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ABSTRACT

The usual analysis of the steady state angular motion of a

dynamically stable spinning missile assumes a quasi-steady state calcu-

lation of a gravity-induced trim angle. A condition for the validity

of this quasi-steady state assumption is derived. When this condition

is not satisfied, the gravity-induced angular motion must be described

differently for three distinct portions of the trajectory: the upleg,

near apogee, and the downleg. The accuracy of this description is

checked by comparison with numerical integrations. Finally the in-

fluence of cubic static and Magnus moments on the motion is determined

and a revised point nass trajectory model is constructed.
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1. INTRODUCTION

The linear angular motion of missiles can usually be written as a

sum of responses to various forcing functions and a solution involving

the initial conditions. For a dynamically stable missile the effect

of initial conditions quickly decays and the angular motion is con-

trolled by the forcing functions, i.e. moments which do not depend on

the missile's angle of attack or sideslip or their derivatives. For a

slowly spinning missile the most important such forcing function is a

constant pitch or yaw moment fixed on the missile and caused by either

an intentional control surface deflection or an unintentional configu-

rational asymmetry. The response to such a moment can take oCi large

values when the pitch rate is near the roll rate and as a result it

has been studied by a number of authors. 1 3

For a symmetric missile with a high spin rate, the forcing

function has a magnitude which is proportional to the product of the

spin-to-velocity ratio and the trajectory curvature, and has an axis

of rotation which is perpendicular to the plane of the trajectory.

For a constant amplitude moment and a linear static moment the response

is a constant angle of sideslip. This trim sideslip angle causes the

nose of a spinning shell to always point to the right and, thereby,

produces a right deflection of the trajectory which is called drift.4
-5

Since both the spin-to-velocity ratio and the trajectory curvature

increases to a maximum at apogee, a maximum gravity-induced trim angle

is predicted at apogee. This prediction assumes that a quasi-steady

state calculation is appropriate and that the aerodynamic moments are

linear. If either of these conditions is not satisfied, a complete

six-degree-of-freedom numerical integration is usually required. It is

the purpose of this paper to present a new simple approximation for

*References are listed on page 3?.
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this gravity-induced angular motion which is valid for rapidly

changing conditions near apogee. The effect of a non. near moment is

incorporated by use of the quasilinear assumption which has been quite

successful for the analysis of the transient motion.6 -7 Finally this

approximation is used to cbtain a revised version of a modified point

mass trajectory.

II. EQUATIONS OF MOTION

We will make use of two Cartesian axis systems. The first is an

earth-fixed system with the Xe-axis taken as the intersectiun of the

horizontal plane with the plane of the trajectory, the z e-axis aligned

along the gravity vector and the ye-axis specified by the right-hand

rule. The second axis system has the i-axis along the missile-axis of

symmetry, the i-axis in the plane of the trajectory pointing downward

and the y-axis determined by the right-hand rule. For this fixed plane

axis system we make use of the complex angle of attack, , which is

defined by the equation

+ i=sin B + i cos sin (2.1)= V

where v, w are y and z components of the velocity vector and a, are

the angles of attack and sideslip. The magnitude of j is the sine of

the angle between the missile's axis and the velocity vector and its

orientation determines the orientation of the plane of this angle with

respect to the horizontal. For a linear aerodynamics and small geo-

metric angles must satisfy the equation 7

" + (H - iP)j' - (M iPT)t = G (2.2)

where the coefficients are defined in the List of Symbols.
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The plane trajectory of a particle acted on by gravity and drag

can be described by the equations

11 - ~pV2SCD V (2.3)

.. IpV 2SC es' (2.4)
ez mg 2  D

Introducing 0T the inclination of the trajectory with respect to the

horizontal, these equations can be written in the form

V1  = * -2 (2.5)= C ~ -giV sin 0

e0. gkV-2 COS e T (2.6)

where

0 2m C D

Equations (2.5) -(2.6) can be integrated for constant CD to give the

velocity as a function of trajectory angle.

V=Va sec a T {-.2 !tan 6.sece 0T ln tan( 2 ) }giT

(2.7)

where V is velocity at apogee.a

is



The gravity terms in Equation (2.2) can now be approximated by 0T

if we assume a small angle of attack

gNT = g cos OT  (2.8)

G=-PO (2.9)

The solution to Equation (2.2) for slowly varying coefficients is6

1 2 (2.10)

where

0: P : ± [p2 - (2.11)

a I -. = ) (2.12)

= G G (2.13)
g M + iPT M

The expression for the gravity-induced trim angle, g is based on the

quasi-steady state assumption that G and M vary slowly during a cycle

of the transient epicyclic motion given by the first two terms of

Equation (2.10). (See Figure 1.)

