosines of OP., referred 
**      - l' -  l'    1 : 1' 

to a fixed system of  coordinates;   that  is,   let    %.   = sin 0.   cos <f>.   , 

m.   = sin 0.   sin i>.   ,  n.   = cos 0. -,   i=l. 
l ill i 

N 

(b)  Let Q be the following matrix divided by N 

N N 

V* >         -Ä.--m 
—T"          1 i=l '.-• ' i=l 

N 
>         I.  m„ iT~T          1       1 
1=1 

N         2 
y      m„ 
1=1 

N N 
>         Ä.  n„ CTT       1      1 1=1 

y         m„   n 
^—r       1 
i=l 

N 

i=l 

N 

i=l 

N 

Ü.  n. 
l l 

m. n. 
l l 

i=l  1 

(c) Let the latent roots of Q be A1 >_ A- >_  A„ , and let the 

corresponding latent vectors be un, u_, and u„ .  Then S ,  = A„ and 
~1 ~l ~j mm   J 

S   = \.   . 
max   1 

(d) If S „  is less than the appropriate entry for values of N 

and a in Table 1, reject H^at significance level a in favor of the 

equatorial alternative; in this event u„  is the maximum likelihood esti- 

mate of the antimodal .veqi|pr of the distribution. Alternatively, if  S 
max 

is greater than its appropriate.entry, reject H_  in favor of the bimodal 

alternative, with u..  as, the .maximum likelihood estimate of the modal vector. 



2.2 Related problems. 

(a)  Principal.component.analysis.  Let the vectors OP.  be denoted 

/zlil 

°l±  = ~i/ = [z2±\   "  I ni- 1 '        i=1' •" ' N 

Z
3i 

y A vector  ß = (ß , ß„, ß„)'  normalized so 

I 
' 3 

(2) ß'ß = XI ^ - 1 
k-1 

has direction cosines as components.  Then 

v-i-0'-±= ZZ ßk\i 
k=l 

i 

is the signed length of the projection of 0P„  on ß ; in other words it 

is the length of OP,  in the direction of ß .  The sum of squares of 

these lengths is 

N   „    N ....  N 
(3)    H v = XT (ß'-O  = XT ß' z. z! ß = NßVQß . .—r-   X     .—r-   ~  ~X       *;—r-  -  ~X ~X ~     ~ — 

X=l X=l 1=1 

The maximum of (3) with respect to ß , subject to (2), is the largest 

characteristic root of  NQ , which is NX, = N S   .  Thus N S    is 
1     max max 

the sum of squared distances of the points P.. , ... , P maximized with 

respect to direction. The maximizing direction ß defines the first 

(sample) principal component (from the origin) as v   = ß    z , and 

s ..-•! YZ v(1)2 
max  N J•r  I 

x=l 

is the (sample) variance (about 0) of the first principal component. 



The projection of OP.- on the plane orthogonal to 3    is 

z - v   3   .  The signed length-of the projection of this vector on 
~ i   i  ~ 

a normalized vector 3 in this plane is 3' z.  because ß'ß   = 0 . 

The sum of squares is (3)- and the maximum is the second characteristic 

(2) 
root of  NQ , which is .NX--.. Let. the maximizing direction define 3 

and let ß(3) be orthogonal to ^(1)  and ß(2) .  Then N3
(3)

'Q3^
3) 

(3) is the sum of squares of lengths in.the direction of 3   , and this is 

/ j     Tn in 
the minimum, namely NX„ = NO, 

The discussion here parallels the-treatment of principal components 

in Section 10.2 of Anderson (1958), with expectation replaced by sample 

average (or sum), coordinates from the mean replaced by coordinates from 

the origin, and p set at 3 . 

The density (1) can be obtained from a three-dimensional normal 

distribution with means 0., covariances 0 , and two variances equal. 

Then (1) is the conditional density of the. two angles in polar coordinates 

for the radius fixed. 

(b) Mechanical Engineering..-If-unit masses are located at each 

point P. , the quantity N(l-S) gives.the moment of inertia about A' , 

and N(l-S . ) and N(l-S  ) are respectively the maximum and minimum mm       .   max 

moments of inertia obtainable.by.varying A' .  Thus the distributions 

of  S .  and S    can be used to give the distributions of maximum 
mxn      max 

and minimum moment of inertia-obtainable from a random distribution of 

N unit masses on the.sphere. 



