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GRAVITY-INDUCED ANGULAR MOTION OF A SPINNING MISSILE

ABSTRACT

The usual analysis of the steady state angular motion of a
dynamically stable spinning missile assumes a quasi-steady state calcu-
lation of a gravity-induced trim angle. A condition for the validity
of this quasi-steady state assumption is derived. When this condition
is not satisfied, the gravity-induced angular motion must be described
differently for three distinct portions of the trajectory: the upleg,
near apogee, and the downleg. The accuracy of this description is

. checked by comparison with numerical integrations. Finally the in-
W fluence of cubic static and Magnus moments on the motion is determined

and a revised point mass trajectory model is constructed.
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1. INTRODUCTION

The linear angular motion of missiles can usually be written as a
sum of responses to various forcing functions and a solution involving
the initial conditions. For a dynamically stable missile the effect
of initial conditions quickly decays and the angular motion is con-
trolled by the forcing functions, i.e. moments which do not depend on
the missile's angle of attack or sideslip or their derivatives. For a
slowly spinning missile the most important such forcing function is a
constant pitch or yaw moment fixed on the missile and caused by either
an intentional control surface deflection or an unintentional configu-
rational asymmetry. The response to such a moment can take on large
values when the pitéh rate is near the roll rate and as a result it
has been studied by a number of authors.1-3"

For a symmetric missile with a high spin rate, the forcing

function has a magnitude which is proportional to the product of the

spin-to-velocity ratio and the trajectory curvature, and has an axis

of rotation which is perpendicular to the plane of the trajectory.

For a constant amplitude moment and a linear static moment the response
is a constant angle of sideslip. This trim sideslip angle causes the
nose of a spinning shell to always point to the right and, thereby,
produces a right deflection of the trajectory which is called drift.“-5

Since both the spin-to-velocity ratio and the trajectory curvature
increases to a maximum at apogee, a maximum gravity-induced trim angle
is predicted at apogee. This prediction assumes that a quasi-steady
state calculation is appropriate and that the aerodynamic moments are
linear. If either of these conditions is not satisfied, a complete
six-degree-of-freedom numerical integration is usually required; It is
the purpose of this paper to present a new simple approximation for

*References are listed om page 37.
13
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this gravity-induced angular motion which is valid for rapidly

changing conditions near apogee. The effect of a non. near moment is
incorporated by use of the quasilinear assumption which has been quite
successful for the analysis of the transient motion.®~7 Finally this

approximation is used to rbtain a revised version of a modified point

nass trajectory.

II. EQUATIONS OF MOTION

We will make use of two Cartesian axis systems. The first is an
earth-fixed system with the xe~axis taken as the intersecticn of the
horizontal plane with the plane of the trajectory, the ze-axis aligned
along the gravity vector and the ye-axis specified by the right-hand
rule. The second axis system has the X-axis along the missile-axis of
symmetry, the Z-axis in the plane of the trajectory pointing downward
and the }-axis determined by the right-hand rule. For this fixed plane
axis system we make use of the complex angle of attack, g, which is
defined by the equation

v;1w=siné+iCOSBSin& (2.1)

'as 3
it

~

where v, w are § and z components of the velocity vector and &, B are
the angles of attack and sideslip. The magnitude of £ is the sine of
the angle between the missile's axis and the velocity vector and its
orientation determines the orientation of the plane of this angle with
respect to the horizontal. For a linear aerodynamics and small geo-

metric angles £ must satisfy the equation7

E" + (H - iP)E' - (M iPT)E = G (2.2)

where the coefficients are defined in the List of Symbols.
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The plane trajectory of a particle acted on by gravity and drag
can be described by the equations

e

5 e . Loy ( e

mx, = - = pV2SC) ir'> (2.3)
“ 1 ., e
mze = mg -~ '2" ' SCD (v—-) (2-4)

Introducing OT, the inclination of the trajectory with respect to the
horizontal, these equations can be written in the form

.‘\:_ = - C3 - gaV'% sin 6 (2.5)
e% = - gaV~2 cos O (2.6)

vhere
. oSt
b= %

*

Equations (2.5) - (2.6) can be integrated for constant CD

velocity as a function of trajectory angle.

to give the

cpv2 [ - (eT . )] o
V= va sec eT {} - o tan GT sec 0., + 1ln tan 7 + 7 j

where Va is velocity at apogee.

