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ABSTRACY

Shock inciced demagnetization produced by strain induced magnetic ani-
sotropy is considerx 1in single crystal and polycrystalline ferromagnetic
material. A consistent application of equilibrium thermodynamics in conjunc-
tion with established tools of ferromagnetic domain theory is used to develop
energy expressions, magnetization curves, and domain structure in the magnetic
material behind the shock wave. This approach has nct previously been used to

describe the shock induced anisotropy effect. In particular, specific expres-

sions for the exchange energy and magnetic self energy are explicitly obtained.

They are predicted to increase as the fourth root of the strain and are small
compared to the induced anisotropy energy in the region of large elastic and
plastic str=in. A needle or sliver shaped domain structure oriented in the
direction of shock propagation 15 expectad to nucleate behind the shock front.
These results follow from the domain theory analysis and have not previously
been obtained.

In polycrystalline material, the averaging procedure required to pre-
dict the magnetic behavior is critically analyzed. The importance of magnetic
grain-grain interaction is pcinted out and magnetization curves for the ex-
treme assumptions of interacting grains and independent grains are determined.
The effect of porosity and finite strain is also considered. These results
are compared with those obtained by Shaner and Royce (J. Appl. Phys. 39, 492
(1968)) for interacting grains and effects of finite strain.

Experimental demagnetization curves are vbtained for shocked poly-
crystalline yttrium iron garnet at about one-third and two-thirds the Hugoniot
elastic limit of the material. The results support the independent grain

theory.
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During this work a successful experimental technique was developed
which, in conjunction with a gas gun used for impact studies, applies the
required uniaxial strain field and magnetic field and measures the sub-

sequent shock induced demagnetization.
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CHAPTER I
INTRODUCTION

Creation of an anisotropic ferromagnet by subjecting a ferromagnetic
material tc a planar shock wave produces the shock induced magnetic anisotropy
effect. The resulting uniaxial strain establishes a magnetic anisctropy field
which furdamentally affects the magnetic behavior of the material. A quanti-
tative understanding of this shock induced magnetic behavior is necessary

before a complete description of the response of magnetic materials to dynamic

loading can be determined.

1.1 Background

The interdependence of magnetic and elastic behavior of ferromagnetic
material was first established by Jou]e] in 1842 when he observed the change
in Tength of a ferromagnetic bar upon magnetization. The inverse effect
(Villari effect) or the change in magnetization with applied tension was

2

reported in 1865.° There foilowed a rash of discoveries of magnetostrictive

effects and related inverse effects which were finally incorporated into a
coherent theory with the advent of'cnnventional magnetoelastic theory in the

early 1930'5‘3 Intensive research in the 1940's and 1950's established the

foundations of domain theory.4

Finally, a consistent thermodynamic treatment
of magnetoelastic interactions by Brown5 (1963) refined the conventionai
theory to its fairly sound foundation of the present day.

The shock induced anisotropy effect is a specific form of the general

piezomagnetic or inverse magnetostriction effect. Its contribution to the

1
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shock induced demagnetization problem was established by Royce6 (1966) while
investigating the maanetic response of nickel ferrite under shock loading.

7

Subsequent work by Royce’ and Shaner and Royce8 in the plastic region of

yttrium iron garnet and Seay et a].g in the elastic and plastic regions of
manganese zinc ferrite confirmed this conclusion. The effec* in single
crystal and polycrystal ferrites has been considered theoretically by

10,11 12

Bartel. Wayne, Samara, and Lefever = have observed a form of this effect

which occurs locally in porous ferromagnetic materiai subject to hydrostatic
preséure.

There has been continuing interest in this magnetic effect peculiar
to the realm of shock wave physics. The interest has recently been increased
by attempts to understand the magnetic response of natural and meteoritic
material under dynamic loading. This understanding is necessary to be confi-
dent in using magnetic techniques for investigation of the history and origin

of such materials.

1.2. Objectives

The work cited in the previous section represents a significant con-
tribution to the definition and understanding of the shock induced anisotropy
effect. However, it is the belief of this author that the extension of this
understanding to the prediction of the magnetic response of actual material
squect +0 shock loading requires a firmer quantitative foundation than is
now available. The intention of this work is to contribute theoretical and
experimental groundwork toward this foundation.

' The objectives undertaken in this work are as follows:  The necessary
. thermodynamics for a systematic description of the induced anisotropic ferro-

magnet will be developed. The shock induced anisotropy effect in single
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crystal ferromagnetic material will be considered by a consistent application
of the established tools of domain theory,' In particular, the contributions
of the exchange energy and demagnetizing energy will be determined. The
domain structure behind the shock wave will be deduced from this domain
theoretical analysis. Following this, the shock induced anisotropy effect in
polycrystailine ferromagnetic material will be considered. Integral in this
consideration is a critical analysis of the averaging process required to
predict the random behavior of the polycrystalline structure. The contribu-
tion due to finite strairn, a serious question in the region of large elastic
strain, will be determined. Finally, the effect of porosity on the macro-
scopic magnetic response of material subject to this effect will be addressedy

Further objectives of this wovrk are the design and implementation of
an experimental technique capable of measuring the magnetic state of the
shocked ferromagnetic material during the few tenths of a microsecond within
which this state exists. With this method data is accumulated in the region
of large elastic strain in yttrium iron garnet. Favorable magnetic properties
of yttrium iron garnet provide a critical comparison of experiment with

theory.i
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THERMODYNAMICS OF THE ANISOTROPIC FERROMAGNET

The effect of propagating a one dimensional shock wave through a
ferromagnetic material is to create a state of uniform uniaxial strain behind
the shock wave. This allows use of the thermodynamics of rigid ferromagnets5
in this region. This thermodynamic state is maintained by the inertial char-
acteristics of the material and is difficult to obtain by means other than
shock wave techniques. It will persist until perturbing waves subject the
region to further change. The goal is to predict the magnetic behavior in the
shocked region while it is still in a state of uniaxial strain.

The intent of this chapter is to develop consistently the thermody-
namics necessary to describe an anisotropic ferromagnet5 and to obtain the
magnetic work term along with the appropriate thermodynamic equilibrium and
stability criteria. A complete phenomenological energy expression will be
constructed.

This chapter contains nothing that is not already in the literature.
It represents a survey, from many sources, for a complete thermodynamic
description of the shock induced anisotropy effect. Its content is not neces-
sary for an understanding of the remaining chapters. The various thermodynamic
terms and expressions derived in this chapter and used throughout the text
have been collected in Appendix I for easy reference.

A thermodynamic approach through an energy expression rather than

through direct consideration of the forces involved will be used for several
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reasons. First, a phenomenological approach relating the forces directly
requires a stress hypothesis. Inherent in the stress formulation is a non-
uniqueness in that any second rank tensor with zero divergence can be added

to the stress tensor without affecting the equations of motion or the boundary
conditions. This is usually of little consequence. In magnetic material,
however, there is an additional complication to the nonuniqueness. This arises
in attempting to separate short range magnetic forces, which will contribute
to the stress, from long range magnetic forces, which will contribute to the
volume force. A magnetic pole formalism, an Amperian current formalism, or
any of several others gives different separation of magnetic stresses and mag-
netic volume forces.5 In a thermodynamic consideration, the energy expression
is unique and these complicating problems are avoided. Second, when forces
are considered directly stability is checked only with difficulty. In thermo-
dynamics stability emerges naturally and simply in the second variation of the

energy expv‘ession.]3

2.1. Magnetic Work

The magnetic work done on a magnetic system can be obtained by con-
sidering the work done by a source of emf and the related change in mugnetic
flux through Faraday's law. Alternately, one can obtain the same expression
from Maxwell's equations by somewhat more laborious methods. The two are, of
course, equivalent. The Jatter method will be used since this is the point at
which most electromagnetic texts prematurely terminate. Also, this methed
more clearly shows the points at which deviation from compliete generality
occurs.

The work expression

1 [ > 1 [z > >
oW = e HesB dV + Z—er-GD dav + [ J-Est dV (2.7)

™

.
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is obtained directly from Maxwell's equations.]4

-+ > > > >
H, B, E, D, and J are the usual field quantities of electromagnetic

Gaussian units are used and

theory. This expression assumes only that current changes are sufficiently
quasistatic so that negligible energy is lost from the system by radiation.
Nothing is assumed about linearity, reversibility, etc. in the magnetic mate-
rial. The three terms are, respectively, the magnetic work, the electric work,
and the work done in creating Joule heat by the true currents in the system.

If the ferromagnet is nonconductive and incapable of storing electric energy,

then only the first term

_ L +- >
Moo= o fH 68 dV (2.2)

is important.

The work done on the ferromagnet is stored in various forms of energy
or discipated in irreversible processes. The work expression in this form
does not show this partitioning. To proceed further, the magnetic field inten-

sity will be separated into two fields,

L+ 1y (2.3)

15

This is possible through a theorem due to Helmholtz. ﬁé is solenoidal and

is the particular solution of the equation

> > _ 91
b, = 24
and ﬁa is irrotational and is the particular solution of the equation
> > > >
V'Hd = -4."V'M-

+
In other words, He has as sources current carrying conductors such as would
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be used to magnetize the magnetic material and will hereafter be called the
external field. Ed has as sources surface and volume magnetic poles and
will be called the demagnetizing or dipolar field. It should be remembered
that an entirely equivalent partitioning can be done with the magnetic induc-
tion E. The development would then evolve around the concept of free
currents and Amperian currents. Although either method is acceptable, the
first is commonly used since it allows greater mathematical simplicity and

some physical insight depending on one's prejudices on magnetic pole concepts.

With this separation of the magnetic field intensity and with
> > >
GB = GH + 4“6”,

Equation (2.2) becomes
. £ 2 2 > >
o He Hd He-Hd
SW = HeeM + 65= + 65— + s—~—| dV.
8n 8n 4x

+
In the last term, Hd is irrotational and can be written as the gradient of

a scalar potential, O Integration by parts produces two terms. One con-
tains ;-ﬁé and is, therefore, zero and the other contains the total
divergence of ¢mﬁe and, therefore, transforms to a surface integral.

Assuming the system is localized so that "o and r2He are regular at infin-
ity demands that the integrand diminishes sufficiently fast so that the
surface integral must vanish. The other terms can be identified. The second
term is the work done in changing the external field energy and does not
depend on the magnetic material. This term will be excluded from thermody-
namic consideration of the ferromagnet. It is entirely a matter of bookkeeping

16

and does not create any problems. The third term is the magnetostatic

"self energy" of the ferromagnet. It represents the energy required to




construct the distritution of magnetic dipoles in the ferromagnet against the
dipole-dipole, "action at a distance" forces. This term differs from the
dipole-dipole energy only by the volume integral of a term which depends on

local conditions in the magnetic material and may be regarded as an energy

5

density.” The first term is either the work done in storing energy in local

form (expressible as a voiume integral of an energy density) or the work lost
in irreversible processes.

The final magnetic work is

N Hg
W = HesM dY + 5 g;-dv. (2.4)

Using two well known theorems from magne’cos'ca’cics,]7

Jr» -+ _
Hd-Bd dv = 0

and

Jr+ > Jﬁ+ >
Hd'GM dv = M'SHd dv,

the following useful forms for the magnetic work can be obtained

s o=l HeaMdV - £ s H,oMdv 5
—J.G —26 Hd'd (2')

or
> ->
W = He-sM dv. (2.6)

The latter is the form obtained directly from a consideration of Faraday's law

relating the emf to the flux change.5




2.2. Thermodynamic Laws

The combined first and second law of thermodynamics states that

- >
U < TeS +[He-aM dv

in a natural p\r'ocess.]3 For a ferromagnet constrained to S = S0 and

+ +

M = MO, this is

sU < 0.

Tre internal energy can only decrease. This law implies that a virtual varia-
tion of the energy with respect to internal coordinates must be zero
(thermodynamic equilibrium) and that this energy be already as small as
possible (thermodynamic stability).

The constraint on the magnetization is difficult to realize experi-
mentally. The controllable parameter is the external magnetic field, ﬁe'
The usual thermodynamic technique is to perform an appropriate Legendre trans-

foruation to an energy function with the controllable parameters as independent

vam‘ab]es.]3 The energy function to be used will be

_ f—)-r
E = U- He-M dv

and will be referred to simply as the energy.
> > -> ->
sE = sU - er-GHe dv - JrHe~6M dv

With the combined first and second law, this becomes

> >
6E < ToS - | Mesh, V.

-5

-
For a ferromagnet constrained to S = S0 and He = HeO’
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and the thermodynamic equilibrium and stability criteria in terms of this

energy are evident.

2.3. The Local Energy

It is the intent of this development to use the energy

> >
E = U-fHe’M dv (2.7)

along with the thermodynamic equilibrium and stability criteria to predict

equilibrium states for a rigid anisotropic ferromagnet. To do this, an

] explicit expression for U in terms of pertinent internal coordinates must

be obtained. U can be written

U = ED+_[€LOC dv (2.8)

where ED is either of the previously derived self energy expressions in
Equation (2.4) or Equation (2.5). The remaining energy depends only on local
conditions and can be written as the volume integral of an energy density.

It is this term that is now of concern.

The method used to obtain this local energy expression is to rely on
physics and microscopic models of the magnetic material to guide in the selec-
tion of mathematical forms and independent variables for the local energy.
Phenomenological methods such as convenient expansions and symmetry require-

5

ments are then used to deduce precise forms for the energy expression.

The dominant local energies in a ferromagnet have been classified as

the exchange energy, the magnetocrystalline anisotropy energy, the magneto-
elastic energy, and the elastic energy.4 Each will be considered in order.
The exchange energy has a purely quantum mechanical origin. It can

be traced to the requirement of antisymmetry of the electronic state of the




[

magnetic ions under interchange of any two e]ectrons.]8 In considering the
interaction of any two magnetic ions, the antisymmetry requirement prcduces a
splitting of energy levels making parallel and antiparallel spin alignment
energetically separate. In a magnetic material at normal temperatures, only
the Tower lying energy states will be abundantly populated so the complete
Hamiltonian may be replaced by an “"effective spin Hamiltonian" which has as
its energy eigenvalues these several low lying states.]9 Between any two mag-

netic ions, this effective spin Hamiltonian can be written as

Jij is the exchange integral which determines the splitting of the low lying
states.20 If Jij is a positive quantity, parallel spin is a lower energy
state and ferromagnetism resuits. For Jij negative, antiparalliel spin is a
Tower energy state and antiferromagnetism results. The Hamiltonian for the

entire crystal is

. = 2L 3355,

1J

This exchange energy gives rise to a very strong but short range interaction
causing a cooperative alignment of magnetic dipoles and hence a spontaneous
macroscopic magnetization in the material. The magnitude of this magnetiza-

21

tion has been found, with few exceptions, to be isotropic™ and to depend

mainly on the temperature22 and to some extent on the pressure in the medium.23
The small pressure dependence is considered in Section 4.5 To make an

adequate selection of thermodynamic variables upon which the macroscopic
expression for the exchange energy will depend, one can look to the result of

a simple model. The following model wili sugyest that the gradients of the

components of the magnetization or, alternatively, the gradients of the

= e (B

—




12

22

direction cosines will be the proper tnermodynamic variables. Consider a

simple cubic ferrsmagnetic material in which the exchange integral is iso-

tropic.
. > >
. - -ZJ% S

If the spin directions change gradually so that adjacent spins differ by

small angles, the quantum spin operators may be replaced by classical angular

momentum vectors.