3.  Distributions of S.v and ..of S 
  ,  . . -... - min. :-•-•   max 

3.1.  A large-sample.result. .The^exact distributions of  S .  and 
mm 

of S    are very difficult to find.-:In this section we give large- max       ' e      ö 

sample results, leading.to very.good.approximations to significance points, 

-h to the order, of N  . As . N -*-°° , .....the entries in Q have an asymptotic 

joint normal distribution.  From it„we can obtain the asymptotic joint 

distribution of.the latent.roots;-the.marginal distributions of the largest 

and smallest roots are.the asymptotic distributions of S    and S . 
max      mm 

Since we want the asymptotic distribution for the two-dimensional case as 

well as the three-dimensional case, and it may be useful for higher dimen- 

sional cases, we prove a more general- result. 

Suppose y = (yT ,........, y.) '  has a p-dimensional normal distribution 
~    ±       p 

with mean 0 and covariance matrix I .  Let z = y//y'y .  Then z has 

the uniform spherical distribution in. p dimensions, and z and w = /y'y 

2 2 
are  independent.     Since    w      has aX -^distribution with    p    degrees    of 

freedom, 

;/ =   y( 2 %m        %mT[%(m+p)-] 

Then 0 = %,y  = "£wz - "^w |,z implies "•£ z = 0 . Because z and w are 

independent, a moment of the.components of z is the corresponding moment 

of the components of .y divided by the moment of w of the same degree. 

Let A = (avo) = zz
1 ; then 

^ .2   ~ 4   1  ... 4    1 
kk   *~k   ^..2 >yk..:..p(p+2) ,> w   ~ 



^ak£ =   ^akkai!L "' ^zkZ£       •       4   ?yky£ ~ p(p+2)   ' k ^ Ä  ' few 

^akkaU =   ?V£    = 7T   ^yky£ = °  ' k * l ' 

The .variances -and covariancesi .:of -the elements of" A are 

Varakk-p(p+2)-p2 = 2p2(p+2) > 

Var (ak£} = plpW ' k * £ ' 

and 0 for other covariances. 

Let z„, j>l, 2,   ... , N, be the sample values of z , and define 

N 
Q = (1/N) J~    z„z! 

i=l 

x = Vi" (Q.- - i) . 

The trace of Q is (1/N) /. . z!z,.= 1 , so the trace of X is zero. 
~ _*—— x=l ~i~i ~ 

Then X has a limiting normal distribution with mean 0 and the 

same covariances as A .In=the limiting normal distribution of X , 

the . (functionally".independent^-off-diagonal terms' are mutually.) (statis-' 

tically) independent '-and-independents of the:diagonal terms. Let•'•-:•; .•:.. . 

x - (x..., , x00,'-«.. . , x ) * 'I be :the vector of diagonal terms; its covari- ~ .   11  22        pp ° 

ance-matrix is  : ' 



p2(p+2) 

/P-i 
-1 

U 

—1 

p-1 

« 
• « 

9 

-1 

-1 

-1 

p-1 

P (p+2) 
[pl-ee'] , 

where £  = (1, 1, ... , l)1. This is a singular matrix and the limiting 

distribution of Xis singular». In order to deal with densities, we 

study first the latent roots of the matrix II = X + vl , where v is 

2 normally distributed with mean 0 and variance 2/[p (p+2)] . From the 

density of the latent roots of y , ..we can obtain the density of any 

p-1 roots of X . 

Let u - (u., , u„„, ....   yU-  )' - x + ve ..: With_ v chosen With the ~ .    JLl   11        . . •   pp    ~    ~ 

above variance, the covariance matrix of U is diagonal: 

£uu' = -jl  [pl-ee'] +-T
1 ee' =  X 

p(p+2) 
I . 