15
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The gravity terms in Equation (2.2) can now be approximated by 8

T
if we assume a small angle of attack
Byr = & cos 6, (2.8)
. ]
-+ G = - PO (2.9)
The solution to Equation (2.2) for slowly varying coefficients is®
" 1¢1 i¢2 ~
E = Kle + Kze + Eg (2.10)
where
¢! = %[P + [P? - 4M'¢§] (2.11)
K. (Ho! - PT + ¢'.')
-El= A. = - ‘ol i (2'12)
j 7 2! - P
J
= -6 . G
T H I W (2.13)

The expression for the gravity-induced trim angle, Eg, is based on the
quasi-steady state assumption that G and M vary slowly during a cycle
of the transient epicyclic motion given by the first two terms of

Equation (2.10). (See Figure i.)

IIT. GRAVITY-INDUCED TRIM WITHOUT DAMPING

Near apogee G varies rapidly as can be seen from its derivative

for constant spin




. = [3Cy + 4gav-2 sin 0, (3.1)
i
* -2 s -2
[3CD + 4g2V~¢ sin eT]szv cos 6

The relative variation of G and G' are indicated in Figure 2. The
maximum value of G occurs after apogee due to the action of drag. In
order to obtain the angular response to G we make use of the method
of variation of parameters for the simple case of constant A.s and
¢3'5 and integrate the result by parts.

.:; - 1¢1 i¢2 ~

1 E = Kle + K2e + EG (3.2) |
!f': &g = &

. L (+ig!) (s-9) L, Orie)(s-8), L

§ﬁ. ] [5 [(Az + 1¢2)e 1 1 - (Al + 1¢1)e z 2 ]G'(s)ds

! ’ . - 1 )

‘ o M+ iPTI[A - 2, ¢ 1(¢1 - ¢2)]

(3.3)

For a gyroscopically stabilized missile the fast rate ¢; is
usually much greater than the slow rate 0; . This is aspecially true
near apogee where G' is large. Integrals of complex exponentials are
inversely proportional to their frequencies and, thus, we can easily
neglect the first term in the integral in comparison with the sscond
term and for simplicity we will neglect Aj in comparison with 05 in *

the multiplying coefficients but not in the exponential coefficients.

17
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T o,+i006-8] A
e G (s)ds (3.4)

'l
[#p]

n

3

o
(3]

+
<9 L ad

O Y

: -G
where Sg =¥

Although Equation (3.4) is a simple relation for the gravity-induced
trin angle it is gravely limited by the restriction to a constant
frequency. For most projectiles the apogee vélue of the gyroscopic
stability factor usually exceeds ten when G is large enough to affect
Equation (3.4) and a quite simple expression for ¢; can be written from
Equation (2.11).

H
vx
[

+

,t—l
+

—
H-

aelic <4
~
w
w
A4

where sg = p2/4M,

Since P is proportional to the spin-to-velocity ratio and the spin
normally decays quite slowly due to viscous damping, P can grow quite

rapidly on the upleg and, therefore, the assumption of constant ¢;

is not satisfied. Somewhat lengthy algebra shows that a good first

approximation for the effect of varying frequency on the derivation of !

Equation (3.4} is to replace ¢; s by ¢2 = [s ¢; ds .
S
a

P =& +6 Ke °

. A(s - sa) + i¢2(s)
e g gac £2.6)




where

s -[A.(s-s)+ i¢ (3)]
kg=G' [ e P TP 6das

o

Equation (3.6) clearly reduces to the quasi-steady state relation when
G' can be neglected. Indeed KG can be neglected when the width of the
aumps of ¢ is large with respect to the wavelength of ¢2 .