III. GRAVITY-INDUCED TRIM WITHOUT DAMPING

Near apogee G varies rapidly as can be seen from its derivative

for constant spin

16



G' = +  G

[3C+ 4gtV-2 sin T ]G (3.1)

= [3C* + 4gkV -2 sin 8T]PgXV 2 COS T

The relative variation of G and G' are indicated in Figure 2. The
maximum value of G occurs after apogee due to the action of drag. In

order to obtain the angular response to 6 we make use of the method

of variation of parameters for the simple case of constant X's and
JJ0"s and integrate the result by parts.

i0 i02  ^
= K1 e I + K2e + ZG (3.2)

- [(A , ~+i$X +ss (+io') (s-s)1
- s [( 2  + ('2 )e - + i 'l)e G (i)di

0 (M + iPT)(X 1 -X + i(*' -

1 2

(3.3)

For a gyroscopically stabilized missile the fast rate *' is

usually much greater than the slow rate *2 This is especially true

near apogee where G' is large. Integrals of complex exponentials are

inversely proportional to their frequencies and, thus, we can easily

neglect the first term in the integral Ln comparison with the second

term and for simplicity we will neglect X. in comparison with inJ
the multiplying coefficients but not in the exponential coefficients.

17



ZGM S[ [e 2 2 G~( (9)dIg (3.4)

0

where $ =-G

g "

Although Equation (3.4) is a simple relation for the gravity-induced
trim angle it is gravely limited by the restriction to a constant

frequency. For mos: projectiles the apogee value of the gyroscopic

stability factor usually exceeds ten when G is large enough to affect

Equation (3.4) and a quite simple expression for 4' can be written from
2

Equation (2.11).

P 1

L g

1 + + (3.5)=F 4sT + '  "F
g

where s = p2/4M.

g

Since P is proportional to the spin-to-velocity ratio and the spin

normally decays quite slowly due to viscous damping, P can grow quite

rapidly on the upleg and, therefore, the assumption of constant 2

is not satisfied. Somewhat lengthy algebra shows that a good first

approximation for the effect of varyLng frequency on the derivation of

Equation (3.4) is to replace 2 s by *2 fs 02 ds

S
a

"(S - sa) + i€2(s)

-6 6 K e 2 a 2 (.6)

g ga Ge 36



where

KG = G-1  e 2 S a +

0

Equation (3.6) clearly reduces to the quasi-steady state relation when

G can be neglected. Indeed KG can be neglected when the width of the

humps of G' is large with respect to the wavelength of 02 .

The basic properties of Equation (3.6) can be determined if we

consider the very simple case of zero drag, constant spin rate (P = 0)

and no aerodynamic damping. For zero drag Equation (2.7) reduces to

V = Va sec 8T (3.7)

and

G 4(gVa2)G cos 6
T sin T (3.8)a a T T

Equation (3.5), then, gives an approximation for

, M
02 sec eT -(ga2)S-1 sec 8T  (3.9)

a (gTV~)-a T

The integral for KG now assumes a very simple form for no damping

K(2 6)- 6 a  e 2 f(eT)d2 (3.10)G 2' ga ga je) 2

¢2 0

where f(6)T 4 cos 7 eT sin T

19



Finally relationship between 0T and €2 can be obtained from Equation3

(..6) ani (3.9)

6-1 tan 0 [3 + tan 2 eT/3  (3.11)

2 ga TTI/

f(9) is plotted versus 2 for various values o 6ga in Figure 3.

A bripf exa.ninationi of KG shows that it is essentially ccnst.nt

for $ outside the interval (-27r, 2ir). Un the opleg portion of the
2

trajectory (02 < .21) KG is zero while on the downleg portion (0, > 2r)

it has a zero real part. This situation can be summarized by the

following equation

G 6g +ga KG( 6 ga )e' (3.12)

where

K 0 2 < -2n upleg

G 2

KG 6ga ] ei €  f(OT)d;2

-2 r

K G = KG (ga, 2n) 27r < 0 downleg

-A G(Sga)

where
.1!