->
E o= -2 Y oeo.
ij '

where o5 is a unit vector in the direction of spin j.
> >
oty = cos¢ij

may be expanded giving

E = -2082 %, (1 - Has - a:)9)
g 21 J
1J

+ >
= 2052 L, (1 - Hr,ava)?),
T4 ]
1]
> > >
where rij is a vector between magnetic ions having spin Si and Sj and

+ .
o is extended to a ccntinuous function of position. If only nearest neigh-
bor interactions are assumed and the sum is extended over six nearest

neighbors,

S CRCRC
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Other terms in the sum are zero because of cubic symmetry. Dropping the

constant term and allowing N magnetic atoms per unit volume, the energy

dansity becomes

2 >12 +\2
= 2352 3a 3
b = a5+ (8] 2]

This suggests that in more general cases the functional dependence of the

exchange energy will be

—)
£ aa a_a sa
ex\ax’ a3y’ 8z

In ferrimagnetic materials, which include spinel structures such as nickel
ferrite and manganese zinc ferrite and garnet structures such as yttrium iron
garnet, this exchange phenomenon becomes somewhat more complicated. The com-
plication arises from the existence of diamagnetic cations regularly dispersed
throughout the lattice. The exchange interaction between magnetic anions is
coupled through these diamagnetic cations. Due to the large separation of the
magnetic ions, there i3 smaller overlap of state functions and the exchange
integral is negative. This type of exchange exhibited in ferrimagnetic mate-
rials is called superexchange and results in an antiferromagnetic alignment
of electron spins.24 it is found, however, that, as in the ferromagnetic
case, the total Hamiltonian can again be conveniently replaced by an effec-
tive spin Hamiltonian. But, each different magnetic sublattice must be
treated separately. We may still expect that a macroscopic expression for

the exchange energy will be functionally dependent on the magnetization
gradients.

It is observed in ferromagnetic materials that under zero applied

2
field magnetic domains 1ie along preferred crystal dir‘ections.‘5 Work must
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be done on the system to rotate magnetic domains out of these directions. The
local energy term associated with this interaction has been named the magneto-
crystalline anisotropy energy. It has beer observed that this energy term
does not affect the magnitude of the saturation magnetization and depends only
on the direction of the saturation magnetization relative to the local crys-

tallographic axis.26

This is a consequence of the fact that the exchange
energy is much larger than the anisotropy energy and depends on the inner
product of spin operators which are isotropic. Microscopically, the dominant
contributing interaction to this energy is through single ion interaction with

the crystal 1att1’ce.26

The spin-orbit coupling prefers a colinear alignment
of electron spin and orbital angular mementum while tk2 orbital charge cloud
adjusts itself in the crystal field to minimize electrostatic energy. Thus,
the spin magnetic moment sees the crystal lattice through the spin orbit
coupling.

The magnetoelastic energy has the same origin as the magnetocrystal-
lire anisotropy energy. It is a consequence of the fact that the anisotropy
energy is dependent on the lattice dimensiuons To distort the crystal lat-

tice in any way may change the anisotropy energy. This energy deviation from

some reference lattice spacing is separated out as the magnetoelastic energy.4

To reemphasize, the purpose of the previous rhysical discussion of
the microscopic origins of the various energy terms was to guide in the selec-
tion of an adequate set of thermodynamic variables. The energy will then be
a function of these variables. It was concluded that the gradient of the mag-
netization is a reasonable choice for the continuum dependence of the exchange
energy. The anisotropy energy depended on the orientation of the elemental
magnetic moment within the unit cell. Hence, the magnetization vector is the

logical variable. For the elastic strain, the deformation gradients will be
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selected. The functional dependence of the local energy density is

(axi Bai)
s G:s 7| (2.9)
LOC aaj i aaj

where X; are the space or Eulerian coordinates and a. are the material or

J
27

Lagrangian coordinates. It should be noted that in a purely phenomenologi-

cal formulation higher order derivatives of X; and o should properly be

included. |

2.4. Phenomenological Expression |

A phenomenological expansion of the energy in a Taylor series at this
point would be premature. The problem is that ELOC cannot be an arbitrary
function of the chosen variables but must satisfy the physically obvious in-
variance of a rigid rotation of the mass element dm. This would restrict

the form of the property tensors obtained from the Taylor uxpansion. To cir-

cumvent this problem, the functional dependence of ELOC will be recast in

terms of new variables under which ELOC can be an arbitrary 1’unct1‘on.28

This will be accomplished with a theorem due to Cauchy.29
Theorem.--Any function, f(V], c e e Vn), invariant under a rigid

> >
rotation of the system of vectors, V], 0 o op Vn’ can be expressed as a

¥

+
function of the various quantities Va-VB (¢, B same or different) or

>

VXV d y diff
Va-VBxVY (ay, B, and y different).

gLOC is a function of seven vectors.
> > > > > >
E - ar ar ar ; oa 90 2a
LOC LOC aa] aaz ad3 aa] aaz 3a3

A sufficient choice of independent variables from Cauchy's theorem gives the

functional dependence




€ oc(Eij
where

£ 1

Eij = z(

is the finite strain tensor,

* -

%3
and

These thermodynamic variables are not

rem but are the ones usually selected.

set.)
In terms of these variables,

expansion in the usual manner yie'ds

ELOC is arbitrary.
30

(2.10)

(2.11)

(2.12)

the only ones allowed by Cauchy's theo-

(See Brown5 for a more fundamental

A phenomenological

€loc =Eloc(S) * 9lak, §) + gy5(a, SIEG + o1 845 (s S5y
;' g1Jk1wn( p’ S)E1J k] m - F xijGij 1Jk1E1JGk1
+ .
where
9(a*, S) = Kjaled + o7 Kijqoreqoe * - - -
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* % k *

* _ **i
955(ans 8) = 835(S) * byspqapay + oy by qpnaaopa + L.,

* _ * *
955k 80 = Ciir ¥ Biskamntnoy * oee o

and

* -
%jkimn(®p* ) = Cijpimn *
The various phenomenological constants relate to physical properties and have

been accordingly named. The following catalogues those material properties.

Kij’ Kijk] -- various order anisotropy constants
Bij(s) -- related to thermal strains

bijk] -- first order magnetostrictive constants
bijklmn -- Becker-Doring constants

Cijk] -- adiabatic elastic moduli

Bijk]mn -- second order ME constants

Cijk]mn -- third order elastic moduli

Aij -- exchange constants

Aijk] -- exchange striction constants

The number of independent elements in the property tensors is reduced
by invoking cymmetry requirements. They are thermodynamic symmetry which
equates certain derivatives of the energy by interchanging the order of dif-
ferentiation, crystal symmetry which is determined by operators of the crystal
class of interest, and magnetic symmetry which is determined by the particular

30 (which includes

magnetic pcint group. The expression for cubic symmetry
YIG), correct to second order in magnetoelastic terms and third order in

mechanical terms, is
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_ 0 2
Eloc =€Loc(S) * B(Ey + Epp + Egg) + 5 11(511 O, ¢ By

2

2
+ Cyp(EqqEpy + Expbgy + Eggbyg) + 204, (E5s + E5

2
1+ Epp)

1 3

3 3,1
g CmEy +Ep +

E33) + 7 CpplEqy (Epp + Egg) + Ey(Egy * Epy)

2 2 2 2
E33(Eyy + Epp)) + CypaByqEppbag + 2014, (EqqEg + EpoFqy + Egafly)

+

+

2 2 2
20155((Eqq + Exp)Ey, + (Eyp + Egg)Eoy + (Eg3 + Eqq)Eg,

*2 *2

*
2095 + E33u3 %) + 2bgq(Epgunaz + Ezpoze]

+

by1(Eqoq” + E

2 %2 2 *2 2 *2

* % 1 *2
E1o010p) + 7 Bypq(Ejqoq” + Ep05” + E3qu3”) + Byoa(EqqEppus

+

*2 *2
3391 * E33Epq057) + 2By (EqqEpqa

* %

* %
203 * Eyobzjage

+

32

22

+

* %
Eg3E1p070p) + 2Bygg((Eqq + Epp)Eqpafay + (Ep, + Egp)E,zabal

2 %2

2 %2
241 (Ep3% ?)

3% * E12

+

(533 +E a§) + 2B +E

*
11)E3193

*2 *2

+

4By56(Ep3Egyajon *+ Eq Eqp030y + EpoEpzaiod) + Ky (a)

-

2 + ‘V o

+

+ |V
a%3

%2 %2 *2 +2 27
o, + az o ) + — 5 (‘V a3

2
o (2.13)
2 MS )

Keeping terms to lowest order, although not entirely consistently, one

3

ohtains the original expression of Becker and Doring™ from conventional mag-

netoelastic theory plus the exchange energy.
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(o = 1 2 2 2
floc = 7 Cnileqy tegp tegg) +cqylegge,, esseas +oegaegg)

2 .2 .2 2 2 2
t 2cyy(ens + €3y + e7,) + bylegja) + eyp05 + €3303)

22, 22
* 2by(eypayap + epgapag + €370307) *+ Kylafol + afaj

2

. 2

+ a§a%) + A( +

Yoy 2) (2.14)

> >
Va] Vaz

where by = Dby, by, = byg> and A = ZNA/ME.

There is a reason for developing the energy expression through a
finite strain formalism. The conventional magnetoelastic energy expression,
Equation (2.14), was obtained by adding the energy of a magnetic rigid solid
to the energy of a nonmagnetic elastic solid and then superposing an interac-
tion term to describe the magnetoelastic effect. It has been pointed out that
this expression does not contain sufficient terms to properly account for the
energy to the order of strain assumed.5 The success of the conventional mag-
netoelastic expression can be attributed to the extremely low strains (m10-5)
existing in usual magnetostrictive phenomenon. One worries whether it will be
sufficient to describe the behavior for the quite high strains (mlO'z) which
prevail in the present inverse magnetostrictive effect. Although conventional
magnetoelastic theory will be used in the subsequent chapter, the effect of
finite strain will be seriously considered in the appendix.

In summary, a complete energy expression for an anisotropic ferromag-

net has been obtained.

Ty

12> > >
E = ~]k€LOC - ?-Hd-M - e-M) dv (2.15)

With this expression and thermodynamic equilibrium and stability criteria,

magnetic equilibrium properties can, in principle, he predicted.




CHAPTER III
APPLICATION TO THE SHOCK INDUCED ANISOTROPY EFFECT

Passage of a shock wave through an infinite half space of ferromag-
netic material creates, behind the shock, an infinite slab of ferromagnetic
material in a state of uniaxial magnetic anisotropy normal to the plane of the
slab. An external magnetic field is applied along a direction in the olane of
the slab and, hence, orthogonal to the axis of uniaxial strain as seen in
Figure 3.1. This chapter will utilize the thermodynamic tools developed in
the preceding chapter to predict the magnetic behavior of a ferromagnet sub-
ject to this unique effect.

To proceed from the given energy expression to the final prediction of
a magnetization curve in a given magnetic problem requires considerable effort
and has been the subject of much theoretical investigation for many yearé.

There have been basically two theoretical approaches to the problem. The more

J

Fig. 3.1.--Shock created anisotropic ferromagnet.

20
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contemporary theory is referred to as micromagnetism.3] It assaults the

energy minimization problem through calculus of variation techniques. This

theory is more general; capable, in principle, of predicting domain walls,

|
|

hysteresis, Barkhausen jumps, and other characteristic ferromagnetic proper-
ties. Its usefulness, however, is limited by the extreme complexity of the

mathematics involved and 1ittle progress has been made except in the simplest {

geometries.

The other approach is domain theory.4’32

It has enjoyed wider accept- ,
ance due to its ability to provide useful predictions in practical magnetic
problems. Domain theory avoids the difficult mathematics brought about by the
calculus of variation methods. This is accomplished by postulating the pres-
ence of domain walls in the material and considering the exchange energy as
localized in these walls. Success of this theory rests on the ingenuity and
experience of the theoretician since he must determine by extratheoretical
considerétion the domain goemetry which will create the lowest energy.

This chapter will proceed by considering the shock induced an"sotropy
effect in single crystal material. The problem will be analyzed with estab-
lished tools of domain theory and by these methods will be carried to its
logical conclusion. The next step toward predicting the magnetic behavior in
real material is the consideration of a theoretically dense polycrystal with
random texture. This problem is explored and the averaging procedures relating
single crystal behavior to polycrystai behavior are defined. Following this
will be a brief review of the success of micromagnetic theory in exploring
the anisotropy effect. In the last section the perturbing problem of porosity,

present in all natural material, is considered.
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3.1._ Domain Theoretical Calculation (Single Crystal)

Consistent with domain theory, the volume integral in the energy ex-
pression for the anisotropic ferromagnet will be ignored. Instead, the total

energy sufficient for predicting magnetic equilibrium states will be written.
€ o= gy

where each term refers to an energy density. The first term is the exchange
energy while the second i5 the crystalline and magnetoelastic anisotropy

12> > . . . ¥ ¥ s
energy. Ed = - §'Hd'M is the demagnetizing energy. EH = -He.M is the
additional term included by the Legendre transformation and is just the inter-
action energy of the ferromagnet with the external magnetic field. It will be
necessary to obtain each term for the problem of interest.

The total anisotropy energy from conventional magnetoelastic theory is
= 2 22 22 2 2 2
A = Kylojop + ajog + a3ay) * bylajeyy + age,, + azeqs)
* 2, (aqazeyy + apugeys + agajey)).