The basic properties of Equation (3.6) can be determined if we
consider the very simple case of zero drag, constant spin rate (p = 0)

and no aerodynamic damping. For zero drag Equation (2.7) reduces to

V=V, sec o, (3.7)

and

' . -2 6 :
G 4(nga )Ga cos OT sin BT (3.8)

Equation (3.5), then, gives an approximation for ¢;

M 2y4-1
¢, = 5— sec 0., = (goV_“)45-! sec 6
2 Pa T a ' oa

T (3.9)

The integral for KG now assumes a8 very simple form for no damping

%, -i$2
Kg(9y 8000 = 604 ] e £(67)dd, (3.10)

€20

where f£(6), = 4 cos’ 6, sin 6. .

19
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rinally « relationship between 8

T and ¢2 can be obtained from Equatic:is
(2.6) anu (3.9)

= - -1 2 .
%, = 6ga tan 6.[3 + tan 8:1/3 (3.11)

f(8,) is plotted versus ¢, for various values of Sea in Figure 3.

A brief examnination of KG shows that it is essentially ccnstant
for » outside the interval (-27, 2m). Un the upleg vortion of the

2
trajectory (¢, < -2m) K. is zero while on the downleg portion (¢, > 2m)

it has a zerc rezl part. This situation can be summarized by the
following equation

i
£ 2
= - W12
EG 68 + Gga I\G(éga, ¢2)e (3.12)
where
= -~
Ko =0 @2 < -2n upleg
¢, . 52 )
K = %4a ] e £(6,)de,
-2n
-2n < ¢2 < 2n nzar agpogee

G G(éga’ 2“) 2m < ¢2 downlﬁg

i e Bk A e SN, i, B LTS N 1t
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KZG(Gga) is given as a function of Gga in Figure 4. An important

feature of this curve is that KZG is quite small for Gga less than

.15 and thus we would expect the quasi-steady state results to be good
when the predicted apogee steady state angle is lsss than 8°. When
the cteady state prediction exceeds this value, Equation (3.12) or the

more accurate Equation (3.6) should be used. KZG can be identified as

a fraction of Gga which appears impulsively at the apogee in the slow

mode when the gravity forcing function is rapidly varying in a period
of the slow mode.

In Figure 5 the combined pitching and yawing motion for a missile
with a large maxinum gravity-induced trim (8 = 20°) is shown. The
parameters used in this exact integration are given in Table I. From

Figure 4 we see that KZG is .76 and, therefore, the amplitude of the

slow mode component of Equation (3.12) is (.76)(20°) or 15°.

This motion starts out as an epicyclic motion induced by an
initial angular velocity. During the first three secouds the center
of this épicycle moves to the right; then it moves up as well as con-
tinuing its right motion until eight seconds. There then appears a
rough reversal of this process until eleven seconds is reached. After
this point a new epicyclic motion is estabiished with a much lerger
sluw mode motion with an amplitude of 12°. This qualitative behavior
is precisely that predicted by Equation (3.12) with the near apcgee
motion occurring between three and eleven seconds. The terminal slow
node amplitude of 12° is quite consistent with an apogee value of 15°

when the influence of aerodynamic damping is computed.

21




IV. GRAVITY-INDUCED TRIM WITH DAMPING

The effect of constant damping is included in Equation (3.6).
Near apogee ¢£ is much smaller than P and from Equation (2.12) we see

that a good approximation for A, is -T which can be constant for near

apogee flight For this case Equation (3.12) takes on the revised
form

_T(s - sa) + 14)2
EG = -8 + 6gaKG(5ga’ ¢2)e (4.1)

where

b 16 - s - i3, )
K = cga I e £(0,)d¢, - 2m < ¢, <2m

-27

On the downleg portion ( s > sD) of the flight ¢é grows and H and

T vary as the Mach number increases. During this portion of flight G'
is quite small and the integral in Equation 3.6) becomes constant.
We, therefore, assume the major effect of G' is to specify an initial
value of K2 and use Equation (2.12) to predict the influence of

varying A, -

22 '




R i(e ¢, ) 4.2)
E.=-68 +Ke 2 26
G g 2
S ~
K, = sgax?_G exp{J A ds} (4.3)
“a
vhere
S ~ _ o3 “\ N
. e1¢26 . 1 D eT(S Sa) l@z(s; G' ds
26 [
Su

For zero drag a simple expression for KzG can be obtained.

