
IR1 EILE COEtf 

ESD-TR-71-227 

ESD ACCESSION LIST. 
TRI Call Mn     "y^/^Oo  
Copy No.       •    ol szL—&& MTR-2040 

SURVEY OF SIMULATION LANGUAGES AND PROGRAMS 

ESD RECORD COPY 
RETURN TO 

JENTIFIC & TECHNICAL INFORMATION DIVISION 

(TRI), Building 1210 

J. C. DesRoches 

JULY 1971 

Prepared for 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 
ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

Approved for public release; 
distribution unlimited. 

Project 5720 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract F19(628)-71-C-0002 

AD "730 60S 



When U.S. Government drawings, specifications. 

or other data are used for any purpose other than 

a definitely related government procurement 

operation, the government thereby Incurs no re- 

sponsibility nor any obligation whatsoever; and 

the fact that the government may have formu- 

lated, furnished, or in any way supplied the said 

drawings, specifications, or other data is not to be 

regarded by Implication or otherwise, as In any 

manner licensing the holder or any other person 

or corporation, or conveying any rights or per- 

mission to manufacture, use, or sell any patented 

invention that may in any way be related thereto. 

Do not return this copy.     Retain or destroy 



ESD-TR-71-227 MTR-2040 

SURVEY OF SIMULATION LANGUAGES AND PROGRAMS 

J. C.  DesRoches 

JULY 1971 

Prepared for 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 
ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

Approved for public release; 
distribution unlimited. 

Project 5720 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract F19(628)-71-C-0002 



FOREWORD 

The survey of simulation languages and programs was prepared for 
ESD in order to provide the Air Force a report which would in a form of a 
compendium present information on the techniques and procedures in 
operation and/or in development of ADP simulation capabilities.   This 
report was prepared by The MITRE Corporation, Bedford, Mass. , under 
contract No.  F19(628)-71-C-0002, MITRE Project 5720.    The ESD program 
monitor is Mr. William J.  Letendre, Technology Application Division, 
Directorate of Systems Design and Development.   Additional work on the 
subject matter is continuing.    Inquiries regarding the current status of 
this effort should be directed to the Deputy for Command and Management 
Systems, Directorate of Systems Design and Development,   Attn. Mr. 
William J.  Letendre, L. G.  Han scorn Field, Bedford, Mass. 01730. 

REVIEW AND APPROVAL 

This technical report has been reviewed and is approved. 

X-v-^i-t—W^^K^l/i  f/^ For 
EDMUND P. GAINES, JR. , Colonel, USAF 
Director, Systems Design & Development 
Deputy for Command and Management Systems 

ii 



ABSTRACT 

This report documents a survey of available simulation languages 
and programs of potential applicability to the simulation of ADPE 
systems.  The major features of the subject languages are discussed 
and a comprehensive bibliography is included. 

iii 



ACKNOWLEDGMENT 

The author acknowledges with gratitude the contribution of 
Barbara N. Wagner in automating the bibliography; of Peter B. Burleson 
in reviewing GPSS, SIMSCRIPT, S3, PLS, and COST; of John H. Mclntosh 
in reviewing ECSS and BOSS; and of Roy N. Gamse for his editorial 
assistance. 

iv 



TABLE OF CONTENTS 

• Page 

LIST OF TABLES vi 

SECTION I INTRODUCTION 1 
PURPOSE AND SCOPE 1 
ORGANIZATION OF THE REPORT 1 

SECTION II THEORY OF SIMULATION 3 
MODELING AND SIMULATION 3 
CONTINUOUS AND DISCRETE MODELS 3 
DISCRETE SIMULATION LANGUAGES 4 

Historical Background 4 
Common Features 4 

WORLD VIEW 6 
Static Representation 6 
Dynamic Structure 7 

SIMULATION LANGUAGE TECHNIQUES 9 
Timing Concepts 9 
List Processing 10 
Random Number Generation 11 

SECTION III SIMULATION LANGUAGE/PACKAGE COMPENDIUM 12 
GENERAL PURPOSE SIMULATION LANGUAGES 13 

AS 14 
CLP 17 
CSL 18 
ESP 21 
FORSIM IV 23 
GASP 25 
GPSS 27 
GSP MR I and MK II 30 
MILITRAN 32 
MONTECODE 34 
NSS 35 
OPS-3, OPS-4 38 
QUIKSIM 41 
SIMON II 43 
SIMP AC 45 
SIMPLE 47 
SIMSCRIPT I, 1.5, II, II Plus 49 
SIMTRAN 53 
SIMULA 54 
SIMULA 67 57 
SOL 59 



TABLE OF CONTENTS (Concluded) 

SECTION III 
(Concluded) 

SECTION IV 

APPENDIX A 

APPENDIX B 

SOLPASS 
SPL 

COMPUTER SYSTEMS SIMULATION LANGUAGES 
CSS 
ECSS 
PDL (Software) 
PLS 
SEAL 
SIMCOM 
SLANG 

COMPUTER SYSTEMS SIMULATION PACKAGES 
BOSS 
CASE 
COST 
DPSS 
S3 
SAM 
SCERT/COMET 

BIBLIOGRAPHY 

BIBLIOGRAPHY ON SIMULATION 

BIBLIOGRAPHY ON SIMULATION 
(LISTED BY LANGUAGE) 

Page 

61 
63 
64 
65 
69 
71 
73 
74 
75 
77 

79 
80 
82 
85 
87 
89 
93 
96 

102 

105 

119 

Table Number 

II 

III 

LIST OF TABLES 

Continuous Change Simulation Language/ 
Packages 

Sample S3 Specifications 

Comparison of Simulation Languages 

Page 

5 

90 

103 

VI 



SECTION I 

INTRODUCTION 

PURPOSE AND SCOPE 

This volume documents the first phase of a study of the 
available simulation languages, programs, and techniques which 
could be of benefit to ESD in the simulation of ADPE systems.  Phase 
I has consisted of an extensive survey of the field of simulation 
languages and has included the preparation of a comprehensive 
bibliography on the subject.  Each of the identified simulation 
language/packages is discussed with reference to its historical 
development and major distinguishing technical characteristics. 

A collection of documents considered to be of a general, 
tutorial, or survey nature has been assembled; and an annotated 
bibliography has been computerized for ease of reference and rapid 
retrieval of pertinent information. 

In addition, a survey of the literature for papers relative 
to the simulation of computer systems has been initiated and the 
documentation is being assembled.  This effort represents the 
second phase of the study and will be reported on in Volume 2 of 
the MTR to be released at a later date. 

ORGANIZATION OF THE REPORT 

The report is organized into three major sections: 

1. Theory of Simulation 

2. Simulation Language/Package Compendium 

3. Bibliography 

The section on Theory of Simulation is included to introduce 
the basic concepts and terminology of simulation.  The treatment is 
not definitive; rather it is only of a depth necessary to assure 
comprehension of the subject matter in the compendium. 

The compendium represents the major content of the report. 
Languages have been classified as general purpose (suitable for the 
simulation of discrete, recursive systems'-) and special purpose 

Computer systems are so classified. 



(designed specifically for the simulation of computer systems). 
Additionally, special purpose program packages exist for the 
evaluation of computer systems.  All of the identified components 
of each subject class are discussed.  It is the view of the author 
that this report might serve as a reference guide, and to this end 
some languages which are only of limited academic interest are 
included. 

The Bibliography constitutes the final section of the report. 



SECTION II 

THEORY OF SIMULATION 

MODELING AND SIMULATION 

Simulation is the technique of constructing a model which is 
a representation of the significant properties of an object, process, 
or system and then performing experiments on the model.  This 
experimentation serves to identify behavioral characteristics and 
makes possible the prediction of performance in a real-world 
environment. Variable levels of abstraction range from the con- 
struction of physical models to mathematical representation. 

The development of large-scale, digital computers coincidental 
with advances in the theory of simulation has greatly expanded the 
scope of studies which are amenable to this methodology.  Simulation 
has become a valuable tool for studying the dynamic responses of 
systems that consist of a large number of interacting processes of 
such a complex nature that an analytical solution is practically 
impossible. 

In a computer simulation the object system is represented by a 
computer program which describes the system components, the process 
relationships, and the environment. 

CONTINUOUS AND DISCRETE MODELS 

Simulation models are classified into two major types:  con- 
tinuous change models and discrete change models.  Continuous change 
models are those in which the system entities are considered in the 
aggregate and in a state of continuous interaction. These systems 
are generally represented mathematically by a set of n"* order 
differential equations that define the rates at which the system 
variables change with time, given specified constraints and 
equilibrium relationships.  Continuous change models have histori- 
cally been simulated on analog computers because of their continuous 
mode of operation. But in many cases applications are restricted 
because of hardware limitations and lack of accuracy. Recently, 
digital-analog simulator programs have been developed which simulate 
the elements and organization of analog computers.  These allow 
continuous system problems to be programmed for execution on 
digital computers in a manner approximating analog computer problem 
formulation. A discuss.ion of this topic is beyond the scope of 



this paper; papers by Clancy and Fineberg and by Brennan and 
Linebarger provide a comprehensive treatment of the subject. 
Languages developed for continuous change simulations are identified 
and listed for reference in Table I, 

Systems which are characterized by changes which are predomi- 
nantly discontinuous are called discrete systems. In this view the 
interaction between state variables occurs infrequently and 
"instantaneously." In reality, of course, all activity is con- 
tinuous.  Continuous activity is approximated by computing state 
changes only at the instants of interaction and assuming no activity 
takes place between interaction times.  Discrete systems are 
modeled as network flow systems.  A network flow system is comprised 
of components which perform functions according to specified oper- 
ating rules.  Items flow through the system according to prescribed 
paths and are processed, giving rise to sequences of events (i.e., 
changes in system state) which frequently occur in a stochastic 
manner. 

DISCRETE SIMULATION LANGUAGES 

Historical Background 

Discrete systems simulation traces its early origin to the 
field of operations research and in particular to the statistical 
technique of distribution sampling.  In the early 1950's Monte 
Carlo techniques were applied without benefit of a computer to the 
study of the dynamic behavior of physical systems.  With advances 
in the field of computer technology, these studies became prime 
candidates for automation.  The first programs were special-purpose 
models, coded in assembly or compiler language, each designed to 
solve a specific problem.  As experience was gained techniques 
applicable to specific classes of problems (i.e., job-shop and 
inventory management simulations) were abstracted and implemented 
to produce special purpose computer simulation packages.  To use 
these the analyst supplies parameter values and control variables 
which are specific to his application. 

General-purpose simulation programming languages applicable to 
a wide range of discrete-change models originated in the late 1950's 
and have evolved since then through the incorporation of advanced 
concepts, as theories of simulation have been formalized. 

Common Features 

Simulation languages are specialized algorithmic languages 
which provide features of particular relevance to simulation.  While 



Table I 

Continuous Change Simulation Languages/Packages 

ASTRAL 

BHSL 
BLODI 

360/CSMP 
COBLOC 
CSSL 

DAS 
DEPI 
DEPI-4 
DES-1 
DIAN 
DIDAS 
DSL/90 
DYANA 
DYNAMO 
DYNASAR 
DYSAC 

EASL 
FORBLOC 
HYBLOC 
JANIS 

MADBLOC 
MIDAL 
MIDAS and ENLARGED MIDAS 
MIMIC 

PACER 
PACTOLUS 
PARTNER 
PLIANT 

SADSAC 
SALEM 
SCADS 
SIMTRAN 
SLANG 
SLASH 
SPLASH 

TAF 
UNITRAC 
WIZ 



they differ in their conceptualization of a "world view" and in 
their manner of implementation, all provide the necessary facilities 
to describe the object system's static and dynamic structure.  The 
basic components of a simulation language include: 

1. A data structure which allows for the identification, 
description, classification and manipulation of the constituent 
entities of a system. 

2. A collection of commands to modify the state of the system. 

3. A master timing routine to provide the sequencing control. 

4. A capability to generate pseudo-random numbers from speci- 
fied probability distributions. 

5. Facilities for the aggregation and presentation of the 
statistical results. 

WORLD VIEW 

A description of a real world system consists of two prime 
components: 

1. A static representation. 

2. A dynamic representation. 

Kiviat states:  "The static structure of a simulation model is 
a time-independent framework, within which system states are defined... 
Dynamic system processes act and interact within a static data 
structure, changing data values and thereby changing system states." 

Static Representation 

The static structure of a system is described in terms of the 
objects which it contains and the relationships that exist between 
objects.  Objects are characterized by attributes or properties 

2 
Krasnow and Merikallio define "world view" to be "the conceptual 
foundation upon which a representation of a system may be built." 
Howard S. Krasnow and Reino A. Merikallio, "The Past, Present, and 
Future of General Simulation Languages," Management Science, Vol. 11, 
No. 2, November 1964, p. 237. 

3 
"Philip J. Kiviat, "Digital Computer Simulation:  Computer Program- 
ming Languages," RAND Memorandum RM-5883-PR, January 1969, p. 10. 



whose values may be permanent or temporary.  The status of an object, 
at any point in time, is uniquely defined by the values of its 
attributes. 

Because of the large number of objects in a typical system and 
because of a lack of uniqueness, objects are aggregated into classes. 
A system is defined in terms of its constituent classes and a quali- 
tative delineation of the set of attributes associated with each. 
The actual status of each object is defined dynamically as the simu- 
lation model is exercised. 

The data structures onto which these status descriptions are 
mapped and the referencing techniques are functions of the language 
design.  Many languages allow for the dynamic creation and destruction 
of objects and provide the capabilities to form disjoint classes of 
objects based on differences in status.  Ordered sets are used for 
representing queues and files of objects.  The languages provide 
operators of varying power to manipulate set memberships. 

Dynamic Structure 

The dynamic structure of a system is concerned with representing 
the possible state changes within a system and the sequential relation- 
ships that exist between them.  Every simulation program is comprised 
of modules which describe specific system behavior patterns and an 
executive routine which provides the time mechanism and the control 
to assure the execution of the modules in the proper time, logic and 
priority sequence. 

Simulation languages may be classified according to their prin- 
cipal dynamic modeling orientation: 

1. Event-oriented languages. 

2. Activity-oriented languages. 

3. Process-oriented languages. 

An event represents a change in state.  It is conceptualized as 
occurring instantaneously and taking no time.  In contrast, an 
activity represents a time consuming action within the system and is 
bounded by two events, namely the initiation and the termination of 
the action.  A process is a set of events which are associated with 
a specific system behavior pattern.  It is like an activity in that 
it exists over a period of simulated time.  The characteristics of 
some physical systems are such that they would dictate the choice of 
one language class as dominant for the execution of a simulation 
study. 

7 



The terminology event-oriented simulation derives from the fact 
that the model is segmented into routines called events.  These 
routines consist of procedural statements describing the instan- 
taneous changes in system state which result from the occurrence of 
the subject events. An event is scheduled (i.e., assigned a time of 
occurrence) by special language statements either when the logic of 
the model indicates that all necessary conditions have been satisfied, 
or alternatively, when a random drawing from a specified statistical 
distribution indicates that it should be scheduled.  Schedule 
occurrence times are maintained on an event list.  It is the function 
of the executive program to maintain both the currency and the 
chronology of the list and to execute the proper subprogram as each 
event "occurs" in simulated time. 

An activity-oriented simulation language differs from an event- 
oriented one in that it contains no explicit scheduling statements 
within its repertoire.  Under this conceptual approach, the model 
is segmented into modules called activities.  A module consists of 
both (1) a description of the time consuming action which produces 
change in system status, and (2) the set of conditions upon which 
the initiation of the action depends.  Within activity modules 
element clocks are maintained which indicate the time at which 
entities associated with the activity are due to change state.  The 
action section is comprised of a set of state-changing and time- 
setting instructions. 

In an activity-oriented model the scheduling is achieved via 
the mechanism of an activity scan.  Before each simulated time 
advance, the control program scans all activities, testing the con- 
ditions and determining the potential of each for execution.  If 
all test conditions are satisfied, the action section is executed, 
otherwise control is transferred to the next activity.  This pro- 
cedure is repeated in cyclic fashion to account for the inter- 
dependency between the activities.  To improve operational efficiency, 
some activity-oriented languages also incorporate the feature of an 
event list to schedule events which are non-interactive. 

The third orientation for the modeling of system dynamics is 
the process concept.  A process, as previously defined, is a set of 
events which are descriptive of a specific system behavior pattern. 
It represents a combination of both the activity and event formula- 
tions.  In a process-oriented simulation the model is segmented into 
units called processes each of which consists of multiple event 
subprograms.  The execution of a process extends over system time 
and consists of alternate periods of activity and inactivity.  Only 
one process is in the active state at any point in time but processes 
interact and are joined together by time-dependent or status-dependent 



conditions.  Thus the outcome of a simulation study is described by 
the sequence of active phases of the component processes.  This mode 
of operation has been defined as quasi-parallel. 

In addition to arithmetic and logic statements, sequencing 
statements are provided which cause the transfer of control from 
process to process.  The execution of a sequencing statement causes 
control to leave the process, and the location following such a 
statement is defined as a reactivation point.  Control is transferred 
back to this point at the initiation of the next active phase of the 
process.  Proper sequencing is maintained by an executive program. 
Event-scheduling techniques are employed when a time-oriented 
scheduling statement is encountered, and an activity-scan is 
initiated when a condition-oriented scheduling statement is encoun- 
tered. 

This method has some obvious advantages.  It allows for the 
concise notation of activity-oriented languages which is useful in 
describing highly interactive processes and takes advantage of the 
increased run time efficiency of event scheduling.  The result is 
a highly sophisticated executive program. 

Some authors further classify simulation languages as machine 
or material based.  If the major emphasis of the system study is 
the observation of actions executed by entities, the system is con- 
sidered machine oriented; conversely, if the emphasis is on the 
observation of actions performed upon entities, the system is 
material oriented. 

SIMULATION LANGUAGE TECHNIQUES 

Timing Concepts 

In a computer simulation the independent variable is time.  A 
master timing routine must provide the point of reference within 
the model to control the advancement of time.  It must also provide 
the scheduling logic to control this advancement in a manner con- 
sistent with the time and sequence relationships between the com- 
ponents of the simulated system.  The problem is complicated by the 
fact that computers are sequential in nature while real world 
physical systems are sometimes characterized by the occurrence of 
many parallel and interdependent activities. 

Basic to the representation of simulation time is the concept 
of a master simulation clock.  It is a variable which 13 successively 
updated to represent the current point on the simulation time scale. 



The first simulation clocks were counters that were advanced in 
fixed increments representing the basic time unit of the simulation 
(i.e., seconds, minutes, hours, etc.).  The system was examined every 
unit of clock time to determine whether any events were due to occur. 
Fixed time increment methods are computationally efficient in the 
simulation of systems in which events occur with predictable 
regularity.  When this is not the case, the method leads to long 
periods during which the computer is "idle." 

An alternative concept for controlling time has been called 
next-event or critical event simulation.  This method involves 
scanning the event list and advancing the master simulation clock 
by the amount necessary to cause the occurrence of the next most 
imminent event. In this manner the program is stepped from event 
to event, maximizing operational efficiency by compressing those 
increments of time in which no state changes occur.  Since most 
physical systems are categorized by the occurrence of non-periodic 
random changes, the variable time increment method of controlling 
time has been implemented in the vast majority of discrete simu- 
lation languages. 

List Processing 

The state of a system at any point in time is completely 
specified by the list of entities, their associated attributes and 
set memberships.  The process of simulation consists of changing 
the relationships among these data as a function of time. Hence, 
data structures and list processing techniques are of importance 
for accessing and updating this information. 

List processing techniques are utilized in the representation 
and management of queues and in the scheduling of events.  Lists 
are series of words in non-contiguous storage whose relationships 
are maintained by the use of pointers.  Chaining techniques 
associate entities with their attributes and set memberships.  This 
capability facilitates the ability to change set memberships, to 
scan for entities possessing specific attributes, and to maintain 
queue discipline. 

Computer storage is usually dynamically allocated.  This is 
appropriate since the dynamic nature of simulation is such that the 
lengths of queues and set memberships are variable and change as a 
function of time. 

10 



Random Number Generation 

Simulation studies are characterized by the random and probaba- 
listic occurrence of events.  Basic to simulation languages is the 
incorporation of techniques to allow for the generation of random 
variables, the transformation of these into variates from specified 
statistical distributions, and the maintenance of independent and 
reproducible streams of random numbers.  The following are representa- 
tive of the distributions commonly available in discrete simulation 
languages: 

1. Normal 

2. Foisson 

3. Geometric 

4. Exponential 

5. Rectangular 

11 



SECTION III 

SIMULATION LANGUAGE/PACKAGE COMPENDIUM 

This section presents the results of a survey of simulation 
languages/packages which might have applicability in the simulation 
of ADPE systems.  While some languages are not applicable or are 
obsolete, they have been included for historical reasons. 

The languages/packages have been classified by major orienta- 
tion as: 

1. General Purpose Simulation Languages 

2. Computer Systems Simulation Languages 

3. Computer Systems Simulation Packages 

Each language is described within a common format: 

Background Information 
Author 
Originating Organization 
Date of Release 
Status 
Machine Implementations 

Major Features 
Applications 
References 

The information is as described in the literature.  No attempt 
has been made at verification; and especially in the matter of ma- 
chine implementation, the data may be incomplete. 