* —> -
Uniaxial strain along a line colinear with the unit vector n can be written

in the tensor form

where e (po/p) -1 1is the extension27 aiong the direction of uniaxial

strain. n is arbitrarily oriented with respect to the crystal axis. In the
present work, interest lies in shock induced anisotropy. In shock wave
studies, strains in the large elastic and plastic regions are obtained. Thus,
for many magnetic materials, the crystalline anisotropy energy is 10 to 30

times smaller than the induced anisotropy energy in this strain region.
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Therefore, the crystalline anisotropy energy will be ignored. The anisotropy
energy of interest becomes

£ = b]e(a$n$ + agn

2
me 2

+ ugng) + 2b2e(a]a2n]n2
+ unlaNoNg + u3a]n3n]). (3.1) {

To proceed with the domain theory analysis of the shock induced ani-
sotropy effect, two single crystal problems will be treated concurrently.
These will be called the <100> problem and the <111> problem. The <'00>
problem corresponds to a state of uniaxial strain along a <100> axis with <
perpendicular applied fieid. The <111> problem corresponds to a state of
uniaxial strain along a <111> axis with a perpendicular applied field. These
two fundamental problems have their analogs in the thermodynamic inverse of
this efrect. They are magnetostriction along the <100> and <111> axes.4
The magnetoelastic constants, b] and b2’ will be found to relate in a
similar way to the magnetostriction constants. Moo and M1

In the spirit of domain theory, models for the domain structure must
be postulated. Energies corresponding to each model are then obtained and
compared. From this, conclusions are drawn as to the most probable domain

structure. Figure 3.2 shows the domain structure models which will be con-

sidered. Domain walls normal to the strain axis are not expected. This is I

because the variation in the magnetization direction through the domain wall
> > >
cannot be made without allowing veM to deviate from zero. v:M # 0 in

the domain wall implies magnetic volume poles in the wall and, hence, a high

demagnetizing energy. This would be energetically unfavorable. Domains of

ciosure are not expected due to the high induced anisotropy energy.
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5

3.1.1. Induced Anisotropy Energy

The induced anisotropy energies for the <100> probiem and the <i1'>
problem will be obtained in this section. The energy will be obtained within
domains and within the walls through which the transition between adjacent
domains is made. This will be done for walls of the form shown in Figure
3.2(a) and Figure 3.2(b).

Consider first the <100> problem and the domain walls in Figure

3.2(a). Transform Equation (3.1) to polar coordinates using

ey T sinecos¢, ay = singsing, and a3 = COSH.

The induced anisotropy energy in a domain is easily obtained.

<100>
c.'!!e

(domain) = b1e sinze.

+
To obtain the induced anisotropy energy in the wall, the variation in M

through the wall must be considered. The requirement that ;-ﬁ = 0 through
the wall is equivalent to demarding that 6 be Cunstant through the wall.
The transition between adjacent domains then proceeds by a rotation of ¢

from 0 to w. The energy in the wall is

<100> _ . 2 2
eme = b;e sin“ecos®s.

A slightly more difficult analysis gives for the <111> problem

<111> . _ . 2
cme (domain) = bye sin“e

and 2

<111>  _ 2
€me 8c0os“¢.

= b2e sin

Since the form of the energies is the same for the <100> problem and the

<111> probiem, we will write
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(c) He

Fig. 3.2.--(a) Model for plate-like domain structure perpendicular to
the applied field

(b) Model for plate-like domain structure parallel to the
applied field

(c) Model for needle shaped domain structure oriented along
axis of uniaxial strain. Polar angles define direction
of magnetization during transition through domain wall.
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€ (domain) = be sin (3.2)

me

and
ry . 2 2

Enm = be sin“8cos“¢ (3.3)
where b = b] or b2 for the <100> problem or the <111> problem,
respectively.

Consider the domain configuration in Figure 3.2(b).

in the domain is

€me(domain) =

The transition through the wall

concinuously from -8 to .

¢ =

me

Equation (3.2), Equation (3.3),

derived in this section.

3.4

Again the energy

be sinze.

L)

proceeds in the (x,z) plane by varying 3

The energy in the wall is

2

be sin“g, -6 <& <. (3.4)

and Equation (3.4) are the primary equations

.2. Exchange Energy

Within the concepts of domain theory, the exchange energy is believed

to reside only in the domain walls or transition regions between adjacent do-

mains.

Landau-Lifshitz domain wall calculation.

the 1iterature22’32

and will be described only briefly here.

The usual method for obtaining this domain wall energy is through a

e This has been fuliy developed in

The method con-

sists of writing a one dimensional integrai expressicn for the energy in the

transition recion between domains.

The terms which contribute to the wall

energy are the exchange energy and the excess crystalline or magnetoelastic

anisotropy energy incurred by the transition through the wall.

It is assumed
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that 3); = 0 (e = constant) holds through the wall. This one dimension-
al integral energy expression is minimized by variaticnal calculus. The
result predicts that at all points within the wall the exchange energy is
equal to the excess anisotropy energy. It is found that the wall energy per
unit area is given by
%,
o, = 2/A sinef |(€me(domain) - Cme)%l dé. (3.5)
%

The crystal anisotropy energy has not been considered. A is again the ex-
change constant and ¢ and ¢2 are the azimuthal orientation of the mag-
netization in the adjacent domains separated by the wall.

In this section, the domain wall energies in Figure 3.2(a) and Figure
3.2(b) will be obtained. They will be called 03 and OS, respectively. For
Figure 3.2(a), using Equation (3.2) and Equation (3.3) with Equation (3.5)

gives

m
of = 2/ATbe] sine f sineds
0

or

oS = 4/ATbel sine (3.6)

For Figure 3.2(b), using Equation (3.2) and Equation (3.4) with Equa-
tion (3.5) gives

Making the substitution

sin X = sin6sing = a sing

o
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and using the identity

coszx = (1 - J?J + -l-(l - al sinzx),

a a2

one obtains

/2 n/2

05 = 4vﬂ|5e|(a2 - ])‘]- 5 dx 7172 + _]’(1 - a2 sinzx)”2 dx.
(1 - a® sin“x)

0 ]

This is
oP = 4/ATbeT((a” - 1) K(a, w/2) + E(a, 7/2))

where a = sine and X and E are complete elliptic integrals of the

first and second kind.

03 and 03 are compared in Figure 3.3. It is seen that ihe domain

model considered in Figure 3.2(b) yields a slightly lower energy. In actual

crystalline material, imperfections such as dislocation, impurity, etc. can
significantly alter the domain wall energy. For this reason, it is believed
that the slight energy difference does not justify the prediction of the do-
main structure in Figure 3.2(b) over that in Figure 2.2(a). From this, one
may conciude that domain theory suggests a needle or sliver shaped domain
structure oriented along the axis of uniaxial strain will nucleate behind the
shock front. A model for this structure is shown in Figure 3.2(c).

Due to the much simpler form of Equation (3.6), the approximation

P o~ S = =] . 2
Oy = Ty O 4¢A|be| sing

will be made. An expression for the effective exchange energy density is

given by
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tex = D
or
:M‘[E.['Z
gex 5 sin“e
where D is the dimension of a domain as shown in Figure 3.2(c). 1
1.0 «
s
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Fig. 3.3.--Domain wall energy as a function of 6.

03 corresponds to the wall geometry in Fig. 3.2(a); 03

corresponds to the wall geometry in Fig. 3.2(b).
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3.1.3. Demagnetizing Enfrgy
The demagnetizing energy can be obtained by solving the magnetostatic
boundary value problem for the magnetic surface pole distribution on two sur-
faces separated a distance L as is indicated in Figure 3.2(c). The solution

4

requires only a slight variation on a precblem already solved by Kittel.” Only

the result will be “eported here. It is approximately giver by

2
DMS 2

Ed = 1.1 | sin 8.
The approximation results from terminating an infinite series. Again L is
the slab thickness, D is the domain dimension, and MS is the saturation

magnetization.

3.1.4. Total! Energy
From the results of Sections 3.1.1, 3.1.2, and 3.1.3, the total ther-
modynamic energy for the ferromagnetic material behind the shock front can be

explicitly written. The total eneryy is

2
. DM -
£(D,0) = -MSHe coso + be sin‘e + 1.1 —t§-sin29 + §£E%§§I sin"s. (3.7)

Equilibrium thermodynamics predicts that the energy expression,
£(D,e), will be a minimum with respect to a variation of the internal coordi-
nates, D and 6. Consider the domain width parameter first. Minimizing

with respect to D gives

2
M .
g—g— = 1.1Tssin26-sin26 = 0.

This yields un expression for the domain width.
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3 - ()" ?

2
1.1 MS
This can be substituted into Equation (3.7) giving :
1
,  [8.eMATRer|/E
€(e) = - MH, coss +be sin“e + 2 — sin“e i
|
or
E(e) = - MM, cose + be sin% + y|e|/* sin% (3.8)
where

L

. z[s.sngmﬂ]”z.
The last term in Equation (3.8) will be called the equilibrium exchange and
demagnetizing energy.
At this point a discussion of the results obtained so far is warranted.
An estimate of the exchange constant can be obtained from molecular field
22

theory. This is

3kTC

e za

where k 1is Boltzmann's constant, TC is the Curie or Néel temperature, z

is the number of nearest neighbors, and a is the lattice constant. This

7

gives A = 3 x 10" erg/cm 1in YIG. At a strain of -.01 in YIG which

corresponds to a shock pressure of about 25 kilobars, the predicted domain
1

width is approximately 20 uron. This is in agreement with other work.
The equilibrium exchange and demagnetizing energy in Equation (3.8) is ob- 1 ‘

served to increase as the fourth root of the strain while the induced anisotropy 1
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energy increases linearly with the strain. This suggests that the equilibrium
exchange and demagnetizing energy is about 2% of the induced anisotropy
energy. This justifies ignoring the equilibrium exchange and demagnetizing
energy in predicting magnetic behavior in the region of large elastic and

plastic strain in YIG as was done by Royce7 and Barte].]0

It is realized that
this statement need not hold true for all materials.
From the total thermodynamic energy, Equation (3.8), the equilibrium

magnetization curve can be obtained. Thermodynamic equilibiium demands that

df€ _
de 0.
This has two solutions;
sine = 0

and, ignoring exchange and dipolar energy,
2be coss + HeMs = 0.

Thermodynamic stability requires that

2
9—§ = 2be(cosze - sinze) +HM cose > 0
de” €s
at the equilibrium colution. For the solution sine = 0, this implies that

Z2be + HeMS > 0.

Under shock induced anisotropy, this would always be the stable solutior for
material with negative magnetoelastic constants. For material with positive
magnetoelastic constants, this solution becomes unstable at a nucleation

field of Hnuc = - 2be/MS. The subsequent behavior is then given by the
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second equilibrium solution. The predicted magnetization curve is

2be
1 for He > =9
M S
T . (3.9)
S
S Zbe
= ﬁ)—e- He for He < - —M—S'

where M/MS = cos6 and b = b] for the <100> problemor b = b2 for

the <111> problem. The curves are shown in Figure 3.5.

3.2. Domain Theoretical Calculation (Polycrystal)

This development will proceed by considering the equivalent shock
induced anisotropy effect in theoretically dense isotropic cubic polycrystal-
line ferromagnetic material. This will be accomplished from knowledge of the
single crystal magnetic properties. Also, this should be a better approxima-
tion than the single crystal analysis of the preceding section to the magnetic
behavior of commercial and natural material subject to this effect.

The prediction of a polycrystalline materiaT property from its equi-
valent single crystal propeity is a problem confronted in many areas of
physics. The approach, quite similar in every case, reguires an averaging of
the single crystal property for an arbitrarily oriented crystallite over all

crystal orientations.34

The complicating factor is that an arbitrary crystal-
lite interacts, not only with the external forces, but also with other grains
in the polycrystal. This grain-grain interaction can be mechanical (through
stresses), electrical, or magnetic. In most cases, this complicated interac-
tion is not known.

Examples are elastic constants, dielectric constants, magnetostriction

constants, and conductivities. In each case basic assumptions concerning the

grain-grain interaction must be defined before progress can be made. For

R IR D T e ) R T TR, |

-
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instance, in the case of elastic constants,35 two assumptions have been used.

One assumption is that uniform str'ain36

exists throughout the crystal. The
other is that uniform stress37 prevails. Experiment favors neither, usually
being closer to an arithmetic average of the results of the two assumptions.

The same assumptions are made in obtaining polycrystalline magnetostriction
38,39,40,41

constants. In this case experiment favors the assumption of uni-

form stress.

In the present problem, the state of strain behind a plane shock wave
in a theoretically dense cubic polycrystal is assumed to be uniform. (See
Appendix V.) The speculation involves the magnetic grain-grain interaction.

This is a complicated many body interaction of current interest UERE

about
which Tittle is known. In analogy to the previous examples, this development
will define the extreme assumptions regarding the grain-grain interaction and
then consider each individually.

One extreme is that material crystallites interact with sufficient

strength to cause a cooperative, colinear alignment of the grains' magnetiza-

tion vectors. The other extreme is that grain-grain interactions are
negligible and that each grain individualiy seeks eguilibrium determined by
the requirements of the anisotropy field and external magretic field. These
assumptions will be called the interacting grain assumption and the independ-

ent grain assumption, respectively.

3.2.1. Interacting Grain Assumpiion
The interacting grain assumption will be considered first. This
assumption was made by Royce7’8 during pioneering work on the shock induced
anisotropy effect and leads to a mathematically tractable averaging process.
Domain structure in a polycrystalline ferromagnet is usually on an

a4

intra-grain scale. This is due to high crystal anisotropy energy and large
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angle grain boundaries which make continuous domains across grain boundaries
energetically unfavorable. There are cases, however, such as in material
subject to cold working, in which a high degree of crystal orientation allows
an extra-grain domain structure.4 In the present effect, the easy direction
of magnetization is determined not only by the crystallographic axis but also
by the direction of uniaxial strain. Thus, the effect of the shock wave is to
create a condition of magnetic texture defined by the direction of uniaxial
strain behind the shock wave. It would not be iinplausible to expect an extra-
grain domain structure to nucleate after passage of the shock wave.

A further argument for this assumption follows by considering a spheri-
cal grain interior to a domain of uniform magnetization. The magnetization in
this grain could deviate from this direction of uniform magnetization only by
creating surface poles on the grain boundary. The energy associated with this
is

- 4n 2
€ = - 3 MS C0s0.

In YIG, at typical shock stresses, this energy is of the same order as the
strain induced anisotropy energy. Hence, there will be strong torques
attempting to maintain uniform magnetization throughout the domain.