21 T(s - s,) - i, ) .
K = Iaga f e £(e,) dé, | (4.4)
~27

If |T/¢;I < 0.1, actual numerical calcuiations show that K . is

within .02 of its value for T = 0 and, hence, Figure 4 can be used to

obtain K_. as a function of § .
26 ga




V. NONLINEAR ANALYSIS

The usual quasi-linear analysis$~9 has been applied primarily to
the angular motions of symmetric missiles with no moment forcing
functions. This analysis has recently been extended to include the
forcing function associated with slight configurational asymmetries.>
The latter treatment can be easily extended to include gravity-induced
angular motion away from apogee.®:10 In this section we will outline
the apprupriate analysis and give the results for cubic static and
Magnus moments.

For this case Equation (2.2) becomes

N 3 ol § - 2 . 2 =
E o+ (H-1P) kg M)+ M, 62 + iP (T, + T, §2)] £E=0 (5.1)
where
A2
82 = |E]

A solution of the form of Equation (4.2) is assumed and sggstituted in
i

Equation (5.1). The resulting equation is divided by K,e 2 and

averaged over a distance which is large with respect to the wavelength

of the slow rate to yield quasi-iinear values of Az and ¢; .

H¢;_ - P [T + T2+ ¢;

Az = - (5.2)
2¢, - P
" S T W a2
4 = 1/2 [P P2 -4 M+ Mzdezl] (5.3)
24
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62 = K2 4+ 262 + 2k2
e2 2 g 1

i¢
If the r=sulting equation is divided by Kic , Similar relations for
the high frequency motion follow. Finally the equation can be averaged

as it is to yield a quasi-linear relation for the gravity-induced trim.
- 2 4 T6231 ¢ =
[Mo + Mzéea + iP (TO + N 23] Eg G (5.4)

where

52 = 82 + 2K2 + 2K?

e3 g 2 1
Since the imaginary part of the coefficient of Eg is usually less than
a quarter of the real part, it affects the orientation of £ much

more than it affects its magnitude, Gg . A simple equation for Gg

can be written,

G
§ = (5.5)

g 2 2
Mo + M2(6g + 2K2)

On the downleg Equations (5.2 - 5.3) can be used in Equation (4.3) to
calculate the magnitude of the slow mode motion which has been initi-
ated by G' at the apogee. The orientation of the slow mode motion can

be obtained by integrating Equation (5.3).

The nonlinear analysis for near apogee motion is much more diffi-

cult since &, varies rapidly during a cycle of ¢, - An estimate of
the effect of a cubic static moment can be made for small values of Kz‘

The steady state formulas for Gg then reduce to a cubic equation.

25




s = —O ) (5.6)
8 M +M 82 .
o 2 &

The slow frequency, which assumes the form ‘

P

MM 52 /'
¢, =| —— 2% sec/i‘eT , .7
. ,

’

varies in response to the nonlinearity as ﬁg grows from zero to 5ga'
If the nonlinearity term in Equation (5.Zj is replaced by its average,

this equation can be reduced to Equationf(s.g) of the linear theory.

'
¢2 >

Mo * Mz Gga 2
2| ——t——_ Isec BT = (gfva ) Gga sec OT (5.8)
a .

Thus, an approximation for KG and KéG when the static moment is a
cubic function can be made by usiné Equation (3.12) with Gga given by

Equation (5.6) evaluated at the aﬁogee.
!