271
K ,-6 f( ) sin 2di

2G ga T i2
20

20



S2G(6 ga ) is given as a function of 6ga in Figure 4. An important

feature of this curve is that K2G is quite small for 6 less than
2G ga

.15 and thus we would expect the quasi-steady state results to be good

when the predicted apogee steady state angle is less than 80. When
the Ctkiady state prediction exceeds this value, Equation (3.12) or the

more accurate Equation (3.6) should be used. K2G can be identified as

a fraction of 6 which appears impulsively at the apogee in the slow
ga

L mode when the gravity forcing function is rapidly varying in a period

of the slow mode.

In Figure 5 the combined pitching and yawing motion for a missile
with a large maxinum gravity-induced trim (8 200) is shown. The

parameters Lsed in this exact integration are given in Table I. From

Figure 4 we see that K2G is .76 and, therefore, the amplitude of the

slow mode component of Equation (3.12) is (.76)(20*) or 150.

This motion starts out as an epicyclic motion induced by an

initial angular velocity. During the first three secouds the center

of this epicycle moves to the right; then it moves up as well as con-

tinuing its right motion until eight seconds. There then appears a

rough reversal of this process until eleven seconds is reached. After

this point a new epicyclic motion is established with a much larger

sluw mode motion with an amplitude of 12'. This qualitative behavior

is precisely that predicted by Equation (3.12) with --he near apogee

motion occurring between three and eleven seconds. The terminal slow

node amplitude of 12° is quite consistent with an apogee value of 150

when the influence of aerodynamic damping is computed.

21



IV. GRAVITY-INDUCED TRIM WITH DAMPING

The effect of constant damping is included in Equation (3.6).

Near apogee ' is much smaller than P and from Equation (2.12) we see
2

that a good approximation for X2 is -T which can be constant for near

apogee flight For this case Equation (3.12) takes on the revised

form

-T(s - s a )

6 gaKG 2(6 * )e a 2 (4.1)G -g ga ga'2

where

€2T(s -Sa)- $

KG 6ga f 2 f(OT)d02 -2f < 02 < 2

- 27r

On the downleg portion s > sD) of the flight *2 grows and H and

T vary as the Mach number increases. During this portion of flight G'

is quite small and the integral in Equation k3.6) becomes constant.

We, therefore, assume the major effect of G' is to specify an initial

value of K2 and use Equation (2.12) to predict the influence of

varying X2

22



A +2 G (4.2)-- +Ke "
"° g K 2

K2 = 6gaK2G exP{ X2  , (4.3)

sa 2

where

Kj D T(;ss a 2 G' ds
K2Ge

i  = Ga

sU

For zero drag a simple expression for K2G can be obtained.

21T T(s - Sa) - i 2

K2 G 2 Isga B f(e T ) d, 2 1 (4.4)

If IT/O;' < 0.1, actual numerical calculations show that K2G is

within .02 of its value for T = 0 and, hence, Figure 4 can be used to

obtain K2G as a function of 6ga .

23



V. NONLINEAR ANALYSIS

The usual quasi-linear analysis 6"9 has been applied primarily to
the angular motions of symmetric missiles with no moment forcing

functions. This analysis has recently been extended to include the
forcing function associated with slight configurational asymmetries. 3

The latter treatment can be easily extended to include gravity-induced

angular motion away from apogee.6,10 In this section we will outline
the apprupriate analysis and give the results for cubic static and

Magnus moments.

For this case Equation (2.2) becomes

+ (H - i) [M - [M 62 + iP (T0 + T2 62)] = G (5.1)

where

62=W

A solution of the form of Equation (4.2) is assumed and substituted in
i02Equation (5.1). The resulting equation is divided by K2 e  and

averaged over a distance which is large with respect to the wavelength
uf the slow rate to yield quasi-linear values of X and *2"

2 2f

H2 - T + T 62]+ ,
22 e2-P +e 2  (52

2

1/2 P F2  4 [M *M62] (5.3)

24



where

62 =K 2 + 262 + 2K2

e2 2 g 1

IIf the rtiulting equation is divided by K Ic *similar relations for
the high frequency motion follow. Finally the equation can be averaged

as it is to yield a quasi-linear relation for the gravity-induced trim.