As stated previously, Volume 2 of this report will cover in 
depth the use of simulation languages in the modeling of computer 
systems.  Therefore, information relevant to applications is not 
consistently included and is of a general and cursory nature. 

12 



GENERAL PURPOSE SIMULATION LANGUAGES 

13 



AS - An ALGOL Simulation Language 

1. Background Information 

Author:  R. D. Parslow 

Originating Organization: Brunei University, London 

Date of Release:  1967 

Status:  Under continuous revision 

Machine Implementation: Written for KDF9 at National Physics 
Laboratory, adaptable to any machine 
with ALGOL compiler. 

2. Major Features 

AS, an activity oriented language, consists of a collection of 
ALGOL procedures designed to provide the basic capabilities necessary 
for simulation.  It enables the user to write a simulation program 
in ALGOL incorporating the relevant modules from the package.  Its 
method of operation is derived from GSP (General Simulation Program) 
by K. D. Tocher. 

Matrix notation is used to record the system elements, both 
static and dynamic, together with their associated data. 

The system elements are defined as follows: 

a. ents — time dependent entities 

b. depots — serve as records or represent stores 

c. activities 

b act — bound activity, set to operate on a partic- 
ular entity at a predetermined time 

c act — conditional activity, requires availability 
of several entities 

d. pools — sets of entities possessing a common attribute; 
pools may themselves consist of sets of pools 

14 



The matrix notation facilitates the dynamic operation of the 
system and provides easy access to such information as: 

a. Entities 

* status - busy or idle 

* time of completion if busy 

* next scheduled b act 

* committal parameters (i.e., distribution type and para- 
meters, randon stream, etc.) 

* final location in pool at completion 

b. Pools 

* number of members 

* earliest time of availability 

* reference number of earliest available member 

c. Activities 

b act 

* committal parameters for entities engaged in 
multiple activities 

c act 

* records ents or pools required for c acts 

d. Utilization of entities and pools 

* total number of activities engaged in 

* total committal time 

The phase structure is controlled by the procedure "next" which 
is called at the completion of each activity block in the object pro- 
gram.  It controls the cycles of four phases of the simulation: 

15 



a. T-Phase - advances time to the next event.  This is facil- 
itated by grouping time-dependent entities into 
pools.  The minimum time for each pool is recorded 
in the matrix. 

b. B-Phase - scans all entities to enter all bound activities 
due and to release working entities whose committal 
time is over.  A tolerance value may be input which 
allows the grouping of all events due to occur 
within the specified AT. 

c. C-Phase - causes transfer to the first conditional activity. 
Conditions are tested by a Boolean procedure 
"c act."  If satisfied:  activity is committed. 
If not satisfied:  enter A-Phase which tests if 
unavailable entities will be free after present 
task and if so reserves them for the specific 
c act. 

After the execution of the C-Phase, control is transferred back to 
the T-Phase. 

The major emphasis in the development of the language was to 
provide a framework within which simulation studies could be easily 
formulated and speed of operation was considered to be of secondary 
importance. 

Reference 

R. D. Parslow, "AS:  An ALGOL Simulation Language," in J. N. Buxton, 
ed., Simulation Programming Languages, North Holland, Amsterdam, 
1968, pp. 86-100. 

16 



CLP - The Cornell List Processor 

1. Background Information 

Authors:  J. W. Conway 
J. J. Delfausse 
W. L. Maxwell 
W. E. Walker 

Originating Organization:  Cornell University, Department of 
Engineering 

Date of Release:  1964 

Status:  Current 

Machine Implementation:  Control Data 1604 
Burroughs 220 

2. Major Features 

CLP was developed as a teaching vehicle to introduce the concepts 
of simulation and other list processing techniques in a language that 
did not require a high level of programmer expertise.  This was accom- 
plished by including CORC, a general algebraic language, as a subset 
of CLP. 

The major feature of the language is a special purpose data 
element called an entity which has associated properties called 
attributes.  Entities are dynamic in that the number varies as a 
function of time.  Special language statements allow for the creation 
and destruction of entities and for the creation of sets ordered on 
the value of a particular attribute of its component members.  The 
dynamic assignment of core storage and overlay techniques make pos- 
sible the ephemeral nature of the data structure. 

CLP derives some of its concepts from SIMSCRIPT, in particular 
it incorporates a Report Generator to specify variable output formats. 
It does not include a timing routine and this function remains a 
programmer responsibility. 

Reference 

R. W. Conway, J. J. Delfausse, W. L. Maxwell, W. E. Walker, "CLP - The 
Cornell List Processor," Communications of the ACM, Vol. 8, No. 4, 
April 1965, pp. 215-216. 

17 



CSL - Control and Simulation Language 

1. Background Information 

Authors: J. N. Buxton 
J. G. Laski 

Originating Organization:  CSL - ESSO Petroleum Co., Ltd. and 
IBM United Kingdom, Ltd. 

CSL2 - IBM United Kingdom, Ltd. 
ECSL - Courtaulds, Ltd. and 

Honeywell Controls, Ltd. 

Date of Release:  1963 

Status:  CSL Current 
CSL2 in Preparation 
ECSL Current 

Machine Implementation:  CSL - IBM 7090 
CSL2 - IBM 7090/7094 
ECSL - Honeywell 400 and 200 Series 

2. Major Features 

CSL is a programming language designed to simulate industrial 
scheduling and waiting line systems involving logical decisions of 
great complexity.  It is a descendant of GSP; and although developed 
independently, it has many conceptual features similar to SIMSCRIPT. 

The language was designed as an experiment to test the premise 
that a combination of the techniques of queueing theory with those 
of predicate calculus would provide a capability for the formulation 
and solution of complex logical problems. As a result the principal 
feature of CSL is the concept of sets whose members are entities 
which are in a specific state or possess a common attribute.  Since 
the order in which entity names are placed on a set is preserved at 
all times, a set can be used to represent a queue of its members. 
The language offers extensive facilities for set creation and manip- 
ulation.  The state of a system at any point in time is defined by 
lists of entities belonging to each set in the system and by their 
attribute values stored in arrays. 

18 



A CSL program is divided into sectors called "activities" which 
completely describe all possible operations within the system.  Each 
activity includes a set of conditions which must be satisfied before 
a specific operation of the system can be initiated and a specification 
of state changes which are enacted if the conditions are satisfied. 
This type of sequencing is defined as interrogative sequencing and 
is necessitated by the inability to predict in advance the system 
time at which a given event should take place. 

Time in a CSL simulation is controlled via the mechanism of T- 
cells which are associated with entities and indicate the time at 
which the entity is next due to change its state.  All time values 
are relative to the present simulated instant.  Time advancement is 
controlled via a repeated two-phase process.  During Phase 1 all time 
cells are scanned to locate the smallest, positive, non-zero value. 
Simulated time is advanced by this amount, and all T-cells are corre- 
spondingly reduced.  Phase 2 consists of an attempt to execute each 
activity in sequence.  During the activity scan the conditions for 
each activity are tested, and unless explicitly stated otherwise the 
standard path is:  after success go to next statement, after failure 
go to next activity.  Each instance of an activity constitutes an 
event.  To allow for interdependency between events, the RECYCLE 
statement causes the activity list to be rescanned at the same 
simulated time. 

The form of arithmetic and assignment statements is similar to 
FORTRAN.  In the initial version of the language, CSL statements were 
first compiled into FORTRAN statements before compilation into IBM 
7090 machine code.  Newer versions of the language, CSL2 and ECSL 
(Extended Control and Simulation Language), have abandoned this 
approach; and compilers are available to translate directly into 
assembly language for IBM and Honeywell computers respectively. 
This is a more efficient mode of operation and allows for extensions 
to the language not previously possible because of FORTRAN restrictions. 

3.  Application 

In an extract from a forthcoming work by Buxton and Laski, the 
authors express the opinion that the language is not well suited to 
describing problems which are concerned with flow and in which the 
logical decisions made are not of great complexity.  Examples cited 
are the flow of information through a computing system or the flow 
of work through a single production unit. 

19 



References 

J. N. Buxton and J. G. Laski, "Control and Simulation Language," 
Computer Journal, October 1962, pp. 194-200. 

J. N. Buxton, "Writing Simulations in CSL," Computer Journal, 
August 1966, pp. 137-143. 

A. T. Clementson, "Extended Control and Simulation Language," 
Computer Journal, November 1966, pp. 215-220. 

20 



ESP - The Elliott Simulator Package 

1. Background Information 

Author:  J. W. J. Williams 

Originating Organization:  Elliot Scientific Computing Division 

Date of Release:  1964 

Status:  Current 

Machine Implementation:  Elliot 503 and 803 

2. Major Features 

ESP, an activity oriented language based on GSP, is comprised 
of a set of ALGOL procedures. 

The system concept is that of a set of actions which manipulate 
a set of objects.  Objects are represented numerically, and the 
actions are represented by program segments.  Actions have been 
categorized into: 

a. delayed — scheduled to occur at a specific time 

b. conditional — dependent upon the satisfaction of a set 
of logical conditions 

Each delayed action is represented by a program segment, while all 
conditional actions ace grouped into a single section. 

The process by which the occurrence of a delayed action is 
scheduled is referred to as "calling" that action.  Any action may 
call any other including itself.  The statement "call (i,t)" 
schedules the ith delayed action to be executed after t time units 
have elapsed.  Parameters are transferred via the "send and get" 
arrays and are made available at the time of scheduling.  This 
produces sets of local variables defined in time.  The use of 
sophisticated sorting routines and dynamic storage allocation 
provides for multiple occurrence of each event with independent 
sets of parameters. 

21 



The ESP program controls the maintenance of simulation time and 
the correct sequencing of actions.  This is accomplished in the 
following manner.  A list of times of pre-scheduled (i.e., delayed) 
actions is scanned by a procedure called "next," and the action(s) 
associated with the minimum time is executed.  After this the condi- 
tional actions are tested sequentially, and any whose criteria for 
operation are satisfied are also executed.  The two stage cycle is 
then repeated. 

Additional features include facilities for generation of inde- 
pendent streams of random numbers, construction of histograms, and 
manipulation of queues. 

Reference 

J. W. J. Williams, "ESP - The Elliott Simulator Package," Computer 
Journal, January 1964, pp. 328-331. 

22 



FORSIM IV 

1. Background Information 

Author:  E. Famolari 

Originating Organization:  The MITRE Corporation 

Date of Release:  1964 

Status:  Current 

Machine Implementations:  IBM 7030 GE 635 
IBM 7090 CDC 3400 
IBM 7094 CDC 3600 
IBM 360/50 

2. Major Features 

FORSIM IV is a subroutine-structured general purpose simulation 
language written (with very minor exceptions^) in FORTRAN IV.  With 
minimal effort it can be adapted to any computer with a FORTRAN IV 
compiler and may therefore be considered "machine-independent." 

The conceptual framework of the language is based on that of 
the Control and Simulation Language (CSL).  However, it provides 
additional capabilities, and the modular structure allows for easy 
expansion of the command set. 

FORSIM IV employs the concepts of entity, class, and set with 
the standard definitions.  Sets serve the same function as in GPSS; 
that is, as stores, facilities, and queues.  The set of subroutines 
which perform the actions and tests associated with the relationships 
between sets, entities, and attributes is classified as Set-Entity. 
It provides the unifying concept for the 50 subroutine components 
of the package, allowing the entities to be accessed by the use of 
index values.  A complete classification of the command routines is: 

a. Set-Entity 

b. Time 

The debug routine and random number generators were written in 
STRAP, the 7030 machine code. 

23 



c. Histogram 

d. Statistical 

e. Random number and debug 

Set-Entity routines are further classified as Action routines, which 
perform unconditionally, and Dual routines, which perform only if 
certain logical conditions are met. 

The I/O, arithmetic, decision logic, and normal processing 
functions are provided by FORTRAN IV. The program consists of the 
appropriate FORTRAN IV statements and FORSIM IV subroutines organized 
in a manner which reflects the logic of the simulated system.  In 
general terms the program will consist of initialization, working, 
and termination sections. The working section is comprised of a 
sequence of routines each describing a unique type of system action 
involving time-dependent or dynamic elements of the system.  Each 
routine is termed an Activity, and the sequences is called a List. 

Time is advanced in variable time increments to the next most 
imminent action time.  The dynamics of the language allow time to 
be associated with both entities and activities. A recycle feature 
allows an additional cycle through the activities list with the 
simulation time held constant. 

Reference 

E. Famolari, "FORSIM IV User's Guide SR-99," The MITRE Corporation, 
February 1964. 

24 



GASP - General Activity Simulation Program 

1. Background Information 

Author: Original Version: P. J. Kiviat 
Revised Version: J. Belkin & M. R. Rao 

Originating Organization: United States Steel Corporation 
Applied Research Laboratory 

Date of Release: Original Version:  1963 
Revised Version:  1965 

Status:  Current 

Machine Implementation:  IBM 1130, 1620, 1830, 7040/7044, 7090/7094 
GE 225, 415 
XDS 930 
NCR 315 
XDS Sigma 7 
Burroughs 3500, 5500 
CDC 3400, G-20 

2. Major Features 

GASP consists of a collection of 23 FORTRAN subroutines designed 
to be used in FORTRAN-written simulation programs. These routines 
are representative of operations common to computer simulations. A 
simulation utilizing GASP consists of a set of FORTRAN subroutines, 
called GASP events, that are organized via the GASP EXECUTIVE, which 
maintains the temporal order of the model. This approach has the 
dual advantages of modularity and machine independence. 

GASP provides the facilities to: 

a. control the sequence of activities 

b. maintain list structures 

c. sample from statistical distributions 

d. aggregate results and compute statistics 

e. automatically monitor program variables and flow 

25 



Special symbols and GASP-orlented conventions are used to 
describe system behavior in the form of flow charts which delineate 
operations, decisions, transfers and control. These flow charts are 
then translated into FORTRAN statements. 

The basic component in GASP is termed an element.  It may be 
permanent or temporary and is described by a set of attributes.  The 
logic that describes the interaction of elements and the attendant 
change of system status is called an event.  It occurs instantaneously 
in time and represents the beginning and/or end of an activity.  Each 
event is written as a separate FORTRAN subroutine which is executed 
when the event "occurs" in simulated time. 

It is the function of the GASP executive program to maintain the 
proper chronology between the events. This is achieved via an "event 
list" ordered on the time of occurrence of each scheduled event. 
GASP is a variable-increment time model in which the scheduling of 
events is the only mechanism of advancing time. This is accomplished 
within GASP events; each event is capable of scheduling itself or any 
other event. 

Reference 

P. J. Kiviat, "GASP - A General Activity Simulation Project," 
available from Applied Research Laboratory, United States Steel, 
Monroeville, Pa., 1963. 

26 



GPSS - General Purpose System Simulator 

1.  Background Information 

Authors! R. Efron 
G. Gordon 

Originating Organization: 

GPSS (B5500) 
GPSS III 
GESIM 
GPS-K 
GPSS/360 
Flow Simulator 
GPSS II 
GPDS 

Burroughs, GPSS/360 capability 
Control Data Corp. 
General Electric, GPSS/360 capability 
Honeywell 
IBM 
RCA, GPSS/360 capability 
Univac, FORTRAN implementation 
Xerox Data Systems, GPSS/360 capability 

due February 1971 

Date of Release:  Several versions, the first of which appeared 
in the early 1960's 

Status: Maintained and supported by IBM 

Machine Implementation: 

GPSS 
GPSS III 
GESIM 
GPS-K 
GPSS/360 
Flow Simulator 
GPSS II 
GPDS 

2. Major Features 

B5500 
CDC 3600 
GE 600 series 
Honeywell 200 series 
IBM 360 
RCA Spectra 70 
Univac 1107-1108 
XDS Sigma 5, 7 

GPSS has been extended and improved since its origination, and 
present implementations (e.g., GPSS/360) provide a versatile and 
fairly powerful language which can be learned and applied by non- 
programmers in a rather minimal amount of time.  These desirable 
characteristics derive primarily from the block diagram nature of 
the language.  The system being simulated is modeled L'.ftng a fixed 
set of predefined block types. These block types represent the 

27 



various actions and functions occurring in real systems.  The inter- 
connections between these block types in a particular system model 
reveal the structure of the system; i.e., the ordering of the succession 
of events.  Since there exists a one-to-one correspondence between 
blocks and GPSS coding, a model can be encoded directly from its 
diagram.  GPSS is, therefore, a highly structured language relying 
on predefinition for power and simplicity. 

GPSS has other advantages, particularly to the novice.  Statis- 
tical analyses of system events are provided automatically, along 
with a rather extensive set of error diagnostics.  For all the above 
reasons, GPSS has achieved the wide acceptance indicated by the machine 
implementation schedule shown above.  It is certainly beneficial to 
the GPSS user that he can find GPSS/360 capability with machines made 
by Burroughs, GE, RCA, and XDS, as well as IBM. 

On the negative side, GPSS does suffer some drawbacks relative 
to other alternatives. The operations specified by GPSS coding are 
executed interpretively; i.e., GPSS programs are not compiled or 
assembled, but are examined by the IBM GPSS program.  The actions 
specified by the user coding are carried out under control of this 
IBM Program.  Execution of GPSS simulations, therefore, always requires 
submission of a source deck (the only object program is that supplied 
by IBM).  The interpretive execution of this source deck usually 
requires more computation time than would be required by simulation 
languages which do not operate interpretively. Also, this contributes 
to GPSS core storage requirements, which are generally in excess of 
the alternatives.  The data structures offered by GPSS are not as 
powerful as those available in many other simulation languages. 
Since simulation is performed by the time-phased alteration of set 
relationships, this disadvantage to GPSS can become important when 
the modeling requirements become complex. 

GPSS, therefore, permits the rapid development of a simulation 
capability from negligible beginnings; it facilitates the generation 
of workable programs (and hence answers) in minimum elapsed time, 
and it provides a common standard language which can be used by a 
large number of machines and personnel.  It is, however, somewhat 
inefficient, cumbersome, and rigid. 

28 



References 

Arnold Ockene, "Losing Business? Simulation Makes It Easier to 
See Why," Computer Decisions, March 1970, pp. 36-40. 

R. Efron and G. Gordon, "A General Purpose Digital Simulation and 
Examples of Its Applications," IBM Systems Journal, Vol. 3, No. 1, 
1964, reprinted in Computer Simulation Techniques, by Thomas H. Naylor, 
Joseph L. Balintfy, Donald S. Burdick, and Kong Chu, John Wiley & Sons, 
1966, pp. 248-270. 

"General Purpose Systems Simulator II, Reference Manual," IBM. 

"General Purpose Simulation System/360, Application Description," 
H20-0186-2, IBM. 

"General Purpose Simulation System/360, Introductory User's Manual," 
H20-0304-1, IBM. 

"General Purpose Simulation System/360, User's Manual," H-20-0326-2, 
IBM. 

29 



GSP - General Simulation Program 

1. Background Information 

Author:  K. D. Tocher 

Originating Organization:  United Steel, Ltd. 

Date of Release:  1960 

Current Status:  GSP MK II 

Machine Implementation:  Ferranti Pegasus 
Elliott 503 

2. Major Features 

GSP represents one of the pioneering works on simulation languages. 
It is tersely written and intended primarily for mathematically-oriented 
users. 

Particularly designed for the simulation of systems found in 
manufacturing plants, the structure consists of representing the 
system as a collection of machines in various states.  The definition 
of a machine may encompass any system entity.  To this extent, GSP 
is considered a "machine-based language"; i.e., emphasis is placed 
on activities executed by_ entities.  Formulation of the model consists 
of defining the set of machines, the initial conditions, rules gov- 
erning their operation, and a description of the actions which they 
perform. 

The descriptive unit of GSP is called an activity; each execution 
of an activity constitutes an event; i.e., a change in the state of 
a machine.  The user defines the necessary states of machines for 
activities to commence, and the conclusion is determined probabilis- 
tically. 

The scheduling of a machine to its next activity is referred to 
as engaging the machine.  Machines are considered to be either 
committed or available, and their status may be interrogated. 

30 



Activities are categorized as: 

a. B-activity - A bound activity consists of a set of state- 
ments which describe the changes to be made in the state of the plant 
when a machine becomes available. 

b. C-activity - In addition to a delineation of the state 
changes, a conditional activity consists of a set of statements which 
specify the circumstances under which it may occur. 

GSP is principally an activity-oriented language, but it employs 
both activity scan and event-selection in its control algorithm.  It 
operates in a three phase manner: 

a. Phase A - Scans the list of engaged machines and advances 
the clock time to the earliest time of machine availability. 

b. Phase B - Bound activities associated with available machines 
are executed. 

c. Phase C - Scans list of conditional activities and performs 
all possible state changes. 

Both references present the language specifications in a level 
of detail beyond the scope of this paper.  Reference 2 deals with MK 
II, the revised version of GSP. Advanced language features are dis- 
cussed with reference to MK I, MONTECODE, SIMSCRIPT, CSL and RSP.1 

In summary, MK II eliminates the restrictions of the MK I version by 
providing more sophisticated techniques for activity selection, set 
manipulation, monitoring facilities, sampling procedures and report 
generation. 