VI. A REVISED POINT MASS TRAJECTORY

For many years ordnance firing tables were computed by use of the
point mass Equations (2.3 - 2.4). The-e equations completely neglect
induced drag due to EG as well as lateral drift caused by this angle.
The induced drag is accounted for by adjusting CD by a form factor
which is a function of eT and is determined by full-range firing.
Drift is measured by full-range firings and numerically interpolated

for firing table use.

26




Recently a modified point mass analysis has been developed!!
which includes the effects of the steady state gravity-induced trim

ég = - 8, . This trin angl’ modified the drag coefficient and induced

a lateral deflection.

C.=C. +C 52 (6.1)

-é—p V2SC 6 (6.2)

La g

e
<
il

This modified point mass trajectory has the advantage of retaining the
major trajectory contribution of the angular motion without requiring
the use of the very small integration interval associated with an
exact integration of Equation (2.2). It is valid for a dynamically
stable missile and slowly varying G.

The theory of this report can be used to construct an improved
version of the modified point mass trzjectory which could be called a
revised point mass trajectory. Since the motion near and after apogee
involves the slow frequency, an integration interval small with
respect to the slow mode's period is needed. The integration interval
required for Equation (2.2) is small with respect to the fast mod:¢'s
period and is, therefore, much smaller than that required for the re-
vised point mass trajectory. Thu  the revised point n:ss trajectory
requires much less computer time than the exact six-degree-of-freedom

trajectory.

It has been shown’ that only the average of 62 need be considered
for the drag force. If we can neglect the effect of KG on drag near

apogee where the total drag force is small, only the drag on the down-
leg need be revised.

27
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C.=C. +¢ 62 + K2 6.3
. 52(3' 2) (6.3)

The limitation imposed on the integration interval by the slow mode

motion can now be eliminated if the lateral deflection due to KG can

be neglected. The lateral deflection due to KG is caused by an angle
which is constantly changing direction. The average value of this de-
flection angle can be estimated by calculating the jump angle!? for a

projectile performing coning motion of magnitude K2 and frequency ¢; .
a

Jump angle = (6.4)

This jump angle is a right deflection angle of the impact point with
respect to the apogee. The deflection angle with respect to the gun
is one-half this angle and usually quite small. The refined point
mass trajectory, then, requires the same integration interval as the
modified porint mass trajectory. If the effect of KG on drag near
apogee is required, a smaller integration interval will be required

for this small portion of the trajectory.

VII. COMPARISON WITH EXACT THEORY EVALUATIONS

In order to make a direct comparison with exact calculations

initial conditions of Eo = -Gg , 56 = —Gé were used with the other
o V]

parameters of Table I to give an angular motion without a transient epi-
cycle. The total angle of attack variation with time for these condi-
tions is shown in Figure 6 and is compared with the quasi-steady state
Gg and the angular motion given by Equation (3.12). We see that the

prediction of Equatior (3.12) is much better than that of the quasi-
steady state theory but it does overestimate a, by 35%.
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The calculations based on Equation (3.12) can be considerably
simplified if the near apogee motion is approximated by a discontinuous
jump at apogee from the - Gg motion before apogee to the - ég + K2

exp (i¢2) motion after apogee. This calculation which considers only
two sections of the trajectory is also given in Figure 6 and with the ex-
ception of a region very close to apogee it is seen to be a good approx-

imation to the three-section theory.

Finally the effect of damping is calculated through Equations
(4.1 - 4.3). 'The two- and three-section calculations were repeated
for nonzero dumping and are plotted in Figure 6. Here we see that the
theory underestimates ay by about 15% near t = 13 sec. This discrep-

ancy, however, is entirely due to calculating KZG over a two-cycle
interval, i.e. one cycle on both sides of apogee. KZG was then calcu-

lated over a four-cycle interval (two cycles on both sides of apogee)
and the result is plotted as Figur. 4. This shows a difference of

about 5%. The two-section calculation is repeated in Figure 6 using
the four-cycle integration value of K?G and we see the agreement with

the exact curve to be quite good.
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Figure 1. Angular Motion of Spinning Projectile
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Table I. Parameters for Exact Integration

V. = 255 ft/sec S = 335 (8 = 20°)
6,(0) = 60° bgo = 071 (ég = 1.2°%)
M = 1.5 x 107 b, =07
T = 1.5 x 1074 6, = -002
H = 2.9 x 107" .