P (p+2)  " """..•   p^(p+2) 

The variance of u_,  is 2/[p(p+2)] , which is twice the variance of 

ut , k.^.A ; the latter is the variance of a,p , given above. The k£ k£ 

density of this limiting.distribution.of U is then proportional to 

/  i— 

exp \: +h 
C ukk I 
k=l k<£ \l 

p(p+2)      p(p+2) 

that is, the density is 

= exp < JU P<P+2> z        2 fei u^ 

[p(p+2)]p(p+1)/4    ^%[p(p+2)/2]tr U2   . 
2%P (2TT)P(P+D/4   

e ; -• 

If the roots of U with the above density are s., > s„ > ... > s 

their density is [by.Theorem-13.3,1.of Anderson (1958)] 



[P(P+2)]P
(P+1/4 

2p(P+3)/4 -^ rh(p_1+1)]     t ^  ^'A 
1=1 1<j 

s < ... < s, . p -   - 1 

Now the roots r. > r. > ... > r  :0f. X :are related'-'to- those of U 
•L "   ä P   •  • • ~ ~ 

(s^ > s2 > ;... > s )". by: the- relation 

x. = r. + v . 

Since tr X = 0 , we have S       .% r. =0 ; then pv = 5   .p, s. 

So v = (s1 •.'+ ... + s )/p and 

p-1     1 r-P— :.  = s.-v = £— s. >   s.s 1   i     P  i  P 4^1  J 
r,. • 84-V = -^ S, - ~ )__  S.s 1=1, ... , p-1 

3+1 
Then 

2_ si " 2  r,- + Pv > 
1=1    x     1=1    x 

where r = -(r. + ... + r _.).. The joint density of v and 

L„. «  • a •  »IT   _   IS l     p-i 

pP(P+l)/^(p+2)P(P+l)/4-%     r JL,  2T  _I> 
£ kE—f — exp 4[p(p+2|/2]..0 r*> < TV    (r.-r.) 
2p(P+3)/4-l-frr(y)       | fe  iJoiJjLi  ^ 3 

(4) j^ 1<J 

x   p(P+i)% :e-%IP2(p+2)72iv2,-   .r  =  _ . 
27T%  :

e     -        '  rp   rl  ••'_  rP-l 1  Vl   ••'  rl 

Thus v is independent of r , ... , r - , and the density of the latter 

set is the first factor.  The density of the limiting distribution of the 

p-1 largest characteristic roots of VN(Q I) is the first factor ~  p ~ 

and the density of the limiting marginal distribution of any subset of 



these characteristic roots-is-obtained as-a marginal density from the 

factor»-   [Justification-follows from-the-Theorem on Limiting Distribution, 

p. 140, Anderson (1963).] 

 The threerrdimensional- case- When. p=3 , the above gives the density 

of the limiting -distribution of - .r_.. and' r_ .  Our interest is in r.. 

and r„ = -r.. -r„ , and the. density-of .the limiting distribution of these 

variables is 

15 /45    I  15 
 —— exp < - ~j 
4 /2TT 

2 •  2 , 
rl+r3+rl r3 

(2^ + r3)(r± - r3)(-v1  - 2r3> 

-2r- <_  r„ <_ -hx-,  £ 0 

Integration with respect to r„ gives.the density of r1  as 

(5) f(rx)  = /45 

2TT 

2 2 _,     2 
135     2.     arl arl • 4arl *" 
~r rie     "e     + e 0 < r < 

where a = 45/8 .  The density of r„  is the same but for r„ <_ 0 .  The 

limiting distribution of r„ , found from above, is normal with mean 0 

and variance 1/45 . 

For calculations, it is convenient to write the distribution of r., 

in terms of u = (r^ /45)/2 ; then integration of (5) gives 

Pr -z /2 (u > z) > Pr(r1 > 2z/A5) =-^- ze 
z '    +  2 - $(z) - $(2z) 

27T 

where $(z) =  - /  e     dt , and z > 0 .  Similarly, 

. Pr(r < 2z/A5) ~—  \-ze~Z  /2j + o(z) + $(2z) z < 0 . 

10 



The critical values* of -r., at significance level a , are (r1) X 1   u 

a: ,10 .08 .05      .025- .01 ,005 .002 

(rj.: 0.788        0.816        0.873  0.948        1.038        1.100        1.177 
la 

Critical values-of- r- are. (r,X- = ^(rT) . . Then critical values 

-h (S ...)- and (S  )  are, to order N-  : mm a   max a 

.,   (r„)   .   (rj -   (rj 
(6)       (:s . )  U + 1Ä = I-_U;  (S   )  -± + -^  . 

mxn'a  3   ^-   3   ^      max'a  3   ^ 

3.2. A small-sample result. .Let:,,Z = (zn, ... , z__) ., where z.  is 

def ined above. Then iNQs-.•* ZZ' • v ;and.. the" latent- roots of ZZ' are the. latent 

roots of- Z'Z except;for . ;0 ...röötsy equal: in number:••,to the differencenih 

.dimensionalities i,of ZZ.V '.;and«;iZ'Zwv;. fhenc the? {nonzero ) latent roots of 

NQ are the (nonzero) latent toots of 

Z'Z = (z! z[) 

y! y. 