The following assumption simplifies the averaging process and creates
a neat form for the maaretoelastic energy of a polycrystal. it is assumed
that E';e is uniform throughout the field.

To proceed with the averaging process, the six dependent variables,
Ops Gny G35 Ny Ny, and Ny, appearing in the energy expression will be ex-
pressed in terms of four independent angular variables as shown in Figure

3.4.34’45 The direction cosines are related to the angular variables by

e iy N SR N K Ak

T e A
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% = sinxcoss, a4 = sinising, @3 = CosA,
Ny = costsinicosg + sing(cosxcosscosw + singsiny),
N, = costsinising + sing(cosAsinBcosw - COosBsiny),
and
Ny = cOsEcosx - singsinxcosw.

Since the polycrystai is isotropic,

glz-sinx dxdgdy
I

is the probability that the magnetization 1ies in the range A to j + da

Fig. 3.4.--Independent angular coordi-
nates for representing anisotropy energy.




37

Lt

2n
flg) = fff f(g, A, B, ¥) sinadadgdy.
0 0

0

Various averages will be required and are tabulated in Table 1.

TABLE 1 --Average values of various terms appearing
in the energy expression

f(e, X, 8, ) (&)
29 22. 22 1
EEg 7 g 1 BE) 5
22 . 22. 22 1, 2.2
Sy Gl el ERLRCA ol
n, +a NN, + a,a,N,N = —l-+ —§-C052£
Bty o7 S il 57 Ceidfiy 0% 70
2 24 24 3,12 2
any +asny + aqng 35 ¥ 35 C0S'E
? y 2 _] _3. “"2
S ER I 7 SN (R Gl [ (0 o T Bl
222 . 222 222 3 2 2
ANy + aaghy + ajasng 35 - 35 €05 &

From this table, the average value of the anisotropy energy from con-
ventional magnetoeiastic theory, Equation (3.1}, can immediately be written

down. It is

€, - ]gK] + Be cos’E. (3.10)

where

The crystal ani-_.ropy energy averages to a constant and does not contribute
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to the effect. The total energy expression for a ferromagnetic polycrystal,

assuming interacting grains, takes the simple form
€ = Be sine - HM_ cose, (3.11)

as in the single crystal cases with b replaced by B, since 6 and ¢
are complementary angles. Thus, thermedynamic equilibrium predicts a Jinear

equilibrium magrnetization curve for the interacting grain assumption,

2Be
1. He > g
M S
M_' = M (3.]2)
< - =K H < - 28e
2Be ¢’ e Ms

intermediate between the extremes defined by the <100> preblem and the

<111> probiem in the equivaient singie crystal behavier.

3.2.2. Independent Grain Assumption
It is cuite possible that the uniform magnetization field demanded by
the previcus assumption does not occur. The isolated single particle critical
size within which a single domain exists for YIG is less than 1 micron. This
size will increase for a bounded crystallite due to a substantial decrease in
eurface poles at the grain boundary, but not by more than an order of magni-

tude.42

Also, the singie crystal domain width predicted previously, Equation
(3.8), was approximately 20 microns. The grain size of the material used in
the present work ranged from 5 to 25 wmicrons. This suggests that perhaps an
intra-grain domain structure would nucleate in order to red:ice magnetic poles

which would otherwise cnllect heavily along grain boundaries.42’44

This 1is
usually the case for unstrained material and may possibly occur in the mate-

rial behind the shock front. If an intra-grain domain structure occurred,
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there would not be a prevailing magnetic field as was considered in the inter-
acting grain assumption. In this case it would be more likely that each grain
would distribute about some average depending on the orientation of its crys-
taliographic axis with the external fieids.

A simple consideration will show that, if independent grain conditions
obtain, then the average magnetoelastic energy previously obtained in the
interacting grain assumption is too high. The energy from the interacting
grain assumption contained not only a part necessary to bring individual mag-
netic grains to their independent equilibrium positions, but also a part
required to bring these magnetic grains into colinear alignment. Too large an
induced anisotropy energy would then predict too much demagnetization.

The independent grain assumption is that each crystallite seeks equi-
Tibrium subject only to the requirements of the induced anisotropy field and
the external magnetic field and independent of the behavior of neighboring
crystallites. A rigorous approach to the averaging procedure weuld be to
express the magnetization direction in the anisotropy energy expression, Equa-
tion (3.1), in terms of polar coordinates 6 and ¢. The total enzrgy ex-
pression shculd then be minimized with respect to 6 and ¢ for an arbi-
trarily oriented crystallite. The resulting magnetization projection along
the direction of the applied field should then be averaged over &ll crystal
orientations. This problem, which has been encountered previously in another
context, cannot be solived expiicitiy for 8 and ¢ and has not been com-

p!eted.40

An alternate approach, in the spirit of calculations made by Lee,46

is to write the average normalized magnetization,
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F() cosedn
cose = (3.13)

fF(Q) do ’

in terms of an unknown distribution function of the magnetization vector

dii-ections throughout the solid angle. A first harmonic assumption for the
distribution function is that F(Q) 1is uniform throughout the solid angle
defined by the extreme angles from the <100> problem and the <111> problem.

These were

M M
_ _S = - S
cose] = - 2b]e He and cose2 2b2e He'

F(a) 1is zero otherwise. This first harmonic approximation gives for the

average value

%2 X1
fcosesinede x dx
) X

cose = e] = x2
2 1
j sinede dx
% X2

where x = co0s8. A problem occurs when Cos6, is unity at which point the

first grains reach saturation. To freeze the upper 1imit of integration arti-
ficially constrains the distribution function. This problem can be circum-
vented by allowing the upper 1imit to continue but demanding that the

respective contribution to cose be unity. This gives




x;-ﬁ "
w—d
[« 8
>

cos8 = ¢

Performing the integration gives

4

1
§(x] + xz) for X

coss = ﬁ
%{xg - 2x] +1)

for

[ Xo = Xy
This will be expressed in the final form by

4

e

]
§(n] + n,H,  for nyH
M
M 11,22
5 (nSHE - 2nqH  + 1)
2''2e 1e for
L (nz'n])He
where
M
n_l :..__S_.- and n2=
Zb]e
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The predicted magnetization curve is linear until “1He = 1. (See
Figure 3.5.) 1In this region it has the same form as obtained in the inter-

acting grain theory,

except B 1is given by the arithmetic mean,

The subsequent magnetization curve joins continuously to first and second
order but approaches saturation more slowly than the interacting grain magnet-
ization curve.

In the case of magnetoelastic isotropy (b] = bz}, the independent
grain theory degenerates to the predicted curve for the interacting grain
theory. The predicted magnetization curves for the two assumptions along with

those fer the -100> and <11i> problems are shown in Figure 3.5 for YIG.

3.3. Micromagnetic Theory

The intention in this section is to review briefly the concepts of
micronagnetic theory and its progress concerning the shock induced anisotropy
effect. The theory proceeds by invoking the thermodynamic equilibrium postu-

late on the total integral energy expression, Equation (2.15).3]’47

The
resulting variation, accomplished by calculus of variation techniques, yields
Brown's equations which, along with the corresponding magnetostatic boundary
value problem, constitute a system of nonlirear differential equations for the
magnetization field thro.ghout the material parameterized on the external

applied field He'
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Since this system of equations is nonlinear, for a given He many
solutions are allowed. Some of these solutions will be stable while others
will be unstable. Each stable solution represents a possible physical state
of the thermodynamic system. Which state is occupied depends on the history
as well as existing conditions. Hence, this theory is capable of predicting
magnetic hysteresis. With variation of the applied field He’ the present
state of the system may change continuously or by finite jumps if the state
becomes unstable. These jumps are known as Barkhausen jumps and have been
observed experimentally.

Progress by this very elegant approach has been limited due to the
extreme complexity of the system of nonlinear equations. Some success has
been made in select regions of the magnetization curve for very special geo-

metries of magnetic materia1.3]’47

Independent grain

1.0
<]
(2]
=
~
Z b=
0.5 Interacting grain
7,
0.0 L A L
0 40 80 120

He/e (koe)

Fig. 3.5.--Magnetization curves for various theories.
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The only progress through micromagnetic theory on the shock induced

anisotropy effect has been made by Barte].]]

He used an alternative approach,
known as the Rayleigh-Ritz method, which circumvents direct use of Brown's
equations. This method assumes a form for the final soiution with a sufficient
number of undeterminad parameters. The total energy integral is then
minimized with respect tc these parameters.

His development assumed a uniform anisotropy field as would occur in
single crystals for specific orientations or as would occur in polycrystals
under the interacting grain assumption. By approximating the argument of the
energy integral expression and by considering first harmonics in the assumed
Rayleigh-Ritz solution and corresponding magnetestatic potential, he was able
to draw conclusions about domain size, nucleation field, and subsequent devia-

tion from magnetic saturation.

3.4. Porosity Effect

Previous observations suggest that the major structurdl defects
capabie of significantly altering the results obtained in earlier sections are
nonmagnetic inclusions in the form of voids or 1'mpur'it1'es.]2 Porosity is
characteristic of magnetic ceramics. Even the best hot pressing technicues
are capable of producing garnets only to about 98% or 99% theoretical den-
sity while in ferrites 95% 1is a good number. This is probably characteris-
tic of natural materials also.

Experiments by Wayne et a].]z show that polycrystalline magnetic
ceramics, when subject to hydrostatic pressure, show a strong dependence of
magnetization on pressure. Their interpretation was that nonhydrostatic
strains occuring in the vicinity of cavities created local magnetic anisotropy

fields which produced local deviations in the magnetization and, hence, the
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observed effect. It has been suggested that this same effect might occur to
some extent in the present shock induced anisotropy situation.

A calculation which relates the magnetization to the hydrostatic pres-
sure and the porosity in the apprnach to saturation region of the magnetic

material has been made.48

This calculation is based on the assumption that
the average behavior of an aggregate of cavities in the medium can be repre-
sented by the behavior of a spherical pore in an isotropic elastic continuum.
The strain around a spherical pore in an isotropic elastic medium subject to
external hydrostatic pressure deviates from hydrostatic strain. This devia-
tion contributes to the anisotropy energy. The energy density at a distance
r from the center of a pore of radius a has been calculated to be
¢ . 3Bja 2

= Z—;—P ;g-cos (y +8) - HM, cosy (3.16)
where the first term is the induced anisotropy energy and the second is the
interaction energy. 6 1is the angle between the field poirt and the applied

magnetic field. ¢ 1is the angle between the magnetization at the field point

and the applied magretic field. u is the shear modulus and

Equation (3.16) is derived in Appendix IV. By numerical methods, this expres-
sion leads to a prediction of the dependence of magnetization on P and He‘
Figure 3.6 shows this magnetic dependence on He for 3% porous YIG at two
values of hydrostatic pressure.

The intention of this section is to make a simple estimate of the
effect of porosity on the shock induced anisotropy effect for slightly porous
material. In particular, 3% porous YIG will be considered since this mate-

rial was vtilized in these studies. It will be assumed that the correction to
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the predicted magnetization due to porosity is small and can be superposed on
the actual strain induced anisotropy results. This correction will be obtained
from the previously discussed numerical hydrostatic prediction by using, in-

stead of the hydrostatic pressure, the mean pressure

5 . oy ; 20 -

This correction canrot be added directly but must be weighted siice the full
correction is realized only when the mateiial is initially in magnetic satura-

tion. In fact, when the strain induced anisotropy predicts

e
Mg

ENE

the correction will be zero since this is exactly the average value of ccsy

22 KB
L0 — = = e e e
_o 95} 44 KB
Ef
/
_90 = he 1
0.0 0.5 1.0 1.5
He (koe)

Fig. 3.6.--Magnetic hydrostatic pressure depend-
ence of 3% porous yttrium iron garnet.
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distributed around a spherical pore. Thus, the magnetization will be

%;. = fle,H,) + w(M/MS)A(ﬁlHe)

where f(e,He) is the strain induced auwisotropy prediction (Equation (3.12)
for the interacting grain theory and Equation (3.14) for the independent grain
theory), A(?}He) is the full numerical porosity correction, and u(M/Mb\ is

the weight factor. The correction is assimed to be small so a linear approxi-

w(l) = 1
and
w(‘"/4) = 09
1.0 ™ —_
//
z
%
Zm /
S 0.5F //
/
/
1 i L
0.0, 20 80 120
H/e (koe)

Fig. 3.7.--Correction to independent grain
assumption due to 3% porosity.
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one obtains

M =
M Ms 4 =
m- = fle,H) + T A(P,H_). (3.17)
e T e

S ‘]-E)
The correction is shown in Figure 3.7 for the independent grain assumption.
This correction is seen to be negiigible in the higher regions of the magnets-
zation curve and obtains significance oniy in the lower part of the curve
where the applied field is substantially lower. It is important to notice
that for large strains the effect of porosity on the magnetization curve
becomes quite significant. This is believed, by Royce, to explain the shock
demagnetization results of Shaner and Rayce8 in the plastic region of YIG.

Shock pressures of 90 to 440 kbars were obtained in that work.




CHAPTER IV
EXPERIMENTAL METHOD

An experimental design should reproduce as closely as possible the
requirements of the theoretical model. These requirements are an infinite
slab of forromagnetic material in a state of uniaxial strain normal to the
plane of the slab and an appiied magnetic field in the plane of the slab.
Experimentally, the infinite slab of ferromagnetic material was approximated
by a rectangular slab of yttrium iron garnet, YIG. The state of uniaxial
strain was obtained by planar impact of a projectile from a four inch gas gun.
The magnetic field was applied by a pulsed current through a rectangular sole-
noid enveloping the specimen. A schematic representation of the experimental
procedure is illustrated in Figure 4.1. This will hopefully aid in corre-
lating details with the overall experimental design.

Briefly, the experimental sequence is as follows. A projectile trav-
eling at a velocity 3 triggers a current suppiy. The subsequent current
produces a maqnetic field which reaches a maximum at the time the projectiie
impacts the target. The impact produces a strain wave which propagates
through the solenoid and into the YIG sample. This sample, initially in mag-
netic saturation, is demagnetized by the strain wave. The demagnetization
develops an emf across the pickup coil which is recorded on the monitoring
osciiloscopes. The rmagnetic equation of state of the ferromagnetic material

behind the shock front is determined from these records.