References 

K. D. Tocher and D. G. Owen, "The Automatic Programming of Simulations," 
Proceedings of Second International Conference on Operations Research, 
1960, pp. 50-68. 

K. D. Tocher and D. A. Hopkins, "New Developments in Simulation," 
Proceedings of Third International Conference on Operations Research, 
1963, pp. 832-848. 

Recursive Simulation Program is an interim program wit*1 limited 
facilities which reduces a simulation to a recursive calculation in 
order to obtain a rapid appraisal of system behavior. A more compre- 
hensive program is in preparation. 

31 



MILITRAN 

1. Background Information 

Author:  Shapiro 

Originating Organization:  Systems Research Group, Inc. 

Date of Release:  1964 

Current Status:  Obsolete 

Machine Implementation:  IBM 7090/7094 

2. Major Features 

Although MILITRAN is considered obsolete, it is included in this 
compendium for historical reasons.  It is a general purpose, problem- 
oriented language which was designed to facilitate the simulation of 
military systems.  The development of the language was jointly spon- 
sored by the Office of Naval Research and the Air Force Systems Command 
(ESD). 

Its special features include object modes, list processing state- 
ments, event processing procedures, special retrieval arrays, etc. 

The basic elements in the language consist of individual objects, 
object types and object classes. The essence of simulation consists 
in maintaining the status and interaction of the participating objects 
by the processing of events. An event is categorized by time of 
occurrence, participating objects, necessary conditions, and asso- 
ciated processing. MILITRAN classifies events as permanent and 
contingent.  They differ in the manner of occurrence; permanent 
events perform activities which cannot be readily scheduled but occur 
at periodic intervals, while contingent events occur at a critical 
juncture in time and are scheduled when circumstances dictate. 

The CONTINGENT EVENT statement fulfills the following functions: 

1. Defines an event type. 

2. Associates with the event a list of potential event 
occurrences, each of which has the following parameters: 

32 



Pj - scheduled-event time 

P_ - attacking object 

P- - target object 

P, - 
Optional 

3.  Delineates the program steps representative of the 
occurrence of the event. 

The potential events are generated dynamically as the simulation 
progresses through time.  Thus, at any point in the simulation the set 
of future potential events is defined by the set of all entries on 
CONTINGENT EVENT lists.  A PERMANENT EVENT does not necessarily 
require a list. 

The NEXT EVENT statement is used to start the event processing 
and to maintain the proper chronological sequencing.  Permanent events, 
if they exist, are executed in sequence and always precede every con- 
tingent event.  After the completion of this phase the contingent 
event list is scanned (either in its entirety or a specified subset 
thereof), and the event with the minimum time component on its list 
is selected for processing. 

Reference 

"MILITRAN Programming Manual," Systems Research Group, Inc. 
Report ESD-TDR-64-320. 

ESD 

33 



MONTECODE 

1.  Background 

Authors:  D. H. Kelley 
J. N. Buxton 

Originating Organization: British Iron and Steel Research 
Association (BISRA), United Kingdom 

Date of Release:  1959 

Status:  Unknown 

Machine Implementation:  Ferranti Pegasus I 

2. Major Features 

Montecode, one of the first simulation languages, was developed 
in England in 1959. Many of the later languages represent an exten- 
sion of the basic concepts of Montecode.  It is an interpretive 
language and was developed as a means of expediting the Monte Carlo 
simulation of industrial scheduling problems.  The basic language 
features of Montecode are similar in many respects to those of 
Autocode. 

The distinguishing feature of Monte Carlo simulations is that 
probability distributions are used to determine the inter-arrival 
and service times of each independent variable. Montecode provides 
for the random sampling from distributions, the maintenance of queues, 
sequencing of events based on the critical event principle, and the 
presentation of results in histogram form. 

The controlling elements in the simulation are defined as the 
"action times." Each action time is associated with an event and 
indicates the time, relative to current simulation time, when the 
event will next occur. When the action time becomes zero, the event 
"occurs"; i.e., a programmed subroutine is executed. 

Reference 

D. H. Kelley and J. N. Buxton, "Montecode - An Interpretive Program 
for Monte Carlo Simulation," Computer Journal, July 1962, pp. 88-93. 

34 



NSS - New Simulation System 

1. Background Information 

Authors:  K. R. Blake 
6. P. Blunden 
K. S. Krasnow 
B. M. Leavenworth 
L. J. Parente 
S. C. Pierce 

Originating Organization:  IBM Corp., Advanced Systems 
Development Division 

Date of Release:  Not released 

Status:  IBM Proprietary 

Machine Implementation:  A prototype processor currently 
being implemented 

2. Major Features 

NSS is an experimental language which was designed for use in 
the representation and simulation of systems with a high degree of 
interaction and parallelism; the authors consider multiprocessing 
to be a representative example. Additionally, the language incor- 
porates features which easily accommodate the experimental nature 
of simulation studies. 

The language is process-oriented; and although patterned after 
PL/I, it is based on its own data and program structures. 

In the context of this language, an entity is any system com- 
ponent, static or dynamic, that can be modified, categorized or 
observed.  By this definition, sets and processes are classified as 
entities.  The characteristics of an entity are described by attri- 
butes whose values, taken in the aggregate, completely define the 
current state of the system. 

As previously stated the unifying concept of the language 
classifies a process as an entity. A process is defined as an 
entity that exists over time and possesses dynamic characteristics 

35 



that render it capable of altering the system state (such as creating and 
destroying entities, altering set membership, modifying the state of 
an entity and affecting interactions in the system) on the basis of 
complex logical decisions.  As such, a process is not completely 
specified by its associated attributes and must be defined in terms 
of its behavior pattern.  Each type of system process is defined in 
terms of its behavior pattern, and the system dynamics are completely 
defined by the set of all behavior patterns. The "component descrip- 
tion" section of the model identifies and specifies the attributes 
of each system entity; the "behavior description" section specifies 
the behavior patterns for all process types. A process is similar 
to a static entity in that it is a system component, possessing 
attributes and capable of being modified and observed; it differs 
in that it produces change.  A static entity may be conceptualized 
as a data carrier that does nothing. 

Entities and processes may be defined whose behavior is related 
solely to the experimental aspects of the simulation study; no dis- 
tinction is made between these and model entities.  Representative 
of these are facilities for specifying initialization and environ- 
mental conditions, defining processes which monitor and measure 
system entities, analyze the data and provide output reports. 

The statements of a process may be organized into blocks that 
are executed in line or into FUNCTIONS which are accessed in the 
manner of a subroutine.  Functions are recursive, and the arguments 
may take the form of an expression or a reference to any attribute. 

The value of an attribute may be the name of another entity. 
This dynamic referencing capability allows for the definition of 
complex relationships between entities and facilitates the con- 
struction of generalized program modules. 

Interaction within and between processes may occur in either 
a time-dependent or state-dependent manner; the sequencing algorithm 
provides the control necessary to allow for the simulation of parallel 
processes on a sequential machine. 

A macro facility provides for the definition of new processes in 
terms of those already defined, thereby extending the language and 
allowing it to be organized for the simulation of specialized classes 
of problems. 

In conclusion, the language attempts to provide a simpler 
conceptual framework and advanced experimental capability. 

36 



References 

G. P. Blunden and H. S. Krasnow, "The Process Concept as a Basis 
for Simulation Modeling," Simulation, August 1967, pp. 89-93. 

H. S. Krasnow, "Highlights of a Dynamic System Description Language," 
IBM Advanced Systems Development Division, TR-195, 1966. 

R. J. Parente, "A Language for Dynamic System Description," IBM 
Advanced Systems Development Division, TR-180, 1965. 

R. J. Parente and H. S. Krasnow "A Language for Modeling and 
Simulating Dynamic Systems," Communications of the ACM, Vol. 10, 
No. 9, September 1967, pp. 559-567. 

37 



OPS-3/OPS-4 

1. Background Information 

Authors: Martin Greenberger 
Malcolm M. Jones 
James H. Morris, Jr. 
David N. Ness 

Originating Organization:  Massachusetts Institute of Technology 

Date of Release:  1965 

Status:  OPS-3 current 
OPS-4 specified but not programmed 

Machine Implementation:  OPS-3 Modified IBM 7094 (CTSS) 
OPS-4 GE 645 

2. Major Features 

OPS-3 is a simulation language which was designed to extend the 
facilities of the Compatable Time-Sharing System (CTSS) to allow for 
on-line programming and model building. 

On-line facilities allow the user to interact with the computer 
and to build, modify, test, and run simulations in an incremental 
and repetitious manner and also to incorporate into the simulation 
the actual phenomenon being simulated.  This mode of simulation 
dictates a specially designed simulation language and represents 
the rationale for the development of OPS-3. 

OPS-3 is characterized by the following features: 

a. Easy to modify model structure without recompilation 
or reloading. 

b. Data structures are specified and initialized 
dynamically. 

c. Complete or partial reinitialization of the model is 
possible. 

38 



d. Scheduling mechanism, called the AGENDA, is accessible 
to the user. 

e. Comprehensive tracing and debugging facilities are 
provided. 

f. General algebraic language is available. 

g. Linkage with subroutines written in any language is 
provided for. 

The installation of a new time-sharing system called MULTICS 
provided the impetus to redesign OPS-3, to correct its deficiencies, 
and to make optimum utilization of the more powerful features of the 
new system. OPS-3 is an interpretive language and, therefore, exe- 
cution is slow; it has limited data entities and statistics gathering 
routines and an awkward syntactical structure. 

OPS-4 exists only as a set of specifications and has not been 
programmed.  Since on-line simulation appears to be a future trend 
in computer simulations, the more important features of the language 
will be briefly discussed. 

MULTICS, implemented on the GE 645, employs paging techniques 
and allows multiple users to access the same program simultaneously 
while maintaining unique data segments. 

The language OPS-4 is a subset of PL/1 from which it derives its 
basic algebraic and data handling capability.  Special simulation 
features as well as specialized data types (sets, queues, and tables) 
have been incorporated.  It encompasses the features of both event 
and activity oriented languages; events may be scheduled directly as 
in SIMSCRIPT or implicitly as in SOL. The structure of OPS-4 is 
organized such that an activity is described by a program which may 
encompass multiple events.  The execution of an activity or an event 
may be conditional or time-dependent. Activities are independently 
compiled and are written as external procedures which have local 
data bases and may selectively share data bases with other activities. 
Since the computer has a multiprocessor capability, each activity 
declaration must include a specification for sequential or simul- 
taneous operation.  The multiprocessor capabilities are limited and 
in no way negate the need for sequencing algorithms to model simul- 
taneous events.  The multiprocessor capabilities are of value in 
performing functions which do not affect the course of the simulation, 
such as user interaction, debugging monitors, statistical processing, 
etc. 

39 



The design of the language has been predicated on the philosophy 
that a simulation is repetitive and experimental in nature.  The 
language, therefore, has features which allow for the incremental 
design and testing of a model. The user may interrupt the model 
during execution, redirect the sequence and execution of events and, 
if desired later, restore the model to its initial state and continue 
the simulation from the point of interruption. 

References 

Martin Greenberger, Malcolm M. Jones, James H. Morris, Jr. and 
David N. Ness, On-Line Computation and Simulation;  The OPS-3 System, 
M.I.T. Press, 1965. 

Malcolm M. Jones, "On-Line Simulation," Proceedings - ACM National 
Meeting, 1967. 

40 



QUIKSIM 

1. Background Information 

Author:  David G. Weamer 

Originating Organization:  National Cash Register Company 

Date of Release:  NCR proprietary 

Status:  To be reprogrammed for NCR Century series 

Machine Implementation:  NCR 315 RMC 

2. Major Features 

QUIKSIM, a block structured language written in SIMSCRIPT, 
represents an attempt to incorporate the best features of block 
type and algebraic languages into a general purpose simulation 
language.  SIMSCRIPT, itself a high level simulation language, has 
been used to produce an interpreter for QUIKSIM, an even higher 
level language.  QUIKSIM is, therefore, a block-structured, inter- 
pretive language. 

In QUIKSIM the simulated system is described by a sequence of 
block types, representative of the system logic, called an application. 
Transactions called jobs flow through the application executing the 
blocks.  The system is also comprised of entities which are used to 
analyze the system traffic; representative of such are: 

a. processing entities - facilities, storages, and switches 

b. data collection entities - tables 

c. computational entities - functions 

Each block and entity are represented internally by a temporary data 
record, linked together by filing them in lists.  Memory is dynamically 
allocated, and it is possible to insert new blocks during program 
execution. 

The QUIKSIM interpreter consists of three major routines: 

a.  Input and set up routine which reads in the input, sets 
up temporary entities, and files them in lists. 

41 



b. A driver routine which controls the flow of a job 
through an application. 

c. A SIMSCRIPT driver which is a simulated time clock 
and drives the system from event to event. 

The interpreter allows for modularity in the block structure, and 
although QUIKSIM contains 27 block types to perform the major functions 
of simulation, block routines written by the user in either SIMSCRIPT 
or FORTRAN may be incorporated without restriction. 

While no attempt will be made here to explain the functions of 
all the standard block types, a few of the salient features should 
be noted: 

a. Processing entities may be grouped into classes to facilitate 
the searching of lists. 

b. Sequences of blocks may be executed like subroutines. 

c. The capability of generating jobs facilitates the simulation 
of parallel processing. 

d. QUIKSIM assumes each processing entity has its own queue 
and provides for automatic queue management. 

e. The need to simulate the transmission of signals in computer 
simulation models was responsible for the definition of two 
block types. 

3. Application 

Included in the reference as an illustration of the features of 
the language is an example of a remote-terminal communications system 
operating under a polling discipline. 

Reference 

David G. Weaner, "QUIKSIM - A Block Structured Simulation Language 
Written in SIMSCRIPT," Proceedings of Third Conference on Application 
of Simulation, Los Angeles, 1969, pp. 1-11. 

42 



SIMON II 

1. Background Information 

Author: P. R. Hills 

Originating Organization:  Bristol College of Science and 
Technology, England 

Date of Release:  1965 

Status:  Current 

Machine Implementation:  Elliott 503 and 803 
Any Machine With ALGOL Compiler 

2. Major Features 

SIMON, which is in the form of a set of ALGOL procedures, is 
an activity-oriented language designed for writing simulation programs 
based on the Tocher model.  This model consists of a series of machines 
or entities, the state of which at any given point in time will com- 
pletely define the state of the system. 

Provision is made for grouping entities with common attributes 
into sets. Since position is maintained within the set, it has the 
properties of an ordered queue. 

At any point in time the model machines are either in a time- 
dependent active state or a time-independent idle state.  Time is 
advanced in discrete stages to the next most imminent event. To 
facilitate the sequencing control, the names of all machines in a 
time-dependent state are preserved in a list called "timeset." 

Initialization of the program consists of input specifying the 
entities, their associated attributes and processing type, the sets, 
distributional data, and the initial starting conditions. 

The program control consists of three phases: 

A Phase - Advances simulation time to the minimum non-zero 
time as recorded in timeset and transfers the 
identity of the associated machine to f'aase B. 

A3 



B Phase - Contains the disengaging instructions to change the 
status of the machine from time-dependent to time- 
independent . 

C Phase - Contains the engaging instructions.  An iterative 
procedure is executed in Phase C which tests conditions 
and sets up all possible new time-dependent states. 
Control is then transferred back to Phase A. 

Reference 

P. R. Hills, "SIMON - A Computer Simulation Language in ALGOL," in 
S. H. Hollingdale, ed., Digital Simulation in Operational Research, 
American Elsevier Publishing Company, Inc., New York, 1967, pp. 105-115. 

44 



SIMPAC - Simulation Package 

1. Background Information 

Authors:  M. R. Lachner 
J. Kagdis 

Originating Organization:  System Development Corporation 

Date of Release:  1961 

Current Status:  Obsolete 

Machine Implementation:  IBM 7090 

2. Major Features 

SIMPAC is a simulation package developed to simulate waiting 
line and scheduling problems, but it has had limited use outside of 
SDC where it was developed.  It is considered to be a package in 
that it provides: 

a. Modeling concepts for describing the model. 

b. A language to generate computer code. 

c. A program to move the simulation through time and record 
performance. 

d. An output presentation capability. 

The basic modeling concepts are predicated on the world view 
that a system is a complex of activities, activity performers, 
transient information records, and queues. Each activity is described 
by an algorithm which delineates the necessary conditions for the set 
up phase and the program steps descriptive of the execution phase. 
Performance of an activity is contingent upon the availability of 
both the activity performers and the required information.  Each 
component of the model has an associated control block which main- 
tains data such as addresses, current status, and time and utilization 
statistics. 

45 



The simulation model is comprised of symbolic expressions in 
combination with SIMPAC macro expressions.  The basic SIMPAC program 
consists of sixty subroutines whose functions include: 

a. Initialization and generation of exogenous events 

b. Clock time keeping 

c. Queue manipulation 

d. Associative storage control 

e. Data recording 

f. Data analysis and output presentation 

g. Distribution sampling 

h. Mathematical functions 

SIMPAC is atypical in that it utilizes a fixed increment time 
mechanism.  The time increment may be varied or made a function of 
the state of the model.  A cycling routine continually executes the 
set of algorithms and during each cycle moves each component forward 
in time by the specified amount.  The control block associated with 
each activity records the performance time to date and the performance 
time necessary for completion. 

Reference 

Michael R. Lachner, "Toward A General Simulation Capability," 
Proceedings of Western Joint Computer Conference, 1962, pp. 1-14. 

46 



SIMPLE - Simulation Program Language 

1. Background Information 

Authors:  J. J. Donovan 
M. M. Jones 
J. W. Alsop 

Originating Organization:  Massachusetts Institute of Technology, 
Project MAC 

Date of Release:  Not released 

Status:  Experimental 

Machine Implementation: MULTICS Time Sharing System (M.I.T.) 
IBM 1130 

2. Major Features 

SIMPLE is an interactive on-line simulation system that incor- 
porates facilities for graphical display.  The language is imbedded 
in PL/I; and while some of the simulation features are integrated 
into the language, others are implemented as external routines. 
This organization allows for the inclusion in the language of both 
the transaction-oriented approach of GPSS and the activity-oriented 
approach of SIMULA. 

The language provides extensive facilities for the user to 
interact with the system, to describe and display the topology of 
the system in hierarchical levels of detail, to display time-series 
plots and frequency distributions, and to validate the system in 
real time. 

These features are representative of new trends in the design 
of simulation languages. 

3. Applications 

The applicability of the real time feature of the system to the 
simulation of computer systems on the micro logic level is dependent 
upon the ability of the host computer to keep pace with real time. 

47 



Reference 

J. J. Donovan, J. W. Alsop and M. M. Jones, "A Graphical Facility 
for an Interactive Simulation System," Proceedings of IFIPS Congress, 
1968, pp. 593-596. 

48 



SIMSCRIPT 

1.  Background Information 

Authors/Originating Organization/Date of Release: 

SIMSCRIPT I 

H. M. Markowitz, B. Hausner and H. W. Karr/ 
The RAND Corporation/1963 

SIMSCRIPT 1.5 

H. W. Karr, H. Kleine and H. M. Markowitz/ 
California Analysis Center, Inc/1966 

SIMSCRIPT II 

H. M. Markowitz, B. Hausner, P. J. Kiviat and R. Villanueva/ 
The RAND Corporation/1968 

SIMSCRIPT II Plus 

P. J. Kiviat/Simulation Associates, Inc/1970 

Machine Implementation: 

SIMSCRIPT I 

IBM 7040/44, 7090/94 

SIMSCRIPT 1.5 

IBM 7040/44, 7090/94 
CDC 3600/3800/6400/6600/6800 
Philco 210/211/212 
UNIVAC 490/1107/1108 
GE 625/635 (implemented by Digitek, Inc.) 
CDC 6400/6500/6600 (labeled SIMSCRIPT 2.0) 

SIMSCRIPT II 

IBM 360 (implemented by RAND and CAC) 
CDC 6400/6500/6600 (implemented by CAC) 

49 



SIMSCRIPT II PLUS 

IBM 360 
RCA Spectra 70, DOS 

2. Major Features 

SIMSCRIPT is a versatile, powerful, and efficient simulation 
language which, through several improvements since its inception in 
1963, has kept pace with (if not paced) the development of special 
languages for use in simulation.  Its static structure is based upon 
entities which may be permanent (lasting) or temporary (created and/ 
or destroyed during the simulation).  The properties of entities are 
denoted by associated attributes.  Entities may be grouped together 
into sets. The definition of an entity results in a class of objects, 
each possessing the same list of attributes and the same list of 
potential set memberships.  SIMSCRIPT is basically event-oriented 
with discrete time intervals as in GPSS, although the programmer can 
perform scheduling directly in SIMSCRIPT but not in GPSS.  The changes 
in state represented by events are accomplished through the direct 
coding of event routines which alter data interrelationships, cause 
and cancel events, and transfer control either to the scheduler or 
to another event routine. Events occur in zero simulated time so 
that activities must be represented as a sequence of events. 

SIMSCRIPT I programs are translated into FORTRAN and then 
compiled, but all succeeding versions are compiled directly into 
machine code. Hence, SIMSCRIPT I accepts coding in FORTRAN, and 
other versions permit machine language coding; but use of FORTRAN 
or machine language limits the transferability of SIMSCRIPT programs 
between compilers of different versions. 