[M + 62 i T T623)
whee - [M0  +M2 e3  + iP (Te + g = G (5.4)

i i where

62 62 + 2K2 + 2K2

Since the imaginary part of the coefficient of g is usually less than

a quarter of the real part, it affects the orientation of g much

more thanit affects its magnitude, 6 A simple equation for 6
g g

can be written.

G
6= (5.5)
g Mo + +2K2 )

0 2g9 2

On the downleg Equations (5.2 - 5.3) can be used in Equation (4.3) to

calculate the magnitude of the slow mode motion which has been initi-

ated by G' at the apogee. The orientation of the slow mode motion can

be obtained by integrating Equation (5.3).

The nonlinear analysis for near apogee motion is much more diffi-

cult since 6 varies rapidly during a cycle of *2 An estimate of

the effect of a cubic static moment can be made for small values of K2.
The steady state formulas for 6 then reduce to a cubic equation.

g
25



= G (5.6)

g M + M 62
0 2 g

The slow frequency, which assumes the form

M +2M62]
sec (5.7)

varies in response to the nonlinearity as 'S grows from zero to 6ga.Sg

If the nonlinearity term in Equation (5.7 is replaced by its average,

this equation can be reduced to Equation:(3.9) of the linear theory.

FoM M,2 ga2P sec e 0g26V2) 
6ga sec eT (5.8)

a T a(gi T
P/
a/

Thus, an approximation for KG and K' when the static moment is a

cubic function can be made by usin Equation (3.12) with 6ga given by

Equation (5.6) evaluated at the afogee.

VI. A REVISED 6OINT MASS TRAJECTORY

For many years ordnance firing tables were computed by use of the

point mass Equations (2.3 - 2.4). The7e equations completely neglect

induced drag due to G as well as lateral drift caused by this angle.

The induced drag is accounted for by adjusting CD by a form factor

which is a function of eT and is determined by full-range firing.

Drift is measured by full-range firings and numerically interpolated

for firing table use.

26



Recently a modified point mass analysis has been developed11

which includes the effects of the steady state gravity-induced trim

Eg =- 6 . This trim angle modified the drag coefficient and inducedgg

a lateral deflection.

CD C +C 62 (6.1)D D 0 D62  g

mye = V2 S CL g (6.2)
a g

This modified point mass trajectory has the advantage of retaining the

major trajectory contribution of the angular motion without requiring

the use of the very small integration interval associated with an

exact integration of Equation (2.2). It is valid for a dynamically

stable missile and slowly varying G.

The theory of this report can be used to construct an improved

version of the modified point mass trajectory which could be called a

revised point mass trajectory. Since the motion near and after apogee

involves the slow frequency, an integration interval small with

respect to the slow mode's period is needed. The integration interval

required for Equation (2.2) is small with respect to the fast mod''s

period and is, therefore, much smaller than that required for the re-

vised point mass trajectory. Thu the revised point i.;ss trajectory

requires much less computer time than the exact six-degree-of-freedom

trajectory.

It has been shown7 that only the average of 62 need be considered

for the drag force. If we can neglect the effect of KG on drag near

apogee where the total drag force is small, only the drag on the down-

leg need be revised.

27



CD = CDo + C + K2) (6.3)

The limitation imposed on the integration interval by the slow mode

motion can now be eliminated if the lateral deflection due to KG can

be neglected. The lateral deflection due to KG is caused by an angle

which is constantly changing direction. The average value of this de-

flection angle can be estimated by calculating the jump angle 1 2 for a

projectile performing coning motion of magnitude K2 and frequency 0' .
2a

2
Jump angle - a (6.4)

This jump angle is a right deflection angle of the impact point with

respect to the apogee. The deflection angle with respect to the gun

is one-half this angle and usually quite small. The refined point

mass trajectory, then, requires the same integration interval as the

modified p'int mass trajectory. If the effect of KG on drag near

apogee i required, a smaller integration interval will be required

for this small portion of the trajectory.

VII. COMPARISON WITH EXACT THEORY EVALUATIONS

In order to make a direct comparison with exact calcilations

initial conditions of Co = -6 , V = -6' were used with the other

parameters of Table I to give an angular motion without a transient epi-

cycle. The total angle of attack variation with time for these condi-

tions is shown in Figure 6 and is compared with the quasi-steady state

6 and the angular motion given by Equation (3.12). We see that theg

prediction of Equatior (3.12) is much better than that of the quasi-

steady state theory but it does overestimate a t by 35%.