49
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4.1. Application of Magnetic Field

The objective is to create a wmagnetic fieid by driving a large current
pulse through a rectangular solenoid ceincident in tie with the application
of the strain field. Referring to Figure 4.2, the operation is as follows. A
large electrolytic capacitor, C, is charged to a predetermined voltage, Eo'
At a predetermined time prior to application of the strain field the silicon
control rectifier is triggerod. Capacitor C then discharges via high volt-
age cables through the solenoid at a rate determined by the L, R, and C
of the circuit. A current pulse of the form

- 0 -8t
I(t) e sinhyt

is obtained where

and

o = (R 1)V
2 L€

Preadjustment of Eo’ R, and L allows a predetermined current Imax to be

attained at a predetermined time T governed by

"
tanhmm = %

This time is adjusted so that the shock wave passes through the specimen when

I = Imax' The transit time is approximately 0.25 us. The current is

essentially steady during this time. The time variation in the neighborhcod

of T is

NG 2
T = 7c (t - )"
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For the chosen components, this fluctuation is abcut 0.01% for the required
recording time.

The inductor L is an integral part of the experimental design. It
is, of course, a major component in determining the rise time of the current
pulse. More important, the irertia of the inductor maintains the currert and,
therefore, the applied magnetic field constar! for the duration of the experi-
ment. There are sevea’ effects which attempt to change the current. First,
passage of a s'.ock wive across the solenoid accelerates the forward face
creating an effective solenoid collapse. Electromotive forces are generated
in an attempt to produce currents which would conserve the flux in the closing
solenoid area and thus increase the magnetic field. Second, when the stress
wave transverses the magnetic sample, a gross flux reduction occurs. Thz
response of the electric circuit is to attempt to compensate for this flux
change. In both cases, it is the responsibility of the inductor L to main-
tain the current constant, denying the natural res .nse of the system. About
0.25 to 0.5 millihenry inductors have been found sufficient for this pur-
pose. It should be mentionad that this inductor is physically located within
a few inches of the solenoid since its inertial characteristics must be real-
ize¢ within nanoseconds. To locate this inductor in the current supply would
create coaxial cable reflections and nuliify its stabilizing property.

There is a 1,0002 resistor paralleling the solenoid to ground. This
resistor carries several percent of the total current and, with the solencid,
has an L/R time sufficient to damp out ringing due to the finite stray
capacitancé of the solenoid windings.49

The current through the sb1enoid is monitored by recording the voltage
across a precision 19 resistor in series with the solenoid as shown in

Figure 4.2. The magnetic field is given by the solenoid formula
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Hy = 0.4aNI (4.1)

where 1 1in amperes and N 1in turns per centimeter gives the magnetic field
in oersteds.

The solenoid is constructed of 1 by 15 mil (1 mil = .001 inches)
OFHC copper ribbon obtained from Tihe Wilkenson Co.50 Usually between 12 and
20 turns per centimeter were used. The solenoid constituted abcut 6 to 9g
of D.C. resistance, a factor which must be considered in the total circuit
design. A standard lathe, set in the thread cutting mode, was found to pro-
vide an efficient and versatile means for winding a very smooth and regular
solenoid. Magnetic “ields required for this work required currents up to 60
amperes. The joule heating during pulsing was still substantially less than
the softening temperature of epoxy; approximately 80°C.

A problem of concern is the rippie in the magnetic field due to the
finite spacing of the solenoid windings. The magnitude is estimated by the
following method. In the neighborhood of the grid, the magnetic vector poten-

tial is periodic and can be written as a superposition of terms,

> _ 7 2nmx
A, = An(y) cos ==,

where y is the normal direction from the grid, x is along the grid, and a
is the period of the grid. The vector potential must satisfy Laplace's equa-
tion. Hence,

d“A_(y) 22

y d
n 4n re _
2 = 2 An(Y) - 09

which has the solution
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The first harmonic is reduced by 1/e in a distance

while higher barmonics fali off even faster. Therefore, ripple in the magnetic
field is less than 1% at a distance from the arid equal to the period of the
grid. In this case, it is about 20 to 30 mil.

Another problem is the end effect or reduction in the magnetic field
due to the finite length of the solenoid. For a rec:angular solenoid of dimen-

sions b and ¢ with c¢>> b, the end effect error is

-1

o|x

H = ';—- ';I?tan s (4.2)

where He is the actual field, HI is the infinite solenoid field, and x
is the distance into the solenoid from the end. The solenoid must be con-

structed sufficiently long to nullify this error in the region of the specimen.

4.2. Application of Strain Field

The strain field required in the magnetic saiiple was produced by

1 1he

planar impact of a projectile accelerated in a four inch gas gun.
sample, solenoid, and . quired electronics are assembled in a target which is
mounted at the muzzle end of the gas gun. This in turn, is enclosed in an
evacuated target chamber. Impact tiles are characteristically on the order of

10'4 radians.

4.2.1. Experimental Construction
The normal metal faces of the projectiles were replaced by nonconduct-
ing material, usually Lucite or a cerimic such as aluminum oxide, in order to
eliminate moving metal from the vicinity of the solenoid and, hence, reduce

gross movement of magrietic flux during the experiment. The velocity of the
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projectile is measured by contact pins prior to its arrival at the target face.
This is required for determining the final state of strain in the YIG. The
velocity contact pins also serve to trigger the current supply.

The target is constructed so that the plane wave propagates througn
the solenoid and then into the YIG. See Figure 4.3. Materials through which
the wave travels between projectile and YIG are., in ordar. 0.75 nillimeters
of Lucite, 0.025 millimeters of aiternate copper and epoxy, 0.75 millimeters
of Lucite, and 0.025 millimeters of epoxy which includes the front face of
the pickup coil. A1l electronic components are mounted behind the solenoid
assembly and ar: completely potted in epoxy.

There are several problems associated with propagating a planar shock

wave through the periodic grid defined by the front surface of the solenoid.
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Fig. 4.3.--Solenoid construction.
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First, the copper-epoxy interface is a region of mechanical impedance mismatch
through which the wave must travel. The resulting ringup in this region
degredes the wave and lends a finite rise time to an initial step stress wave.
A volume average density for the grid region predicts approximately a 59 nano-
second risetime for the stress profile. Quartz gauge records have verified
this prediction. Second, the pericdicity of the grid creates a corrugated
wave effect due to the differing velocities and impedances in the grid mate-
rials. This effect will diminish with propagation distance from the grid due
to Huygen's principle and due to nonlinearity and viscosity of the Lucite.
Mineev et a1.52 have shown that in metals at high pressures the perturbation
amplitude (in this case several times the grid thickness) drobs to a small
amount in less than several times the period of the grid. It has been assumed
that this problem does not significantly affect the experimental results.

A technigue capable of virtually eliminating the probiems associated
with the solenoid grid was invented while this work was in progress. The
method requires simply replacing the first region of Lucite in Figure 4.3 with
an aluminum oxide ceramic. The stress wave then propagates chrough aluminum
oxide, the copper-epoxy grid, and lLucite, respectively. The material charac-
teristics which make this technique successful are the mechanical impedance
simitarities of aluminum oxide and copper on one hand and Lucite and epoxy on
‘the other along with the simiiar shock velocities of copper and epoxy.. This
pecuiiar combination of properties esséntiaily creates a single interface of
a somewhat ragged nature. An experiment was perfurmed in which two quartz
gauges anaiyzed waveforms propagating through identical geometries with the
exception that one contained a copper-epoxy grid while the other did not.

The waveforms were identical. A similar set of circumstances exists at the
interface containing the pickup coil. Thic explains why no deteriorating

effects are observed due to it.
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4.2.2. Equation of State
The state of strain in the YIG was obtained in two ways. First, by
use of measured projectile velocities, calculations through tne intermediate
materials into the YIG were made. Second, quartz gezuge techniques were used.53

In each case, equation of state information for the various materials involved

was required.

A linear elastic equation of state was assumed foir the YIG. This in- |

formation has been collected, along with other required physical properties of

YIG, in Table 2.

54

An aluminum oxide ceramic, Wesgo 995, " was used as a projectile face

material. It was assumed to be linear elastic. The equation of state param-

eters used were55

o
1]

1.03 cm/yus,

-
i

0.2615 cc/g,

(4.3)
and

Z = 3.939 mB{cm/us)"".

The Lucite used was Rohm and Haas, Type G. The material, obtained in

30 mil sheets, had a specific volume of 0.847 cc/y. A cubic P - u rela-

tion,

P = 0.336u + 1.12u% + 5.11¢6°, (4.4)
was fit by the method of least squares to data by L1dd1‘ard56 and Barker and
HoHenbach57 in the region of 0 to 60 kilobars. The units are megabars,

centimeters, and microseconds.
The stress wave at the Lucite-YIG interface undergoes a reflection

with a jump in stress. To calculate this final stress state requires
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knowledge of the recentered Hugoniot in the Lucite. To obtain this recentered
Hugoniot, a Mie-Griineisen equation of state was assumed in the Lucitee.58 Khen

referenced from the foot of the initial Hugoniot, this takes the form

PIVLE) = P(S,V) + 7 (E - E(S_,V))
v
= %(E - E(Sy.¥)) + P(S V) +§ jr P(S,.V) dv.
VO

Collecting the volume-dependent-only terms into an arbitrary function gives

P(V,E) = %(E - E(S,5Y,)) + £(v). (4.5)

The energy jump condition on the initial Hugoniot is

_ 140
E - E(SO,VO) = E'PH(vo - V). (4.6)

Equation (4.5) must hold in particular on the initial Hugoniot. Therefore, by

eliminating the energy expression between Equation (4.5) and Equation (4.6),

one obtains
Oy = I po _
PH(V) = 7y PH(V)(Vo V) + f(V).

Solving this for f(V) and substituting back into Equation (4.5) gives the

required Mie-Gruneisen equation >f state,

P(V,E) = %(E - £(Sy,V,)) + Pﬁ(V)(l - EFV v, - V)).

4

The energy jump condition on the recentered Hugoniot is

T | 1 ] %
E-E '?(PH'P)(V'V’)s
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where P' = PS(V') and (P',V') represent the reference state for the
recentered Hugoniot. When combined with the energy jump condition on the ini-

tial Hugoniot, this gives

_ 1 oy \
E - E(SpV,) = 5 P'(Y¥, - V) + 5 (Pyt PV - V).
Combining this with the Mie-Griineisen equaticn of state gives the required

pressure on the recentered Hugoriot.

b V .
R A R A
P,(V) = ; 0

To facilitate the calculation, a quadratic P - n relation, n =
1- V/Vo, was fit to the initial Hugoniot data in the range 10 to 60 kilo-

bars. The result,

PO(n) = 0.0197 - 0.223n + 1.5102, (4.8)

was not forced through the origin. This allowed a better it to the data in
the region of interest. The quantity r/V was assumed constant. The value

of T_ is difficult to assess from the literature. Acoustical data59 give

)
Ty = 5.13 while thermodynamic data60 predict Ty approximately equal to
0.9. A gross iinear fit to D - u data, using the re]ationﬁl
dD
PO_ Z‘da' 1,

yielus a value of Ty = 0.8. For this work, strains using a value of Iy =
1.0 are quoted. In practice, pressures of abcut 22 kilobars and 44 kilo-
bars were obtained in the Lucite. Predictions of strain for To = 5.13

are 1% and 4% lower, respectively.

i
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4.3. Demagnetizetion Measurement

The reduction in magnetization is measured by recording the flux
change in a pickup coil surrounding the sample of yttrium iron garnet. This
pickup coil consists of 10 turns o7 1 mil hy 15 mil manganin ribbon wound
intimately around the specimen as shown in Figure 4.3. The active recording
region, defined by the face of the pickup coil, is about 1 cmz. Manganin
ribbon was originally chosen because of its distributed resistance. It was
thought that this resistance might tend to dampen parasitic oscillations in
the pickup circuitry. No attempt has been made to test the merit of this pie-
caution. The pressure dependence of the resistance is negligible for this
experimental configuration. A twisted pair of 3 mil, insulated copper wires
are solder-connected to the pickup coil immediately behind the YIG sample and
brought out the end of the solenoid. This twisted pair and their connections
are not disturbed by the stress wave during the recording time.

A high impedance recording circuit is used to monitor the emf developed
across the pickup coil during the demagnetization prccess. The equivalent
circuit, shown in Figure 4.4, consists of an ideal source of emf and a resis-

tance R consisting of the load resistance plus the internal resistance of

R

MA—L )

pickup
coil

L 1

Fig. 4.4.--Pickup coil circuit.
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the pickup coil. The signal is transmitted to the recording oscilloscope by

502 coaxial cable and terminated there in 500. The emf is given by

E(t) = {REZ)yry (4.9)

7
I3

where V(t) 1is the voltage recorded at the monitoring oscilloscope and 7 is
the characteristic impedance of the coaxial cable. The rasistance R is
selected to maintain the current flow in the pickup circuit sufficiently small
such that the magnetic field produced by this current is negligible compared
to the magnetic field produced by the solenoid. In practice, several hundred
ohms are found to be sufficient for this purpose. The dynamic impedance of
the pickup coil inductance is small compared to this resistance.

To relate the demagnetization to the emf developed, it will be
assumed that a steady state shock profile is progressing through the magnetic

material as shown in Figure 4.5. In the spirit of mechanical jump condition
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calculations,” consider, prior to passage of the shock wave, an element of

areii bDst which is compressed to b(D - u)st after passage of the shock
wave. b is the width of the pickup coil and D is the velocity of the shock

profile. The change in magnetic flux across the shock wave is
8¢ = b(B(D - u) - BOD)at

where B0 is the initial magnetic induc*ion and B 1is the final magnetic
induction. Considering the case where the external applied field is constant

and using
B = Hy+ 4«M

along with the jump condition,

(D -u)e = Do,
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one obtains

- [ Po o
§¢ = bD[4n\M ryl Mo) o - LA

where M0 is the initial magnetization per unit initial volume and M is the

final magnetization rer unit final volume. Since

p
D(_o - ]) = -y
p

and Mpu/p is the final magnetization per unit initial volume, the rate of

flux change becomes

de

gt = 4mbDsM - buH. (4.10)

The first term is the change in flux due to the reduction in magnetization.

The second term is the flux change due to motion of the front surface of the

J

——>(D _ U)ﬁt‘— —_— et ———

Fig. 4.5.~-Geometry for magnetic flux jump con-
dition. Area compression due to shock propagating into
medium at rest is represcnted. Magnetic field is normal
to the page.
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pickup coil in the manner of a magnetic velocity gauge.

be neglected,

de _
H 4TrbDGM
Faraday's law
_ -8, d¢
€= 10N G

P PSSR E

KWhen the latter can

(4.11)

(4.12)

relates the induced emf in volts to tne turns in the pickup coil and the flux

2 1

in gauss-cm“-sec” . From this, one finally obtains

108

4nbND ¢

oM

108R+zv
o7 V-

(4.13)

Thus, for a steady state shock wave, the induced emf is constant and is pro-

portional to the demagnetization.