E'(0) = -1 (.5) rad/sec
fo 7088 g =0
g =0
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APPENDIX A
DERIVATION OF EQUATION (2.2)

Most of the relations given in Reference 7 are for near horizontal
trajectories: BT = (0. These relations neglect the trajectory compo-
nent of gravity and use an approximation for G. The more exact equa-
tions are given in Reference S but in a much different notation. It is
the purpose of this note to rederive the equations of Reference 7 for
non-horizontal trajectories. We will refer frequently to equations in
Reference 7 and to avoid confusion will add the letter R and chapter
number to equation numbers from this reference to distinguish them from

equations in the body of this report.

Equation (R5.2.2) is the drag equation for a horizontal trajectory.

For more general trajectories, the trajectory component of gravity must
be included and, thus, this equation must be replaced by Equation (2.5)

L/ * 2 -
Vv CD - gav~2 sin GT (A-1)

The roll equation (Equation (R5.6)) must now be modified using the

more general drag equation:

¢+ K 4t - K= 0 (A-2)

6 =

= -2 * * "2 g3
where Kp - [ka C!, + Cp + g2V “ gin e.r]

P
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Cz is the roll moment coeffic. ont

Foi a body of revoiution, K6 = 0 and

¢’ E’i=¢ge ° | (A-3)

Equations (R6.4.24-R6.4.25), which are the equations for transverse
motion with arbitrary aerodynamic force and moment, can now be re-

written using the more general drag equation:

-

- -2 _. F oo i o
g' - (CD + gev © sin BT) £ -iyw

- . * . -2
] ~ i C~ -~ A A-4
S z*('yH“Z) (A-4)
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where

(u, v, w)

®, q, T)

e

=t

(c; i cg) k.2 (A-5)

I
<je

are components of the velocity vector

in non-rolling coordinates

are components of the angular velocity

vector in non-rolling coordinates

are Y and Z components of the non-

dimensional aerodynamic force

are Y and Z compcnients of the non-
dimensional aerodynamic moment; and

are Y and Z components of lhe

gravitational acceleration vector




The non-rolling coordinate axes X Y 2 a-e definad as follows: 1) the
x-axis is aligned along the projectile's axis of symmetry; 2) the Y and
Z are the orthogonal axes of a right-harded Cartesian set which move so
that the X-component of the angular velocity of the coordinate System
is zero. Thus the axis system pitches and yaws Qith the projectile but

has a zero roll rate.

A good approximation for the aerodynamic force is a line.r normal

force.

C? + 1 Cz = - CN(1 £ {(A-6)

Equations (A-4) and (/-6) can now be coabined to yield a revised

version of Equation (R6.6.1)

+ (g; + i g; + g sin OT E))IV'2

(A-7)
The usual linear expression for the asrodynamic moment is
C e a L o -
c;n+1Cn [(8—)% ICM]E
pa a
s G oGy g (A-8)
q a
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Combining Equations (A-5) and (A-8) we can obtain

..'-_ ~.-2 R& * _...* >
U iPuyu kt[(V)CM 1LM]E

pa a i
1
&
£ -2 o* * "2 g "
% + (kt CM + CD + gy € sin 6.1.) u
¥ q
-1k c g’ (A-9)

&

:

Equations (A-7) and (A-Y) can now be used to eliminate u and n

T

5
$ - ' - - -
¢ g"+(H-$——-iP>E'-(M+iPT)§;=G (A-10)
¥
: where
x . -2 * -2
H$YC£ -C[;-kt (. ""YCM‘)-gZV sxne.r
a q &
1 é sr' —2 L ]
3 . - * 2 -~
, vk v () vk G
a Qa a