28



The calculations based on Equation (3.12) can be considerably

simplified if the near apogee motion is approximated by a discontinuous

* jump at apogee from the - 6 motion before apogee to the - 6 + K!jupaapgeroth- g g 2

exp (io ) motion after apogee. This calculation which considers only

two sections of the trajectory is also given in Figure 6 and with the ex-

ception of a region very close to apogee it is seen to be a good approx-

imation to the three-section theory.

Finally the effect of damping is calculated through Equations

(4.1 - 4.3). The two- and three-section calculations were repeated

for nonzero damping and are plotted in Figure 6. Here we see that the

theory underestimates at by about 15% near t = 13 sec. This discrep-

ancy, however, is entirely due to calculating K2G over a two-cycle

interval, i.e. one cycle on both sides of apogee. K2G was then calcu-

lated over a four-cycle interval (two cycles on both sides of apogee)

and the result is plotted as Figur. 4. This shows a difference of

about 5%. The two-section calculation is repeated in Figure 6 using

the four-cycle integration value of K. G and we see the agreement with

the exact curve to be quite good.

29
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Fiaure 1. Angular Motion of Spinn'ing Projectile
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Table I. Parameters for Exact Integration4

V 255 ft/sec 6 ga = .335 (8 = 200)1

T (0) 600 6 go = .021 Cag = 1.2*)j

M . 0-4 a = .071

T =1.5 X 10-4 = .002

H = .9 x~'(0 = -i (.5) rad/sec

P0 .036 ~

CD =0
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APPENDIX A

DERIVATION OF EQUATION (2.2)

Most of the relations given in Reference 7 are for near horizontal

trajectories: eT = 0. These relations neglect the trajectory compo-

nent of gravity and use an approximation for G. The more exact equa-

tions are given in Reference 5 but in a much different notation. It is

the purpose of this note to rederive the equations of Reference 7 for

non-horizontal trajectories. We will refer frequently to equations in

Reference 7 and to avoid confusion will add the letter R and chapter

number to equation numbers from this reference to distinguish them from

equations in the body of this report.

Equation (RS.2.2) is the drag equation for a horizontal trajectory.

For more general trajectories, the trajectory component of gravity must

be included and, thus, this equation must be replaced by Equation (2.5)

V C; - gIV'2 sin OT  (A-1)

The roll equation (Equation (R5.6)) must now be modified using the

more general drag equation:

+ Kp , - K6 -0 (A-2)

where K -2 * + + g- "2 sin eT
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= k 6f CW6 a f 6

C, 6 C +
0 p

C1 is tie roll moment coeffic.. .,nt

Foi a body of revoiution, K6 = 0 and

JK ds
e 0 (A-3)

Equations (R6.4.24-R6.4.25), which are the equations for transverse

motion with arbitrary aerodynamic force and moment, can now be re-

written using the more general drag equation:

- (C* + gtV'2 sin eT) - iy

C! + i + (g + i giV -2 (A-4)

Y Z \Y
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(C + g2kV-2  ~ +1p

D, sc.,- in 6 T.i P)

C; + i C! k-2  (A-5)

where =

V

u

(u, v, w) are components of the velocity vector

in non-rolling coordinates

(p, q, r) are components of the angular velocity

vector in non-rolling coordinates

Ci, C2 are Y and Z components of the non-

dimensional aerodynamic force

C, C~ are Y and Z comprnents of the non-L n
dimensional aerodynamic moment; and

g-, g- are Y and Z components of tit.
y z

gravitational acceleration vector
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The non-rolling coordinate axes X ? -a.e defined as follows: 1) the

x-axis is aligned along the projectile's axis of symmetry; 2) the Y and

are the orthogonal axes of a right-harded Cartesian set which move so

that the X-component of the angular velocity of the coordinate system

is zero. Thus the axis system pitches and yaws with the projectile but

has a zero roll rate.

A good approximation for the aerodynamic force is a linear normal
force.

C + i Ci = - CN  (A-6)
Na

Equations (A-4) and (L-6) can now be coabined to yield a revised

version of Equation (R6.6.1)

'- iyi;-=- (c ;

+ (g- + i g- + g sin eT )1V- 2

(A-7)

The usual linear expression for the aerodynamic moment is

C- + i C - [(P5.)CM - a

+ CM -CM. (A-8)
q a
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Combining Equations (A-S) and (A-8) we can obtain

paa

-(2 C* + C*+ g2tV-2 si )

q

--

i k-2 C" (A-9)
t M.a

Equations (A-7) and (A-9) can now be used to eliminate p and j.'