4.4, Material

The material selected for this study was hot pressed polycrystalline

yttrium iron garnet.62

are of convenient magnitude for experimental investigation.

same material used by Shaner and Royce8

induced demagnetization effect at higher stresses.

will present the material characterization performed during this work.
Photomicrographs were obtained of pelished sample surfaces.

distribution of highly spherical pores, characteristic of sintered ceramics,

was cbserved.

some evidence of other inclusions.

It was chosen because the magnetoelastic properties

in earlier investigation of the shock

The following paragraphs

The pore diameters ranged from 1 to 3 microns.

This was also the

A uniform

There was

= = =
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TABLE 2.--Material properties of single crystal yttrium iron garnet

Property Source Values
Second order elastic a Cyq = 2.69 X ]0]2 dyn/cm2
moduli ‘ 12 2
C1p = 1.08 x 10°° dyn/cm
Cap = 0.76 x 10]2 dvn/cm2
44 ) v
First order magneto- b b] = 3.5 x 106 erg/cm3
elastic constants 6 3
b2 = 6.9 x 107 erg/cm
Second order magneto- b B]]] =173 + 12 x 106 erg/cm3
elastic constants 6 3
B = 22+ 19 x 10° erg/cm
123 -
Bigg = - O + 41 x 100 erg/cm3
- 6 3
Bygs = =37 + 5 x 10" erg/cm
Bygy = -24 + 14 x 108 erg/cm3
Bysg = -27 + 7 x 10° erg/en’
Crystal anisotropy c K] = -6.2 x ]03 erg/cm3
constant
Saturation magneti- c M. = 133.7 gauss
zation at T = 293°K N
Ne'el temperature d TN = 563°K
Pressure dependence d aTy /2P = 1.25°K kbar™ !
of Ne'el temperature
Temperature dependence e 1 aMs = -0.61
of saturation magneti- MS aT/TN :

zation at T = 293°K
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TABLE 2--Continued

Property Source Values
Theoretical density f Py = 5.17 g/cm3
Lattice constant f a, = 12.38 R
Longitudinal velo- g D =7.17 mm/us

city (polycrystailine)

Coefficient of f a=1.39 x 107 oK
expansion

Isothermal g Ky = 6.1 x 107* koar™!
compressibility

Specific heat h Cv = 0.162 cal/gm deg

31. B. Bateman, J. Appl. Phys. 37, 2194 (1966).

bD. E. Eastman, Phys. Rev. 148, 530 {1966) and references
contained therein.

CHandbook of Microwave Ferrite Materials, W. H. vonAuiack,
Ed. (Academic Press Inc., New York, 1965}, and references contained
therein.

dy. Bloch, F. Chaissé, and R. Pauthenet, J. Appl. Phys. 37,
1401 (1966).

CEstimated from Pauthenet, Ann. de Phys. 3, 425 (1958).
f

S. Geller and M. A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957).

9a. E. Clark and R. E. Strakna, J. Appl. Phys. 32, 1172 (1961).

hCa]cu]ated from Dulong and Petit limit.
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Phctomicrographs were made of fracture surfaces. The average grain
size was found to be approximately 15 microns with a distribution of from 5
to 25 microns.  The grain distrivution was homogeneous throughout the sample.
The grain distribution appeared visually isotropic; that is there was no evi-
dence of mechanical texture Created by the hot Pressing process. The pores
were observed to occur both intragranularly and at grain boundaries.

The porosity of the material was obtained by measuring and weighing
rectangular samples, by Tiouid displacement, and by analysis of photomicro-
graphs. The porosity obtained was 3.3 + 0.5% where the theoretical density
from Table 2 was used.

A spectrographic analysis for metallic impurities was performed. The
results are shown in Table 3. Tests for organic inclusions or oxygen im-

purities were not made.

TABLE 3.--Spectrographic analysis for
metallic impurities

Element Percent

Fe Principle constituent
Y Principle constituent
Ca .05

Si .01

Al .01

Ni .01

Cr 01

Mg .005

Ag .003

Mn .002

Cu .0005
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The samples were received as rectangular slabs of dimensions 0.1 x
1.0 x 5.0 cm.  The specimens were lapped flat and parallel with #1700 alumi-
num oxide lapping compound.

The saturation magnetization of the material was determined by magret-
izing several samples from zero magnetization to some value determined by the
final magnetic intensity. This was performed by initially demagnztizing the
specimen and then pulsing a crrrent through the snlenoid enveloping the speci-

men. The data provided a linear plot which was fit to the Weiss re]ation,63

M o= Ms(l -%) (4.14)

MS and a were obtained from the intercept and the slope. The saturation
magnetization obtained was about 124 gauss. The theoretical value (see
Table 2), reduced by the amount expected due to the porosity of the material,
is 128 gauss. The latter value was used due to the author's lack of confi-
dence in the somewhat painfully obtained first value.

The magnetoelastic constants b] and b2 were not measured. The
constants used (see Table 2) were most probably values obtained from the

literature.

4.5. Experimental Corrections

This section will address various experimental perturbaticns and con-

siderations which will affect, to some degree, the ideal measurement

presupposed. The first few problems are related to the experimental design;
others concern material behavior.
Since the rectangular <pecimen is of finite length, there will be an l

additional contribution to the magnetic {ield created by the magnetic poles

at the end faces. An exact calculation of this fieid would be very difficult. |
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However, an approximate value can be obtained by considering the specimen end

faces as point magnetic poles of charge,

G, = tMA,

where M is the magnetization and A 1is the area. From this, one obtains a

demagnatizing field

where a is the length of the sample. This can be written

Hd = =DM,
where
8A
D = 2=
a2

is the demagnetizing factor for this geometry. The maximum value for this
field is about 5 oe which is approximately 2.5% of the lowest applied
fields used.

In section 4.1, it was reported that the principle purpose of the
large inductor was to maintain the current constant during the shock induced
demagnetization process. Arbitrarily large L cannot be used since this
would require a correspondingly large current supply to drive it. A suffi-
cient value for this indu;tor can be obtained from fhe following consideration.
The current fluctuation, AI, produced by the shock induced emf, €', devel-

oped across the solencid can be cbtained from

L-d‘lt-AHAIR = €

with the initial condition
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: . &
AT(0) = -
The shock induced emf, €', is on the order of

8

€' = 4210 °bNDsM

where N is the numbar of turns in the solenoid. This has the solution

_ e L
Al = Tt for t<<-R—.

Thus, if 1 1is the shock wave transit time, it will be sufficient tc maintain

_ t
C

small compared to the initial current in the solenoid. In practice, 250 to
500 uh have been found to be adequate. It should be noted that this effect
tends to increase the field and is in opposition to the demagnetizing field
effect.

_Passage of the stress wave across the front face of the pickup coil
accelerates this face creating an effective magnetic velocity gauge. Its mo-

tion produces an emf which is superimposed on the emf produced by demagneti-

zation. This emf is given by

8

gr = 10 NbuH_ » (4.15)

where u is the velocity, b is the width of the pickup coil, and N is the

number of turns in the pickup coil. The emf of interest, Equation (4.13), is
€ = 10"8NbDaneM.

The fractional ratio of the two is




n
€|| UHe
€ D(moM) °

which is not negligible at the lower &M values and must be correcicd for.
It is assumed that prior to entrance of the shock wave the material is
in a state of magnetic saturation. This is not, in fact, the case for a given

applied field H. The actual magnetization can be roughly obtained from the

Weiss relation,

M a
= = 1 -z,
MS H

For this iaterial a value of a = 3.6 + .5 oe was obtained. This correc-
tion reaches a magnitude of 2% for tie lowest magnetic fields used.
Experimentally the measured value of 8M will be less than that pre-
dicted by Equation (3.12) and Equation {3.14; for the theoretically dense
material. This is due to the porosity of the swaterial. This correction is
not concerned with the effect of porosity on the strain field. It is simply
that void regions are nonmagnetic and are not contributing to the effect.
This is the same correction which reduces the saturation magnetization, MS,

from the theoretical value. To be accurate, one should distinguish between

th

S 9

porous material (MPOT, sMPP").  Then the theoretical prediction of GMth/Mth
s s

the expressions for the theoretically dense material (M thh) and the

can be related to the measured value of sMpor/Mgor through

GMpor aMth
por th °*
MS MS

(4.16)

This distinction has not been made in the text but is implicit wherever

experiment and theory are compared.
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As has been previously mentioned in Chapter II, the correction due to

finite strain could be substantial since the shock induced strains obtained in
this work are three orders of magnitude larger than strains which occur in
magnetostrictive processes. This is considered exhaustively in Appendix III.

Becker-Doring terms, as were derived in Chapter II, are terms in the
magnetoelastic energy expression which are quartic in the direction cosines of
the magnetization vector. These terms are seldom found to be of significance.
Good values do not exist for YIG. The Becker-Doring terms can probably be
safely ignored and this has been done in the present work.

The saturation magnetization is temperature dependent and will be sub-

ject to change by the adiabatic shock compression. The isentropic temperature

change,

aV T
AT = g 9 ap,
p

is calculated to be about 2.5°K and 5°K for shock strengths of 20 kbar
and 40 kbar, respectively. The saturation magnetization temperature depend-

ence from Table 2,
aM
1 S - .
N 74 L

predicts changes of -0.25% and -0.5%, respectively, for Ms'

The exchange interaction and hence the saturation magnetization also

depends on pressure. Assuming a law of corresponding states,]2

M (T (0) = F(T/Ty),

taking a pressure derivative, and using values from Table 2, one can cbtain




-4 = — V—
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%% = 0.76 x 107 kpar™ .
This is a correction of +1.5% and +3% for 20 kbar and 40 kbar, respec-
tively. The correction is of the opposite sign from the temperature correc-
tion.

It has been observed that the magnetoelastir constants are function-
ally reiated to the saturation magnetization under a temperature variation.
For instance, in nickel Ag is proportional to M§.46 This is probatly true
for pressure variations. Since the material property relating the magnetiza-
tion to He/e is a quotient of the saturation magnetization and a magneto-

elastic constant, the error produced by temperature and pressure effects will

be even smaller than predicted in the previous paragraphs.




CHAPTER V
ANALYSIS OF EXPERIMENTAL DATA

The analysis used for a systematic reduction of the experimental data
is considered in this chapter. Determination of the applied magnetic field is
discussed first. Next is the calculation regquired to estimate the state of
strain in the magnetic sample from the directly measured mechanical parameters.
Following this is the technique used to consistently determine the state of
magnetization in the shocked ferromagnet from the actual induced emf oscillo-

scope records. Lastly, the experimental data resulting from this work are

presented.

5.1. Magnetic Field

As was discussed in Section 4.1, the magnetic field is determined by
monitoring the voltage drop across a 19, 1%, 5 watt resistor. This resis-
tor, being in series with the solenoid, realizes the same current which is

obtained from the voltage record through the relation

W;—). (5.1)

Z is the characteristic impedance of the monitoring cable and R is the 1g

resistor. The applied field is in turn obtained from

He = 0.4aNI.

These two equations provided the recorded values for the magnetic field. The

corrections due to demagnetizing and finite inductance effects were not made.

74
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They were canceling corrections and at best 2% corrections individually.
Consideration of errors incurred by measuring R and N along with the

asscciated voltage and calibration records gave an rms error in determining

He of + 2%.

5.2. Uniaxial Strain Field

The primary method used to calculate the state of strain in the YIG
was through equation of state knowledge of the intermediate materials and
measured projectile velocities. The necessary equations of state were pre-
sented in Section 4.2.2. The experimental procedure required creation of the
same state of strain over a series of shots. The ability to do this relied on
the reproducibility of the projectile velocity. It was found that the projec-
tile velocity was constant within 1% over a series of shots. In this analy-
sis, the average projectile velocity was assumed for the entire series.

Calculation of the state of strain in the YIG proceeds as follows.
Upon impact of the projectile, the initial state (P', u', and n') behind the
initial shock in the Lucite is obtained from requirements of continuous P'
and u' across the projectile-Lucite interface. Simultaneous solution of the
projectile P - u relation and the Lucite P - u relation (Equation (4.4))
gives P' and u'. Equation (4.8) can then be solved for n'. This is the
reference state for the recentered Hugoniot which is used to obtain the state
behind the shock reflected from the YIG-Lucite interface. The state of strain

in the YIG requires simultaneous solution of the system of equations

r r
ol -5

T
1- —%-(n - ')

(5.2)
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2
P = P'+VLL(‘?--Ln?T’ (5.3)
0

and

P = plu (5.4)

which relate mechanical parameters when the shock wave, initially in the
Lucite, traverses the Lucite-YIG interface. This is a system of three equa-
tions in three unknowns; P, u, and n. The first is Equation (4.7) with
the pressure on the'Hugoniot recentered about P' and n' in the Lucite.

The second is obtained from mass and momentum jump conditions across the
reflected shock in the Lucite. The third is an elastic P - u relaticn for
YIG. The system of three equations was soived numerically by a Newton-Raphson
iteration technique for the required mechanical parameters.

A technique devised to serve as a consistency check on the numerical
methods and equations of state used was to substitute a quartz gauge for the
YIG. To be consistent, the actual recorded stress shou'd agree with that cal-
culated through the previous numerical procedure. This was found to be the
case within +4% over several shots. The variation was not consistently
above or below.

Also observed on the quartz gauge records was the deterioration in the
stress profile due to propagation through the 1 mil copper-epoxy grid. The
effect on the profile was to create a finite rise time of approximately 50

nanoseconds. After the quartz gauge profiles were corrected for finite

strain,53

there still existed a slight ramp of less than 2% across the
recording time of the quartz. Although this may be due to incorrect compensa-
tion for finite strain, it may also be the effect of dissipation in propagating

the stress wave through 1.5 mm of Lucite as has been observed by Barker ard
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Hoﬂenbach.57 This possible effect was ignored. It would be slight in any
case as can be seen from the profiles published by Barker and Hollenbach.

In summary, the projectile velocity 7or a series of shots was assumed
to be tne average obtained from these shots. The state of strain in the YIG
was obtained with this projectile velocity and the calculation described in

this section. This calculation of the strain siiould be accurate to +5%.