Jy\ y, /yJ y, 

= R , 

say. R is an N xN correlation matrix based on p observations from 

N(0, I) , using deviations from -0~,.. instead of the mean. 

For the particular case p=3, if N=2 or 3 , R has a density; if 

N > 3 , R does not have a-density because its rank is 3 which is less 

than its dimensionality N... .If N=2 

* We are indebted to R. - L- Anderson for carrying out these; computations. 

11 



and under the null hypothesis r has the uniform density over  (-1, 1) . 

If. ..N?=3.--, the density of...r.,,..^ „, r«„ is (1/4).|R|   for R positive 

definite and 0 otherwise.- JSee-Anderson (1958), pp„ 64 and 175» The 

number of degrees of. freedom-, n is--3.-because here deviations from 0 

are used, instead of from-the. mean;.the dimensionality p is N .] 

When N=?2 , the characteristic roots of R are 1+r and 1-r . 

Thus S   = %[1 + max(r, -r] and S , =0 because Q is singular, max mm ~      ° 

The-cdf of S    is (for h <  x < 1) max —  — 

Pr{s   < x} .==Pr{max(r, -r) < 2x - 1} = 2x - 1 max — — 

and the significance level.based on.a test with significance point x is 

2(1 - x) .  Somevalues-are-given.below. 

Table 3 1 

Probability .90 .95 .975 .99 

Signif icance level .1 .05 .025 .01 

Significance point .95 .975 .9875 .995 

3.3.  Significan ce.Po: _nts.  Foi : i sm aller va! .ues of N , es cact crit 

values of S-.  and S    will-increasingly depart from the values in    mm      max ° J       r 

(6).  These exact values have been estimated by Monte Carlo studies, using 

mostly 10,000 samples, each .of size -N , for N = 4(1)12, 14, 15, 16, 20, 

30, 50, 60, 80 for S .  ,~and 10,000.samples, for N = 5, 10, 20, 50 for 

S    and the middle root X„.... The Monte Carlo points, for given a were 

12 



plotted against N  ; both, the-lower.tail points of  S „  , and the r       ° mm 

upper tail points of  S ».approach-smoothly, from above, the asymptotic 
IT13.X 

(6)—- Smoothed curves.through:these-points:give the points in Table 1. 

.Analysis of these-curves suggests that these percentage points are accurate 

to within one or two .units-in -the,-third -decimal place»  For , N beyond 

the table the. expressions in-(6) give a very good approximation.  The 

critical values of S-„  and S-   , for small N", 'are not symmetric mm . .   max 

with respect to  1/3 as are.the asymptotic values; this is to be expected 

as S .  has range 0 to .1/3...., while S    has range 1/3 to 1 .  For 
mxn    max 

the middle-latent root Ä  of Q , Monte Carlo values agree asymptotically 

with 0.3333 - (r.) /T/R. ,.. where- r„.. is ...distributed N(0, 1/45) ; for smaller 

N , the distribution becomes.gradually unsymmetric.  Some critical values 

are given in Table 2. 

3.4. Power Studies«  Table 3 gives an indication of the power of the 

test for-randomness, when applied-at level a , and when the sample is of 

size N andin fact drawn-from-an equatorial distribution with a given 

< .  Thus, for example, when.the.test-is applied at the 5% level, with 

N =20 and K  =.. 2.., -thepower. .(i»e. , -probability of declaring a sample 

significant, i.e.,-not-random)-is: 0»400 ;-if the sample is of size 10 

and K = 3 , the power is0*300-« 

   Monte Carlo results-were used to find the proportion of 1,000 samples 

(for N <-20) or 400-samples:(for --N =20, 30, 60) which were significant 

when.the test was applied-as-described.- Curves of proportion significant 

were-plotted against --l/N.,-for given-. K ...and: a , and used: to construct 

the table. 