+ I - i P) ' - (M + i P T)Z = (A-I0)

where

HkyC L  + ( gtV2sine0

M z; y kt  y C L i yk "M

Li q c 4

43



+ gkV "2 sine 4 + i PlG
t M c D T Y

Skg + i g sin V"  and

YCL N  D
a a1

For small geometric angles (y 1l y' 0) the definitions of H, M, and

T reduce to those used in the text of this report. In order to differ-

entiate G , we use the identity

g = x, gy' + (0,, xg (A-11)

Therefore,

y + i P (A-12)

Equations (A-7) and (A-12) and some algebraic effort yield a good

linear approximation for G:

= 2Cq C 2gXV "2 sin 6T + i ]

i P G (A-13)
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For small amplitude motion the distin..ion between non-rolling

coordinates and the fixed plane coordinates vanishes so that tilde

superscripts on , G y and z can be replaced by carats and G replaced

fby G.

G= P (gi - i g sin eT &V -2  (A-14)

Finally, the gravitational acceleration perpendicular to the trajectory

can be expressed as

= g Cos y " T

=g cos e T cos sinT sincz

SgNT ( g sin eT) & (A-15)

where gNT = g cos OT

. = P [g - ig sin 0T V

- P gNT kV-2  (A-16)
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APPENDIX B

DERIVATION OF EQUATION (3.6)

Equation (3.6) can be derived quiie quickly by formally following

the usual steps for the well-known method of variation of parameters

(see, for example, pages 71-72 of Reference 7). The solution to the

homogeneous form of Equ~ion (2.2) with slowly varying coefficients is
7

B B2A + (B-l)
1 2

s

where B. =fX ds + i

A. are constants; andJ

and satisfy Equations (2.11-2.12)

The complex parameters A. are now made functions of s to construct a

particular integral for the inhomogeneous term, G. Differentiating

Equation (B-l), we have

B B B B2
A e' + A e + A e + A' e (B-2)

~~ 1 212
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Since the differential equation is only one condition on the two A.

functions, a second condition can be selected. A good choice is

B B
A' e + A e =0 (B-3)

Equation (B-2) can now be differentiated to yield

A 1 [B1 + ( B;)21 eB I + A [2 ' B)2]eB 2

B B
' 11 21 [B1 +B

+ At B1 e + A B2 e 2 (B-4)

Equations (B-1 - E-4) are now substituted in Equation (2.2) and co-

efficients of Al. A2, A' and A' determined. Since Equation (B-1) for

constant A. is a good approximate solution to the homogeneous part ofJ
Equation (2.2), the coefficients of AI and A2 must vanish.

.A' B e +A = G (B-5)
1 2

Equations (B-3) and (B-5) can now be solved for AI and A2 and the

result substituted in Equation (B-l) to obtain a particular integral

of Equation (2.2). Indeed, this was the method used to obtain Equation

(3.3) for constant damping rates and frequencies.

Our primary interest is in the low frequency mode identified by

the 2 subscript and so we solve Equations (B-3) and (B-5) for A 2
2
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A2- f (G)B e d
1 20

~~ eI ,,- GB ' ' e di
B I' - B 2 o " o I G B

(B-6)

~A similar expression can be obtained for A 1  When these are substi-

tuted in Equation (B-i), the upper Dound of the first term in Equation

(B-6) gives a slowly varying contribution to the quasi-steady state g

and the lower bound appears as a constant multiplied by e For
dynamically stable missiles, the X. are negative and this lower bound

3

term quickly damps out. The integral contribution of the fast motion

is neglected as it ws for constant frequencies and we have

g 2  f[G /(1 B;) B' -e dG 9g e ] , -B2  ed S7

The integral is small everywhere except near the summit. Here the

gyroscopic stability factor is large.

B. B. 0! (B-8)
49S
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BI - B B; = - 1 - + (Bg9

Equation (B-9) plus the assumption of constant damping rate near the

sunmit allows us to write

SB ( sB~ .[2(s - Sa) + iY2(M)

+ 1 eB2Cs) - Za J G'( d; (B-10)

Equation (B-10) is equivalent to Equation (3.6).
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