5.3. Transverse Magnetization

The Tast experimental parameter required is the magnetization corres-
ponding to a given magnetic field and shock induced anisotropy field. This is
obtained by measuring the reduction in magnetization, &M, assuming that
prior to arrival of the shock wave the material is in a state of magnetic

saturation. The magnetization is then
M = MS + &M
where M 1is negative. &M 1is obtained through

M= ﬂg——f (5.5)
47bND *

as discussed in Section 4.3 where it was assumed that £ was constant, pro-
duced by a steady state shock wave progressing through the magnetic medium.

A typical oscilloscope record from which this magnetic information
must be deduced is shown in Figure 5.1. A negative emf is developed during
the first transit of the wave corresponding to the expected demagnetization of
the magnetic material. The subsequent behavior is determined by alternate re-
magnetization and demagnetization as the stress wave reverberates back and
forth in the magnetic material. A fairly accurate acoustic velocity in YIG
can be determined from these records. Only the first half cycle is utilized

in analysis of the magnetic state behind the shock.

p—— i s Ty it -

e il N e W
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The analysis in Section 4.3 assumed that a steady state shock existed
in the material. Thus, if a square shock enters the medium one would ideally
expect the recorded emf to be a square pulse and the analysis would be trivial.
This behavior is not the case. Consequently, the factors which complicate
this behavior must be addressed.

The first problem is due to the finite rise of the stress profile
brought about by its transit through the solenoid face. The expected emf can
by shown to be of the form in Figure 5.2(a). This can be seen most easily by
considering an incremental application of Equation (4.13). There will be a
finite rise to the demagnetization approaching a constant value when the wave
is completely in the medium.

The second effect is due to relief waves generated at the lateral
limits of the magnetic matorial. The siaks oFf VIG used in this work nad an
aspect ratio of 10 to 1. A first approximation calculation can be made by
assuming the relief behavior shown in Figure 5.3. If the longitudinal strain
in the unaffected material is e, then the equivalent strain in an element of

the rzlieved material is

e' = glﬂ—i—%)-e, (5;6)

)

Fig. 5.1.--0scillo-
scope record of shot no.
70-039. 0.2 us per division.
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obtained from consideration of static displacement in the two diicensional eles-
tic proviem. X and u are the Lamé constants. The emf produced by the

demagnetization corresponding to a given state of strain is

8

€ = 4x10"°bNDsM(e),

ignoring the relief problem. By considering this approximation to the relief

problem, the induced emf becomes
€ = 4n107%0((b - 20t)sM(e) + 2DtsM(e'))

or, after reorganizing, the expression becomes

c _ -8 sM(e' 2D
T = 4410 bNDGM(e)[l + (EM%ETI - I)T;-t]. (5.7}

This equation predicts that the lateral stretching due to relief waves pro-
duces a linear increase in emf over that predicted for the infinite slab. The

expected behavior is shown in Figure 5.2(b).

time

(a) (b) (c)

Fig. 5.2.--Effect on the demagnetization profile due to
(a) finite rise time of strain wave, (b) 1lateral relief waves,
and (c) combined effect.

454 T et i
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The totai behavisr uun to the superposition of the effects of finite
rise and relief waves would be as shown in Figure 5.2(c). This expectation
has been supported by the experimental profiles obtained. See Figure 5.5.
From these records a consistent means of obtaining the magnetization in the
shocked, unrelieved material must bz determined. A logical method would be to
extrapolate the linear slope in Figure 5.2(c) back to zero time and accept
this value of € as that required in Equation (5.5). Unfortunately, this is
difficult to do consistently. This is especially true for the lower demagnet-
jzation shots where the signal to noise ratio was sufficientiy low enough to
frustrate a quantitative analysis of this kind.

The following is a description of the method used to analyze the
experimental demagnetization data. Although less satisfying than that pro-
posed in the last paragraph, this methed yields a consistent and conservative
description of the measurements. On every record there are distinct ard well
defined upper and Tower bounds to the emf required in Equation (5.5) as shown

in Figure 5.4, ¢ is determined when approximately 70% of the full

min
stress profile initially enters the medium. The 70% is obtained from a re-

verberation Hugoniot analysis at the solenoid grid. Emax incorporates the

-0t —

Fig. 5.3.--First approximation geometry of lateral
relief wave behavior.
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required emf plus the full effect of the lateral relief problem. Thus, one

can safely assume that the required emf is
€min < b o< Emax'
The proceduie used here was to accept
= 1
€ = 2 (gmin * Emax) (5.8)

as the value required in Equation (5.5). The reported value for £ was this
average <urrected for the moving pickup coil effect which approached 10% at
the lowest demagnetization realized. The difference between gmax and Emin

was accepted as error in the measurement. This was the dominant error.

5.4. Experimental Data

In Table 4, the experimental results of this work are presented in a
form consistent with the discussion in the preceding three sections. Figure
5.5 gives the raw oscilloscope prcfiles resulting from the demagnetization

during the first transit of the shock wave. The horizontal coordinate is time

Fig. 5.4.--Emf extremes used in
analyzing the demcgonetization profile.

—
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in 0.25 microsecond increments. The vertical coordinate is the actual emf
developed across the pickup coil. In Figure 5.6, the experimental magnetiza-
tion curves are presented along with the theovetical curves for the interacting
grain and independent grain assumptions. The two series of shots correspond

to approximately one-third and two-thirds of the Huc.niot elastic limit in

YIG. This has been reported as 64 kbars 0 (attributed to R. A. Graham). In
Figure 5.7, the data are plotted as a function of the normalized field He/e
against which the predicted magnetization curves for any indiuced anisotropy
field are seif similar. The vertical error bars are deteriiined by the experi-
mental extremes as discussed in Section 5.3. The horizontal error bars are

+6% which is the rms error for He and e.
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CHAPTER VI

DISCUSSION AND CONCLUSICNS

6.1. Discussion

The use of equilibrium thermodynamics to describe the behavior of the
shocked ferromagnetic material assumes that equilibrium is reached within a
few nanoseconds after passage of the shock wave. Magnetic relaxation times
observed by other methods suggest that this very likely occurs. However, the
results of the present work lend additional confidence to this assumption.

Within the concepts of domain theory, an analysis of the shock induced
anisotropy effect on magnetic single crystals has established the following.
The equilibrium exchange and dipolar energy increases as the fourth root of
the strain while the magnetoelastic anisotropy energy increases linearly with
the strain. This means that the contribution of the exchange and dipolar ener-
gy to the magnetic behavior is significant at low strains but becomes negligi-
ble in the high elastic and plastic region. It was deduced that domain walls
in the direction of strain with normals either perpendicular or parallel to
the applied field differed only slightly in wall energy. This small energy
difference is probably nullified by local crystal defects. However, domain
vialls normal to the axis of strain incur high energy due to the magnetic vol-
ume poles created. It is logical to conclude that a needle or sliver shaped
domain structure oriented in the direction of uniaxial strain nucleates behind
the shock wave. The magretization curves predicted for the <100> and <111>
problems are linear and differ substantially. This is a consequence of the
magnetoelastic anisotropy of YIG (b] # bz).
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In considering the shock induced anisotropy effect on magnetic poly-
crystais, a critical analysis of the necessary averaging procedure is required.
This analysis is concerned with the magnetic interaction between crystal
grains. A definition of extreme assumptions concerning the interaction was
made in analogy with the procedure used to determine polycrystalline elastic
constants.

From one extreme, the interacting grain theory follows. The physics
necessary to make this behavior plausible requires an extra-grain domain
structure. This in turn demands sufficient contribution from exchange and di-
polar forces to make continuous domains across grain boundaries energetically
favorable.

Independent grain theory is the other extreme. This behavior is
expected if an intra-grain domain structure occurs. Such domain structure
arises when exchange and dipolar forces are insufficienrt to overcome aniso-
tropy forces.

In the present work, experimental data concerning the shock induced
anisotropy effect have been obtained for polycrystalline yttrium iron garnet
in the region of large elastic strais. The results, presented in Figure 5.6
and Figure 5.7, support the shock induced anisotropy mechanism as a contribu-
tion to shock demagnetization. It is further concluded that the independent
grain assumption provides a better description of the magnetic behavior of
ferromagnetic material in the shocked state. Also established is the validity
of the parameter He/e in characterizing the magretization curve. This is
seen in Figure 5.7 where the experimental magnetization curves, plotted as a
function of this parameter, are self similar.

In retrospect, independent grain behavior appears more logical than

interacting grain behavior. Domain theory predicts that the equilibrium
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exchange and dipolar energy will be negligible compared to the remaining erer-
gy terms. It follows that domain walls will bte extremely cheap and an inter-
grain domain structure will occur. Considering this, one expects independent
grain behavior. Conversely, experimental confirmation of the independen’
grain theory indirectly supports the validity of the domain theoretical calcu-
lation which predicts the strain dependence of the equilibrium exchange and
dipolar energy.

From the domain theoretical calculation, it was concluded that a sliver
or needle shaped domain structure nucleates behind the shock front. This
dosain structure is an effect rather than a cause since it provides negligible
contribution to the shape of the magnetization curve of the shock created fer-
romagnetic material in the region of large elastic and plastic strain.

It begins to appear that the prediction of magnetic behavior behind
the shock front is much simpler than the equivalent prediction in unstrained
material. First, the equilibrium exchange and dipolar energy can be ignored
in favor of the much simpler induced anisotropy energy. This is definitely
not the case in unstrained material. Secondly, in polycrystailine material it
appears that the magnetic grain-grain interaction effects are not substantiai
and magnetic properties can be obtained by simply averaging the behavior of a
single independent grain.

From this, one might speculate on the magnetic response of natural or
meteoritic material subject to similar snock loading. Here one is confronted
with many additional complications. Chemical and compositional gradients a-
long with coexistence of nonmagnetic and magnetic phases produce variations in
the saturation magnetization, exchange intearal, and magnetoelastic properties.
It would be extremely complicated to construct an adequate energy expression

to describe this material. However, from the results of the work described




90

here, one would expect the magnetic response of a Tocal region to depend only
on the induced anisotropy in that region and be independent of long range
interaction with neighboring material. Consequently, the macroscopic magnetic
behavior should be predictable from a similar average over the chemical and
compositional structure of the material.

The effect of porosity, as discussed in Section 3.4, is not expected

to contribute significantly in the region of the magnetization curve where the

experimental data was obtained. The preseni experimental results confirm this.

The porosity effect is expected to become substantial in the lower region of
the magnetization curve.

A consistent treatment of the contribution of firite strain to the
shock induced anisotropy effect is carried out in Appendix III with the ther-
incdynamics developed in Chapter II. This is required by the high strains con-
sidered in this work. Calculations show that the contribution is not substan-
tial. The experimental data verify this conclusion. It follows that, at
least for the present material, the conventional magnetoelastic theory of
Becker and Doring provides an adequate description of the shock induced ani-
sotrupy effect.

The experimental technique developed for this work provides a simple
means of measuring the state of magnetization in shocked material. The funda-

mental 2ivficulties, discussed thoroughly in Section 5.3, are degradation of

the shock profile when passing the solenoid grid and lateral rarefaction waves.

The first problem can be circumvented by a proper choice of solenoid material
at the grid nterface as was experimentally established in Section 4.2.1. The
second problem could be minimized by better design of the pickup coil-specimen
geometry. It is believed that this technique could be useful in more general

investigation of the magnetostructural properties of materials.
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6.2. Summary

The conclusions reached and results obtained during the course of the

work are as follows:

Equilibrium thermodynamics provides an adequate description of
the shock induced anisotropy effect.

. tstablished concepts of domain iheory predict that the equilibrium

exchange and dipolar energy is proportionai to the fourth root of

the.strain and is negligible in the high elastic and plastic shock
region.

. A needle or sliver shaped domain structure oriented in the direc-

tion of shock propagation is expected to nucleate behind the
shock frent.

. Consideration of the shock induced anisotropy effect in magnetic

polycrvstals revealed the importance of magnetic grain-grain
interaction. Assumpticns of interacting grains and independent
grains were defined to describe the possible extremes of this
interaction.

. Data on polycrystalline yttrium iron garnet were obtained in the

region of large elastic strain. The results support the inde-
pendent grain theory as more representative of actual behavior.

. The experimental results indirectly support the domain theoreti-

cal analysis.

. The effect of porosity has been shown, by analysis and experiment,

to be small in the region of the magnetization curve considered.

. Conventional magnetoelastic theory provides a sufficic-’, charac-

terization of the shock induced anisotropy effect for strains up
to at least two-thirds the elastic limit. :

. An experimental technique capable of magnetic measurements on the

shocked materiai has been designed, implemented, ard analyzed.
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APPENDIX I

TABLE OF THERMODYNAMIC AND ENERGY EXPRESSIONS

TABLE 5.--Thermodynamic and energy expressions

Expression Note

Total magnetic work

> >
o = g [ HesB av Follows directly from
T Maxwell's equations.
2
> > Hd
W = HesM dV + ¢ §-—dv + First term is stored as local
T energy or dissipated in
irreversible processes.
Second term is stored as seif
HZ energy. Also cailed demagnet-
s | & qv izing or dipolar energy.
8n Third term is stored as energy
in the external field.
Magnetic work on material only
" 12
> > Hd
W = HeéM dV + & o dv Work on external field is not
m considered.
> > 1 > > .
W = HesM dV - 7 6 M-Hd dv The second term is an alter-
native form for self energy.
> =
W = H -6M dV Follows from magnetostatic
€ theorems (p. 8) or directly
from Faraday's law.
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TABLE 5--Continued

Expression

Note

Energy

> >

sU < T6S + fHe-GM dv
>

TS - | MesH, dv

> >

E = U- H-MdV = U+
e

ftHdv

EH dv +f£‘d dv + v[ELoc dv

J

sE <

m
1]

™m
1]
R
=
+

Combined first and second law
of thermodynamics.

-<>
S and He are inacpendent

variables for this energy
expression.

Legendre transformed energy
expression. Second term in
either expression is inter-
action energy in external
field.

Internal energy separates
into local energy and long
range self energy.

Local energy separates into
exchange energy and ani-
sotrcpy energy.

Anisotropy energy separates
into crystalline energy and
magnetoelastic energy.