-




] -
& =¢ -lk2c¢* * 4 ogev ? sin 6, + o4 i §]G
G =6 [kt M tCTE T v il
J

é = /g~ +1ig~+ g sin 8 é ,Q,V—z and

1 \ Y 2 ° T

YCL = uN - CD
a a
For small geometric angles {y = 1, y' = 0} the definitions of H, M, and

T reduce to those used in the text of this report. In order to differ-
entiate él , we use the identity

3= (a0 5 8;)+ (0. 0 7)x3 (A-11)

Therefore,

g~ +ig:=1ig u (A-12)

Equations (A-7} and (A-12) and some algebraic effort yield a good
linecar approximation for G:

-2 *
- [kt CM

~

- ¢ - 2g0v™" sin 6 + i p] g

[

u

1
q

- iPG (A-13)
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For small amplitude motion the distin..ion bctween non-rolling
coordinates and the fixed plane coordinates vanishes so that tilde
superscripts on £, Gl’ y and z can be replaced by carats and G replaced
by GC.

G=P (g;, - 1 'g sin eT é)lv—z (A-14)

Finally, the gravitational acceleration perpendicular to the trajectory

can be expressed as

(2]
E)
]
99
[
©
w
s
Q>
(o8
-3
~—

g [éos ST ¢os a - sin eT sin a]

\ A
8T - (g sin GT) a (A-15)

N
SG =P [?NT - ig sin 6, B]QV

2 (A-16)

PgNT
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APPENDIX B
DERIVATION OF EQUATION (3.6)

Equation (3.5) can be derived quite quickly by formally following
the usual steps for the well-known method of variation of parameters
(see, for example, pages 71-72 of Reference 7). The solution to the
homogeneous form of Equrtion (2.2) with slowly varying coefficients is?

£ = Al el + A e 2 (B-1)

s
where B, = I A, ds +1i ¢,

Aj are constants; and'

A, and ¢5 satisfy Equations (2.11-2.12)

3

The complex parameters Aj are now made functions of s to construct a
particular integral for the inhomogeneous term, G. Differentiating
Equation (B-1), we have

(B-2)
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Since the differential equation is only one condition on the two Aj

functions, a second condition can be selected. A good choice is

Alel+ne?=0 (B-3)

(B-4)

Equations (B-1 - E-4) are now substituted in Equation (2.2) and cc-
efficients of A, A,, Ai, and A; determined. Since Equation (B-1) for
constant Aj is a good approximate solution to the homogeneous part of

Equation (2.2), the coefficients of A1 and A, must vanish.

. ] ? 1 3 ) -
«« A B € ¥ A, B, e =G (B-5)

Bquations (B-3) and (B-5) can now be solved for A1 and A2 and the
result substituted in Equation (B-1) to obtain a particular integral
of Equation (2.2). Indeed, this was the method used to obtain Equation
(3.3) for constant damping rates and frequencies.

Qur primary interest is in the low frequency mode identified by

the 2 subscript and so we solve Equations (B-3) and (8-5) for A2 .
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(B-6)

A similar expression can be obtained for A1 . When these are substi-

tuted in Equation (B-1), the upper vound of the first term in Equation

(B-6) gives a slowly varying contribution to the quasi-steady state ég’
B

and the lower bound appears as a constant multiplied by e 2, For

dynamically stable missiles, the Aj are negative and this lower bound

term quickly damps out. The integral contribution of the fast motion

is neglected as it was for constant frequencies and we have

-B,(3)

ds (B-7)

'
- r 2 a' _ R' B‘
& = Eg -e jo [G/ (B1 BZ) 2] e

The integral is small everywhere except near the summit. Here the
gyroscopic stability factor is large.




B NI A bk el e P L Attt i it FRE TR P ER———

(B; - 5'2) B, = - M [1;- Ti;* ] (B-9)

Equation (B-9) plus the assumption of constant damping rate near the

summit allows us to write

s -
B (s) -B { - (s - s.) + i _(8)]
2 2a JG'(§)0[2 a 2 as
s}

E + (B-10)

- F + 1L
=% " M®

Equation (B-10) is equivalent to Equation (3.6).
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