SIMSCRIPT 1.5 provides a capability almost identical to its 
predecessor with rather minor syntax changes and direct compilation 
as noted above.  SIMSCRIPT II represents a major departure from 
previous versions since it is designed and produced as a general 
programming language.  It can be used for such widely varying pur- 
poses as business data processing, scientific programming, list 
processing, and through special purpose features, simulation. The 
language structure and syntax employed differ significantly from its 
predecessors, and a translator planned to provide forward compatibility 
(SIMSIFT) was never produced.  Programs written in SIMSCRIPT I or 1.5, 
therefore, cannot be run with SIMSCRIPT II.  The newest version, 
SIMSCRIPT II Plus, has a more flexible and compact data structure 
and better diagnostics, including some error correction (described 

50 



as a "large percentage of user syntax errors" ) which is used to 
force execution of every complete program.  It is also faster at 
program assembly than SIMSCRIPT II.  Execution time is claimed to be 
20Z faster than earlier versions of SIMSCRIPT.2 The comments which 
follow apply to SIMSCRIPT II, though many apply to all versions. 

The language is described in terms of five levels which are 
identified as follows:3 

Level 1:  A simple teaching language designed to introduce 
programming concepts to nonprogrammers. 

Level 2:  A language roughly comparable in power with 
FORTRAN but departing greatly from it in specific 
features. 

Level 3:  A language roughly comparable in power to ALGOL 
or PL/I, but again with many specific differences. 

Level 4:  That part of SIMSCRIPT II that contains the entity - 
attribute - set features of SIMSCRIPT.  These 
features have been updated and augmented to provide 
a more powerful list - processing capability.  This 
level also contains a number of new data types and 
programming features. 

Level 5:  The simulation-oriented part of SIMSCRIPT II 
containing statements for time advance, event- 
processing, generation of statistical variates, 
and accumulation and analysis of simulation- 
generated data. 

SIMSCRIPT II has an extended timing routine which permits 
activities as well as events to be represented.  Output reports are 
produced by a report generator which utilizes a user-coded sample 
report for input. 

P. J. Kiviat, promotional pamphlet from Simulation Associates, Inc. 

2Ibid. 

3 
P. J. Kiviat, et. al., The SIMSCRIPT II Programming Language, 
Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1968, p. v. 

51 



3.  Applications 

SIMSCRIPT applications are broad and extensive, including 
analysis of the operations of railroads, canals, warehouses, 
elevator banks, production lines, the construction of computer 
systems, and procedures for aircraft maintenance and supply. The 
language has been utilized in producing a model called Extendable 
Computer System Simulator (ECSS) referenced elsewhere in this docu- 
ment. 

References 

Control Data 6400/6500/660 Computer Systems SIMSCRIPT Reference 
Manual, Control Data Corporation, Pub. No. 60178300, Palo Alto, 
California, 1968. 

M. A. Geisler and A. M. Markowitz, "A Brief Review of SIMSCRIPT as 
a Simulating Technique," The RAND Corporation, RM-3778-PR, 1963. 

G. Gordon, System Simulation, Prentice Hall, Inc., Englewood Cliffs, 
New Jersey, pp. 239-275. 

H. W. Karr, H. Kleine and H. M. Markowitz, "SIMSCRIPT 1.5," California 
Analysis Center, Inc., Santa Monica, California, 1966. 

P. J. Kiviat, "Introduction to the SIMSCRIPT II Programming Language," 
in the Digest of the Second Conference on Applications of Simulation, 
December 2-4, 1968, New York City. 

P. J. Kiviat, H. J. Shukiar, J. B. Urman and R. Villanueva, "The 
SIMSCRIPT II Programming Language: IBM 360 Implementation," The 
RAND Corporation, RM-5777-PR, 1969. 

P. J. Kiviat, R. Villanueva and H. M. Markowitz, The SIMSCRIPT II 
Programming Language, Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1968. 

H. M. Markowitz, B. Hausner and H. W. Karr, SIMSCRIPT-A Simulation 
Programming Language, Prentice Hall, Inc., Englewood Cliffs, New 
Jersey, 1963. 

H. M. Markowitz, "Simulating with SIMSCRIPT," Management Science, 
Vol. XII, No. 10, June 1966, pp. 396-409. 

52 



SIMTRAN 

1. Background Information 

Author:  C. R. Dowling 

Originating Organization:  International Business Machines 
Corporation 

Date of Release:  1965 

Status: Obsolete 

Machine Implementation:  IBM 7030 

2. Major Features 

A modified version of SIMSCRIPT written especially for the 
IBM 7030. 

Reference 

D. M. Braddock, C. R. Dowling, K. Rochelson, "SIMTRAN - A Simulation 
Programming System for the IBM 7030," IBM SDD, Poughkeepsie, N. Y., 
July 1965. 

53 



SIMULA - Simulation Language 

1. Background Information 

Authors: Ole-Johan Dahl 
Kristen Nygaard 

Originating Organization:  Norwegian Computing Center, Oslo, 
Norway, under contract with The 
Sperry Rand Corporation, Univac 
Division 

Date of Release:  1965 

Status: Current 

Machine Implementation:  Univac 1107 

2. Major Features 

SIMULA, an ALGOL based, process oriented simulation language, 
was designed to provide facilities for the formal description and 
simulation of discrete event systems.  It includes ALGOL 60 as a 
subset and provides the mechanisms for extensive list processing, 
quasi-parallel processing, sampling from distribution functions, 
and accumulating system time integrals and histograms. 

A process-oriented language describes a discrete event system 
as a collection of modules called processes which specify the 
behavior of the system components and may be conceptualized as 
operating in parallel.  The actions and interactions of the pro- 
cesses completely define the behavior of the system as the simula- 
tion progresses through time. 

For the sake of clarity, some SIMULA terminology is defined: 

a. Activity declaration — the description of a process 
in terms of data declarations and operation rules 
(i.e., sequences of state changes). 

b. Activity — a class of processes described by the 
same declaration. 

54 



c. Process — one dynamic instance of an activity declara- 
tion. 

d. Event — active state of a process.  The associated 
system time remains constant during the execution of 
an event. 

e. Interaction point — a point within an activity 
declaration at which control may pass to another 
process. 

f. Reactivation point — a point within a process where 
processing is to resume during the next active state. 

Each process is, therefore, one instance of an activity (i.e., it 
has a unique set of data values and maintains its own identity as it 
executes the behavior pattern). A process may span one or more 
interaction points at which time it passes from an active to a 
non-active state and control is surrendered to another process.  The 
sequence of operations in the system may be defined by the active 
states of its component processes. This mode of operation in 
conjunction with the appropriate time control mechanism has been 
termed quasi-parallel. 

The dynamic occurrence of events in a SIMULA model is con- 
trolled via scheduling and sequencing statements and by a scheduling 
entity called an event notice. An event notice records the scheduled 
time of the next active phase (i.e., event) of a referenced process. 
The set of event notices is termed the sequencing set and is 
arranged in order by the value of the time references. The first 
member is representative of the current system time and the 
currently active process. At the completion of its active phase, 
the event notice is deleted and control is transferred to the 
reactivation point of the process referenced by the next sequential 
event notice. 

At any point in time a process may exist in one of four 
possible states: 

a. Active — Process is currently active and via sequencing 
statements may alter the state of any process including 
its own. 

b. Suspended — A suspended process has an associated event 
notice and a reactivation point. 

55 



c. Passive — A passive process has a reactivation point, 
but no associated event notice. 

d. Terminated — No further events may occur in association 
with this process; it consequently has neither an event 
notice nor a reactivation point. 

References 

Ole-Johan Dahl and Kristen Nygaard, "SIMULA - An ALGOL-Based 
Simulation Language," Communications of the ACM, Volume 9, No. 9, 
September 1966. 

John McNeley, "Simulation Languages," Simulation, August 1967, 
pp. 95-98. 

56 



SIMULA 67 

1. Background Information 

Authors: 0. J. Dahl 
B. Myhrhaug 
K. Nygaard 

Originating Organization: Norwegian Computing Center, Oslo, 
Norway 

Date of Release: Unknown 

Status: Unknown 

Machine Implementation: Unknown 

2. Major Features 

SIMULA 67 is a general purpose programming language with a 
built-in simulation capability.  Conceived to improve the facilities 
of SIMULA I as a simulation language, it evolved into a general 
purpose programming language and finally into a language for 
generating special application languages.  It contains ALGOL 60, 
with minor revisions, as a subset. 

The "object" is the central concept in SIMULA 67.  A process 
class declaration (called an activity declaration in SIMULA I) 
defines a system behavior pattern in terms of the associated data 
and actions. An object is a self-contained program having its own 
local data and executing actions as defined by its process class 
declaration.  Objects conforming to the same behavior pattern are 
considered members of the same class. Objects are manipulated and 
related to each other by list processing facilities. As in SIMULA I 
the simulation may be described as a sequence of the active phases 
of the constituent objects. 

SIMULA 67 may be used as a language for generating problem- 
oriented languages by defining a class containing the concepts 
necessary for the special application area and adding this class as 
a prefix to the program. 

57 



SIMULA 67 contains a class called "SIMULATION" as part of the 
language.  SIMULATION, by defining a time axis and a list structure 
and by organizing the active phases of an object through the time 
axis, transforms SIMULA 67 from a general purpose programming 
language into a simulation language. This same technique may be 
utilized to generate other problem-oriented languages. 

Reference 

0. J. Dahl, B. Myhrhaug, and K. Nygaard, "Some Features of the 
SIMULA 67 Language," Second Conference on Applications of Simulation, 
New York, 1968, pp. 29-31. 

58 



SOL - Simulation Oriented Language 

1. Background Information 

Authors:  D. E. Knuth 
J. L. McNeley 

Originating Organization:  Burroughs Corporation 
Case Institute of Technology 

Date of Release:  1964 

Status:  Not available for distribution.  Currently being 
used for research within the Burroughs Corporation. 

Machine. Implementation:  Burroughs B5000/5500 
Univac 1107 

2. Major Features 

SOL is a general purpose algorithmic language designed for 
the simulation of complex systems.  It incorporates the essential 
characteristics of GPSS expressed in an ALGOL-like structure. 
Additionally, SOL provides the capability of: 

a. parallel computation 

b. arithmetic expressions incorporating random elements 

c. automatic generation of statistics 

The descriptive unit in SOL is called a "process." A model is 
conceptualized as a program consisting of a number of individual 
processes which may be executed in parallel.  Provision is made for 
both intra- and inter-process parallelism. Objects within a process 
have been defined as transactions, and each has an associated set of 
local variables unique to the process.  Interaction between pro- 
cesses is achieved via global entities and control statements. 
Global entities are of three major types: variables, facilities, 
and stores. Global variables may be accessed for reference or 
change by any transaction in the system. A facility is a global 
element which is controlled by a single transaction at any point in 
time.  Facilities are seized on a priority basis throu^a the concept 
of the "control strength" of the requesting transaction.  Interrupts 

59 



occur and may be nested to any depth.  Stores are space-shared 
global elements which are assigned on a first-come, first-served 
basis with no provision for preemption. 

Control is transferred from process to process as delays are 
encountered by transactions waiting for time to pass, for logical 
conditions to be satisfied, for a facility, or for space within a 
store. Time is advanced in variable time increments, meaning that 
after all transactions have been processed at the current time, 
time is advanced to the earliest completion time for a wait state- 
ment. 

Operationally, a SOL program is translated by the compiler 
into an interpretive pseudo-code which is executed by the interpreter 
to produce the statistical results of the simulation. 

3.  Applications 

Included in the first reference is a detailed model for a 
multiple online console system.  Included is the complete SOL 
program, an explanation of each statement, and some representative 
output reports. 

It is the opinion of the authors of that article that SOL is 
especially advantageous for simulating computer systems since the 
language lends itself readily to the description of computer work- 
loads. 

References 

D. E. Knuth and J. L. McNeley, "SOL - A Symbolic Language for 
General Purpose Systems Simulation," IEEE Transactions on Electronic 
Computers - 13, August 1964, pp. 401-408. 

D. E. Knuth and J. L. McNeley, "A Formal Definition of SOL," 
IEEE Transactions on Electronic Computers - 13, August 1964, 
pp. 409-414. 

60 



SOLPASS - Simulation Oriented Language Programming jind 
Simulation System 

1. Background Information 

Authors:  Donald J. Miller 
Harry C. Page 

Originating Organizations:  International Computer Sciences, Inc. 
USAECOM, Fort Monmouth 

Date of Release: 1968 

Status: Current 

Machine. Implementation:  Burroughs B5500 Remote Access System 

2. Major Features 

SOLPASS is an extension of SOL developed under government contract 
to simulate large-scale communications networks.  It is, however, a 
general purpose simulation language of wide-range applicability for 
both discrete and continuous simulations. 

The language was implemented in ALGOL and a complete ALGOL capa- 
bility is provided as a subset of the language.  Since SOLPASS operates 
with virtual memory, the number of transactions simultaneously in 
process is limited by disk memory and not core storage.  The use of 
core swapping and overlay techniques provide the capability for a 
virtually unlimited number of queueing variables and simultaneous 
queues.  A special language construct called a "trunk" was added to 
the basic language to facilitate simulation of large communications 
trunk lines. A trunk, like a store, is a space-shared variable with 
a discrete capacity but possesses the characteristic of a facility in 
that it is pre-emptable on a priority basis. 

The SOLPASS system consists of the following basic components: 

a. A compiler which generates an ALGOL program from the SOL 
source program. 

b. An ALGOL compiler which generates object code. 

61 



c. A simulation control module which includes the scheduling 
algorithms. 

d. A statistical analysis program. 

During the execution phase an external event log file is generated 
which records the occurrence of each event and the pertinent data 
relative to each queueing variable.  These data are subject to post- 
simulation statistical analysis.  A variety of options for graphical 
output aid in the presentation of the simulation results. 

The efficient utilization of the system is enhanced by the incor- 
poration of extensive debugging and error analysis features.  In 
addition, a unique capability exists to run a model until steady 
state is reached, perform a breakout, and then run a series of 
restarts imposing various experimental conditions on the steady 
state system. 

3.  Applications 

Most of the experience gained with the system is in the area of 
traffic and systems simulations.  The authors state that SOLPASS seems 
to be ideally suited to traffic studies but also performs very well 
in systems simulations applications.  The following systems are among 
those types of systems simulated: 

a. Control Systems 

b. Computer Systems 

c. Communications Systems 

d. Transmission Systems 

Reference 

J. Armstrong, H. Ulfers, D. J. Miller and H. C. Page, "SOLPASS - 
Simulation Oriented Language Programming and Simulation System," 
Proceedings, Third Conference on Applications of Simulations, 
Los Angeles, 1969, pp. 24-37. 

62 



SPL - Simulation Programming Language 

1. Background Information 

Author: Luigi Petrone 

Originating Organization: Olivetti General Electric, Milan, 
Italy 

Date of Release:  Not Released 

Status:  Experimental 

Machine Implementation: Potentially available for any machine 
with PL/I compiler 

2. Major Features 

SPL was designed to be translated into PL/I by a preprocessor 
written in PL/I and is, therefore, said to be completely defined on 
PL/I. Two defining methods are presented.  Implementation A, 
discussed in depth, is based primarily on the tasking concept of 
PL/I.  Implementation B, discussed in cursory fashion, is based on 
the use of programmed allocation and, in particular, on the based 
variables concept. 

The SPL language is patterned principally on the concepts of 
SIMULA and to a lesser degree on those of SOL. One purpose of the 
language was an attempt to construct the synchronizing mechanism of 
SIMULA within the parallel programming capability of PL/I, and thus 
to make quasi-parallel processing a particular case of parallel 
processing. 

An evaluation of SPL language features must be predicated on an 
in-depth knowledge of both PL/I and SIMULA and will not be attempted 
here. 

Reference 

Luigi Petroni, "On A Simulation Language Completely Defined Onto 
The Programming Language PL/I," in J. N. Buxton ed., Simulation 
Programming Languages, North Holland, Amsterdam, 1968, pp.305-318, 

63 



CSS - Computer System Simulator 

1. Background Information 

Author: Unknown 

Originating Organization:  International Business Machines Corp. 

Date of Release: Not released 

Status:  IBM proprietary 

Machine Implementations: 

IBM 7040/7044 

IBM-7090/7094 

IBM 360 

2. Major Features 

The Computer System Simulator, CSS, provides a language and a 
structure specifically designed for modeling computer systems to 
evaluate their performance.  The language adapts many of the tech- 
niques of GPSS and traces its evolution to the inability of GPSS to 
accomplish this specialized application efficiently. 

CSS provides the capability to model a large variety of com- 
puter systems in varying levels of detail.  The basic input consists 
of the following components: 

a. statement of system configuration 

b. description of operating programs 

c. description of the system environment 

The system configuration identifies the system components and 
specifies such associated data as the size of core storage, data 
transfer rates for I/O devices, and I/O device/channel connections. 
The operational characteristics of some IBM hardware are included 
in the model. 

65 



The operating programs include the users' applications programs 
and the system control programs which perform the functions of task 
scheduling, interrupt handling, etc. Programs of each type must be 
defined in terms of logic, timing information, and statistical 
requirements.  This implies that the user must have a complete and 
comprehensive understanding of the monitor routines of the object 
operating system. 

The system environment is implicit in both of the previous 
specifications.  Input message rates, job streams, and task genera- 
tion are explicitly defined in the environmental section. 

The simulator automatically provides features to update the 
clock, maintain lists of future events, generate random numbers and 
perform statistical functions. 

From the input specifications the CSS program assembles a 
model, generates the tasks, and operates the model in an interpretive 
fashion until the occurrence of a user-specified stopping condition. 

The output report provides a summary of the run statistics and 
includes: 

a. listing of the input specifications 

b. utilization of all units of equipment 

c. statistics on all system queues 

d. statistics on usage of system resources 

e. activity statistics (number of messages generated/terminal 
etc.) 

The CSS is based on the concept that computer system operation 
may be represented by the interaction of three basic simulator 
elements:  equipment, transient data units, and programs.  To this 
end the CSS entities consist of: 

a. equipment entities - processors, channels, control units, 
tapes, disks, terminals, etc. 

b. transient entities - messages, tasks, events, etc. 

c. programs - applications, control, and environment 

d. modeling entities - clock, queues, polling lists, etc. 

66 



Associated with each entity is a set of attributes describing 
its characteristics.  The state of the system at any point in time 
is defined by the attribute values of the system entities. 

The CSS instruction set consists of 40 instructions which 
resemble a high-level macro language and may be classified into 
eight categories of related usage: 

a. processing control 

b. attribute access 

c. entity control 

d. branching control 

e. line control 

f. I/O control 

g. run control 

h.  library linkage 

The user may build his own set of macroinstructions from the 
basic set provided, thereby increasing the scope of the language. 

3.  Applications 

The CSS does not optimize the system design, but it does 
provide a means to determine the extent to which system performance 
meets desired criteria.  The CSS was designed principally to model 
computer installations having a real time capability and is most 
advantageous when analyzing large systems where the interaction of 
processing and I/O is to be studied. 

Examples of configurations that may be modeled are: 

a. single-processor card or tape systems 

b. disk systems 

c. multiprocessor systems 

d. teleprocessing systems 

67 



Representative types of operation that may be modeled are: 

a. sequential 

b. multiprogram 

c. real-time 

d. time-sharing 

The study by P. H. Seaman and R. S. Soucy was undertaken in an 
attempt to provide a general submodel of the SYSTEM/360 operating 
system.  The provision of such a submodel assures the user of the 
correct logic and timings of the supervisor and data management 
routines. Additionally, it provides OS/360 developers with a 
vehicle to test proposed changes: 

Reference 

P. H. Seaman and R. C. Soucy, "Simulating Operating Systems," 
IBM System Journal, No. 4, 1969, pp. 264-279. 

68 



ECSS  - An Extendable Computer System Stimulator 

1. Background Information 

Author:  N. R. Nielsen 

Originating Organization:  The research for ECSS was sponsored 
by NASA under a RAND Corporation 
contract.  Present development is 
being sponsored by Project RAND. 

Date of Release:  Not yet released 

Status: Under development 

Machine Implementation:   ECSS is presently on an IBM 360.  A 
SIMSCRIPT II compiler is required in 
order to implement ECSS.  Core require- 
ments vary depending on the specific 
simulation being conducted, but about 
100K bytes seem to be the norm. 

2. Major Features 

ECSS is an extension of SIMSCRIPT II and combines the full 
SIMSCRIPT II capability with more specific capabilities for model- 
ing computer systems.  ECSS language statements are written in a 
fairly free form, translated into SIMSCRIPT II commands, and sub- 
sequently compiled by SIMSCRIPT II.  Statements can be formed by 
combining ECSS and SIMSCRIPT II type statements, and the user can 
augment commands.  Flow-oriented problems, not suitably handled by 
SIMSCRIPT itself, can be handled by ECSS due to special commands 
built into ECSS. 

A binary deck is produced as an output when an ECSS simulation 
is run.  This deck can be used in subsequent runs to avoid the trans- 
lation process. 