APPENDIX I1I

LIST OF SYMBOLS

Chapters II and III

Q +u5:* ::+cf=*af=+ T

= =- Ouv

m

magnetic field intensity = ﬁe + ﬁﬁ

external field

demagnetizing field

magnetization = magnetic moment/volume
saturation magnetization = MSZ

(a], %5 a3) = direction cosines of magnetization

referred to crystal axes

entropy

temperature

total energy

total Legendre transformed energy
specific energy corresponding to E
interaction energy

demagnetization energy

exchange energy

crystal anisotropy energy
magnetoelastic energy

total anisotropy energy = €K + Eme
local energy = EK et gex

Eulerian coordinates
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Chapters IV and V

1
Eo

99

Lagrangian coordinates

deformation gradients

finite strain

infinitesimal strain

extension = po/p -1

density

symbol for shock wave

symbol for rarefaction wave

crystal anisotropy constant

first order magnetoelastic constants
average of first order magnetoelastic constants
second order magnetoelastic constants
domain wall energy/area

domain width

ferromagnetic slab thickness

exchange constant

distribution function of magnetization vectors
-MS/Zb]e, -MS/2b2e

stress components

hydrostatic pressure

mean pressure

shear modulus

current
initial voltage on capacitor
capacitance

inductance
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N = solenoid turns/cm or number of turns in pickup coil
K = magnetic vector potential
D = shock or Tongitudinal velocity or demagnetizing factor
V = specific volume or oscilloscope voltage
Z = mechanical impedance = pOD or transmission Tine
impedance
P = Tlongitudinal stress
u = particle velocity
E = energy
S = entropy
I = Griineisen constant
PR(V) = initial Hugoriot
n = 1- V/\iO
P', V', E', n' = thermodynamic state on initial Hugoniot
£(t) = emf developed across pickup coils

b = width of pickup coil
¢ = magnetic flux

M = shock induced change in magnetization

€' = shock induced emf across solengid

€" = emf due to magnetic velocity gauge effect

gmax’ Emin = defined by maximum and minimum in demagnetization profile




APPENDIX III
FINITE STRAIN EFFECT

The work in Chapters III, IV, and V assumed the conventional magneto-
elastic theory of Becker and Doring. It has been shown by Brown5 that this
theory, which assumes infinitesimal strain from the start, is inconsistent
in small orders of strain. This inconsistency is normally of no consequence
in magnetostrictive processes due to the extremely small strains involved
(the order of 10'5). In the present effect, strains of 1072 or larger are
realized. For this reason, it is necessary that the effect of finite strain

be considered.

I11.1. The Finit . Strain Tensor
27

In the spirit of Thurston,”" the deiormation gradient for uniaxial

strain colinear with the unit vector n is

axi
—_— = T
= e"i"j + Gij (I11.1)
J
where
p
e = 2.1
o}

is the extension in the direction of uniaxial strain, the X; are the

Eulerian or spacial coordinates, and the aj are the Lagrangian or material

coordinates. From the Lagrangian definition of finite strain,
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_ SXk axk

1
E.. & 5..)
ij 2 aai aaj ij

one obtains the finite uniaxial strain tensor
e+

I11.2. Fiu:ite Strain Correction to Interacting
Grain Theory

It was shown in Section 3.2 that crystal anisotropy erergy does not

contribute in the first order to the shock induced anisotropy effect under

conventional magnetoelastic theory. This does not follow Trom finite strain

theory. From Equation (2.13),

gK = K](aTzazz + a;Zq;Z + agzaTz), (I11.3)
where
oX.
* - ]
%5 a; %j

n.n. + 6..)
(e'l1 5 P

§os- (111.4)

Substituting into Equation (III.3) gives terms, to first order in e, of the

form

aTzazz = a%ag + 2€a§a2(n§a2 t nonaaq ¥ n2n1a]) T
2,2 2
2€a]a2(n]a] + nynya, + n1n2a3) +0(e") +. ..

The other terms follow by permuting indices. Collecting terms, using

0 2 NIRRT T s

T M =

%
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ag + a2

g T a

2 _
3 = b

and then averaging with Table 1 gives

N

= 1,2
€K d = K]e cos e.

(3]

Sinze K] is usually twn to three timec smaller than the magnetcclastic con-
stants, this contribution to the shock induced anisotropy effect can be
ignored.

In obtaining the magnetoelastic energy correct te second order in the
extension. both the first and second order magnetoelastic expressions in
Equation {2.13) must be considered. This point has the same origir as the
inconsistency first noticed by Brown. The second order correction to the
first order magnetoelastic energy will be considered first. This energy

expression is

(1)

me

*2

*.
by (Eqpey ™ + Egpuy” + Eggay) +

2b,(E +E +E

* %5
p(Ejpajay + Eyqayay + Egjayay).

With Equation (II1.2) and Equaticn (III.4), this bec

o(])_ [( L 22, 22 2 42,
o b] e+ & (n]a] + u2a2 + m3a3) + 2e (n a] + g%y +n
+ 292("1"2“1“2 + NoNaasaq + n3n]aqa])
2,2 L2 2
- 2e (n]n2n3a2a3 Enohanqaqay + n3n]n2a]a24

2
¥ 2b, [‘e u eT) (nynjaqay + npngagag + nynjage;)

+ ez(n]nza]az + n2n3a2a3 + n3n]a3a])
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e ("1 2"3%2%3 * g"3"1°3°1 ¥ "§"1"2°1“2)
2okl o o ndd) - Pk el o o) |
+ a(e3) +...

Averaging this expression with the aid of Table 1 gives

SR, A Herdod sy

M _ I 3 14 N 2 2
Eme = g‘b-l""gbZE"’ Wb]+]—0—b2)e co0s 8

for the first order magnetoelastic energy correct to second order in e.

Note that in the case of isotropy

2

E;l) = b(e + §-e2) cosZe.

The second order magnetoelastic energy is ;

¢ld) | 1p 2 a2, 2 a2, 2 a*2) .

me B Epeq” + Eppeg” + B3l

o2 I

2
+ Eygfpq030) |

EPS

(Eq1Eppa3
Br23tEntaams + Eppbas

E E.,atal)

* *
2B144(Eq1Ep30503 *+ EjpEgqada] + Eggfqpaio)

2 2
+ 7B (E23a]

v E2.g22 4 E2 422

441 3192 * Eype3

* % * *
+ Byeg((Eqq + Epp)Eqpafay + (Ey, + Eg3)Engafol +

* * % * %
) + 4Byge(EygEq10q05 + Eg E adel

(Eg3 + Eqq)Eqpa3e]

G AR R SRRt S ety

= * %
« Eygfa3eyaz)-
In this expression, it is corract to second order in e to replace Eij by

* . 3
eij énd o3 by ay- This gives




2) 2,42 . 42 . 42
€pe = 7B (njay + nyay + nial)
2,222 . 222 222
* Byp3e (nyngag + nonzay + nanjay)

2,2 2 2
+ 28144e (n]n2n3u2u3 + nynaniasay + n3n]n2u]a2) +

2,2 . 2 2 . 2
+ 2By 5ce”((n] + no)nynjoqa, + (ny + n3)n,njazag

+ (ng + n%)n3n]u3u])

2,2 2 2
+ 48456e (n3n]n2u]u2 + ninyngajas + n2n3n]u3u])
+ e(e3) +. ..

Averaging this expression with the aid of Table 1 and neglecting a function

of strain only gives the second order magnetoelastic energy correct to second

order in e.

(2) _ 1 2. 2

The total average magnetoelastic energy consistent with the inter-

acting grain theory correct to second order in e is

S By, .6 p 2 3
e [(5 by +5byle+ {7g D * 1502 * 35 B111 - 35 Braz * 35 Biaa
18 4 6 J o
* 358155 - 35 B4gy * §§'B456)e ]C°S 6. (I11.5)

III.3. Finite Strain Correction to Independent
Grain Theory

The independent grain theory requires solutions of the <100> prob-

lem and the <111> problem from finite strain theory. For uniaxial strain




106

along a <100> direction, the magnetoelastic energy reduces to

<100> %2 , 1 2 %2

€re = DiEpe)” + 5 By’
Using

o2

and

a’;z = 0+ ze)af vo(ed)+ ..., (111.7)
one obtains

me #7120 T2 :

correct to second order in e.

The solution of the <111> problem is somewhat more difficult. One
method is to rotate the first and second order magnetoelastic tensors {fourth
and sixth rank tensors, respectively) to a coordinate system coincident with

the <111> crystal axes. In this system,

<>, %2 . 2 . %2 1., 2 %2
Cre = DiEqpeq” + byoEqq(e5” + af7) + 5 BiqyE

ny

] 1 2 *2 *2
2 811k (e +037)

where

s oo =




4 8

‘ = 1 2 4 8 4 8

Bi11 = 98111 *5B123 * 5 B144 * 58155 * 9 Bag1 * 7 Base >
and

. -1 2 1 2 2 4

Bi12 = 98131 * 9 B3 ¥ 3B1ag * 9 Byss - 9 Bgay - 9 Base

are obtained from the tensor transformation. Using Equation (I17.6), Equation

(111.7), and

ans 5., 1 ] ] 2 2] 2
fre - [b ¢ (? Po * e Bias 3 Biss P 3B * §B455)e ]“1'

(111.9)

With Equation (111.8) and Equation (II1.9), one obtains the expressions for
n and Ny in Equation (3.14) and hence the independent grain magnetization
curve. The finite strain -orrection in either theory was not found to be

substantial.




APPERDIX IV
MAGNETOELASTIC ENERGY ABOUT A SPHERICAL PORE

In this appendix, the magnetoelastic energy density about a spherical

pare in an isotropic elastic magnetic medium subject to hydrostatic pressura
will be derived. Figure IV.1 should be referred to for symbols.

It is first necessary to find the strain field about a pore subject
to a limiting boundary condition of hydrostatic strain. This is accomplished
by finding the displacement field. The displacement fieid, because of

symmetry, is of the form

-_——"

Fig. IV.1.--Spherical cavity of radius
a. Mg cosy is the magnetization in the direc-
tion of the applied field at the spherical
coordinate (r,6,4). There is azimuthal
symnetry.
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U= u (r)f .

r

The radial displacement must satisfy Laplace's equation. In spherical coor-

dinates, this becomes

du )
d {2 r =
’CF[Y‘ {dl" ] - 2Ur = 0.

This has the solution

T e N

=
I
x
5
-+
ol

The 1imiting boundary condition (r - «) is that the strain be hydrostatic.

where KT is the isothermal compressibility. The boundary condition at

r = a is that the normal stress be zero.

) E , _
O T TR - o) 7 Vi Fouleg teg)) = 0

where E is Young's modulus and v is Poisson’s ratio. This boundary con-

dition becomes a

The radial displacement field satisfying the boundary conditions is




where u 1is the shear modulus. The strain components, obtained from the

appropriate derivatives of the displacement field, are

e = -—+ ,
rr 3 21 r3
.
86 3 4y r3 ?
and
. R
bé 3 i r3 ’

The deviatoric strain, e?j, is obtained by subtracting the hydrostatic
strain. This is the only part that contributes to the magnetoelastic energy.

In Tocal Cartesian coordinates, the deviatoric strain tensor is

Using this expression for the strain in the magnetoelastic energy,
£ = b (aze + aze + a2e ) + 2b,(ay0 ey, +
me 1T 1 2722 3733 2'717°2712
apezey3 * azaqeyy)s

and using the average values in Table 1 where




1
one obtains
£ = 3P g E3—c052(w +0)
me 4u r3
where
B o= Sb +3b,

This is the magnetcelastic energy in Equation {3.163.
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APPENDIX V
DEVIATION FROM UNIFORM STRAIN

In Chapter III, the assumption was made that a polycrystalline mate-
rial subject to macroscopic uniaxial strain reaiizes microscopic uniform
strain, where macroscopic and microscopic are relative to the grain size.
This is not strictly true. Ir individual crystallites deviation from uniform
strain can be expected. The purpose of this appendix is to obtain a measure
of this deviation from uniform strain in cubic polycrystalline material.

If a pelycrystailine material is subject to macroscopic uniaxial
strain and further constirained t2 uniform strain in each crystallite, then

the associated elastic energy is

- 1. .2
By = z™me
where
my, = 1, b (v.1)
v Rty :
is the longitudinal modulus obtained from the Voigt assumption.36
_ 1
KV = 3 (C.” + 2C.|2) ‘ (V.Z)
and
= 1 R

are the bulk moduius and shear modulus in terms of the elastic stiffness coef-
ficients.

12
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If a polycrystalline material is subject to macroscopic unizxial

strain but constrained locally to uniform stress, then the elastic energy is

A
where
R ket (v.4)
is the Tongitudinal modulus obtained from the Rues. assumption.37
ke = 3 (e + 2ep) (v.5)
and
ROTOA(S - s?z) ¥ 35, (V.6)

are the bulk modulus and shear modulus in terms of the elastic stiffness and
compliance coefficients.

In the actual case, the elastic energy is

1 2
E = > me

where m 1is some unknown longitudinal modulus. It has been proved that64

me & M < M.

Experiment has shown that m 1is very close to the arithmetic average of the

Voigt and Ruess approximations;>>

m = 5 . (v.7)

Since
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1.2
By = 7 me
is the energy stored for uniform uniaxial strain and

me2

N =

is the actual energy stored, the difference,
- 1 2
SE = 5 (mv - m)e“,

is the energy stored in random strain. For simplicity, an upper bcund for
this random strain energy can be obtained by replacing m with Mp- call
this upper bound §E. An upper bound for the ratio of random strain energy

to uniform uniaxial strain energy is

£

R

L b
]
=l

From Equation (V.1) through Equation (V.6), this is approximately

3E 1 (s - 1)2

= © TR ? 3
v p+¢ﬂ(1+§ﬂp+§ﬂ

(v.8)

where

S=_._2c_44__.
%1 " %12

is a measure of the isotropy of the material. (This is exact for K and
replaced by Kv and Hy but the difference is negligible.)

Since the energy is proportionai to the square of the strain, an
upper bound measure of the ratio of tiie random strain to the uniform strain

is
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e 2 |12
“{random) _ (s - 1)

1
e - - 3R 2 3 :
(Uanom) L-(] + 74- ;) (] + 3 S)(] + '2— SH

For YIG, u = 0.78 x 10]2 dynes/cmz, K = 1.62 x ]0]2 dynes/cmz, and

(v.9)

S = 0.95. This gives

e
_(random) _ 0.0015.

e(uniform)

Copper is an exampie 2f a highly anisotropic cubic material. u =

0.436 x 102 dynes/cmz, K = 1.33 dynes/cmz, and S = 3.2. For copper,

€ (random) = 0.28

€ (uniform)

It wes stated that this was an upper bound. A better estimate cai be

made by using Equation (V.7) in the analysis. The result differs from Equa-

tion (v.9) by a factor of 1//2. This gives a strain ratio in copper of 0.20.

This calculation shows that the assumption of uniform strain in YIG
is quite good. However, for highly anisotropic material the deviation from

uniform strain can be quite appreciable.