13 



4.  The Two-Dimensional -Problem 

It is interesting toobserve-that:the-distributions of S .  and of mm 

S  can be solved-exactly-when the.points: P. are:on the circumference 
max  r-*- r       x 

of a. circle»- Suppose .-9, ..is.-the-polar coordinate of P.  referred to a 

suitable origin» and. let -the radius.be;: -1.:; :in its most general form, the 

distribution corresponding to - (1) is 

(7)    f(8).= c2(K> exp[-K.cos
2 (8...- 8Q)] , 0 < 9 <  2TT . 

This distribution-has-two modes-and two antimodes symmetrically 

placed round the-circle; when - .< /< G , 9 = 9  and 9 = 8 + TT gives the 

antimodes, and when K > 0-, they give;the modes. A change in sign of 

K is exactly equivalent to-a rotation of coordinates through 90° , so 

thatno distinction-can-be. made.between-.the equatorial and bimodal cases, 

and a test of uniformity against-the alternative (7) should give the same 

result-whether, for the the-alternative, K is positive or negative. We 

can see that this is so-as follows.--The test statistic, when A is not 

known, is 

± _N_    2 
 S . = — min -V  ...cos. -(9, - 9_)  mm  N Q   

i7—r- \x   0 . V 1=sl 

2Nmin 

V 
• N 
y~ cos .2(9 - 8Q) + N 
i=l 

Suppose Q.  is the point whose-angular coordinate is 28. , 1=1, 

2, ... , N .  Let R, of length R, be the resultant of the unit 

v-—- N vectors 0Q, . Then X = )       ._, cos 2(8'.'- 9fi) is the component of 
* 

R on A , the vector whose angular coordinate is 28n . Now R is 

14 



fixed for - a given sample;-clearly .X~ -is-minimized when: A : is along the 

direction opposed to; .R , ~so that: X =? ^-R , and 

(8)  X. *.JcU---R/N) . .. -  mm 

Similarly -S   = .Jfi(l..+..R/Nj- r when. .A lies along R .  If the set of . - -  max ~ 

points P.  is-uniformly-distribated_over:thercircle, so is the set Q. , 

and R is then- the resultant of ...a .set- of -randomly distributed unit vectors; 

the distribution of its length R is well-rknown (see, e„g., Greenwood and 

Durand (1955), and Stephens (1969)- for-critical values), so that -critical 

values of  S .  and  S    can be found exactly.  Because of the identity mm      max J 

S..  + S   = 1 , tests based.on these-statistics will give the same result, mm   max 

as noted above. When... .A is known, the test statistic is '• 

5<;V:NC J__  i=1 cbs  (ei;--e^):s-^(H^^^critical/points for - X/N are 

given da Stephens—(1569),-where the -tests- are; given in greater detail. 

Power-tables are also given. 

If we apply to - the-circle-the-arguments given above for the sphere, 

we find 

rl rl (9) S .  = h -,—    ,i       S   = h + ~ , 

where r1  is the -characteristic .root, of -the-matrix.. X defined in 

Section-3.1 for p=2 .  Then the-density:of the'limiting distribution of 

r1  is obtained from-Section .3.1 as 

"4rl 
— 8r.. e . 

2 2 It then follows that 8r..  has a limiting %o -distribution.  It has also 

2 2 been shown that for N large, 2R-/N. .has the Xo~distribution, if we 

write (8) as 

15 



min   m 
we see at once the -equivalence,-for..large- :N:, of: (8) and" (9). However, 

(8) leads to exact-distributions,-and^wechavemo-parallel exact results 

for the sphere.. It-is:.clear-that-since:the:distribution of  (£, m, n) 

does not depend-on-the-coordinate^systemj-ithe-exact distribution of the 

entries of X in (3)-.-does -not-depend-on: the; coordinate system and one 

must-be .able-to write-the-density-in:terms-of;the latent roots, which 

will not.. change with an- orthogonal- transformation of - coordinates; if this 

could be found exactly, Theorem-13.3.1:of:Anderson (1958) could again be 

used, but the problem-appears-to-be.a_difficult one. 
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Table 1 