ECSS appears to be a good combination between a proven general 
purpose simulation language (SIMSCRIPT II) and an easy to use 
flexible command structure for modeling computer systems.  Its 
present drawbacks include a weak report generation (depends on 
SIMSCRIPT II) and weak software definition capability (again requir- 
ing SIMSCRIPT II coding).  There is presently no user documentation 
available and experience with the prototype system is V*nited. 

69 



3.  Application 

Since ECSS is still in development, there is little data avail- 
able on application experience.  Several small models have been 
written and tested at RAND, but full field testing (due early in 1971) 
must be completed before ECSS potential in the application area can 
be appraised. 

References 

D. W. Kosy, "Experience with the Extendable Computer System 
Simulator," Proceedings of the Fourth Conference on Applications of 
Simulation, New York City, December 1970. 

N. R. Nielsen, "ECSS: An Extendable Computer System Simulator," 
The RAND Corporation, RM-6132-NASA, February 1970. 

70 



PDL - Program Description Language 

1. Background Information 

Author:  G. K. Hutchinson 

Originating Organization:  Texas Technological College, 
Lubbock, Texas 

Date of Release:  1968 

Status:  Unknown 

Machine Implementation:  Unknown 

2. Major Features 

The PDL language was designed to provide a capability for 
describing the programs to be processed in the simulation of multi- 
processor computer systems.  A program is defined in terms of the 
logical relationships between its constituent routines and in terms 
of each routine's resource requirements.  The routines are defined 
to be uniform in resource requirements and without parallelism. 

Routines may be constrained until the necessary resources are 
available and assigned by the operating system and/or until required 
predecessor routines have been processed.  Routine dependency may be 
expressed as a logical AND or OR. 

Parallelism between programs is simulated by the simultaneous 
execution of routines and is unlimited, constrained only by the 
availability of resources; it is thus possible to simulate reentrant 
code. 

The language set consists of 38 commands which describe the 
interdependency of the program routines and which control the 
logical flow of the program and the progression of time. 

Hutchinson expresses the opinion that as multiprocessor opera- 
ting systems become more comprehensive, users may be required to 
detail the logical relationships and resource requirements of the 
various routines in their programs and that command languages with 
features similar to PDL will be developed for this purpose. 

71 



Reference 

G. K. Hutchinson, "Some Problems in the Simulation of Multiprocessor 
Computer Systems," in J. N. Buxton, ed., Simulation Programming 
Languages, North Holland, Amsterdam, 1968, pp. 305-324. 

72 



PLS - Product Line Simulator 

1. Background Information 

Author:  Computer Programming Laboratory 

Originating Organization:  Hughes Aircraft Company 

Date of Release: Proprietary 

Status:  Currently available through service contract 

Machine Implementation:  IBM 360/50 with 256 K 

2. Major Features 

PLS is a computer systems simulation language and processor, 
somewhat like ECSS and CSS, that was developed by Hughes primarily 
for use in evaluating computer system designs.  Since designs cannot 
be evaluated independent of their environment, PLS also provides for 
the description of operating systems and application programs. 

The descriptive material on PLS available to date provides only 
a rather cursory look at the system elements modeled and the purposes 
toward which utilization might be directed.  These elements and 
purposes appear roughly comparable to CSS, ECSS, and S3. No infor- 
mation concerning the structure and format of the language was 
given in the document reviewed, other than the statement that 
library routines are incorporated in the language. 

Reference 

Hughes Aircraft Company, Ground Systems Group, Simulation Models - 
A Tool for the Development of Real-Time Computer Systems, August 
1970. 

73 



SEAL - Simulation Evaluation and Analysis Language 

1. Background Information 

Author:   D. M. Braddock 

Originating Organization:  International Business Machines Corp. 

Date of Release:  Unknown 

S tatus:  Unknown 

Machine Implementation:  Unknown 

2. Major Features 

SEAL, an event-oriented language, is an extension of SLMSCR1PT 
l.S and includes PL/l-like data structures and improved list pro- 
cessing features.  It does, however, lack the capability for 
automatic sampling from probability distribution functions. 

References 

D. M. Braddock and C. B. Dowling, "Simulation Evaluation and 
Analysis Language," IBM 360 D15, 1.005. 

"Simulation Evaluation and Analysis Language (SEAL), System 
Reference Manual," IBM Corp., 17 January 1968. 

74 



SIMCOM - The Simulation Compiler 

1. Background Information 

Author: Thomas G. Sanborn 

Originating Organization:  Space Technology Laboratory, under 
purchase order from Thompson Ramo 
Wooldridge, Inc., in support of their 
contract to supply technical direc- 
tion to the Automatic Data Process- 
ing Facility, U. S. Army Electronic 
Proving Ground. 

Date of Release:  1959 (approximate) 

Status: Unknown 

Machine Implementation:  IBM 709 

2. Major Features 

In the context of SIMCOM a computer simulation program is one 
which will allow one computer to assume the operational characteris- 
tics of another computer which is unavailable or may exist only in 
the design stage.  SIMCOM was developed to assist in the preparation 
and modification of computer simulation programs.  It is not itself 
a simulation program, but a compiler which accepts input statements 
written in a specialized simulation-oriented source language and gen- 
erates instructions in the machine language of the host computer 
(i.e., SCAT for the IBM 709).  SCAT is included as a subset of the 
language. 

The statement is the fundamental unit of the SIMCOM language; 
two classes exist: 

a. definition statements which define the components of 
the simulated computer 

b. procedural statements which define the data manipulation 
or control functions which are associated with the 
execution of instructions within the simulated computer 

A simulation program written in SIMCOM consists of the following 
components: 

75 



a. Machine definition - describes the static computer in 
terms of registers, memory, input, output, keys, and 
indicators. 

b. Instruction interpretation - describes the computer 
in operation.  This section is written in terms of 
procedural statements and describes the accessing of 
instructions from the storage of the simulated com- 
puter plus a description of the effects of the 
execution of each instruction. 

c. Panel operation - describes the effect of operator 
intervention. This section includes an interrogation 
of the status of each console key and a description 
of computer response to activation of the key. 

The output from SIMCOM consists of a translation of the source 
program into SCAT.  This includes, in addition to a direct expansion 
of the procedural statements, the generation of an input/output 
supervisor and a storage management routine which allocates the 
storage of the simulated computer to the various 709 storage media. 

There are language statements for keeping track of time and by 
specifying the execution times of instructions, it is possible to 
assess total elapsed time in the computer. 

3.  Application 

Sanborn has expressed the opinion that SIMCOM provides the 
vehicle for describing various computers; but that beyond the timing 
of benchmark programs, it has no mechanism for computer evaluation. 

Reference 

Thomas G. Sanborn, "SIMCOM - The Simulation Compiler," Proceedings 
of the Eastern Joint Computer Conference, 1959, pp. 139-142. 

76 



SLANG - Simulation Language 

1. Background Information 

Author: L. A. Kalinichenko 

Originating Organization: Ukranian Academy of Sciences, Insti- 
tute of Cybernetics, Kiev, U.S.S.R. 

Date of Release: Unknown 

Status: Unknown 

Machine Implementation: Unknown, possibly the BESM 6 

2. Major Features 

SLANG, a simulation-oriented experimental programming language, 
was designed to be used for the simulation of computer systems. 

Computer systems are characterized by a great number of devices 
for storage, processing, and transfer of data; operation of which is 
overlapped.  At the initial stage of system design, the following 
basic system characteristics must be defined: 

a. system components and associated parameters 

b. configuration of communications paths between system 
components 

c. number of control levels of different processes 

d. priority system for various data flows 

e. specification of operational algorithms of the 
system control elements 

Kalinichenko feels that problem-oriented languages are not 
suitable for the simulation of computer systems and that special 
simulation languages are necessary and should provide the following 
capabilities: 

a.  ability to use the language for a formalized system 
description 

77 



b. ability to model the generation of flows of non-uniform 
requests 

c. ability to construct and process list structures; this 
requirement derives from the modeling of scheduling 
algorithms 

d. ability to generate random variables from specified 
distributions and to provide convenient means for 
gathering statistics 

After a comparative analysis of current simulation languages 
(GPSS II, GPSS III, SIMSCRIPT, SOL, SIMULA) and experimental program- 
ming of processes representative of computer systems, the author con- 
cluded that SOL provided the most capability.  It has natural and 
brief notation; its special objects are similar to computer system 
components; and implementation is facilitated by the simplicity of 
its procedural part.  It was, therefore, chosen as the basis for the 
experimental language, with the intention of correcting some of its 
inherent deficiencies. 

In contrast to SOL, SLANG allows for interaction among pro- 
cesses by means of exchange transactions and further allows one 
transaction to reference the local variables of another. List pro- 
cessing techniques, similar to those of SIMULA, have been incorporated 
to improve the flexibility of control of transaction movement in the 
system. The SOL techniques for synchronization of concurrent pro- 
cesses were expanded. With a list processing capability, SLANG now 
has the capability to control event sequencing by two alternative 
methods and to compare their relative effectiveness. 

3. Application 

An example of simulation of a multi-terminal, time-sharing 
computer system is included in the reference to illustrate the 
language features. 

Reference 

L. A. Kalinichenko, "SLANG - Computer Description and Simulation- 
Oriented Experimental Programming Language," in J. N. Buxton, ed., 
Simulation Programing Languages, North Holland, Amsterdam, 1968, 
pp. 101-116. 

78 



COMPUTER SYSTEMS SIMULATION PACKAGES 

79 



BOSS  - Burroughs Operational Systems ^simulator 

1.     Background Information 

Authors: A. J. Meyerhoff 
P. F. Roth 
J. P. Troy 

Originating Organization: 

Date of Release:  1968 

Status: Current 

Machine Implementation: 

2. Major Features 

BOSS was originated in the Burroughs 
Defense Space and Special Systems 
Group of the Advanced Development 
Organization although it is presently 
being supported by the Modeling and 
Simulation Group of the DSSSG Market- 
ing Support organization at Paoli, 
Pennsylvania. 

BOSS is implemented on the Burroughs 
B5500 system.  BOSS (implemented in 
ALGOL) is a Burroughs proprietary 
package and is not available for 
implementation on other than Burroughs 
computers at the present time.  Specific 
information on peripheral requirements, 
core requirements, etc. for the B5500 
implementation or implementation on 
other Burroughs computers is not 
available at this time. 

BOSS is similar in many respects to GPSS. It is a discrete- 
event, block-diagram oriented system.  BOSS maintains a "next-event" 
file which is triggered by the changes in state of the system being 
modeled as opposed to triggering on fixed increments of time. 

BOSS considers the world as composed of processes, tasks, and 
units. In this context a process defines the priority and sequence 
of tasks to be performed and controls the generation of process starts. 
A task is any discrete operation which consumes time and resources. 
The unit is considered as a resource element and is used in a pool 
concept by the various tasks to carry out a process. 

80 



BOSS generates several reports including data on queue statis- 
tics, unit utilization, processor job mix statistics, memory utiliza- 
tion, etc.. 

The block symbology used for defining inputs is structured in a 
fairly simple way and appears to facilitate the definition job it- 
self, but it may lack flexibility if used in widely dispersed appli- 
cation areas. 

3.  Applications 

BOSS is designed for the simulation of computer systems, although 
it can be used for systems with similar characteristics in the sense 
that BOSS is discrete-event oriented. 

References 

A. J. Meyerhoff, P. F. Roth, and J. P. Troy, "BOSS, Applications 
Manual," July 19, 1968, Burroughs Corporation, Defense Space and 
Special Systems Group. 

P. F. Roth, "The BOSS Simulator - An Introduction," Proceedings 
of the Fourth Conference on Applications of Simulation, New York City, 
December 1970. 

81 



CASE - Computer Aided Systems Evaluation 

1. Background Information 

Author:  Unknown 

Originating Organization:  Computer Learning and Systems Corp. 

Date of Release:  1969 

Status:  Current version CASE III 

Machine Implementations: 

IBM 360/50 

GE 635 

CDC 6000 

1108 Univac 

2. Major Features 

CASE is a statistical simulator capable of analyzing batch 
processing, multiprogramming, multiprocessing, time-sharing, and 
real-time computer systems. It is written in ASA FORTRAN with some 
event features similar to SIMSCRIPT. Like SCERT, CASE consists of 
a collection of timing algorithms used in conjunction with a library 
of hardware and software factors to simulate a computer system and 
evaluate its performance in processing a given workload. 

Input definitions of the workload and system configuration are 
provided via coding forms and considerable flexibility in level of 
detail is allowed.  The workload specification is in machine 
independent form and includes such items as general system type, 
file definitions, run sequences, and for each constituent run, its 
identification, language, frequency, I/O files, internal processing 
activity, and output reports. The processing activity is charged 
against files and may be specified in terms of higher level macros 
and subroutines or by explicitly delineating the operations. 
Frequency of occurrence may be expressed exactly or as a probability. 

The system configuration to be analyzed is specified in terms 
of the hardware and operating system software.  Information is 

82 



provided relative to the operating system, CPU, channels, tapes, 
immediate access storage devices, and peripherals. Each unit is 
described by its model number, quantity, and physical connection. 

File allocations, file blocking factors, and device/channel 
assignments either may be specified or can be optimized by the 
simulator.  The CASE library is an input to a CASE simulation and 
provides the source of information relative to the technical 
characteristics and cost of the hardware and software system packages 
marketed by the major computer manufacturers.  These data are used 
as parameters in a generalized model of a computer hardware/soft- 
ware configuration. 

The CASE control program is comprised of four major subsystems. 
Each is described in terms of its major function: 

a. Independent Processing Analyzer (IPA) simulates the 
system in batch mode operation.  For each constituent run 
in the workload, a Run Description Report is prepared 
which summarizes data relative to the file requirements, 
processing activity, and output reports.  This report is 
of value in the preparation of specifications.  Additionally, 
summary statistics for system component utilization are 
generated over all the runs in the workload. 

b. Concurrent Processing Analyzer (CPA) operates on inputs 
from the other analyzers in conjunction with any con- 
figuration changes, determines an optimum run schedule 
based on considerations of run dependencies and priorities, 
and simulates the workload in a multi-programming mode of 
operation.  This simulation provides reports to document 
the run schedule, to provide a time history and activity 
analysis of the component jobs, and to document overall 
system performance and requirements. 

c. The Real Time Analyzer (RTA) provides the algorithms and 
logic necessary to construct a model of a computer system 
operating in a real-time environment.  The RTA simulates 
generation and flow of information through the system and 
provides reports which record response time, maximum queue 
lengths, and configuration utilization. 

d. Time Sharing Analyzer (TSA) is a specialized package which 
analyzes complex time sharing systems.  The capability 
exists to perform detailed analysis on systems employing 
such advanced techniques as virtual memory, partial execu- 
tion, and page swapping. 

83 



The execution of CASE is an iterative process in which the 
analyst modifies the input and makes the configuration and design 
adjustments necessary to achieve an optimal system design for pro- 
cessing the specified workload.  Design adjustments take the form of 
consolidating, simplifying, or eliminating certain files and runs. 
Configuration adjustments are of greater* magnitude and involve the 
addition or deletion of channels, controllers, or memory or the 
specification of a different set of mass storage units, etc. 

These decisions are made on the basis of detailed output 
reports which represent a distillation of the statistics gathered 
during the execution of the simulation.  Reports are provided at the 
completion of each simulation iteration. In addition to the 
traditional outputs of an automatic timing routine, CASE supplies 
reports which aid the design process by providing the theoretical 
limits which can be achieved by sub-optimizing system components. 
After an optimal system configuration is achieved, reports of a 
higher level of abstraction are prepared for management which docu- 
ment the final solution. 

3. Applications 

Reference 2 delineates the basic features of CASE, SCERT, and 
SAM.  Bairstow reports the user impression that CASE, being of 
more recent origin, is better designed than SCERT to model third 
generation features such as multiprogramming, real-time, and time- 
sharing systems.  There was no user experience with multiprocessing 
systems.  However, the author makes the point that CASE is able to 
measure hardware contentions in a single system and may be able to 
do so for a multiprocessor configuration. 

References 

"A Technical Description of the CASE System," Software Products 
Corporation. 

Jeffrey N. Bairstow, "A Review of Systems Evaluation Packages," 
Computer Decisions, June 1970, p. 20. 

William C. Thompson, "The Application of Simulation in Computer 
System Design and Optimization," Second Conference on the Applications 
of Simulation, New York, 1968, pp. 286-290. 

84 



COST - Computer Optimized System Tradeoffs 

1. Background Information 

Author: George Pan 

Originating Organization:  Interactive Sciences Corporation, 

now operated by System Architects 

Date of Release: Not released 

Status:  Proprietary 

Machine Implementation: GE-635 
PDP-10 

2. Major Features 

COST is neither a language nor a model, but an overall method- 
ology combining simulation with theoretical analysis for the pur- 
pose of analyzing computer systems.  The simulations employed util- 
ize one or more of a group of programs along with a library of 
system entities and their attributes.  Its originators claim result 
accuracies of + 10% without past history from users and without a 
benchmark profile, through utilizing the "simplest deterministic 
saturation analysis model."-'- If the subject for analysis is a 
presently functioning system and actual and consistent user pro- 
files are available, then "one of the generic Monte Carlo models ... 
used for a particular COST run ... can (produce) accuracies ... on 
the order of 1 0.5%."  The major strengths of this approach, and 
its differences from other simulators such as SCERT, lie in the 
optimization of file design, data base design, and network design. 
Many of COST'S applications have been in this area. 

3. Applications 

The capability summarized by the acronym COST has been applied 
in a large number of studies done for, among others, the Library of 

Interactive Sciences Corporation, Memorandum titled "Computer Sys- 
tems - Analysis and Simulation," p. 9. 

2Ibid., p. 9. 

85 



Congress, the University of California, Harvard University, Dart- 
mouth College, NASA, Office of Education of H.E.W., ONR, a number 
of private industrial firms including Honeywell EDP, GE Information 
Systems, IBM, and Control Data, and for the Decision Sciences Labora- 
tory of ESD as veil as MITRE Washington. 

References 

"A Brief Introduction to Interactive Sciences Corporation," Inter- 
active Sciences Corporation, Braintree, Mass. 

"Computer Systems - Analysis and Simulation," Interactive Sciences 
Corporation, Braintree, Mass. 

Conversation with George Pan, now of System Architects, Randolph, 
Mass. 

86 



DPSS - Data Processing Systems Simulator 

1. Background Information 

Authors: Michael I. Youchah 
Donald D. Rudie 
Edward J. Johnson 

Originating Organization:  Systems Development Corporation 

Date of Release:  1964 

Status: Expanded DPSS - Model C 

Machine Implementation: AN/FSQ - 32 - V 
IBM 7090/7094 

2. Major Features 

The Data Processing System Simulator (DPSS) is a general pur- 
pose computer system simulation package designed to aid in the eval- 
uation of the performance and response characteristics of a proposed 
computer system.  The design being tested can be subjected to var- 
ious workloads and data processing disciplines.  Constructed by the 
Systems Development Corporation for use in analyzing the operating 
performance requirements for the Strategic Air Command Control Sys- 
tem (Project 465L), the DPSS has been primarily applied in the area 
of real-time management information and command/control type systems. 

The DPSS is an event-oriented simulator, written in JOVIAL, 
which employs higher order macros combined in a single logical 
sequence designed so as to permit the representation of a wide range 
of system configurations and processing algorithms. 

The DPSS is used to model computer systems which may be concep- 
tualized as consisting of input, processing, and output phases. 
The inputs consist of message or information units which are entered 
into the system either locally or via remote terminals.  These units 
are queued and processing is initiated under control of the batch- 
ing, priority, and interrupt rules in effect.  The processing phase 
consists of retrieving from auxiliary storage the appropriate pro- 
grams and environment and executing the specified sequences of in- 
structions.  During the terminal phase, the necessary data is aggre- 
gated, formatted, and displayed as required. 

87 



Input to a representative DPSS simulation would include the 
specification of message types, traffic rates, batching criteria, 
task processing times to load and operate (expressed as probability 
distributions with associated parameters), message-task and message- 
display relationships, task sequences, etc.  Output consists of 
statistics related to the transmission history of each message in 
the system and to the state of the system during each replication 
of the cycle. 

An expanded DPSS (Model C) has been developed which allows for 
the simulation of more sophisticated computer systems.  Future devel- 
opments are expected to be in the area of multi- and parallel pro- 
cessing. 

3. Applications 

The DPSS was used successfully in the design and development of 
465L SACCS.  Details of this application are included in the refer- 
ence. Additionally, it proved useful in evaluating original con- 
cepts relating to the Space Surveillance Project and the New York 
State Identification and Intelligence System. 

The authors of DPSS state that "it is a powerful tool in per- 
forming system feasibility studies, simulating the operation and 
performance of computer-based data processing systems, and in eval- 
uating equipment and data processing discipline combinations as a 
function of system operational requirements." 

Reference 

M. I. Youchah, D. D. Rudie, and E. J. Johnson, "The Data Processing 
System Simulator (DPSS)," Proceedings AFIPS 1964 Fall Joint Computer 
Conference, Vol. 26, Part 1, pp. 251-276. 

88 



S3 - The System and Software Simulator 

1. Background Information 

Author: Leo J. Cohen 

Originating Organization: CEIR, Inc., Under Contract from the 
United States Army Computer System 
Evaluation Command 

Date of Release: 1968 

Status:  Only basic documentation available. 

Machine Implementation: Written in FORTRAN IV; successfully 
executed on IBM 360/50/65/75, and 
Univac 1108 

2. Major Features 

S3 is a discrete event-oriented simulator designed specifically 
for modelling computer systems.  Its operation is dynamic (i.e., a 
user defined system description results in a representative simula- 
tion such that the actual time to run the simulation depends upon 
the length of the time period being simulated). It utilizes five 
types of information: a hardware characteristics data base, a 
description of the operating system, configuration data for hardware 
and software, user program descriptions, and file organization 
information for application programs.  S3 produces sets of statistics 
concerning utilization of hardware resources, effectiveness of the 
operating system, and performance measures for application programs. 

The five types of input data are described in a defined speci- 
fication language, and each type is substantially independent of the 
others.  For example, the descriptions of particular units of hard- 
ware are independent of the way in which the hardware units are 
interconnected. The level of detail involved can be appreciated by 
viewing the table which follows. 

Processing by S3 is done in four phases.  In the first of these, 
the hardware/software specifications in the defined programming and 
job control "languages" are "assembled", i.e., they are reduced to 
compact description through a translation process. Next, this 
assembled code is used to generate a model of the system to be sim- 
ulated.  In the third phase, this model is used to produce a record 
of the simulated performance of the system over a period of time. 

89 



Table II 

Sample S3 Specifications 

ELEMENT 

Hardware Performance 

Printer 

Tape Drive 

Data Controllers 

CPU 

Core Memory 

Hardware Configuration 

Operating System 

4.  Application Programs 

DESCRIPTORS 

Characters/Line, Lines/Second, 
Start/Stop Time, Skip Time 

Data Storage Unit (bit, byte, word), 
Inter-Record Gap, Start/Stop 
Time, Rewind Time, Successive 
I/O Reference Delays 

Data Unit Transmitted (bit, byte, 
word), Selector/Multiplexor, 
Simplex/Half/Full Duplex 

Add/Multiply/Divide Time for 
Decimal/Fixed/Floating Cycle 
Rate, Average Instruction Time 

Access Rate, Data Storage Units 
(bit, byte, word), Size 

Controllers/Channels to whicb eacb 
unit is connected; allowable 
CPU-memory connections; number 
and type of processors and net- 
works of computers 

"Programming Language" to express 
0/S flowchart logic; core allo- 
cation and reassignment tech- 
niques; queue manipulation 
doctrines; control methodology; 
Interrupts internal and external 
to particular CHJs; overlay and/ 
or multiprogram structure 

"Program Language" for representa- 
tion of program flow, including 
program/subprogram structure, 
I/O commands, parallel processing 

90 



Table II (Concluded) 

ELEMENT DESCRIPTORS 

5. Application File Structure    "Job Control Language" describes 
application program file struc- 
ture and distribution among 
peripherals, amount of storage 
required for instructions/con- 
stants/data, frequency of pro- 
gram operation using fixed/ 
stochastic interval, variability 
in storage requirements during 
processing, calls to external 
programs 

91 



Finally, this performance data is reduced through statistical analysis 
to performance reports. 

These performance reports are composed of statistical data out- 
lining the operation of each defined facility and each program in 
the system.  Included are data concerning utilization and overhead 
time for devices, controllers, channels, CPUs and memory, a detailed 
summary of interrupts, memory repacking (if utilized), queue history, 
and a breakout of area memory utilization. Minimum, maximum and 
average turn-around and execution times are reported for application 
programs along with breakouts of time allocated for CPU, I/O, and 
queue delay.  The minimum, maximum and average number of file refer- 
ences is reported for each program. 

3.  Applications 

S3 has been utilized in designing multiprogramming control of a 
computer used for process control with off-line program background, 
for design of real-time airborne hardware/operating systems for 
multiprocessor configurations, and for performance evaluation of 
systems utilizing the Litton 3050M, the IBM 4Pi, and the Burroughs 
D84T computers. 

References 

Leo J. Cohen, System and Software Simulator, Volume I, CEIR, Inc., 
Washington, D.C., December 1968, Available from Clearinghouse for 
Federal Scientific and Technical Information. 

Leo J. Cohen, "S3, the System and Software Simulator," Digest of the 
Second Conference on Applications of Simulation, December 2-4, 1968, 
New York, pp. 282-285. 

92 



SAM - Systems Analysis Machine 

1. Background Information 

Author:  Leo J. Cohen 

Originating Organization:  Applied Data Research Inc. 

Date of Release:  1970 

Status:  Current 

Machine Implementation:  IBM 360/50 

2. Major Features 

SAM, System Analysis Machine, is a computer program written in 
FORTRAN designed for the discrete-step simulation of the operations 
of digital computer systems.  The facilities allow for the modeling 
of the hardware, operating system, utility programs, and applica- 
tions programs which comprise a computer system. 

Unlike SCERT and CASE in which system data is specified via 
definition forms, SAM provides a dynamic programming language as 
the means for describing computer hardware/software characteristics. 

A complete SAM model is comprised of the following basic 
elements: 

a. The Hardware Module consists of SAM declarators which 
describe the operational characteristics and interconnections 
of the hardware components (example:  I/O devices, channels, 
CPU's, controllers, etc.). 

b. The Program Module describes the component software of the 
system. The declarators provide information relative to 
size, language, storage requirements, and I/O files. 
Additionally, the logic of each program as described by flow 
charts is encoded in SAM statements. 

c. The File Module describes the characteristics of the files 
in terms of direction (input or output), organization, and 
format. 

93 



d. The Media Module describes the peripheral storage devices 
and delineates organization, physical properties, and file 
assignments. 

e. The System Module correlates the Hardware, Program, File, 
and Media Modules and incorporates any user defined FORTRAN 
subroutines. 

f. The Creation Module provides data relative to the charac- 
teristics of the jobs and the rate at which they will be 
generated and entered into the simulation. 

The SAM System consists of five components;, the functions of 
each will be briefly described. 

a. The Model Library consists of pre-defined models of the 
hardware, operating systems, and utility packages of the 
major computer manufacturers. User defined models may be 
coded in the SAM language and entered into the library. 
During a simulation, macro calls will extract the approp- 
riate models from the library. 

b. The SAM Translator is comparable to a compiler in that 
it converts "source models" written in the SAM language 
into "object models" in the lower level code required 
by the Model Generator. 

c. The Model Generator performs the functions of a linkage 
editor.  Operating on the output from the Translator, the 
Generator produces a complete model from the component 
modules (i.e., hardware, program, file, media system, and 
creation). 

d. The model produced by the Generator is executed by the 
Interpreter.  Data relative to system performance, device 
utilization, and program efficiency are collected and for- 
matted for input to the Data Analyzer and Reporter. 

e. The Data Analyzer and Reporter generates the statistical 
results of the simulation. At the option of the analyst, 
a wide range of output reports describing system perfor- 
mance is available. 

3.  Applications 

SAM addresses itself to a wide spectrum of problems.  The 
referenced manual states that the Systems Analysis Machine is capable 

94 



of modeling real-time, time-sharing, multiprocessor, and multi- 
computer systems. 

To illustrate the features of the language, an example of a 
tele-processing system is included. 

References 

Jeffrey N. Bairstov, "A Review of System Evaluation Packages," 
Computer Design, July 1970. 

'Systems Analysis Machine - Introductory Guide," Applied Data 
Research, Inc. 

95 



SCERT - Systems and Computers Evaluation and Review Technique 
COMET - Computer Operated Machine Evaluation Technique 

1. Background Information 

Author:  Fred C. Ihrer 

Originating Organization:  COMRESS, Inc., Rockville, Maryland 

Date of Release:  1962 

Status:  Current version SCERT 50 

Machine Implementations:  IBM 360 series 
UNIVAC 1108 
Spectra 70 series 

2. Major Features 

SCERT was the first of the commercially available systems evalua- 
tion packages.  The Air Force presently owns a version of the simulator 
under the acronym COMET.  Since COMET represents a basic simulation 
capability within the Air Force, it is treated in somewhat greater depth 
than the other packages described in this section. 

It provides the capability to simulate the performance of a user's 
processing requirements against cost/performance models of selected 
computer hardware/software systems.  Written in assembly language, it is 
essentially an algorithmic simulator incorporating discrete event simu- 
lation techniques only in the case of randomly occurring processing. 

SCERT is an evolutionary tool and has been modified as necessary 
to keep pace with and accurately reflect advances in computer technology. 
Originally designed to simulate batch systems, it has been updated to 
the current version, SCERT 50, which is capable of simulating multipro- 
gramming, multiprocessing and real-time systems. 

SCERT may be run in either of two modes, review or evaluation. 
The evaluation mode includes optimizing features such as blocking of 
records, assignment of peripheral units to I/O channels, allocation of 
memory, and scheduling of a multiprogramming workload.  In the reviaw 
mode these parameters are specified by the user, and the simulator 
merely determines the execution timings and hardware utilization.  The 
review mode of operation is useful in validating a bat,e case configura- 
tion by comparing the simulation results with known throughput data. 

% 



The user may then change values of parameters and run in the evaluation 
mode, and SCERT will apply the appropriate optimising algorithms.  These, 
lowever, are limited to those previously noted, and it remains the 
responsibility of the systems analyst to study the output reports and 
initiate changes in equipment configuration and program design which 
have the potential of enhancing system performance. 

Tlie SCERT package consists of four major components: 

1. Definition languages 
2. Factor library 
3. Simulation programs 
'* Output reports 

Tue definition languages define the applications systems and the 
hard\ rare/aoftware configurations to be analyzed.  Processing require- 
nei ts ire delineated for each computer program or random event which 
comprise the projected workload.  Each application program is defined 
in terms of priority, pre-requisites, frequency, I/O files, and inter- 
nal processing requirements.  These processing requirements may be 
specified in terms of basic computer activity (add, compare, move, etc.) 
or at a higher functional level (extract, validate, sort, etc.) depend- 
ing upon the stage of program design.  Random processes arc modeled as 
a series of sequential sub-processes where each sub-process is defined 
as one computer run.  Additionally, each file involved in the system 
processing is defined in terms of number of records, characters per 
record, number of alpha and numeric fields, media, etc. 

The hardware/software configurations are specified by component 
model number and quantity.  The hardware must be specified in exact 
detail including all adaptors, channels, and control units.  The user 
may specify the allocation of peripheral devices to channels and the 
terminal interfaces in communications networks. The software packages 
which are to be used in conjunction with the hardware are also specified 
on input definition forms.  Included are a specification of the operating 
system, compilers, sort and IOCS packages, etc. 

Finally, the system environment definition includes such items as 
programmer experience profile, salaries, corporate cost of money, and 
r.ystom life expectancy. 

The SCERT factor library is a technical data base which contains 
factors concerning the performance of commercially available computer 
hardware and software.  The hardware factors include cost, environment, 
specification, and performance data relative to central processing 
units, peripheral components, control units, and special features.  The 
software factors include capability, capacity, and overhead data rela- 
tive to generalized sottware packages such as compilers, operating sys- 
tems, IOCS, and sort routines. 

97 



Conceptually, SCERT simulation programs may be viewed as having 
five functional phases. Phase 1 accepts as input the systems, file and 
environment definitions, and builds a hardware-independent, mathematical 
model of the processing requirements of each computer run and real-time 
event in the system.  These models are verified and output diagnostics 
generated as necessary. 

Phase 2 accepts as input the definitions of the hardware components 
and software packages which comprise the configuration to be analyzed. 
Appropriate factors are retrieved from the library and mathematical 
models are built which represent the hardware configuration, the soft- 
ware packages, and the effect of the integration of hardware and soft- 
ware.  The Phase 1 processing models are validated for compatibility 
with the Phase 2 models. 

Phase 3 of SCERT consists of the execution of the pre-simulation 
algorithms.  The processing requirements developed in Phase 1 are 
adjusted to conform to the capability of the hardware/software complex 
specified in Phase 2.  For each program or random event in the applica- 
tions workload the following data are computed: 

1. Internal processing time 
2. Memory requirements 
3. Assignment of files to peripheral devices and channels 
4. Structuring of the files to the hardware 
5. Throughput timing and memory requirements for all I/O functions 
6. Timing of generalized software packages 
7. Pre- and post-run timing 

The actual simulation is executed in Phase 4 via three distinct stages. 
Stage 1 is considered the throughput simulation.  SCERT explodes each 
program run and random event into its maximum number of iterations, 
simulates the flow of each through the specific computer configuration, 
and derives net throughput timing.  These data are based on the com- 
posite representation of I/O and internal timing generated by the pre- 
simulation algorithms, and all available simultaneity is accounted for. 
The resultant timing reflects system operation in a sequential batch 
mode (i.e., a non-multiprogrammed environment). 

Stage 2 consists of the event-oriented simulation and is executed 
only if the defined processing includes real-time events.  Probabalistic 
models of events occurring during the total cime frame are developed; and 
the flow of these models through the computer system is analyzed to 
determine the load imposed on potential queue points (CPU, mass storage, 
peripherals), the average and maximum delay times for messages, and the 
effect of real-time interrupts on background batch jobs. 

98 



Stage 3 consists of the time-oriented simulation; it is entered 
whenever the system specifications include a multiprogramming or multi- 
processing capability.  Employing critical path techniques, SCERT 
determines the degree of concurrency available and derives a schedule 
of tasks based on considerations of priorities, processing requirements, 
and pre-requisites. 

In summary, Stages 1 and 2 determine the net elapsed time (vertical 
utilization) and capacity requirements (horizontal utilization) for each 
scheduled run and real-time event.  Stage 3 generates time stream records 
of processing requests which are sorted into sequence by priority within 
a time zone.  These time stream records are passed against a model rep- 
resenting the total capacity of the computer system in terms of memory 
available, total peripherals, internal processing capacity, channels 
available, etc.  Each record is examined, requirements are matched to 
available capacity, and a schedule of tasks that should be run in paral- 
lel to achieve maximum throughput is determined. 

The last functional component of SCERT consists of the output 
report generator.  A full complement of fourteen reports of varying 
levels of detail is available for management analysis.  Each of these 
may be selectively requested as dictated by the objectives of the sim- 
ulation.  In summary, the output reports are as follows: 

•System Identification - for each program run and real-time event 
this report outlines the input file data, internal functional 
activities, and output file data. 

• Configuration Identification and Cost 

Computer Complement Report - identifies the configuration 
being simulated and includes certain basic cost and 
environment data. 

Cost Summary Report - the lease, purchase and maintenance 
costs of the hardware are presented, based on expected 
utilization. 

• Sequential Processing Projections 

Central Processor Utilization - projects for each run the 
processing time, set-up time, and memory requirements. 
Additionally, a summary report is generated which pro- 
rates these projections into daily, weekly and monthly 
average utilization. 

Computer Capabilities Report - tabulates for each run the 
hardware devices utilization. 

99 



Detail Systems Analysis Report - a three part report produced 
for each scheduled run or real-time event simulated. 

Part 1 - analyzes the I/O requirements of the run in 
terms of device assignment, file blocking, buffer space, 
throughput timing, etc. 

Part 2 - derives the internal processing time, program 
steps, and memory attributable to arithmetic operations, 
decision and control, data handling, and I/O control. 

Part 3 - analyzes pre- and post-run overhead functions. 

• Random Real-Time Projections 

Event Processing Time - analyzes each real-time event in terms 
of its unique input, output, and processor time indepen- 
dent of any possible queueing delays. 

Hardware Utilization - analyzes all potential queue points in 
terms of utilization and derives expected and worst case 
queue lengths. 

System Response Data - the expected response of each event 
through the central computer complex and through the 
communications network is presented for the 99th, 95th 
and 50th percentile probability levels. 

Memory Requirements - tabulates for each random event the 
memory requirements for program areas and data areas. 
Also presented are the expected and worst case background 
memory requirements. 

• Multiprogramming/Multiprocessing Projections 

Detailed Multiprogramming Schedule - provides a snapshot of 
the computer system at every point in simulated time 
when a program starts, terminates or changes state. 

Multiprogramming Throughput Summary - tabulates che complete 
time history for each scheduled run and provides data 
for throughput analysis. 

Multiprogramming Utilization Summary - presents for each time 
zone a measure of system utilization in terms of memory 
and processor capacity. 

• Implementation Projections 

Programming Requirements Report - breaks down each program run 
into the number of instructions to be programmed by the 
user and supplied by utility routines.  Additionally a 
projection is made of the programming effort in man-monchs. 

100 



Application Summary Report - presents a summary of the central 
processor utilization and programming effort for each 
unique application area in the workload. 

References 

Jeffrey N. Bairstow, "A Review of Systems Evaluation Packages", Computer 
Decisions, June 1970, p. 20. 

"Data Processing Planning Via Simulation", EDP Analyzer, Vol. 6, No. 4, 
April 1968. 

Donald J. Herman, "SCERT:  A Computer Evaluation Tool", Datamation. 
February 1967, p. 26-28. 

Donald J. Herman and Fred C. Ihrer, "The Use of a Computer to Evaluate 
Computers" Proceedings - Spring Joint Computer Conference, 1964, 
p. 383- 395. 

Allan J. Pomerantz, "Predict Your System's Fortune: Use Simulations 
Crystal Ball", Computer Decisions, June 1970, p. 16-19. 

"A Technical Description of SCERT", COMRESS, Inc. 

101 



SECTION IV 

BIBLIOGRAPHY 

The bibliography has been automated via the KWIC INDEXING sys- 
tem which reads reference data and permutes the titles on a complete 
or selective word basis.  It is possible to annotate the titles by 
keyword descriptors, and permutation on the annotators is an 
additional option.  Where appropriate the references have been so 
annoted to indicate the subject language(s).  Preliminary documenta- 
tion has been collected relevant to computer systems simulation; 
these references have been annoted by language/computer system.  The 
entire bibliography, organized by author, is presented as Appendix 
A; the bibliography indexed on the languages delineated in Section 
III is presented as Appendix B. 

Several of the references are of an expository nature and deal 
with the basic similarities and differences that exist between 
simulation languages.  Table II identifies these reference sources 
and delineates the languages so compared. 

1OS/360 QUIC (KWIC INDEXING), IBM Corporation, Contributed Program 
Library, 360D-06.7.022. 

102 



Table III 

Comparison of Simulation Languages 

LANGUAGE 

CLP 

CSL 

DYNAMO 

ESP 

GASP 

GPSS 

GSP 

HSL 

MONTECODE 

RSP 

SIMON 

SIMPAC 

SIMSCRIPT 

SIMULA 

SOL 

D0010 

X 

X 

X 

BIBLIOGRAPHY REFERENCE 

KOI30     T0010     T0030 

X 

X 

X 

X 

X 

X 

X 

X X 

X 

X 

X 

X 

X 

T0033 

X 

X 

D0010 - 0. J. Dahl, "Discrete Event Simulation Languages" 
K0130 - H. S. Krasnow, R. A. Merikallio, "The Past, Present and 

Future of General Simulation Languages" 
T0010 - D. Tiechroew, J. F. Lubin, "Computer Simulation - Discussion 

of the Techniques and Comparison of Languages" 
T0030 - K. D. Tocher, "Review of Simulation Languages" 
T0033 - K. D. Tocher, A. P. Amiry, "New Development in Simulation" 

Complete references may be found in the computerized bibliography 
listing. 