LOWER TAIL.. PERCENTAGE -POINTS. FOR    S:;:::: "AND ' 
     mm 

UPPER TAIL POINTS 

\ 

FOR S           ON. SPHERE 
max 

S   „   :     1 
mm 

awer  tail | S       :    upper tail 
max 

N 

5 

\a(%)  1.0 2.5 5,0 10.0. 10,0 5,0 2.5 1.0 

0.007 0.011 0.019 0.031 0,714 0.751 0,784 0.821 
,                           6 .016 „024 „034 „050 ,678 .712 .743 .779 

7 „026 .038 .050 .067 .651 „684 „712 „746 
1                           8 „037 .051 „064 „081 „630 „661 .687 „718 

9 ,048 „062 „075 .093 „610 „641 .667 .694 

1 .058 „073 .087 .105 „596 „625 .650 .677 
) 

12 0,076 0,091 0,106 0,123 0,574 0,598 0.621 0,648 
14 .091 .107 ,120 „137 „554 .578 .599 „623 
16 „103 „120 „133 „149 „538 „559 .581 .604 
18 .114 .131 .144 .158 „526 .544 .566 .587 
20 „124 ,140 „152 „167   . .515 .535 .553 .575 
25 „144 „158 „170 „184 .496 „512 .530 „550 

30 0.160 0.172 0,184 0,196 0,479 0„495 0,510 0.528 
]                       40 „183 .192 „203 , 214 „459 „473 .487 „501 
!                       50 ,.198 „207 .216 „227 .447 .460 „471 .484 

60 .208 .217 „ 226 „235 „438 ,449 .458 .470 

1                        70 ,216 ,226 „234 „243 „429 „439 .448 „461 
80 .223 .231 „239 ,248 „423 „432 .441 „452 

100 .233 .242 .248 .257 „413 .422 „430 „440 

-1.038  -0.948  -0.873  -0,788 0„788 0,873 0.948 1,038 

For N > 100 , use the approximation 1/3 + b//N , where b is given in the 
last row. 

Table 2 

a(%)     1,0 

PERCENTAGE.POINTS FOR A2     (MONTE CARLO) 

Upper Lower Tail 

50,0 

Tail 

N 2„5 5.0 10,0 10„0 5,0 
- " "•s 

2„5 

5. 0.130 0.159 0.183. 0.211. 0,304 0.390      0 .408 0„428 

10 „203 .221 , 238 „255 .320 .379 „395 .409 

20 .246 „258 .269 „282 .325 .368 .380 .389 

50. .279 ,286 „294 .302 .329 „356 „364 .370 

1.0 

0.444 

„422 

.399 

.377 
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Table-3 

 POWER-OF-TEST-EOR-RANDOMNESS 

The table shows the proportion-of Monte-Carlo samples significant, 

when tested for randomness with-test, of size a , when the sample of size 

N., were in fact drawn.froman equatorial-distribution with given K . 

K-: 

a = 0,05 a = 0.01 

6 0.060 0.09 0.15. 0.21 0.01 0.03 0.04 0.05 

10 3.072 .16 .30- .49 .01 ' .05 .09 .27 

15 .091 .27 .53 .75 .03 .11 .25 .49 

20 ).120 .40 .68 . 92 .04 .16 .40 .71 

30 .200 .58. .89 .99   - .05 .30 .76 .95 

50 .35 .82 .99 1.00 .11 .73 .97 .99 

19 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA • R&B 
(S*a,rilScla..lHaatlm «I Mil». t*»Sv rt abaSma» ««rf l****W mm file* «mat ,*a «"««»«• •*gJ£*!^IS^;jgMrtlM>____ 

I,,-- —iiiwuiii—  ' '    '"  ""'         .*.-..•••••• • —i  i       i mi "in •"* """ "'" ""'"""" S «A     ttaaABV  £iirtf>iiAiVM   «>i  Aa«ifi«>AV(AU 

I. ©SIGINATIN 6 ACTIVITY (Coifmato mi«»«» 

DEPT. OF STATISTICS 
STANFORD UNIVERSITY,  CALIFORNIA 

Ss. RBPOKT SaCJJAITV   CLAaStrieATtdN 

£&. eegsup> 

J. REPORT TITLE 

TESTS FOR RANDOMNESS OF DIRECTIONS AGAINST EQUATORIAL AND BIMODAL ALTERNATIVE 

4. DESCRIPTIVE NOTES (Type at «sport «mil Ineloaiv» oatsa) 

J^SffiDIIÄL-MEfiBl^-» 
$. AUTHORS ft«»« nama, .«reewams, Initial) 

ANDERSON,  T.  W.       and    STEPHENS,  M.  A. 