103 



APPENDIX A 

BIBLIOGRAPHY ON SIMULATION 

AOOOS   ACM/AIIE/ IEEF/SHARF/SCI/TIMS   (SPONSOR) 
FOURTH   CONFERENCE   ON   APPLICATIONS   OF   SIMULATION 
N^w  Yi'BK,   NEW  YORK   (DEC.19701 
APPLICATIONS 

A0010    ANDERSON,    H   A 
SIMULATION   OF   THE    TIME-VARYING   LOAD   ON   FUTURE   REMOTE-ACCESS 
IMMEDIATE-PESPONSE   COMPUTER   SYSTEMS 

A0020   APPLIED   DATA   RESEARCH,    INC. 
SYSTEM   ANALYSIS   MACHINE 
APPLIED   OATA   RESEARCH,    INC.    (APRIL   1970) 
SAM 

A0030   ARMSTRONG*   J ULFFRS,   H 
MILLE",    D   J PAGE,   H   C 
SOLPASS,    A   SIMULATION   ORIENTEO   LANGUAGE   PROGRAMMING   ANn 
SIMULATION   SYSTFM 
PROC.    THIR'J   CONF.    ON   APPLICATIONS   OF   SIMULATION,   LOS   ANGELES 
,   1969,   P.i74-27   (ACM/AIIE/IFEE/SHARE/SCI/TIMS) 
SOLPASS 

BGD03    BAIRSTOW,    J   N 
A   REVIFW   OF   SYSTEMS   EVALUATION   PACKAGES 
COMPUTFR   DECISIONS   (JUNE   1970),   P.20 
CASE      SAM      SCERT 

B0010   RLUNDEN,    G   P KRASNOW,    H   S 
THE   PROCESS   CONCEPT   AS    A   BASIS    FOR   SIMULATION   MODELING 
SIMULATION   (AUG.1967),    P.89-93 

R0030   BRENNAN,    R   D LINFBARGER,   R   N 
A SURVEY OF DIGITAL SIMULATION 
SIMULATION (DEC.1964), P.22-36 
CONTINUOUS 

B0040   BUXTON,   J   N ** 
SIMULATION   PROGRAMMING   LANGUAGES 
PROC.   OF   IFIP   WORKING   CONF.   ON   SIMULATION   PROGRAMMING 
LANGUAGES,   NORTH-HOLLAND   PUBLISHING   CO.-AMSTEROAM   (1968) 

B0050   BUXTON,   J   N 
WRITING   SIMULATIONS   IN   CSL 
COMPUTER   JOURNAL   (AUG.1966),    P.137-143 
CSL 

105 



ttf)060   KUXTON,   J   N LASKI,   J   G 
CONTROL   AND   SIMULATION   LANGUAGE 
COMPUTFR   JOURNAL   5,3   (0CT.1962),   P.194-200 
CSL 

C0010 CALINGAFRT, P 
SYSTEM PERFORMANCE EVALUATION: SURVEY AND APPRAISAL 
COMMUNICATIONS OF THE ACM (JAN.1967), VOL.10, NO. 1 , P.12-58 
APPLICATIONS 

C0O?0 TANNING, R G 
OATA PROCESSING PLANNING VIA SIMULATION 
EOP ANALYZE (APRIL, 19681 VOL.6, NO. 4 

CCG2 5   CHPNG,   P   S 
TRACE-DRIVFN   SYSTEM   MODELING 
IRM   SYST   J   8,4    (1969),   P.280-289 

C0030   CLANCY,   J   J FINER-ERG,   M   S 
DIGITAL   SIMULATION   LANGUAGES:    A  CRITIQUE   AND  A   GUIDE 
PKOC.   FJCC   (1965),   P.23-36 
CONTINUOUS 

C0032    CLARK,    S   P ROUKE,   T   A 
A   SIMULATION   STUDY   OF   COST   OF   DELAYS    IN   COMPUTER   SYSTEMS 
PROC.    FOURTH   CONF.   ON   APPLICATIONS   OF   SIMULATION   ACM/AIIE 
IFEF/SHARE/SCI/TIMS   NEW   YORK,NEW   YORK   (DEC.1970),   P.195-200 
APPLICATIDNS 

C0040   CLEMENTSON,   A   T 
EXTENDED   CONTROL   AND    SIMULATION   LANGUAGE 
COMPUTER   JOURNAL   9.3    (NOV.1966),   P.215-220 
ECSL 

C0050   COHEN,   L   J 
SYSTEM   AND   SOFTWARE   SIMULATOR 
C-E-I-R,    INC.   WASHINGTON,    DC   (DEC.1968),   AD   679   269,    VOL.1 

C0060   COHEN,   L    J 
S3,   THP   SYSTEM   AND   SOFTWARE   SIMULATOR 
OIGEST   OF   THE   SECOND   CONFERENCE   ON   APPLICATIONS   OF 
SIMULATION   (DEC.1968),   P.282-285 
S3 

C007C   COMRESS      -   ROCKVILLE,    MARYLAND 
A   TECHNICAL   DESCRIPTION   OF   SCERT 

106 



COOSO   CQNWAY,   R   H DELFAUSSE,   J   J 
MAXWELL,   W   L WALKER,   W   E 
CLP   -   THE   mPNELL   LIST   PROCESSOR 
COMM     )F   THf    ACM    (APPR   1965),    VOL.8,    NO.4,    P.215-216 
CLP 

00010    CAHLt    0   J 
DISCRETE   EVENT    SIMULATION   LANGUAGES 
LCCTURFS   DELIVERED   AT   THE   NATO   SUMMER   SCHOOL. 
VILLARO-DE-LANS    (SEPT.196<b) 
CSL      CSS      SIMSCRIPT      SIMULA      SOL 

00020   OAHL.    0   J NYGAARD,    K 
SIMULA   -   AN   ALGOL-BASED   SIMULATION   LANGUAGE 
COMMUNICATIONS   OF    THE    ACM   (SFPT.196S),   VOL.9,    NO.9, 
P. *71-*78 
SIMULA 

00030    OAHL.    0   J MYH&HAUG,    B 
NYGAAPO,    K 
SOME   FEATURES   OF   THP   SIMULA   67   LANGUAGE 
DIGEST   OF   THF   SECOND   CONFERENCE   ON   APPLICATIONS   OF 
SIMULATION   (DEC.1968),    P.29-31 
SIMULA 

0CO4O   DONOVAN,    J   J ALSOP,    J    W 
JONES,    M   M 
A   GRAPHICAL    FACILITY   FOR   AN   INTERACTIVE   SIMULATION   SYSTEM 
PROC.    OF   IFIPS   CONGRESS,    (1968),    P.593-596 
SIMPLE 

00050    DOWNS,   H   P NIELSEN,    N   R 
WATANABE,    E   T 
SIMULATION   OF   THE    ILLIAC   IV   -   R6500   REAL-TIME   COMPUTING 
SYSTEM 
PROC.    FOURTH   CONF.   ON    APPLICATIONS   OF   SIMULATION   ACM/AIIE/ 
IEFE/SHARE/SCI/TIMS   NEW   YORK,NEW   YORK    (DEC.1970),   P.207-212 
FORTRAN      BURROUGHS/6500      APPLICATIONS 

E0010    EVANS,    G   W WALLACE,   G   F ** 
SUTHERLAND,   G   L 
SIMULATION  USING   DIGITAL   COMPUTERS 
PRENTICE-HALL,    INC.   (1°67) 

F0003    FAMOLARI,    E 
FQPSIM   IV   -   FORTRAN   IV   SIMULATION   LANGUAGE   USER'S   GUIDE 
SR-99   MITRE   CORP.    (JAN.1964) 
FORSIM 

107 



F0004   FINE,    G   H MCISAAC.   P V 
SIMULATION  OF   A   TIMP   SHARING SYSTEM 
MANAG.   SCI.   12,6   (FEB.1966), P.180-194 
APPLICATIONS 

F0007    FOX,    D KESSLER,    J   L 
EXPCRIMENTS   IN   SOFTWARE   MODELING 
PROC.    AFIPS   FJCC   (1967),    VOL.31,   P.429-436 
APPLICATIONS 

F0010   FREPMAN,    C   E 
OISCRFTE    SYSTEMS   SIMULATION 
SIMULATION   7,3    (SEPT.1966),   P.142-148 
GPSS 

F0020    FRFEMAN,    C   E 
PROGRAMMING   LANGUAGES   EASE   DIGITAL   SIMULATION 
CONTR.    «=NG.    (NOV.1964),   P.103-106A 
CSL      GPSS     SIMSCRIPT 

G0010   GAINEN,   L 
COMPLPX  BUSINESS   PROBLEMS?   TRY   SIMSCRIPT,   A   POWERFUL 
SIMULATION   LANGUAGE 
COMPUTER DECISIONS (APRIL 1970), P.52-56 
SIMSCRIPT 

G0020   GEISLER,    M   A MARKOWITZ,   H   M 
A   BRIFF   REVIEW   OF   SIMSCRIPT   AS   A   SIMULATING   TECHNIQUE 
RAND   CORP.   HM-3778-PR    (AUG.1963) 
SIMSCRIPT 

G0025   GLINKA,    L   R BRUSH,   R   M 
UN GAR,    A   J 
DESIGN,   THRU   SIMULATION,    OF   A   MULTIPLE-ACCESS    INFORMATION 
SYSTEM 
PROC.    AFIPS   FJCC   (1967),   VOL.31,   P.437-447 
APPLICATIONS 

G0030   GORDON,   G 
SIMULATION   LANGUAGES   FOR   DISCRETE   SYSTEMS 
PROC.    IBM   SCIENTIFIC   COMPUTING   SYMPOSIUM   SIMULATION   MODELS 
AND  GAMING   (1966),    P.101-118 

G0040   GORDON,   G ** 
SYSTEM   SIMULATION 
PRFNTICE-HALL,    INC.    (1969) 

108 



G005Q   GREr:NPERGFR,   v JON^S,   M   M 
MORRIS,   J   H NESS,   0   N 
ON-LINF   COMPUTATION   AND   SIMULATION:   THE   OPS--*   SVSTFM 
THP   MIT   PRFSS    (AUG.!9f>5) 
GPS3 

HOOIO   HAWTHORNE.   G   B 
DIGITAL   SIMULATION   ANO   MODELING 
THF   MITRE   CORP.    SR-H 1    (MARCH   1964) 

HOO?0   HERMAN,    D   J 
SCP«T:   A   CnMPUTE"   ^VALUATION  TOOL 
DATAMATION   (FF*.1°67),    P.76-28 
SCERT 

HO03O   HERMAN,    D   J IHRER,    F   C 
THF   USE   DF   A   COMPUTER   TO   EVALUATF   CnMPUTERS 
PPOC.   SJCC   (1964)    SPARTAN   BOOKS,   WASHINGTON,DC      P.383-395 
SCFRT 

H0O33   HILLS,    P   P 
SIMON:   A    SIMULATION   LANGUAGE   IN   ALGOL 
DIGITAL   SIMULATION   IN   OPERATIONAL   RESEARCH, 
FD.    S.H.HOLLINGDALE,    (1967),   LFCTURES   PRES.   AT   NATO 
SCIENTIFIC   AFFAIRS   CONF.,    HAMBURG,   GERMANY,    (SEPT.1965), 
P.105-115 
SIMON 

H0035    HOARE,   CAR 
RECORD   HANDLING 
PROGRAMMING   LANGUAGFS,   NATO   ADVANCED   STUDY   INSTITUTE, 
LEC.TUPFS   DELIVERED   AT   NATO   SUMMER   SCHOOL,    VILL ARD-DE-LANS, 
ACADEMIC   PRESS,    (1968),    P.32^-336 

H0040   HOLLAND,    R   C MFRIKALLIO,   R   A 
SIMULATION   OF   A   MULTIPROCESSING   SYSTEM   USING   GPSS 
IEFF   TRANSACTIONS   ON   SYSTEMS   SCIENCE   AND   CYBERNETICS 
(NOV.1968)   VOL.SSC-4,    NO.4,   P.395-400 
GPSS 

H0045   HOLLINGPALE,    S   H ** 
DIGITAL   SIMULATION   IN   OPERATIONAL   RESEARCH 
LECTURES   DFLIV.    AT   NATO   SCIENTIFIC   AFFAIRS   CONF.,    HAMBURG, 
GERMANY,    AMER.    FLSEVIFR   PUB.   CO.,    (1967) 

H0050   HUFSMAN,    L   R GOLDBERG,    R   P 
EVALUATING   COMPUTER   SYSTEMS   THROUGH   SIMULATION 
COMPUTED   J.   10,2   (AUG.1967),   P.150-156 

SCPRT   CTSS   SIMSCRIPT   SIMTRAN   CSS   MDL      APPLICATIONS 

109 



H0053   HUGHES   AIPCRAFT   GROUND   SYSTEM  GROUP 
A   TOOL   FOR  THF   DEVELOPMENT   OF   REAL-TIME   COMPUTER   SYSTEMS 
(PRODUCT LINE SIMULATOR) 
HUGHES AIRCRAFT CO, NO.05256-2, (AUG.1970) 
PLS 

H0057 hUTCHINSON, G K 
SOME PROBLEMS IN THF SIMULATION OF MULTIPROCESSOR COMPUTER 
SYSTEMS 
SIMULATION PROGRAMMING LANGUAGFS (1968) PROC. OF IFIP 
WORKING CONFERENCE IN SIMULATION LANGUAGES, OSLO, NORWAY 
(1967),  P.305-?2^ 
APPLICATIONS 

H0060   HUT.HINSON,   G   K MAGUIRE,    J   N 
COMPUTcR   SYSTFMS   DFSIGN   AND   ANALYSIS   THROUGH   SIMULATION 
PROC.    FJCC   (1965),    P.161-167 
SIMSCRIPT        UNIVAC/1107     APPLICATIONS 

10003    IBM 
BIBLIOGRAPHY   ON   SIMULATION 
320-09?4-C   IBM   (1966) 

10010    IBM   APPLICATION   PROGRAM 
GENERAL   PURPOSE   SIMULATION   SYSTEM/360   APPLICATION 
DESCRIPTION 
IBM   (1966,'967),   H70-0186-2 
GPSS 

I00?0    IBM   APPLICATION   PROGRAM 
GENERAL   PURPOSE   SIMULATION   SYSTEM/360   INTRODUCTORY   USER'S 
MANUAL 
IBM   (1Q67),    H20-0304-1 
GPSS 

IC030    IBM   APPLICATION   PROGRAM 
GENERAL   PURPOSE   SIMULATION   SYSTEM/360   USER'S   MANUAL 
IBM   (1967,1968),   H20-0326-2 
GPSS 

10035    IBM   APPLICATION PROGRAM 
GENERAL   PURPOSE SYSTEMS   SIMULATOR   III    INTRODUCTION 
GB20-0001-0   IBM (FEB.1970) 
GPSS 

110 



I0GV3    IBM   DATA    PROCESSING   APPLICATION 
GENERAL   PURPOSE    SYSTEMS   SIMULATOR    II 
IBM    (1963),    P20-6*46-1 
GPSS 

JG020    JON^S,   M   M 
ON-LINF   SIMULATION 
PROC.    2?NC   NAT.    CHNF.    ACM   PUB.   P-67,    (1967),   P.59J-599 
CJPS3   0PS4 

K0005   KALINCHENKO,   L   A 
SLANG   -   COMPUTER   DESCRIPTION   AND   S IMULAT ION-OP IENTFO 
FXPCRT*FNTAL    PROGRAMMING   LANGUAGE 
SIMULATION   PROGRAMMING   LANGUAGES    (5969)    PROC.   OF   IFIP 
WORKING   COMFERENCF    IN    SIMULATION   LANGUAGES,    OSLO,   NORWAY 
(1^67),       P.101-116 
SLANG 

KOniP    KATZ,    J   H 
AN   EXPERIMENTAL   MODEL   OF   SYSTEM/360 
COMMUNICATIONS    OF   THE   ACM    (NOV.1967),    VOL.10,    NO.U, 
P.6"4-702 
SIMSCRIPT      IBM/360       APPLICATIONS 

K00?0   KATZ,    J   H 
SIMULATION   OF   A   MULTIPROCESSOR   COMPUTER   SYSTEM 
PROC.    SJCC   (1966),   VOL.28,    P.127-139 
APPLICATIONS 

K0025   KFLLPY,    0   H BUXTON,   J   N 
MHNTECOOE   - AN   INTERPRETIVE   PROGRAM   FOR   MONTE   CARLO 
COMPUTFR   J. (JULY   1962),   VOL.5,    P.88-93 
MONTPCODE 

K0030    KIVIAT,    P   J 
DEVELOPMENT   OF   DISCRETE   DIGITAL   SIMULATION   LANGUAGES 
SIMULATION   R,2    (FEB.1967),    P.65-70 

KOOAO   KIVIAT,   P   J 
OFVELOPMENT   OF    NEW   DIGITAL   SIMULATION   LANGUAGES 
P-3348,   RANO   CORP.,    SANTA   MONICA,   CALIF.,    (APRIL   1966) 

K0050   KIVIAT,    P   J 
CIGITAL   COMPUTER   SIMULATION:   COMPUTER   PROGRAMMING   LANGUAGES 
RM-58B3-PR   RAND   CORP.,   SANTA   MONICA,    CALIF.,    (JAN.1969) 
CSL      GPSS      SIMSCRIPT      SIMULA 

111 



K0060   KIVI AT,   P   J 
DIGITAL   COMPUTER   SIMULATION: 
RM-5378-PP   RAND   CORP.,    SANTA 

MODELING  CONCEPTS 
MONICA,   CALIF.,    UUG.1967) 

K0070    KIVIAT,    P   J 
INTRODUCTION   TO   THE   SIMSCRIPT    II    PROGRAMMING   LANGUAGE 
DIGEST   OF   THC   SECOND   CONFERENCE   ON   APPLICATIONS  OF 
SIMULATION   (DEC.1968),    P.32-36 
SIMSCPIPT 

VILLANUEVA,   P K&074   KIVIAT,   P   J 
MARKOWITZ,   H   M 
THE   SIMSCRIPT   II   PROGRAMMING 
PRPNT ICE-FALL,    INC.   (!968) 
SIMSCRIPT 

** 

LANGUAGE 

K0077   KIVIAT,    P   J 
URMAN,   J   B 
THE   SIMSCRIPT   II 
IVPLEMFNTATION 
RM-5777-PR   RAND   CORP. 
SIMSCRIPT 

SHUKIAR,   H   J 
VILLANUEVA,   R 

PROGRAMMING   LANGUAGE: 

(JULY   1969) 

IBM   360 

KOOfiO KLEINE, H 
A   SURVEY   OF   USFRS*   VIEWS   OF   DISCRETE 
SIMULATION   (MAY   1970),    P.225-229 

SIMULATION   LANGUAGES 

K0090   KNUTH,   D   E MCNELEY,    J   L 
A   FORMAL    DEFINITION   OF   SOL 
IEEE   TRANS.   EC-13    (AUG.1964),    P.409-414 
SOL 

K0!00   KNUTH,   0   E MCNELEY,    J   L 
SOL   -   A   SYMBOLIC   LANGUAGE   FOR   GENERAL-PURPOSE 
SIMULATION 
IEEC    TRANS.    EC-13    (AUG.1964),    P.401-408 
SCL 

SYSTEM 

K0103    KOSY,    D   W 
EXPERIENCE   WITH   THE   EXTENDABLE   COMPUTER   SYSTEM   SIMULATOR 
FOURTH   CONE.    ON   APPLICATIONS   OF   SIMULATION,    ACM/AIIE/IEEE/ 
SHARE/SCI/TIMS   NEW   YORK,NEW   YORK    (DEC.1970),   P.235-242 
ECSS 
APPLICATIONS 

112 



K0108 KRASNOW, H S 
DYNAMIC REPRESENTATION TN DISCRETE INTERACTION SIMULATION 
LANGUAGES 
DIGITAL   SIMULATION   IN   OPERATIONAL   RESEARCH, 
FO.   S.H.HOLLINGDALE,    (1Q67),   LECTURES   PRES.   AT   NATO 
SCIENTIFIC   AFFAIRS   CONF.,   HAMBURG,   GERMANY,   (SEPT.1965>, 
P.77-92 
CSL   GPSS   GSP   SIMSCPIPT   SIMULA   SOL   MILITRAN 

K0110    KRASNOW,   H   S 
HIGHLIGHTS   OF   A   DYNAMIC   SYSTEM   DESCRIPTION   LANGUAGE 
IBM   ADV.    SYSTEMS   DEVELOPMENT   DIV.   TECHNICAL   REPORT   17-195 
NSS 

K0120    KRASNOW,    H   S 
SUMMARY   REPORT:    INTERNATIONAL   FEDERATION   OF   INFORMATION 
PROCESSING   WOPKING   CONFERENCE   ON   SIMULATION   LANGUAGES 
SIMULATION   (FEB.1968),    P.79-80 

K0130    KRASNOW,    H   S MERIKALLIO,    R    A 
THP   PAST,    PRESENT,   AND   FUTURE   OF   SIMULATION   LANGUAGES 
PAN.   SCI.    11,    (NOV.1964),    P.236-267 
CSL      DYNAMO      GPSS      SIMPAC      SIMSCRIPT 

KOI 40    KRIPS,    P 
SHARE   DIGITAL    SIMULATION   GLOSSARY 
SOC   SP-1562    (FCB.20,1964J 

L0003    LACKNER,    M   R 
TOWARD   A    GENERAL   SIMULATION   CAPACITY    (SIMPAC) 
WCSTERN   JOINT   COMPUT.   CONF.    (1962),    P.1-14 
SIMPAC 

L0010    LEHMAN,    M   M ROSENFELD,    J   L 
PERFORMANCE   OF   A   SIMULATED   MULTIPROGRAMMING   SYSTEM 
PROC.    FJCC   (1968),   VOL.33,    PART   2,   P.1431-1442 
APPLICATIONS 

M0003    PACDOUGALL,    M   H 
COMPUTER   SYSTEM   SIMULATION:    AN   INTRODUCTION 
COMPUTING   SURVEYS   (SEPT.1970),   VOL.2,   N0.3,   P.191-209 

MOOD'S    MACOOUGALL,   M   H 
SIMULATION   OF   AN   ECS-BASED   OPERATING   SYSTEM 
PROC.    AFIPS   SJCC   (1967),   VOL.30,    P.735-741 
APPLICATIONS 

M0020   MARTIN,   F   F 
COMPUTFR   MODELING   AND   SIMULATION 
JOHN   WILEY   AND   SONS,    INC.    (1968) 

113 



M0026    MCAULAY,    S   F 
JO^STRFAM   SIMULATION   USING   A   CHANNEL   MULT I PROGRAMING   FEATURE 
PROC.    FOURTH   CONF.   ON   APPLICATIONS   OF   SIMULATION   ACM/AIIE/ 
IEFF/SHARE/SCI/TIMS   NEW   YORK,NEW   YORK    (DEC.1970),   P.190-194 
CSS      IBM/360      APPLICATIONS 