«. REPORT DATE 

August 30,   1971 
I 8a.   CONTRACT OR GRANT NO. 

.N00014-67-A-0112-0030 
6.  PROJECT NO. 

.    NR 042-034 

7«.  TOTAL NO. OP  PASSE 

19 
?6. MO. ©* RSPS 

6 
»«. ONISIMATSR'S REPORT WUMBBRfS.» 

#  5 

96. OTHBR REPORT HO(S) (Any elhesnumbam *«« Btay ft» saaltnad 
Ma taper® . 

#  181    0NR NQ0014-67-A-0112-0053 
10. AVAIL ABIUTV/UM1TÄTION NOTICES 

Reproduction in whole or in part is permitted for any purpose of the 
United States Government 

11. SUPPLEMENTARY NOTES > SS. 8POMSOR1NO MiUTARY ACTIVITY 

Office of Naval Research 
Arlington, VÄ 

I a. ABSTRACT, 

This paper is concerned with tests of randomness of directions 

in three-dimensional space or equivalently tests of uniform distribution 

of points on the unit sphere.  One test is against alternatives which 

concentrate probability density near an equator, and the other test is 

against alternatives which concentrate probability density near opposite 

poles; in each case the poles are unspecified.  The tests are based on 

the latent roots of the matrix of sums of squares and cross-products of 

the coordinates of the observed points on the unit sphere. Against 

equatorial alternatives the null hypothesis is rejected if the smallest 

root is less than the appropriate significance point, and against bimodal 

alternatives the null hypothesis is rejected if the largest root is greater 

than the appropriate significance points.  Tables of significance are 

given, based on Monte Carlo studies and the asymptotic distributions, which 

are derived in the paper. The two-dimensional problem is also discussed. 

DD /Ä 1473 UNCLASSIFIED 
Security Classification 



UNCLASSIFIED 

.SS^i^mitfSSllSSSSi'Sftp 
1«. 

KEY WORDS 

Directions 

Randomness 

Equatorial distribution 

Bimodal distribution 

Uniform spherical distribution 

LINK A 
HOU« 

LINK B L1NKC 

*©*•*. 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fens» activity or other organization (coipotate author) issuing 
the report, 
2«.  REPORT SECUHTY CLASSIFICATION:   Enter the over- 
all security classification of the report.   Indicate whether 
"Restricted Data" is included,   Marking is to be in accord- 
ance with appropriate security regulations. 
2b.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual, Enter 
the group number.   Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized.' 
3. REPORT TITLE: Enter the complete report title in all 
capital letters. Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 
4. DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when e specific reporting period is 
covered* 
5. AUTHOR(S):   Enter the name(s) of authors) as shown on 
or In the report.   Enter last name, first name, middle initial. 
If military, show rank and branch of service.   The name of 
the principal author is an absolute minimum requirement. 
6. REPORT DATE:   Enter the date of the report as day, 
month, year, or month, year.   If more than one date appears 
on the report, use date of publication. 
7a.   TOTAL NUMBER OF PAGES:* The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 
76.   NUMBER OF REFERENCES:   Enter the total number of 
references cited in the report. 
8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 
86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc 
9a.  ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
96. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 
10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using standard statements 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DDC" 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorised," 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC  Other qualified DDC 
users shall request through 

 '. ____." 
(4) "U. S. military agencies may obtain copies of this 

report directly from DDC   Other qualified users 
shall request through 

(S)    "All distribution of this report is controlled, Qual- 
ified DDC users shall request through 

If the report has been furnished to the Office of Technical 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact and enter the price, if known. 
1L SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 

II SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay 
ing for) the research and development.   Include address. 
13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space is required, a continuation sheet shell 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclsssified.   Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented as (TS), (S). (C). or (If). 

There is no limitation on the length of the abstract.  How- 
ever, the suggested length is from ISO to 225 words. 

14. KEY WORDS:   Key words ere technically meaningful terms 
or short phrases that characterize a report and may be used at 
index entries for cataloging the report.   Key words must be 
selected so that no security classification is required.   Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.  The assignment of links, rales, and weights la optional. 

FORM 
1 JAN 64 1473 (BACK) Unclassified 

Security Classification 