M007S   MCCREDIF,   J   W SCHLESINGER,   S   J 
A   MOOULAR    SIMULATION   OF   TSS/360 
PROC.    FOURTH   CONF.    ON   APPLICATIONS   OF 
IEFF/SHARE/SCI/TIMS   NEW   YORK,NEW   YORK 
SIMULA      TSS/360   APPLICATIONS 

SIMULATION   ACM/AIIE/ 
(DEC.1970),   P.201-206 

MOO^O MCNELEY,    J 
SIVULATION 
SIMULATION 
SIMULA 

LANGUAGES 
9,2    (AUG.1967), P.95-98 

M0040   MERIKALLIO,   R   A HOLLAND,    F   C 
SIMULATION   DFSIGN   OF   A  MULTIPROCESSING   SYSTEM 
PROC.    FJCC   (1968),   VOL.33,    PART   2,   P.1399-1410 
GPSS      APPLICATIONS 

M0050    MFYERHOFF,    A   J 
BOSS   SIMULATION   OF   A   TIME   SHARING   MESSAGE   PROCESSING   SYSTEM 
FOR   BANK   APPLICATIONS 
BURROUGHS   CORP.    DEFENSE,   SPACE   AND   SPECIAL   SYSTEMS   GROUP, 
(SpPT.5,1969),    NO.61088 
BOSS 
BOSS      APPIfATIONS 

M0060   MEYFRHOFF,   A   J ROTH,    P   F 
TWOY,    J   P 
BOSS:    BURROUGHS   OPERATIONAL   SYSTEMS   SIMULATOR   -   APPLICATIONS 

MANUAL 
BURROUGHS   CORP.    DFFCNSE,    SPACE   AND   SPECIAL   SYSTEMS   GROUP 
(JULY   19,1068) 
ROSS 

M0070   MIZF,    J   H COX,    J   G 
ESSENTIALS   OF   SIMULATION 
PRENTICE-HALL,    INC.    P<>68) 

** 

N0010    NAYLOR,   T   H 
BIBLIOGRAPHY   19.    SIMULATION   AND   GAMING 
COMPUTING   REVIEWS    (JAN.1969),    P.61-69 

Uk 



N0020   NICLSFN,    N   P 
COMPUTER   SIMULATION   OF   COMPUTER   SYSTEM   PERFORMANCE 

PROC.    ACM   NATIONAL   MFFTING   (1967),   P.581-589 
APPLICATIONS 

NOO30   NIELSEN,    N   R 
FCSS:   AN   FXTEND4BLF   COMPUTFR   SYSTEM   SIMULATOR 
RM-6132-NASA   PANO   CORP.,    (FEB.19701 
FCSS 

NC040   NIELSUN,    N   R 
THF    SIMULATION   OF   TIME-SHARING   SYSTEMS 
COMM.    ACM   10,7    (JULY   ^967),    P.397-412 
IBM/360/67      APPLICATIONS 

N0050   NYGAARO,    K OAHL ,    0   J 
BASICS   CHNCFPTS   OF   SIMULA,    AN   ALGOL   BASED   SIMULATION 
LANGUAGE 
DIGITAL   SIMULATION   IN   OPERATIONAL   RESEARCH, 
ED.   S.H.HOLLINGDALF,    (1<?67),   LECTURES   PRE S.    AT   NATO 
SCIENTIFIC   AFFAIRS   CONF.,    HAMBURG,   GERMANY,    (SEPT. 1965), 
P.116-124 
SIMULA 

00010   OCKENE,   A 
LOSING   BUSINESS?   SIMULATION   MAKFS   IT   EASIER   TO   SEF   WHY 
COMPUTER   DECISIONS   (MARCH   1970),    P.36-40 

P0010   PARENTE,   R   J 
A LANGUAGE FOR DYNAMIC SYSTEM DESCRIPTION 
IBM TECHNICAL REPORT 17-180 (NOV.19,1965) 
NSS 

P0020   PARENTE,    R   J KRASNOW,   H   S 
A   LANGUAGE   FOR   MODELING   AND   SIMULATING   DYNAMIC   SYSTEMS 
COMMUNICATIONS   OF   THE   ACM   (SEPT.1967),   VOL.10,   N0.9, 
P.559-567 
NSS 

P0030   PAPSLOW,    P.   D 
AS:    AN   ALGDL   SIMULATION   LANGUAGE 
SIMULATION   PROGRAMMING   LANGUAGES   (1968)    PROC.   OF   IFIP 
WORKING   CONFERENCE   ON   SIMUALTION   LANGUAGES,   OSLO,   NORWAY 
(1967),    P.86-100 
AS 

115 



P0040 PETRONE, L 
ON A SIMULATION LANGUAGE COMPLETELY DEFINED ONTO THE 
PROGRAMMING LANGUAGE PL/l 
SIMULATION PROGRAMMING LANGUAGES (1968) PROC. OF IF IP 
WORKING CONFERENCE ON SIMULATION LANGUAGES, OSLO, NORWAY 
(1967), P.M-85 
SPL 

PO050    POMFRANTZ,   A   G 
PREDICT   YOUR   SYSTEM'S   FORTUNE:   USE   SIMULATION'S   CRYSTAL   BALL 
COMPUTER    DFCISIONS   (JUNE   1970),    P.16-19 
SCEPT 

ROO'O PEHMANN, S L      GANGWFRE, S G 
A SIMULATION STUDY OF RESOURCE MANAGEMENT IN A TI^E-SHARING 
SYSTEM 
PROC.    FJCC   (1968),   VOL.33,    PART   ?,    P.1411-1430 
APPLICATIONS 

R0012   RFITMAN,    J INGERMAN,    D 
KATZKE,   J SHAPIRO,    J 
SIMON,   K SMITH,    B 
A   COMPLETE   INTERACTIVE   SIMULATION   ENVIRONMENT    GPSS/360 
PROC.    FOURTH   CONF.    flN   APPLICATIONS   OF   SIMULATION   ACM/AIIF/ 
IEEE/SHARE/SCI/TIMS   NEW   YORK,NEW   YORK   (DEC.1970),   P.260-270 
GPSS      APPLICATIONS 

R0020   KOTH,    P   F 
THf   BOSS   SIMULATOR   -   AN   INTRODUCTION 
FOURTH   CONF.   ON   APPLICATIONS   OF    SIMULATION,   ACM/AIIE/IEEF/ 
SHARE/SCI/TIMS   NEW   YORK,NEW   YORK    (DEC.1970),   P.244-250 
BOSS 
APPLICATIONS 

S0005 SANBORN, T G 
SIMCOM - THE SIMULATOR COMPILER 
EASTERN   JOINT   COMPUT.    CONF.    (1959),    P.139-142 
SIMCCM 

S0010   SEAMAN,   P   H 
ON   TELEPROCESSING   SYSTEM   DESIGN   (PART   VI)    THE   ROLE   OF 
DIGITAL   SIMULATION 
IBM   SYSTEMS   JOURNAL    (?966),    VOL.5,   NO.3,    P.175-189 
APPLICATIONS 

S0020   SEAMAN,   P   H SOUCY,   R   C 
SIMULATING   OPERATING   SYSTEMS 
IBM   SYSTFM   JOURNAL    (1^69),    NO.4,    P.264-279 
CSS 
CSS IBM/?60/0S      APPLICATIONS 

116 



S00?0    SHUBIK,    M 
BIBLIOGRAPHY   ON   SIMULATION,   GAMING,    ARTIFICIAL   INTELLIGENCE 
AND   ALLIFD   TOPICS 
JOURNAL   AMERICAN   STATISTICAL   ASSOCIATION   (DEC.1960),    VOL.55, 

P. 736-751 

S0040   SOFTWARE   PRODUCTS   CORP. 
A   TFCHNICAL    DESCRIPTION   OF   THE   CASE   SYSTEM 
SOFTWARE   PRODUCTS   CORP.    (1968) 
CASE 

S0050   STATLANO,   N 
METHODS   OF   EVALUATING   COMPUTER   SYSTEMS   PERFORMANCE 
COMPUTERS    AND   AUTOMATION    (FEB.1°64),    P.18-23 
IBM/1410     APPLICATIONS 

S0070   SYSTEMS   RESEARCH   GROUP    INC. 
MILITRAN   PROGRAMMING   MANUAL 
REPORT   ESD-TDR-64-320,    (JUNE   1964) 
MILITRAN 

TD010   TEICHROEN,    D LUBIN,    J   F 
COMPUTER   SIMULATION   -   DISCUSSION   OF   THE   TECHNIQUE   AND 
COMPARISON   OF   LANGUAGES 
SIMULATION   9,4    <0CT.1«67)    P.181-190 
CLP      CSL      GASP      GPSS      HSL      SIMSCRIPT      SOL 

T00?0    THOMPSON,   W   C 
THE   APPLICATION   OF   SIMULATION    IN   COMPUTER   SYSTEM   DESIGN   AND 
OPTIMIZATION 
DIGEST   OF   THE   SECOND   CONFERENCE   ON  APPLICATIONS  OF 
SIMULATION   (DEC.196R),    P.286-290 

T0030   TOCHFR,   K   D 
REVIEW   OF    SIMULATION   LANGUAGES 
OPERATIONS   RESEARCH  QUARTERLY   16,2      P.189-218 
CSL     ESP     GPSS      GSP     MONTECODE   SIMON   SIMPAC   SIMULA   SIMSCRIPT 

T0031    TCCHEP,   K   D 
THF   ROLE   OF   MODELS   IN   OPERATIONAL   RESEARCH 
J.   ROYAL   STATISTICAL    SOCIETY,    A,    124,    (1961),   P.121-142 

T0033   TOCHER,   K   P AMIRY,    A   P 
NEW   DEVELOPMENTS    IN   SIMULATION 
PROC.   THIRD   INTERN.   CONF.    ON   OPERATIONS   RESEARCH,    (1963), 
P.R32-848 
GSP MKII 

117 



T003*    TOCHFR,   K   D OWEN,    0   G 
THF   AUTOMATIC   PROGRAMMING   OF   SIMULATORS 
PP.OC.   SFCCND   INTERN.   CONF.   OPERAT.   RES.   ENGLISH   UNIV.   PRESS 
(1%0I,    P.50-68 
GSP 

TC040 TOGNFTTI, K P 
CISf.RFTE SIMULATION LANGUAGES WITH REFERENCE TO A 
BIO-SIMULATION - A USER'S IMPRESSIONS 
PROC. OF FOURTH AUSTRALIAN COMP. CONF., ADELAIDE, 
AUSTRALIA, (1969) 

SOUTH 

T0050 TURK, C W 
INCREMENTAL MODELING IN THF FORWARD DIRECTION 
PROC. FOURTH CONF. ON APPLICATIONS OF SIMULATION ACM/AIIE/ 
IFEE/SHARE/SCI/TIMS N^W YORK,NEW YORK (DEC.1970), P.251-259 
APPLICATIONS 

U0010 USS ENGINEERS ANO CONSULTANTS, INC. 
GENFRAL ACTIVITY SIMULATION PROGRAM - GASP 
USS   APPLIED   RESEARCH   LAB.,    MATHEMATICAL   SERVICES   NO, 
(AUG.1969) 
GASP 

46 1 

W001C WEAMER, D G 
OUIKSIM  - A 
SIMSCRIPT 

PROC. THIRD CONF. 
, (1969), P.1-11 
OUIKSIM 

BLOCK STRUCTURED SIMULATION LANGUAGE WRITTEN IN 

ON APPLICATIONS OF SIMULATION, LOS ANGELES 

W0015 WILLIAMS, J 
THE ELLIOTT 
COMPUTER J. 
FSP 

w   J 
SIMULATOR   PACKAGE   (ESP) 
(JAN.1<?64),   VOL.6,   N0.4, P.328-331 

W0020    WORKSHOP   ON   SIMULATION   LANGUAGES 
UNIVERSITY  OF   PENNSYLVANIA   MANAGEMENT   SCIENCE   CENTER 
MARCH   17, 18   1966 

Y0010   YOUCHAH,   M   I RUDIE,    D   D 
JCHNSCN,    F   J 
THF   DATA   PROCESSING   SYSTEM   SIMULATOR    (DPSS) 
PPOC.    AFIPS   1964   FALL    JOINT   COMPUT.   CONF.,   VOL.26, 
P.251-276 
CPSS 

PT.i, 

118 



APPENDIX B 

BIBLIOGRAPHY ON SIMULATION 
(LISTED BY LANGUAGE) 

POO'O 
M0050 
M0060 
S0021 
R00O3 
S0040 
TOOIO 
C0080 
B0030 
C00*0 
K0130 
TO030 
TOOIO 
KClOfl 
OOOIO 
KOO50 
FOO?0 
B0050 
BOOftO 
SOO?0 
YOOIO 
K0130 
C0040 
K0103 
N0030 
TO030 
W0015 
FOOO-* 
TOOIO 
U0O10 
TOCO 
K0108 
TOOIO 
K0130 
OOOIO 
K0050 
FO020 
FOCIO 
H0040 
IOOIO 
IOO?0 
IC030 
IOO<-0 
10035 
T0033 
T0030 
K0108 
T0035 
TOOIO 
S0070 
K0108 
T0033 
T0030 

P0020 
P0010 
K0110 

T   SOL* 

PT* 
ON   SIMPAC    SIMULA   SIMSCRIPT* 
L* CLP 
SOL MILITRAN* 

IMPAC SIMULA SIMSCRIPT* 

CSL 

CSL 

CLP   CSL 

C   SIMULA   SIMSCRIPT*        CSL   ESP 
MILITRAN* CSL 

CLP   CSL   GASP 
CSL   DYNAMO 

CSL 
CSL 
CSL 

ULA   SIMSCRIPT* 
BAN* 

CSL FSP GPSS 
CSL GPSS 

CLP CSL GASP GPSS 

GPSS GSP SIMSCRIPT SIMULA SOL 
GSP 

SIMSCRIPT*   CSL ESP GPSS GSP 

SCFRT* 

GASP   GPSS   HSL    SIMSCMP 

AS* 
BOSS* 
BOSS* 
BOSS* 
CASE SAM 
CASE* 
CLP CSL 
CLP* 
CONTINUOUS* 
CONTINUOUS* 
CSL DYNAMO GPSS SIMPAC SIMSC.RI 

ESP GPSS GSP MONTFCOOE SI* 
GASP GPSS HSL SIMSCRIPT SO 

GSP SIMSCRIPT SIMULA 
SIMSCRIPT SIMULA SOL* 
SIMSCRIPT SIMULA* 
SIMSCRIPT* 

GPSS 
GPSS 
GPSS 
GPSS 

CSL 
CSL 
CSL 
CSL 
CSL 
CSL 
CSL* 
CSL* 
CSS* 
OPSS* 
DYNAMO GPSS SIMPAC SIMSCRIPT* 
ECSL* 
ECSS* 
FCSS* 
ESP GPSS 
ESP* 
FCRSIM* 
GASP GPSS 
GASP* 
GPSS GSP MONTECODE SIMON SIMPA 

GSP SIMSCRIPT SIMULA SOL 
HSL SIMSCRIPT SOL* 
SIMPAC SIMSCRIPT* 
SIMSCRIPT SIMULA SOL* 
SIMSCRIPT SIMULA* 
SIMSCRIPT* 

GSP MONTECODF SIMON S 

HSL SIMSCRIPT SOL* 

GPSS 
GPSS 
GPSS 
GPSS 
GPSS 
GPSS 
GPSS* 
GPSS* 
GPSS* 
GPSS* 
GPSS* 
GPSS* 
GPSS* 
GSP MKII* 
GSP MONTECODE 
GSP SIMSCRIPT 
GSP* 
HSL SIMSCRIPT 
MIL IT RAN* 
MILITRAN* 
MKI I* 
MONTECODE SIMON 
MONTECODE* 
NSS* 
NSS* 
NSS* 

SIMON SIMPAC SIM 
SIMULA SOL MILIT 

SOL* 

CSL 

SIMPAC    SIMULA 

119 



J00?0 
G0050 
J00?0 
HC053 
WOOIO 
B0003 
40020 
H0030 
PI0003 
H0020 
ponso 
S0005 
T0030 
H003* 
Kono 
T0030 
L0003 
DC040 
00010 
K0108 
KOOSO 
T0010 
K0070 
KOI 30 
KQ077 
K0074 
F0070 
G0010 
G0020 
T0030 
T0030 
KOiOfl 
00010 
K0050 
D0030 
D00?0 
M0030 
N00 5 0 
K0005 
KOI OH 
K0100 
K0090 
D0010 
T0010 
A0030 
PC040 
C0060 

0PS3 

CASE 

CASE SAM 

CSL FSP GPSS GSP MONTECODE 

CSL DYNAMO GPSS 
ESP GPSS GSP MONTFCODE SIMON 

CSL GPSS 
CSL GPSS GSP 

CSL GPSS 
CLP CSL GASP GPSS HSL 

CSL DYNAMO GPSS SIMPAC 

CSL GPSS 

MONTECOPE SIMON SIMPAC SIMULA 
SS GSP MONTECOOE SIMON SIMPAC 

CSL GPSS GSP SIMSCRIPT 
CSL GPSS SIMSCRIPT 
CSL GPSS SIMSCRIPT 

CSL GPSS GSP SIMSCRIPT SIMULA 

CSL GPSS SIMSCPIPT SIMULA 
P CSL GASP GPSS HSL SIMSCRIPT 

0PS3 0PS4* 
0PS3* 
0PS4* 
PLS* 
OUIKSIM* 
SAM SCERT* 
SAM* 
SCERT* 
SCERT* 
SCERT* 
SCERT* 
SIMCOM* 
SIMON SIMPAC SIMULA SIMSCRIPT* 
SIMON* 
SIMPAC SIMSCRIPT* 
SIMPAC SIMULA SIMSCRIPT*   CSL 
SIMPAC* 
SIMPLE* 
SIMSCRIPT SIMULA SOL* 
SIMSCRIPT SIMULA SOL MILITRAN* 
SIMSCRIPT SIMULA* 
SIMSCRIPT STL* 
SIMSCRIPT* 
SIMSCRIPT* 
SIMSCRIPT* 
SIMSCRIPT* 
SIMSCRIPT* 
SIMSCRIPT* 
SIMSCRIPT* 
SIMSCRIPT*   CSL ESP GPSS GSP 
SIMULA SIMSCRIPT*   CSL ESP GP 
SIMULA SOL MILITRAN* 
SIMULA SOL* 
SIMULA* 
SIMULA* 
SIMULA* 
SIMULA* 
SIMULA* 
SLANG* 
SOL   MILITRAN* 
SOL* 
SOL* 
SOL* 
SOL* CL 
SOLPASS* 
SPL* 
S3* 

** 

120 



secu-itv Classification 

DOCUMENT CONTROL DATA R&D 
(S-eurlty rlmmtltlcmllon of Hilt, body of Itiwt) mnd indexing mtnolmllon mull b* »nfrm4 when Iff ormrmtl rmport It clstmllltd) 

ORIGINATING  ACTIVITY  (Corpoff mulhor) 

The MITRE Corporation 
Bedford, Massachusetts 01730 

J«. «IPO«THCu«ir»   CLASllPic ATlOr. 

UNCLASSIFIED 
as. GROUP 

J     «I»OIIT    TITLE 

SURVEY OF SIMULATION LANGUAGES AND PROGRAMS 

«.   DrscRIPT'V*  NOTCJ f7>p» of rtporl .nd Mc/u»ir. d<l«t) 

«    SuTMoRTil (Ftrmt nmma, iriddl* inlilml. Uil iwnij 

Joan C. DesRoches 

8     REPORT   DATE 

JULY 1971 
7*.   TOTAL  NO.  OP PAGES 

126 
7b.   MO.   OP   PEPS 

74 
• A.   CONTRACT  OR  GRANT  NO. •A.   ORIGINATOR*!   REPORT   NUMBER!*) 

F19(628)-71-C-0002 
6.   PROJEC T NO. 

5720 
ESD-TR-71-227 

96. OTHER REPORT NOIII (Any other numbara r*laf may ba aaa/£n*d 
thlm raporri 

MTR-2040 
DUTRlBU-ION   STATEMENT 

Approved for public release; distribution unlimited. 

II      SUPPLEMENTARY   NOTES 12.   SPONSORING  MILI TARY    ACTIVITY 

Electronic Systems Division, Air Force 
Systems Command, L. G.  Hanscom Field, 
Bedford, Massachusetts 01730  

13.    ABSTRAC T 

This report documents a survey of available simulation languages and programs 
of potential applicability to the simulation of ADPE systems.    The major features 
of the subject languages are discussed and a comprehensive bibliography is included. 

DD,FN°ORVM.,1473 
Security Classification 



Security damnification 

KEY   »OKOI 
KSLI «TT 

LINK   C 

ANALOG SIMULATION 

COMPUTERIZED SIMULATION 

COMPUTER PROGRAMMING 

COMPUTERS 

DATA PROCESSING 

DIGITAL SIMULATION 

HYBRID SIMULATION 

MATHEMATICAL MODELS 

SIMULATION 

PROGRAMMING LANGUAGES 

PROGRAMMING MANUALS 

  

Security Classification 


